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I.  INTRODUCTION 

 
Nanostructures have always been used for their extraordinary optical properties. 

One of the most prominent examples of optical nanostructure in nature is the beautiful 

color in the wings of a butterfly. Instead of pigmentation, the color of the butterfly is 

produced by the nanostructure present in its wings. Another well-known example is the 

Lycurgus cup, which shows different colors depending on the light incidence angle. The 

beautiful effect is caused by a small amount of gold and silver nanoparticles mixed in the 

glass as a colloid. 

As these examples demonstrate, the optical properties of nanostructures are as 

dependent on the structure as much as the constituent material. Optical nanostructures 

are of special interest because they can manipulate visible light in many useful ways, 

which cannot be obtained using bulk materials. Furthermore, the interaction between 

visible light and optical nanostructures can be controlled and tuned to achieve specific 

results. Our focus is on controllable and tunable optical nanostructures. 

Our goal is to determine an efficient design and analysis method for optical 

nanostructures and use these methods to relate their optical properties with their physical 

structure. Based on these relations, we will propose and demonstrate controllable and 

tunable optical nanostructures. We will emphasize the transparency and low optical loss 

of low refractive index transparent materials and investigate their application in designing 

optical nanostructures.  We will review commonly used methods for the design and 

analysis of optical nanostructures, including full-wave numerical methods and analytical 

effective medium approximations. We will derive a general effective medium 
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approximation for optical nanostructures and verify it experimentally. Finally, using our 

understanding of the methods of analysis, we will propose and demonstrate an efficient 

and fast method for designing and analyzing a controllable optical nanostructure. 

A. Background 

1. OPTICAL NANOSTRUCTURES 

The term optical nanostructure broadly includes all nanostructures that can 

manipulate visible light. In this work, we define an optical nanostructure as a composite 

media, consisting of a linear, homogeneous and isotropic matrix material and similar 

inclusions with size comparable to the operating wavelength. We limit ourselves to 

dielectric nanostructures where plasmonic effects are absent or negligible. These 

dielectric optical nanostructures can be periodic photonic crystals, thin-film coatings, 

aperiodic planar nanostructures, or colloids. Here, a brief background of these optical 

nanostructures is discussed. Further discussion of different optical nanostructures can be 

found in the literature [1, 2].  

a) Photonic crystals  

Photonic crystals are composite media where the inclusions are arranged 

periodically in a matrix material. The periodicity can be one-dimensional or two-

dimensional, with a uniform third dimension, as shown in Figure 1. Periodicity in all three 

dimensions is possible but rarely used in designing an optical nanostructure. Commonly 

used photonic crystals are planar with one- or two-dimensional periodicity. 
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1D 2D 

Figure 1 Planar photonic crystals with one-dimensional and two-dimensional periodicity. 

The structure of a planar photonic crystal (PPC) can be described by its lattice, 

periodicity, and the refractive indices of the constituent materials. The lattice denotes the 

periodic arrangement of the inclusions within the matrix material. Several types of lattice 

for planar nanostructures have been reported in the literature, including the rectangular 

lattice [3], the triangular lattice [4], the honeycomb lattice, the kagome lattice [5], and other 

complex tiling. Triangular and rectangular lattices are utilized for most applications due to 

their simplicity. Aside from the lattice, the period of the planar nanostructure determines 

its nature. The frequency dispersion of propagating modes within a photonic crystal is 

controlled by its period. In such planar nanostructures, the change in group index with 

respect to frequency can be controlled to engineer modes with a specific frequency and 

dispersion property.  

The most useful property of PPC is the so-called optical bandgap. It is a 

phenomenon where a set of frequencies is prohibited from propagating within the PPC. 

In effect, the photonic crystal acts as an optical insulator in the bandgap frequencies. This 

effect is utilized in many applications and studied in detail here in subsequent chapters. 

The relation between the periodicity, lattice, material property and bandgap of a PPC is 

not apparent because there exists no analytical solution of Maxwell’s equations for a 
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general PPC case. Hence, numerical analysis is required to relate the bandgap to the 

parameters of a PPC. Typically, bandgap analysis is done by calculating the band 

structure of the PPC. 

 

Figure 2 A sample band structure of a PPC. 

In Figure 2, a sample band structure is shown. The horizontal axis shows the index 

of the wave vector. The band structure typically plots the frequency of different allowed 

modes with respect to the wave-vector of the incident wave. The index of the k vectors is 

chosen based on the periodicity of the lattice. The frequency is typically displayed after 

normalizing it by the periodicity of the lattice. In the figure, a bandgap can be found around 

normalized frequency 0.4. The position and width of the bandgap, as well as the shape 

of the individual bands, can be controlled by changing the periodicity, nature of the 

inclusion, or the matrix material properties. 

b) Metamaterials 

Metamaterials are a class of periodic optical nanostructure that are very different 

than PPC. Whereas PPC relies on ensemble diffraction to engineer the modes, 

metamaterials have no diffraction because their inclusions are deeply subwavelength. 

Rather, metamaterials utilize a different kind of resonant structure in a periodic lattice to 
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achieve unusual optical properties. In optical metamaterials, the interaction between the 

nanostructure and light can be codified into effective permeability (μeff) and effective 

permittivity (εeff). These properties are decided by the periodicity, as well as the unit-cell 

of the structure. 

  

(a) Unit cell (b) Extracted effective properties 

Figure 3 (a) The unit cell of a metamaterial consisting of an inclusion in a matrix thin film, 
(b) the extracted effective permittivity and permeability. 
 

A sample metamaterial unit cell and its extracted parameters are shown in Figure 

3. By changing the periodicity, the structure of the unit cell, or the matrix material 

properties, the optical properties of metamaterials can be controlled. Remarkably, the 

permittivity and/ or the permittivity of the metamaterial can be made negative or close-to-

zero by careful design, which is very useful for many applications. 

c) Colloids   

Aperiodic optical nanostructure can easily extend beyond a single plane or thin film 

since there is no periodicity requirement. These nanostructures, where subwavelength 

inclusions of different size, shape and materials are randomly distributed within a bulk 

matrix, can be called colloids. The optical properties of these colloids can be controlled 

by controlling the inclusions.  
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For example, if the inclusions are stimuli-responsive, then the optical properties of 

the colloid can be tuned by external stimuli. A colloid containing magnetic spheres may 

respond to a magnetic field. The transmission, reflection, or color of such a colloid can be 

magnetically tuned in real-time. Similarly, if the inclusions can sustain Mie resonances of 

different orders, then the colloid can be designed to have a zero or negative effective 

refractive index. By choosing the inclusions, one can design tunable and controllable 

optical nanostructures using colloids.  

d) Aperiodic planar nanostructures 

While planar photonic crystals have many useful and exotic properties due to their 

periodicity, aperiodic planar nanostructures can be equally useful, despite having no 

periodicity. In these nanostructures, inclusion materials of different size and shape are 

aperiodically distributed within a thin-film matrix. For example, the optical density of a 

planar aperiodic nanostructure can be designed by controlling the size, shape, material, 

and volume density of inclusions in the matrix thin film. This effect can be used for 

designing single layer anti-reflection (SLAR) coating where a single layer of a 

nanostructure with the appropriate optical density may nullify reflectance. The optical 

density or effective permittivity of the thin film can be controlled by controlling the volume 

density of inclusion or porosity of the film. Such controllable porous materials have many 

uses in optics and nanophotonics. 

 Recently, aperiodic planar nanostructures with a regular arrangement of 

inclusions have also been used for designing miniaturized and flat optical components. 

In these nanostructures, the inclusions are arranged to implement a specific spatial 

distribution of optical density. This way, the emergent optical wave-front can be 
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engineered to mimic the output of any desired optical component.  Thus, well designed 

aperiodic nanostructures can replace traditional spherical optical components with flat 

and planar components, giving rise to new, flat component-based optics. Here, the shape 

of the components is always flat, unlike traditional optics, where the shape of the lens is 

determined by its application. 

 

Figure 4 Comparison of regular optics and flat optics 

Flat optics and traditional optics are compared in Figure 4. In Figure 4(a), a prism 

is shown. The degree by which this prism bends the incoming light is decided by its shape, 

i.e., the acute angle of the prism. In flat optics, light can be bent by a flat film of aperiodic 

nanostructure with a specific distribution of inclusions, as shown in Figure 4(b). Similarly, 

Figure 4(c) shows a spherical lens that focuses the incoming light. The focal length of this 

lens and its efficiency is decided by the shape and material of the spherical lens. On the 
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other hand, a film of aperiodic nanostructure with controlled distribution of inclusion can 

achieve the same effect using a flat surface. Flat optics is now a rapidly progressing field. 

It has generated a lot of interest because planar optical components promise a new 

integrated optics platform, which can be fabricated with existing technology, and may 

eliminate long-standing problems of typical optics, such as aberration. 

e) Surface nanostructure 

Surface nanostructures are surfaces that scatter light due to their optical 

roughness. It is well known that these rough optical surfaces scatter light in addition to 

transmitting and reflecting it. By controlling the roughness of the surface, the scattering 

of light can be controlled and harnessed for many applications. For example, it is well 

known that rough surfaces reflect less light compared to smooth surfaces. The junctions 

of solar cells are typically made rough either in a controlled or random manner to enhance 

photon absorption. Rough surfaces are also better in adsorbing different chemicals such 

as water. Despite their many applications, surface nanostructures are seldom used in 

optical applications due to their enhanced ability to scatter light. 

f) Materials 

While the structure of an optical nanostructure is important, the constituent 

materials also plays a vital role. The choice of material for an optical nanostructure is 

limited in practice because of various limitations in the fabrication and production chain. 

However, it is still important to explore different materials and investigate their usefulness. 

The dominant material for designing optical nanostructure is, understandably, 

silicon. Despite the high loss and opacity of silicon at the visible wavelengths, it is still 

used due to convenience. Nanostructures designed on silicon can take advantage of the 
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enormous Si fabrication infrastructure that is already in place. However, the high loss of 

silicon limits the possible applications of silicon nanostructure in the visible wavelengths. 

III-IV semiconductors, like InP, GaAs, InGaAs, among others, are possible alternatives to 

silicon. These materials have a high refractive index and a wide, direct bandgap, making 

them suitable for opto-electronic application. Significant infrastructure has been built for 

these kinds of materials, and it is steadily growing. Ultra-high index materials, such as 

PbTe and Te are also explored for designing optical nanostructures.  

However, these materials, despite their advantages, remain highly lossy in the 

visible wavelengths. Recently, transparent materials, such as SiO2, TiO2, and polymers 

such as Polystyrene, Poly-(9-vinylcarbazole) (PVK), and Poly- (methyl methacrylate) 

(PMMA) are being explored as candidate materials. In this work, our focus is on low index 

materials that are highly transparent in the visible wavelengths. 

2. ANALYSIS METHODS 

Analysis of optical nanostructure means calculating the relevant optical properties of 

the nanostructure. Typical quantities that are calculated include: 

• Reflection, transmission, and absorption 

• Scattering, extinction, and absorption efficiencies 

• Scattering parameters 

• Effective permittivity, effective permeability, and effective refractive indices 

• Frequency bandgap, group refractive index, and iso-frequency contours 

  There are two prominent methods to calculate these quantities: full-wave 

numerical analysis and analytical analysis. In full-wave numerical analysis, Maxwell’s 

equations are solved numerically, both within and outside the nanostructure, with 
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appropriate boundary conditions. From the calculated fields, the desired quantities are 

determined via post-processing. Full-wave numerical methods include the finite 

difference time domain (FDTD) method, the finite element method (FEM), the finite 

integral technique (FIT), rigorous coupled wave analysis (RCWA), the transfer matrix 

method (TMM), and method of moments (MoM). These methods are highly versatile and 

accurate, but they sometimes fail to provide the desired connection between the optical 

nanostructure and its optical properties. 

These analytical methods, though limited in applicability, may reveal significant 

insight into an optical nanostructure. These methods use various approximations to derive 

an analytical relation between the desired quantity and the structural parameters of the 

nanostructure. Examples of analytical methods include effective medium approximation, 

Mie theory, scalar wave equation, diffraction theory, etc. In this work, both full-wave 

numerical and analytical analysis methods are used to design and analyze a controllable 

and tunable optical nanostructure. 

3. IMPORTANCE OF FEATURE SIZE  

While numerical and analytical methods can be used to analyze a wide variety of 

optical nanostructures, these methods are not universally applicable. An important 

criterion in deciding the analysis method is the feature size of the nanostructure. 

Numerical methods in general can be very accurate when the features are well-resolved. 

When feature size is much smaller than the operating wavelength, it is difficult to resolve 

the features in a numerical analysis. In these situations, numerical methods may require 

prohibitive memory and time to be accurate. On the other hand, analytical or semi-

analytical techniques such as effective medium approximation [6], or scattering 
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equivalence methods [7] may be sufficiently accurate while requiring much fewer 

resources.  

On the other hand, when the feature sizes are much larger than the optical 

wavelengths, traditional optical numerical methods such as raytracing can be used. 

These methods are highly optimized to be memory efficient and accurate. Additionally, 

analytical approximations may not always be applicable when the feature size is much 

larger than the operating wavelength. 

However, when the feature size is comparable to the wavelength, the advantages 

and disadvantages of analytical and numerical methods are not very clear. For example, 

EMA can be very accurate when analyzing nanostructures in this feature range. However, 

if the nanostructure is periodic or contains resonant features, such as specific shape or 

arrangement of high index/metallic inclusion, then EMA prediction may be inaccurate. At 

the same time, numerical analysis of such structures may require significant time and 

resources, as well as case-by-case modelling of different optical properties. For example, 

the transmission of such a periodic nanostructure may require one method, while the 

effective group index may require a completely different one. Furthermore, if such a 

nanostructure is aperiodic, neither EMA nor numerical analysis may predict it’s optical 

properties accurately, while both could perform predictions that are statistically accurate 

[8]. Thus, in these cases, careful attention must be paid to the nature of the nanostructure 

before choosing the analysis method, and experimental verification should be performed 

if possible.  The relation between feature size, wavelength, and analysis method is 

summarized in Table 1. 
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Table 1 The relation between feature size (a), wavelength () and analysis method  

Feature size Analysis method Application � ≪ � Full wave Numerical/  Anti-reflection coating with 
controllable refractive index, flat 
optics 

Analytical 

� ≈ � Full wave Numerical/  Photonic bandgaps, tunable optical 
windows Analytical � ≫ � Geometrical or 

Physical optics 
Traditional optics 

 

B. Literature Review 

Optical nanostructures interact with light differently depending on their constituent 

materials and distribution within the nanostructure. They can have novel properties due 

to their structure which cannot be obtained using naturally occurring materials. For 

example, photonic crystals (PC) can have optical bandgaps where certain wavelengths 

of light cannot penetrate the medium. Specially designed optical nanostructures can have 

a negative refractive index, bending refracted light away from the normal. Such properties 

are highly useful in many fields of application and can only be found in optical 

nanostructures. 

The optical properties of nanostructures can be changed by tuning the material 

properties of their constituent material. For example, by changing the refractive index of 

the photonic crystal matrix material, its bandgap frequencies can be shifted [3, 9]. 

Changing the surface charge density of graphene results in change in the permittivity of 

the material. Controlling the interparticle distance of a magnetic crystal can change its 

diffractive properties [10]. However, such tunability requires stimuli-responsive materials, 

which are limited. In general, changing the constituent material to control the optical 
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properties is limited by the availability of suitable materials. A more versatile method is 

needed to control the optical properties of a nanostructure. One such method could be 

changing the spatial configuration of the nanostructure. Even though the choice of 

suitable materials is limited, by controlling the spatial configuration of the optical 

nanostructure, many novel properties can be realized. Thus, designing the configuration 

of materials is crucial when designing an optical nanostructure with the desired optical 

properties. Control over optical properties such as the refractive index, permeability, 

permittivity, reflectance, and transmittance of the nanostructure can lead to useful and 

novel applications. 

Efficient design and analysis are crucial for designing a controllable optical 

nanostructure. The number of design variables in an optical nanostructure is large, and 

the relation between these variables and the different optical properties of the 

nanostructure is not readily apparent. Thus, the design and analysis process must iterate 

until the desired properties are achieved. Unless an efficient design and analysis process 

is devised, this process may take a long time. 

Our goal is to design an optical nanostructure with controllable and tunable optical 

properties efficiently. However, there are several crucial gaps in the technology that have 

been prohibitive. Typically used materials to design optical nanostructures are highly 

lossy in the visible wavelengths. Low loss and transparent materials with low refractive 

indices are only now garnering significant attention. Also, the analysis of an optical 

nanostructure is commonly carried out using numerical analysis, while the analytical 

methods are not fully developed. 
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In this chapter, we discuss the state of the art of low loss optical nanostructures 

and analytical methods to analyze them. Different strategies and their shortcomings for 

solving these problems are reviewed, and finally, the scope of future work is discussed. 

 

1. LOW LOSS OPTICAL NANOSTRUCTURES 

In this section, we review the available literature on different nanostructures on low 

loss material. 

a) Photonic Crystals 

Photonic crystals can utilize the periodicity of their lattice to manipulate light in 

many ways. For example, it is possible to create a band of frequency where light cannot 

propagate, or light interacts anomalously due to resonance. These effects are generally 

associated with high loss. However, photonic crystals with low loss, which is our focus, 

have also been reported to produce such effects.  

Optical bandgap is one of the most useful of these anomalous effects. Because of 

multifaceted applications of optical bandgap, the materials that can support this property 

have found widespread use in all forms of technology. Optical bandgap is typically 

associated with high refractive index materials, which are relatively lossy at the optical 

wavelengths. However, low loss materials like glass, polymers, silica, etc. have also been 

reported to produce optical bandgap.  

Interestingly, one of the earliest reports of optical bandgap dates to the 19th century. 

John William Strutt, commonly known as  Lord Rayleigh, published a treaty in 1892 in 

which he discussed a periodic stack of dielectrics as a perfect mirror [11]. The 

mathematical framework required to solve Maxwell’s equations was not available at the 
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time. Lord Rayleigh arrived at the correct solution by treating it as a multiple reflection 

problem. Later, Floquet [12] and Bloch [13] discovered the mathematical framework 

required to solve the Maxwell equation in a periodic medium. Using this approach, it was 

discovered that electromagnetic waves cannot propagate in a periodic medium in a 

specific frequency band [14].Early utilization of this property was limited to a  periodic 

stack of materials. For example, a thin-film laser using the Bragg waveguide was 

proposed in [15].  

A breakthrough in the study of periodic materials came in 1987, when it was 

theoretically predicted that a three-dimensional periodic medium can inhibit spontaneous 

emission from a material if the electronic bandgap of the material falls within a certain 

range of frequency, dubbed the electromagnetic bandgap. The omnidirectional nature of 

this electromagnetic bandgap was discussed in the literature [16], and it was predicted 

that such a property could be realized in a three dimensionally periodic medium if the 

constituent materials had sufficient contrast of the refractive index [16]. This treatise is 

the genesis of the modern photonic bandgap. Around the same time, it was discovered 

that even a random medium containing dielectric inclusions can have a forbidden band 

of frequency [17], further verifying the discovery in [16]. Early attempts to verify this 

prediction included full vector wave calculation of the photonic band structure of a face 

centered cubic (FCC) lattice. Early calculations, based on FCC lattice, found no evidence 

of a bandgap [18]. However, when the diamond lattice was investigated theoretically, the 

first evidence of a photonic bandgap was found [19]. At that time, it was established that 

to obtain omnidirectional optical bandgap, a refractive index as high as 3.5 to 3.6 would 

be necessary, which precludes most low loss materials. 
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Although the theoretical existence of a photonic bandgap for certain lattices was 

established beyond any reasonable doubt, the experimental demonstration of a complete 

photonic bandgap remained a challenge. Early demonstration of complete photonic 

bandgap included the FCC lattice of non-spherical atoms, which was fabricated by drilling 

each hole of a mask containing a triangular lattice of holes three times along the directions 

of FCC lattice axes [20]. In this calculation, it was revealed that a refractive index as low 

as 2.1 may sustain a complete optical bandgap. This was the first indication that low loss 

and low index materials may be able to sustain complete or incomplete bandgaps. The 

image of the structure is reproduced from  [20] in Figure 5(a). A simpler structure was 

proposed using a layer by layer fabrication method, which was able to produce the first 

micron scale photonic crystal with a complete bandgap [21]. The image of the structure 

is produced from [21] in Figure 5(b). In this arrangement, the required refractive index for 

opening bandgap was further reduced to 1.9.  The layer by layer structure was 

successfully scaled down from 12 m to 1.6 m in [22], the image of which is reproduced 

in Figure 5(c). Despite the progress in reducing the loss, most promising structures were 

still high index self-assembled inverse opals because they could be easily of fabricated, 

as discussed in [23]. An example is shown in Figure 5(d), which is reproduced from [23]. 
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(a) (b) 

  

(c) (d) 

Figure 5 Early experimental realization of photonic crystals with complete bandgap [20-

23] 

Although a low loss complete bandgap has been experimentally demonstrated in 

three dimensional photonic crystals, fabricating three dimensional periodic structures 

remains a challenging task, especially when the visible part of the spectrum is the relevant 

wavelength. Planar photonic crystals (PPC), where the material is periodic in a two-

dimensional plane and uniform in the other, have emerged as a viable alternative because 

they are easier to fabricate. 

Planar photonic crystals have been widely studied, and a variety of applications 

have been developed, including a high quality-factor cavity for lasing and sensing [24-26], 

waveguides with sharp bends [27], subwavelength imaging [28], emission control [29] and 

negative refraction [30, 31].  However, unlike the 3-D photonic crystals, the materials used 

for fabricating such bandgap structures remain high refractive index materials, as shown 

in Table 2, which are highly lossy in visible wavelengths. The prevalence for high index 

material may be caused by the ease of their fabrication. Progress in nanofabrication may 

render the low index and low loss materials viable candidates for optical bandgap. 

Table 2 Application and materials for planar photonic crystal. 



18 

 

 

Material Application Reference 

Silicon Ultra-high Q cavity [24] 
Indium Phosphide Negative refraction [30] 
Silicon on insulator Refractive index sensor [25] 
Silicon Low loss bend waveguide [27] 
High index material (n = 3.1) Subwavelength imaging [28] 
Gallium Arsenide Spontaneous Emission control [29] 
Indium Gallium Arsenide 
Phosphide 

Defect based cavity [26] 

 

Historically, low loss materials like glass and polymers have many uses in optics. 

For example, a low loss silica waveguide based interferometer has been shown to easily 

couple with silica fibers [32]. Fiber Bragg grating was demonstrated as an integrated 

reflector in silica fiber [33]. Low loss couplers based on silica waveguides have also been 

reported [34]. A high performance laser has been reported on transparent polymers [35]. 

Fiber optics have been progressing rapidly, and transparent optical devices remain 

among the most utilized and studied devices.  

