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CHAPTER 1 

INTRODUCTION 

1.1 SOFT MATTER  

Soft matter is a sub-field of condensed matter and covers a broad range of classical systems 

which are neither perfectly crystalline nor simple liquids. Soft matter is present almost 

everywhere around us. For example, soaps, rubber, paints, glues, and even many food items 

contain soft materials such as proteins, polysaccharides, nucleic acids etc. Soft matter is a very 

broad, interdisciplinary, and highly active research area for physicists, biologists, chemists, 

engineers, mathematicians and material scientists. It is a progressive field with main research 

focus on study of colloids, polymers, liquid crystals, foams, emulsions, membranes, vesicles, 

droplets, self-assembly, surfaces and interfaces, packing, geometry and topology, fractures and 

failures, active and driven matter, dynamics of structured and complex fluids, soft biological 

systems, etc. Such materials exhibit distinct macroscopic and physical appearances with unique 

properties. The length scales of soft materials are mesoscopic i.e. lies between atomic (> 0.1 nm) 

and macroscopic (< 10 μm) scales. This makes soft materials susceptible to large fluctuations 

caused by Brownian motion. Soft matter in aqueous media is bombarded by the molecules of 

FIGURE 1.1.1 Soft materials: colloids (10 nm- 10 μm), polymers (10 nm- 10 μm), liquid 

crystals and amphiphiles/surfactants  
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solvent and is constantly turning and wriggling due to thermal fluctuations. Such random motion 

of soft materials leads to their unique properties. 

Soft materials show striking rheological properties. Most of the soft materials show 

viscoelastic behavior, which is a time-dependent response to the applied stress. They are both 

viscous and elastic at different time scales. Solids and liquids show distinct mechanical response 

to the applied shear stress. When a shear is applied, solids resist deformations whereas fluids 

tend to flow. Silly Putty is a good example that exhibits both kinds of mechanical responses. The 

characteristic viscoelastic time scales are material dependent. A fluid can be classified into 

Newtonian or non-Newtonian depending on its strain rate response with applied stress. The 

strain rate is constant in the Newtonian fluids when a constant stress is applied. So, the relation 

between the shear stress and shear rate is linear and we can find the constant of proportionality, 

which is defined as the viscosity. However, in non-Newtonian fluids, the viscosity is dependent 

on the shear rate, which is not constant and can be time-dependent too. Shear thinning or shear 

thickening1 is visible in many non-Newtonian polymer solutions. In shear thinning, the fluid flow 

increases with the increase in the shear rate but this is opposite in the case of shear thickening 

fluids as shown in the figure 1.1.2 above.  
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Among many other amazing properties of soft materials, their ability to self-assemble is 

unique. Minimization of free energy is the driving force behind self-assembly. Systems including 

surfactants, block copolymers, amphiphiles, proteins, actin filaments, microtubules, cells, and 

dense solutions of aqueous nanoparticles tend to naturally form highly ordered structures when 

immersed in aqueous media. My research is mainly focused on colloidal dynamics within 

polymer solutions and complex fluids. A few topics related to this field will be briefly discussed 

further. 

1.2 COLLOIDAL DISPERSIONS  

Colloidal dispersions are formed when colloids (mainly solid-like particles in nanometer to 

micrometer size range (~1 nm- 10 um) are evenly dispersed inside a continuous media. The 

dispersing media as well as particles can be in solid, liquid or gaseous form. 

The stability of a colloidal dispersion is very important to provide correct information about 

their physical properties and motion. A stable colloidal dispersion is marked by evenly dispersing 

colloidal particles inside a surrounding fluid as shown in figure 1.2.1 (a). There are many 

problems that arise in colloidal solutions i.e. polydispersity, aggregation/agglomeration, 

sedimentation etc. Dispersed colloids experience electrostatic van der Waals attraction and 

repulsion due to screening of charges. Gravitational force leads to sedimentation in colloidal 

dispersions while electrostatic forces can be accounted for other problems. Sedimentation can be 

mostly hindered by using density matching approach in a narrow range of materials. In this 

FIGURE 1.1.2 Schematic representation of non-linear response of viscosity to an applied 

strain rate. (a) shear thickening, (b) Newtonian fluid and (c) shear thinning 
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method, the mass density of dispersed particles is matched with that of the dispersing media. 

Aggregation of the particles inside the colloidal dispersion is one of the main factors that affects 

stability of colloids. It can be seen in figure 1.2.1(b), the particles can come close to each other and 

stick together to form aggregates inside a colloidal dispersion. To avoid this problem, we can use 

methods that can keep these particles away from each other to a large extent. The most common 

way to tackle this problem is to generate a repulsive force between the particles. This can be done 

by exploiting the usual electrostatic force, either by a method known as charge stabilization or by 

FIGURE 1.2.1 Colloidal dispersions with associated problems within a colloidal dispersion: 

(a) stable colloidal dispersion (b) polydispersity, (c) aggregation/agglomeration and 

(d)sedimentation  

FIGURE 1.2.2 Stabilization of particles (a) using polymer (b) coating on their surface 

 

(a) (b) 
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coating the particles with some polymers known as steric stabilization1. In the latter method, the 

particles are stabilized using polymer chain coatings on the surface of particles (figure 1.2.2) so 

that when the two particles come closer, they will feel the repulsive force created by the osmotic 

pressure as a resulting effect of increased polymer concentration inside the gap. Many ordered 

and disordered structures can also be formed inside colloidal suspensions as a consequence of 

interparticle interactions2 and thermal motion.  

1.3 POLYMERS AND POLYMER SOLUTIONS 

Polymers are very large chain-like molecules, which are made up of many repeated units (also 

called monomers) of one kind (homopolymers), different (copolymers as shown in figure 1.3.1) 

or random (random polymers). They can be natural as well as synthetic, such as polyethylene, 

polystyrene, and nylon. They can be found in various physical states like liquids, crystalline 

(solid/liquid), and glasses. Polymers are also available in a large variety of molecular weights. 

Polymer chains can be linear or branched. The length of the polymer chains depends on the 

degree of polymerization, N, i.e., the number of repeated units. The degree of polymerization is 

directly proportional to the relative molecular mass, M of the chain as shown in the equation 

below: 

𝑀 =  𝑁 𝑀𝑚𝑜𝑛𝑜 1.1 

FIGURE 1.3.1: Representation of a chain polymer with different kind of monomers 
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where,  𝑀𝑚𝑜𝑛𝑜 is the molar mass of the monomer/ repeated unit.  

 The monomers inside polymer chains are attached by covalent bonding. The strength 

of the bonding between monomers should be larger than the value of thermal energy KbT to stay 

connected to each other. The ways in which monomers organize themselves inside a polymer 

chain plays a very important role in their chemical and physical properties. Different kinds of 

polymer architecture are possible depending upon the shapes of polymer chains as shown in 

figure 1.3.2. Polymer microstructures can be broadly classified into homopolymers and 

heteropolymers depending on having one kind of monomers or different in their chains, 

respectively. Heteropolymers can be further classified into different sub classes i.e. random 

copolymers, alternating copolymers, block copolymers, and graft copolymers depending on the 

different arrangements of monomers in the polymer chains as shown in the figure 1.3.3. An 

important length scale in determining the size of polymers is radius of gyration Rg that can be 

defined as the mean squared distance of every point on an object from the center of gravity of the 

object. 

FIGURE 1.3.2: Different architectures of polymers: linear, ring, star-branched, H-

branched, comb, ladder, dendrimer, and randomly-branched. 
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Polymer solutions are formed by dissolving polymers in the solvents and they can be divided 

into three categories, i.e., dilute, semi-dilute, and concentrated depending on the polymer 

concentration inside the solution. Polymer concentration is usually defined in terms of volume 

fraction 𝜙, which is defined as the volume of polymer to the volume of the total solution. The 

polymer concentration at which polymer chains begin to overlap3 due to their increased 

concentration is called as the overlap volume fraction 𝜙*. Thus, 𝜙* is used as a measure to 

distinguish between the dilute and semi-dilute solutions as shown in the figure 1.3.4. If polymer 

concentration is lower than the overlap volume fraction, the solution is called dilute4 where the 

FIGURE 1.3.3: Different kinds of copolymers: (a) alternating copolymer, (b) random 

copolymer, (c) block copolymer and (d) graft copolymer 

(a) (b) (c) 

FIGURE 1.3.4: Different concentration regimes for polymer solutions: (a) dilute, (b) 

semi-dilute, (c) concentrated and (d) polymer melt. 
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polymer chains do not interact as they are significantly far from each other. If the polymer 

concentration is increased to reach above the overlap volume fraction, the solution is said to be 

in semi-dilute regime where the polymer chains begin to interact with each other via overlapping. 

Below polymer melt concentration i.e. 1, entanglement volume fraction 𝜙e marks the polymer 

concentration where most of the polymer chains are overlapped and entangled with each other 

as shown in the above figure 1.3.4 and 1.3.5. Polymer solutions with polymer concentration higher 

than 𝜙e are called as concentrated solutions. One of my research’s main focuses is the study of 

motion of colloids inside polymer matrices and the following discussion provides a brief 

introduction for the same. 

1.4 DYNAMICS OF COLLOIDAL PARTICLES WITHIN POLYMER SOLUTIONS 

To observe and quantify the dynamics of nano and micron sized particles inside polymer 

solutions, there are certain time scales that are important to study at which the polymers change 

their behavior. Figure 1.4.1 shows a cartoon of a spherical colloids dispersed within a polymer 

solution. Relaxation time 𝜏, is a measure of the time scale at which molecules inside a polymer 

rearrange themselves, resulting in the separation of solid and liquid-like behavior. It is the 

crossover time scale before which the viscoelastic polymer behaves like a solid when stress is 

applied, whereas in the opposite limit, polymers behave like a liquid at longer time scales. 

FIGURE 1.3.5: Pictorial representation of polymer chains in different polymeric 

solutions: (a) dilute, (b) semi-dilute and (c) concentrated. 

 

 

1 

(c) (d) (a) 

0 𝜙e
 
 

𝜙

 
 

𝜙*
 

 

(b) 
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The diffusive motion of colloids inside various solutions can be quantified in terms of their 

diffusion coefficients. Fick’s second law, derived from the continuity equation of mass, provides 

the simplest description of diffusion through a fundamental relation between the rate of change 

of particle concentration and the spatial second derivative of particle concentration that 

eventually makes it simpler to quantify the connection between the time and square of the 

distance over which the Brownian diffusion occurs in terms of the particles’ self-diffusion 

coefficient 𝐷. Diffusion law can be written as: 

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
 

1.2 

Given an initial condition, 𝑐(𝑥, 𝑡 = 0), we can solve this diffusion equation and get 𝑐(𝑥, 𝑡) at all 

times. If started with a delta function, using Green’s function, the solution is gaussian: 

𝑐(𝑥, 𝑡) =  
𝑁

√4𝜋𝐷𝑡
e−

𝑥2

4𝐷𝑡  
1.3 

where, ∫  𝑐(𝑥, 𝑡)𝑑𝑥 = 𝑁
∞

−∞
 

A probability density function 𝑃(𝑥, 𝑡) for normal Brownian diffusion can be defined as 

FIGURE 1.4.1: Colloids dispersed in aqueous polymer solutions.  
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𝑃(𝑥, 𝑡) = 𝑐(𝑥, 𝑡)/𝑁 1.4 

𝑃(𝑥, 𝑡) =  
1

√4𝜋𝐷𝑡
e−

𝑥2

4𝐷𝑡 
1.5 

Generally, Gaussian diffusion approximation is not valid in complex fluids5. Einstein suggested 

that the mean square displacements < 𝑥2 > of macromolecules moving in a 𝑑-dimensional 

Brownian motion over time 𝑡 are suitably measurable and relatable to their diffusion coefficients 

𝐷 in the following manner: 

< 𝑥2 > = 2𝑑𝐷𝑡 1.6 

In simple fluids, continuum fluid model is highly accurate on the length scales that are much 

larger than the inter-atomic distances. Stokes-Einstein (SE) relation is used to determine the 

diffusion of particles that are much larger than the size of solvent molecules. It relates the 

translational diffusion coefficient 𝐷𝑇 of spherical particles with hydrodynamic radii 𝑅 diffusing 

in a solvent of viscosity 𝜂 in the following way: 

𝐷𝑇 =
𝑘𝐵𝑇

6𝜋𝜂𝑅
 

1.7 

where, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the absolute temperature. The relation that gives 

the rotational diffusion coefficient 𝐷𝑅 of a spherical particle is Einstein–Smouchowski relation 

given by: 

𝐷𝑅 =
𝑘𝐵𝑇

8𝜋𝜂𝑅3
 

1.8 

where, (8𝜋𝜂𝑅3) gives the value of frictional drag coefficient for a sphere in bulk. 

SE equation works very well for dilute systems with a constant solvent’s viscosity. But in 

highly crowded polymer solutions, new complexities are added in terms of viscosity experienced 
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by the probe particles. Among other possible complexities, viscosity of the solvent can be shear 

dependent (figure 1.4.2) resulting in colloidal particles experiencing a much smaller viscosity 

called as nanoviscosity than the bulk viscosity. The validity of Stokes-Einstein equation 

completely breaks down in equivalent complex solutions6. It is difficult to determine the exact 

nanoviscosity. Here, another branch of physics i.e. rheology comes into picture that involves the 

flow studies of materials under stress7 provides a range of shear viscosities corresponding to 

different strain rates . Microrheology8 is a modern way of doing rheology by using a micron sized 

particle as a tracer probe for measuring viscosity.  

In reciprocal space, it is possible to extract the dynamical information of a system at a 

wide range of length scales corresponding to the scattering wave vectors 𝑞. The relaxation time 

𝜏(𝑞) scales as 𝑞−2 in dilute systems consisting of freely diffusing particles. On the other hand, for 

crowded particles, few characteristic peaks appear in relaxation time vs. wave vector curves. 

These peaks indicate long relaxation times meaning that the dynamics gets slower because of an 

FIGURE 1.4.2: Shear thinning behavior for Poly Acrylic Acid at a polymer concentration 

of 0.125% extracted from rheology measurements. 
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obstructed motion at certain length scales. This slowing down of colloidal dynamics can be 

readily explained with a physical phenomenon explained by de Gennes called as de Gennes 

narrowing9. A schematic representation of the underlying physics of de Gennes narrowing10 

(DGN) in a hard sphere system consisting of two spheres separated by a distance 𝑟 is given by 

Hong and co-authors10 (figure 1.4.3). When the spheres move relative to each other, then a 

distance distribution 𝑃(𝑟) has a peak at some distance 𝑟∗ and the corresponding free energy curve 

has a minimum value at the same distance. In the reciprocal space, inter-particle structure factor 

distribution 𝑆(𝑞) can be defined that has a peak at 𝑞∗~
1

𝑟∗ and 𝐷𝑖𝑛𝑡𝑒𝑟(𝑞) that provides the 

dynamical information in terms of interparticle fluctuation rate at real distances 𝑟~
1

𝑞
 with a 

minimum at 𝑞∗~
1

𝑟∗ matching with 𝑆(𝑞). This inverse dependence on 𝑆(𝑞) indicates the slowing 

FIGURE 1.4.3: Structure and dynamics of a two hard sphere system (Reprinted with 

permission from Physical review letters 112(15), 158102. Copyright (2014)). 
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down of system dynamics at a specific length scale as a consequence of slowly moving domains 

in a few favored arrangements in space.  

