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Chapter 1 Introduction 

Software evolution and maintenance is an everlasting topic for software engineers and 

researchers. During software evolution, programmers continuously make software 

changes. Impact analysis (IA) is a designing phase for a software change task where 

programmers plan the units that should be modified in the change [1]. The widely accepted 

definition of IA is "identifying the potential consequences of a change” [2], and the common 

measures of IA are precision and recall [1]. 

Iterative impact analysis (IIA) is a process that allows developers to detect impacted 

units (e.g. statements, methods, classes) step by step following program dependencies in 

the program representation of a software system. It starts with an initial impacted unit that 

is scheduled to be modified; this unit can be identified during a preceding phase named 

concept location [3]. The programmers inspect other units that interact with the initial 

impacted unit and determine whether these units are impacted by the change also. This 

process continues iteratively and has been called ripple effect [4]. 

All units inspected by the programmers during IIA constitute the visited set (VS), the 

units that programmers predict to be modified form the estimated impact set (EIS), and the 

actual impact set (AIS) consists of all units that are modified in the real implementation. A 

few IIA techniques have been investigated in the past [5-8]. 

Some researchers proposed IA techniques that predict the EIS in a single algorithmic 

step [9-12]. We call this process all-at-once impact analysis (AIA). Compared to AIA, 

programmers are “in the loop” during IIA and are expected to correct imperfections that an 

AIA algorithm accumulates. 

1.1  Motivation and Hypotheses 

The drawback of IIA techniques is that for a specific change in a unit, not all its 

interacting units are impacted. Thus, programmers may inspect many irrelevant units and 
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have unnecessary workload for IA tasks. To mitigate this problem, we explore two 

approaches. 

The first approach is to put forward new program representations that provide more 

precise dependencies for software change propagation. Our hypothesis for this approach 

is that the precision of IIA can be improved using such a program representation while 

developers can still achieve good recall. 

The second approach is integrating other IA techniques into a program representation 

that may assist programmers to make correct decision for which units to inspect during IIA. 

We treat those additional IA techniques as heuristics and distinguish two different types. 

One type is propagation heuristics that guide the developers towards the units that are 

likely to be impacted by the change. They play a role in the situation where there are many 

interacting units for the programmers to inspect. They guide programmers towards the units 

that are most likely to change. The other type of heuristics is termination heuristics that 

indicate the EIS is complete. The roles of these two kinds of heuristics are complementary 

and affect both the precision and the recall for the assisted IIA technique. For this approach, 

we investigate several propagation heuristics adapted from previously published papers 

and combine them with a practical termination heuristic during IIA that uses a static 

dependency graph as the program representation. 

1.2  Contribution 

Our work has the following contributions: 

(1) Evaluating a new program representation in the context of IIA and comparing it to an 

existing IIA technique. Several unique measures have been designed for further 

comparisons in this circumstance. 

(2) Evaluating the performance of a static dependency graph used for IIA enriched by 

various propagation heuristics along and a practical termination heuristic at the granularity 
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of classes. Some of the propagation heuristics have been investigated within the context 

of AIA techniques [9, 11, 13] and we adapted them for IIA. 

(3) In order to compare the effectiveness of these heuristics, we develop an empirical 

approach called reenactment that simulates the actions of developers who are guided by 

heuristics during IIA. This reenactment is applied to the past changes of open source 

projects mined from software repositories. 

1.3  Dissertation Organization 

The rest of the dissertation is organized as follows. Chapter 2 provides the background 

of current impact analysis techniques, especially two different program representations (i.e. 

the Class and Member Dependency Graph and the Ownership Object Graph) that can 

support iterative IA process. Chapter 3 studies the difference of completing IA tasks 

following dependencies extracted from these two program representations. Chapter 4 

investigates the effectiveness of selected heuristics in assisting IIA; this part also provides 

an empirical study. Finally, Chapter 5 concludes the main findings in our research. 

1.4  Bibliographical Notes  

Some of the materials that were produced in collaboration with other researchers and/or 

were published. Chapter 2.4 and Chapter 3 are based on [8], coauthored with Dr. Marwan 

Abi-Antoun (leading author), Dr. Ebrahim Khalaj, Andrew Giang and Dr. Václav Rajlich. We 

contribute to unify the IIA process for each tool, propose the measures, instrument the 

automated logging of human-tool interactions, perform the subject tasks and evaluate the 

results. More details are depicted in Chapter 3. Chapter 4 is motivated by the prior work 

described in [14]; portions of this work were based on a tool developed by Dr. Maksym 

Petrenko. We re-evaluate three propagation heuristics mentioned in [14] along with two 

new ones based on Mining Software Repositories (MSR) techniques. Moreover, we 

propose a novel IIA reenactment approach to simulate the actions of developers in real 



4 
 

 

software change IA tasks after combing each propagation heuristic and a practical 

termination heuristic.  



5 
 

 

Chapter 2 Background and Related Work 

Phased Model of Software Change (PMSC) [15, 16] describes a process of adding new 

functionality to the existing software systems in terms of phases, as shown in Figure 2-1. 

 

Figure 2-1. Process Model of Software Change 

In initiation phase, a certain change request is formed, selected and delivered to the 

developers. The next two phases concept location (aka. feature location) and impact 

analysis contribute to the design and comprehension of the change. Concept location finds 

the initial code units to change, whereas impact analysis estimates the total impact of the 

change within the source code and/or other related artifacts like documentation and test 

cases. Such estimation can help developers decide how the change should be 

implemented in a proper way and avoid expensive late rework. The result of concept 

location is called initial impact set (IIS) and can be treated as the input for impact analysis. 

The result of Impact Analysis is the estimated impact set. Developers implement the real 

change in the phase actualization where change propagation is conducted to resolve the 
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remained inconsistencies of the program introduced by the change. In fact, change 

propagation is very similar and interchangeable to impact analysis in the literature [14]. Any 

technique of impact analysis can be adopted by change propagation and vice versa. The 

units changed in actualization construct the actual impact set. The estimated impact set 

may contain units that are not modified finally; such units are false positives of IA. It is also 

possible that the estimated impact set misses some units of the actual impact set, which 

are false negatives of IA. Prefactoring and postfactoring are refactoring of code with 

different purposes. Prefactoring aims at facilitating actualization whereas postfactoring 

cleans up the code of the actualization. During the conclusion phase, the code of the 

change request is merged to the repository, the paper work is done and the development 

team is ready for new change request by repeating PMSC. Through all phases that the 

code is actually changed, the verification such as unit testing and functional testing is 

performed to ensure the quality. 

2.1 Impact Analysis Taxonomy and Techniques 

An early classification of impact analysis techniques was discussed by Arnold and 

Bohner [2]. They also put forward two measures for evaluating IA techniques: precision 

and recall. Such measurements have been widely used in the literature since then. Lehnert 

[17] enriched that work of Arnold and Bohner and developed a taxonomy for classifying 

impact analysis techniques. The new classification criteria included the scope of analysis, 

the granularity of units, utilized techniques, the style of analysis, tool support, supported 

languages, scalability and experimental results. Li et al. [18] focused on code-based IA 

techniques in the literature and categorized them by seven properties, which are object, 

impact set, type of analysis, intermediate representation, language support, tool support 

and empirical evaluation. 
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Early impact analysis techniques include Program Slicing, Call Graphs, Execution 

Traces, Program Dependence Graphs, Message Dependence Graphs, Traceability, 

Explicit Rules, Information Retrieval, Probabilistic Models and History Mining, which have 

been overviewed in [17]. We provide an overview of the more recent works as follows, and 

most of them integrated different IA techniques to enhance the overall performance. 

Aryani et al. [12, 19-23] discussed about using domain concepts to approximate 

dependencies among software components, especially when the source code is not 

available. First, they manually assign some domain concepts (namely, domain variables) 

for each software component based on the comprehension of its functionality. Then 

software components can have dependencies to each other if they share some common 

domain variables. These dependencies are also weighted according to how many affected 

variables from the given IIS are contained. Thus, programmers can compute the EIS based 

on that. They tested the performance by different thresholds at the granularity of program 

components. 

Cai et al. [24, 25] combined sensitivity analysis and execution differencing to rank code 

dependencies found by static program slicing. Execution differencing compares the 

differences in a number of executions of a program by only changing the value at a certain 

statement ST to find out which statements are really impacted by ST. Thus, in their 

research, large quantity of test suites were required as the partial input of IA. The result 

showed their technique was more precise than static program slicing. 

Kagdi et al. [9, 11] investigated the intersection and union of results from two IA 

techniques, which are the similarity among units using information retrieval and the 

association rules among units extracted from the repository. They set different cut points 

to get the result of each IA technique before combining them. 

Gethers et al. [10, 26, 27] enriched the work of [9, 11] by combining one more IA 

technique based on execution trace with the previous two IA techniques. 
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Zanjani et al.[28] proposed an approach, InComIA, to integrate information retrieval, 

machine learning, and lightweight source code analysis techniques into IA based on the 

resources of developer interaction histories (e.g., Mylyn) and commit histories (e.g., SVN). 

Li et al. [29, 30] used the intersection of results from concept lattice and call graph, 

respectively, as a new IA approach. They computed the temporary EIS based on concept 

lattice at the granularity of classes first, then they used the call graph to reduce the false 

positives in the temporary EIS to generate the final EIS. 

In [31], Li et al. revised the traditional call graph IA technique. They considered that the 

interference among multiple methods of the IIS may improve the precision of the prediction, 

that is, a method that is within a certain distance in the call graph to all methods of the IIS 

has a higher chance to be impacted. Thus, instead of using the transitive closure by 

following call relations in the traditional technique using call graphs, their approach 

generated a smaller EIS for a given IIS. 