With the ubiquity of handheld devices covered with transparent screens, the 

importance of transparent active materials has increased significantly. Effort has been 

underway to fabricate nanophotonic devices on glass and polymers. For example,  a 

temperature sensor built on Gorilla Glass, which is the glass used on most cell phone 

screens, has been reported [36]. The sensor was built using a low loss waveguide 

fabricated on the glass surface. The waveguide, reproduced from [36], is shown in Figure 

6. 
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Figure 6 Low loss waveguide on Gorilla Glass. The top view is shown on the left, and the 
facetted view is on the right [36]. 
 

Despite the renewed interest in low index functional material, a photonic crystal 

device on glass or polymer has not yet been reported. The available literature shows 

some success in creating photonic crystals with a partial bandgap. For example, a 

triangular lattice of air cylinders was fabricated on a  glass matrix, and a partial photonic 

bandgap near infrared was demonstrated [37]. Partial bandgap was reported for visible 

wavelength (514 nm) using a triangular lattice of airholes with 220 nm period in a glass 

matrix with refractive index 1.46 [38]. Partial bandgaps have also been reported with 

methyl pentene, which is transparent with a refractive index 1.45 [39]. Thus, there is 

precedence in the literature where transparent and low index glass and polymers have 

been used for producing partial bandgap. However, a complete in-plane bandgap using 

transparent materials has not been reported. Such a device may have many potential 

applications in communication and sensing. 

b) Optical Metamaterials 

While optical bandgap emerges from collective diffraction in a periodic lattice, the 

interaction between the periodic lattice and incident light may produce other anomalous 

effects when the lattice is deeply subwavelength. These subwavelength periodic 

nanostructures are called optical metamaterials, which are different than photonic crystals 

which have periodicity comparable to operating wavelength [40].  These metamaterials 
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may produce an anomalous refraction, where light is refracted with a near-zero or 

negative refractive index, which can be harnessed for different applications including 

imaging, wireless communication, and sensing.  

Initial demonstrations of optical metamaterials harnessed the plasmonic 

resonances in metallic nanoresonators to obtain these exotic effects. However, being 

metallic, these devices suffered from Ohmic loss [41]. To minimize loss, the Mie 

resonances in  high-dielectric materials have been proposed as an alternative [41]. In 

such nanostructures, the shape of the resonator plays an important role, because Mie 

resonance is highly morphological [42, 43]. Different shapes of dielectric resonators are 

employed in the literature. In these resonators, electric (E) and magnetic (H) type 

resonances, oriented perpendicular to each-other, interact to produce anomalous 

reflection and transmission. The typical shapes of the resonators and the two types of 

resonances possible in them are shown in Figure 7, reproduced from [44].  

 

Figure 7 Unit cell of a dielectric resonator [44] 
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The E type and H type resonances are analogous to the transverse electric and 

transverse magnetic resonant modes [45]. An E type resonance is associated with 

anomalous effective permittivity, and an H type resonance is associated with anomalous 

effective permeability. An array of Mie resonators can sustain anomalous parameters in 

different frequencies. The effective parameters of an array of silicon spheres with 150 nm 

radius and volume filling fraction 0.3 are shown in Figure 8. 

 

Figure 8 The effective parameters of an array of Si Spheres [44]. 

Similarly, a 3D array of dielectric resonators has been demonstrated [42]. The 

array of resonator has anomalous effective permittivity and anomalous effective 

permeability at the first and second Mie resonance, respectively.  
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(a) 

 

(b) 

Figure 9 (a) The first two Mie resonances of an array of Te cubes. (b) Mie resonances of 
the same structure in a reflection curve[46] . 
 

Electric and magnetic Mie resonances have also used an array of Te cubes, as 

shown in Figure 9 [46]. It is evident that a simple dielectric resonator can sustain either 

anomalous permittivity or anomalous permittivity at a given frequency. To obtain 

anomalous refraction, one must have both at the same frequency. A single resonator 

simultaneously sustaining anomalous permittivity and anomalous permeability in the 

visible frequencies has not yet been reported. Recently, it has been shown in a microwave 
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regime that with very high permittivity (~100), a single resonator can sustain both electric 

and magnetic resonance simultaneously [47]. The effective parameters of an array of high 

permittivity cylinders is shown in Figure 10 to have simultaneous anomalous μ and ε. 

However, a material with such high permittivity in the visible frequencies has not yet been 

reported. In addition to high index dielectric resonators, coupled resonators have 

emerged as a new avenue of research that has many promising applications [48, 49]. 

 

Figure 10. The effective parameters of an array of ceramic cylinders with ε ~100 [47] . 

Based on this discussion, anomalous effective parameters may be obtained using 

high index dielectric materials, as summarized in Table 3. However, a demonstration of 

these effects in planar periodic optical nanostructure using low loss dielectrics in the 

optical wavelengths is yet to be reported.    

Table 3 Materials for optical Metamaterial 

Permittivity Reference 

Si (11.68) [44] 

12 [42] 
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Te (~24) [46] 

~100 [47] 

 

c) Colloids 

While periodic nanostructures show many exotic and useful properties, the 

requirement of periodicity is difficult to maintain in practice. Colloids, where small islands 

of inclusion materials are scattered within a matrix material without maintaining lattice 

periodicity, can be a more practical alternative. For example, when designing periodic 

nanostructures, the medium must be 3-dimensional in order to be isotropic. Furthermore, 

the dielectric inclusions must be much smaller than the wavelength of light. Thus, 

fabricating these kinds of structures is difficult, and fabrication feasibility is often the 

deciding design parameter. Conversely, a colloid offers an advantage in fabrication 

because the dielectric inclusion can be randomly distributed in the host. In addition, the 

inclusions can be separately designed with varying size, shape and distribution. The 

effective parameters of such random colloids can be extracted using effective medium 

approximations. In this section the available literature on such colloidal optical 

nanostructures is discussed. 

Frequency bandgaps in photonic crystals are a direct consequence of the lattice 

periodicity of the nanostructure. In colloids, frequency bands do not form. However, 

bandgaps can still emerge in such a nanostructure. It has been shown that forbidden 

frequency bands emerge even when the nanostructure is completely random. In fact, the 

emergence of permissible frequency bands is the true impact of periodicity since 

forbidden bands are already present in the random nanostructure [50]. For example, in 
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Figure 11, the transmission through periodic and aperiodic stacks of dielectric is plotted. 

Forbidden bandgaps can be achieved using low dielectric materials in a random 

arrangement. 

Unlike frequency bandgap, an anomalous effective parameter can be difficult to 

obtain in a colloidal nanostructure. A periodic nanostructure harnesses  lattice periodicity 

to obtain modes with a negative or near-zero group index [51]. In fact, it has been argued 

that the leaky Bloch mode in a periodic lattice plays a central role in the anomalous optical 

behavior of metamaterials rather than any Mie resonance {Ko, 2018 #690}. In the 

absence of lattice periodicity and Bloch modes, anomalous effective parameters must be 

obtained using Mie resonators with E and H type resonances in a matrix medium. It is 

often difficult to design Mie resonators that can provide resonance of permittivity and 

permeability in the visible spectrum simultaneously without needing periodicity. The 

problem is further exacerbated by the fact that the resonances of both permittivity and 

permeability cause 

 loss in the resonant wavelength.  

 

Figure 11 (a) The forbidden and permissible frequency band in a periodic dielectric stack, 
(b) the forbidden frequency band in an aperiodic dielectric stack. 
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Many strategies have been employed to solve this problem. One approach is to 

have one type of inclusion which provides the E type resonance at a frequency range and 

another which provides the H type resonance in the same range. For example, a colloidal 

optical nanostructure consisting of LiTaO3 spheres and n-type Ge spheres was proposed 

[52]. The LaTiO3 spheres supplied the magnetic resonance, and the Ge sphere supplied 

the electric resonance. The effective refractive index, calculated using long-wavelength 

effective medium approximation, is reproduced here from [52] in Figure 12. It can be noted 

that by carefully designing the resonance of the two inclusions, it is possible to obtain a 

negative refractive index. However, the frequency and bandwidth of the negative 

refractive index remain limited by the material property. For example, in [52] the negative 

index was obtained near the optical phonon frequency of the LaTiO3 sphere, T = 26 THz, 

which is a fundamental property of the material. As such, the negative index obtained by 

using this combination of material will always be around 26 THz. 

 

Figure 12. The effective refractive index of the optical nanostructure proposed in [52]. 
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A similar approach is taken in [53], where the two materials supplying electric and 

magnetic resonance are part of the same sphere in a core shell manner, as shown in 

Figure 13. The inclusions consist of a core and a shell, each having different material 

properties. By choosing the configuration of the inclusion, it is possible to obtain negative 

refraction as shown in Figure 13. However, as discussed before, this approach is limited 

by the available materials. 

 

 

Figure 13. The schematic of core shell type inclusion and the effective refractive index of 
a medium having such inclusion is shown [53]. 
 

Alternatively, instead of completely relying on the Mie resonance, one can have a 

host material with negative permittivity, such as MgB2, and an inclusion designed for 

negative effective permeability [54]. In Figure 14, where a colloid of MgB2/SiC is shown, 

both the s and p polarization of light shows a dip in reflectivity. This indicates that both 

the s and p polarization of light couple with the surface plasmons, indicating that both 

permittivity and permeability are negative. However, although negative refraction is 

possible in this structure, sic is lossy at the visible frequency. Thus, the colloid would have 

a high loss as well. 
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Figure 14 The structure of the MgB2/SiC composite is shown on the left. The reflection of 
the material for different angles of incidence with s and p polarization of light is also shown 
[54].  
 

As an alternative to SiC, other high permittivity materials like Si or Ge can be used 

to produce effective negative permeability through Mie resonance. Recently, viral capsids 

have been proposed as a high permittivity material in designing negative index optical 

nanostructures [55]. Capsids are highly attractive because they can have permittivity 

ranging from a few decades to thousands depending on the density of their RNA. The 

effective refractive index of a material containing gold nanoparticle and viral capsids is 

shown in Figure 15. By changing the permittivity of the capsid, negative refraction can be 

obtained in different frequency ranges. 

 

Figure 15 The effective refractive index of the medium containing capsid inclusion and 
MgB2 host [55]. 
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While the instances of anomalous refraction discussed above using all-dielectric 

nanostructure are less lossy than their metallic counterpart, they remain lossy in the 

visible wavelengths. In fact, since anomalous refraction relies on a strong scattering of 

light by the medium, it may not be possible to eliminate the loss in such a process. Unlike 

anomalous refraction, there are many properties of a colloid for which weak scattering is 

enough. These properties can be utilized for a great many applications. For example, 

aperiodic nanostructures can have controllable and tunable optical density. This may be 

harnessed in designing devices such as tunable optical window, anti-reflection coatings 

and nanostructured flat optical elements. 

Optical windows can control and restrict the intensity of the light transmitted 

through them. These devices are useful in designing smart household windows [56], 

limiting laser output and filters for optical application [57]. When the transmittance of these 

windows is externally tunable, they can be called tunable windows. Optical colloidal 

nanostructures have been used as tunable windows. For example, a tunable window was 

proposed by fabricating nanopillars on a wrinkled elastomeric polymer film[58]. The 

transparency of the window can be controlled by mechanical strain. The strain tunable 

transmission of the window is reproduced from [58] in Figure 16(a). 
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(a) (b) 

Figure 16 Transmission of the strain tunable window when different levels of strain are 

applied. 

Silica nanoparticle embedded elastomer film has also been reported as a strain 

tunable window [59]. The switchable transmission from such a window is reproduced from 

[59] in Figure 16(b). An electric field tunable window was reported in [60] using a 

suspension of  TiO2 nanowires in a viscous polymer. The tunable transmission is shown 

in Figure 17. 

 

Figure 17 The tunable transmission of the TiO2 nanowire suspension in polymer under 
(a) no electric field, (b) perpendicular electric field, and (c) horizontal electric field [60]. 
 

The windows demonstrated above do not require any naturally stimuli-responsive 

material. However, these structures require complicated and expensive fabrication 

procedures. Their tunability range is also limited. Furthermore, many of the structures are 

thermally or chemically unstable. Magnetic microsphere colloids (MMC), due to their 

thermal and chemical stability as well as their quick and inexpensive preparation [61], are 

a good alternative material for tunable optical windows. 
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MMC are aperiodic optical nanostructures that can be controlled with an external 

magnetic field. Generally, the magnetic field controls the structure of the colloid, including 

its local density and orientation of the magnetic particles. Magnetic field sensitivity of an 

MMC solution has been utilized for many diverse applications including cancer treatment 

[62], waste treatment [63], drug delivery [64, 65], petroleum processing [66], and  MRI 

contrast enhancing [67].  Now, optical applications of MMC as a magnetic field tunable 

optical nanostructure have also garnered attention.  

A magnetic crystal was reported, the lattice constant of which can be controlled by 

an external magnet, resulting in a magnetically tunable optical nanostructure [68]. A 

colloid consisting of superparamagnetic nanocrystal clusters was reported which 

diffracted different wavelengths of light depending on the applied magnetic field [10].  A 

photonic crystal consisting of magnetic colloids in a nonpolar solvent was reported [69], 

which displayed magnetically tunable reflection and color. An aqueous solution of 

magnetic nanoparticle was demonstrated which showed magnetically tunable reflection 

[70]. A magnetic colloidal double heterostructure photonic crystal was reported with 

magnetically tunable optical properties, which was used as a photonic label [71]. The 

magnetically tunable reflection and color of magnetic nanoparticle colloid are reproduced 

from [69] in Figure 18. 
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Figure 18 The tunable reflection and color of a magnetic nanoparticle colloid [69]. 

Although the structures discussed above are highly tunable and easily produced, 

they are highly sensitive to angle and polarization. As such, they have limited application 

as optical windows.  On the other hand, the transmission of aperiodic magnetic colloids 

is insensitive to incident angle and polarization [72]. For example, a colloid of Silica 

wrapped Fe3O4 nanoparticles is shown in Figure 19(a). The reflectance and transmittance 

through this colloid can be controlled simply by applying magnetic field, as sown in Figure 

19(b) and (c).  Magnetic colloids can also be used to design tunable mirrors by 

conjugating such colloids with micro-mirrors [73].  

 

Figure 19 (a) Magnetic colloids of Fe3O4 before and after exposure to magnetic field, (b) 
Change in reflection with increasing magnetic field, (d) change in reflection with 
decreasing magnetic field [72]. 
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Figure 20 The tunable reflection of an Au micromirror conjugated with magnetic colloids 

[73]. 

The functionality of the magnetic colloids derives from the fact that the local density 

of the colloids can be dynamically controlled by a magnetic field. Tunable magnetic field 

can be applied on the colloid through magnetic catch-and-release systems. Reported 

catch-and-release systems include perpendicular current carrying conductors, ring traps 

[74], differential magnetic field [75],and permanent magnets[76].  

(a)  
(b)  

(c)  

 
 

(f) 
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(d) (e) 

Figure 21 The aperiodic nanostructure used as AR coating in (a) [77], (b) [78], and (c) 
[79]. (d-f) shows the respective reduced reflection. 
 

d) Aperiodic planar nanostructure 

While dynamic control of local volume density can be harnessed to design tunable 

optical nanostructures, static control of the same can be used for many applications, 

including nanostructured optical components, anti-reflection coating, and 

absorption/adsorption layer. In these optical nanostructures, even though there is no 

lattice periodicity, the distribution of inclusion is controlled. Since these nanostructures 

require careful fabrication, these are almost always planar. 

Such planar nanostructures span only a single or several layers and are very thin 

along the propagation direction. However, the planar distribution of inclusion with the 

nanostructure may modify the intensity, polarization or phase of the transmitted wave [80]. 

An early example of such a planar nanostructure is the single layer anti-reflection coating 

[77-79]. Here, the reflection from a substrate is reduced by coating it with a planar 

nanostructure so that the impedance mismatch at the interface is minimized. The 

impedance matching is achieved by controlling the effective refractive index of the 

nanostructure via its local volume density or filling factor. Recent progress in this field  

has led to wave-front engineering, wherein the wave-front of an incident wave can be 

manipulated arbitrarily by aperiodic planar nanostructures to achieve the desired effects 

including focusing, imaging, vortex generation, holography and dispersion control [81-86]. 
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These aperiodic planar nanostructures, with specific arrangement of inclusions, can 

miniaturize complex optical components into subwavelength optical lenses. They are 

important because of their thin, often planar geometry and suitability for integrating into 

optical chips in the visible wavelengths. Furthermore, the aberration of such 

nanostructure optical components can be controlled because there are many design 

parameters to optimize including the orientation, physical structure and height of the 

inclusions within the nanostructure [87-90].  

Early demonstration of such subwavelength optical lenses used metals, which 

were highly lossy in the visible wavelengths [91, 92]. Non-metallic optical lenses using 

high index materials like silicon [90], lead telluride (PbTe) [93], graphene [94], van der 

Waals materials like molybdenum disulfide (MoS2), and hexagonal boron nitride (hBN) 

[95] have been demonstrated for THz, infrared, and visible wavelength ranges. These 

materials are limited by loss at the visible wavelengths. Materials that are highly 

transparent are much desired candidates for subwavelength optical lenses in the visible 

wavelengths although their low refractive index can present challenges for 

implementation. Recently, moderately low refractive index subwavelength optical lenses 

have been demonstrated using Si3N4 [84], TiO2 [88, 89] and photoresist [96].  

Like periodic optical nanostructures, aperiodic nanostructures may also be highly 

useful if they can be implemented in low index materials like glass and transparent 

polymers. Diffractive optical lenses [97, 98] have been demonstrated using such materials. 

However, planar aperiodic nanostructures using glass and polymers are rarely analyzed 

in detail. In subsequent chapters, we will address aperiodic optical nanostructures in 

detail. 
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2. ANALYTICAL ANALYSIS METHOD 

Optical nanostructures require careful and accurate analysis before as well as after 

performing experiments. This is because there is no straight-forward relation between the 

properties of a nanostructure and its morphology and structure. Additionally, there can be 

numerous parameters when designing an optical nanostructure, and the interplay 

between them may not be obvious. Hence, numerous methods have been developed to 

analyze optical nanostructures. They can be divided into two types: full-wave numerical 

and analytical. Full-wave numerical analysis methods rely on using different numerical 

techniques to calculate the electric and magnetic field within and outside the 

nanostructures. There are several mature, stable, and versatile numerical techniques 

available that can analyze optical nanostructures, such as finite difference time domain 

method, plane wave expansion method, transfer matrix method, rigorous coupled wave 

analysis method, among others. A detailed discussion of these computational methods 

and their implementation is out of the scope of this work. Implementation and discussion 

of these methods can be found in [99]. 

The drawback of these numerical methods is twofold. First, these methods, while 

being extremely accurate, do not reveal the interplay between the physical structure and 

optical properties of a nanostructure. Second, these methods may require a prohibitive 

amount of time and computational resources to produce sufficiently accurate results. 

Analytical methods, on the other hand, do not have these drawbacks. In analytical 

methods, the optical nanostructures are simplified by reasonable assumptions, and the 

relation between their optical properties and physical structure is derived analytically. 

These methods provide valuable insights into the interplay of the design parameters while 
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also being very fast. They also do not require many resources to implement. However, 

the speed and ease of development come at the cost of accuracy. 

One type of analytical method is effective medium approximation (EMA) where the 

optical nanostructure is approximated by an optically equivalent effective medium. 

Accurate effective medium approximation of an optical nanostructure remains an open 

problem. Currently, effective medium approximations require the assumption that the 

nanostructure is greatly dispersed, and the feature size is very small compared to the 

wavelength. Even with these limitations, EMA has been successfully employed to study 

optical nanostructures for different applications, including anti-reflection coating [77], 

thermo-photovoltaics [100] and all-dielectric metamaterial [101]. EMAs treat optical 

nanostructures as a homogeneous medium with effective optical properties, which are 

functions of the constituent materials and their distribution. The available literature on 

commonly used effective medium approximation of heterogeneous materials and their 

applicability are discussed below.   

One of the first EMAs was proposed by Maxwell-Garnett in 1904 [102] while 

discussing optical properties of glass containing small metallic inclusion. In [102], it was 

assumed that the metal inclusions were very small and spherical in size. They were 

approximated as point dipoles, which are much smaller than the wavelength. The static 

polarizability of the point dipole was calculated, and then the polarizability of the medium 

was estimated as an average of the polarizabilities of individual inclusions. From the 

effective polarizability, the effective permittivity of the optical nanostructure was explicitly 

calculated. Let us consider an optical nanostructure where the matrix material has a 
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relative permittivity of mat, and the spherical nanoparticle inclusions have a relative 

permittivity of zinc. The dipole polarizability of the nanoparticles can be deduced as 

� = 4��� ���� − �������� + 2����  

where α is the dipole polarizability of each nanoparticle and R is the radius of the 

nanoparticles. The effective relative permittivity (εeff) of the ensemble can be evaluated 

from the Claussius-Mossotti (CM) equation: 

��  = ���� × "1 +  #�1 − #�3 % .  

Here, n is the volume density of the inclusion nanoparticle. Although the Maxwell-Garnett 

formula (MG) was very convenient, its applicability was limited [6]. For example, the 

inclusions must be much smaller than the wavelength of light, the fill factor must be below 

the so-called percolation threshold (above the percolation threshold, the distinction 

between inclusion and matrix material becomes meaningless), and the inclusions must 

be non-interacting. Furthermore, the inclusion material and matrix material must be 

clearly defined. The MG formula is not symmetric to a reversal of the matrix and inclusion 

material.  

Several attempts have been made to design an effective medium approximation 

without such limitations. To solve the symmetry problem, a new formula was proposed by 

Bruggeman which treats all components of an optical nanostructure as inclusions in the 

effective medium [103]. In the Bruggeman formula (BG), the inclusions were still treated 

as spherical point dipoles. It was assumed that the medium did not produce any electric 

field of its own, and the total contribution of the inclusions to the incident electric field must 

be zero. For example, let us consider the optical nanostructure defined above. In the case 
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of the BG formula, the inclusion material and the matrix material would both be treated as 

inclusions. Their dipole polarizabilities can be calculated as: 

���� = 4��� ���� − ��  ���� + 2��   ;  α()* =  4��� ���� − ��  ���� + 2��  ;  

where ����  is the effective polarizability of the inclusion and α()*  is the effective 

polarizability of the matrix. Then, the effective permittivity can be calculated form the 

implicit formula: 

+ , ���� −  ��  ���� + 2��  - + .1 − +/ , ���� −  ��  ���� + 2��  - = 0  

Where f is the inclusion fill factor. Although this approximation is symmetric, it still cannot 

account for finite sized interacting inclusions. Furthermore, the approximation requires 

solving the above equation iteratively to calculate the effective permittivity. 

Volume averaging theory(VAT), applied to Maxwell’s equations, was also used to 

define the effective medium approximation [77]. However, volume averaging also cannot 

account for the size and shape of the inclusions. Explicit linear effective medium 

approximations like series and parallel approximations were also proposed [104], which 

predicted effective optical parameters as series and parallel combinations of the 

constituent materials. Below, the linear EMA formulas are listed for reference: 

Series model: 

#�  = .1 − +/#��� + +#���   

Parallel model: 

0�122 = 03 �456 +  �789  
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Volume Avg.: 

#�  = :#���; .1 − +/ + #���; +<=>  

 

Although the formulas above are widely used in the literature, their applicability 

remains limited. In order to account for the size, shape and interaction of the inclusions, 

it is vital to extend the existing effective medium theory. Due to its explicit nature, the MG 

theory is the best candidate for such an extension. 