1.5 COLLOIDAL STRUCTURES ON A CURVED SURFACE 

In contrast to flat surfaces, packing of colloids on a curve is more complicated. There are 

simple ways to pack colloids on a flat surface, for example, hexagons can be packed in a honey-

comb structure without any geometrical defect on a plane whereas it is not possible in the case of 

packing on curved spaces due to frustrations caused by curved geometry. The best example of 

this would be the packing of panels on a soccer ball that requires twelve pentagons in addition to 

twenty hexagons. These pentagons can be called as the defects. Such packing in its simplest form 

can be experimentally realized by colloidal assembly on the droplets formed on water-oil 

interface11. In a perfect hexagonal crystalline packing, every particle has exactly six nearest 

neighboring particles inside the colloidal assembly (figure 1.5.1:left). This is impossible to 

fabricate on curved surfaces. Usually the crystal structures are with five-fold, or seven-fold 

defects depending on the number of nearest neighbor particles per particle inside the whole 

structure (figure 1.5.1:right). Topology requires the crystals to have minimum number of lattice 

defects inside a crystal formed on a curved surface12. Due to the stress imposed by the curvature, 

FIGURE 1.5.1: Left: Spherical colloids assembled on a flat surface in a perfect 

hexagonal pattern. Right: Panels on a soccer ball representing packing on a curved 

surface (adapted: Wikipedia) 
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crystal structures have a natural tendency to spontaneously develop more defects13-17. Therefore, 

the mechanism of crystallization on a curve is a still unclear.  

1.6 PHASE TRANSITIONS IN COLLOIDAL ASSEMBLIES  

When a substance or a system undergoes phase change from a solid, liquid or a gaseous 

phase to a different phase at a specific temperature and pressure, it is said to be phase 

transitioned. Phase transitions can be classified into first order and second order as predicted by 

Ehrenfest. First derivatives of free energy are discontinuous at the phase transition of first order 

but continuous at second. Inside a solid crystallic phase, there are ordered structures with 

repetitive patterns. When the phase is changed from solid to liquid, loss of repetitive patterns and 

ordering takes place in the molecules of a substance. This phase has a higher energy and  entropy 

than the solid phase. Consequently, in gaseous phase, the molecules move freely by spreading 

over in space with a much higher entropy and any patterning or ordering among each other 

completely disappears. The ordering can be short or long ranged and a few order parameters can 

be defined to quantify the local or global translational and orientational distribution. An order 

parameter is usually defined in such a way that it will have its maximum value in solid phase 

and zero in liquid phase. 

One of our main research interests lies in the understanding of phase transitions of 

ordered structures formed on top of curved spaces which is very hard to realize experimentally 

at atomic scales because of the limitations imposed by currently available optics. Therefore, we 

use colloidal systems that are presently the most suitable systems to carry out such experimental 

investigations. During phase transitions in colloidal systems, different phases can be identified 
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based on the ordering and packing of particles. First order phase transitions are easier to be 

experimentally identified from direct visualization using optical microscopy and analyzed by 

determining certain structural correlations functions/orientational order parameters. Melting of 

a crystal is a classic example of first order transition. When the temperature is changed, the phase 

of a crystal changes. There is an enormous amount of experimental research going on to observe 

the two dimensional phase transitions of colloidal assemblies on both flat as well as curved 

surfaces13,18-27. In present, among all phase transitional studies, 2D freezing is the best understood 

so far. There have been significant advances in methods in which colloidal assemblies within a 

solution can be controlled. This has increased the scope of synthesizing complex yet intereseting 

new configurations of highly controlled soft materials. Defects are very common in natural 

assembling of micron sized colloids and as a result, generally low quality crystals are formed. 

Therefore, it becomes necessary to direct the assemblies28 using an external force via an electric 

field, magnetic traps or temperature gradients. The quality of crystals can be increased by 

minimizing the crystal defects in a few ways including annealing them near their melting points 

or by using optical tweezers.  

1.7 INSIGHT TO RESEARCH WITH SIGNIFICANCE 

This thesis can be broadly divided into three main investigations under colloidal 

dynamics. The motivation behind these research projects will be discussed along with a brief 

introduction to them one by one. 
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In the first part of the thesis, we study nanoparticle dynamics within crowded media 

which is very important since a cell is mainly composed of macromolecules making itself a very 

crowded media. We determined the ensemble averaged diffusion coefficients of fluorescent 

nanoparticles within concentrated polymer solutions of polyethylene oxide (PEO) and compared 

using two different experimental methods as discussed in chapter 4. As nanoparticles can be used 

as drug delivery carriers (figure 1.7.1), their motion inside a crowded environment like inside a 

cell becomes very useful to investigate. We mimic a similar media for nanoparticles with the use 

of highly concentrated polymer solutions of high molecular weights. Studies of nanoparticle 

dynamics is also useful in solving current existing problems in the synthesis of high performing 

polymeric nanomaterials29,30 and chromatography31. Nanoparticles also possess a unique ability 

 FIGURE 1.7.1: Drug delivery using AuNP inside the DNA to treat cancer (adapted: 

Wikipedia) 

 

FIGURE 1.7.2: Self-healing property of nanoparticles inside materials’ cracks. 

(Reprinted with permission from Nature Materials 5(3), 1476-4660. Copyright (2004)). 
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to enhance the lifetime of materials by migrating towards the cracks32 as shown in the figure 1.7.2. 

This striking property of nanoparticles including many other makes this research field very 

interesting to explore.  

Second part of the thesis in chapter 5 contains the studies of dynamics and melting of two-

dimensional self-assembled structures formed by microdiscoids dispersed in a complex fluid 

(critical solution of a binary mixture composed of 2,6 lutidine and water). 2D melting of the 

colloidal ordered structures formed on top of the different sized water-lutidine droplets is also 

observed. We also calculated a few structural correlation functions and orientational order 

parameter to analyze the structural arrangements during the phase transition. The results are 

compared with one of the present theories of melting in 2D. Study of the dynamics of assemblies 

formed by colloids is very useful for new materials. Colloidal assembly can also be used for 

creating soft acoustic material arrays33. Many nanostructured materials are formed using colloids 

FIGURE 1.7.3:  Self assemblies of anisotropic particles predicted by computer simulations: 

(a) spherical particles with two rings of sticky “patches”, (b) square pyramid structure, (c) 

spherical particle with sticky “patches” that interact attractively with like patches on other 

particles and (d) ring assembly on cooling from five particles. (Reprinted with permission 

from AIChE 50(12), 2978-2985. Copyright (2004)). 
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crystals as templates34 for use as advanced catalysts and in photonic crystals, etc. Various 

physical, chemical, mechanical and structural functionalities can be incorporated in colloidal 

surfaces and/or volumes to form desirable inexpensive materials, electronics35 and ordered 

porous structures34. These studies are also applicable to the areas that sought materials’ time-

dependent response e.g. in transduction36 and sensing applications37. Molecular systems in which 

certain desired structures (figure 1.7.3) can be regulated by generating a dynamic control over 

assembled material arrays are known as reconfigurable colloidal assemblies38-40. Recently, 

reconfigurable colloidal assembly has gained a huge interest as a field useful for many fields 

including synthesis of metamaterials and biosensors38,41-45. The dynamics of colloids is much 

slower than atoms or small molecules because of their larger sizes. Slow kinetics and low number 

of ordered structures with multi-fold defects in colloidal assemblies presently are a few among 

the current and future challenges in this field. For minimizing such research problems, it is very 

important to understand the underlying physics at each stage of the transitional process.  

Finally, we focused on the diffusion of anisotropic colloids as anisotropy in biological 

systems like DNA and virus is very common. We have studied translational and rotational 

diffusion of microellipsoids using a quick and efficient experimental method in chapter 6. Most 

of the macromolecules are anisotropic in shape and their translational and rotational diffusion 

have a dependence on their shapes and they have various applications in technological and 

manufacturing fields inside high performance polymer composites46,47 and devices.. Therefore, it 

advantageous to study the dynamics of Therefore, it advantageous to study the dynamics of 

anisotropic colloids (discoids and ellipsoids) in various media.  
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An overview of the dissertation is as follows. Relevant background information to the 

scope of our research is provided in chapter 2. Chapter 3 describes the two main methods i.e. 

fluorescence correlation spectrocopy and differential dynamic microscopy used for experimental 

investigations and data analysis. As outlined above, chapters 4 to 6 include the main projects of 

my research. Overall conclusions and future work will be followed. There are a few additioned 

projects that I’ve worked on are briefly presented with the preliminary results in appendixes A-

C. They include synthesis of gold nanoparticles, effect of external flow on rotational diffusion of 

gold nanorods and colloidal dynamics within polyvinyl alcohol and xanthan solutions.  
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CHAPTER 2 

BACKGROUND 

2.1 DIFFUSION OF NANOPARTICLES WITHIN HIGHLY CONCENTRATED POLYMER 

SOLUTIONS 

Experimental investigations of nanoparticle diffusion within complex media such as 

concentrated polymer solutions and polymer melts provide a better foundation and 

understanding of various interdisciplinary fields including soft matter physics and 

nanotechnology for  microrheology48 for designing and developing nanocomposites49. There are 

various scaling theories50-52 available today for predicting the dynamics of probe particles inside 

polymer, biopolymer and other complex solutions. Several research groups have been working 

to validate these underlying theories of diffusion in different complex situations53-56. Various 

theoretical, experimental and computational studies relevant to our research are discussed in the 

following sections 2.1.1-2.1.3. Further discussion related with this section along with results and 

conclusions will be made in chapter 4. 

2.1.1 PREVIOUS THEORETICAL WORK 

For spherical probe particles probe diffusion can be classified into two groups57. 

Hydrodynamic theories58 form the first group that takes the interactions between particles and 

polymers into account while the other group are scaling theories that accounts for motilities of 

particles by considering the polymers as a porous media50,59,60 based on an effect called as 

“obstruction effect”. 
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According to hydrodynamic theory, the relaxation of polymers is not taken in account and 

the diffusion coefficient of probes (particles) inside polymer matrix is considered to be following 

a stretched exponential relation with polymer concentrations. In the dilute concentration regime 

of polymer solutions, the polymer chains behave like hard spheres with size equal to their 

hydrodynamic radii.  Here, the size of diffusing probes 2𝑅0 is greater than the effective polymer 

chain size 2𝑅𝑔 (𝑅𝑔: radius of gyration) and they experience hydrodynamic interactions as resulted 

by polymer chains. Whereas in the semi dilute polymer solutions, the diffusing probes i.e. 

nanoparticles experience screened hydrodynamic drag at a scale of correlation length58 ξ as 

polymer chains are modeled as the fixed frictional centers of monomers. In contrast, the diffusion 

coefficient of probe particles have a linear relationship with relatively larger pores formed by 

polymers chains. The effective pore size can be obtained from a distribution of distances 

randomly chosen point to nearest polymer chains and they can possess different sizes based upon 

their random and flexible coiled conformations. The probes can not usually move inside such 

pores in concentrated polymer solutions and thus they feel caged or obstructed in their motion. 

But if the probes are larger than the obstacle sizes characterized by ξ, the motion is not completely 

obstructed.  

According to Brochard and de Gennes’s scaling theory61, concentrated polymer solutions 

are considered as a short-lived polymer mesh with network size equal to the correlation length. 

According to their hypothesis, the viscosity experienced by probe particles within the mesh 

formed by polymer chains follows a scaling relation. Depending on the correlation length as 

compared to the probe size, the viscosity experienced by the particles differ. If 2𝑅0 is much greater 

than ξ, the probes should experience a net full solution viscosity or macroviscosity while in the 
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contrasting limit, the probes should only feel solvent’s viscosity. We have a few more scaling 

theories of particles’ motility in different polymer solutions depending on their size and 

concentration regimes52,58,61,62.  

Phillies et. al. proposed a scaling model for the dynamics of rigid probes that relates the 

diffusion coefficient, 𝐷 of probe particles to polymer concentrations as given by stretched 

exponential equation below52: 

𝐷

𝐷0
= 𝑒−𝛽𝜙𝛾

 
2.1 

where , 𝐷0 is the diffusion coefficient of pure solvent with 𝛽 and 𝛾 as scaling parameters. Phillies 

generalized this scaling for a whole range of polymers with different molecular weights as well. 

This stretched exponential seemed to worked very well experimentally meaning that there is no 

significant difference in diffusion when concentration is changed from dilute to semi-dilute as 

opposed to the expectation from scaling models for self diffusion of polymers. 

Cai et. al. further extended the scaling theory given by Wyart and de Gennes for particle 

motion inside polymer melts57. Their theory predicted that the particles’ motility within such 

highly concentrated polymer liquids depends on two important length scales i.e. correlation 

length  and the tube diameter 𝑎. Correlation length has the following dependence on polymer 

concentration: 

(ϕ) = bϕ−𝜈/(3𝜈−1) 2.2 
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where, b is Kuhn’s monomer length and 𝜈 is called as Flory exponent whose value varies on the 

solvent’s type. For athermal solvent where polymer chains may be swollen, correlation length 

varies as  

 ϕ−0.76 2.3 

with 𝜈 = 0.588 while in the case of a theta solvent where polymer coils act as ideal chains with 

exact random walks.  

 ϕ−1 2.4 

with 𝜈 = 0.5. 

Also, the tube diameter 𝑎(ϕ)  for a good solvent in the concentrated entangled polymer 

solutions is given by: 

𝑎(ϕ)  𝑎(1)ϕ−
𝜈

3𝜈−1 ~ ϕ−0.76~  2.5 

where a(1) is the tube diameter in the polymer melt with a value ~ 5 nm. And in the case of a theta 

solvent, 

𝑎(ϕ)  𝑎(1)ϕ−2/3 2.6 

The particles can be divided into three size ranges depending on the values of correlation length 

and tube diameter i.e. small (2𝑅0 <  ) , intermediate ( < 2𝑅0 < 𝑎) and large (2𝑅0 > 𝑎). The 

particles’ motility and diffusive nature is different for these three size ranges as explained below: 

(a) For small particle size range (2𝑅0 <  ):   The motion of particles doesn’t seem to get much 

affected by the polymer dynamics. It seems similar as the motion of particles inside a pure solvent 

of viscosity 𝑠 . Hence, the diffusion of such particles is given by: 
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𝐷~
𝑘𝐵𝑇

2𝑅0
𝑠

 
2.7 

𝐷𝛼
1

𝑠

 
2.8 

where, 𝑘𝐵 and 𝑇 are the Boltzmann’s constant and temperature. 

(b) For intermediate particle size range ( < 2𝑅0 < 𝑎): The particles’ motion in such size range 

doesn’t remain as inside a pure solvent but it is rather affected by the segmental dynamics of 

polymer chains63. There are three different kinds of motions are seen at three different time scales 

characterized by two crossover time scales i.e. relaxation time 𝜏, of correlation blob of size   and 

relaxation time 𝜏2𝑅0
, of a polymer blob of size comparable to the size of the particles. At short 

time scales when 𝑡 < 𝜏 , the particles feel local viscosity of the solution and follow diffusive 

motion where 

𝜏  
𝜂𝑠𝜉

3

𝑘𝐵𝑇
 

2.9 

During intermediate times 𝜏 < 𝑡 < 𝜏d ,the particles’ motion is subdiffusive and the viscosity 

experienced by particles is time dependent and the effective diffusion coefficient is given by: 

𝐷𝑒𝑓𝑓~
𝑘𝐵𝑇

2𝑅0
𝑒𝑓𝑓

(𝑡)
 

2.10 

𝐷𝑒𝑓𝑓 𝛼
1

𝑒𝑓𝑓(𝑡)
 

2.11 

where 𝑒𝑓𝑓(𝑡) is the effective viscosity experienced by the particles inside a solution: 
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𝑒𝑓𝑓
(𝑡) 𝜂𝑠(

𝑡

𝜏𝜉
)
1
2 2.12 

At longer time scales 𝑡 > 𝜏d, the motion of particles is again diffusive and the effective viscosity 

𝑒𝑓𝑓 experienced by the particles is directly proportional to the number of correlated blobs of size 

of the particles size is given by: 

𝑒𝑓𝑓  𝜂𝑠(
2𝑅0

𝜏𝜉
)2 

2.13 

And the effective terminal diffusion coefficient is: 

𝐷𝑡  
𝑘𝐵𝑇

2𝑅0
𝑒𝑓𝑓

(𝜏𝑑)
  

𝑘𝐵𝑇𝜉2

𝜂𝑠(2𝑅0)
3
 

2.14 

𝐷𝑡 𝛼 (2𝑅0)
−3 2.15 

 (c) For large particle size range (2𝑅0 = 𝑑 > 𝑎): When the particles are in size range larger than 

tube diameter/ entanglement length 𝑎,  the motion of particles is characterized by a crossover 

time i.e. relaxation time 𝜏𝑒 , of an entanglement strand where the particle’s motion is obstructed. 