Abi-Antoun et al. [8] estimated the classes that may be instantiated at runtime by static 

analysis to construct an Ownership Object Graph (OOG). Then they extracted class 

dependences for change propagation from OOG and used propagation heuristics that took 

both ownership information and the number of certain kinds of edges in OOG into account 

to refine and rank the those dependencies. As a result, programmers could follow those 

ranked dependencies to explore the EIS of a change request. 

Cai and Santelices [32] put forward a new kind of static program dependency graph at 

granularity of methods, namely Method Dependence Graph (MDG). MDG defines two 

kinds of edges among methods: (1) A method m’ is data dependent on a method m if m 

defines a variable that m’ might use or if m returns a value to m’, and the direction of the 

dependency is from m to m’. (2) A method m’ is control dependent on a method m if a 

decision in m determines whether m’ (or part of it) executes, and the direction is from m to 
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m’. They used the transitive closure of a given IIS in MDG via following the edges to predict 

the EIS, though their original idea is to mimic forward program slicing with less cost. 

Cai et al. [33, 34] discussed an impact analysis framework at the granularity of methods, 

DIAPRO, and compared it to an early dynamic technique PI/EAS of Apiwattanapong et al. 

[35]. The work studied the combination of static dependencies and multiple forms of 

dynamic data including method-execution events, statement coverage, and dynamic 

points-to sets to fill the gap between two extreme conditions for current IA techniques: 

either fast, but too imprecise, or more precise, yet overly expensive. 

Borg et al. [36] provided an industrial study about a tool, ImpRec, which can predict 

impacted artifacts if the developers input the description of change requests (i.e. issue 

reports). ImpRec used two existing IA techniques: the information retrieval method to find 

similar past issue reports (aka. issue duplicate detection) and the Mining Software 

Repositories (MSR) method to decide impacted non-code artifacts according to the AIS of 

those similar issue reports. ImpRec was evaluated in a two-phase industrial case study, 

and the results showed that it could present about 40% of the AIS among the top-10 

recommendations for the studied project. 

Musco et al. [37, 38] used machine learning by mutation testing to rank the 

dependencies in the static call graph to predict the impact in the harness code. The artifacts 

were methods in the object-oriented software source code. The change under study was a 

change in the code of a method M in the production code, and the impacted units are the 

test methods that failed because of the change in M. They run mutation testing with five 

mutation operators and a number of test cases on M to train the weights of the test methods 

that have call relations to M. Also, they put forward two different algorithms in the 

computation of the weights for ranking and investigated the best threshold. The result 

showed such technique had better precision and recall than using transitive closures of the 

call graph for IA in harness code. 
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2.2 Iterative IA Process and All-at-once IA Process 

IA process starts when the IIS is determined and ends when the full EIS is found. The 

IIS can be a set of units from concept location (e.g., [10, 26, 27]) or the change request 

itself (e.g., [8, 36]).  

Some IA techniques build graph representations for the software systems such as the 

Class and Member Dependency Graph [14] where nodes of the graph are program units 

at certain granularities and edges are dependencies among these units that may propagate 

changes. The EIS by those techniques is usually supposed to be in the part of the transitive 

closure of the IIS in the graph. However, due to the complexity of software system, the 

whole transitive closure of a single unit in the dependency graph may consist of a large 

number of irrelevant units for the change in that unit. To alleviate this, some IA approaches 

allow programmers exploring the graph of a software system and inspecting units step-by-

step to decide whether they are impacted by a change [14]. We call that process iterative 

IA (IIA). To give a more accurate illustration of IIA, a model is created based on a set of 

marks in Table 2-1. Those marks include the ‘Propagating’ mark that is used for units not 

changed, but still propagate a change to their interacting units (aka. neighbors) [6, 8]. Both 

‘Propagating’ and ‘Unchanged’ units are inspected by programmers, but they are treated 

as the false positives that increase the workload of the programmers and lower the 

precision of impact analysis. 

Figure 2-2 is an instance of iterative IA process using a generic class dependency graph 

(CDG) described in [3]. The nodes of CDG are classes, and the edges are program 

dependencies among classes. Class A is the neighbor of class B if and only if there is a 

dependency from B to A. If a node is scheduled as ‘Impacted’ or ‘Propagating', all its 

neighbors in the dependency graph should be inspected. In that way, the programmer is 

presented with only a partial set of units compared to the entire transitive closure of the IIS 
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and not overwhelmed with the information that requires too much effort [14]. Note iterative 

IA process theoretically finishes when there is no unit scheduled to inspect (i.e. marked as 

‘Next’). However, in practice, the set of ‘Next’ units is still often large, so programmers can 

terminate the process as soon as they conclude that the EIS has been sufficient to some 

point [39]. In this situation, the order in which the programmers inspect the ‘Next’ units 

should impact the number of false negatives and false positives of IIA, and hence the 

prioritization of those units becomes an issue. 

Table 2-1. Marks In Iterative IA 

Mark Meaning 

Blank Unknown status of the unit; the unit was never 
inspected and is not currently scheduled for 
inspection. 

Impacted The programmers found the recommended unit was 
impacted by the change, i.e., the unit belongs to the 
EIS. All ‘Blank’ neighbors of this unit must be 
scheduled for inspection, i.e., they are marked 
‘Next’. 

Unchanged The programmers found the recommended unit was 
not impacted by the change. This unit does not 
propagate the change to any of its neighbors. 

Next The unit is recommended to inspect by the 
programmers for a possible change. 

Propagating The programmers found the recommended unit was 
not impacted by the change, but the neighbors of 
this unit might need to change. All ‘Blank’ neighbors 
of this unit must be marked ‘Next’. 

 

On the other hand, some IA approaches attempted to predict the full EIS in a single 

algorithmic step (e.g. [9-12]). We call their process all-at-once IA (AIA). Malik and Hassan 

[40] combined machine learning with several IA techniques to predict the EIS for C 

programs. The best result was 78% recall and 64% precision. Several approaches were 

proposed to divide the IA into several subtasks and applied different IA technique in each 

subtask [27, 28, 36]. Among them, Zanjani et al. [17] reached 32% recall and 12% precision 

for IA at the granularity of files, when the size of the visited set (VS) was 20. Borg et al. [36] 

aimed at predicting the impact on non-code artifacts, and they got 60% recall and 7% 
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precision when the size of VS was 40. Some researchers investigated the union and 

intersection of the EIS found by different IA techniques to improve the performance [10, 

11], but the recall was still low. Sun et al. [13] compared three tools based on different static 

IA techniques and studied the union and intersection of the results from each tool. They 

achieved 61% recall and 38% precision at the granularity of classes. Musco et al. [37, 38] 

proposed two propagation heuristics based on the execution of test cases to predict how a 

change in the production code impacts harness code. This resulted in 79% recall and 69% 

precision at the granularity of methods. To sum up, AIA techniques suffer from low recall. 

 

Figure 2-2. An IIA instance 

Because AIA and IIA are very different processes, IA techniques designed for IIA are 

not suitable to apply for AIA by trivial modification and vice versa. The literature still lacks 

a framework to switch IA techniques between these two processes. So far, few research 

had been conducted to improve the IIA techniques. 
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2.3 Class and Member Dependency Graph and its Application 

Our work is based on a Class and Member Dependency Graph (CMDG) that glue 

together the units of a software system at variable granularity and was proposed by 

Maksym and Rajlich [6, 14]. G(V,E) is defined as a CMDG of the program P where the set 

of nodes V = C∪M∪F representing units, C represents the set of all types (classes and 

interfaces) of P, M represents the set of all methods in P, and F represents the set of all 

fields in P. The set of edges is defined as E = EN∪ER where an edge (x, y) ∈EN if and only 

if the definition of the unit y is nested within the definition of the unit x, and an edge (x, 

w) ∈ER if and only if the unit w is referred within the definition of unit x. During IA, only ER 

edges are considered as potentially propagating the change among units at a certain 

granularity, whereas EN edges are used to shift the granularity. 

A simple Java code example and its visualized representation of CMDG could be find 

in [8]. 

CMDG has been applied for concept location [41], impact analysis and actualization [6, 

14] of software changes. A tool named JRipples [42] was developed to extract CMDG from 

Java source code using type analysis based on the Eclipse Abstract Syntax Tree (AST) 

and supported all related applications of CMDG. 

2.4 Ownership Object Graph (OOG) and its Application 

Unlike CMDG, an Ownership Object Graph (OOG) [43] over-approximates what types 

are created at runtime in terms of abstract objects and how they may communicate using 

abstract interpretation. 

An OOG is defined as an OGraph that have two types of nodes: OObject represents the 

set of abstract objects, and ODomain represents the set of domains defined by the 

developers. A domain D∈ODomain is a named, conceptual group of objects. Each domain 

could have zero or more objects as its children, and each object could include zero more 
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child domains. As a result, an arbitrary object hierarchy conveying some design intent 

according to domain names and their containment is achieved. For example, objects 

related to the architectural domain of software are at the higher levels of the hierarchy, and 

those related to the implementation details are placed at the lower levels. 

The set of edges of OGraph is denoted by OEdge, which have four different kinds: 

parent-child, import dataflow, export dataflow and points-to. Parent-child relations are used 

to show which domain D∈ODomains contains which object O∈OObjects or verse visa. An 

import dataflow communication exists from the source object m of type M to the destination 

object n of type N if n receives data from m. An export dataflow communication exists from 

the source object m of type M to the destination object n of type N if one of n’s field f may 

be modified when one of m’s methods is invoked. A points-to communication represents a 

field reference from the object of class C that declares a field f to the object of f. 

In plain code, there is no such information for domains. To construct a useful OOG or 

OGraph, it requires developers to add domain information in terms of annotations. An 

annotated Java code example and its OGraph could be find in [8], where the same code 

was also used to show CMDG. According to that example, OGraph may obtain more 

precise dependencies among types than CMDG considering the complicated issues 

caused by subclassing, programming to interfaces, aliasing, and collections of object-

oriented programs. 