To account for the finite size of the inclusions in a heterogeneous material within 

the framework of the MG formula, the polarizability of the inclusions must be calculated 

in a way that accounts for the size of the inclusion. It has been proposed that instead of  

static polarizability,  dynamic polarizability must be used [105]. When the inclusions are 

spherical, the polarizabilities can be easily calculated using the Mie solutions [106]. In this 

case, the polarizability can be given as: 

� = i R�x� �0 ,  

where R is the inclusion radius, x is the relative refractive index of the inclusion and a1 is 

the Mie coefficient of the first order. Then the effective permittivity can be derived as: 

��  = C� + 3D+�0C� − 32 D+�0 .  

The formula above takes the size of the inclusion into account but assumes the size is 

small enough that it can be represented by a dynamic dipole. However, at a larger size, 

higher order poles are needed to accurately describe the electrodynamic behavior of the 

inclusions.  Recently, an EMA was proposed which accounted for the third and fifth order 

dipoles [107]. The number of poles required to mode the inclusions is decided arbitrarily, 
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which limits the application of Mie extended MG formulas. Also, these formulas cannot 

account for the interaction between the inclusions. As a result, the formulae derived this 

way are not accurate enough to justify their extra complexity in use. Thus, there remains 

a need to design a more general, explicit and accurate EMA. 

a) Applicability of EMA 

Effective medium approximations are limited in their validity. The Maxwell-Garnett 

formula is rigorous only when the size of the inclusions is vanishingly small. However, the 

exact size for which the MG and associated EMA are valid has not been rigorously 

determined. Some studies have reported that EMAs are accurate when the operating 

wavelength is more than 6 times larger than the inclusions [108]. However, it is generally 

accepted that EMAs can become increasingly inaccurate when feature size approaches 

the wavelength [6]. 

Another important parameter is the volume density of the medium. This parameter 

can be represented by the “filling factor”, which is the ratio of the volume of the inclusions 

to the volume of the substrate. Although a limit on the filling factor is not introduced in the 

derivation of the EMAs discussed above, it has been found that the filling factor must 

remain below the percolation threshold of the medium [109]. Above the percolation 

threshold, the role of inclusion and substrate is switched, and the nanostructure behavior 

changes in ways that can’t be predicted by the EMA discussed above. Thus, the 

percolation threshold is an upper limit of the filling factor. In addition, it has been found 

that EMAs are valid only when the mean separation between the inclusion is at or below 

the effective wavenumber [108]. This puts a lower limit on the filling factor. That is, if the 
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nanostructure is too dispersed, it may not be possible to describe the medium with an 

EMA. 

EMAs simplify an optical nanostructure for analytical calculations of their properties. 

Thus, there is some loss of information. For example, the spatial variation of the 

nanostructure is lost when it is approximated by an effective medium. In practice, the 

properties of an optical nanostructure, even a perfectly periodic one, may be locally 

inhomogeneous and dependent on the incident angle. However, EMAs cannot calculate 

these variations. As such, EMAs may not be applicable in all calculations. In simple 

transmission and reflection calculation, Prediction using EMA is considered accurate 

enough [8]. On the other hand, calculating absorption or heat transfer using EMAs is 

inaccurate[6, 110]. Furthermore, EMAs generally lose information on size, shape and 

local variation of the inclusions. In applications where these are relevant, EMAs cannot 

be applied[110]. Similarly, when there are periodic effects like diffraction and Bloch 

resonances, EMAs are insufficient to describe the propagation of light [111]. 

Based on the discussion above, the criteria for applying EMA can be summarized as 

follows: 

• The inclusions need to be small 

• The filling factor must be below the percolation threshold 

• The filling factor cannot be vanishingly small 

• There cannot be any diffraction or Bloch resonances 

• The shape and spatial distribution of inclusion cannot be relevant. 
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C. Problem Statement 

In the literature review, we discussed the state-of-the-art research on optical 

nanostructures and analytical methods to analyze them. Based on the discussion, some 

over-arching gaps appear in the current technology. 

First, optical nanostructures based on low refractive index material, e.g., glass or 

polymers, have not been explored in detail. Although optical nanostructures using high 

index materials have been studied in detail, it is not established that high refractive index 

is a design requirement in optical nanostructures. In fact, the overall role of the refractive 

index in designing optical nanostructures is unclear. One of the roadblocks in 

nanophotonics is the lossy and non-transparent nature of typically used materials. On the 

other hand, low index materials are naturally transparent and loss-less at visible 

wavelengths. Thus, it is important to consider whether low index materials can be used 

in designing optical nanostructures. 

Second, the available analytical effective medium approximations are very limited. 

While some of the limitations are unavoidable, it is important to consider whether EMA 

can be extended to be more general. There is also some ambiguity on the applicability of 

EMA. For example, while it is known that inclusions need to be small, a rigorous treatment 

of the size dependence of EMA is needed. The role of shape and morphology of the 

inclusions should also be included in the EMA. Most importantly, it is important to consider 

the usefulness of these limitations from a practical perspective. That is, it should be 

investigated whether violating any of these limitations results in false predictions 

compared to experimental or numerical results. 
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A combination of the above issues is seen in the analysis of flat optical components 

based on optical nanostructures. Even though optical applications demand high 

transparency and low loss, available instances of these nanostructured flat optical 

components utilize highly lossy metals and high-index dielectrics. Further, the design of 

these components relies on full-wave numerical analysis. Since optical applications 

require quite large-area components as well as far-field calculations, numerical analyses 

can be time consuming and inefficient in analyzing these nanostructures. An analytical 

method that combines an analytical wave propagation solution, such as the scalar 

diffraction theory, with an analytical modelling method, such as effective medium 

approximation, may be a fast and accurate alternative. An investigation of such an 

analytical method, including comparison to numerical and experimental results, needs to 

be executed. 

D. Major Contribution 

In this work, the identified gaps will be addressed in detail. First, we will investigate 

low index materials and their applications. We consider both periodic and aperiodic optical 

nanostructures, consisting of glass and polymers, with a refractive index of n <2.0.  

We will address the possibility of creating a complete optical bandgap in planar 

photonic crystals using low index materials. Specifically, the Schott glass (n = 1.9) and 

the polymers PVK (n = 1.6) and PMMA (n = 1.5) are considered. The band structures of 

different lattices of planar photonic crystals will be studied, and the optimal structure for 

obtaining the bandgap with low index materials will be identified. As an application of the 

bandgap, the planar photonic crystal cavity will be discussed. The resonant properties of 
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the cavity will be calculated using full vector wave simulations. Finally, the suitability of 

the designed cavity as a sensor will be discussed.  

We also address the narrow applicability of EMA and derive a generalized EMA by 

extending the MG formula using the Mie theory. The ambiguity in modelling inclusions of 

different sizes will be addressed. Furthermore, effective polarizability will be modified to 

account for the interaction between the nearby inclusions. We will derive a framework 

where the size and shape of the inclusion can be considered. We will also simplify a 

derived formula for the Rayleigh regime. We will test out the framework by comparing it 

with experimental results. We will apply the framework to model both periodic and 

aperiodic optical nanostructure. Specifically, we will demonstrate modelling an anti-

reflection coating and a tunable magnetic colloid and show that the derived framework is 

more accurate. 

Finally, we will address the efficient design and analysis of flat optical elements 

consisting of aperiodic optical nanostructure on low index material. We will utilize the 

derived EMA framework along with the scalar diffraction theory as an analytical method, 

along with the full wave three-dimensional finite difference time domain method (3D-

FDTD). First, we will investigate whether the EMA can be used, and then we will test the 

limit of applicability of the EMA in this context. The designed analytical method will be 

compared to 3D-FDTD and experimental results. Then, using the designed analytical 

method, a large-area optical element will be designed and analyzed. 

All the results presented in this work are original work. For comparison and 

demonstration, results from the literature are displayed where necessary and they are 
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cited appropriately. Based on the work in this research, several original articles have been 

written. E.g.: 

1. Siraji, Ashfaqul Anwar, and Yang Zhao. "High-sensitivity and high-Q-factor glass 

photonic crystal cavity and its applications as sensors." Optics letters 40.7 

(2015): 1508-1511. 

2. Siraji, Ashfaqul Anwar, and Yang Zhao. "Simple effective medium approximation 

with Rayleigh scattering." Optics Letters 42.9 (2017): 1860-1863. 

3. Siraji, Ashfaqul Anwar, and Yang Zhao. “Tunable optical transmission of 

magnetic microsphere colloids”, Applied Optics 57.36 (2018), 10412-10417. 

4. Siraji, Ashfaqul Anwar, and Yang Zhao. “Design and analysis of thin optical lens 

composed of low index subwavelength structures”, Applied Optics 58.17 (2019), 

4654-4664. 

E. Organization 

The dissertation is organized as follows. In chapter 2, two of the most accurate 

and commonly used numerical methods for analyzing optical nanostructure are discussed. 

Their strengths and shortcomings are pointed out, and finally, they are used for analyzing 

low index planar photonic crystals. The condition for bandgaps in low index materials is 

discussed. As an application, a planar photonic crystal cavity is designed and analyzed 

using numerical methods, and its application as a sensor is discussed. 

In chapter 3, a more generalized and accurate EMA is derived. It is tested for both 

periodic and aperiodic optical nanostructures, and the accuracy and limitation of the EMA 

is discussed. Using this EMA framework, an aperiodic optical nanostructure is designed 

to work as an optical element in chapter 4. The analytical method is compared to the 
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numerical method, and its efficiency is tested. Finally, in chapter 5, the findings of the 

work are summarized.  
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II. FULL-WAVE NUMERICAL ANALYSIS OF LOW-INDEX OPTICAL 

NANOSTRUCTURES 

 
The objective of this work is to design controllable and tunable optical 

nanostructures with low loss in the visible frequencies. Designing optical nanostructures 

requires careful analysis and processing to establish relationships between their physical 

parameters and optical properties. Optical nanostructures involve a very wide range of 

material properties, a wide dynamic range of feature size, as well as many different 

physical and structural parameters. It is impractical to rely on experimental trial and error 

to design an optical nanostructure with a specific property. Numerical analysis has 

emerged as a quick and reliable tool to analyze optical nanostructures and optimize 

design with a specific goal[112]. 

  Typically, optical nanostructures are a medium where subwavelength physical, 

chemical, or structural variation control the interaction with an electromagnetic wave. In 

this work, it is assumed that optical nanostructures interact with visible wavelengths, 

ranging from 400-800 nm, and have a feature size that is smaller than this range. Although 

typically such nanostructures are made using dielectrics of varying strength, metallic 

structures are also frequently used. The goal of the numerical analysis of optical 

nanostructures is to calculate a specific performance metric from the physical, chemical 

and structural description of the device. Generally, this goal is achieved in two steps. First, 

Maxwell’s equations are solved for the relevant volume or area of the nanostructure. Then, 

once the electromagnetic fields are known, the performance metrics are calculated using 

various post-processing steps[113]. 
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A wide variety of techniques are available to solve Maxwell’s equations numerically. 

The finite difference time domain (FDTD) method and plane wave expansion (PWE) 

method are two of the most versatile and mature methods. In this chapter, these two 

methods are briefly discussed. Then their application in numerical analysis of optical 

nanostructures is demonstrated. Specifically, the relationships between the structural 

parameter of optical nanostructures and their optical properties are established. 

A. Finite Different Time Domain Method 

FDTD is a versatile method for analyzing optical nanostructures and has been 

used to simulate a variety of optical nanostructures [4, 114, 115]. In this method, 

Maxwell’s equations are solved by replacing the differential equations with a center 

difference equation. Maxwell’s equations can be given as: 

∇ × FGH.I/ =  − JKGH.I/JI  

∇ × LGGH.I/ =  MH +  JNGGH.I/JI  .2.1/ 

∇ ∙  KGH = 0 

∇ ∙ NGGH = PQ   
Where E is the electric field, D is the displacement, H is the magnetic field, B is the 

magnetic induction, and PQ is the volume charge density. Here, the fields are vectors with 

x, y, and z components. The curl equations each represent three coupled differential 

equations. In order to solve all these equations, simply replacing the differential equations 

with difference equations is not enough. In the FDTD method, an algorithm for calculating 

the fields is developed from Maxwell’s equations. 
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1. FORMULATION 

Although  Maxwell’s equations all describe the same moment in time, it is helpful 

to look at the field propagation through  Maxwell’s equations as a multistep process, as 

shown in Figure 22. One can calculate the E field from the H field and vice versa. As a 

first step to solving Maxwell’s equations numerically, the time differentials can be replaced 

by central differences. 

 

Figure 22 The multistep process of field propagation in FDTD. 

For an isotropic, linear and non-dispersive medium, the curl equations can be 

approximated as: 

∇ × FGH.I/ = −� JLGGH.I/JI  ⟹  ∇ × FGH.I/ = −� LGGH.I/�ST�; − LGGH.I/�3T�;  ΔI .2.2/ 

∇ × LGGH.I/ = � JFGH.I/JI  ⟹  ∇ × LGGH.I/ = � FGH.I/�ST� − FGH.I/� ΔI  

These equations can be rewritten as: 

V × F I =  − JK IJI
Circulating E field induces an 

Oscillating B field

K I = � ∗ L I
B field induces an H 

field

V × L I =  JN IJI
Circulating H field 

induces a D field

N I = � ∗  F.I/
D field Induces an E 

field.



51 

 

 

LGGH.I/�ST�; =  LGGH.I/�3T�; − ΔI� X∇ × FGH.I/Y .2.3/ 

FGH.I/�ST� =  FGH.I/� + ΔI� .∇ × LGGH.I// 

From these equations, any of the fields at an instance t can be calculated if one field is 

known at a previous time and the other field is known at an intermediate time. Thus, the 

evolution of the electromagnetic fields has been discretized in the time domain, with a 

time step ΔI. The E fields are known at instances #ΔI, and the H fields are known at 

instances .2# + 1/ΔI/2, as shown in Figure 23. 

 

Figure 23 The relative positions of successive calculated E and H entities in the time axis 

Thus, by discretizing the time axis and then placing the calculated instances of E and H 

entities in a staggered position, the time differential equations can be replaced by 

difference equations. 

However, the cross equations remain, which are partial differential equations themselves. 

These equations can also be replaced by difference equations if the space axes (C[, \[, ]̂) 

are discretized as well. The discretized and staggered grid scheme for the time and space 

axes was suggested in [116] and has subsequently been widely used. The staggered grid 

scheme is shown in Figure 24. Using this discretizing scheme, the cross equations can 

now be replaced by difference equations. Generally, the electric field E is many times 

stronger than the magnetic field. This may cause numerical instability in the difference 

equation. To avoid this, the magnetic field is normalized by the impedance of the medium: 
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LGGH_ = `�� LGGH. 
 

 

Figure 24 The staggered position of the fields in a discretized spatial grid. 

After normalization, the curl equations can be expanded and discretized, as shown in 

Table 4. 

Table 4: The discretized Maxwell’s equations 

∇ × FGH.I/ = −� JLGGH.I/JI  JFaJ\ − JFbJ] =  − �ccde
JL_cJI    Ff�,gS0,h|� − Ff�,g,h|�Δ\ − Fb�,g,hS0|� − Fb�,g,h|�Δz= − �cc�,g,hde

L_c�,g,h|�ST�/; − L_c�,g,h|�3T�/; Δt   JFcJ] − JFfJC =  − �bbde
JL_bJI   Fc�,g,hS0|� − Fc�,g,h|�Δz − Ff�S0,g,h|� − Ff�,g,h|�Δx= − �bb�,g,hde

L_b�,g,h|�ST�/; − L_b�,g,h|�3T�/; Δt   
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JFbJC − JFcJ\ =  − �ffde
JL_fJI   Fb�S0,g,h|� − Fb�,g,h|�Δx − Fc�,gS0,h|� − Fc�,g,h|�Δy=  − �ff�,g,hde

L_f�,g,h|�ST�/; − L_f�,g,h|�3T�/; Δt   
∇ × LGGH.I/ = � JFGH.I/JI  JL_aJ\ − JL_bJ] =  �ccde

JFcJI   L_f�,gS0,h|�ST�/; − L_f�,g,h|�ST�/;Δ\ − L_b�,g,hS0|�ST�/; − L_b�,g,h|�ST�/;Δz=  �cc�,g,hde
Fc�,g,h|�ST� − Fc�,g,h|� Δt   JL_cJ] − JL_fJC =  �bbde

JFbJI   L_c�,g,hS0|�ST�/; − L_c�,g,h|�ST�/;Δz − L_f�S0,g,h|�ST�/; − L_f�,g,h|�ST�/;Δx=  �bb�,g,hde
Fb�,g,h|�ST� − Fb�,g,h|� Δt   JL_bJC − JL_cJ\ =  �ffde

JFfJI   L_b�S0,g,h|�ST�/; − L_b�,g,h|�ST�/;Δx − L_c�,gS0,h|�ST�/; − L_c�,g,h|�ST�/;Δy=  �ff�,g,hde
Ff�,g,h|�ST� − Ff�,g,h|� Δt   

 

From the linear difference equation, an updated equation for each field component 

can be derived, using staggered time and space coefficients. Thus, the fundamental 

formalism of the FDTD method can be summarized as in Figure 25. 
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Figure 25 Fundamental Formalism of FDTD. 

Using this step by step method, one can simulate the propagation of an 

electromagnetic field through any medium. However, unless there is a way to add sources, 

then all the results would be meaningless. To understand how sources are added to an 

FDTD calculation, let us consider a planar device, represented by the xy plane in Figure 

26. The fields in the plane are evaluated at each time step. To add a source, first a time 

dependent source signal needs to be built. Once the source signal is calculated, it can be 

added to the field at each time step in the following way: 
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Figure 26 Adding source in to the FDTD algorithm 

F.�, I/ = F.�, I − ΔI/ + m.�, I/ .2.4/ 

where E is the field entity and S is the source signal. The source can be an impulse 

function, a Gaussian function, or a plane-wave, depending on the problem. 

Another important consideration is the boundary condition of the problem. From Table 

4, to calculate the future value of any entity, only the past values of related field entities 

are required. However, in a space domain, to calculate the value of any field entity at a 

grid-point, the vales of related entities at the preceding and succeeding grid-points must 

also be known. A problem arises at the boundaries, where either the preceding or the 

succeeding grid-point does not exist, i.e., these values are outside of the grid. There are 

several approaches to address this issue. For example: 

• The Dirichlet boundary condition: In this condition, the unknown entities outside 

the grids are assumed to be 0. 
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• The periodic boundary condition: This boundary condition only applies when it is 

known that the fields are periodic. In this case, the fields are wrapped around 

with appropriate phase change, as shown in Figure 27. 

 

Figure 27 The Periodic boundary condition. 

Another vital consideration is the grid resolution. There are several requirements that 

must be satisfied by the grid resolution. 

• The minimum grid resolution (Δ) must be small enough to resolve the minimum 

wavelength (10 Δ ≈  n478�45o). 

• Δ must small be enough to resolve the minimum feature size (dmin): 4Δ ≈ p���. 

It is a good idea to start the calculation with the coarsest possible grid and then increase 

the resolution in steps to see when the result converges. 

Like space resolution, time resolution must also be carefully chosen. Very fine time 

steps may result in calculations that are too long. The upper limit on time resolution (Δt) 

is given as: 

ΔI = 1de` 1.ΔC/; + 1.q\/; + 1.q]/;
 

This limit is known as the Courant stability limit. Steps larger than this result in instability. 



57 

 

 

2. PERFECTLY MATCHED LAYER  

While the discussed methodology is stable and accurate, a common problem with 

simulating any real device is reflection at the simulation boundary. For example, in the 

real world, any device can scatter the incident fields into the free space, and the scattered 

fields may radiate into the infinite free space. However, when performing FDTD 

calculations, we cannot simulate the infinite space and the simulation grid must have 

edges. Scattered fields can be reflected at these edges, as shown in Figure 28(a). This 

is clearly a non-physical representation.   

  

(a) (b) 

Figure 28 (a) Reflection at the boundary without PML, (b) Fields at the boundary with 

PML. 

A way around this spurious reflection is to wrap the boundary with a material that 

absorbs the incoming wave with no reflection, i.e., the impedance at the interface is 

perfectly matched for all wavelengths, angles, and polarizations. Since this extra layer is 

non-physical, we can design its parameters to perfectly absorb the incoming waves of all 

frequencies, angles and polarizations. Such a reflection-less layer, shown in Figure 28(b), 
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is called a perfectly matched layer (PML). It is now common practice to surround the 

simulation problem with PML to avoid non-physical reflection at the boundary.  

B. Plane Wave Expansion Method 

The plane wave expansion method is a relatively quick method of solving Maxwell’s 

equations. This is a specialized method because it applies only to cases where the device 

and fields are spatially periodic. The spatial periodicity allows them to be resolved into 

harmonics and reduce Maxwell’s equations into an eigen-value problem. 