At short time scales 𝑡 < 𝜏e , the particles’ motility is similar as that of intermediate particle size 

range but at time scales  𝑡 > 𝜏e , the particles motion is halted by the obstruction caused by 

entanglement strands of polymers. The particles can escape such motional traps during the 

relaxation time of polymer liquid characterized by a time scale called as reptation time 𝜏𝑟𝑒𝑝. The 

effective diffusion coefficient due to reptation can be written as: 

𝐷𝑟𝑒𝑝   
𝑘𝐵𝑇

𝜂𝑑
 

2.16 

𝐷𝑟𝑒𝑝 α 
1

𝑑
 

2.17 
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Cai et. al. divided polymer solutions based on two crossover concentrations57 𝜙𝜉 and 𝜙𝑎. 

If the polymer concentration is less than 𝜙𝜉, then the diffusion coefficient of particles is not 

dependent on polymer concentration. The diffusion can be simply be characterized by solvent’s 

viscosity 𝜂𝑠. At intermediate concentrations i.e. (𝜙𝜉 < 𝜙 < 𝜙𝑎): the particles’ diffusion is affected 

by the segmental dynamics of polymer chains. For athermal solvent as shown in figure 2.1.1.1, 

the diffusion coefficient of particles is expected to scale as: 

𝐷 ~ 𝜙−1.52 2.18 

And for large particles in the polymer concentrations above 𝜙𝑎, the diffusion coefficient scales 

with volume fraction as below 

𝐷 ~ 𝜙−3.93 2.19 

 

FIGURE 2.1.1.1: Dependence of terminal diffusion coefficient 𝐷𝑡 of particles in entangled 

polymer solutions normalized by their diffusion coefficient 𝐷𝑠 in pure solvent. Dashed line 

is for intermediate size particles ((b < d < a(1)), (b= ξ in text) and solid line is for large size 

particles (d > a(1)).  𝜙𝜉
𝑑  and 𝜙𝑎

𝑑 are the crossover concentrations (𝜙𝜉 and 𝜙𝑎 in text), at 

which the correlation length ξ and the tube diameter a are on the order of particle size d. 

(Reprinted with permission from Macromolecules 44(19), 7853-7863. Copyright (2011)). 
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2.1.2 PREVIOUS COMPUTATIONAL STUDIES: 

Liu et. al. used molecular dynamics (MD) simulations to study the nanoparticle diffusion in 

polymer melts64. Their simulation results indicated that polymers’ radius of gyration 𝑅𝑔 is the length 

scale of interest for the validity of Stokes Einstein (SE) equation for the diffusion of nanoparticles 

inside aqueous polymer solutions. They also studied the dependence of particles’ diffusion within 

polymer melts on particles’ size, polymer concentrations, polymer-particle interactions, mass of 

particles, chain length of polymers. For the cases when 𝑅𝑔 is smaller than the size of the probe 

particles 𝑅0, SE diffusion results are accurate. When 𝑅𝑔of the polymer is larger than the size of 

nanoparticles, nanoparticle diffusion is polymers’ molecular weight independent but depends on the 

mass of particles and SE law doesn’t provide correct diffusion results as the viscosity experienced by 

nanoparticles is nanoviscosity instead of microviscosity. They observed macroviscosity to 

nanoviscosity transition in the viscosity experienced by nanoparticles with increase in polymer 

chain’s length. 

Ganesan et. al. investigated the mobility of nanoparticles within unentangled polymer 

melts65 analytically and through computational simulations. They proposed a modified 

continuum model for long-time diffusion of particles inside polymer melts. It was suggested that 

𝑅𝑔 is the length scale that controls the transition from nano to microviscosity in the cases where 

𝜉 < 𝑅0 ⩽ 𝑅𝑔. They claimed that for the observation of viscosity reduction, entanglement is not 

necessary in polymer solutions. However,  a much stronger effect was seen on reduction of 

viscosity in the entangled regimes. Their studies also rationalized a few previous experimental 

results of dynamics of nanoparticles inside polymer melts. 
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2.1.3 PREVIOUS EXPERIMENTAL WORK 

Optical microscopy had several advancements in their imaging methods being able to 

visualize and quantify the dynamical information for micro to nanoscales. High-resolution 

microscopic methods such as stimulated emission-depletion (STED)66 microscopy, 

photoactivated localization microscopy (PALM)67 and parameter extraction from reconstructing 

images (PERI)68 broke the classical diffraction limit and enabled us to study colloidal and 

biological structures at much smaller scales with higher precision than any previous ways. But 

the barrier imposed by slow time resolution of image acquisition in such methods has limited the 

analysis to mostly structural. To overcome this limit, there are a few other emerging techniques 

that do not rely on serial scanning. Digital cameras with ultrafast acquisition speeds are being 

used to bring improvements in colloidal dynamical studies. 

Holyst and co-authors51 investigated the viscosity scaling of aqueous solutions of 

polyethylene glycol PEO with different molecular weights ranging from 6000-20000 g/mol with 

dye/protein molecules as nanoprobes in the size range of 1.7-114 nm. They used fluorescence 

correlation spectroscopy (FCS) and capillary electrophoresis for the experimental investigations. 

They found that the polymers’ radius of gyration 𝑅𝑔 is the crossover length scale of viscosity 

instead of the polymers’ blob correlation length 𝜉 as suggested by MD simulations but in contrast 

to the theory. As per their results, particles with radii 𝑅0 greater than 𝑅𝑔, the particles experience 

macroviscosity 𝜂𝑚𝑎𝑐𝑟𝑜 but in the opposite size limit, particles experience nanoviscosity 𝜂𝑛𝑎𝑛𝑜 as 

shown below: 
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𝜂𝑛𝑎𝑛𝑜

𝜂0
= 𝑒

[𝑏(
𝑅
𝜉
)
𝑎

]
 

2.20 

𝜂𝑚𝑎𝑐𝑟𝑜

𝜂0
= 𝑒

[𝑏(
𝑅𝑔

𝜉
)
𝑎

]
 

2.21 

where, 𝜂0 denotes the viscosity of water with 𝑎 and 𝑏 are constants with values close to 1. 

Positive deviations from SE equation were also reported by Ye and co-authors for particles 

with length scales equal or smaller than polymers’ correlation length as a result of reduction in 

local viscosity69. They carried out the motion and adsorption experiments by using methods of 

dynamic light scattering and sedimentation70.  

Kohli et. al. studied the effect of length scales on the diffusion of gold nanoparticles 

(AuNPs) within aqueous solutions of poly ethylene glycol (PEO) in semidilute concentrations71. 

They used two-photon FCS method to experimentally determine the translational diffusion 

coefficients of nanoparticles. They indicated a crossover length scale i.e. radius of gyration 𝑅𝑔 of 

polymer chains above which the nanoparticles do not experience the bulk viscosity 𝜂; but a much 

lower viscosity called as nanoviscosity. For particles with radii 𝑅0 greater than 𝑅𝑔; the obtained 

diffusion coefficients 𝐷 are in good agreement with Stokes Einstein (SE) predictions 𝐷𝑆𝐸 =
𝑘𝐵𝑇

6𝜋𝜂𝑅0
 

whereas for particles sizes smaller or equal to 𝑅𝑔, Stokes Einstein dependence breaks down and 

the ratio 
𝐷

𝐷𝑆𝐸
 increases with increase in polymer concentrations.  

2.2 DYNAMICS AND MELTING OF COLLOIDAL STRUCTURES FORMED ON TOP 

OF CURVED SURFACES 



30 
 

 

Dynamics and phase change processes in self-assembled anisotropic colloids on a curve 

still needs to be clearly understood. Among all phase transition studies in colloidal systems, 

crystallization i.e. transition from liquid phase to crystal phase is the most intensively studied 

process. In contrast to 3D crystallization and melting, 2D investigations are limited. Freezing and 

melting processes in 2D share the same equilibrium phases but different kinetics. Defects are 

significantly important in melting process but not in freezing. There is a lack28 of fundamental 

theory that can explain the first order phase transitions.  

Hard sphere system is the extensively studied model in phase transition of colloidal 

systems72-79. According to that, in a two-particle system, the pair interaction potential has a zero 

value everywhere else other than where the surfaces of both particles come into contact. As a 

result, particles feel a repulsive force at contact that prevents overlapping. Therefore, it can be 

said that the geometry and entropy is the determining factor of any phase in hard sphere system. 

FIGURE 2.2.1: Different kinds of interparticle potentials i.e. hard sphere, screened coulomb 

and square well potential. 
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Particle volume fraction  plays a similar crucial role in a hard sphere system as the inverse 

temperature plays in a condensed phase formed by attractive80 molecular system. In a dilute 

concentration of particles, a normal Brownian diffusion is observed with no phase change. But a 

first order phase transition from a disordered to ordered state takes place in the crowded media 

formed by increasing particle volume fraction in a hard sphere system. This phase transition that 

takes place through a co-existence regime81 occurs as a consequence of net increase in entropy 

from the disordered liquid-like phase to solid-like phase. In a crystal phase, the entropy loss due 

to ordered configuration in solid state is less that the gain in entropy due to the increase in space 

per particle for unobstructed motion when the particles arrange themselves into ordered 

structures. Such colloidal disorder-order transitions82,83 84 begin to occur roughly at  ~= 0.494 

where crystal phases are in equilibrium with liquid phases. The radial distribution function 𝑔(𝑟) 

for a pair of particles separated by a distance 𝑟 with no internal structure is given by: 

𝑔(𝑟) = exp [−𝑈(𝑟)/𝑘𝐵𝑇] 2.22 

where, 𝑈(𝑟) is the potential of mean-force that can be expanded in higher order terms for many-

body contributions as below: 

𝑈(𝑟) = ∑𝑤𝑖𝑗(𝑟) + 

 

𝑖,𝑗

∑ 𝑤𝑖𝑗𝑘(𝑟) + ⋯

 

𝑖,𝑗,𝑘

 
2.23 

And the radial distribution function 𝑔(𝑟) tends to value 1 at large distances and 0 at very short 

distances. Basically, the inter-particle potentials can be of three kinds i.e. hard sphere, square well 

and screened coulomb potential as shown in figure 2.2.1. The famous Ornstein-Zernike equation85 

can describe inter-particle interactions in case of non-dilute hard sphere system by relating the 
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direct correlation function 𝑐( 𝑟⃗⃗ ) and the total correlation function ℎ( 𝑟⃗⃗ ) for direct and indirect 

interparticle interactions (figure 2.2.2), 

ℎ( 𝑟⃗⃗ ) = 𝑐( 𝑟⃗⃗ ) + 𝑁̅ ∫𝑑𝑟 ′  𝑐( 𝑟⃗⃗ −  𝑟⃗⃗ ′)ℎ( 𝑟⃗⃗ ′) 2.24 

where, particle number density is denoted by 𝑁̅ = 𝑁/𝑉 with 𝑁 as number of particles in volume 

 𝑉 and ℎ(𝑟) = 𝑔(𝑟) − 1. 

In the reciprocal space, Ornstein-Zernike integral equation can be written as: 

𝐻(𝑞) = 𝐶(𝑞) + 𝑁̅ 𝐶(𝑞)𝐻(𝑞) 2.25 

The so-called structure factor 𝑆𝐼(𝑞) for particulate systems86 is defined as: 

𝑆𝐼(𝑞) = 1 + 𝑁̅ 𝐻(𝑞) =
1

(1 − 𝑁̅𝐶(𝑞))
 

2.26 

The numerical solution of above Ornstein-Zernike equation yields scattering structure factors in 

real microscopic systems composed of hard spheres. This equation contains two unknown 

variables i.e. direct correlation function and the total correlation function and therefore can be 

best solved by using the Percus-Yevick approximation87 that uses a closure relation. The Percus-

Yevick closure relation uses hard sphere inter-particle potential (figure 2.2.1) and provides a 

FIGURE 2.2.2: Direct and indirect interparticle interactions denoted by 𝑐( 𝑟⃗⃗ ) and ℎ( 𝑟⃗⃗ ) 

respectively. 
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single analytical solution to the Ornstein-Zernike integration. According to Percus-Yevick 

approximation, the direct correlation function 𝑐( 𝑟⃗⃗ ) can be written as: 

𝑐(𝑟) = 𝑔(𝑟)[1 − exp (−
𝑤(𝑟)

𝑘𝐵𝑇
)] 

2.27 

With the following assumptions for hard sphere potential for spherical particles of effective 

diameter 𝑑: 

{
𝑤(𝑟) = 0   ;  𝑟 > 𝑑
𝑤(𝑟) = ∞  ;  𝑟 < 𝑑

 2.28 

Which yields the analytical solution to Ornstein-Zernike equation: 

{

𝑐(𝑟) = 0      ;  𝑟 > 𝑑

𝑐(𝑟) = −𝜆1 − 6𝜙𝜆2

𝑟

𝑑
− 

𝜙

2
𝜆1

𝑟3

𝑑3
= ∞  ;  𝑟 < 𝑑

 
2.29 

With 𝜆1 and 𝜆2 are defined as: 

𝜆1 =
(1 + 2𝜙)2

(1 − 𝜙)4
 

2.30 

𝜆2 = −
(1 + 𝜙/2)2

(1 − 𝜙)4
 

2.31 

And volume fraction 𝜙 of scattering particles 

𝜙 = 𝜋𝑁̅𝑑3/6 2.32 

The structure factor 𝑆𝐼(𝑄) for a colloidal solution can now be found by calculating the Fourier 

transform of direct correlation function 𝑐( 𝑟⃗⃗ ) given by 𝑁̅𝐶(𝑞) below: 

𝑆𝐼(𝑄) =
1

(1 − 𝑁̅𝐶(𝑞))
 

2.33 

where,  
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𝑁̅𝐶(𝑞)                                                                                                                                                                       2.34              

=  −24𝜙 {𝜆1 [
sin(𝑞𝑑) − (𝑞𝑑) cos(𝑞𝑑)

(𝑄𝐷)3
]} − 6𝜙𝜆2 [

(𝑞𝑑)2 cos(𝑞𝑑) − 2(𝑞𝑑) sin(𝑞𝑑) − 2 cos(𝑞𝑑) + 2

(𝑞𝑑)4
]

−
𝜙𝜆1

2
[
(𝑞𝑑)4 cos(𝑞𝑑) − 4(𝑞𝑑)3 sin(𝑞𝑑) − 12(𝑞𝑑)2 cos(𝑞𝑑) + 24(𝑞𝑑) sin(𝑞𝑑) + 24 cos(𝑞𝑑) − 24

(𝑞𝑑)6
]  

2.2.1  PREVIOUS THEORETICAL WORK 

In 1970s, the predominant microscopic melting theory called as Kosterlitz Thouless 

Halperin Nelson Young (KTHNY) theory was developed88,89. KTNHY theory predicts that inside 

two-dimensional colloidal crystals, the melting takes place in two continuous phase transitions. 

According to this theory, the melting is driven by the appearance of thermally activated 

topological defects (dislocations and disinclinations) in the crystallic state that has long range 

translational and long range bond orientational order. According to Kosterlitz, Thouless and 

Young’s predictions during the decade of 1970, the dislocation defects of crystallic sites dissociate 

and as a result, number of free dislocation defects increases at the melting temperature 𝑇𝑚. It was 

predicted that this intermediate disordered phase called as hexatic still contains short-range 

translational and sixfold quasi long-range orientational order. At some higher temperature, 

another continuous transition takes place giving rise to even more defects including the 

unbinding of dislocations into disclinations giving rise to a highly disordered isotropic liquid 

state. The translational and orientational orders can be expressed by calculating correlation 

functions i.e. radial distribution/pair correlation function 𝑔(𝑟), the bond orientational correlation 

functions 𝑔6(𝑟) and six-fold bond-orientational order parameter 𝜓6 defined by: 
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𝑔(𝑟) =
𝑉

𝑁
〈∑ 𝛿(𝑟 − 𝑟𝑖𝑗)⃗⃗⃗⃗⃗⃗ 

𝑖,𝑗≠𝐼

〉 
2.35 

𝑔6(𝑟) = < 𝜓6
∗(0) 𝜓6(𝑟 ) > 2.36 

𝜓6(𝑟𝑖) =
1

𝑛
∑exp [𝑖6Ѳ(𝑟𝑖𝑗)]

𝑛

𝑗=1

 
2.37 

where, 𝑛 = number of nearest neighbors, 𝑉 is volume, 𝑁: total number of particles and Ѳ(𝑟𝑖𝑗) : 

angle betweeen the vector connecting the central particle, 𝑖 , with neighboring particles, 𝑗, and a 

fixed reference axis. The bond-orientational order parameter 𝜓6 is calculated by finding the 

average of the absolute value of 𝜓6(𝑟𝑖) and its value should be 1 for a perfect hexagonally packed 

crystal and any value less than 1 is considered as a phase with lost local hexagonal order. 