2.4.1 OOG Applications 

OOG have been applied in code comprehension, reasoning about security, dealing with 

distribution node, conformance analysis and impact analysis [44]. The OOG is a global 

points-to graph that may be able to. Due to its potentially more precise dependencies, Abi-

Antoun et al. [8] conducted case studies to compared an IA technique using OGraph to the 

one using CMDG. They implemented a tool, ArchSummary, as an Eclipse plugin to support 
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their approach. Four kinds of weighted dependencies are computed based on OGraph: the 

most important classes (MICs), the most important related classes (MIRCs), the most 

important methods in a class (MIMs) and the most important classes behind an interface 

(MCBIs), whose definitions are in [8]. The idea of these dependencies and the tool 

ArchSummary were presented in [47] at first, but they were not used for IA at that time. 

2.5 Heuristics of Impact Analysis 

In the literature, no IA approach can guarantee the EIS of a change to be same to the 

AIS all the time or even be high in both precision and recall, so there is still a need for new 

IA approaches. Some researchers called IA techniques heuristics [5]. Researchers have 

attempted to combine two or more heuristics to improve the overall IA performance over 

the past decade. However, most of them investigated just AIA techniques, and few study 

was conducted about the heuristics for IIA. Under this condition, we categorize IA heuristics 

based on their information sources and the role in the IA process in order to provide a 

solution to combine heuristics for IIA. 

2.5.1 Categorization based on information sources 

From the view of information sources, existing heuristics can be from: 

Structural information: Such heuristics utilize the information extracted from the static 

program dependencies such as counting certain dependencies among units. An earlier 

survey of heuristics based on static dependencies was presented in [45]. Li et al. [31] 

computed the distance of units in the call graph to decide the range of EIS. Abi-Antoun et 

al. [8] counted the number of dataflow and points-to communications to instruct the 

programmers during IA. 

Execution information: Such heuristics use program traces or other runtime 

information. Cai et al. [24, 25] used execution differencing at statement level, and Musco 

et al. [37, 38] run mutation testing at method level to refine the EIS found by static analysis. 
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In [33, 34], Cai et al. investigated the combination of method-execution events, statement 

coverage and dynamic points-to sets in supporting IA tasks.  

Historical information: Units that are changed together (aka. co-change) or modified 

frequently by the same developer may imply a close relationship and serve as a heuristic. 

Mining Software Repositories (MSR) methods have been applied to extract such relations, 

which are called evolutionary couplings [10, 26, 27]. Hassan and Holt [5, 40] studied the 

frequency and recency of co-changed units in predicting the EIS for C programs. Tóth et 

al. [7] used the correlation value of the co-changed units. Zimmermann et al. extracted 

association rules based on co-change information to predict the EIS [46].  

Textual information: Heuristics can take into account the similarities of the text in unit 

names, annotations, comments, documentations, logs and change requests. In the recent 

work summarized in Chapter 2.1, Zanjani et al.[28], Kagdi et al. [9, 11], Gethers et al. [10, 

26, 27], Borg et al. [36] and Sun et al. [13] considered information retrieval (IR) methods in 

finding similar units or similar change requests for a given change. Aryani et al. [12, 24-28] 

used common domain variables to compute the impact of a change in software 

components. The relations gained using IR are called conceptual couplings [10, 26, 27]. 

Heuristics based on the same information source need a thoroughly comparison before 

combining. For instance, the call relations in the call graph are included in the edges of 

CMDG, so it is not that helpful to combine CMDG and the call graph. 

2.5.2 Categorization based on the role in the IA process 

According to the role in the IA process, we divide heuristics into clustering heuristics, 

propagation heuristics and termination heuristics. 

Clustering Heuristic: It clusters the units of the program. Given an IIS, the EIS must 

be in the same cluster of the IIS. In other words, the clustering heuristic determines the 
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best recall that an IA approach can achieve. All program representations belong to this 

type. 

Propagation Heuristic: It guides the programmers towards the units that are likely to 

be impacted by the change. Propagation heuristics rank the units of a cluster from the 

clustering heuristic in order to improve the precision. 

Termination Heuristic: Termination heuristics indicate that the EIS is complete. A 

termination heuristic can be used with a propagation heuristic or without. 

It is worth noting that propagation heuristics and termination heuristics assist the 

clustering heuristic and cannot increase the recall of IA tasks once the clustering heuristic 

is determined.  
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Chapter 3 Iterative Impact Analysis based on a Global 

Hierarchical Object Graph 

Impact analysis techniques rely on dependencies between different program units. 

Simple static analysis cannot expose some subtle dependencies due to interfaces, 

collections, and possible aliasing. As discussed in Chapter 2.4, instead of considering 

classes and computing dependencies based on visiting the program’s Abstract Syntax Tree 

such as CMDG, the IA technique based on the Ownership Object Graph may provide a 

more precise result.  

To evaluate such new approach, we conducted two case studies on two systems and 

five completed code modification tasks to compare the precision of dependencies extracted 

from OOG to those extracted from the CMDG at the granularity of types. Since CMDG has 

been implemented in the tool JRipples, our evaluators enacted these five tasks using 

ArchSummary and JRipples, respectively. The result is a detailed evaluation consists of a 

step-by-step comparison between ArchSummary and JRipples as both of them adopt the 

iterative IA process. 

The work mentioned in this chapter was led by Dr. Marwan Abi-Antoun and partially 

collaborated with Dr. Ebrahim Khalaj. 

3.1 Evaluation Method 

To evaluate the approach, during each task of each case study, our evaluators 

completed code modification tasks after IA to get the actual impact set. The evaluation 

design is summarized in this section. Further details could be found in [8]. 

3.1.1 Environment 

Two graduate students completed impact analysis for all tasks of the subject systems 

using ArchSummary and JRipples, respectively. Neither evaluator had prior knowledge of 
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the design of subject systems. All the evaluation was done under Eclipse 4.2. Both JRipples 

and ArchSummary are plugins for Eclipse. The JRipples evaluator used the latest version 

of JRipples at that time (version 3.2.2). 

An additional logging functionality was added to JRipples and ArchSummary. It recorded 

the types that were involved during the interaction between the evaluator and the tool every 

step. We defined a step as each time the tool recommends a set of types based on the 

evaluator’s operation. Because MIMs in ArchSummary are at a granularity of methods 

rather than types, our study did not record them. 

3.1.2 Procedures 

1. ArchSummary Procedure 

ArchSummary adopts iterative IA process with the help of a marking system, as shown 

in Figure 3-1 and Table 3-1. The tool displays MICs, MIRCs and MCBIs in terms of Eclipse 

views. The procedure of using this tool was mainly contributed by our co-authors. 

 

Figure 3-1. IIA in ArchSummary 

ArchSummary Developer

Create the CDG

Show MICs Pick the top rank without a mark

Need to change?

Mark as Unchanged Mark as Impacted

No Yes

See MIRCs of this node

See MCBIs of interested field

Show MCBIs

Show MIRCs
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The ArchSummary evaluator always started from the top-ranked class in MICs for 

impact analysis. ArchSummary would mark a type as ‘Visited’ if it was the first time that the 

evaluator explored it. After inspecting a class, the evaluator should set the mark to 

‘Impacted’ if the class was scheduled to change, or ‘Unchanged’ otherwise. As soon as 

MICs has a class without any mark, the evaluator could do any of the following and jump 

between them: 

(1) Explore a class that does not have a mark but with a highest rank from MICs. 

(2) For a ‘Visited’ class C, pick a new class in its MIRCs that does not have a mark but 

with a highest rank. 

(3) For a field f declared with an interface or abstract class T in class C, pick a new class 

that does not have a mark but with a highest rank from the MCBIs of this field. 

Table 3-1. Marks In ArchSummary 

Mark Meaning 

No mark Unknown status of the type; the type was never 
inspected 

Visited 
Automatically marked if the type is visited by 
developer 

Unchanged A visited class that is not scheduled to change 

Impacted A visited class that is scheduled to change 

 

ArchSummary hides the interfaces or abstract classes from all its Eclipse views such as 

MICs, MIRCs and MCBIs. However, the evaluator was always able to see the superclass 

or implemented interfaces directly when exploring a class. Moreover, the Eclipse Type 

Hierarchy feature provides all subtypes of a class or an interface in case the evaluator 

really needs it. 

2. JRipples Procedure 

Because we evaluate CMDG and JRipples at class level, the information of CMDG at 

variable granularity is summarized into class level to formulate its corresponding class 

dependency graph, as described in the following definitions. 
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Definition 1: Let P be a program and let G = (V, E) be a directed graph where V is the 

set of all classes in P and E is the set of directed edges. An edge (x, y)  E if and only if 

the class y or any member of y is referred (e.g., called, inherited, extended, instantiated, 

etc.) within the definition of the class x. Then, G is the Class Dependency Graph (CDG) of 

the program P. 

Definition 2: For an edge (x, w) ∈ER, the type x is the neighbor type to the type w and 

vice versa. 

The procedure to use JRipples in this study is shown by Figure 3-2. It is a bit more 

constrained with the help of the marking system described in Table 2-1 from Chapter 2.2. 

 

Figure 3-2. IIA in JRipples 

To be short, the JRipples evaluator always started impact analysis from the main class 

of the subject system. The rest of the procedure is same to that in Figure 2-2. Thus, the IA 

result was strictly due to the dependencies of CMDG. 

JRipples Developer

Create the CDG

Select Main class as start point and mark it as Next

Are there any types marked as Next?

No

Pick a Next type and inspect
Yes

Is it relevant to change request?