1. FORMULATION 

Like the FDTD method, the plane wave expansion method (PWE) also starts with 

Maxwell’s equations. However, the PWE is a Fourier space method. In this method, the 

real space Maxwell’s equations are first converted into the Fourier space Maxwell’s 

equations. For example, the x component of the magnetic curl equation can be written 

as: 

JL_aJ\ −  JL_bJ] = re�sFc .2.5/ 

Assuming the fields and the device are spatially periodic infinitely in all directions, 

they can be resolved into harmonics. For example, the permittivity function can be 

expanded into a Fourier Series as: 

�s =  t t t �.u, v, �/egxyzGH=S{zGH>SszGH|}∙sH~
s�3~

~
{�3~

~
y�3~ .2.6/ 

where �GH0 = ;��� C[, �GH; = ;��� \[, �GH� = ;��� ]̂  are the reciprocal lattice vectors, Λc, Λ�, Λf  are the 

period along x, y, and z axis, and p,q,r ae the indices of the harmonics in the reciprocal 

lattice. The fields can also be expanded as: 
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FGH.�/ = �3g�GGH∙sH  t t t mH.u, v, �/�gxyzGH=S{zGH>SszGH|}∙sH~
s�3~  ~

{�3~
~

y�3~  

=  t t t mH.u, v, �/�3gxhocSh�bSh�f}~
s�3~  ~

{�3~
~

y�3~ .2.7/ 

Where 

rc =  �c − u�0,c − v�;,c − ���,c 

rb =  �b − u�0,b − v�;,b − ���,b .2.8/ 

rf =  �f − u�0,f − v�;,f − ���,f 

Similarly, the magnetic fields can be expanded as: 

LGGH.�/ =  t t t �GGH.u, v, �/�3gxhocSh�bSh�f}~
s�3~  ~

{�3~
~

y�3~ .2.9/ 

Then, Maxwell’s equations can be transformed into linear equations in the Fourier space: 

Table 5 Maxwell’s equations in the Fourier Space 

Real Space Fourier Space JL_aJ\ −  JL_bJ] = re�sFc 
rb.v/�f.u, v, �/ − rf.�/�b.u, v, �/= �re�.u, v, �/ ⋆ mc.u, v, �/  JL_cJ] − JL_fJC = re�sFb 
rf.�/�c.u, v, �/ − rc.u/�f.u, v, �/= �re�.u, v, �/ ⋆ mb.u, v, �/ JL_bJC − JL_cJ\ = re�sFb 
rc.v/�b.u, v, �/ − rb.�/�c.u, v, �/= �re�.u, v, �/ ⋆ mf.u, v, �/ 

  JFfJ\ −  JFbJ] = re�sL_c 
rb.v/mf.u, v, �/ − rf.�/mb.u, v, �/= �re�.u, v, �/ ⋆ �c.u, v, �/ JFcJ] −  JFfJC = re�sL_b 
rf.�/mc.u, v, �/ − rc.u/mb.u, v, �/= �re�.u, v, �/ ⋆ �b.u, v, �/ JFbJC −  JFcJ\ = re�sL_f 
rc.u/mb.u, v, �/ − rb.v/mc.u, v, �/= �re�.u, v, �/ ⋆ �f.u, v, �/ 

The Fourier Space equation can be written in a matrix form as: 

���� −   ���� = �re��s��� 
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���� −   ���� = �re��s��� 

���� −   ���� = �re��s��� 

���� −   ���� = �re��s��� .2.10/ 

���� −   ���� = �re��s��� 

�c�� −   ���� = �re��s��� 

These equations can be summarized in a block matrix form: 

� � −�� ���� � −��−�� �� � �  ������¡ = �re ���s� 0 00 ��s� 00 0 ��s��  ������¡ ⟹ ¢�GGH  ×£�GGH = �re:��s�<�H .2.11/ 

� � −�� ���� � −��−�� �� � �  ������¡ = �re ���s� 0 00 ��s� 00 0 ��s��  ������¡ ⟹ ¢¤GGGH  ×£�H = ¥¦�:��s�<�GGH .2.12/ 

From these equations, either the magnetic field or the electric field can be eliminated to 

form a single double-cross equation. In terms of the electric field, the equation becomes 

¢�GGH  ×£:��s�<30 ¢�GGH  ×£�H =  −re; :��s�<�H .2.13/ 

 

And in terms of the magnetic field: 

¢�GGH  ×£:��s�<30 ¢�GGH  ×£�GGH =  −re; :��s�<�GGH .2.14/ 

These equations are general eigen value equations, where k0 is the eigen value. 

It is the frequency of light scaled by its speed. Thus, by solving the above eigenvalue 

equation, it is possible to ascertain which frequencies can be permissible in each problem 

and obtain the electric and magnetic fields associated with those frequencies. 

It is illuminating to note that the frequency and fields of a mode are the output of 

the above equation. The input in this formalism is β, called the Bloch wave vector, which 

indicates the direction of the wave. Thus, by using the above formalism, it is possible to 
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determine the permissible frequencies and associated fields of modes after exciting the 

problem domain with a specific Bloch wave vector. Generally, the possible values of β 

are infinite. However, due to the assumed spatial periodicity of the problem domain, 

spanning the wavevectors in the irreducible brillouin zone (IBZ) is sufficient[117]. Thus, a 

plot of ω versus β over the IBZ completely characterizes the problem volume. This plot is 

generally called the frequency band versus wave vector diagram, or simply the band 

diagram. The primary output of PWE based routines is typically this band diagram over 

an appropriate IBZ. 

It must also be noted that in theory, an infinite number of harmonics (p, q, r) is 

needed to completely synthesize the electric and magnetic fields. However, in practice, 

the number of harmonics is finite and decided by a convergence study.  

C. Application 

In the subsequent sections, we apply the FDTD and PWE methods to simulate 

several photonic devices. We first address the scattering of electromagnetic fields by a 

single spherical scatterer. An analytical solution for this problem is found, and numerical 

analysis by FDTD is compared with analytical results. Then, a purely periodic structure is 

characterized by calculating its band diagram. After that, the modes of non-periodic 

structure are studied. For these calculations, various commonly available FDTD and PWE 

tools are used, along-side developed packages. For example, Lumerical FDTD, Rsoft 

fullwave and bandsolve, as well as CST Microwave studio is used for the simulations, 

while MATLAB is used extensively both for development and post-processing. 



62 

 

 

1. SINGLE SCATTERER 

In this section, the directional scattering of a single spherical scatterer is calculated. 

That is, the ratio of the forward scattering and backward scattering of the spherical 

scatterer is calculated. Our goal is to compare the FDTD results with the analytical results 

calculated from the Mie theory. Using simulation, we show that hollow particles can be 

tuned to have enhanced directional scattering.  

We consider a hollow particle composed of a low-index dielectric ceramic, e.g., 

SiCN or low index polymers. In subsequent calculations, the radius of the particle is set 

at 31.8 m, while the thickness of the particle shell is set at 50 nm. Similar structures 

have been reported in the literature [118, 119]. A schematic diagram of the shell and the 

FDTD study is shown in Figure 29. 

To calculate the F/B ratio analytically, the forward and backward scattering 

efficiencies of the hollow particle have been calculated using the Mie theory. The formula 

for forward scattering and backward scattering can be given as [120]: 

§m = 1C; t 12# + 1 |�� + ��|; � .2.15/ 

Km = 1C; t 12# + 1 |�� − ��|;  � .2.16/ 

where FS denotes the forward scattering efficiency, BS denotes the backward scattering 

efficiency, x (= 2πR/λ) is the size parameter, R is the radius of the particle, n is the order, 

an is the coefficient for scattered electric field and bn is the coefficient for the scattered 

magnetic field. The coefficients an and bn can be analytically calculated for a hollow 

spherical shell [121]. 
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The forward and backward scattering efficiency has also been calculated using the 

3-dimensional finite difference time domain (FDTD) method, in which a total-

field/scattered field (TFSF) source has been used to excite the hollow particle. By 

monitoring the normalized power of the scattered field in front of the shell, the forward 

scattering efficiency can be calculated. Backward scattering efficiency can be calculated 

by monitoring the normalized power at the back of the particle. 

The directivity of the particle is defined as: 

N = 4�
s̈�© ª�C:u.«, ¬/< .2.17/ 

 

where D is the directivity, Prad is the total radiated power, and u.«, ¬/ is the power at a 

direction. The directivity has been calculated by calculating the far-field from the near-

field. 

 

 

Figure 29 The schematic of the FDTD study, showing PML boundary, TFSF source, and 
the two field monitors to calculate the forward scattering (FS) and backward scattering 
(BS). 
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The F/B ratio has been calculated for the hollow particle as well as a solid particle 

which is composed of the same material as the shell and has the same radius. A summary 

of the Mie calculation and FDTD calculations is shown in  Figure 30. 

 

Figure 30 The F/B ratio of a solid particle and hollow shell 

Clearly, the analytical results obtained using the Mie theory agree reasonably well with 

the FDTD results. The hollow particle has a significantly higher F/B ratio. The enhanced 

directionality of the scattering can be attributed to the Kerker condition. Unlike the solid 

particle, the electric and magnetic modes of the hollow particle nearly cancel each other 

out in the backward direction, resulting in the enhanced F/B ratio.  

The reflectivity of the particle is shown in Figure 31. Around 120~130 m, the 

reflectivity nearly falls to zero, implying that at these wavelengths, the incident waves are 

almost completely transmitted. This observation agrees with the F/B ratio seen in Figure 

30. At 120~130 m wavelengths, the forward scattering efficiency is many times that of 

the backward efficiency, implying reduced reflection. 
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 Figure 31 The reflectivity of the particle. 

The directivity measures how much of the radiated power is directed at a certain direction. 

The calculated directivity of the hollow particle is shown in Figure 32. Near 120~130 m, 

the directivity is quite high at 15 dBi. At higher wavelengths, the directivity slowly falls to 

12 dBi. 

 

Figure 32The directivity of the hollow particle. 
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Figure 33 The radiation pattern of the hollow particle (linear scale). 

As shown in Figure 33, at a higher wavelength, the radiation pattern shows side lobes 

which reduce the power available at the main lobe, leading to smaller directivity. 

 

Figure 34 The half power beam width of the hollow particle 

The half power beam width of the hollow particle is shown in Figure 34. Although the F/B 

ratio has a peak at 130 m, the directivity falls at a higher wavelength, which results in a 
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larger beam width. The beam width increases slowly from 200
 to 500 at longer 

wavelengths. 

In Table 6 and Table 7 , the F/B ratio and the directivity of the hollow particle are 

compared with similar work in the literature. The hollow particle compares favorably to 

existing results. 

Table 6 Comparison of F/B ratio with literature. 

F/B Ref 

10 [122] 

10 [123] 

12 [124] 

50 This work 

 

Table 7 Comparison of directivity with literature. 

Directivity Ref 

6.17 [125] 

2 [126] 

6.3 [127] 

10 [128] 

25 [129] 

30 This work 

 

The relevant quantities here are directivity and F/B ratio, which were calculated using 

FDTD method. Each simulation took 5 minutes on average, requiring <1GB of memory. 
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2. PERIODIC STRUCTURES 

Periodic structures, such as photonic crystals and metamaterials, are vitally 

important for many nanophotonic applications. It is possible to calculate the permissible 

modes in a periodic structure. The frequencies and spatial profile of the modes can be 

calculated using PWE. In Figure 35 (a), the unit cell of a periodic photonic crystal, 

consisting of air holes of radius (R) in a lattice of period (a) on a dielectric substrate, is 

shown. 

  

Figure 35 (a) the unit cell of a purely periodic medium consisting of airholes in a dielectric 
substrate and(b) the calculated band structure of the periodic medium. 
 

To implement nanophotonic devices, the presence of an optical bandgap is often 

desirable. An optical bandgap refers to a band of frequencies where no permissible mode 

exists, and such a forbidden frequency band can be harnessed for many useful 

applications. A sample band diagram, calculated by setting R = 0.4a, is shown in Figure 

35(b). When the refractive index of the core material is around the airholes (ncore) = 1.9, 

a bandgap exists between 
�n = 0.39~0.45. The position and width of the bandgap are 

dependent on the lattice structure of the periodicity, as well as the index contrast between 

the dielectric core and the circular scatterers.   
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In Figure 36(a), the position of the bandgap is shown between the air-band edge 

and the dielectric-band edge. For a higher refractive index, the bandgap occurs at lower 

frequencies and the bandgap width increases. In Figure 36(b), the bandgap width is 

plotted against ncore. We observe that there is a minimum refractive index below which 

the bandgap doesn’t exist. On the other hand, above this threshold, the bandgap width 

increases linearly. The linear increase can be modeled by 

K® = 0.12 #�¯s� − 0.155 .2.18/ 

Where BW is the bandgap width. Based on this bandgap study, it can be concluded that 

planar photonic crystal cavities can be designed on a low index material if ncore >1.5. 

 

(a) 
 

(b) 

Figure 36(a)The position of the bandgap for different refractive index of the core. (b) The 
bandgap width plotted against increasing ncore. 

 
Here, each bandgap was determined by calculating the band diagram of the relevant 

periodic media. Each diagram required around 2 minutes to calculate, requiring >10MB 

of memory.  
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3. PERTURBED PERIODIC STRUCTURE 

In the previous section, the band structure calculations are described, 

characterizing the behavior of all the modes in a photonic crystal. However, the behavior 

of the resonant mode of the cavity, which is typically formed by a perturbation in the 

photonic crystal lattice, cannot easily calculated using the above-mentioned procedure. 

The primary reason behind this is the fact that when there is a cavity in a photonic crystal, 

the periodicity of the structure is perturbed. As such, neither the Bloch theorem nor the 

periodic boundary condition apply. As such, the Maxwell equation must be solved directly 

using FDTD to predict the resonant behavior of a photonic crystal cavity. 

To solve Maxwell’s equations, the simulation domain was covered with a 

rectangular mesh with 5nm step size in all three directions. Perfectly matched layers 

(PML) were used as a boundary, with the appropriate number of layers and reflectivity so 

that the electromagnetic waves do not backscatter into the simulation domain from the 

boundary. The minimum time step was chosen to be 0.009 fs. The simulation was run for 

1000 fs, approximately 1.1 × 10° time steps. A Gaussian impulse source was added into 

the cavity at the beginning of the simulation, and the fields could evolve according to the 

Maxwell equation. At the end of the run, the time dependent field data was collected from 

several points within the cavity, and their average was taken to eliminate any numerical 

noise. The time signal was then converted to frequency response using the Fourier 

transform. From the calculated frequency data, Q factor is calculated from the formula: 

± = �+s	  .2.19/ 

where fr is the resonant frequency, and m is the slope of the decaying time envelope at 

the resonant frequency. To calculate the Q factor, the envelope of the time data 
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associated with the resonant peak was separated using a Gaussian Filter, and the slope 

of the envelope was calculated using linear approximation. From the slope the Q factor 

can be calculated using (5). 

 

Figure 37 We have designed two PPCC devices with proper periodicity (a) and airhole 
radius (r). (a) A twofold defect cavity where the defect in the lattice act as the cavity. (b) 
A band-edge cavity where the low group velocity mode in the center is confined by 
bandgap mirror around it. 
 

We propose several resonator-based devices to take advantage of the optical 

bandgap. They are shown in Figure 37. The top view of the designed devices can be 

shown in Figure 37(a) and (b). A two-fold defect, which can be created by removing two 

airholes from the hexagonal lattice, is shown in Figure 37(a). The lattice defect hosts 

mode(s) that cannot exist in the photonic crystal lattice surrounding the defect. Thus, the 

mode(s) should remain confined within the defect site. This results in a high quality-factor 

optical resonator. In Figure 37(b) a defect less resonator is shown. Here, a photonic 

crystal with large airholes (the core) is surrounded by another one with a smaller airholes 

but the same periodicity (the mirror). The dispersion property of the core PhC and mirror 

PhC is shown in Figure 38(a). We see that the slowest modes in the core PhC fall within 

the bandgap of the mirror. This is possible because the bandgap position is highly 
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dependent on the ratio of the radius and the period (r/a), as shown in Figure 38(b). By 

using Figure 38(b), it is possible to choose the radius of the core and mirror PhC so that 

the slowest mode of the core PhC falls within the bandgap of the mirror PhC. 

  

Figure 38 (a) The mode dispersion of the core and Mirror PhC. (b) The guideline for 
choosing appropriate r/a for desired bandgap frequency. 
 

The 3D structure of the perturbed photonic crystal is shown in Figure 39. The 

planar photonic crystal cavity is designed on a glass substrate with a glass background, 

making it a transparent resonator. Our goal is to demonstrate the usefulness of FDTD, as 

well as determine the suitability of glass for nanophotonic applications. We determine the 

frequency response of the PPCC structures and calculate their quality factors. The 

dependence of the quality factor on the design parameters, such as core thickness, core 

refractive index and airgap width, are studied. We also investigate several applications of 

the PPCC, viz., refractive index sensing, temperature sensing, etc. 
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 Figure 39 The 3D structure of the planar photonic crystal cavity. 

The normalized spectrum of the absolute field is given in Figure 40(a), where it is 

evident that the structure has a resonance at �s = 1.55 �	 which can be shifted to �s =
0.855 �	 simply by setting a = 364nm. The resonant wavelength (�s) can be changed by 

controlling the radius (r) of the airholes as well as the period of the lattice (a).  To provide 

a guideline for choosing the appropriate r and a for a specific �s, the normalized radius of 

the airholes (
s� ) and the quality factor (Q) are plotted against the normalized resonant 

wavelength (
�ns) in Figure 40(b). The Q serves as the figure of merit in choosing the 

appropriate period a. Then, the airhole radius can be determined from the curve. The 

quality factor has been optimized by moving and changing the radius of the adjacent 

airholes and by setting the index of the spacer material, nsp = 1.0. With optimized airhole 

placement and sizing, the maximum Q of the cavity can be as high as 4459 with an air 

spacer. It should be noted that, as shown in Figure 40(c), the Q factor is also affected by 

the refractive index of the spacer material, nsp. Thus, Figure 40 can serve as a guideline 
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in designing a photonic crystal cavity with the desired resonant frequency and quality 

factor.  

There are two relevant quantities here, the resonant wavelength and the Q-factor. To 

resolve the resonant wavelength, the simulation must run for close to an hour, and to 

calculate the decaying field with enough accuracy, the required memory is >3GB. 

 

 Figure 40 (a) The spectrum of the cavity. The resonance is at �s = 1.55 �	  when a = 
665nm and it is shifted to �s = 0.855�	 when a = 364nm. (b) r/a and Q are plotted against 
the normalized resonant wavelength. (c) The dependence of the Q factor on nsp. Here a 
= 0.66 µm, r =0.264 µm and the resonant wavelength is 1.55 µm. 
 

To determine the sensitivity of the cavity to the background material, the spectrum 

of the cavity has been calculated with two different background indices. It can be seen in  

Figure 41 that when the refractive index of the background environment (nBG) is changed 

from nBG = 1.0 to nBG = 1.01, the resonant wavelength of the frequency changes from 

1.528 µm to 1.532 µm, resulting in a sensitivity of 400nm/RIU. We have investigated the 

dependence of the sensitivity on the core thickness and the spacer thickness, and the 

results are summarized in Table 4. The quality factor and sensitivity increase with 
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increasing core thickness since the increased core thickness increases the interaction 

between the environment and the cavity. 

 

 Figure 41 The spectrum of the cavity with two different refractive indices of the 
background environment (nBG.) 
 
Table 8 Impact of core thickness (Tcore) and spacer layer thickness (Tsp) on Q factor (Q) 
and sensitivity (S). 
Tsp (µm) Tcore (µm) Q S (nm/RIU) 

2 3 324 100 
2 5 1759 300 
2 6 4459 400 
2.5 6 4482 415 
3.5 6 4459 415 

 

 Figure 42 The resonant wavelength for the core thickness of 3 µm and 5 µm are plotted 
against the background index. 



76 

 

 

 
Figure 42 shows that the resonant wavelength increases linearly with the 

background refractive index. The relation between the resonant wavelength and the 

background index can be given as: 

�s�² = m × #³´ + µ .2.20/ 

where �s�² is the resonant wavelength, S is the slope, nBG is the background refractive 

index, and C is a constant. Here, the slope S can be thought of as average sensitivity 

over the entire range of analyte refractive index. From Figure 42, it can be found that S = 

322nm/RIU and C = 1087nm for 3 µm thick core and S = 388nm/RIU and C = 1136nm 

for 5µm thick cores. In Table 5, the Q and sensitivity of this work is compared with similar 

studies found in the literature. It can be observed that the refractive index sensitivity found 

in this work is much higher than that reported in [130, 131] . 

Table 9 Comparison between the refractive index sensitivity found in this work and that 
in similar works in literature 
Material S (nm/RIU) Q Ref. 

GaAs - 360 [132] 
Air-bridged Si 320 ~102 [130] 
Si 190 ~106 [131] 
SOI 585 ~104 [133] 
Si - ~107 [134] 
Airbridges Glass 388 ~103 This work 

 

The designed cavity is also sensitive to temperature. The refractive index of the 

LASF35 glass used as the core changes with temperature according to [135]: 

 

#.�/ = #e + .2.7 × 103¶/Δ� .2.21/ 

where n0 = 1.9 is the refractive index at room temperature, and ΔT = T -T0 is the change 

in temperature. Furthermore, the glass expands with temperature. Assuming a uniform 
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thermal distribution and uniform linear thermal expansion, the parameters of the photonic 

crystal on glass are affected by the temperature according to [135] : 

·.�/ = ·e.1 + 8.5 × 103¶Δ�/ .2.22/ 

where L0 is any length parameter of the photonic crystal cavity (e.g., period, radius) at 

room temperature, and L(T) is the changed parameter after thermal expansion. The total 

impact of the temperature on the resonance of the designed cavity is shown in Figure 43, 

where the spectra of the cavity at room temperature and at temperature 10◦C as well as 

20◦C higher than room temperature are shown together.  

 

 Figure 43 The spectrum of the cavity at three different temperatures T0 C, T0+10 C and 
T0+20 C. With rising temperature, the peak of the spectrum red shifts. 
 
Table 10 Comparison of the temperature sensitivity calculated in this work with reported 

values. 

Material Structure Temp. Sensitivity Ref 

Gorilla Glass MZI 1.14 [36] 
Si PhC 6.6 [135] 
Schott Glass PhC 18.5 This work 



78 

 

 

From  Figure 43, the resonance suffers a red-shift from 1589.99 nm at room 

temperature to 1587.17 nm at 10◦C higher temperature. When temperature is increased 

again by 10◦C, the resonance shifts to 1587.36 nm. From the shift in the resonant peak, 

the sensitivity is measured to be 18.5 pm/◦C. In Table 6, the temperature sensitivity of 

this work is compared with similar work in the literature. It is evident that the results in this 

work are significantly superior to prior reported results. Also, it can be seen that the cavity 

structure used in this work provides better sensitivity than the Mach-Zehnder 

Interferometer scheme used in [36]. 

In addition to glass, other low index transparent materials can be equally suitable 

for designing PPCC. For example, PMMA can be a suitable low refractive index material 

because it is cheap and easy to handle, and it has low loss.  We investigated the in-plane 

Q-factor of PMMA PPCC for different resonant wavelengths. The dispersion and 

absorption effects of PMMA were taken into account [136]. As shown before, the resonant 

wavelength can be tuned by scaling the cavity. We adjusted the devices to have resonant 

wavelengths between 700 nm to 1100 nm. The different periodicity of the PhC required 

for the resonant wavelength in the desired range is plotted against the resonant 

wavelength in Figure 44(a) for the two cavities. The linear scaling is upheld. 
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 Figure 44 (a) The in-plane Q factor and (b) corresponding periods for the defect cavity 
and Band-edge cavity at different resonant wavelengths. (c) The in-plane Q factor of the 
cavities for increasing mirror depths. (d) The total Q factor of the devices for increasing 
thickness. 
 

The in-plane Q-factor is plotted against the resonant wavelength in Figure 44(b). 

The in-plane Q-factor of the defect cavity remains around 400 while that of the band-edge 

cavity is around 1400. The in-plane Q is also dependent on the mirror depth, i.e., the 

number of periods around the cavity that act as a bandgap mirror, as shown in Figure 

44(c). The in-plane Q factor can be as high as 824 in the case of a defect cavity and 1483 

in the case of a band-edge cavity. The resonant wavelengths converge to the designed 

value when the mirror thickness is increased. The in-plane Q factor presented here 

compares favorably with those in [137]. The overall quality factor is dependent on the 

thickness of the cavity. As can be seen in Figure 44(d), the total Q factor of both cavities 

increases up-to a certain thickness, after which the higher absorption in the thicker layers 

becomes dominant and the Q factor saturates and eventually falls. With optimal thickness 
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and mirror depth, the defect cavity can reach Q = 737. From the above discussion, it is 

evident that a high Q factor nanocavity can be implemented on a low refractive index 

PMMA polymer.  