There are other several contrasting theories that suggests that the phase transitions are of 

first order instead. Few theoretical approaches predicted that the melting phenomenon is driven 

by grain boundaries90,91. First-order behavior of melting was suggested from the condensation of 

defects92. The effect of topological vs. geometrical defects93 in 2D melting was also studied.  

Few simulation methods numerically indicated that the hexatic phase in 2D melting is 

metastable94,95 or a first order phase transition96 that was initially believed to depend on the effects 

produced by finite-size97 in hard sphere interactions where fluctuations were considered 

extremely important. Contrastingly, the fluctuations were supposed to be insignificant in the 

systems with long-range pair potentials. 

2.2.2 PREVIOUS COMPUTATIONAL WORK 
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Engel and group investigated and reported the hard-disk’s equation of state using large-

scale event-driven molecular dynamic (EDMD) simulations98. The phase transition of hard-disk’s 

system at high densities was studied using Monte Carlo algorithms. Their analysis and results 

confirmed the existence of the hexatic phase and 2D liquid-hexatic transition to be of first order.  

Qi et. al. performed large scale EDMD simulations99 to study the melting phenomenon in 

a quasi-two-dimensional system of hard disks confined between two parallel hard walls. 

Basically, they focused on how excluded-volume interactions i.e. out of plane fluctuations effect 

the phase transitions. Surprisingly, they found that the two-stage melting stills persists in the 

same way as it would in the case of hard disks. There is no effect of out of plane fluctuations (as 

high as half the particle diameter) on the hexatic phase’s sustainability. Also, it was strogly 

indicated from their results that hexatic to liquid phase seems to be driven by the formation of 

grain boundary scars (clusters fromed by string-like defects) is a first order phase transition 

(contradictory to KTNHY theory) as shown by Mayer-wood loops in the equation of state. 

2.2.3 PREVIOUS EXPERIMENTAL WORK 

Presently, there are several real-space experimental techniques available to study the 

structure and dynamics of colloidal assembly such as optical microscopy, electron microscopy 

and scattering techniques such as light scattering100, neutron scattering101 and x-ray scattering102. 

But so far, optical microscopic methods are the most useful and direct for providing mechanisms, 

structure and dynamics of assembly and their phase changes. First order phase transitions are 

easy to be experimentally observed and identified through a few ways, such as, from the 

coexistence curve of both phases at equilibrium and jumps in certain translational correlations 
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functions/orientational order parameters. Experimentally, the kinetics of 2D melting which is 

beyond the scope of 2D melting theories has been poorly understood103 in a few aspects.  

Phase transitions in critical binary solvents was extensively studied during 1970s using 

light microscopy and scattering methods. Kim et. al. gave the experimental evidence for the 

influence of hydrodynamics in a binary mixture104. They used microscopy and light scattering to 

study the phase behavior of a critical mixture of water and 2,6-lutidine. They observed an 

unexpected increase in the nucleation growth rate and the temporal fluctuations at small angles 

gave rise to strong non-Lorentzian power spectra.  

Rodrigo et. al. recently showed how the freezing proceeds on the surface of a sphere 

through the formation of a crystal like “continent” that forces defects into 12 isolated “seas” with 

same symmetry as viruses27. They constructed a new parameter that can explain the long-range 

orientational order present in the crystal lattice27. 

FIGURE 2.2.3.1: 2D melting shown as a two-step melting process in contrast to one step 

3D melting. The intermediate hexatic phase in between crystal and liquid phase as 

predicted by the KTHNY theory is shown in the middle. (Reprinted with permission from 

Scientific reports vol. 6, 2045-2322 Copyright (2016)). 
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Pal et. al. observed the hexatic phase in between the nematic and hexagonal phases in self-

assembled amphiphilic molecules using small-angle x-ray scattering (SAXS) method105. This is 

the first experimental validation of existence of a thermodynamically stable hexatic phase (figure 

2.2.3.1) as predicted KTHNY theory in a 3D system composed of self-assembled micellar 

polymers.  

Ruben et. al. has experimentally investigated and linked the slow dynamics of dense 

suspensions consisting of charged colloids to their microscopy connectivity using 3D confocal 

microscopy technique106. They studied the system dynamics from the particle’s trajectories over 

time and the dynamic structure was determined from the real-space van Hove correlation 

functions. Although they observed no significant change in the local structure but a drastic 

change observed in the dynamics with change in particles’ concentrations (volume fractions). 

They mainly quantified the slowing down of relaxations in a liquid in terms of two distinct decays 

called as 𝛼 and 𝛽 relaxations as determined from fitting intermediate scattering functions to a 

doube stretched exponential. 

Brodin et. al. investigated the melting of two-dimensional colloidal structures formed by 

glycerol droplets trapped at the interface of nematic liquid crystal (NLC) and air107. Their 

experiments supported the predictions of KTHNY theory which confirmed the existence of 

hexatic phase using video microscopy. 

Lin et. al. presented a simple but robust method for investigation of self-assembly and 

transport of nanoparticles at liquid-liquid interfaces108 formed by water and toulene. Using 

confocal microscopy, they found that the nanoparticle self assemby is dependent on the particle’s 
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size. Also, a photoinduced transport mechanism of nanoparticles is also observed through which 

the nanoparticles changed their solubility from toulene to water and got transported from toulene 

to water via a toulene-water interface and finally got dispersed in water. Later, they also 

investigated the structure and dynamics of cadium selenide (CdSe) nanoparticles109 at fluid 

interfaces using three experimental methods i.e. electron microscopy, x-ray scattering and atomic 

force microscopy (AFM).  Flourescence photobleaching was used to quantify the two dimensional 

dynamics of nanoparticles and liquid-like behavior was observed. These results have 

implications on the synthesis of self assembled nanostructures. Lin et. al. performed computer 

simulations and found that the 2D melting with dipole-dipole interactions is of second order110. 

Recently, Ortileb and co-authors investigated statistics of colloidal suspensions of the 

green algae111 Chlamydomonas reinhardtii. According to their analysis, the measured probability 

distribution functions of experimental trajectories of algae suspensions are non-Gaussian for 

intermediate time scales. Similar to this study, Wu et. al. found that the micron sized beads freely 

suspended in a bacterial soap bath show superdiffusive behavior at short times while normal 

diffusion at longer time scales112. Leptos et. al. also performed experimental diffusion 

investigations of micron sized spheres in algae113 Chlamydomonas reinhardtii (CR). 

Chou and co-authors used light scattering and direct microscopy to study dynamics of 

phase separation in a critical binary mixtures of isobutyric acid-water and 2, 6- lutidine-water114. 

They confirmed that the growth of droplets speeds up with fluid flow caused by the curvature of 

surfaces that are irregular in shape and interpenetrates the nucleating fluid. 
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Jayalakshmi and Kaler studied the phase behavior of colloids (negatively charged silica 

particles) in a binary fluid mixture formed by 2-butoxyethanol and 2,6 methyl pyridine (lutidine) 

using light scattering115. Their phase studies show an observation of a second phase separation in 

the solvent phase that coexists at a lower temperature. With continuous heating, the mixture came 

to an equilibrium state but the phase boundary of the binary liquid is not seen. Phase behavior at 

different temperatures is studied at different solvent concentrations.  

2.3 TRANSLATIONAL AND ROTATIONAL DIFFUSION OF ANISOTROPIC COLLOIDS 

2.3.1 PREVIOUS WORK 

In the case of anisotropic colloids, for example, rods, give rise to translation and rotation 

diffusion both. Depending on the shape anisotropy, there are three theoretical models that can be 

used to find the translational and rotational diffusion coefficients. They are called as 

hydrodynamic stick (HS) theory116, Tirado and Garcia de la Torre’s (TT) theory117-119and Broersma 

relations120,121. The predictions of these theories are further stated in this section. TT and HS 

theories are applicable to rods of all aspect ratios, but Broersma relations are only suitable for 

rods with aspect ratio greater than 3.5. According to stick hydrodynamic theory, for prolate 

spheroids (a > b), where 2𝑎 = 𝐿 is the length of major axis and 2𝑏 = 𝑑 is the length of minor axis, 

the predictions say: 𝐷𝑎 = 𝑘𝐵𝑇/𝛾𝑎 and 𝐷𝑏 = 𝑘𝐵𝑇/𝛾𝑏 

𝛾𝑎 =
(𝑎2 − 𝑏2)16𝜋𝜂

(2𝑎2 − 𝑏2)𝑠 − 2𝑎
 

2.39 

𝛾𝑏 =
(𝑎2 − 𝑏2)32𝜋𝜂

(2𝑎2 − 3𝑏2)𝑠 + 2𝑎 
 

2.40 

and 
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𝑠 =
2

√𝑎2 − 𝑏2
 log

𝑎 + √𝑎2 − 𝑏2

𝑏
 

2.41 

where 𝛾𝑎 and 𝛾𝑏 are translational viscous friction coefficients in directions parallel and 

perpendicular to major axis of ellipsoids. In bulk; 

𝐷𝑇 = (𝐷𝑎 + 2𝐷𝑏)/3   2.42 

𝐷𝑎 =
𝑘𝐵𝑇[ln(2𝑟) − 0.5]

4𝜋𝜂𝑎
 

 2.43 

𝐷𝑏 =
𝑘𝐵𝑇[ln(2𝑟) + 0.5]

8𝜋𝜂𝑎
 

2.44 

𝐷𝑅 =
3𝑘𝐵𝑇[ln(2𝑟) − 0.5]

8𝜋𝜂𝑎3
 

2.45 

𝑟 =
𝑎

𝑏
 2.46 

For rotational diffusion:  

𝐷𝑅𝑎 = 𝑘𝐵𝑇/𝛾𝑎
𝑟 and 𝐷𝑅𝑏 = 𝑘𝐵𝑇/𝛾𝑏

𝑟 

where, 

𝛾𝑎
𝑟 = 

32𝜋𝜂(𝑎4 − 𝑏4)

3(2𝑎2 − 𝑏2)𝑠 − 2𝑎
 

2.47 

 

𝛾𝑎
𝑟 = 

32𝜋𝜂(𝑎2 − 𝑏2)𝑏2

3(2𝑎 − 𝑏2𝑠)
 

2.48 

𝛾𝑎
𝑟   and 𝛾𝑏

𝑟 are the rotational friction coefficients around and perpendicular to the prolate axis. 

Translational diffusion coefficient as given by TT theory: 

𝐷𝑇 =
𝑘𝐵𝑇

3𝜋𝜂𝐿
[ln (

L

d
) + 𝜈 

2.49 
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where, 𝜈 =  0.312 + 0.565
𝑑

𝐿
− 0.1

𝑑2

𝐿2   

And rotational diffusion coefficient  

𝐷𝑅 =
3𝑘𝐵𝑇

𝜋𝜂𝐿3
(ln (

L

d
) + 𝜎) 

2.50 

where, 𝜎 = −0.662 + 0.917
𝑑

𝐿
− 0.05

𝑑2

𝐿2  

According to Broersma’s relations for diffusion, the translational coefficient is given by: 

𝐷𝑇 =
𝑘𝐵𝑇

3𝜋𝜂𝐿
[ln(𝛿) − 0.5(𝛾𝑎 + 𝛾𝑏)] 

2.51 

Where, 𝛿 = ln (
2𝐿

𝑑
) , 𝛾𝑎 = 0.807 + (

0.15

𝛿
) + (

13.5

𝛿2 ) − (
37

𝛿3) + (
22

𝛿4) 

And 𝛾𝑏 = −0.193 + (
0.15

𝛿
) + (

8.1

𝛿2) − (
18

𝛿3) + (
9

𝛿4) 

𝐷𝑅 =
3𝑘𝐵𝑇

𝜋𝜂𝐿3
(𝛿 − 𝜉) 

2.52 

Where, 𝛿 = ln (
2𝐿

𝑑
) and 𝝃 = 1.14 + (

0.2

𝛿
) + (

16

𝛿2) − (
63

𝛿3) + (
62

𝛿4) 

Han et. al. measured the rotational Brownian motions of single ellipsoids in a quasi two 

dimensional confinements122. They measured short-time anisotropic and long-time isotropic 

rotational diffusion along the long and short axes of ellipsoids using video microscopy. They 

found that confinement in 2D alters the diffusion anisotropy (diffusion along the long and short 

axes) and the diffusion along the short axis much slower than the bulk diffusion in 3D.  

Vasanthi et. al. performed molecular dynamics (MD) simulations of translation and 

rotation of both oblates and prolate spherioids of different aspect ratios116. They found anisotropic 

diffusion in the direction parallel and perpendicular to the major axis in short times whereas 
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isotropic in long times. They also determined the scaling of diffusive motion to the aspect ratios 

of rods. Recently, Heyes used MD simulations to study the translational and rotational diffusion 

of rod shaped molecules. 

Cush et. al. used depolarized dynamic light scattering to determine the translational as 

well as rotational diffusion of tobacco mosaic virus (TMV) within aqueous polymer solutions of 

flexible carbohydrate dextran (MW ~ 505,000)123. They observed a decrease in rotational and 

translational diffusion with increase in polymer concentrations. They also found a cross over 

concentration of about 6.5 % above which the Stokes-Einstein relation fails. Later, they measured 

the translational and rotational diffusion of TMV in extended and globular polymer solutions124 

using the same experimental method and found that the shape of TMV can be considered as an 

effective probe in microrheology. 

Alam et. al. investigated translational and rotational diffusion of gold nanorods within 

various entangled solutions of polyethylene glycol (PEG) solutions with different molecular 

weights125. They used multi-photon fluctuation correlation spectroscopy (FCS) to calculate the 

nanoviscosity experienced by nanorods within different PEG concentrations. The resulted 

translational and rotational diffusion coefficients were compared to different theories. They alsoo 

studied the effects of nonhydrodynamic friction and polymer dynamics in the transport of 

nanorods.  

FCS was also used for studying nanorods’(NRs) diffusion and their dependence on aspect 

ratios by Tsay and group126. Rotational diffusion was found to be more sensitive to change in 

rods’ sizes and occuring at faster time scales than the translational diffusion. They studied non 
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specific binding of peptide-coated NRs with bovine serum albumin (BSA) by titrating and 

reported that rotational diffusion coefficient can be used an aid for studying binding and 

dynamics of conformations in biology. 
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CHAPTER 3 

EXPERIMENTAL METHODS 

Microscopic methods provide useful information about microscopic systems such as their 

shape and surface topography. Scattering techniques are very useful to study the correlations 

among positions and motions of the nanoparticles inside polymeric solutions. Traditionally, 

many light-scattering instruments and imaging techniques are used to gather useful information 

about the dynamics of a wide range of processes, for example, Brownian motion of colloidal -

particles, diffusion of nanoparticles inside proteins and polymer solutions, fluctuations in density 

of gases and liquids, intensity correlations of nanoparticles in polymer and electrolyte solutions, 

anisotropic diffusion of nanorods, change in dynamics of nanoparticles in gel-like polymer 

solutions with aging of the sample, etc127. There are many techniques available for determining 

the diffusion of micro and nanoparticles inside polymer solutions. The experimental techniques 

that I used in my research projects are as follows: 

3.1 FLUORESCENCE CORRELATION SPECTROSCOPY (FCS) 

3.1.1 INTRODUCTION TO FCS 

Fluorescence correlation spectroscopy (FCS), first developed by Madge, Elson and 

Webb128 in 1972, is a fluctuation correlation spectroscopy technique, which detects spontaneous 

microscopic fluctuations in number density and positions of molecules in dynamical processes. 