Mark as Unchanged

Mark as Impacted/Propagating

No

Yes

Label all neighbors without a mark Next
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Table 3-2 shows the correspondence between the marks used in ArchSummary and 

JRipples. Such differences were taken into account for the computation of the measures in 

Chapter 3.1.4. 

Table 3-2. Mapping of Marks between ArchSummary and JRipples 

Mark ArchSummary JRipples 

Impacted Impacted Impacted 

Unchanged Unchanged Unchanged/Propagating 

Next N/A Next 

Visited Visited Impacted/Unchanged/Propagating 

 

3.1.3 Subject System and Tasks 

For the first study, an object-oriented framework to develop board games, MiniDraw 

(MD) [47], was used to conduct T1 – T4. MD includes 68 classes and interfaces, and its 

overall size is about 1400 lines of code. For the second case study, DrawLets (DL) is used 

to conduct the last task T5. DL has 138 classes and interfaces with a size of 8800 lines of 

code. This system supports a drawing canvas that holds figures and lets users interact with 

them, and it was previously studied by others [48, 49]. Table 3-3 lists the change requests 

of these tasks. 

3.1.4 Hypothesis and Measures 

The following hypothesis is proposed: 

Following dependencies extracted from OOG leads to a higher precision in impact 

analysis compared to following dependencies from CMDG at the granularity of types. 

Several measures are used to test the hypothesis: 

(1) Distinct Recommended Types (DRT): It is the accumulated number of distinct 

types that each tool recommends for the task. Given a task, the DRT for ArchSummary is 

the sum of the MICs of the project, the MIRCs of each ‘Visited’ class and the MCBIs the 
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evaluator invokes after eliminating duplicates. The DRT for JRipples is the union of all the 

types that have a mark (non-Blank). 

(2) Recommended Types per Step (RTS): For ArchSummary, RTS is the number of 

recommended classes in MIRCs when the evaluator views MIRCs of a ‘Visited’ class. For 

JRipples, RTS is the number of neighbors of a type marked as ‘Propagating’ or ‘Impacted’. 

We finally compute the average (denoted by Avg) and the maximum (denoted by Max) of 

RTS for the given task. 

Table 3-3. Change Requests of Subject Systems 

Task Change Request 

T1 Validate piece movement on the board: the 
board piece can move one square straight or 
diagonally towards the opponent home row. 

T2 Implement the capture of a board piece: a 
board piece can only capture another board 
piece on a diagonal move. The attacker piece 
takes the position of the captured one that is 
removed from the board. 

T3 Implement an undo feature for a piece 
movement on the board: add a menu item to 
invoke the functionality. 

T4 Implement a status bar to be updated on each 
piece movement: add a status bar to the 
framework. 

T5 Implement an “owner” for each figure: an 
owner is a user who puts that figure onto the 
canvas, and only the owner is allowed to move 
and modify it. At the beginning, each session 
declares a session owner, and this session 
owner will own all new figures created in that 
session. No other user will be allowed to 
manipulate them. At the beginning of a session, 
user inputs an ID and a password. Any function 
that attempts to modify a figure must check that 
the figure owner and the current session owner 
are the same. 

 

(3) #Visited: It measures the size of the VisitedSet. With the help of marking system, 

#Visited for each tool could be easily computed by the number of all types that have any 

mark except ‘Next’ for the given task. 
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(4) Precision: It is one of the most common measures for IA. The formula of precision 

in this evaluation is the following: 

Precision =  
|𝐸𝐼𝑆∩𝐴𝐼𝑆| 

#𝑉𝑖𝑠𝑖𝑡𝑒𝑑
 * 100% 

In our evaluation, the types marked as ‘Impacted’ in ArchSummary and JRipples form 

the EIS. The AIS is collected manually based on the modifications the evaluators make to 

the code after impact analysis. 

Because in our evaluation evaluators performed and verified IA manually, they were 

required to guarantee the highest recall of each IA task unless the actual impacted types 

were not detectable using the evaluated tools. In this circumstance, we did not use recall 

as a measure to compare these tools. 

(5) In addition, we measure specific outputs for a tool and their closest counterparts in 

the other tool: 

#MCBIs vs. #AllTypes: Given a task, every time the ArchSummary evaluator invokes 

MCBIs for a field declaration of an interface type, we record the classes in MCBIs and 

compute its size as #MCBIs. In JRipples, for every interface the evaluator explores, we 

record all its subtypes in Eclipse Type Hierarchy and compute its size as #AllTypes.  Then, 

we find the intersection of interfaces in the logs of ArchSummary and JRipples, because 

the set of interfaces in the logs of the two tools could be very different. Next, we compute 

the average (denoted by Avg) and the maximum (denoted by Max) for #MCBIs and 

#AllTypes across this intersection to achieve a more accurate comparison. To clarify, 

dependencies from JRipples provide only the direct subtypes of a type, so we have to 

collect all subtypes using the Eclipse Type Hierarchy. 

MCBIs_Invoked vs. Interfaces_Visited: From #MCBIs and #AllTypes, we compare 

JRipples and ArchSummary for only the same set of interfaces. We also concern about 

how many interfaces the ArchSummary evaluator explores and the JRipples evaluator 
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inspects per task. MCBIs_Invoked is the number of distinct interfaces of the field 

declarations on which the ArchSummary evaluator reviews MCBIs, whereas 

Interfaces_Visited is the number of all the interfaces in the VisitedSet of JRipples. 

As we record all the information during the impact analysis automatically in CVS files, 

we design the following schema for the logging system of JRipples and ArchSummary: 

 ClassName: The full name of the type (class/interface) being visited. DRT counts 

all names of the same task in this column after filtering out duplications. 

Interface_Visited counts all names of the same task in this column whose 

ClassType is ‘INTERFACE’ after filtering out duplications. 

 MethodName: The simple name of method. 

 FieldName(ParamsName): The simple name of the field/method parameter. 

Currently it only records the field name but it may also record method parameters 

in the future for deeper studies. MCBI_Invoked counts all names of the same task 

in this column in ArchSummary's log. 

 ClassType: The value is ‘CLASS’ or ‘INTERFACE’. 

 Mark: This is used to record the mark of a visited type. For JRipples, it can 

be ‘Next’, ‘Propagating’, ‘Located’, ‘Impacted’ or ‘Unchanged’. For ArchSummary, 

it can be ‘Visited’, ‘Unchanged’ or ‘Impacted’. We count the set of all types with a 

mark except ‘Next’ as VisitedSet after filtering out duplications, and the set of all 

types with the mark ‘Impacted’ after filtering out duplications as the EIS. 

 Order: This is to track the sequence of steps during the IA process. 

 Rank: In ArchSummary, this represents the position of a type in the 

recommendations, and 0 means it is the currently visited type/field. 

 Comment: The evaluator can write comments during the IA process. 
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 ARS: It records the number of All Recommended Types per Step (RTS) to compute 

RTS Max and RTS Avg. 

 NewTypes: New Recommendations per Step, which records ONLY the set of 

new types added to the recommendations. 

 NewTypesNum: The number of types in NewTypes. 

 AllTypes: The list of all the subtypes in the Eclipse Type Hierarchy for the target 

interface or abstract class. 

 AllTypesNum: The number of types in AllTypes. 

 MCBIs: The list of all the types shown in the MCBI view of ArchSummary (invoked 

when selecting a field declaration). 

 MCBIsNum: The number of types in MCBIs. 

 TimeStamp: The time stamp for the current log record. 

More details of the logs, raw data and the detailed reports for the navigation of the 

evaluators are available on http://www.cs.wayne.edu/~mabianto/arch_summary/. 

3.2 Evaluation 

Table 3-4 shows the results of the measures. Further analysis could be found in [8]. 

According to the verification after IA, both evaluators achieved 100% recall for each IA task 

they performed.  

As shown in Table 3-4, according to #Visited of each tool, it needed to visit double or 

triple the number of types to complete each task using compared to that using 

ArchSummary. 

The Max and Avg for #MCBIs and #AllTypes show the clear difference between 

ArchSummary and JRipples for the same set of visited interfaces. Since #MCBIs is always 

smaller than #AllTypes per task, this may be one scenario that ArchSummary provides 

more precise recommendations. 
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Table 3-4. Comparative Results 

Task ArchSummary JRipples 

T1 

DRT 21 DRT 24 

RTS Avg/Max 7.4 / 14 RTS Avg/Max 2.3 / 8 

#Visited 5 #Visited 12 

#MCBIs Avg 1 #AllTypes Avg 2 

#MCBIs Max 1 #AllTypes Max 2 

Precision 20% Precision 8.3% 

MCBI_Invoked 3 Interface_Visited 4 

T2 

DRT 21 DRT 41 

RTS Avg/Max 6 / 14 RTS Avg/Max 8.4 / 17 

#Visited 8 #Visited 21 

#MCBIs Avg 1 #AllTypes Avg 2 

#MCBIs Max 1 #AllTypes Max 2 

Precision 25% Precision 9.5% 

MCBI_Invoked 2 Interface_Visited 8 

T3 

DRT 22 DRT 30 

RTS Avg/Max 7 / 14 RTS Avg/Max 6.4 / 10 

#Visited 7 #Visited 19 

#MCBIs Avg 1 #AllTypes Avg 2 

#MCBIs Max 1 #AllTypes Max 2 

Precision 28.6% Precision 10.5% 

MCBI_Invoked 2 Interface_Visited 8 

T4 

DRT 22 DRT 25 

RTS Avg/Max 7 / 14 RTS Avg/Max 8.7 / 15 

#Visited 8 #Visited 18 

#MCBIs Avg 1 #AllTypes Avg 2 

#MCBIs Max 1 #AllTypes Max 2 

Precision 25% Precision 11.1% 

MCBI_Invoked 3 Interface_Visited 7 

T5 

DRT 53 DRT 100 

RTS Avg/Max 23 / 46 RTS Avg/Max 17 / 58 

#Visited 37 #Visited 97 

#MCBIs Avg 2.9 #AllTypes Avg 6.5 

#MCBIs Max 12 #AllTypes Max 19 

Precision 35.1% Precision 16.5% 

MCBI_Invoked 8 Interface_Visited 20 

 

MCBIs of ArchSummary allow developers to concentrate on the concrete classes that 

implement interfaces. During all the tasks, the ArchSummary evaluator invoked MCBIs far 

less times (shown by MCBIs_Invoked) compared to the number of interfaces that the 

JRipples evaluator had to inspect (shown by Interfaces_Visited). 
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Besides, the DRT of ArchSummary is always smaller, which means ArchSummary 

recommended fewer types in total every task compared to JRipples. From the results, the 

RTS values of ArchSummary could be larger or smaller than the JRipples ones. This 

indicates that dependencies from OOG lead to different results than those from CMDG. 