D. Summary 

Table 11 Summary of the time and memory required to calculate different quantities 

Quantity Time Memory 

F/B 5 mins 1 GB 
Band Diagram 2 mins 10 MB 
λres, Q-factor 1 hour 3 GB 

 

In this chapter, we have discussed different simulation methods relevant to 

nanophotonics. In these methods, Maxwell’s equations are solved numerically by using 

various approximations and simplifying assumptions. By replacing the differentials in 

Maxwell’s equations with the central difference, numerical solutions can be derived in the 

FDTD method. Being a first principle method, FDTD applies to a vast array of problems, 

and it can produce a stable solution for most cases with the appropriate boundary 

conditions. The accuracy of FDTD calculations depends on the density of the spatial and 

temporal grid. Thus, while FDTD is very versatile, it may require sizable computational 

resources to be reasonably accurate. The plane wave expansion method is much faster, 

requiring much fewer resources, but it only applies to a periodic medium. A summary of 

the calculation times and memory requirements is given in Table 7. 

We have demonstrated the use of both methods to characterize a single spherical 

scatterer, a periodic photonic crystal and a planar photonic crystal cavity. The results 

demonstrate the efficacy of these methods in solving a variety of problems. We have also 

addressed the possibility of nanophotonic devices on low index materials. We have 
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established that an optical bandgap may be opened for refractive indices as low as 1.5. 

We have also shown that transparent optical sensors can be designed on low index 

materials like glass or polymers by using planar photonic crystal cavities as refractive 

index sensors.  

Based on the calculations performed in this section, it can be concluded that simulations 

can be useful for designing nanophotonic devices when time and resources are not 

limited. It is also demonstrated that low index transparent materials can be useful as 

nanophotonic materials.   
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III. EFFECTIVE MEDIUM APPROXIMATION OF OPTICAL NANOSTRUCTURE 

 
In the previous chapter, it was discussed that numerical analysis methods are 

versatile but require significant time and resources to execute. Analytical effective 

medium approximation can be an effective tool for analyzing the properties of optical 

nanostructures quickly and at a low computation cost. Classically, sparse heterogeneous 

media containing infinitesimally small inclusions in a matrix material have been described 

accurately using effective medium theory. However, optical nanostructures often do not 

satisfy these requirements. For optical nanostructures, the inclusions are often closely 

packed and comparable to operating wavelength in size. Accurate effective medium 

approximation of such optical nanostructures remains an unsolved problem. Furthermore, 

numerical analyses often require assumptions of symmetry or periodicity to simplify the 

calculation. However, optical nanostructures are often aperiodic, with no underlying 

symmetry. A schematic representation of such a nanostructure is shown in Figure 45. 

Thus, an accurate effective medium approximation can be very useful in the design and 

analysis of optical nanostructures.  

 

Figure 45. Schematic representation of an optical nanostructure consisting of small and 
dispersed inclusion in a matrix material. 
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Optical nanostructures containing random or regular inclusions (e.g. 

nanoparticles) as constituents have found applications in diverse fields such as anti-

reflection coating [77], thermos-photovoltaics [100], ultra-thin optical elements [84, 96] 

and all-dielectric metamaterial [101]. The optical properties of such media can be 

controlled by changing the size, shape and optical parameters of the constituent 

inclusions [101]. Effective medium approximation (EMA), in addition to being fast and 

cheap, may also produce greater physical insight into the interplay of the physical and 

optical properties of the nanostructure. Numerical analyses may be more accurate, but 

they may fail to produce the explicit inter-relation between the configuration of the medium 

and its optical properties.  

EMAs treat the optical nanostructure as a homogeneous medium with effective 

optical properties which are often explicitly related to the configuration of the optical 

nanostructure. In this section, the available literature on effective medium approximation 

of optical nanostructure is discussed. Commonly used EMAs are reviewed, and their 

applicability is highlighted. Finally, a generalized EMA with very wide applicability is 

proposed. 

 

Figure 46 Medium containing nanoparticles. Each nanoparticle can be considered a 
dipole, which responds to the incident field 
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One of the first EMAs was proposed by Maxwell-Garnett in 1904 [102] while 

discussing optical properties of glass containing small metallic inclusions as shown in 

Figure 46. It was assumed that the metal inclusions were very small and spherical in size. 

They were approximated as point dipoles, which are much smaller than the wavelength. 

The dipoles responded to an incident wave by aligning themselves to the field. How well 

they polarized themselves was calculated using the static polarizability of the point dipole, 

and then the polarizability of the medium was estimated as an ensemble average of the 

polarizabilities of the individual inclusions. This simple approximation was justified by 

assuming that the inclusions are infinitesimally small and much smaller than the 

wavelength.  From the effective polarizability, the effective permittivity of the optical 

nanostructure was explicitly calculated. Let us consider a linear optical nanostructure 

where the matrix material has a relative permittivity of εmat, and the inclusions have a 

relative permittivity of εinc. The dipole polarizability of the infinitesimally small inclusions 

can be deduced as [138]: 

� = 4��� ���� − �������� + 2����  .3.1/ 

where α is the dipole polarizability of each nanoparticle and R is the radius of the 

nanoparticles. The effective relative permittivity (εeff) of the ensemble can be evaluated 

from the Claussius-Mossotti (CM) equation: 

��  = ���� × "1 +  #�1 − #�3 % . .3.2/ 

Here, n is the volume density of the inclusion nanoparticle. Although the Maxwell-Garnett 

formula (MG) was very convenient, its applicability was limited [6]. For example, the 

inclusions must be much smaller than the wavelength of light; the fill factor must be below 
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the so-called percolation threshold (above the percolation threshold, there may be at least 

one infinitely connected component, which leads to inaccuracies between prediction and 

experimental value); and the inclusions must be non-interacting. Furthermore, the 

inclusion material and matrix material must be clearly defined. The MG formula is not 

symmetric to a reversal of the matrix and inclusion material.  

Several attempts have been made to design an effective medium approximation 

without such limitations. To solve the symmetry problem, a new formula was proposed by 

Bruggeman which treats all components of an optical nanostructure as inclusions in the 

effective medium [103]. In the Bruggeman formula (BG), the inclusions are still treated as 

spherical point dipoles. It is assumed that the medium did not produce any electric field 

of its own, and the total contribution of the inclusions to the incident electric field must be 

zero. For example, let us consider the optical nanostructure defined above. In the case 

of the BG formula, the inclusion material and the matrix material are both be treated as 

inclusions. Their dipole polarizabilities can be calculated as: 

���� = 4��� ���� − ��  ���� + 2��   ;  α()* =  4��� ���� − ��  ���� + 2��  ; .3.3/ 

where ����  is the effective polarizability of the inclusion and α()*  is the effective 

polarizability of the matrix. Then, the effective permittivity can be calculated form the 

implicit formula: 

+ , ���� −  ��  ���� + 2��  - + .1 − +/ , ���� −  ��  ���� + 2��  - = 0 .3.4/ 

Where f is the inclusion fill factor. Although this approximation is symmetric, it still cannot 

account for finite sized interacting inclusions. Furthermore, the approximation requires 

solving the above equation iteratively to calculate the effective permittivity. 
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Volume averaging theory(VAT), applied to Maxwell’s equations, was also used to 

define the effective medium approximation [77]. However, volume averaging also cannot 

account for the size and shape of the inclusions. Explicit linear effective medium 

approximations like series and parallel approximations were also proposed [104], which 

predicted effective optical parameters as series and parallel combinations of the 

constituent materials. Here, these explicit EMA formulas are listed for reference: 

Series model: 

#�  = .1 − +/#��� + +#���  .3.5/ 

Parallel model:  1#�  = 1 − +#��� + +#��� .3.6/ 

Volume Average theory:  

#�  = :#���; .1 − +/ + #���; +<0; .3.7/ 

Although the above formulas are widely used in the literature, their applicability remains 

limited. In order to account for the size, shape, and interaction of the inclusions, it is vital 

to extend the existing effective medium theory. Due to its explicit nature, the MG theory 

is the best candidate for such an extension. 

Let us consider EMA when the inclusion size is not infinitely small, as shown in 

Figure 47.  Like that shown in Figure 46, the inclusions in this medium also polarize 

themselves when a field is incident on it. However, unlike the previous medium, the 

inclusions cannot be modeled as dipoles. To account for the finite size of the inclusions 

in a heterogeneous material, the polarizability of the inclusions must be calculated in a 

way that accounts for the size of the inclusion. 
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Figure 47  Medium consisting of large spherical inclusion. Each inclusion can be 
considered a multipole. 
 

For finite sized particles, it has been shown that the static polarizability is not 

enough because the particle is subject to dynamic fields. Thus, a dynamic description of 

the polarizability is required [105]. In [105], Doyle et al. discussed that the electrodynamic 

response of a finite spherical inclusion can be expressed as a sum of ideal point 

multipoles, each with an appropriate multipole polarizability. These polarizabilities can be 

calculated from the Mie solutions [106] of the scattered field. They calculated, for 

example, the dipole polarizability as: 

� = D 3��2C� �0 .3.8/ 

Where R is the radius of the sphere, x is the size parameter (x = ;¸¹º ), λ is the wavelength, 

and �0is the first Mie coefficient of the scattered field. The polarizability calculated here is 

different from the one used in MG equations because the internal field considered here 

are not static, rather the actual dynamically scattered fields are considered. By making 

this drastic modification, the MG formula is extended to accommodate finite sized 

particles. Adoption of the MG formula with different kinds of polarizability has been 

demonstrated in the literature, each of which approximates the internal field in the medium 
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differently [139-141]. These extended formulae also show much better performance in 

predicting experimental results. 

Using the modified dynamic polarizability, the effective permittivity can be derived 

as: 

��  = C� + 3D+�0C� − 32 D+�0 . .3.9/ 

The above formula takes the size of the inclusion into account but assumes the size is 

small enough that it can be represented by a dynamic dipole. However, at a larger size, 

higher order poles are needed to accurately describe the electrodynamic behavior of the 

inclusions.  Recently, an EMA was proposed which accounted for the third and fifth order 

dipoles [107]. The number of poles required to mode the inclusions is decided arbitrarily, 

which limits the application of Mie extended MG formulas. Also, these formulas cannot 

account for the interaction between the inclusions. As a result, the formulae derived this 

way are not accurate enough to justify their extra complexity in use. Thus, there remains 

a need to design a more general, explicit, and accurate EMA. 

In this chapter, a new simplified EMA based on the Mie extension of the MG theory 

is proposed. The ambiguity in deciding the number of poles required to model the 

inclusions is addressed. Furthermore, the effective polarizability is modified to account 

for the interaction between the nearby inclusions. The Mie based formula requires 

evaluating the Bessel functions of various orders, which is computationally extensive. For 

the specific case when the size of the inclusion is of the order of λ/10, i.e., the Rayleigh 

scattering regime, the Mie formula is simplified to an explicit polynomial equation. The 

applicability of the MG formula, the simplified Rayleigh formula and the MG formula for 

different sizes and refractive indices of the inclusion material are discussed. Finally, the 
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derived EMA is extended to account for the layered inclusion materials. The popularity of 

the MG formula, despite its shortcomings, points out a need for a simple and accurate 

formula that can simplify the modelling of heterogeneous materials and predict the 

effective medium properties of artificial material with greater accuracy. 

A. Derivation 

In this section, a simpler and more accurate effective medium approximation will 

be derived by calculating the polarizability of the inclusion accurately and then relating 

the polarizability of the inclusions to the effective optical properties of the random optical 

nanostructure. 

In order to derive a more accurate EMA, it is worthwhile to start by deriving the MG 

formula. The MG formula assumes that the inclusions are infinitesimally small. As such 

they can be approximated by electric dipoles.  Let us consider such a sphere with radius 

a with dielectric permittivity ε in a constant external field Eext. The dipole moment of the 

sphere can be given as d = αEext, where α is the static polarizability. By solving the 

Laplace equation, the polarizability can be obtained as: 

� = �� � − 1ϵ + 2 .3.10/ 

Then, the electric field outside the sphere can be written as: 

F©.¼/ = 3¼[.¼[. ½/ − ½�� + ¾¿ÀÁ .3.11/ 

While the internal field can be written as: 

F��� = 3� + 2 F�c� .3.12/ 

where r is the vector along the radius of the sphere. The depolarization field (Edep), which 

is induced by the charges on the surface of the sphere, can be written as: 
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¾©�y = ¾��� − ¾�c� =  − � − 1� + 2 ¾�c� =  − 1�� ½. .3.13/ 

 

Integrating the depolarization field over the volume, we obtain:  

Â F©�ysÃ� pÄ =  − 4�3 ½ .3.14/ 

Thus, the total field induced by the dipole can be written as: 

F©.¼/ = 3¼[.¼[. ½/ − ½�� − 4�3 Å.¼/. .3.15/ 

Where Å.¼/ is a dirac-delta function. The first part of the above equation is the field 

created by the dipole around the sphere, and the second part is the field created within 

the dipole. It is important to note that when the induced electric field is integrated over the 

sphere, the first term in the above equation reduces to zero, but the second term remains.  

Now, let us consider a random optical nanostructure with volume V which contains 

N such spheres with radius a. Each sphere can be considered an inclusion with linear 

polarizability α. Since, in a macroscopic sense, only the depolarizing field remains in the 

expression for the dipole electric field, we can neglect the interaction between the spheres 

and assume each spherical inclusion experiences the same field Eext. Thus, the total 

dipole moment of the medium can be written as: 

½ÁÆÁ = Ç�¾�c� .3.16/ 

where dtot is the total dipole and N is the number of inclusions. On the other hand, if the 

medium is assigned a, with effective permittivity ��  , then the total dipole moment can 

be written as: 

p�¯� = ÄÈ = Ä ��  − 14�  F. .3.17/ 
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Where E is the total field inside the random medium. The total field can be related to the 

external applied field as: 

F = F�c� + F�.�/ÉÉÉÉÉÉÉ .3.18/ 

Where F�.�/ÉÉÉÉÉÉÉ is the ensemble average of the fields induced by each dipole. It can be given 

as: 

F�.�/ÉÉÉÉÉÉÉ  = 1Ä  Â F©.� − ��/Ê p�� =  − 4�3 ½Ä  .3.19/ 

 Then, the field inside the medium can be given as: 

F = F�c� + F�.�/ÉÉÉÉÉÉÉ  = "1 − 4�3 �Ë % F�c�. .3.20/ 

Here, we have used d = αEext and Ë  = N/V. Now, equating the two expresions for total 

dipole p�¯�, we obtain, 

Ç� = #+x��  − 1}4� "1 − 4�3 �Ë % , .3.21/ 

Which can be simplified to 

��  = 1 + 4��Ë  1 − 4��3Ë .3.22/ 

By substituting + = Ì�� �|Í  and � = �� .Î30/ÎS;  , we obtain: 

��  = 1 + 2+ .� − 1/� + 21 − + .� − 1/� + 2 , .3.23/ 

Which is the MG EMA equation. During the derivation of (3.23), several assumptions were 

made. For example: 
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It was assumed that the spherical inclusions were infinitesimally small. Thus, 

treating the interaction between the external field and the inclusions as an electrostatic 

problem was justified. The spheres were treated as static electric dipoles, and the 

magnetic interactions were ignored. Thus, the definition of effective polarizability was 

given as  � = Î30ÎS;. It was assumed that all the inclusions experience the same external 

electric fields. Thus, the inter-inclusion interactions were ignored. 

The first step towards deriving a more accurate EMA formula is to formulate the 

effective polarizability that accounts for all the interactions between the external field and 

the scattered field of the spherical inclusions.  While the electrodynamic response of the 

optical nanostructure is a many body problem, we can envision the medium as a black 

box where the scattering and absorption of external fields by the spherical inclusions take 

place. In the output from this black box, it would not be possible to distinguish between 

the scattering and absorption. Then, the effective polarizability of an individual inclusion 

can be calculated from its extinction, which considers both scattering and absorption as 

a form of loss. 

  In this approach, a medium containing spherical inclusions of arbitrary size is 

assumed to be a black box, onto which light is incident. Due to scattering and absorption, 

the incident light suffers attenuation. For a causal, isotropic, and passive system, this 

attenuation can be described by the Beer-lambert Law: 

I = Ie�3Ð© .3.24/ 

Where I0 is the input light intensity, I is the output light intensity, d is the medium thickness 

and ϕ is the absorption coefficient. It is possible to assign a dielectric constant to the 

medium from this information. Assuming the system is causal, the imaginary part of the 
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effective dielectric constant is related to the absorption coefficient and the real part can 

be calculated using Kramer-Kronig relationship. Thus, it may possible to assign an EMA 

to a medium containing arbitrarily large particles if they are used to calculate transmission 

and reflection. 

In order to calculate the dielectric constant described above, the similarity of 

extinction coefficient and effective permittivity when calculating optical density can be 

harnessed [107]: 

log Õx1 − ��  };�Ö1o6×©Ø =  log �x1 − ��  };�;�Ù�xÎ122}nÚ�x√Î122}©� .3.25/ 

Thus, the above-mentioned black box can be described by a dielectric constant by 

accounting for the extinction of each spherical inclusion.  Since the spherical inclusions 

are finite in size, their extinction can be calculated by approximating the local field around 

each inclusion by the scattered field from a weighted sum of an ensemble of multipoles. 

The weight of each multipole is essentially the corresponding coefficient in the Mie 

expansion of the scattered field from a sphere. Thus, the modified multipole polarizability 

can be deducing as: 

αÜÝÝ = 2����eC�  t D.2# + 1/.�� + ��/~
��0 ¡ , .3.26/ 

by using the relationship between extinction coefficient and polarizability [142]. Here, an 

and bn represent the Mie scattering coefficients of the E-type and H-type modes of 

increasing order, respectively. They can be calculated as: 

�� =  	Þ�.	C/Þ�ß .C/ −  Þ�.C/Þ�′.	C/	Þ�.	C/á�ß .C/ −  á�.C/Þ�ß .	C/ , .3.27/ 

and 
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�� =  Þ�.	C/Þ�ß .C/ −  	Þ�.C/Þ�ß .	C/Þ�.	C/á�ß .C/ −  	á�.C/Þ�ß .	C/ , .3.28/ 

 

where Þ� and á�are the Ricatti-Bessel functions, and 	 = �789�456 is the ratio of the complex 

refractive index of the inclusion (ninc) and matrix (nmat) material. A comparison between 

eq. (3.26) and eq. (3.10) indicates that the polarizability described by eq. (3.26) contains 

higher order multipoles, i.e., it accounts for the complicated scattered field around a 

particle of arbitrary size. Here, by assuming the particles are non-interacting, far away 

from each other, and identical, the effective dielectric constant from the multipole 

polarizability can be derived using CM equations [107, 143]. By using the multipole 

polarizability with the CM equation, the detailed scattered fields within the optical 

nanostructure considered in (6) are averaged out when calculating the effective dielectric 

constant. This effective dielectric constant cannot be arbitrarily applied in all calculations. 

However, based on the assumptions, the dielectric constant derived using this formalism 

is accurate when calculating the transmission. 

The number of terms in eq. (3.26) required for accurate EMA prediction is not 

immediately clear. In the literature, an arbitrary number of terms has been used [107, 

143].  A more rigorous approach would be to include terms enough to achieve 

convergence. The number of terms required for the convergence of the Mie series when 

1<x<200 and precision up to 10 decimal place  is given as [144]: 

Ç = C + 3.52761 C0� − 4.1. .3.29/ 

Where x is the size parameter. In Figure 48, the extinction cross section of a sphere, 

which is predicted by the Mie formula curtailed at N, is compared to the extinction cross 
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section calculated directly by the FDTD method. Curtailing the Mie series at N produces 

sufficiently accurate results. To test the accuracy of this curtailing, let us consider the 

scattering cross section (SCS) and extinction cross section (ECS) of a sphere. From the 

Mie theory, the SCS can be given as: 

mµm = 2C; t.2# + 1/.|��|; + |��|;/.~
��0  .3.30/

Fµm =  2C; t.2# + 1/��.�� + ��/.~
��0   

In Figure 48, it is shown that curtailing the Mie series at N terms produces a sufficiently 

accurate prediction of extinction. 

 

Figure 48. Comparison of the extinction cross section calculated using FDTD method and 
the curtailed Mie formula. 
 

In Figure 49, the scattering cross section of a sphere is plotted against the size 

parameter for different relative refractive indices (m). The scattering cross section is 

calculated by considering one (first order approximation), two (second order 

approximation) and all N (total) terms. Although the first or second order approximation 

produces accurate results when x and m are small, the higher order terms are necessary 
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when x and m are larger. Thus, in this work, all N terms are considered when calculating 

the effective polarizability. 

  

  

Figure 49. The scattering cross-section of a sphere for m= 3, m = 5, m = 9. m = 7 

(clockwise). 

Thus, combining eq. (3.26) and eq. (3.29), we obtain: 

αÜÝÝ = 2����eC�  t D.2# + 1/.�� + ��/â
��0 ¡ , .3.31/ 

The effective polarizability defined in (3.31) can account for the scattering and absorption 

from spherical inclusions of finite size. In order to account for the interaction between the 

particles, a net polarizability can be formed [145]: 
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�ã = 2�; − �;2�ä�1 − �;.4� ä�/; .3.32�/ 

�∥ = 2� + �;2�ä�1 −  2�;.2�ä�/; .3.32�/ 

���� = 12 .�ã +  �∥/ .3.32d/ 

Here, �ã is the perpendicular component of the polarizability, �∥is theparallel component, 

���� is the net polarizability, ä is the average distance between the inclusions, and � is the 

polarizability described in (3.31). 

To separate the contribution of E-type and H-type modes, the polarizability can be 

separated into magnetic and electric components as [12,13]: 

αæÜ* =  �.�/ + �.�/. .3.33/ 

Here,  �.�/is the effective electric polarizability containing all the ��term, and �.�/is the 

effective magnetic polarizability containing all the ��terms in (1). From these effective 

polarizabilities, the effective permeability (��  ) and effective permittivity (��  ) can be 

calculated as [9-11,14]: 

��  =  ���� × ç1 + §�.�/è − 0.33§�.�/é , .3.34�/ 

��  =  ���� × ç1 + §�.�/è − 0.33§�.�/é .3.34�/ 

where ��  is the effective permittivity of the medium, ����  is the permittivity of the matrix 

material, ��   is the effective permeability of the medium, ���� is the permeability of the 

matrix material, F is the filling factor, and v is the volume of an individual particle. To 
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calculate the effective refractive index, we used the well-known formula #�  =
 ê��  ��  . 

In eq (3.35), the polarizability accounts for all the losses from absorption and 

scattering. Thus, it can be used for calculating the reflection and transmission of optical 

nanostructures. This formula can be easily extended to the cases of layered inclusions. 