It is useful for measuring both the translational and rotational diffusion. FCS was further 

developed in 1993129, when a confocal illumination scheme was introduced. Since then FCS got 
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improved further and further in its sensitivity and productivity. FCS is applicable to many 

commercial, analytical, chemical and biological fields130. It was used to study the fluid dynamics 

of organic materials due to its high sensitivity131. It is also beneficial in studying the dynamics 

within living cells and enzymes132. 

FCS involves fluorescence, a process that involves a spontaneous de-excitation of 

electrons, which results in the emission of electrons at a certain wavelength. FCS requires very 

low concentration (picomolar to nanomolar) of samples to work properly as it is highly sensitive. 

The excitation can be one-photon or multiphoton. A two-photon excitation in shown in the figure 

3.1.1.1. Sometimes, the sample under observation fails to show fluorescence, in that case the 

sample needs to be labeled with a fluorescent dye. It is possible for the dye to get photobleached, 

which means that it will permanently become unable to fluoresce because of the photo-induced 

chemical alterations. That is why there is a need to select a dye which has low photobleaching 

and high fluorescent yield. Some examples of dyes which are suitable for labeling are rhodamine 

derivatives i.e. tetramethylrhodamine (TMR) and carboxyrhodamine (Rh6G)133. FCS is able to 

measure tiny fluctuations inside the sample which can be a result of Brownian motion, chemical 

10
-15

 

s
10

-9
 s 

FIGURE 3.1.1.1: Two photon excitation used for FCS experiments involves absorption of 

two photons with effectively half the energy (λ= 800 nm) required for the excitation to 

take place and emission of single photon of about double their energy. 
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reactions, etc133. FCS can be used in various situations e.g. in two-dimensional, three-dimensional 

diffusion and as well in the presence of flow in any direction as shown in figure 3.1.1.2. The 

fluctuations in fluorescence as a result of these dynamical processes can be quantified by a 

quantity known as an autocorrelation function (ACF), which measures the similarity with itself 

over a time lag τ (figure 3.1.1.3). It is defined by : 

𝐺(𝜏) =
< 𝛿𝐹(𝑡). 𝛿𝐹(𝑡 + 𝜏) >

< 𝐹(𝑡) >2
 

3.1 

where, < 𝐹(𝑡) > is the time average of fluctuation intensity and 𝛿𝐹(𝑡) and 𝛿𝐹(𝑡 + 𝜏) are the 

fluctuations around the mean value of fluctuation intensity at time 𝑡 and 𝑡 + 𝜏 , repectively. 

FIGURE 3.1.1.2: Different kinds of diffusion within the laser focus in FCS (Reprinted with 

permission from Annu. Rev. Biophys. Biomole. Struct. vol. 36, 151-169. Copyright (2007)). 
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Instead of auto-correlation, we use cross-correlation function (CCF) in analysis of few 

experiments (figure 3.1.1.3). Having two channels is beneficial to obtain the common fluctuating 

fluorescence signals given by: 

𝐺𝑖𝑗(𝜏) =
< 𝛿𝐹𝑖(𝑡). 𝛿𝐹𝑗(𝑡 + 𝜏) >

< 𝐹𝑖(𝑡). 𝐹𝑗(𝑡) >2
 

3.2 

The obtained autocorrelation or crosscorrelation curves need to be fitted with a suitable 

physical model in order to extract meaningful information134. There are different laser focus 

profiles are available for FCS fittings including 2D/3D Gaussian and Gaussian-Lorentzian. We 

can choose a suitable fitting model depending on the excitation type and dimensionality of 

FIGURE 3.1.1.3: Fluorescence fluctuations 𝐹(𝑡) as detected by one photomultiplier tube 

with < 𝐹(𝑡) > as their mean value. 

FIGURE 3.1.1.4: Fluorescence fluctuations 𝐹1(𝑡) and 𝐹2(𝑡) as detected by two photomultiplier 

tubes (PMT 1 and PMT 2) respectively with < 𝐹(𝑡) > as their mean value. 
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experimental system. Figure 3.1 shows the 2D and 3D diffusion, and directed flow with the laser 

focus profiles135 

 The laser source can be continuous i.e. one-photon excitation or pulsed i.e. two-photon 

excitation. Multi-photon excitations have several advantages to single-photon excitations. A two-

photon transition involves absorption of two photons with double the wavelengths as required 

for the actual transition to happen and emission of one photon. For such three-particle events, an 

extremely high photon flux is required which can be provided through pulsed lasers. The 

probability of two-photon absorption is directly proportional to the square of excitation energy. 

And the intensity of light decreases quadratically as the distance from focal plane increases; 

therefore, a very tiny focal volume is excited in two-photon excitations as contrast to one-photon 

excitations. In contrast to one-photon excitations, there is no need of a pinhole making two-

photon excitation better for highly photosensitive biological samples in order to prevent 

damaging due to light136. 

3.1.2 EXPERIMENTAL SET UP FOR FCS 

The optics in FCS is inspired by the two-photon confocal microscopy invented by Denk, 

et. al. in 1990133. The set up can vary as per the needs of the experiments. The set up being used in 

our experiments is shown in the figure 3.1.2.1. The excitation used in our FCS is two-photon, 

where nanoparticles present inside the excitation volume absorbs two photons within a few 

femtoseconds137. As central to any FCS set up, there is a laser source, in our case, a high power 

(0.9 watts) femtosecond Ti:sapphire laser pulsing at high frequency (80MHz) that provides the 

required energy for a photon pair with wavelengths 800 nm for the excitation to take place. The 

laser light after coming out of the laser source is attenuated using a neutral density filter (NDF), 
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which is then directed towards the beam expander present inside a dark closed space after 

reflecting off a few mirrors. After the beam is expanded to a value to completely fill the objective’s 

aperture, the laser beam gets reflected from a dichroic mirror, which reflects the wavelengths of 

800 nm and transmits all below this value. Now the laser light is focused into the sample with the 

help of the objective of the microscope and a small volume is being excited in the sample. A 

nanoparticle then absorbs two photons and emits one photon. These fluorescence wavelengths of 

about 500 nm- 600 nm are then collected by the same objective and transmitted through the 

dichroic mirror and gets collected by two photomultiplier tubes (PMTs) after passing through an 

Ti:sapphire 

Laser (800 nm, 

80MHz, 0.9 

watts) 

Beam 

Expander 

Dichroic 

Mirror 

 PMTs 

Sample 

stage  

Objective  

Emission  

Filter 

NDF 

Closed dark 

space 

Mirror 2 

Mirror 1 

Mirror 3 

FIGURE 3.1.2.1: Experimental set up for FCS consisting of a laser source, mirrors, beam 

expander lenses, objective lens of high numerical aperture, a dichroic mirror, an emission 

filter and two photomultiplier tubes (PMTs) for fluorescence detection. 
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emission filter to filter out any backscattered signals. We get photon counts with respect to time 

using the ISS software. By analyzing the data and correlation curves, we can get the desired 

properties of nanoparticles i.e. translational and rotational diffusion coefficients. If the viscosity 

of the medium is known, we can use Stokes-Einstein relation to determine the particle size. 

Conversely, for known particle size we can determine the medium’s viscosity that the 

nanoparticles experience. This viscosity, also called as nanoviscosity can be substantially different 

from the bulk viscosity, which is measured in a rheometer. 

3.1.3 FCS THEORY  

FCS detects the fluctuations in emitted fluorescence light intensity. Such fluctuations in 

fluorescence at molecular levels arise due to many reasons including diffusion, external flows 

and chemical reactions occurring in the samples under investigation and can be quantified in 

terms of number of photons emitted when the fluorescent molecules pass through a small laser 

focus (figure 3.1.3.1). The fluorescence fluctuation intensity 𝛿𝐹(𝑡) can be written as: 

𝛿𝐹(𝑡) ≡ 𝐹(𝑡)−< 𝐹(𝑡) > 3.3 

FIGURE 3.1.3.1: Profile of femtolitre laser focus as obtained by the objective lens. When the 

fluorescence molecules enter the laser focus, they emit photons and we record photon counts 

over time to get the autocorrelation function of fluorescence intensity. 
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where, 𝐹(𝑡) is fluorescence signal at any time 𝑡 and < 𝐹(𝑡) > is the average fluorescence intensity 

signal.  

In terms of spatial profile for a fluorescent dye concentration  𝐶(𝑟, 𝑡) at any location 𝑟 at 

time 𝑡 and the excitation light signal 𝐸(𝑟), 𝐹(𝑡) can be defined as: 

𝐹(𝑡) = 𝑘𝑄 ∫𝐸(𝑟)𝐶(𝑟, 𝑡)𝑑𝑟 3.4 

where, Q is a product of absorptivity and quantum efficiency of the optical system and k is a 

constant. 

Also, fluorescence fluctuation intensity 𝛿𝐹(𝑡) can now be written as: 

𝛿𝐹(𝑡) ≡ 𝑘𝑄 ∫𝐸(𝑟)𝛿𝐶(𝑟, 𝑡)𝑑𝑟 3.5 

with 𝛿𝐶(𝑟, 𝑡) as the particle concentration change at any location 𝑟 at time 𝑡 given by: 

𝛿𝐶(𝑟, 𝑡) = 𝐶(𝑟, 𝑡)−< 𝐶 > 3.6 

Thus, the autocorrelation function 𝐺(𝜏) over a time lag 𝜏 given by: 

𝐺(𝜏) =
< 𝛿𝐹(𝑡). 𝛿(𝐹 + 𝜏) >

< 𝐹(𝑡) >2
 

3.7 

which reduces to 

𝐺(𝜏) =
∬𝐸(𝑟)𝐸(𝑟′) < 𝛿𝐶(𝑟, 𝑡). 𝛿𝐶(𝑟′, 𝑡 + 𝜏) > 𝑑𝑟𝑑𝑟′

(< 𝐶 > ∫𝐸(𝑟)𝑑𝑟)2
 

3.8 

For a 3D Gaussian laser beam profile with beam’s half-width 𝜔0 and half-height 𝑧0 for a two-

photon excitation, 𝐸(𝑟) is given by: 
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𝐸(𝑟) = 𝐸(𝑥, 𝑦, 𝑧) = 𝐸0exp (−
4(𝑥2 + 𝑦2)

𝜔0
2 −

4𝑧2

𝑧0
2 ) 

3.9 

Fick’s second law relates the change in fluorescence particle concentration 𝜕𝛿𝐶(𝑟, 𝑡) with 

diffusion coefficient 𝐷 of particles moving in a Brownian motion as follows: 

𝜕𝛿𝐶(𝑟, 𝑡)

𝜕𝑡
= 𝐷∇2𝛿𝐶(𝑟, 𝑡) 

3.10 

with a solution in the form of 

𝛿𝐶(𝑟, 𝑡) =
< 𝐶 >

√4𝜋𝐷𝑡
exp (−

𝑟2

4𝐷𝑡
) 

3.11 

We can find the diffusion coefficients by autocorrelating the change in particles’ concentration 

over time as shown in the equation below: 

𝐺(𝜏) = (
2√2

𝜋√𝜋𝜔0
2𝑧0 < 𝐶 >

)
1

(1 +
8𝐷𝜏
𝜔0

2 )√1 +
8𝐷𝜏
𝑧0
2

=
𝐺(0)

(1 +
8𝐷𝜏
𝜔0

2 )√1 +
8𝐷𝜏
𝑧0
2

 
3.12 

Fluorescent particles’ mean density < 𝐶 >  with excitation volume 𝑉 is given by: 

< 𝐶 > =
1

2√2𝑉𝐺(0)
=

2√2

𝜋√𝜋𝜔0
2𝑧0𝐺(0)

 
3.13 

𝑉 =
𝜋√𝜋𝜔0

2𝑧0

23
 

3.14 

The average number of excited molecules can be found by 

< 𝑁 > = 𝑉 < 𝐶 > =
1

2√2𝐺(0)
 

3.15 

In presence of flow along with their diffusion, the ACF 𝐺(𝜏) changes to: 
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𝐺(𝜏) =
𝐺(0)

(1 +
8𝐷𝜏
𝜔0

2 )√1 +
8𝐷𝜏
𝑧0
2

exp (
−(𝑉𝑓𝑙𝑜𝑤(𝜏))3

𝜔0
2𝑧0(1 +

8𝐷𝜏
𝜔0

2 )√1 +
8𝐷𝜏
𝑧0
2

) 
3.16 

3.2 DIFFERENTIAL DYNAMIC MICROSCOPY (DDM) 

3.2.1 INTRODUCTION TO DDM 

There has been always a problem of possible diffraction associated with optical systems, 

which limits resolving the particles smaller than the wavelength of light in simple microscopes. 

This technique, which was first developed by Cerbino and Trappe138 in 2008, comes under near 

field scattering techniques and is very useful tool for studying biological and soft matter systems. 

This is basically based on analyzing the motion of particles in Fourier space that extracts useful 

information about their intensity fluctuation correlations. Here pixilated sensor (CCD camera) is 

used instead of the usual single sensor (photomultiplier tube), which makes the measurements 

of intensity variations at many different values of wave vectors simultaneously at a given time 

and at different time steps at a given wave vector139. In comparison to the laser light, a relatively 

large-diameter beam of light passes through the sample holder and then falls onto the camera, 

which measures the intensity fluctuations caused by the interference of beam and the scattered 

light139. Light scattered at certain angles results in providing the useful information at different 

wave vectors. Also, we do not need to track single particles individually, which is difficult if there 

is a lot of background noise. 

The intensity correlation functions are analogous to the ones obtained by other spectroscopy 

techniques like dynamic light scattering, and x-ray photon correlation spectroscopy22. DDM can 

be performed using different microscopic methods such as bright field imaging, fluorescence, 
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confocal, and dark-field imaging. It is a very useful technique as it combines the advantages of 

other imaging and scattering techniques and it can overcome many shortcomings and limitations 

associated with them. Some of the advantages of DDM over other techniques are as follows23: 

• It requires a very small volume of a sample. 

• It works for the dilute to concentrated systems which can be heterogeneous spatially or 

dynamically, such as gels, glasses, etc. 

• It can be applied to the samples, which give low signal or are dense optically. 

• It is cost-effective as we can work with just a simple microscope, camera, and computer 

with some imaging software installed on it. 

• DDM is an automatic statistical ensemble average method that does not require to track 

and analyze particles individually. 

DDM is capable of generating a measurable signal from subdiffraction objects139, for example, 

if we look at raw images of a colloidal suspension for 100 nm polystyrene particles, we can barely 

see any signal produced by the particles. But we can see a significant signal after subtracting two 

images taken at different times. Also as the time difference between two images increases, the 

signal in the difference image strengthens up139. We can observe this behavior by calculating the 

variance of the difference image at all time delays until the variance saturates.  

Due to Brownian motion, the particles undergo rearrangement in space, which is the reason 

of the increased variance for the difference image but it saturates after long time intervals because 

the subtracted images become uncorrelated139. 

3.2.2 EXPERIMENTAL VARIATIONS FOR DDM 
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3.2.2.1 BRIGHTFIELD DDM 

 It is simple microscopic technique140 that requires a normal setup (figure 3.2.2.1.1) consists 

of an illumination light source, halogen lamp in our case, fitted at the microscope stand, a 

condenser lens to focus the light onto the sample, objective lens to collect and magnify the light 

rays from the sample and a camera to view the sample’s images. 

3.2.2.2 FLUORESCENCE DDM 

FIGURE 3.2.2.1.1: Ray diagram of bright field microscopy (source: Wikipedia) 

FIGURE 3.2.2.2.1: Set up for fluorescence microscopy (source: Wikipedia) 
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 In this technique, a fluorescence microscope is used which uses fluorescence to generate 

an image of the sample under investigation. The sample is illuminated with a light source of a 

specific wavelength, which is absorbed by the fluorescent particles. As a result, light of longer 

wavelengths gets emitted24. The components of this setup (figure 3.2.2.2.1) include laser light, the 

excitation filter, a dichroic mirror, and the emission filter. Halogen lamps can’t be used here 

because they can’t provide intense and nearly-monochromatic light illumination24.                          