To clarify, the RTS Max of ArchSummary stays at 14 for MD because from T1 to T4 the 

evaluator repeatedly inspected the same class that recommended the largest number of 

types. 

For JRipples, the value of Interface_Visited is not trivial considering its corresponding 

DRT. This confirms that the JRipples evaluator struggled with interfaces for each task. 

Overall, ArchSummary always achieved better precision as it led to a smaller VisitedSet 

while maintaining the highest recall. The difference between ArchSummary and JRipples 

was more distinguishable when the complexity of the change and the subject system 

increased, as shown by the data of T5. 

It is worth noting that when we compared the EIS of T5 from each evaluator, we found 

that the JRipples evaluator detected three more classes. These classes were not in any 

view of MICs, MIRCs or MCBIs for ArchSummary. After investigation, we found that they 

were not instantiated in the subject system, and thus, they did not exist in the OOG/OGraph 

or any other kind of object graphs. We did not treat such classes as false negatives of 

ArchSummary this time as they were not used actually. Moreover, the missing classes are 

the subtypes of some ‘Impacted’ classes for the ArchSummary evaluator, so he could use 

the Eclipse Type Hierarchy to discover them. 

3.3 Discussion 

We described how the tool ArchSummary, which used new static program 

dependencies based on a Global Hierarchical Object Graph (i.e. OOG), supported impact 

analysis for a given change request after adopting an iterative IA process. The new IA 
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technique was evaluated by the precision and other characteristics according to case 

studies as well as compared with JRipples, which used static program dependencies from 

CMDG. For a fair comparison, we reformed the iterative IA process in JRipples such that 

the evaluator finds out the EIS of a given change request by merely following program 

dependencies the tool utilizes. The results showed that following dependencies extracted 

from OOG leaded to a higher precision in impact analysis compared to following 

dependencies from CMDG at the granularity of types. 

3.3.1 Limitations of OOG 

1. OOG overhead 

The main problem, which limits the usage of OOG or OGraph, is that getting a 

meaningful OOG is somehow hard and overwhelming for developers. 

When we conducted this study, the annotations of source code had to be refined 

manually to get a usable hierarchy for OOG. Abi-Antoun et al. [50] measured that the effort 

of adding annotations manually was about 1 hour/KLOC, assuming that the programmer 

or the evaluator has learned what the annotations mean. Thus, one can estimate the effort 

based on the system size. 

Khalaj proposed an approach in [44, 52] that enables developers to refine an initially flat 

object graph into an OOG directly, which is easier than refining the annotations. However, 

the time effort for refining OOG is still not trivial. Furthermore, after evolving the software, 

developers have to evolve annotations/OOG accordingly.  

2. Threat to recall 

Any kind of object graphs does not contain types that are not instantiated, and OOG still 

belongs to object graphs. If a software change affects such un-instantiated types, they are 

not reachable using ArchSummary. This may lower down the recall of IA tasks. 

The threats to validity of our work and other issues were discussed by our co-authors in 

[8].  
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Chapter 4 Evaluating Heuristics for Iterative Impact 

Analysis based on a Weighted Class Propagation Graph 

Researchers have integrated different IA techniques to enhance the overall 

performance over the past decade. Most of these publications studied AIA techniques, and 

they suffered from low recall, as summarized in Chapter 2.2. 

In the literature, IA techniques based on program slicing are believed to have high recall, 

though they are very costly in practice [24, 53]. Several approaches were proposed to 

approximate program slicing at the granularity of methods with lower cost [32, 54]. 

However, Toth et al. [7] found that at the granularity of classes, program slicing has very 

low recall (i.e. 11.65%) and does not meet the needs of developers. 

In this context, we select a few propagation heuristics and a termination heuristic to 

assist IIA and evaluate their performance at the granularity of classes. Due to the limitations 

of OOG and ArchSummary, we adapt JRipples and the CMDG as the IIA technique in this 

study. Past results showed that IIA supported by JRipples can reach 100% recall [6, 8], 

though the precision was low. For a system with 500 classes, JRipples usually finishes 

building the CMDG in a minute. 

In the work of Petrenko [14], several propagation heuristics were investigated. That work 

compared the average precision of IIA tasks when the recall is 100%. Instead of this 

assumption, we introduce termination heuristics. We investigate both the precision and 

recall for a set of propagation heuristics combined with the termination heuristic. This 

makes the reenactment more realistic, compared to that in [14]. 

4.1 Weighted Class Propagation Graph 

The class dependency graph (CDG) adapted from CMDG has been defined in Chapter 

3.1.2. 
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For impact analysis, we use the symmetric closure for the edges in CDG because the 

change can propagate in both directions through an edge (i.e. dependency), and we add 

supports for propagation heuristics. 

Definition 3: Let G = (V, E) be a CDG, then GH = (V, E’, WH) is a Weighted Class 

Propagation Graph (WCPG) with a set of classes V, a set of edges E’ where E’ is a 

symmetric closure of E, and a set of weights WH where each weight wH(x, y) is produced 

by a propagation heuristic H for an edge (x, y)  E’. Note wH(x, y) could be different to wH(y, 

x). We say y is a neighbor of x if there is an edge(x, y) E’. 

During IIA, if a class x is marked as ‘Impacted’ or ‘Propagating’, wH(x, y) will be 

substituted for the value from a specific propagation heuristic to rank its neighbor y.  We 

assume that a higher ranked neighbor is more likely to change or propagate the change. 

4.2 Candidate Heuristics 

After defining WCPG, we select the several representative heuristics adapted from 

previously published papers for our study. 

4.2.1 Propagation Heuristics 

Our study evaluates the following propagation heuristics: 

(1) Dependency Based Heuristic (DBH) 

An extensive survey of heuristics based on static dependencies was conducted in [45], 

and the PIM heuristic (i.e. the number of method invocations between classes, taking into 

account the polymorphism) had particularly good performance among them. PIM was also 

used in more recent IA studies [13, 55]. 

Thus, we derive our DBH from this heuristic. If call(x,y) denotes the number of times the 

class x calls any method of the class y, including polymorphic calls, then DBH(x,y) = 

call(x,y) + call(y,x). The value of DBH(x, y) is always a natural number. 
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(2) Class to Class similarity by Information Retrieval (CCIR) 

Latent Semantic Indexing is an information retrieval method that constructs a vector 

space model (VSM) for texts where each text is represented by a vector. Before 

constructing VSM, the source code of classes is pre-processed to identify meaningful 

words; this may include splitting composite identifiers, removing language-specific stop-

words, and so forth. A non-negative cosine value of the angle between the corresponding 

vectors of two texts in VSM indicates their similarity and serves as the conceptual coupling 

[11, 55]. Our CCIR(x, y) is the non-negative cosine value of the angle between the vectors 

representing classes x and y. 

(3) Change Request to Class similarity by Information Retrieval (RCIR) 

A change request is a text that describes the required modification to the program. The 

heuristic in [56] compares the text of a change request to the text in the source code of 

classes, and is based on the assumption that terms appearing in the text of the change 

request also appear in the source code of the impacted classes. 

Let IR(r, x) be the non-negative cosine value of the angle between the vectors 

representing a class x and a change request r. We adjust it as a propagation heuristic in 

the following way: For every edge from a class x to a class y in GH, RCIR(x, y) = IR(r, y). 

(4) Evolutionary Coupling between Classes by Mining Software Repositories (Hist1 and 

Hist2) 

Mining Software Repositories (MSR) methods can uncover unique relations for change 

propagation among program units [57], which are not detectable by program analysis. Such 

relations are called evolutionary couplings [10, 11]. Association rules are specific kinds of 

evolutionary couplings between a resource unit m and a destination unit n determined by 

a set of commits in a training set. Each rule comes with a support value, which indicates 

how frequently both m and n appear together in a single commit in the training set, denoted 

by AssoS(m, n). There is also a confidence value, which indicates how often the commits 
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containing m also contain n, denoted by AssoC(m, n). AssoS(m, n) is always symmetric but 

AssoC(m, n) can be different from AssoC(n, m). Zimmermann et al. explored an AIA 

technique based on association rules [46]. That is, for the given initial impacted unit u, all 

association rules using u as the resource unit with a non-zero support value are collected. 

Then the destination units of those rules construct the EIS and are ranked by the 

corresponding confidence value. This AIA technique was combined with other IA 

techniques in more recent studies [10, 11, 13]. 

In our study, we extract change history from a selected period of commits in the 

repositories as the training set. Then we build association rules among all classes. Next, 

for an edge from a class x to a class y in GH, we investigate two propagation heuristics 

Hist1(x, y) = AssoC(x, y) and Hist2(x, y) = AssoS(x, y). 