The Mie coefficients for a layered sphere with two layers can be given as: 

�� =  Þ�.\/:Þ�ß .	;\/ − ë�ì�ß .	;\/< − 	;Þ�ß .\/ ÕÞ�.\/¢Þ� .	;\/ − ë�ì� .	;\/£Øá�.\/:Þ�ß .	;\/ − ë�ì�ß .	;\/< − 	;á�ß .\/ ÕÞ�.\/:Þ� .	;\/ − ë�ì� .	;\/<Ø  .3.35�/ 

 

�� =  	;Þ�.\/:Þ�ß .	;\/ − K�ì�ß .	;\/< − Þ�ß .\/ ÕÞ�.\/¢Þ� .	;\/ − K�ì� .	;\/£Ø	;á�.\/:Þ�ß .	;\/ − K�ì�ß .	;\/< − á�ß .\/ ÕÞ�.\/:Þ� .	;\/ − K�ì� .	;\/<Ø .3.35�/
 

Where An and Bn are defined as: 

ë� = 	;Þ�.	;C/Þ�ß .	0C/ − 	0Þ�ß .	;C/Þ�.	0C/	;ì�.	;C/Þ�ß .	0C/ − 	0ì�ß .	;C/Þ�.	0C/ .3.35d/ 

 

K� = 	;Þ�.	0C/Þ�ß .	;C/ − 	0Þ� .	;C/Þ�.	0C/	;ìß�.	;C/Þ� .	0C/ − 	0Þ�ß .	0C/ì�.	0C/ .3.35p/ 

Here m1 and m2 are the relative refractive index of the first and second layer, x is the size 

parameter in the first layer, y is the size parameter in the second layer. By replacing the 

Mie coefficients in (3.36) into (3.31), the effective refractive index of an optical 

nanostructure containing layered inclusions can be calculated. 

Although the EMA discussed above can account for arbitrary sized inclusions, its 

expression is not straight forward and the relations between the variables are not 
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apparent. To simplify the expression, we consider the case of uniform inclusions when R 

<λ/10.  The Mie coefficients can be expressed in polynomial form after expanding the 

Ricatti-Bessel functions in power series. We get: 

�0 =  − DC�3 	; − 1	; + 2 − D2C°5 .	; − 2/.	; − 1/.	; + 2/; +4C¶9  ,	; − 1	; + 2-; + í.Cî/ .3.36�/ 

�; =  − DC°15 	; − 12	; + 3 + í.Cî/ .3.36�/ 

�0 =  − DC°45 .	; − 1/ + í.Cî/ .3.36d/ 

�; = í.Cî/ .3.36p/ 

Thus, for cases that adhere to the Rayleigh scattering condition, we obtain, 

� = 4���� ç1 + C;15 �Ä + D2C�3 �é .3.37/ 

Where 

� = 	; − 1	; + 2 ; Ä =  	Ì + 27	; + 382	; + 3 . 
Substituting the polarizability calculated in (3.38) into the MG equation we obtain 

 

#�  ; =  ���� ï0S; ðñ0So>=òðÊS7>o|| ðó
03 ðñ0So>=òðÊS7>o|| ðó ô .3.38/ 

Thus, a simple effective medium approximation can be derived from the Mie solution. 



100 

 

 

 

Figure 50 Random heterogeneous nanostructure is characterized with effective medium. 
Nanostructure with spherical and cylindrical inclusions are studied.  
 

B. Method 

In order to experimentally verify the EMA formulas derived in (3.34) and (3.38), the 

transmission and reflection of the optical nanostructures calculated using the EMA are 

compared to the experimental data found in the literature as well as those obtained in-

house.  

1. UNIFORM SPHERICAL INCLUSIONS: 

First, the validity of the EMAs for uniform inclusions was tested. The experimental 

data from literature were selected so that the validity of the EMA could be tested in a wide 

range. In Table 12, the structural parameters of the chosen experimental random media 

are shown. 

Table 12 The chosen experimental data from literature to test the EMA formulas. 

Inclusion 
Material 

Inclusion 
Radius [nm] 

Filling 
Factor 

Thickness 
[nm] 

Reference 

SiO2 52.5 0.445 105 [77] 
SiO2 40 

60 
0.25 
0.25 

80 
120 

[78] 

SiO2 55 
105 

0.6 
0.6 

110 
210 

[79] 

Al2O3 20 0.007 3800 [100] 



101 

 

 

Au 5.7 0.0057 Bulk [146] 

 

The uniform Mie model (3.34) and the Rayleigh model (3.38) developed here was 

compared with several existing EMA formulas from the literature as well as experimental 

results. We considered the parallel model (3.6), the series model (3.5), the volume 

averaging (VA) model (3.7), the Bruggeman (BG) model (3.4) and the MG (3.2) model for 

comparison with the developed EMA formulas. Although all the EMA formulas considered 

in this work describe bulk medium, they can predict the effective parameters of thin-films 

with reasonable accuracy [104]. Thus, to measure the usefulness of the EMAs, we 

calculated the reflectivity of thin-film anti reflection (AR) coatings using the developed and 

other EMAs and compared with experimental results. Our approach is summarized in 

Figure 50. We examined the accuracy of the models using least square error. The error 

is defined as: 

F��õ� = ö1·  t.FCu��D	�#I�ä è�ä÷�� − Fªë è�ä÷��/;ø
��0 ¡ .3.39/ 

Where L is the number of data points. 

In order to calculate the optical properties of random heterogeneous materials 

using the EMA, we used the well-known transfer matrix method (TMM). In TMM, the 

problem of calculating the reflectance, transmittance and absorbance of a multilayer 

structure reduces to a matrix multiplication problem. This process is summarized in Figure 

50. 
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2. COATED SPHERICAL INCLUSIONS 

To test the EMA for coated spherical inclusions, a magnetic microsphere colloid 

(MMC) was obtained and its transmission was experimentally observed. Then the 

observed transmission was modelled using the designed EMA. The MMC were prepared 

by diluting colloids purchased from Bang Laboratories with deionized water. The 

purchased colloids contained 97.5% water and 2.5% magnetic microspheres, which are 

composed of Iron (III) oxide (Fe3O4) core and a proprietary polymer shell. The mean outer 

diameter of the microspheres was 1.05 m. 

 

Figure 51 (a) The prepared sample in a 10-mm cuvette, (b) the measured transmission 
of the samples at different filling factors, (c) the actuator, consisting of a stirrer with an 
electromagnetic coil around it, (d) the catch and release mechanism of the actuator. 
 

Samples with different filling factors were prepared by varying the amount of added 

water. The precise filling factors of the prepared samples were unknown. These samples 

were placed in optical cuvettes with 5mm and 10 mm optical path-length. One such 

sample is shown in Figure 51(a). To measure the transmission of the MMC, the samples 

were placed in the optical path of a spectrometer (Ocean Optics USB-2000+VIS-NIR) 

with 2048 element silicon linear CCD array, 0.3 nm resolution, and a spectral range of 
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200-1100 nm, using an incandescent light source. During data acquisition, each scan 

lasted 5 ms, and an average of 5 scans were used to boost the signal quality. The 

measured transmissions of samples with different filling factor are shown in Figure 51(b), 

demonstrating the change in transmission with filling factor. The filling factors were 

extracted using theoretical modelling. The tunability of the transmission was studied by 

measuring the average transmission in the wavelength range 400 – 1100 nm using a 

photodetector, while the sample was subjected to static magnetic field. For the optical 

measurements, the spot size of the incident light on the cuvette had a diameter 1 mm. 

A miniature electromagnetic actuator was built for demonstrating magnetically 

tunable transmission of the MMC. It consisted of an electromagnet coiled around a 

mechanical stirrer, as shown in Figure 51(c). The electromagnetic consisted of 1000 turns 

of enameled copper wire around a steel rod with diameter 1 mm. When the electromagnet 

of the actuator was activated, the resulting magnetic field separated the magnetic 

microspheres from the colloid, thus reducing its filling factor. Similarly, the actuator re-

disperses the microspheres by mechanical stirring, thereby restoring the filling factor. 

Thus, the filling factor of the aqueous MMC can be controlled, as demonstrated in Figure 

51(d). 

C. Range of Validity 

We arrived at an EMA which can account for the finite size of the nanosphere 

inclusions and their interactions.  In this section, the EMA is tested by comparing its 

prediction with experimental values from the literature.  

An important property of the derived EMA is that it accounts for the Mie scattering. 

It is known that electrostatic interactions and Rayleigh scattering are simply special cases 
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of the Mie scattering.  It is illuminating to note that this property of Mie scattering is upheld 

in the derived EMA. For example, the Rayleigh scattering approximation can be derived 

simply by expanding the Mie coefficients in power series of relative refractive index (m) 

and size parameter (x) and curtailing the series at the sixth power. Interestingly, the MG 

formula, which only considers electrostatic interactions, can also be derived from the Mie 

coefficients by curtailing the Mie power series at the third power.  Thus, by curtailing the 

Mie coefficients at different power, i.e., by approximating the Mie scattering with different 

accuracy, we arrive at the Rayleigh approximation and the MG approximation. This 

connection gives us a tool to assess the applicability of the Rayleigh and MG 

approximation systematically. It is known that MG approximation applies when the size 

parameter is much smaller than unity [6] but a specific range is not specified in the 

literature. Additionally, from the above discussion, the accuracy of the curtailed series 

should clearly depend on both relative refractive index (m) and size parameter (x). 

 We calculated the errors in the Rayleigh approximation and the MG approximation 

with respect to the complete Mie solution and set limits of applicability on the 

approximations. Using the limits of Rayleigh regime (R/λ≤0.1) as a guideline, we set a 3% 

error tolerance limit empirically. A lower tolerance would exclude many known acceptable 

uses of MG formula, and a higher tolerance would produce erroneous results by using of 

the Rayleigh formula.  
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Figure 52 The range of applicability of the Rayleigh approximation and the MG 

approximation. 

In Figure 52, the limits on the relative refractive index (m) and the size parameter 

(x) for using these approximations are plotted. When the m and x fall within the white area 

at the bottom, the MG approximation is enough, but when they fall within the hatched 

zone, the Rayleigh approximation must be used.  When they fall in the white area above, 

the Mie model must be employed for accurate result. From the figure, it can be observed 

that the definition of Rayleigh regime, considered to be R/λ <0.1, is also dependent on m. 

The dotted line in the figure marks the boundary for the Rayleigh approximation, as 

reported in the literature. However, it can be observed from  Figure 52 that the MG formula 

is sufficient within this bound when m< 1.5, i.e., when the inclusions do not have a 

particularly high refractive index compared to the matrix material. On the other hand, 

when m>2.6, the Mie formula must be used. That is, when the inclusion is high refractive 

index material, the scattering is strong enough that the Mie formula must be used 

regardless of size. Similarly, the MG and Rayleigh formulas are enough above this bound 
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when m <1.5 and 2.6, respectively, and x is within the appropriate range. Thus, it can be 

concluded that the condition for using the MG and Rayleigh approximation is weak 

scattering, whereas the Mie formula must be used if the scattering is strong. 

D. Results 

1. PERIODIC NANOSTRUCTURE AS AR COATING 

 

Figure 53 The reflectivity of a glass slab coated with polystyrene nanosphere is calculated 
using EMAs and compared with experimental data [77]. 
 

To experimentally verify the derived EMAs, we compared the experimental value 

of different experiment, summarized in Table 12, with corresponding EMA predictions. 

Polystyrene microspheres with 52.5 nm radius, deposited on a glass substrate, has been 

reported as AR coating [77]. The microsphere layer can be modeled as an effective 

medium containing spherical inclusions in a matrix of air. Then the reflectivity can be 

calculated by treating the system as a simple multilayer arrangement. The calculated 

reflectivity is compared with experimental result [77] in Figure 53. The MG and BG EMAs 

produce result that differs from the experimental result. This is due to the finite size of the 

nanospheres. On the other hand, the Mie and Rayleigh based EMAs produce much closer 
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results. We also see that the VA model produces the best match, while the series and 

parallel models (not shown) produce the worst fit.  

The silica nanospheres of different radii have also been reported as AR coating 

[78]. We calculated the reflectivity of the silica AR coating by modelling the silica coating 

layer with the derived EMA. The calculated results are compared with experimental 

results for silica microspheres with different radii in Figure 54.  

 

(a) 

 

(b) 

 

(c) 

 

(c) 

Figure 54 The reflectivity curves of a glass slab coated with silica nanospheres of different 
radii are calculated using EMA and compared with experimental result [78]. 
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For microspheres with a 60nm radius, the Mie model produces almost an exact 

match and the Rayleigh model also produces a very accurate match whereas the VA, 

series and parallel models produce a worse fit than any other model. Results for 60 nm 

radius nanospheres are summarized in Figure 54(a). We also calculated similar results 

when the silica nanosphere radius is 50nm, 45nm and 40 nm. The results are shown in 

Figure 54 (b), (c), and (d), respectively. The Mie and Rayleigh EMA produces the best fit 

in all cases, while the other EMA produces higher errors. 

 

(a) 

 

(b) 

Figure 55. The reflectivity of glass slab coated with silica nanosphere is calculated using 
EMA and compared to experimental result [79]. 
 

Silica nanosphere layers with a much higher volume filling fraction (f=0.6) are also 

reported [79] in Figure 55. We calculated that for microspheres of 55 nm and 105 nm 

radius, all models underestimate the experimental result, but the Mie and Rayleigh 

models produce the closest match. The discrepancy is because the EMAs employed in 

this work assume low filling factor. By accounting for larger sized particles, the Mie and 

Rayleigh model produces much less error compared to other EMA models. Results for 

55 nm and 105 nm radius nanospheres are shown in Figure 55. Although the Rayleigh 

model doesn’t apply for this case it still produces less error than the MG, BG and VA 
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models. It is observed in that when the radius of inclusions and filling factor is high, the 

Mie and Rayleigh models show best match to experimental result. It is noteworthy that 

the Rayleigh model agrees exactly to the Mie model when R/λ<0.1.  

2. APERIODIC NANOSTRUCTURE AS TUNABLE WINDOW 

a) Theoretical modelling 

The EMA modelling of the MMC is summarized in Figure 56. The layered structure 

of the magnetic microspheres with all the structural parameters is shown in Figure 56(a). 

The outer radius (Rout) was specified by the vendor to be 525nm, while the permittivity of 

iron oxide (��s¯� ¯c�©�) was also known. Along with the filling factor, the permittivity of the 

polymer .�y¯ùb��s/  and the inner radius (Rin) of the microspheres were unknown 

parameters. We used the derived Mie based EMA in (3.34) with core-shell particle (CSP) 

scattering parameters in eq. (3.35) to directly model the medium containing layered 

microspheres as an effective medium, as shown in Figure 56(b). For comparison, we also 

modeled the MMC using uniform particle EMA, the MG, BG and VA formulas. When using 

these formulas, the layered microspheres were first approximated as uniform spheres 

using the MG formula. Then the medium containing the approximated uniform spherical 

inclusion was modeled as an effective medium, as shown in Figure 56(c). The 

transmission of the MMC was calculated using the Fresnel equations, where effective 

parameters of the MMC obtained from EMAs were used.  

Table 13 The unknown parameters extracted by different EMA. 

EMA RIN(NM) NP F 

CSP EMA 225 1.4 0.004 
UNIFORM 
MIE 

167 
1.9 0.003 

MG 100 1.6 0.008 
BG 146 1.7 0.07 
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VA 118 1.9 0.003 

For each model, the unknown parameters were extracted by the iterative least 

error fitting of the calculated transmission to the experimentally obtained values. These 

extracted parameters are shown in Table 1. They represent the best-fit of the 

experimentally obtained transmission by each EMA, respectively. The best-fits for the 

different EMA are compared with the experimental results in Figure 56(d). The CSP EMA 

matches the experimental value with the least amount of error. The uniform Mie model 

produces a better fit than the MG, BG, and VA models, but it remains inaccurate 

compared to CSP EMA. As expected, the worst prediction is obtained when the MG, BG 

and VA models are used. Not only do these EMAs predict peaks at inaccurate 

wavelengths, they also fail to predict the trends of the transmission curve. Based on the 

findings above, it can be concluded that the CSP EMA predicts the transmission of the 

MMC most accurately. The filling factor extracted using CSP EMA will be used for 

subsequent analyses. 
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Figure 56 (a) The structure of the magnetic microsphere, (b) the modelling strategy with 
CSP EMA, and (c) that using several Existing EMAs. (d) Comparison of the experimental 
and EMA predicted values of transmission. Results obtained using various EMAs are 
compared to the experimental values. 
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b) Application: Tunable optical filter 

 

Figure 57 (a) The transmission of the MMC at different filling factor. The lines represent 
EMA prediction and the markers represent experimental value. (b) The average 
transmission at different filling factor. 
 

The internal composition of the MMC can be directly related to its refractive index 

by eq. (3.34). Although most input parameters in (3.34) cannot be changed once the MMC 

sample is prepared, the filling factor can be changed magnetically. Thus, by changing the 

filling factor, the transmission of the sample can be controlled. In this section, the 

relationship between the transmission and filling factor is quantified. 

To that end, the transmission of the MMC was experimentally determined at 

different filling factors. The experimental results and corresponding EMA predictions are 

shown in Figure 57(a). The filling factors corresponding to each transmission curve are 

shown at the top right corner. At F = 0.0111, the transmission is close to 0 throughout the 

spectrum, with local peaks near 700 and 900 nm, indicating the brown color of the sample. 

As the filling factor decreases, the transmission steadily rises and becomes very close to 

100% throughout the visible wavelengths. At lower filling factors, the peaks at 700 and 

900 nm are less pronounced, indicating the increasing transparency of the sample. The 

tunable range of the transmission is therefore close to 100% throughout the visible 
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spectrum, which indicates the viability of the colloids as a tunable optical window. The 

spectral average of the experimental transmission for different filling factors is plotted in 

Figure 57(b). The least error fitting of the experimental data reveals the relation between 

the filling factor (F) and the transmission (T) in percentage to be an exponential: 

�.%/ = 95.9�3�0û.üý .3.40/ 

 Thus, the relation between the filling factor and transmission, in (3.40), can be quantified 

as an exponential, which helps in tuning the transmission precisely by controlling the filling 

factor. 

The transmission of the MMC can be magnetically tuned using the designed EM 

actuator. When the magnet of the actuator was activated, the magnetic field exerted a 

magnetophoretic force on the microspheres, which separated them from the colloid. Thus, 

the filling factor became smaller with the application duration (D) of the actuator. The 

stirrer of the actuator mixed the separated microspheres back into the colloid and reset 

the filling factor. In this section, the magnetic field tunability of the transmission was 

discussed, and the relationships between transmission, magnetic field and duration of 

application were quantified. The magnetically tunable transmission of the MMC was 

demonstrated using the EM actuator, and the results are plotted against time in Figure 

58(a). When the magnet in the actuator is activated, the transmission (T) increases 

exponentially with the duration of application (D) as: 

�.% / = �e�þ� .3.41/ 

where τ is the exponential coefficient. The value of τ depends on the magnetic field 

strength. 
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Figure 58 (a)The transmission of the sample under magnetic field is plotted against 
duration of magnetic field. (b) The rate of filling factor changes, and exponential coefficient 
of transmission are plotted against magnetic field. (c) Tunable transmission of the colloids. 
(d) Response time is plotted against field strength. (e) Change in transmission with 
duration of magnetic field.  
 

In the inset of Figure 58(a), it is shown that a completely opaque sample turned 

transparent in 650s using the actuator when B = 0.01T. From (3.40) and (3.41), a linear 

relation can be found between the filling factor (F) and duration (D): 
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F = C0 − µ;N .3.42/ 

where C0 = ���.ü°.ü/z� /�0û.ü  and C; = þ�0û.ü are parameters that depend on the applied magnetic 

field and nature of the MMC. From (3.42), it is apparent that the filling factor linearly 

decreases with duration. The filling factor can be reset to the initial value by activating the 

stirrer in the actuator. The rates of the filling-factor change with respect to the duration 

(dF/dD) is shown in Figure 58(b). The filling-factor decreases faster with a stronger 

magnetic field. Similarly, the exponential coefficient of the transmission (τ) increases with 

the magnetic field, as shown in Figure 58(b), implying a faster change in the transmission 

with a stronger magnetic field. The quantitative relations between the filling factor, 

duration, and transmission, as described in (3.40) - (3.42), and the subsequent analyses 

imply that the transmission of an MMC sample can be controllably tuned by choosing the 

magnetic field strength and duration. To illustrate this, an MMC sample is subjected to a 

magnetic field 0.0418 T. The sample was placed in the magnetic field for a certain amount 

of time before removing the magnetic field. After capturing a photo of the sample and 

resetting the MMC, the experiment was repeated with increasing duration. In Figure 58(c), 

pictures of the samples are shown. As the duration of the magnetic field increases, the 

filling factor and transmission of the sample decreases from 15% to 88%. Thus, different 

transmissions can be obtained using the same sample simply by changing the duration 

of the magnetic field. As implied in (3.42), the speed of the tuning is dependent on the 

magnetic field strength.   

In Figure 58(d), the response time of the sample, defined as the time required to 

achieve transparency of the MMC, is plotted against the magnetic field. As expected, the 

response time falls sharply as the magnetic field strength increases. Also, the same 
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magnetic field has a faster response time for the 5mm cuvette compared to the 10-mm 

cuvette. Thus, the transmission of the MMC can be tuned using the application time and 

magnetic field strength of the EM actuator along with optical pathlength as tunable 

parameters.  

The magnet and stirrer in the actuator allowed us to repeatedly decrease and reset 

the filling factor. Thus, the tuning of the transmission can be done repeatedly. To 

investigate the reproducibility of the tuning process upon repetition, we investigated two 

successive cycles of tuning using the same magnetic field strength. The results are 

summarized in Figure 58(e). The transmission changes almost identically with duration 

for both cases, indicating the high reproducibility of the tunability.  

Magnetic microsphere colloids, along with a compact catch and release system, 

has the potential to be a fast, stable, and inexpensive tunable optical window or switch. 

Several miniature catch and release systems have been reported, including current 

carrying conductors, differential magnetic fields, and permanent magnets. 

3. LOSSY NANORODS AS ABSORBER 

To observe the performance of the EMA with lossy materials, we studied the 

absorption in lossy mesoporous alumina with cylindrical air inclusions on an aluminum 

substrate [100] as shown in Figure 59. We calculated the absorption of the multilayered 

structure using all the EMAs mentioned in this work, as seen in Figure 59. In this case, 

the matrix material was lossy alumina, and the inclusion material was air. In this case, 

however, the inclusions were cylindrical in shape. 

Although we have assumed that air inclusions are spherical in shape as opposed 

to cylindrical, it can be observed that the Mie and Rayleigh models produce very good 
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matches to the experimental results. It implies the suitability of the proposed models even 

when the constituents are not spherical in shape. To understand the cause of this, we 

calculated the scattering cross section (SCS) of spherical and cylindrical shaped 

inclusions with equal volume. The results are plotted in the inset of Figure 59. We see 

that the polarizabilities of the cylindrical inclusion and spherical inclusion are good 

approximations of each other.  

 

Figure 59 The absorption by mesoporous alumina on aluminum substrate is calculated 
using EMA and compared to experimental result [100]. The SCS of cylindrical and 
spherical inclusions with equal volume are compared in the inset. 
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Figure 60 The effective complex refractive index of gold nanoparticles suspended in PVK. 
 

Another case we investigated is when the inclusion material is plasmonic, e.g., 

gold. The effective parameters of gold nanoparticle colloid in PVK (Polyvinyl Carbazole) 

polymer has been estimated using ellipsometry [146]. The EMA predictions are compared 

with experimental results in Figure 60. The nanoparticle radius was 5 nm, and the filling 

factor was ~5%. We compare the experimental data with those calculated using EMA. 