3.2.2.3 CONFOCAL DDM 

Confocal microscopy is also an optical imaging technique, which provides improved 

optical resolution and contrast of the image taken. It is done by placing a spatial pinhole at the 

confocal plane of the lens, which eliminates the light rays that are not in focus24. The path of light 

is shown in the figure 3.2.2.3.1. A confocal microscope can only see images at one depth at a time 

and able to acquire sets of images at different depths inside a thick sample. 

3.2.3 DIFFERENTIAL DYNAMIC ALGORITHM (DDA) 

A step by step description of DDA is given in figure 3.2.3.1. To start with, each image in 

this stack represents an intensity distribution which is denoted by I(x,y,t) at some time t. A 

FIGURE 3.2.2.3.1: Principle of confocal microscopy (source: Wikipedia) 
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difference image signal I(x,y,t) is calculated by subtracting one image from another for each 

image pair present in the stack. Then a fast Fourier transform I(qx,qy,t) of each difference signal 

I(x, y,t) is calculated, which gives us a Fourier distribution of intensity fluctuations. Now 

I(qx,qy,t) is averaged over all image pairs giving us a 2-D ensemble average distribution  

I(qx,qy,t). At the end, we find the image structure function D(qx,qy,t), which can be 

calculated by finding the power spectrum of 2D Fourier distribution given by I(qx,qy,t)2. 

Therefore, the radially averaged image structure 𝐷(𝑞, ∆𝑡) function141 is given by: 

𝐷(𝑞, ∆𝑡) = < |∆𝐼(𝑞, ∆𝑡)|2 > 3.17 

 

 

and the wave vector 𝑞 is calculated by: 

𝑞 = √𝑞𝑥
2 + 𝑞𝑦

2 
3.18 

 

 

This whole process is repeated for all possible time steps in the image stack. This can be used for 

isotropic images. But it breaks down if there is directionality, such as flow. 

Image structure function 𝐷(𝑞, ∆𝑡) for processes involving single relaxation with characteristic 

relaxation time141 τ is fitted to the following equation: 

𝐷(𝑞, ∆𝑡) = 𝐴(𝑞) [1 − 𝑒𝑥𝑝 (
−∆𝑡

𝜏(𝑞)
)] + 𝐵(𝑞) 

3.19 

where,  𝐴(𝑞) and 𝐵(𝑞) are related to the imaging optics and imaging noise, respectively. 

Finally, the diffusion coefficient D of particles can be found by fitting image structure 

function with different physical models. For example, for normal diffusion, 𝜏 vs. 𝑞 can be best 

fitted with equation of straight line of slope -2 as shown in the equation below137: 
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𝜏(𝑞) =  
1

𝐷𝑞2
 

3.20 

 

 

3.3 FALLING BALL VISCOMETER 

 A falling ball viscometer is a device to measure the viscosity of a fluid whose properties 

doesn’t vary with time or flow conditions. This device’s set up is shown in the figure 3.3.1 below:                          

It is based on the Stokes’ law which tells that a small spherical particle of radius 𝑟 experiences a 

frictional force 𝐹 while passing through in a viscous fluid of viscosity 𝜂 with a velocity 𝜐 which 

is given by: 

FIGURE 3.2.3.1: Steps involved in the analysis of DDM: Differential Dynamic Algorithm 

(DDA) 
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𝐹 = 6𝜋𝑟𝜂𝜐 3.21 

 

 

 The fluid is kept stationary inside a cylindrical glass tube which is fixed at an angle of 80° 

to the ground. There is a water jacket surrounding the cylindrical tube, which is provided to keep 

a control on the temperature of the working sample. Firstly, the tube is filled with the polymer 

solution. Then one of the six available balls came with this device is chosen (looking at the test 

certificate) and is released into the tube from the top. The six balls are with different diameters 

and densities which make this device capable of measuring a large range of viscosities (0.5 - 70000 

mPa.s) of fluids. We need to keep an eye on the tube and motion of the falling ball and note the 

time it takes to travel the distance between the upper and the lower ring mark in the tube. This 

time of fall 𝑡 of the ball is needed to calculate the viscosity of the fluid 𝜂, as shown as in the 

equation written below: 

𝜂 = 𝑡(𝜌1 − 𝜌2)𝐵 3.22 

 

 

FIGURE 3.3.1: Left: falling ball viscometer, right: variation of viscosity with concentration 

of glycerol-water mixtures measured from falling ball viscometer. 
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where,  𝜌1 and 𝜌2 are the densities of the ball (according to the test certificate) and sample fluid 

respectively.  𝐵 is the value of ball constant of the ball used, as given in the test certificate. All the 

measurements were taken at 20 0C for our experiments. 
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CHAPTER 4 

DIFFUSION OF NANOPARTICLES WITHIN HIGHLY CONCENTRATED POLYMER 

SOLUTIONS 

4.1 COMPARISON OF NANOPARTICLE DIFFUSION USING FLUORESCENCE 

CORRELATION SPECTROSCOPY AND DIFFERENTIAL DYNAMIC MICROSCOPY 

WITHIN CONCENTRATED POLYMER SOLUTIONS 

The following material was originally published in Applied Physics Letters (2017)142 

4.1.1 INTRODUCTION 

The study of dynamics of nanoparticles (NPs) in polymer and biopolymer solutions is of 

great importance in many disciplines ranging from soft matter physics to drug delivery. For 

examples, the measurement of random Brownian motion of particles with different sizes in 

complex fluids can give information about the length-scale dependent viscoelastic properties. In 

the field of biophysics and drug delivery, the passive and active transport of macromolecules and 

nanoparticles can be understood by studying their motion in crowded heterogeneous 

environment full of obstacles. Fluorescence correlation spectroscopy (FCS) has been established 

as a useful method to study the Brownian motion of polymers143,144, proteins145, quantum dots146, 

and nanoparticles147 inside condensed matter systems. FCS uses a high numerical aperture (N.A.) 

objective to create a diffraction limited laser focus. The fluorescent molecules entering and leaving 

the open focal volume generate bursts of photons. Their concentration needs to be small, so that 

the number fluctuation is large according to Poisson statistics. This fluctuation in count is 
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correlated to obtain a curve, which after fitting with suitable model can give both the number of 

particles within the focal volume and diffusion coefficient (D) of the fluorescent molecules or 

particles. The translational diffusion coefficient144,148, the rate of flow or chemical reactions145,149, 

rotational diffusion for anisotropic particles125,150, and internal motion of large macromolecules151 

can be studied with FCS. The fitting model of FCS assumes that particles are like a point source 

of light, i.e., their size is much smaller than the size of the laser focus (0.3 m). Otherwise, one 

has to take into account the finite size effect in the fitting model, which necessarily complicates 

the analysis of the correlation functions. Therefore, majority of FCS experiments was done with 

particle size of less than 50 nm. Microscopy and scattering techniques are two other powerful 

methods. If the signal-to-noise ratio is large enough and if the assumption that particle is a 

spherical source of light holds, one can fit the intensity distribution with a Gaussian function and 

locate the position of the particles within 10-15 nm accuracy. The problem arises in systems with 

large background noise, such as in many polymer and biopolymer solutions, where particle 

tracking to determine the mean-square-displacement (MSD) may become prohibitively difficult. 

Scattering is a complementary method, which gives relaxation times () of the system as a 

function of wave-vectors (q). The inverse of the wave-vector sets up a length-scale and the 

relaxation time corresponds to the dynamics at that length-scale. For standard dynamic light 

scattering (DLS) experiments, the length-scale is varied from a few tens to a few hundreds of nm 

by selection of different scattering angle. The problem with DLS is that unlike FCS, the method is 

not specific. So, in a mixture of particles and polymers, both contribute to the scattering and if 

they have dynamics occurring at similar time-scales, their separation at the intensity correlation 
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curve is not possible. The scattering techniques also require a different kind of set-up compared 

to FCS and microscopy methods152. 

Recently, Cerbino et. al. had developed a microscope based scattering technique138,153, 

called differential dynamic microscopy (DDM), which can give wave-vector dependent 

relaxation times from real space images153,154. It is an automatic ensemble average method that 

does not require to track and analyze particles individually152,153,155,156. An advantage of DDM 

compared to some of its earlier variations of near-field scattering techniques157 is that analysis is 

differential. As a result, background noise cancels out. Using brightfield, confocal, fluorescence, 

and dark-field microscopy158, DDM had been used to study active motion of particles inside cell159, 

fluctuations in non-equilibrium systems160, and diffusion of nanoparticles161,162. A majority of 

DDM experiments used particles with diameter about 100 nm or higher.  

We extend DDM to 50 nm length-scale, which is closer to the upper limit of particle size 

as used in FCS experiments. We used confocal microscopy163 to collect movies of green fluorescent 

particles within a polymer solution. The particles were not clearly distinguishable from the noise 

in the images. With the same sample, we performed two-photon FCS experiments and compare 

the two measurements, which showed excellent agreement. Much celebrated Stokes-Einstein (SE) 

relation connects particle diffusivity to solution viscosity and particle size. But several recent 

studies-both experimental and theoretical-had shown that diffusion of nanoparticles in entangled 

polymer solutions or melts can be much faster compared to the expectation based upon bulk 

viscosity. Therefore, the traditional rheology measurements to predict the diffusion coefficient of 

NPs would fail in these systems. The results reported in this letter bridge the gap for FCS and 
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DDM experiments and extend DDM to study the rheological properties of complex fluids at few 

nanometer length-scales.  

4.1.2 EXPERIMENTAL SECTION  

Polyethylene oxide (PEO) of molecular weight, Mw = 600 kg/mol in the form of powder 

was purchased from Polymer Sources, Inc. and fluoresbrite carboxylate microspheres of 25 nm in 

radius were purchased from Polysciences, Inc. PEO was dissolved in deionized water to prepare 

two different volume fractions 𝜙 = 0.0069 and 0.02, nanoparticles were added in the solution, 

which was then heated and stirred at 300C. Two-photon FCS experiments were performed with 

a Ti:sapphire laser with wavelength of 800 nm and repetition frequency of 80 MHz. An oil 

objective (N.A. = 1.25, 100x) was used to focus the laser beam and the photon counts were 

recorded by two photomultiplier tubes after a 50-50 beam splitter. The autocorrelation functions 

(ACF) from these counts were obtained by using the ISS software (Urbana, IL). In figure 4.1.3.4, 

we showed ACFs of 25 nm particles diffusing in PEO-water solutions for two different volume 

fractions. The data fitting was performed by using the equation: 

𝐺(𝜏) =
𝐺(0)

1 + (
8𝐷𝜏
𝜔0

2 )√1 + (
8𝐷𝜏
𝑧0
2 )

 
4.1 

where, D is the diffusion coefficient of the particles, 𝐺(0) is the value of ACF at short time which 

is inversely proportional to the number of particles within the laser focus, 𝜔0 is the half-width, 

and 𝑧0 is the half-height of the laser focus. For oil objective, the calibration using a well-known 

dye rhodamine 6G in water gave  𝜔0  0.39 µm and 𝑧0  2 µm.  
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For DDM experiments, first we validated our image acquisition and analysis by collecting 

brightfield movies of polybead polystyrene latex microspheres (Polysciences, Inc.) of diameters 

100 nm, 200 nm, and 1 m (Polysciences, Inc.) diffusing in neat water. The samples were loaded 

on 3” × 1” × 1.0 mm sized plain beveled edge microscope slides, which were covered with a cover 

glass on top with a double-sided scotch tape that acts as a spacer. The assembly was sealed at the 

edges to prevent evaporation. Brownian motion of the particles was captured using an air 

objective (N. A.=0.75, 60x) and a fast ccd camera (Jai corporation) with pixel size of of 0.15 µm. 

Video analysis was performed with a home-built Matlab based program. Briefly, difference image 

signal I (x,y,t) was calculated by subtracting one image intensity distribution, I (x,y,t) from 

another I (x,y,t+t) for each image-pair present in the video. Assuming isotropy, the radially 

image structure function, 𝐷(𝑞, ∆𝑡) = < |∆𝐼(𝑞, ∆𝑡)|2 > was obtained, where |∆𝐼(𝑞, ∆𝑡)| is the 

Fourier transform of the difference signal. The image structure function138 was fitted to the 

equation: 

𝐷(𝑞, ∆𝑡) = 𝐴(𝑞)[1 − 𝑔(𝑞, ∆𝑡)] + 𝐵(𝑞 4.2 

where, 𝑔(𝑞, ∆𝑡) = 𝑒𝑥𝑝 (
−∆𝑡

𝜏(𝑞)
) for processes involving single relaxation, 𝐴(𝑞) is the convolution of 

the particles scattering properties with the optical transfer function of the imaging optics, 𝐵(𝑞) is 

related to the imaging noise and incoherent scattering, and τ(q) is the wave-vector dependent  

relaxation time. For Brownian particles138, the diffusion coefficient D can be found by fitting τ vs. 

𝑞 in log-log plot with an equation of straight line with slope -2: 

𝜏(𝑞) =  
1

𝐷𝑞2
 

4.3 
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We expect such large particles diffusing in Newtonian fluids to have diffusion coefficient as 

predicted by Stokes-Einstein’s equation:  

𝐷𝑆𝐸 =
𝑘𝐵𝑇

3𝜋𝜂𝑑
 

4.4 

where, 𝑘𝐵 is the Boltzmann constant, 𝜂 is the solvent’s viscosity, 𝑇 is the absolute temperature 

and 𝑑 is the hydrodynamic diameter of the particles.  

4.1.3 RESULTS AND DISCUSSION 

In figure 4.1.3.1, we plotted D as a function of inverse size of the particles. From the slope 

of the graph, we obtained the viscosity, 𝜂 = 0.96 mPa.s, which matches very well with the viscosity 

of water at 23 0C (0.93 mPa.s). After verifying the method, we used DDM to study diffusion of 

relatively smaller nanoparticles, 25 nm in radius, within an aqueous viscoelastic polymer 

solution. About 500 video frames were recorded by using a confocal microscope (Nikon A1Rsi) 

FIGURE 4.1.3.1: Diffusion coefficients as obtained through DDM are plotted as a function of 

inverse particle size (d). We obtained D for particles of diameter 100 nm, 200 nm and 1 µm 

within de-ionized water to be 4.60 ± 0.68 µm2/s, 2.15 ± 0.21 µm2/s, and 0.472 ± 0.001 µm2/s, 

respectively. The data showed D  1/d. 
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equipped with an oil objective (N. A. =1.4, 100x) and a resonant scanner operating at 12 kHz. In 

figure 4.1.3.2, we showed the series of image structure functions for two different polymer 

volume fractions in water. The curves are well fitted with a single relaxation time. The q-

dependence of the relaxation time as determined by DDM is shown in figure 4.1.3.3 and as the 

fittings showed that the relaxation times decay  as 𝑞−2 as predicted for normal Brownian motion. 

For normal diffusion, mean-square-displacement (MSD) scales with time. The 

corresponding length-scale associated with the wave-vector ranges from 0.6 m to 1.5 m. This 

is similar to the length-scale probed in FCS expeiments, 2𝜔0  0.8 m. From the slopes of the 

graphs we determined diffusion coefficient, D of the particles in PEO samples with volume 

fractions, 𝜙 = 0.0069 and 0.02 to be 0.19 ± 0.047 µm2/s and 0.029 ± 0.001 µm2/s, respectively. These 

match very well with FCS results. We calculated some of the important length-scales of the 

system71 (table 4.1.3.1). Water is a good solvent for PEO and it assumes a swollen random walk 

conformation. The radius of gyration, Rg is related to the molecular weight (Mw) according to: 

FIGURE 4.1.3.2: Image structure functions vs. time interval at six different values of wave-

vectors for the nanoparticles within PEO solutions at volume fraction, 𝜙 = 0.0069. The solid 

lines correspond to the fittings of image structure function with Eq. 4.2 assuming a single 

exponential relaxation. The corresponding q-values were shown. The images were collected 

by a confocal microscope.  
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Rg=0.02(Mw)058 nm. The radius of gyration Rg for 600K PEO in water is found to be  45 nm. This 

is for dilute solution. As the polymer concentration increases, Rg decreases as -⅛, where  is the 

polymer volume fraction. The overlap concentration denotes the transition from dilute to 

semidilute regime, where the chains begin to interact. It is given by a well-known relation: * = 

Mw/(4/3**π*Rg3*NA), where * is the overlap volume fraction,  is the density of polymer, and 

NA is the Avogadro number. We determined the overlap volume fraction 𝜙*= 0.0024. The 

entanglement concentration of PEO is given as: e=Me/Mw, which is 0.0033 for the polymer used 

(Me = 2 kg/mol for PEO). Our experiments were performed slightly above the semidilute solution 

and in the entanglement regime63,164. The correlation length () is the most important length-scale 

in semidilute solution, which scales with polymer concentration according to: ()≈ Rg (/*) -0.76. 