(5) Random Propagation Weight between Classes (RND) 

We add RND, i.e. random weights ranging from 0 to 1, for all edges in GH. RND is used 

as the baseline for assessing the performance of all propagation heuristics in order to show 

whether they are better than a completely random inspection. We generate RND weights 

only once for each subject system in our experiment and reuse those weights to reenact 

all cases of that system. 

4.2.2 Termination Heuristics 

Our termination heuristic, denoted by TopN, is based on the idea that a developer would 

inspect no more than N neighbors of every ‘Impacted’ or ‘Propagating’ class. Those are the 

neighbors that are ranked highest by the specific propagation heuristic that we are 

exploring. Similar heuristic, cut point, was used in many research papers such as [9, 11, 

13]. Without termination heuristics, programmers have to inspect all neighbors iteratively 

from the initial impact set until all reachable classes have been inspected. 

TopN is defined by the following way: 
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Definition 4: Let x be a class in GH, then neighbors(x) = { y | (x, y)E’ } and weights(x) 

= {wH(x, y) | yneighbors(x) }. 

Definition 5: Given a natural number N and a class x in GH, let yneighbors(x) and 

wH(x, y) is the N’th largest weight in weights(x), then TopN(x) is a set of reachable neighbors 

for x where TopN(x) = {v |vneighbors(x) such that wH(x, v) ≥ wH(x, y) }. 

In order to adjust this heuristic to the subject systems of different size, we decided to 

use the percentage of the total number of classes in the subject system to determine the 

actual value N of the heuristic. We selected different percentages in this study, which are 

0.5%, 1%, 2%, 3%, 4% and 5%. 

4.3 Design of Case Study 

The empirical method used in our study is reenactment. We integrate the selected 

propagation heuristics into JRipples (namely, enhanced JRipples) and instrument the most 

part of the reenactment as a tool to apply the termination heuristic. We run JRipples, our 

reenactment tool as well as subject systems in Eclipse 4.2. We assume developers using 

IIA would strictly follows the process described in Chapter 2.2. 

4.3.1 IIA Reenactment Process Overview 

An overview of the reenactment is given in Figure 4-1. 

We manually mines real changes of each subject system from its repository and related 

information on SourceForge to compute the AIS and other input for certain heuristics. Given 

a subject system, we visit its closed tickets on SourceForge to extract the description of 

change request, change ID and resolved date of the ticket. Then we find the related 

commits according to the change ID and resolved date. Only if a complete and final 

implementation of that change request is done in a single revision, we consider it as a 

candidate change request and record its revision id. This is because the presence of 

multiple revisions for a single change request indicates that some revisions could be 
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incorrect, incomplete, buggy, or were about refactoring. The discrimination between these 

cases would require an extensive manual analysis and potentially introduce bias into our 

study. 

Figure 4-1. Overview of the IIA reenactment 

Due to the characteristics of selected propagation heuristics and IIA, we manually parse 

the change details of the corresponding revision of each candidate change request and 

perform further filtering based on necessary criteria: (1) To fairly use RCIR, the change 

request should be described from the view of users instead of programmers. If a candidate 

change request explicitly mentions which program units should be modified or other clear 

information about implementation, we remove it from our study. (2) Each change request 

has to change at least two classes. (3) Each change request involves a single feature only. 

After mining the change request and its AIS, we check out the source code of the 

previous revision and use the enhanced JRipples to generate the WCPG for that code 

based on a propagation heuristic. 

The repositories do not provide information on the ‘Propagating’ and ‘Unchanged’ 

classes that were inspected during the IA by the d. We reconstruct the sets of these classes 

Revision ID 

SVN Source code before 

revision 

WCPG 

Parsing 

Simulation algorithm 

‘Unchanged’ / 

‘Propagating’ / 

‘Impacted’ classes 

Parsing 

Actual 

‘Impacted’   

classes 

SourceForge 

Change ID 

Change 

request 

AIS 
Visited set 

Heuristics 



36 
 

 

by an algorithm that simulates actions of the programmers during the IIA in our reenactment 

tool. 

4.3.2 Simulation Algorithm 

The simulation algorithm used in our reenactment tool consists of the following steps: 

(1) Select the initial impacted class (IIC) 

From the information in the repositories and SourceForge, the actual starting point of 

the change is not available. Thus, for a software change that has multiple classes in its 

AIS, the tool repeats the simulation by selecting each class of the AIS as the IIC. 

(2) Build a subgraph of WCPG based on the IIC and the termination heuristic 

In the WCPG weighted by a selected propagation heuristic, the tool uses the IIC as the 

root and construct a subgraph of WCPG such that it contains all classes and edges 

reachable from IIC in WCPG after applying a specific TopN: 

Definition 6: Let GH = (V, E’, WH) be a WCPG, cV is the IIC and N is a natural number, 

then Gc = (Vc, Ec, Wc) is a weighted subgraph based on c with a set of reachable classes 

Vc for c where Vc = { x | x=c or there exists y Vc such that xTopN(y)}. The set of reachable 

edges Ec is defined as Ec = { (x, y) | there exists xVc and yTopN(x) such that (x, y)E’ },  

and for the edge (x, y) Ec  wc(x, y) = wH(x, y). 

As an example, a GH weighted by propagation heuristic is shown in the left part of Figure 

4-2 where the members of AIS have the black filling. The initial impacted class is indicated 

as ‘IIC’. Suppose N=2, then the right part of Figure 4-2 shows the corresponding Gc that 

contains all the reachable nodes and edges of the IIC after applying the termination 

heuristic Top2. It can be seen that some classes of the AIS are no longer reachable from 

the IIC, due to termination heuristics. 

(3) Identification of ‘Propagating’ Classes 
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Figure 4-2. Finding reachable nodes and edges in WCPG based on the IIC and the 

termination heuristic Top2 

After constructing Gc, the intersection between AIS and Vc represents the reachable part 

of AIS for the given propagation and termination heuristics. Then the reenactment algorithm 

simulates the inspections that the original developer made. 

If the reachable part of AIS is disconnected, the developer must have visited 

‘Propagating’ classes during IIA. The reenactment assumes that the developer visited the 

minimal number of ‘Propagating’ classes. For the simulation algorithm, this is equivalent to 

resolve the graph-theoretical directed Steiner tree problem in a weighted directed graph 

[58] where all edges share an identical weight. 

Definition 7: Let Gc = (Vc, Ec, Wc) be a weighted subgraph rooted on c Vc, then G’c = 

(Vc, Ec) is a converted graph from Gc with the same set of classes Vc and same set of edges 

Ec as Gc and an identical weight on every edge. 

Then, the graph-theoretical Steiner tree problem is formulated in the following way: 

given G’c and M = Vc ∩ AIS, find the sub-tree T of G’c where the root c has a path to every 

node in M and the sum of the weights on the paths is the minimum. Note that T may include 

several interconnecting nodes that are not in M; these nodes are known as the Steiner 

nodes. 

As an example, a G’c with all weights equal to 1 is shown in the left part of Figure 4-3 

where the nodes in the reachable AIS have the black filling. The root vertex is indicated 
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with ‘IIC’. Then the directed Steiner tree is depicted in the right part of Figure 3, and the 

Steiner nodes are indicated by the letter ‘P’. 

 

Figure 4-3. Finding Steiner nodes example. Left part is the directed graph, and the right 

part is the directed Steiner tree accordingly. 

Since the problem of resolving directed Steiner tree is NP hard, we use an 

approximation solution [59] taking G’c and the reachable AIS as the input. For a directed 

graph G’c with n vertices, let X represents the set of given vertices that must be contained 

in the final directed Steiner tree, m is the size of X, and S represents the set of vertices in 

the current directed Steiner tree. Then the solution in [59] is as follows: 

Initialize S as an empty set 
For each vertex k in X 
    remove k from X: X = X – {k} 

insert k into S: S = S + {k} 
for each vertex d in X 
 for each node s in S 

compute the shortest path to d from s 
find the vertex in X that has the minimum sum of paths to all nodes in S, denoted by v 
record all vertices on the shortest path from k to v as P 
for each vertex u in P: 

insert u into S: S = S + {u} 
if u is in X, remove u from X: X = X – {u}  

Output S, which contains all vertices of the final directed Steiner tree 
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(4) Reenactment of the visited set 

When using an IIA technique, the visited set contains all inspected units, i.e. ‘Impacted’, 

‘Propagating’ and ‘Unchanged’ units. The simulation algorithm uses G’c to compute the 

visited set. For every ‘Impacted’ or ‘Propagating’ class (i.e. every class in the directed 

Steiner tree), it marks all neighbors as “Unchanged.” The assumption of this step is that 

the developer inspected all these units because of the guidance by both propagation and 

termination heuristics. The algorithm of the last step is as follows: 

4.3.3 Simulation Example in MiniDraw 

To further illustrate our simulation algorithm, we reuse the board game framework 

MiniDraw and the task T2 we had implemented in Chapter 3. The change request is 

“Implement the capture of a board piece: a board piece can only capture another board 

piece on a diagonal move. The attacker piece takes the position of the captured one that 

is removed from the board.” 

Due to the Observer design pattern used in MiniDraw, programmers need to modify 

both the method pieceMovedEvent() of the class BoardDrawing and the method move() of 

the class GameStub to complete this change request. Thus, the actual impact set contains 

two classes, which serve as one input for our reenactment tool. 

Initialize visited impact set, visited propagating set and unchanged set as empty 
Select the root r of the Steiner tree // i.e. the initial impact class 
Add r to visited impact set 
Call visitGraph(G’c, r) 
visitGraph (Graph G, vertex v) 
 for each neighbor v’ of v in G 
  if v’ belongs to Actual Impact Set 
   add v’ to visited impact set 
   call visitGraph (G, v’) 
  else if v’ belongs to reenacted ‘Propagating’ Classes 
   add v’ to visited propagating set 
   call visitGraph (G, v’) 
  else 
   add v’ to unchanged set 
VS = visited impact set ∪ unchanged set ∪ visited propagating set 
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MiniDraw has 68 classes and interfaces. Figure 4-4 shows a partial Weighted Class 

Propagation Graph based on DBH heuristic using the code before the implementation of 

this task. The classes filled by red represent the AIS, and the class filled by blue is the class 

containing the main function of this program. 