The Mie and Rayleigh models show some clear deviance from experimental result in this 

case. It is caused by the interparticle interaction. When the net polarizability is used in the 

Mie EMA, improved predictions are found. The black dash-dotted line in Figure 60 
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represents the result when the net polarizability is used. When interparticle interaction is 

modelled, the Mie model produces a much closer fit. Evidently, the Mie model is not only 

the most accurate among the models, but also the most complex as well. The Rayleigh 

approximation produces a sufficiently close approximation to the Mie model in a much 

simpler way. The linear models aren’t shown in this case because they completely fail. 

E. Summary 

 In conclusion, we have derived an effective medium approximation that accounts 

for the Mie and Rayleigh scattering within the frameworks of Maxwell-Garnett’s mixing 

rule with a simpler and analytical expression. We have compared the results derived from 

this expression with experimental results and found better agreement compared to other 

EMAs reported in the literature. We found that most models can accurately model media 

with small inclusion, but for media with a larger inclusion size and a higher filling factor, 

the derived formula produces the best match. The derived formulae are shown to be more 

accurate than other EMA formula for lossy and plasmonic material. Their accuracy for the 

cases when the inclusions are cylindrical in shape were also tested. Inter-particle 

interaction, which is absent from most EMAs, has been accounted for in our model using 

multipole net polarizability, which improves the accuracy of the formulae in predicting the 

optical properties of aperiodic optical nanostructure.  

 To demonstrate the flexibility of size in the derived framework, a magnetic 

colloid is modelled which contained particle that are comparable to wavelength in size. It 

was found that the transmission through the colloid can be successfully predicted, and 

the magnetic tunability can be calculated using the derived formulae. 
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IV. FLAT OPTICAL ELEMENTS COMPOSED OF APERIODIC NANOSTRUCTURE 

 
In previous chapters, analytical techniques to analyze optical nanostructures were 

studied and developed. A more accurate and versatile analytical framework for studying 

aperiodic optical nanostructure was established. Various devices were demonstrated 

analytically and experimentally using these methods. In this chapter, we further develop 

the analytical framework. Here, we develop a method to analytically calculate the far-field 

created by an aperiodic optical nanostructure. Our focus is on the design and analysis of 

flat optical elements composed of subwavelength aperiodic optical nanostructures. Flat 

optical elements are highly desirable because they are compatible with planar integrated 

circuit technology. Unlike traditional optics, where the shape of bulky spheroids must be 

carefully designed to obtain high-performance optical elements, flat optics promise flat, 

ultra-thin optical components with subwavelength phase control, single step lithography 

and superior aberration control [147]. Here, we demonstrate how the developed analytical 

framework can be harnessed to design and analyze flat optical elements using 

subwavelength nanostructures. Then, we compare the analytical method with numerical 

methods and compare their efficiency. Using the analytical method, we point out the role 

of low refractive index material in designing low-loss, flat subwavelength optical elements.  

In this chapter, we investigated the performance of flat optical lenses designed 

using typical optical glass, utilizing the analytical Fresnel or Rayleigh-Sommerfeld (RS) 

diffraction theory in combination with analytical effective medium approximation (EMA), 

along with the full wave three-dimensional finite difference time domain method (3D-

FDTD). First, the relationship between geometric parameters of inclusions and the 

produced phase is investigated. The condition on the size and shape of the inclusions to 
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achieve complete 2π phase coverage is determined. Then, the spatial phase profile for 

focusing a plane wave is designed using inclusions of different shape. Analytical and 

numerical analyses of the performance of the optical lenses were carried out and the 

results were compared. The analytical method, despite requiring significantly lower 

computational resources, accurately matched FDTD and experimental results. The 

memory efficiency of the analytical method allowed for the analysis of large scale thin 

optical lenses with subwavelength structures. Although the design methodology 

presented here is independent of the wavelength, we report specifically on visible 

wavelengths and perform our calculations at λ=600 nm. The results indicate that robust, 

polarization insensitive subwavelength optical lenses can be designed using low index 

materials like glass using highly efficient analytical methods. 

A. Methodology 

1. PHASE CALCULATION 

All-dielectric nanostructured optical lenses can be designed by implementing 

spatial phase profiles using inclusions that produce a specific phase [88, 96, 148, 149]. 

Thus, the first step in designing such optical lenses is to relate the inclusions with a 

specific imparted phase. The origin of the  produced phase can be overlapping 

resonances in dielectric resonators [149-151], geometric phase [85], and propagation 

phase [152, 153]. One advantage of using a low refractive index material is that the phase 

relation can be easily calculated using EMA since only the propagation phase is relevant 

in this case. In this section, we study low index inclusions of various shape using EMA 

[77, 154-156] and compare the results with FDTD calculations.  
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In Figure 61(a), the different shaped inclusions are shown. The shapes include 

rectangular fins of fixed height, cubes with varying side length, cylinders with varying 

radius and height, planar cylinder with fixed height and varying radius, and spheres with 

varying radius. The inclusions are assumed to be low index material on a low index 

substrate. We assume the inclusions are arranged periodically with a period of (a) 400nm. 

The height of the inclusions is specified by H, while R specifies the size. R represents the 

radius for the sphere shaped and cylinder-shaped inclusions. For the cube and fin shaped 

inclusion, both lateral widths can be given as 2R. The relationship between the height 

and size is shown in Figure 61(a). In this calculation, we assume the operating wavelength 

to be 600 nm. 

The 3D-FDTD calculations are carried out using commercially available FDTD and 

post-processing tools. Bloch boundary conditions have been used in-plane, whereas a 

perfectly matched layer (PML) boundary is used along the propagation direction. A 

convergence test was carried out to find an appropriate mesh density. A plane wave of 

600nm wavelength impinges on the inclusions with normal incidence, and the transmitted 

fields are calculated. From the source and the transmitted fields, the complex 

transmission from the inclusions is calculated. The phase of the transmission is also 

calculated using EMA. From Figure 52, the simplest approximation is enough when the 

refractive index is low (<2.0). While many different EMA formulas are available, we 

choose the volume averaging [77] formula. Here, the only phase considered is the 

propagation phase, given as: 

ϕ�	�� = 2πnÜÝÝL� .4.1/ 
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Where #�  =  ê#²;§§ + 1 − §§ is the volume averaged effective index of the arrayed 

inclusions of different shape, ns is the inclusion refractive index and FF is the volume 

filling factor of the medium. As the size (R) changes, the FF changes, leading to change 

in neff. The change in neff, along with the change in H, causes the change in ϕ�	��.  

 

 

Figure 61 (a) the low index inclusions with different shapes on glass substrate. The 
phase(b) and transmission (c) of the transmission through the arrayed inclusions. The 
markers represent FDTD calculations while the solid lines represent EMA predictions.  
 

In Figure 61(b), the 2π normalized phase angle of transmission (∠�/2�) through 

the arrayed inclusions of different shapes are shown as the size (R) increases from 20 to 

200 nm. The FDTD calculations, represented by the markers, is closely matched by the 

EMA predictions (ϕ�	��), represented by solid lines. Thus, we can conclude that the 

propagation phase is the dominant source of the phase in this case, and the shape of the 

inclusion is not important. This argument is bolstered further by Figure 61(c), where the 

magnitude of transmission for different shapes also shows agreement between EMA and 
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FDTD results. Thus, EMA calculations can be used to draw relationship between 

produced phase and the size of inclusions, which significantly simplifies the design 

process. Additionally, using EMA allows us to analytically derive the conditions for 

achieving 2 π phase coverage: 

2� =  ¬��c.�, L/ − ¬���.�, L/ .4.2/ 

where φmax is the maximum phase, φmin is the minimum phase. From (4.1), the maximum 

phase is imparted when the product #�  L is maximum, and the phase is minimum when 

#�  L is minimum. Thus, the condition in (4.2) can be simplified as: 

#�  45o.�, L/L��c −  #�  478.�, L/L��� = � .4.3/ 

Here, Hmax is the maximum height, #�  45o  is the maximum effective index, L���in the 

minimum height, and #�  478 is the minimum effective index. The relations in (4.3) can be 

used as a guideline to determine the required R and H to achieve 2π phase coverage. 

For example, let us consider the inclusions shown in Figure 61(a). For the spheres, cubes, 

and cylinders, the span of the parameter R can be calculated from (4.3) by substituting H 

= 2R, while for the planar cylinders and fins, Hmax = Hmin = H. The relationship between 

Rmax and Rmin for the sphere, cube and cylinder-shaped inclusion is shown in Figure 62(a). 

The cubic shape requires the smallest span of R while the sphere shape requires the 

highest. This agrees with the fact that cubes can be packed much more closely and 

medium with cubic inclusions can have a higher effective index compared to cylindrical 

and spherical inclusions. For the planar cylinder and fin shaped inclusion, a minimum H 

required to obtain the 2π phase coverage[152], given as H = λ/.n� − 1/ , which is 750 

nm in this case. The relationship between H and the span of R is plotted in Figure 62(b) 
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and (c) for planar cylinder and fin shaped inclusions, respectively. The required span of 

R decreases with increasing H. 

 

 

Figure 62(a) The relationship between Rmin and Rmax for the sphere, cube, and cylinder-
shaped inclusion. (b) The relation between the span of R and H for planar cylinder and 
(c) fin shaped inclusion. 
 

Using the relations shown in Figure 62, it is possible to determine the necessary 

design parameters for optical lenses. While the calculations are carried out using ns = 1.8, 

the methodology employed remains valid when the propagation phase is the dominant 

phase.  
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2. DESIGN OF OPTICAL COMPONENTS 

 

Figure 63 The process of calculating the physical structure of the optical element from the 
required phase profile 
 

In this section, we design a focusing optical lens by implementing a spatial phase 

profile, Φ.x, y/ using appropriate distribution of the inclusions to obtain the focusing effect. 

The spatial phase profile for focusing can be described as: 

Φ.C, \/ = 2�� XêC; + \; + +; − +Y , .4.4/ 

where f is the focal length, λ is the operational wavelength and (x, y) are the in-plane 

spatial coordinates. A sample phase profile is shown in Figure 63(a). To implement the 

spatial phase profile, it is first discretized into grids that adhere to the Nyquist criterion 

[89]: 

� � �2Çë = λ2 sin �I�#30 �N2+�� .4.5/ 

where a is the periodicity of the grid, Çë is the numerical aperture, D is the diameter of 

the lens, and f is the focal length. In our design, the wavelength is set at 600nm and the 

periodicity is set at 400nm. Thus, the maximum NA in our system that doesn’t violate the 
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Nyquist requirement is 0.75. The diameter is selected based on available computational 

resources. In this section, we select D =51a, resulting in a lens which is 20.4 μm in 

diameter. The focal length is selected based on the NA. In this calculation, we choose NA 

= 0.4. In selecting the periodicity (a), care must be taken such that R()� = �;  is enough to 

obtain 2π phase coverage. The specific lattice of the grid is not significant. Once the 

periodicity (a) and diameter (D) are selected, the lens surface can be divided into a 

discretized grid, consisting of 
�� × ��   grid points. From this grid, the discretized phase 

profile at each grid point can be calculated using (4.4). 

Once the discretized phase profile is calculated, the required parameters of the 

inclusions can be calculated for each grid-point by using the data in Figure 61(b) as a 

look up table. For example, if the optical element consists of cubic inclusions, then the 

required R can be looked up using Figure 61(b) as a look-up table for each grid-point. At 

the end, the distribution R (x, y) required to implement the spatial phase profile Φ.x, y/ 

can be obtained. This process is schematically represented in Figure 63. 

 

3. FAR-FIELD CALCULATION 
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(a) (b) 

Figure 64 (a) Using FDTD to calculate the far-field, (b) using analytical scalar diffraction 
equations to calculate the far-field. 
 

Once the discretized phase profile is calculated, the focal length can be calculated 

in two different ways, as shown in Figure 64. In FDTD calculations, shown in Figure 64(a), 

the lens is designed by putting appropriate inclusions corresponding to the required phase 

at each of the grid-points. Symmetric and anti-symmetric boundary was used along the x 

and y axes, respectively. The boundary along the propagation axis (z) was PML. By 

illuminating the designed lens by a 600 nm wavelength plane wave, the near fields at the 

edge of the optical lens can be extracted. By converting the near-fields into a far-field 

along the focal axis, the focal length can be calculated.  

As shown in Figure 64(b), we also utilize an analytical diffraction equation [157] 

with EMA to calculate the focal length. In this method, the effective refractive index at 

each grid point is calculated using the relation: 

#�  .C, \/ =  �.C, \/ × �2�L.C, \/ . .4.6/ 
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Here, nÜÝÝ.C, \/  is the volume averaged effective index and H is the height of the 

nanostructure at the specific grid point. The averaging window was set equal to the period 

(a). Using the obtained neff, the magnitude of the transmission can be analytically 

calculated using a well-known formula for layered media, and the phase of the 

transmission can be calculated using (4.1). From the calculated complex transmission of 

the optical lens, the intensity along the focal axis can be calculated using the analytical 

diffraction equation. There are several analytical solutions to the diffraction problem that 

can be used, depending on the numerical aperture of the lens. For example, if the 

numerical aperture is large, the Rayleigh-Sommerfeld (RS) equation needs to be used. 

When the numerical aperture is small, we can use the Fresnel diffraction equation. Using 

the RS equation, the far-field at a distance z can be calculated as: 

� �s ��ù©.C, \/ = §30 "§x����s.C, \/} × § " ]�� ïexpx�rê]; + C; + \;}]; + C; + \; ô% % .4.7/ 

Similarly, the far-field at a distance z can be calculated using the Fresnel equation as: 

� �s ��ù©.C, \/ = §30 ,§x����s.C, \/} × § ï�ghf��] �r2] .C; + \;/ô - .4.8/ 

Here,   

Ufar-

field 

 is Far-field distribution  

Unear  is Near-field distribution  

F is  Fourier Transform  

F-1 is Inverse Fourier Transform  
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x, y, z is Distance in the far-field from the center of 

the lens. 

 

 

 

Figure 65 (a) Schematic of the comparison study. (b) The intensity of fields along the focal 
axis (z) calculated using FDTD and analytical method.  The ratio of designed focal length 
and that calculated using FDTD and analytical method for (c) different shaped inclusions 
and (d) different numerical aperture. 
 

It is critical to verify that the optical lens has an accurate focal length. In this section 

we compare the focal length calculation using FDTD and the analytical diffraction formula, 

as shown in Figure 65(a). The Fresnel diffraction equation (4.8) is used when the 

numerical aperture (NA) is smaller than 0.1, and the RS equation (4.7) is used in other 

cases. For this calculation, we assume the direction of propagation is along the z axis 

while the lens is along the x-y plane. 
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In Figure 65(b), the intensity of fields along the focal axis, calculated using FDTD 

and analytical method, is plotted. Both FDTD and RS calculation predict focusing at the 

same focal length and show similar intensity profile. We performed this study for the 

inclusion shapes shown in Figure 61(a) and summarized the result in Figure 65(c). At NA 

= 0.4, the accuracy of FDTD and analytical method in predicting the design focal length 

is independent of inclusion shape and remains comparable to each other. However, as 

NA changes, the accuracy of predicting the design focal length worsens for both methods, 

as shown in Figure 65(d). At a very small NA, the far field projection done in the FDTD 

calculation degrades in accuracy, and the predicted focal length is smaller than the actual 

design focal length. The analytical method also shows a similar degradation of the 

accuracy. On the other hand, for a higher NA, both FDTD and the RS method predict the 

focal length with high accuracy. Thus, EMA along with the analytical diffraction equation 

can characterize nanostructured optical lenses as accurately as FDTD methods using 

significantly lower computational resources.  

A summary of the methodology steps is shown in Figure 66. 

A. Comparison with FDTD 

To compare the focusing properties of the lens calculated using FDTD and the 

analytical method, we analyze two optical lenses using both methods. With no loss of 

generality, we consider lenses consisting of spherical and cylindrical inclusions.  

Figure 67 (a) shows the partial schematic of the first optical lens, with NA = 0.4 and a 

design focal length of 23 m. It consists of spherical inclusions (ns = 1.8) arranged in a 

hexagonal lattice with periodicity 400 nm on a glass substrate (nsub = 1.4). The radius of 

the spheres varies between 20 nm to 200nm. The device is illuminated from below by a 
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monochromatic plane wave with λ = 600nm.The intensity of the electromagnetic fields at 

the focal plane can be seen in Figure 67(b). Clearly, the plane wave is focused on to a  

 

Figure 66 A summary of the methodology. 

single spot. The intensity of the electric field along the (y = 0) and (x = 0) line in the focal 

plane has been calculated using FDTD and the analytical method, and the results are 

summarized Figure 67(c) and (d), respectively. The analytical predictions are in close 

agreement with the FDTD results. Both methods predict Airy profiles with multipole lobes. 

The main lobe is approximated by a Gaussian curve to determine the spot size. The FDTD 

calculation predicts a spot size of 0.31 m while the analytical method predicts spot size 

of 0.34 m, both of which compare well with the diffraction limit (0.2 m) in this case. 
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Figure 67(e) shows the intensity along the focal axis, which shows that both methods 

predict the focal length accurately. We calculated the focusing efficiency by comparing 

the power in an area with a radius of 2*spot size with the total power in the focal plane. 

In this case, the focusing efficiency is 20%. 

  

 

Figure 67(a) Schematic of spherical inclusions on glass substrate. (b) The intensity profile 
at the focal plane where z = f. The intensity profiles in the focal plane calculated using 
FDTD and analytical method along the (c) x, (d) y, and (e) z axis. The stars (*) represent 
the Gaussian fit for the FDTD results and the triangle (Δ) represent the Gaussian fit for 
the analytical method results. 
 

A similar analysis is carried out for a second optical lens, consisting of a cylindrical 

inclusion (ns = 1.4) with a fixed height (H = 2000 nm) arranged in a rectangular lattice with 

periodicity 400 nm on a glass substrate (nsub = 1.4). Figure 68(a) shows a partial 

schematic of the optical lens.  Like the previous case, the lens has NA = 0.4, and the 

design focal length is 23 m. In Figure 68(b), the incident light is focused on a spot in the 
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focal plane. The spot size at the focal plane is calculated using FDTD and the analytical 

method, and the results are 0.29 m and 0.21 m, respectively. The focusing efficiency 

is found to be 18.5% in this case. Based on the above analyses, the analytical method is 

capable of closely matching the FDTD prediction. 

 

Figure 68(a) Schematic of the cylindrical inclusions on glass substrate. (b) The intensity 
profile at the focal plane where z = f. The intensity profiles in the focal plane calculated 
using FDTD and analytical method along the (c) x, (d) y, and (e) z axis. The stars (*) 
represent the Gaussian fit for the FDTD results and the triangle (Δ) represent the 
Gaussian fit for the analytical method results. 
 

In Table 14, the focusing performance of this optical lens is compared with other 

reported devices operating in visible wavelengths. The performance of the designed lens 

compares well with the reported devices operating in the visible wavelengths. The 

calculated spot size is comparable to those reported using high index material. The 

efficiency also agrees well with the reported values using comparable materials. The low 
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efficiency can be attributed to the inability of low index inclusion to diffract light into higher 

orders efficiently[158]. Notably, such performance has been achieved with a 

subwavelength thickness. 

Table 14 Comparison of the performance of the designed flat lens.  

INDEX (N) THICKNES
S (NM) 

NA EFFICIENC
Y 

SPOT SIZE REFEREN
CE 

2.17 245 0.15-0.2  2.8 m [95] 
2.0 633 0.75 10% 0.95 m [84] 
2.0 633 0.06 47% 15 m [84] 
1.52 <1200 0.5  1.55 m [96] 
2.6 <600 0.6 70% 0.46 m [89] 
1.56  0.17 15-20%  [159] 
1.8 <400 0.4 20 % 0.3 m 

This work 
1.4 2000 0.4 18.5% 0.29 

 

B. Comparison with the Experiment 

In this previous section, it was established that a combination of EMA and the 

diffraction equation can predict the focusing properties of a subwavelength 

nanostructured optical lens. In this section, we compare the analytical predictions with 

experimental work from the literature. 

First, a high refractive index transmit-array based lens[160] is considered. It is 

composed of high index (ns = 3.43) cylindrical inclusions with a fixed height (H = 900 nm), 

arranged in a rectangular lattice with periodicity 800 nm. The structure is like Figure 68(a). 

The radius of the inclusions varies between 100 nm to 300 nm. The operating wavelength 

was 1550 nm. The intensity of electric field along the focal axis of the lens is calculated 

using analytical method and the results are summarized in Figure 69(a). The dotted line 

represents experimentally measured focal length. Clearly, the analytical method can 

predict the focal length accurately.  
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Figure 69(a) The intensity along the focal plane of the high refractive index lens. The 
dotted line represents the design focal length. (b) The experimental intensity along the x 
axis, approximation using analytical method and its Gaussian fit. 
 

In Figure 69(b), the experimentally measured intensity profile along the x axis, 

taken from [160] is compared with analytical results and its Gaussian fit. The analytical 

calculation closely matches the intensity profile. Thus, the analytical method can 

accurately predict focusing performance even when the inclusions have a high refractive 

index. 

A similar comparison is carried out for a low refractive index lens (ns = 2.0) 

composed of cylindrical inclusions with fixed height (H = 633), arranged in a rectangular 

lattice with periodicity 443 nm [84]. The radius of the inclusions was between 20 to 220 

nm while the operating wavelength was 633 nm. The structure of the lens is like that in 

Figure 68(a). 
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Figure 70(a) The intensity along the focal plane of the low refractive index lens. The dotted 
line represents the design focal length. (b) The experimental intensity along the x axis, 
approximation using analytical method and its Gaussian fit. 
 

In Figure 70(a), the intensity along the focal axis, calculated using analytical 

method, is plotted. The dotted line represents experimentally measured focal length. 

Clearly, this method predicts the design focal length accurately. In Figure 70(b), the 

experimentally measured intensity along the x axis is plotted along with analytical 

calculation and its Gaussian fit. In this case, the experimental intensity profile is wider 

than the EMA prediction. The EMA calculation predicts the ideal Airy spot of the designed 

lens where the phase profile is perfectly implemented and the focusing is only diffraction 

limited. Experimental measurement has other limitations related to imaging and 

measurement, resulting in a wider spot. 

Thus, the analytical approach, based on diffraction equation and EMA, is a suitable 

tool for studying optical lenses, even when the inclusions have a high refractive index. 
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C. Large Area Focusing Lens 

1. FOCUSING 

In the FDTD analysis presented previously, the size of the analyzed lens was 

limited by high memory requirement of the FDTD method. For a practical lens with a 

millimeter range size, the optical lens would require more than 16 million individual 

inclusions. The FDTD analysis of such a structure may require terabytes of memory, 

which is prohibitively large. Algorithms have been developed to reduce the memory 

required to manufacture such lenses[161]. The numerical analysis of such large lenses 

is a necessary step before fabrication. Clearly mesh-based methods like FDTD or FEM 

would require a prohibitive amount of memory when simulating millions of individual 

inclusions. Alternatively, the analytical calculations can be employed to design and 

analyze nanostructured optical lens with a significantly lower computational cost. In this 

method, each inclusion is represented by a single number (neff (x, y)), which drastically 

reduces the memory required to analyze large scale lenses. As a demonstration, we 

designed and analyzed a large-scale optical lens using the described approach. 