We determined,   20 nm and 9 nm for polymer volume fractions, =0.0069 and 0.02, 

respectively. So, for our experiments, polymer size > particle size > correlation length. The tube 

FIGURE 4.1.3.3: The decay times () as obtained from fittings in Figure 4.3.2 are plotted 

against the wave-vectors (q) for both samples of PEO. Circles: =0.0069, Squares: =0.02. The 

solid line is the fit assuming a normal Brownian diffusion according to Eq. 4.3. D obtained 

from DDM matched within 1% of the values obtained from FCS. (Inset) Diffusion coefficient 

(in m2/s) is plotted as a function of PEO volume fraction in log-log plot. The straight line has 

a slope of -1.52 as expected from theory for particles with size greater than the correlation 

length but smaller compared to tube diameter. 
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diameter in the concentrated entangled polymer solution is given as: a()=a(1)-0.76, where a(1) is 

the tube diameter in the melt and a(1)= 4 nm for PEO. The tube diameter is 78 nm for polymer 

volume fraction, =0.02. The scaling theory of particle mobility in polymer solution57 had 

identified several regimes of diffusion depending upon particle size. Two cross-over volume 

FIGURE 4.1.3.5: Diffusion coefficients D as obtained through DDM and FCS are plotted as 

a function of PEO concentrations. We obtained good agreement of D within uncertainties 

in both the concentrations using DDM and FCS demonstrating normal diffusion. 

 

FIGURE 4.1.3.4: FCS autocorrelation functions for 25 nm radius green fluorescent 

nanoparticles diffusing within entangled PEO solutions for two different polymer volume 

fractions. The fitting of the curves is according to Eq. 4.1 as given in the text. The diffusion 

coefficients obtained from fittings are 0.19 ± 0.007 µm2/s for =0.0069 and 0.030± 0.001 µm2/s 

for =0.02, respectively. 
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fractions are of significance for our experiments, *(Rg/d)1.32 and a  *(d/a(1))-1.32, determined 

0.0021 and 0.035, respectively. Therefore, our experiments were performed in the range of 

volume fraction, where 
 <  < a. In this intermediate size regime, the particle motion is affected 

by the segmental dynamics of chains63. They do not feel the bulk viscosity as measured by a 

rheometer, but a much smaller nanoviscosity. The effective viscosity scales as, eff ~ s(d/ξ)2, where 

s is the solvent viscosity. As -0.76, the particle diffusion coefficient is expected to scale as, D~-

1.52. As shown in figure 4.1.3.6, our measurements are in good agreement with this prediction.  

In conclusion, we compare results of two different experimental methods, fluctuation 

correlation spectroscopy and differential dynamic microscopy to study nanoparticle diffusion 

within concentrated polymer solution. The measured diffusion coefficients are in good agreement 

with each other and both showed normal diffusion. The volume fraction dependence of diffusion 

coefficients can be explained with scaling theory. The results demonstrated that DDM can be 

FIGURE 4.1.3.6: Diffusion coefficient (in m2/s) is plotted as a function of PEO volume 

fraction in log-log plot. The straight line has a slope of -1.52 as expected from theory for 

particles with size greater than the correlation length but smaller compared to tube diameter. 
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extended at sub 100 nm size range of the particles to measure length-scale dependent rheology of 

complex fluids. 

TABLE 4.1.3.1: Important Parameters for PEO 

 
Molecular weight, 

Mw 

 
600 kg/mol 

Radius of Gyration, 

Rg = 0.02 Mw 0.58 (nm) 

 
44.91 

 
Volume fraction, 

 range 

 
0.0069 - 0.02 

Overlap volume fraction 
 

* = Mw /(4/3* ρ *π*R3*N ) 

(ρ PEO = 1.126 g/ml); 

 

 

0.0023 

Entanglement concentration 

 

 e = Me/Mw (Me = 2 kg/mol for PEO)  

 
0.0033 

Correlation Length, 

ξ() ≈ Rg (/*) -0.76 (nm) 

 
3.75 – 8.8 

Tube diameter 

      a() ≈ a(1)  -0.76 ( nm)  

a(1) = 4 nm,  = 

                 

 

                                 78.21 
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CHAPTER 5 

DYNAMICS AND MELTING OF COLLOIDAL STRUCTURES FORMED ON TOP OF 

CURVED SURFACES 

5.1 INTRODUCTION 

Study of the dynamical and structural properties of 2D crystals formed on curved surfaces 

is very important in the fields of drug delivery165, engineering166,167 and biophysics168,169. There has 

been a lot of interest in studying the structure and dynamics of particle configurations on curved 

surfaces12,16,17,170,171 since Thomson’s problem171 of charged particles interacting through Coulomb 

potential in spherical shell. Most of the work in this field focused on how the packing of particles 

on curved surfaces differs from self-assembly on the flat surfaces172. Bausch et. al. presented the 

experimental realization of two dimensional self-assembly of colloids on spherical water droplets 

using optical microscopy165. They marked the presence of stable defects called as grain boundary 

scars induced by disclinations due to the curvature.  

The most well-known Kosterlitz Thouless Halperin Nelson Young (KTHNY) theory173 of 

phase transitions in 2D was developed in the 1970s. This theory states that two-dimensional 

systems exhibit an intermediate phase i.e. hexatic between an ordered crystal and a disordered 

liquid state. These three states can be distinguished by the arrangement of atoms in the system at 

the macroscopic scale. For a crystalline state, two kinds of orders are present i.e. translational and 

orientational. The hexatic phase is an ordered phase too but without translational order. It is 

generally characterized by six-fold orientational order while liquids do not have any sort of 

periodic ordering. According to KTHNY theory174, 2D melting takes place in two stages and there 
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is a continuous phase transition from solid to hexatic and hexatic to liquid state.  In 1979, the 

phase transition from liquid to crystalline state of electrons on a liquid-He surface was first 

studied175. 

Inside a crowded environment of particles, de Gennes narrowing (DGN) is marked by the 

slowing down of system dynamics as a result of strong spatial correlations between the nearest 

neighboring particles9. DGN is characterized by peaks in structural and dynamical curves. Hong 

et. al. used neutron scattering to describe the relative motion of proteins and found that wave 

vector dependence of the interdomain diffusion is inversely proportional to the probability 

distribution of spatial configurations, given by the structure factor10. This means that a highly 

populated configuration fluctuates slower than a less populated configuration.  

Optical microscopic methods help in experimental observation and validation of this 

phenomenon. We used a recently developed microscopy based scattering technique i.e. 

differential dynamic microscopy (DDM) which was first used to quantify the motion of colloidal 

particles in the reciprocal space138. It gained lot of interest138,153-156,158,160,163 among many fields 

because it is very cost effective and easy to use experimental technique. DDM gives wave 

dependent relaxation times from acquired real space image stacks. This method is faster and 

easier than other available light scattering and particle tracking techniques. It provides dynamical 

information of the system without the need of individual particles being tracked and resolved as 

it performs an automatic ensemble averaging during the analysis. Other light scattering methods 

require a coherent source of light but DDM works well even with an ordinary white light 

microscope. DDM analysis is based on analyzing differential image signals making it uniquely 
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advantageous over other scattering techniques as it cancels out any background noise. DDM has 

been used in many variations such as brightfield, dark-field, fluorescence and confocal 

microscopy to study bulk motility of E. coli155, wave vector dependence of highly concentrated 

systems176, non- equilibrium system fluctuations177-179 and diffusion of spherical138 and 

asymmetric155 nano and microparticles. 

5.2 EXPERIMENTAL SECTION 

Colloidal discs were prepared starting from 1 µm diameter fluorescently labelled 

polystyrene (PS) spheres. The method was similar to the preparation method of ellipsoidal 

polystyrene particles given by Ho and co-authors180 (figure 5.2.1). The spheres were embedded in 

an elastomeric film of poly(dimethyl siloxane) (PDMS). This material is clamped, heated above 

the glass transition temperature of the matrix (150 0C), and then a uniaxial compression is used 

between two flat plates. The aspect ratio, κ=b/a, where a is the diameter and b is the thickness of 

the disc depends on the amount of strain. We determined by using analysis of confocal 

microscopy images that that a1.3 µm and by using conservation of volume we determined, b0.6 

µm, which gives the aspect ratio 0.77. The discoids were then suspended in deionized water, 

centrifuged several times to recover the particles, and rinsed with deionized water several times. 

To obtain dry particles, the sample was kept inside a heated oven for at least 24 hours. For solvent, 

we used a critical mixture of 2, 6 lutidine + H2O + D2O (LDW) at a volume fraction ratio of 0.3: 

FIGURE 5.2.1:  Schematic of discoids’ preparation method from PS spheres with two-step 

batch processing method. 
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0.14: 0.56. The critical temperature of lutidine + water (LW) mixture at the critical volume fraction 

of 30% lutidine is ≈34 0C. The addition of heavy water lowers the critical temperature, which at 

our composition was determined to be 30 0C. Both LW and LDW samples have a lower critical 

solution temperature (LCST). The sample is a homogeneous mixture at the room temperature (23 

0C), which phase separates upon heating. The liquid composition used in our experiments has a 

density very close to the density of PS (1.05 g/cm3). This reduces the sedimentation rate of the 

particles significantly. The volume fraction of the particles (φ) in the sample was kept at less than 

0.01, which causes minimal shift in the phase transition temperature.  

About 10 µl volume of the critical mixture containing the particles was placed at the center 

of a microscope cover slip. We used an imaging spacer (Grace Biolabs) of thickness ~100 µm to 

confine the specimen between two coverslips. A precision thermistor (YSI 44034) is placed on the 

top of the sample cell by using a conductive adhesive to measure the temperature. The set-up is 

placed inside a custom-made thermostat, whose temperature is regulated by a proportional-

integral-derivative (PID) controller (Lakeshore, Inc.). A separate but closely matched thermistor 

was used for the controller. We have shown previously that with this design we can achieve 

temperature stability of a few mK for few hours. We placed the whole assembly on the top of a 

confocal microscope, which is integrated with an incubator. The incubator acts as a heat sink, 

whose temperature can be controlled by 0.2 0C. All confocal images were captured by using an 
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inverted Nikon A1Rsi equipped with a resonant scanner head operating at 12 kHz. Sample videos 

were acquired using an air objective (N. A.=1.4, 100x) and a fast ccd camera at a frame rate of ~30.  

We approached the phase transition temperature (Tx) in small steps of temperature 

increments starting from the room temperature. Initially, temperature was changed by a degree 

followed by waiting of 20 minutes. Once the sample temperature reaches within 1 0C of Tx, 

increment of temperature was reduced to 0.1 0C, and then even slower as the phase transition 

temperature was approached. We observed formation of colloidal domes as we cross the binodal 

curve and enter the two-phase region of the liquid. The domes of different sizes, from 10 µm to 

FIGURE 5.2.2:  At critical temperature, many dome-like droplets of different sizes (a) are 

formed inside the water-lutidine colloidal sample. A 3D view of one of the droplets is 

shown in (b). We focused on two dimensional structures formed on the top of these domes. 

Discoids are seen to have arranged themselves into ordered crystal-like structures at the 

interfaces as shown in (c). As the temperature is slightly increased, these crystals seem to 

have melt and form hexatic structures as predicted by KTHNY 2D melting theory. We 

observed crystal structures with lowering the temperature back indicating a reconfigurable 

melting and freezing of colloidal assembly. 
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250 µm appears (figure 5.2.1). These domes are lutidine droplets in water, where the particles 

spontaneously accumulate at the interface. At present, it is not clear what drives the particles at 

the interface. It is possible that particles are neutrally wetted due to the preparation method 

involved. The formation and melting of the domes are completely reversible, which can be 

controlled by a change of temperature.   

We started with a dense liquid of micron sized polystyrene latex microspheres 

(Polysciences, Inc.) (figure 5.2.2) for validating our experimental and analysis method using 

DDM.  2D self-assembled structures were formed on top of droplets of microdiscoids dispersed 

in 2,6 lutidine water solutions in the concentrated regime. 

FIGURE 5.2.3: The decay times () as obtained from fittings of image structure functions 

are plotted against the wave-vectors (q) for dilute (a) and crowded (b) concentration 

regimes of microspheres. As a contrary to the straight-line behavior in dilute conc., we 

observed a characteristic peak in decay time at q= 6.17 m
-1

 in the concentrated regime 

(vol. fraction, =0.4) of particles. We calculated 𝑟 =
2𝜋

𝑞
 = 1.02 m and pair correlation 

function g(r) also has a peak at a matching 𝑟. This is an indication of de-Gennes narrowing 

i.e. slowing down of dynamics at characteristic length scales due to confined motion in 

crowded surroundings.  
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5.3 RESULTS AND DISCUSSION:  

de Gennes narrowing has been studied during melting of dense crystal-like structures 

using differential dynamic microscopy (DDM). Using a home-built Matlab DDM analysis code, 

first we calculated the differential intensity image signals I (x,y,t) by subtracting spatial 

intensity signals I (x,y,t) at a time t from I (x,y,t+t) at another time t+t for all image pairs at 

every possible value of delay times in the acquired video. Then a radial averaging was performed 

on difference image stacks to calculate the so-called image structure function, 𝐷(𝑞, ∆𝑡) = <

|∆𝐼(𝑞, ∆𝑡)|2 >, where |∆𝐼(𝑞, ∆𝑡)| is the Fourier transform of the difference signal. The image 

structure function was fitted to the equation: 

FIGURE 5.3.1:  Main: Structure factor curve for the concentrated samples of microspheres. 

We observe characteristic peaks in the structure factor at distinct wave vectors. The first peak 

in S(q) vs. q curve has a maximum value at q = q
max 

 6.5 m
-1

. Such characteristic peaks in 

the structure factors are an indication of existence of long-lived and low free energy states. 

S(q) fits very well with Percus-Yevick analytical solution of Ornstein-Zernike equation for 

hard spheres. Inset: Particles experience hard sphere potential. 
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𝐷(𝑞, ∆𝑡) = 𝐴(𝑞)[1 − 𝑔(𝑞, ∆𝑡)] + 𝐵(𝑞) 5.1 

where, 𝑔(𝑞, ∆𝑡) = 𝑒𝑥𝑝 (
−∆𝑡

𝜏(𝑞)
) for processes involving single relaxation, 𝐴(𝑞) is the convolution of 

the particles scattering properties with the optical transfer function of the imaging optics, 𝐵(𝑞) is 

related to the imaging noise and incoherent scattering, and τ(q) is the wave-vector dependent 

relaxation time. Firstly, using DDM, we found that for the dense concentration (volume fraction, 

=0.4) of microspheres decay time  has a characteristic peak at a q value of 6.17 m-1 that matches 

with the first peak in structure factor qmax  6.5 m-1 (figure 5.3.1: main) These matching peaks 

relates the structure and dynamics of these dense solutions. After validating our experimental 

system and data analysis in characterizing the dynamics of dense aqueous solutions of 

microspheres, we studied the dynamics of anisotropic particles i.e. microdiscoids inside a 

complex medium i.e. a critical mixture of water-lutidine as described in the experimental section 

above. We observed two-dimensional melting of the ordered structures formed by microdiscoids 

FIGURE 5.3.2:  Image structure functions vs. time interval as obtained through DDM at 

five different values of wave-vectors for the discoids in water-lutidine samples. The solid 

lines correspond to the fittings of image structure function with Eq. 5.1 assuming a single 

exponential relaxation. The corresponding q-values were shown. Left graph is for 

crystalline state and right graph is for melted state of discoids and the images were 

collected by a confocal microscope. 
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on top of the curved surfaces. The dynamics of both phases, i.e. crystal-like and phase after 

melting called as hexatic was further analyzed in reciprocal space using DDM. Image structure 

functions are shown in figure 5.3.2 for both phases. 