 

Figure 4-4. Partial WCPG of MiniDraw based on DBH heuristic 

The first step of our simulation is to pick up the IIC from the AIS and load the actual 

value of N for the termination heuristic. Suppose GameStub is the IIC and N value is 2. 

Then, Figure 4-5 is the subgraph Gc accordingly where the IIC is highlighted by the color 

yellow. Fortunately, the whole AIS is reachable from the IIC in this case. 

After getting Gc, the weights on all edges are replaced by the same value 1 in order to 

compute the directed Steiner tree that interconnects classes GameStub and BoardDrawing 

in Gc. The result is shown in Figure 4-6 where all Steiner nodes have the yellow filling. In 

other words, the class BoardGameObserver serves as a ‘Propagating’ class in this 

simulation if the programmer starts IA from GameStub and applies heuristics DBH and 

Top2. 

The last step of the simulation is reenacting the visited set. This would include all classes 

in the directed Steiner tree as well as related ‘Unchanged’ classes. In this example, the 
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‘Unchanged’ classes are shown in Figure 4-7 using have the green filling. Thus, in this 

reenactment, we assume the developer visits six classes in total assisted by the selected 

heuristics. 

 

Figure 4-5. Reachable classes and edges based on Top2 for the class GameStub 

 

Figure 4-6. Directed Steiner tree to connect GameStub and BoardDrawing 
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Figure 4-7. Visited Set in the reenactment. Nodes in yellow estimates ‘Impacted’ or 

‘Propagating’ classes, and nodes in green estimates ‘Unchanged’ classes. 

4.3.4 Subject Systems 

Our study is conducted on three different open source java projects, which are listed in 

Table 4-1. 

To get association rules used by heuristics Hist1 and Hist2, we select all commits in 

SVN repository during a certain date interval, as shown by the columns Date Interval and 

#Commits of Table 4-1. Some of systems may be selected by other researcher in the 

literature of impact analysis. For instance, JEdit and the time interval (2004-12-31 to 2009-

12-22) were used in [9, 11] for evaluating some AIA techniques at the granularity of 

methods. 

Table 4-1. Subject Systems 

System Version LOC Classes 
History for Association Rules 

# Requests 
Date Interval # Commits 

JEdit1 4.3 109k 531 [2004-12-31, 2009-12-22] 2051 15 

JHotdraw2 7 83k 568 [2006-11-1, 2010-8-1] 411 10 

QuickFIX/J3 1.5.3 30k 281 [2005-2-28, 2011-11-2] 1187 11 

                                                           
1 https://sourceforge.net/projects/jedit/ 
2 https://sourceforge.net/projects/jhotdraw/ 
3 https://sourceforge.net/projects/quickfixj/ 
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For JEdit, we extract 15 change requests that were completed right after the selected 

time interval. The AIS of each change request involves 2 to 6 classes. 

For JHotdraw, we finally extract 10 change requests that were completed between 

2010-8-2 and 2017-1-25. The AIS of each change request includes 2 to 7 classes. 

For QuickFIX/J, we are able to extract 11 change requests that were completed between 

2011-11-3 and 2014-5-9. The AIS of each change request covers 2 to 5 classes. 

4.3.5 Measures 

For each change request cr with a specific initial impacted class c, we collect its 

precision P(cr, c) and recall R(cr, c): 

P(cr, c) = 
|𝑉𝑆∩𝐴𝐼𝑆−𝑐|

|𝑉𝑆−𝑐|
 

R(cr, c) = 
|𝑉𝑆∩𝐴𝐼𝑆−𝑐|

|𝐴𝐼𝑆−𝑐|
 

Next, the precision P(cr) and recall R(cr) for each change request is the average of 

precisions and recalls calculated for each possible initial impacted class: 

P(cr) = ∑
P(cr,   c)

|𝐴𝐼𝑆|𝑐∈𝐴𝐼𝑆  

R(cr) = ∑
R(cr,   c)

|𝐴𝐼𝑆|𝑐∈𝐴𝐼𝑆  

For each subject system, let CR denote the set of its change requests, then we measure 

the average precision Pavg and average recall Ravg: 

Pavg = ∑
P(cr)

|𝐶𝑅|𝑐𝑟∈𝐶𝑅  

Ravg = ∑
R(cr)

|𝐶𝑅|𝑐𝑟∈𝐶𝑅  

The results of P(cr), R(cr), Pavg and Ravg are discussed in Chapter 4.3. 

4.4 Evaluation 

Table 4-2 to Table 4-5 show Pavg and Ravg of investigated heuristics of each subject 

system, along with the corresponding standard deviations according to involved P(cr) and 
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R(cr). The column ActN of these tables lists the actual N value corresponding to a specific 

percentage given in the column TopN(%) for a system. At the end of each table, we also 

compute the overall average performance of all change requests from these three systems 

after classifying the results by the same percentage value of TopN. 

Figure 4-8 to Figure 4-11 depict how the performance changes with the increase of 

TopN for JEdit, JHotdraw, QuickFIX/J and overall, respectively. 

In addition, Figure 4-12 to Figure 4-14 show how the median of P(cr) and R(cr) changes 

with the increase of TopN for JEdit, JHotdraw and QuickFIX/J, respectively. 

Table 4-2. Average Recall of Investigated Heuristics (%) 

TopN (%) ActN RND DBH Hist1 CCIR Hist2 RCIR Subject 

0.5 11 87.5 40 60.8 40.8 60.8 35.8 

JEdit 

1 16 97.5 92.5 87.5 82.5 87.5 87.5 

2 22 100 100 95 95 95 100 

3 27 100 100 95 100 95 100 

4 11 100 100 100 100 100 100 

5 16 100 100 100 100 100 100 

0.5 3 75 70.5 31.8 59.1 31.8 45.6 

JHotdraw 

1 6 90.9 93.2 84.1 95.5 84.1 66.3 

2 11 97.7 95.5 97.7 97.7 97.7 95.5 

3 17 97.7 97.7 97.7 97.7 97.7 97.7 

4 23 97.7 97.7 97.7 97.7 97.7 97.7 

5 28 97.7 97.7 97.7 97.7 97.7 97.7 

0.5 2 68.1 45.8 36 68.1 36 37.5 

QuickFIX/J 

1 3 82.5 72.5 71.3 82.5 71.3 58.1 

2 6 100 95 90 97.5 90 90 

3 9 100 95 97.5 100 97.5 100 

4 12 100 100 100 100 100 100 

5 15 100 100 100 100 100 100 

0.5 - 78.1 50.2 45.2 54.2 45.2 39.0 

Overall 

1 - 91.1 86.6 81.6 86.1 81.6 72.6 

2 - 99.4 97.2 94.2 96.5 94.2 95.7 

3 - 99.4 97.8 96.5 99.4 96.5 99.4 

4 - 99.4 99.4 99.4 99.4 99.4 99.4 

5 - 99.4 99.4 99.4 99.4 99.4 99.4 

 



45 
 

 

4.4.1 Discussion of results 

According to Table 4-2, IIA combined with RND provides a better recall than many IA 

techniques in the literature, which have been summarized in Chapter 2.2. However, when 

TopN is low, RND also reaches a better recall compared to the propagation heuristics that 

we investigated in our study. In addition, propagation heuristics based on information 

retrieval or evolutionary couplings lead to low recall for low TopN, especially when it is 

Top0.5%. 

Table 4-3. Standard Deviation of Recall (%) 

TopN (%) ActN RND DBH Hist1 CCIR Hist2 RCIR Subject 

0.5 11 30 43 37 38 37 39 

JEdit 

1 16 13 28 36 30 36 28 

2 22 0 0 26 26 26 0 

3 27 0 0 26 0 26 0 

4 11 0 0 0 0 0 0 

5 16 0 0 0 0 0 0 

0.5 3 24 20 33 25 33 27 

JHotdraw 

1 6 14 13 19 7 19 25 

2 11 5 11 5 5 5 11 

3 17 5 5 5 5 5 5 

4 23 5 5 5 5 5 5 

5 28 5 5 5 5 5 5 

0.5 2 36 38 27 36 27 35 

QuickFIX/J 

1 3 29 36 36 29 36 36 

2 6 0 11 18 10 18 31 

3 9 0 11 6 0 6 0 

4 12 0 0 0 0 0 0 

5 15 0 0 0 0 0 0 

0.5 - 31 36 33 34 33 35 

Overall 

1 - 20 28 32 25 32 30 

2 - 3 8 20 18 20 18 

3 - 3 7 17 3 17 3 

4 - 3 3 3 3 3 3 

5 - 3 3 3 3 3 3 
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It is worth noting that in JHotdraw, the highest recall on average stops at 97.7% for any 

investigated propagation heuristic. This is caused by a specific change request related to 

Revision ID 783: “It should distinguish between large icon and small icon. This way, an 

Action can use different icons for buttons and menu items.” 