In Figure 71(a), the radius distribution required to design a large-scale optical lens 

is shown. The phase profile in (4.4) was implemented over an area 1.64 mm x 1.64 mm 

using spherical inclusions using the relation in Figure 61(b). Using the analytical approach, 

the optical lens is replaced by an equivalent effective index distribution from which the 

electric field intensity along the focal axis can be calculated using the RS equation. In 

Figure 71(b), the intensity is plotted along the focal axis. The peak of the intensity 

coincides with the design focal length, marked by the vertical dotted line. 
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We have analyzed the large-scale optical lens for a range of numerical aperture and 

compared the obtained focal length with the designed focal length in Figure 71(c). Clearly, 

focal length of large-scale optical lens designed using this approach shows high fidelity 

to design focal length. The spot size, shown in Figure 71(c), decreases as the numerical 

aperture increases, implying a tighter focus at smaller focal length. The spot size 

compares well with that of a diffraction limited perfect lens, calculated using the Airy 

function [84]. In Figure 71(d), the accuracy of focal length prediction is plotted for the 

increasing wavelength. Here, a linear dispersion can be clearly seen. Across the visible 

spectrum, the dispersion is 26%.  
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Figure 71(a) Radius distribution for a large-scale optical lens, (b) Intensity along the focal 
(z) axis, (c) ratio of obtained focal lengths and design focal length against increasing NA 
is shown in the right axis. In the left axis, the variation of the spot size is shown. The 
dotted line represents the diffraction limit of the spot size at increasing NA, (d) the change 
in obtained focal length compared to design focal length for increasing wavelength is 
shown. 
 

2. PERFORMANCE ANALYSIS 

In this section, we performed an FDTD analysis of the focusing efficiency, spot 

size and focal length of the optical lens by varying the design parameters such as the NA, 

operating wavelength, and polarization angle of the incident plane wave. For this analysis, 

with no loss of generality, we chose to study the optical lens composed of the spherical 

inclusions in rectangular and hexagonal lattices. The diameter of the lens studied here is 

limited to 20.4 m. The results are summarized in Figure 72.  In Figure 72(a), the spot 

size sharply decreases with numerical aperture. Both rectangular and hexagonal lattice 

lenses, marked by (R) and (H) in the plots, show similar performance with increasing 

numerical aperture. The dotted line marks the spot size of a diffraction limited perfect lens. 

Clearly, the designed optical lens can have a spot size very close to that of a diffraction 

limited perfect lens. The focusing efficiency (measured at the calculated focal plane) can 

reach almost 100% when NA < 0.1, and at higher numerical apertures, the efficiency 

gradually falls towards 20%. Low focusing efficiency at high NA is a well-known problem, 

arising from the inability of low index inclusions to diffract light in higher orders [162]. 

Based on Table 14, the efficiency and spot size of the designed optical lens at high NA 

are comparable to other reported values using similar materials, while at low NA, the 

designed metalens shows higher efficiency. The transmission of the optical lens remains 

above 82% in all cases. The high transmission is a consequence of the transparency of 

the constituent materials, and it makes the designed metalens suitable for cascading. 
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Although the dispersion of the glass materials is negligible, the implemented phase 

profile does not conform to (4) at other wavelengths, and chromatic aberration can be 

predicted. From Figure 72(b), the optical lens has a decreasing focal length with 

increasing wavelength, which agrees with previous reports [88]. While the design focal 

length is 18 m, represented by the dotted line, the focal length changes from 28 m to 

9m as the wavelength changes from 400 nm to 800 nm. Such a dispersion can be 

useful when separating visible wavelengths in a micron size chip. 

 

Figure 72(a) the change in spot size and the focusing efficiency of rectangular (R) and 
hexagonal (H) lattice metalens with increasing numerical aperture. (b) the dispersion of 
the focal length with increasing wavelength (NA = 0.5). The dotted line shows the design 
focal length (c) The change in spot size and efficiency of the lens (NA = 0.5) with the 
angle of polarization of the incident wave. (d) the dispersion of focal length with increasing 
polarization angle. The dotted line shows the design focal length. 
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Since the optical lenses are designed using four-fold symmetric inclusions, they 

should be insensitive to the angle of polarization of the incident plane wave. To test this, 

we calculate the performance parameters while changing the polarization angle of the 

incident wave. The angle of polarization is the angle of the E field with the x axis. In Figure 

72(c), the spot sizes of the rectangular and hexagonal lattice optical lens are plotted, 

which remains unchanged with respect to polarization. Similarly, the efficiency remains 

insensitive to the polarization angle, as shown in Figure 72(c). Crucially, the focal length 

the lenses are also insensitive to polarization angle, as shown in Figure 72(d). The focal 

lengths for both lattices remain unchanged with the polarization angle, and remain close 

to the design focal length, represented by the dotted line. Thus, the optical lens is 

polarization insensitive, which makes it well-suited for imaging using unpolarized light, 

e.g., sunlight. 

In addition to the numerical aperture, the f number, defined as the ratio of the focal 

length to the diameter of the lens, is also an important parameter. To study the 

performance of the designed metalens when the focal length is much larger than the 

diameter, we calculated the spot size and focusing efficiency of both the rectangular and 

hexagonal lattice lenses for the increasing f number. The results are summarized in 

Figure 73. 
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Figure 73 The spot size and focusing efficiency of (a) rectangular lattice and (b) hexagonal 
lattice metalens with respect to the f number. The dotted lines represent the diffraction 
limit of the spot size. 
 

The spot size of both lattices rises steadily with the f number, but it remains close 

to the diffraction limit, represented by the dotted lines. While the spot size can be very 

close to the diffraction limit for high NA, it is much larger at a high f number (very low NA). 

For the rectangular lattice, the focusing efficiency rises above 50% at f number ≈7. 

However, for the hexagonal lattice, the efficiency rises above 50% when the f number ≈ 

5. The focusing efficiency remains >80% when the f number >7. Although the 

performance of the hexagonal lattice and rectangular lattice remain similar when NA ϵ 

[0.2,0.8], the hexagonal lattice outperforms the rectangular lattice when the f number >5. 

At a high f number, diffraction into higher orders is not required, leading to high focusing 

efficiency. The slight enhancement of focusing efficiency for a hexagonal lattice can be 

attributed to its higher packing factor. For the same NA or f number, the hexagonal lattice 

can accommodate a larger number of inclusions, which enhances the focusing 

performance. 
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3. IMPACT OF IMPERFECTION 

We have simulated the optical lens assuming perfect fabrication and no optical 

errors. While optical systems with close to perfect performance can be available, a 

fabrication error is harder to avoid. In our design, there are two parameters that are 

vulnerable to imperfection, viz., the position and the radius of the inclusions. To 

understand the impact of imperfection, we have studied the performances of the optical 

lens using FDTD when a degree of uncertainty is added to these parameters. The results 

are summarized in Figure 74. 

To understand the impact of an imperfect arrangement of the inclusions, an 

uncertainty with standard deviation σ1 is added to the position vertices of the spheres. 

The efficiency and spot size are calculated when σ1 increases up to 15% of the lattice 

constant a. From Figure 74(a), the focusing efficiency decreases by up to three 

percentage points when the position imperfection increases. In this case, the spot size 

changes very little. Thus, the imperfection in the position decreases the focusing 

efficiency, but the spot size  remains relatively unchanged. A similar calculation is 

performed by adding an uncertainty with standard deviation σ2 to the radii of the spheres. 

The performance of the optical lens is calculated when σ2 increases up to 15% of the 

maximum radius. From Figure 74(b), the focusing efficiency shows change with a range 

of 5% when the radius imperfection increases. Like the previous case, the spot size shows 

very little change.    

In Figure 74(c), the intensity of the transmitted light along the focal axis (z axis) is 

plotted when both the position and radius uncertainty are added. As the standard 

deviation of imperfection rises from 0 to 0.28a, the peak intensity along the focal axis falls, 
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but the focal distance remains the same. In all cases shown in Figure 74(c), the focal 

distance remains equal to the design focal length, marked by the dotted line. Similarly, 

with increasing imperfection, the peak intensity in the focal spot decreases, as shown in 

Figure 74(d). However, the spot size shows little change with increasing imperfection. 

 

Figure 74 The change in the spot size and focusing efficiency of the hexagonal lattice 
metalens when (a) the position imperfection and (b) radius imperfection increases. (c) 
The intensity along the focal axis, (d) the intensity along the x axis in the focal plane. 
 

The above analysis clearly shows that the focal length and spot size of the optical 

lens show remarkable robustness to uncertainty in the constituent parameters. The 

metalens can focus light into a spot in the focal plane with as much as 0.28a uncertainty. 

This allows for flexibility in fabrication with minimal loss of performance. 

4. CHROMATIC ABERRATION 

In the previous sections, it has been seen that the focal length of the optical 

element is highly wavelength dependent. In this section we will study this chromatic 

aberration and determine the factors that control it. It is noteworthy that the material used 
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in this analysis has been highly nondispersive. As such, material dispersion plays a 

negligible role in the chromatic aberration. 

Let us start by considering a general ideal thin planoconvex lens, the Radius of 

curvature of which is 100mm, with non-dispersive glass as the material (n = 1.5). Thus, 

from the lens makers equation: 1§ = .1.5 − 1/ �1�� => § = 2�. .4.9/ 

Where F is the focal length of the lens and the radius is R. Let us consider such a lens 

with diameter 4.8 mm. The focal length would also be 4.8 mm. The operation of this lens 

is nondispersive since the material is non-dispersive. 

We can investigate whether the flatness of the optical element causes the 

chromatic aberration by converting the nondispersive planoconvex lens into a flat gradient 

index (GRIN) lens. The GRIN lens is calculated by imagining the curved lens with a flat 

box and then calculating the effective index. The effective index would be highest in the 

middle part and reduced at the two ends. The thickness of the GRIN lens is the same as 

the ideal thin lens, which is 60 m. The distribution of the effective index in one half of 

the lens is shown in Figure 75(a). The other half is mirror symmetric. Using this GRIN 

lens, light can be focused on one spot, as shown in Figure 75(b). Clearly, the GRIN lens 

is equivalent to the planoconvex focusing lens. 
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(a) (b) 

Figure 75(a) the index distribution of the equivalent GRIN lens, (b) The focusing by the 
equivalent GRIN lens. 
 

The calculated focal length is plotted against operating wavelength in Figure 76. 

The focal length remains relatively unchanged. It changed 5 mm (2.5%) over a range of 

400nm. Clearly, the flat GRIN lens is nondispersive, if the index of the refraction is 

nondispersive. 

 

Figure 76 The focal length (F) of the flat GRIN lens with respect to operating wavelength. 

In case of the flat GRIN lens, the design is independent of the wavelength, with a 

thickness that is comparable to the ideal planoconvex lens. Let us now consider a GRIN 
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lens with a much smaller thickness of 1 m. The effective index in this case can be 

calculated from eq. (4.1) by setting H = 1 m, and λ = 600 nm, and ϕ�	�� =
	õp.;�n êC; + +;, 2�/  as the parabolic chirped phase. The neff shows a rapid switch 

between high and low values, as shown in Figure 77(a).  

 

(a) (b) 

Figure 77 (a) Index distribution for a 1 m thin flat GRIN lens, (b) The wavelength 
dependence of focal length. 
 

Unlike the previous GRIN lens, this 1 m thick lens is highly dispersive. Clearly, 

when the thickness is comparable to the wavelength, the resulting lenses are highly 

dispersive. Let us extend this concept to the designed metalenses. We arrange a group 

of cylindrical elements in a rectangular grid to achieve a specific phase φ at the face of 

the lens. The required phase to achieve the focusing effect is given by eq. (4). The radius 

of each cylinder can be calculated as: 

� = ��;x¬;�¯y; − 4�;L;}8��L;x#y; − 1}  .4.10/ 
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where np is the refractive index of the cylindrical element, R is the cylinder face radius, H 

is the thickness, and a is the period of the grid. We calculate the intensity along the focal 

axis for various wavelengths while increasing the H. 

 

(a) 

 

(b) 

 

(d) 

 

(c) 

Figure 78 The intensity along the focal axis for different wavelength at (a) H = T0, (b) H = 
5T0, (c) H = 10T0, and (d) H = 20 T0. 
 

From Figure 78, the focal spots for different wavelengths vary greatly when the 

thickness is small, but at greater thickness, the focal spots converge to one spot. Thus, 

the thickness of the lens can control the chromatic aberration. 
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Figure 79 The dispersion of optical element for different thickness as focal length; 

  In Figure 79, it is shown that the dispersion of nanostructured optical elements 

reduces linearly with thickness. Thus, the dispersion can be controlled by simply 

controlling the thickness. 

D. Summary 

We have designed a robust and polarization insensitive optical lens using low 

index inclusions arranged on a glass substrate and analyzed their performance 

numerically. It was shown that phase calculations can be accurately done using EMA. 

Subsequently, a combination of EMA and diffraction equation was used to analyze optical 

lens using different shapes of inclusions and with different numerical aperture. The 

analytical results agreed well with FDTD predictions and experimental results, 

establishing the accuracy of the analytical method. Using this approach, a large-scale 

optical lens was designed with high fidelity between designed and calculated focal length. 

The focusing efficiency and spot size of the optical lens were studied at different design 

parameters. The optical lens showed efficiency >85% at low NA, while maintaining 

efficiency ≈ 20% at NA ϵ [0.2,0.8]. The spot size was comparable to the diffraction limit 
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while the transmission remains above 82%, making it suitable for cascading. While the 

lens was sensitive to the wavelength of incident light, it was insensitive to its angle of 

polarization. The focal length and spot size showed remarkable robustness to 

imperfections in design, while the efficiency decreases. The chromatic aberration of the 

optical elements was analyzed, and it was shown that the chromatic dispersion can be 

controlled by the thickness of the optical element. The result indicates that design and 

analyses of optical lens with subwavelength inclusion can be done using an analytical 

method based on EMA and the diffraction formula. It is also shown that a transparent 

material like glass can be a suitable material for subwavelength optical lens. 
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V. CONCLUSION 

 
A. Summary  

In this work, optical nanostructures were studied in order to obtain useful optical 

properties in a controllable manner. We have paid close attention to design and analysis 

of different nanostructures using full-wave numerical methods and analytical methods. 

We have also demonstrated transparent optical nanostructures by using low-loss and 

transparent materials to obtain desired optical effects.  

As a first step, numerical analysis of optical nanostructures was reviewed. The 

FDTD and PWE methods were discussed and applied to model a variety of optical 

nanostructures. Specifically, periodic nanostructures with low index materials were 

analyzed. Based on the analysis, the minimum bandgap required to obtain optical 

bandgap were established as 1.5. Furthermore, refractive index sensors based on 

bandgap resonators were numerically demonstrated on low loss transparent materials. It 

was established that low loss transparent materials can be used for building effective 

sensors if there is an airbridge between the nanostructure and the substrate. A strategy 

for controlling the position of bandgap, as well as operating wavelength of the sensor, by 

changing the period and fill-factor of the periodic nanostructure was established. The 

numerical analysis established that low index materials can be suitable for optical 

nanostructures. However, numerical analyses were found to require significant time and 

computational resources to produce accurate results. Additionally, deriving the control 

strategy of the controllable nanostructure required performing many time-consuming 

analyses. 
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Next, we derived an analytical effective medium approximation that can model the 

transmission and reflection of optical nanostructure containing inclusions of any size and 

physical configuration. The derived EMA extended the existing Maxwell-Garnett 

approximation using Mie scattering theory. The framework was tested for a wide range of 

optical nanostructures. Their experimentally obtained transmission and reflection were 

compared with the analytical prediction. It was found that the derived framework produces 

more accurate prediction compared to the available analytical EMAs found in the literature. 

As demonstration of the usefulness of the derived EMAs, magnetic microsphere colloids 

were modelled. The colloids were aperiodic, containing core-shell inclusions that are 

comparable to or greater than the operating wavelength in size. The derived EMA showed 

much better accuracy in modelling the transmission of the colloids. Additionally, the 

magnetic response was modelled. The derived EMA was able to relate the physical 

properties of the different nanostructures with their transmission analytically. Thus, the 

controllable and tunable properties could be modelled analytically, which required much 

less time, compared to full-wave numerical analyses. For example, the dynamic tunability 

of the magnetic colloid could be analytically derived using the EMA. The filling -factor of 

the nanostructures required to obtain different transmissions and reflections could be 

analytically calculated with good accuracy without performing time consuming full-wave 

numerical analyses. 

Using the derived EMA, the transmission and reflection of controllable and tunable 

optical nanostructures can be modelled. Coupling this EMA with scalar diffraction theory, 

it is possible to analytically calculate the far-field patterns of any optical nanostructure. An 

analytical method coupling the EMA with the diffraction theory was designed and used 
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for analyzing flat, ultra-thin optical nanostructure that can mimic bulky optical elements. 

Flat lenses with controllable focal length and numerical aperture was designed and 

analyzed. The analytical method was compared with numerical and experimental results. 

It was found that the analytical method produced accurate prediction of the far-field 

properties of the optical elements, while being much faster and efficient compared to 

numerical methods. The chromatic aberration of subwavelength optical elements was 

studied, and it was found that the thickness of the elements directly correlates with 

aberration. That is, thinner elements have higher chromatic aberration, while thicker ones 

have lower chromatic aberration. Low refractive index materials were used in designing 

these optical elements, demonstrating the feasibility of designing controllable and tunable 

optical nanostructure using low loss materials.  

B. Limitations 

Although the research presented here remains quite general in its applications, 

there are some limitations. The fabrication of the designs presented here remains a 

challenge. We have designed optical nanostructures on a wide range of materials 

including glass and polymers. However, there are few available fabrication technologies 

that can fabricate complicated structures on glass and polymers. Furthermore, the 

effective medium framework presented here hasn’t been able to eliminate all the 

shortcomings of the available EMAs. For example, the formula is still asymmetric. That is, 

a symmetric switch between the matrix and inclusion material doesn’t produce the same 

result. As a result, the effective medium theory presented here remains applicable only 

below the percolation threshold. Therefore, tightly packed systems cannot be accurately 

modelled using this formula. In addition, effects of periodicity have not been accounted 
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for in this framework. The analytical framework has been able to predict the far-field 

behaviors of optical nanostructures using diffraction theory, which is reliant on Fourier 

transform. Thus, the accuracy of the results is highly dependent on accurate sampling of 

the nanostructure. 

C. Future Work 

In this work, controllable and tunable optical nanostructures on low loss material 

was studied. An efficient and fast analytical method was demonstrated for design and 

analysis of such nanostructures. As a next step, the fabrication of these devices will be 

addressed. Nanosphere lithography [77] and self-assembly [163] were used for 

fabricating low-loss optical nanostructures using polymers and oxides. These methods 

remain potential candidates for fabricating the controllable and tunable optical 

nanostructures. 

Additionally, the limitations of the proposed effective medium theory will be 

addressed in future studies. One possible solution to most of the limitations would be to 

approach the effective medium in a way similar to that in [103], with the added complexity 

of having to solve a nonlinear complex implicit equation. Such a solution should be able 

to predict the behavior of effective medium even when the filling factor is particularly high. 
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Optical nanostructures are heterogeneous media containing subwavelength 

inclusions. Their optical properties can be controlled and tuned using the constituent 

material properties and spatial arrangement of the inclusions. While optical 

nanostructures have been widely studied, controllable and tunable nanostructures using 

low loss transparent materials have not been studied in detail in the literature. The 

objective of this research is to perform efficient design and analyses of controllable and 

tunable optical nanostructure using low loss transparent materials.  

To that end, versatile and highly accurate full-wave numerical methods like finite 

different time domain and plane wave expansion methods are reviewed first. These 

methods are compared in terms of their speed, accuracy, and memory requirement. 

Different kinds of optical nanostructures, consisting of low index transparent materials, 

are analyzed to study their controllability. For example, single scatterers are optimized to 

obtain highly directional forward scattering using low index materials. Then, the minimum 

refractive index required for establishing optical bandgap in a planar photonic crystal was 
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established. Using optical bandgap on low index materials, highly sensitive transparent 

sensors are designed. It is found that full-wave numerical methods can analyze small or 

periodic nanostructure, while requiring significant computational resources for accurate 

result. Full-wave numerical analyses of aperiodic structures can be highly resource 

consuming, without producing insightful outcome. 

As an alternative to full-wave numerical modelling, analytical effective medium 

approximations are considered. The available approximations are reviewed, and their 

limitations are pointed out. Using the Mie scattering theory, the Maxwell-Garnett 

approximation is extended so that it can account for arbitrary size, as well as different 

physical structure, of the inclusions. The derived effective medium approximation is tested 

on a wide variety of optical nanostructure, both periodic and aperiodic. Good agreement 

between analytical and experimental results is   established. The utility of the 

approximation in designing a controllable and tunable optical nanostructure is 

demonstrated by modelling the tunable optical properties of magnetic colloids and 

verifying them experimentally. When appropriate, the effective medium approximation 

can be a very fast, and efficient method of analyzing the controllable and tunable 

properties of optical nanostructure. The applicability, limits of validity, and limitation of the 

approximation is discussed.  

 Using the analytical framework, controllable flat optical nanostructure that 

can mimic optical elements, e.g., focusing lenses, are designed. In these optical 

nanostructures, inclusions are arranged in a flat thin film so that a specific profile of optical 

density is implemented. By modifying the wave-front of the emergent wave in a 

controllable manner, these flat nanostructures can perform the same optical operations 
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as bulky and spherical optical components. Such flat optical components are particularly 

promising for developing integrated optical chips. However, full-wave numerical modelling 

of these structures can be difficult since the optical component may be large area, while 

the nanostructure can be deeply sub-wavelength. Hence, for efficient design of such flat 

lenses, the relationship between the physical structure of the inclusions and the imparted 

phase by the nanostructure is studied using effective medium approximation. It was found 

that the effective medium approximation can predict the imparted phase with high 

accuracy, while requiring a fraction of the computation resources compared to numerical 

methods. Based on the relationship between the imparted phase and the physical 

structure of the inclusions, it is possible to design flat lenses with a controllable spatial 

phase profile analytically. Furthermore, their far-field properties can also be calculated 

from the near field ones using the analytical scalar diffraction theory. Thus, controllable 

flat optical lenses can be designed and analyzed analytically. The analytical results 

matched very well with the numerical and experimental results, while requiring very little 

memory and time.    

 In conclusion, an analytical method for designing and analyzing a tunable 

and controllable optical nanostructure is derived and verified with experimental results. 

The analytical method is significantly more efficient compared to numerical methods, 

while being similarly accurate compared to experimental results. The research in this work 

can lead to efficient design of optical nanostructure for many different fields, including flat 

optics, optical switching, and transparent sensing. 
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