Table 4-4. Average Precision of Investigated Heuristics (%) 

TopN (%) ActN RND DBH Hist1 CCIR Hist2 RCIR Subject 

0.5 11 11.9 10.3 11.3 13.1 11.3 12.3 

JEdit 

1 16 10.3 12.1 9.8 9.8 9.8 12.3 

2 22 7.3 8.2 7.4 7.8 7.4 8.6 

3 27 6 6.4 6.2 6.4 6.2 6.8 

4 11 5.2 5.6 5.6 5.7 5.6 5.8 

5 16 5 5.2 5.1 5.2 5.1 5.3 

0.5 3 10.8 16.9 10.1 12.6 10.1 19.9 

JHotdraw 

1 6 9.7 10.8 9.3 11.2 9.3 13.4 

2 11 7.1 7.9 7.1 7.7 7.1 8.7 

3 17 5.6 5.9 6 6.3 6 6.8 

4 23 4.9 5.3 5.3 5.6 5.3 5.9 

5 28 4.8 4.9 4.9 5.1 4.9 5.4 

0.5 2 12.1 46.1 24.8 29.9 24.8 35 

QuickFIX/J 

1 3 12.5 23.5 22.3 24.1 22.3 33.9 

2 6 9.4 13.5 14.6 13.7 14.6 16.5 

3 9 7.7 9.8 10.8 9.7 10.8 11.7 

4 12 6.4 8.4 8.8 7.8 8.8 9.4 

5 15 5.9 7.6 7.4 6.8 7.4 8.2 

0.5 - 11.7 23.1 15.1 18.1 15.1 21.3 

Overall 

1 - 10.8 15.2 13.5 14.6 13.5 19.2 

2 - 7.9 9.7 9.5 9.6 9.5 11.0 

3 - 6.4 7.3 7.6 7.4 7.6 8.3 

4 - 5.5 6.4 6.5 6.3 6.5 6.9 

5 - 5.2 5.9 5.7 5.7 5.7 6.2 

 

This change affects 7 classes. One class of the AIS, CrossPlatformApplication, is only 

interacting with another class named ResourceBundleUtil. Unfortunately, in the 

neighborhood of ResourceBundleUtil by every propagation heuristic including RND, 

CrossPlatformApplication is ranked lower than Top5%, which leads to a situation that our 
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reenactment is not able to reach 100% recall unless using CrossPlatformApplication as the 

IIC. 

In JEdit and QuickFIX/J, RCIR always get the better precision compared to any other 

propagation heuristic for the same TopN, as shown in Table 4-4. 

Similar performance of RCIR continues in JHotdraw, However, DBH provides good 

precision, which is lower only than RCIR, while maintaining far better recall. 

Table 4-5. Standard Deviation of Precision (%) 

TopN (%) ActN RND DBH Hist1 CCIR Hist2 RCIR Subject 

0.5 11 5 11 8 13 8 12 

JEdit 

1 16 5 6 6 5 6 6 

2 22 4 4 4 4 4 3 

3 27 3 3 3 3 3 3 

4 11 3 3 3 3 3 3 

5 16 3 3 3 3 3 3 

0.5 3 2 8 8 6 8 8 

JHotdraw 

1 6 2 5 3 4 3 6 

2 11 2 3 2 2 2 3 

3 17 2 2 2 2 2 3 

4 23 1 2 2 2 2 2 

5 28 2 2 2 2 2 2 

0.5 2 9 39 19 21 19 33 

QuickFIX/J 

1 3 6 18 13 13 13 22 

2 6 3 5 6 5 6 8 

3 9 2 3 4 3 4 3 

4 12 3 2 3 2 3 3 

5 15 2 2 2 2 2 3 

0.5 - 6 28 14 17 14 22 

Overall 

1 - 5 12 10 10 10 16 

2 - 3 5 5 5 5 6 

3 - 3 3 4 3 4 4 

4 - 3 3 3 3 3 3 

5 - 3 3 3 3 3 3 

 

Though the confidence value and support value of an association rule are different, they 

rank the neighborhood of an ‘Impacted’ or ‘Propagating’ class in the same order. As a 
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result, the simulation using Hist1 has the exactly same performance as that using Hist2 in 

all the cases. 

Figures 4-8 to 4-11 show that for each propagation heuristic, both precision and recall 

become stable after TopN reaches 2% for all subject systems. This may imply that Top2% 

is a sufficient termination heuristic and there is no need to investigate termination heuristics 

that require an inspection of the larger number of neighbors. 

Also note that when the value of TopN is low, reenactment requires a lot of ‘Propagating’ 

classes in order to achieve the best recall. This is why for some propagation heuristics, the 

precision is improved when TopN increases at the beginning. 

 

Figure 4-8. Average precision (left) and recall (right) of investigated heuristics for JEdit 

 

Figure 4-9. Average precision (left) and recall (right) of investigated heuristics for 

Jhotdraw 
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Figure 4-10. Average precision (left) and recall (right) of investigated heuristics for 

Quickfix/J 

  

Figure 4-11. Average overall precision (left) and recall (right) 

According to Figure 4-12 to Figure 4-14, once the median of recall reached 100%, any 

investigated propagation heuristic leads to slightly better median precision compared to 

random inspection. 

 

Figure 4-12. Median precision (left) and recall (right) of investigated heuristics for JEdit 
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Figure 4-13. Median precision (left) and recall (right) of investigated heuristics for 

Jhotdraw 

 

Figure 4-14. Median precision (left) and recall (right) of investigated heuristics for 

Quickfix/J 

4.4.2 Threats to Validity 

Our study deals with the granularity of classes. Different results may be obtained for 

other granularities. 

We evaluate only Java programs. Different results may be obtained for programs 

implemented by other programming languages. 

Some investigated heuristics such as Hist were adapted from AIA techniques. Those 

techniques are very different compared to IIA, as described in section III. In our solution, 

we convert them into propagation heuristics. Thus, some advantages of such heuristics 

may not be maintained during this conversion. It is possible that a different solution to adapt 

AIA techniques into IIA may provide different results. 
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Software repositories do not provide information about the initial impacted class. In the 

study, we consider every possible starting point of an impact analysis task. The 

performance of an IA using a particular propagation heuristic may vary slightly based on 

the selected IIC; however, this threat to validity is minor and does not affect the relative 

rankings of the investigated propagation heuristics. 

Reenactment, as presented in this paper, may have certain built-in biases. Other 

empirical techniques, for example, empirical study of human developers, may provide 

different results.  
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Chapter 5 Conclusions 

Software changes occur frequently in modern software development. Impact analysis 

helps programmers to understand the system and estimate what units should be modified 

in order to ensure the quality of changes. 

In this thesis, we investigate iterative impact analysis techniques. They use program 

representations consisting of program units and program dependencies. Starting from the 

initial impacted unit, programmers inspect other units of the program following those 

dependencies iteratively to identify the consequence of the change.  

This thesis established two novel approaches to improve IIA. The first approach is based 

on an assumption that a new program representation, Ownership Object Graph, could 

increase the precision of IIA while keeping the high recall. To evaluate this approach, we 

conducted case studies on two Java systems and five complete change tasks. Moreover, 

we designed various measures to provide quantitative and qualitative comparisons for IIA 

based on these two program representations. The results showed that IIA based on OOG 

led to a much better precision and maintained 100% recall for each change task. 

In the second approach, we evaluated the performance of IIA combined with several 

representative propagation heuristics adapted from previously published papers and one 

termination heuristic. Those propagation heuristics include: Dependency Based Heuristic 

(DBH), Class to Class similarity by Information Retrieval (CCIR), Change Request to Class 

similarity by Information Retrieval (RCIR) and Evolutionary Coupling between Classes by 

Mining Software Repositories (Hist1 and Hist2). To support the evaluation, we designed a 

novel empirical method based on the reenactment of IIA that simulates the actions of 

developers and reenacted the past changes of open source projects mined from software 

repositories. As a result, IIA combined with all the propagation heuristics that we explored 

performed better than other techniques known from the literature in terms of recall. 
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However, all these heuristics fell short of expectations as they did not provide a convincing 

improvement when compared to the random inspection. 

5.1 Future Work 

The investigated approaches lay out a foundation of our future work. 

In our first approach, OOG achieves better performance for IA tasks. However, 

producing OOG from the source code is costly, and lowering the cost is a research issue 

[44, 52]. 

In view of the negative result of the second approach, searching for good IIA heuristics 

is still on. In the future, we would like to build on the experience from this thesis to seek for 

more effective propagation heuristics. For example, classes ranked higher by multiple 

propagation heuristics may be more likely correct for IA compared to the ones ranked 

higher only by a single propagation heuristic. Furthermore, we plan to explore additional 

termination heuristics. 

The methodology that we developed – reenactment – is giving us a clear comparison 

between different heuristics, and hence it will help us assess whether the newly proposed 

heuristics are an improvement compared to the old ones. Hopefully in the future, a better 

IIA heuristics will emerge and help the developers to make more predictable and safe 

changes in software. 
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Iterative impact analysis (IIA) is a process that allows developers to estimate the 

impacted units of a software change. Starting from a single impacted unit, the developers 

inspect its interacting units via program dependencies to identify the ones that are also 

impacted, and this process continues iteratively. Experience has shown that developers 

often miss impacted units and inspect many irrelevant units. 

In order to enhance IIA, first we put forward a new program representation that provides 

more precise dependencies for software change propagation. Our study showed that the 

precision of IIA was indeed improved using such a program representation while the high 

recall was maintained. 

Second, we distinguished propagation heuristics that guide developers to find the actual 

impacted units and termination heuristics that help to decide whether the estimated impact 

is complete. The roles of these two kinds of heuristics are complementary and affect both 

the precision and recall when used during IIA. We investigated several propagation 

heuristics adapted from previously published papers and combined them with a practical 

termination heuristic. We developed a reenactment process that simulates the actions of 
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developers who use those heuristics during IIA, and we assessed their performance. The 

software changes for our reenactment were mined from the repositories of open source 

projects. We found that IIA provides better recall than the other known impact analysis 

techniques. However, the IIA with the propagation heuristics that we investigated does not 

supersede IIA combined with a random inspection, and hence these heuristics do not help 

the IIA. 
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