From microscopy data, we calculated important structural and dynamical correlation 

functions for both crystal and hexatic phases in the real and reciprocal space. We observed six-

fold patterns like in a honeycomb in the crystal phase with a few five-fold and seven-fold defects. 

During the phase transition to a melting phase, we observed the appearance of many-fold defects 

and loss of long-range order. Using DDM, we got the dynamical information of this system in a 

high range of wave vector values as shown in figure 5.3.3, decay time,  has a peak at q= 6.17 m-

1 and q= 5.54 m-1 in the crystal-like and the melted hexatic phase with corresponding distances 

in the real space calculated as 𝑟 =
2𝜋

𝑞
 = 1.02 m and 1.13 m (figure 5.3.3). We have also computed 

FIGURE 5.3.3:  The decay times () as obtained from fittings in Figure 5.3.2 are plotted 

against the wave-vectors (q) for crystal-like state of the discoids observed in water lutidine 

samples. We observed a characteristic peak in decay time at q= 6.17 m
-1

. We calculated 𝑟 =
2𝜋

𝑞
= 1.02 m and the radial distribution function g(r) also has a peak at a matching 𝑟 . This is 

an observation of de-Gennes narrowing. 
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the nearest neighbor particle distance distributions from direct microscopy data and the values 

came out to be 1.17 ± 0.14 m and 1.23 ± 0.21 m for crystal-like and melted phase respectively.  

To determine pair interactions, we computed the pair correlation function 𝑔(𝑟)  of the 

particles in both phases i.e. crystal and hexatic as shown in figure 5.3.4. We observe characteristic 

peaks in radial distribution functions. Such peaks in 𝑔(𝑟) curves correspond to first, second and 

third neighbor distances, etc. In crystal, we see a characteristic splitting of peaks after the first 

one. At large distances, the peaks disappear and 𝑔(𝑟) → 1. The pair correlation function 𝑔(𝑟) has 

their first peaks with maximum values at 𝑟 = 1.13 m and 1.15 m for crystal-like and hexatic 

phase respectively that matches very well with the peaks obtained from DDM. Such characteristic 

FIGURE 5.3.4:  Pair correlation functions and orientational correlation functions for 

crystal (top left and right) and hexatic phase (bottom left and right) respectively. 
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peaks indicate the presence of DGN. To take account of orientational correlations and local 

crystallinity, we calculated the bond orientational correlation functions 𝑔6(𝑟) and sixfold bond-

orientational order parameter 𝜓6 defined by: 

𝑔6(𝑟) = < 𝜓6
∗(0) 𝜓6(𝑟 ) > 5.2 

𝜓6(𝑟𝑖) =
1

𝑛
∑exp [𝑖6Ѳ(𝑟𝑖𝑗)]

𝑛

𝑗=1

 
5.3 

where, n= number of nearest neighbors and Ѳ(𝑟𝑖𝑗) : angle betweeen the vector connecting the 

central particle, i, with neighboring particles, j, and a fixed reference axis.  

The bond-orientational order parameter 𝜓6 is calculated by finding the average of the 

absolute value of 𝜓6(𝑟𝑖) and it should be 1 for a perfect hexagonally packed crystal and any value 

less than 1 is considered as a phase with lost local hexagonal order. The values close to zero 

indicates a highly disordered liquid state. 𝜓6 has values of ~0.8021 and ~0.6046 for the solid and 

melted phase in our experiments. The probability distributions of 𝜓6(𝑟𝑖) are plotted for both 

phases (figure 5.3.5). It can be seen that the probability of many-fold defects is increasing as the 

FIGURE 5.3.5:  Probability distribution for local bond orientational order parameters. For 

a perfect crystal with all lattice sites having exactly six neighboring particles, it peaks at 1. 

For hexatic and liquid phases, the peak shifts to lower values of local bond orientational 

order parameter.  
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phase takes a transition from the crystal to hexatic but it still has a small range orientational 

ordering of six-fold. The bond orientational correlation function 𝑔6(𝑟) for crystal-like phase 

approaches towards a constant value whereas it should decay algebraically for hexatic phase at 

longer times. Using Voronoi construction and Delaunay triangulation methods, we have 

constructed and combined different many-fold lattice sites inside the two phases as shown in 

figure 5.3.6.                         

In this study, we understand the dynamics and 2D melting of microdiscoids on a curved 

surface using differential dynamic microscopy (DDM). In reciprocal space, the self-assembled 

ordered structures made of discoids on the top of dome like surfaces show characteristic peaks 

in relaxation time vs. wave vector curves indicating slow dynamics. Peaks in the pair correlation 

FIGURE 5.3.6:  Structural rearrangements of colloids from crystal phase (left) to hexatic 

phase (right) during 2D melting can be characterized by Voronoi construction and Delaunay 

triangulation method. Both Delaunay triangulation and Voronoi construction is shown in 

above figure for both the phases. Delaunay triangulation was performed on the digitized 

positions of discoids for both the crystal and hexatic phase. Voronoi construction is only 

shown for lattice sites with nearest neighbors less or more than six in different highlighted 

colors. They also represent lattice defect within the ordered phases. As the transition occurs 

from crystal-like to hexatic phase, there is a visible loss of long-range ordering and the 

number of lattice defects are also increasing. This is a clear indication of melting. 
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curves at matching length scales demonstrate de Gennes narrowing phenomena. We observe an 

intermediate hexatic phase during the melting of these structures as predicted by KTHNY theory 

of 2D melting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

 

CHAPTER 6 

TRANSLATIONAL AND ROTATIONAL DIFFUSION OF ANISOTROPIC COLLOIDS 

6.1 A QUICK METHOD TO DETERMINE ROTO-TRANSLATIONAL DIFFUSION OF 

MICROELLIPSOIDS IN AQUEOUS MEDIA 

6.1.1 INTRODUCTION 

Study of translational and rotational dynamics of anisotropic colloids is very important 

as it has many applications in the field of energy field materials181 and medicine182. In contrast to 

the isotropic spherical particles, experimental methods available for characterizing dynamics of 

anisotropic colloids is limited. Experimental methods such as dynamic light scattering, confocal 

laser scanning microscopy, fluorescence correlation spectroscopy and fluorescence recovery after 

photobleaching have contributed to understanding of motion of rods126,150,183-185. Most of these 

techniques require a sophisticated source of light and the associated data analysis can be time-

consuming and tedious such as in particle tracking.  

We report a quick method i.e. differential dynamic microscopy (DDM) to determine 

ensemble averaged translational and rotational diffusion coefficients of anisotropic particles in 

aqueous media. DDM provides the dynamical information of particles in the reciprocal space 

using a broad range of video microscopic techniques138,153-156,158,160,163,186. In reciprocal space, we 

have the advantage of extracting dynamical information in the form of characteristic time scales 

for a huge range of wave vectors. Initially, we implemented DDM in our research for quantifying 

the diffusion of spherical nanoparticles142. Here, we extend DDM for studying the combined effect 
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of roto-translational diffusion on micron sized rods/ellipsoids (microellipsoids) within aqueous 

media. We studied the rotational and translational diffusion of microellipsoids both on a 2D 

surface and in bulk. We used confocal microscopy as a microscopy platform to study the diffusion 

of fluorescent poly(dimethyl methacrylate) microellipsoids (aspect ratio  2.67 μm /0.95 μm 2.81) 

in aqueous media. The microellipsoids are dispersed in deionized water at a dilute concentration 

so that they can move freely in a Brownian diffusion. Translational and rotational diffusion 

coefficients are determined from the wave vector 𝑞 dependence of ensemble averaged dynamics 

at different time scales. Through this research, we assess the scope to apply a modern and unique 

combination of video based light microscopy and scattering principles for characterizing the 

translational and rotational dynamics of anisotropic colloids. 

6.1.2 EXPERIMENTAL SECTION: 

Microellipsoids were synthesized from 1 µm diameter fluorescently labelled polystyrene 

(PS) spheres180 (figure 6.1.2.1). The spheres were embedded in an elastomeric film of 

poly(dimethyl siloxane) (PDMS). This material is clamped, heated above the glass transition 

temperature of the matrix (150 0C), and then a uniaxial deformation was carried out with by 

continuous stretching. The aspect ratio, 𝑟 =
𝑎

𝑏
, where 2𝑎 is the length and 2𝑏 is the thickness of 

the disc depends on the amount of strain.  

FIGURE 6.1.2.1: Schematic of microellipsoids’ preparation from PS spheres using two-

batch processing method 
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Using analysis of confocal microscopy images, we determined that a0.95 µm and b2.67 

µm, which gives the aspect ratio 2.81. The microellipsoids were then suspended in deionized 

water at a volume fraction of less than 0.01. About 10 µl of the sample volumes were loaded on 

3” × 1” × 1.0 mm sized plain beveled edge microscope slides, which were covered with a thin 

cover glass on top with a double-sided scotch tape that acts as a spacer. The assembly was sealed 

at the edges to prevent evaporation. All confocal images (figure 6.1.2.2) were captured by using 

an inverted Nikon A1Rsi equipped with a resonant scanner head operating at 12 kHz. Sample 

videos were acquired using an air objective (N. A.=1.4, 100x) and a fast ccd camera at a frame rate 

of ~30. 

Video analysis was carried out using home-built Matlab scripts based on differential 

dynamic algorithm (DDA). The steps involved is DDA are briefly described further. As each 

sample image in the video represents a spatial light intensity distribution I (x,y,t) at some time t. 

FIGURE 6.1.2.2: Microellipsoids in de-ionized water imaged using confocal microscopy 
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A difference image signal I (x,y,t) can be calculated by subtracting one image from another for 

each image pair present in the video. This step gets rid of all intensity signals that are unnecessary 

for our purpose i.e. static noise contributions and non motile signals coming from particles stuck 

on microscope slides or dust on optics. In order to get dynamical information in reciprocal space, 

a fast Fourier transform I (qx,qy,t) of each difference signal I (x, y,t) can be calculated which 

gives us a Fourier distribution of intensity fluctuations for each difference signal. A statistical 

averaging of I (qx,qy,t) over all image pairs provides us a 2D ensemble averaged distribution 

given by  I (qx,qy,t) . Finally, the image structure function D (qx,qy,t) can be calculated by 

calculating the 2D power spectra in Fourier space in the form of I(qx,qy,t)2. Therefore, the 

radially averaged image structure 𝐷(𝑞, ∆𝑡) function141 is given by: 

𝐷(𝑞, ∆𝑡) = < |∆𝐼(𝑞, ∆𝑡)|2 > 6.1 

And the wave vector 𝑞 is calculated by: 

𝑞 = √𝑞𝑥
2 + 𝑞𝑦

2 
6.2 

 This can be used for isotropic images. But it breaks down if there is directionality, such as 

flow. This whole process is repeated for all possible time steps in the image stack. Finally, the 

image structure function for processes involving single relaxation with characteristic time τ is 

fitted to the below equation as: 

𝐷(𝑞, ∆𝑡) = 𝐴(𝑞) [1 − 𝑒𝑥𝑝 (
−∆𝑡

𝜏(𝑞)
)] + 𝐵(𝑞) 

6.3 

where, 𝐴(𝑞) is the convolution of the particles’ scattering properties with the optical transfer 

function of the imaging optics, 𝐵(𝑞) is related to the imaging noise and incoherent scattering138. 
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For Brownian objects138, the translational diffusion coefficient 𝐷𝑡 and rotational diffusion 

coefficient 𝐷𝑟 of microellipsoids rotating on the surface can be determined by fitting τ vs. 𝑞 curve 

obtained through image structure function fits with the following equation: 

𝜏(𝑞) =  
1

𝐷𝑡𝑞
2 + 2𝐷𝑟

 
6.4 

And for a free rod in bulk: 

𝜏(𝑞) =  
1

𝐷𝑡𝑞
2 + 6𝐷𝑟

 
6.5 

We expect such large diffusing rods to have a net translational diffusion coefficient 𝐷𝑡 and 

rotational diffusion coefficient 𝐷𝑅 for a free prolate spheroid/rod of aspect ratio 𝑟 diffusing in an 

aqueous media187 of viscosity 𝜂: (figure 6.1.2.3) 

𝐷𝑡 =
1

3
(𝐷𝑎 + 2𝐷𝑏) 

6.6 

𝐷𝑎 =
𝑘𝐵𝑇[ln(2𝑟) − 0.5]

4𝜋𝜂𝑎
 

6.7 

 

𝐷𝑏 =
𝑘𝐵𝑇[ln(2𝑟) + 0.5]

8𝜋𝜂𝑎
 

6.8 

 

FIGURE 6.1.2.3: For a free prolate spheroid/rod of aspect ratio 𝑟 =
𝑎

𝑏
 diffusing in an 

aqueous media of viscosity 𝜂, the net translational diffusion coefficient 𝐷𝑡 is a combination 

of translational diffusion coefficient 𝐷𝑎  and 𝐷𝑏 along major axis 𝑎 and minor axis 𝑏. 
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𝐷𝑅 =
3𝑘𝐵𝑇[ln(2𝑟) − 0.5]

8𝜋𝜂𝑎3
 

6.9 

 

where, 𝑘𝐵 is Boltzmann’s constant, 𝜂 = 0.93 mPa.s is water’s viscosity at temperature 𝑇= 23 0C. 

6.1.3 RESULTS AND DISCUSSION:  

From the fittings of τ vs. 𝑞 graphs we determined net translational diffusion coefficient 𝐷𝑡 

and rotational diffusion coefficient 𝐷𝑅 of microellipsoids diffusing freely in bulk (figure 6.1.3.1) 

to be ≈0.341 µm2/s and ≈0.377 µm2/s, respectively. For prolate spheroids diffusing in bulk, 

microellipsoids in our case, 𝐷𝑡 and 𝐷𝑅 are expected to be 0.375 µm2/s and 0.408 µm2/s, 

respectively. These are in accordance with the theoretical predictions for a free rod in bulk. On 

the other hand, for microellipsoids diffusing in water on the surface (figure 6.1.3.2), the net 

translational diffusion coefficient and rotational diffusion coefficient are found to be ≈0.022 µm2/s 

and ≈0.037 µm2/s, respectively. The diffusion values on the surface are significantly lower than in 

the bulk as expected due to the obstruction in motion from friction on surface.  

FIGURE 6.1.3.1 Left: Image structure functions vs. time interval at five different values of 

wave-vectors for the microellipsoids in water solutions diffusing freely in bulk. The solid 

lines correspond to the fittings of image structure function with Eq. 6.3 assuming a single 

exponential relaxation. Right: Characteristic time scales vs. corresponding q-values are 

plotted and the fittings with Eq. 6.5 are shown in solid lines.  
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In conclusion, we report a quick ensemble averaged method DDM that is capable of 

determining coupled translational and rotational diffusion. For microellipsoids diffusing in 

deionized water in bulk, there is a good agreement in the measured and expected diffusion 

coefficients. This makes DDM a promising technique for particles’ diffusion characterization in 

case of anisotropic colloids. This method can be utilized as an efficient way to extract the viscous 

frictional coefficients experienced by particles due to the 2D confinement as evident from the 

reduced translation and rotation diffusion values on surface. The results demonstrated that DDM 

can be extended as a useful method to measure length-scale dependent diffusion of anisotropic 

particles in aqueous media. 

 

 

 

FIGURE 6.1.3.2: Left: Image structure functions vs. time interval at five different values of 

wave-vectors for the microellipsoids solutions diffusing in deionized water on a 2D surface. 

The solid lines correspond to the fittings of image structure function with Eq. 6.3 assuming 

a single exponential relaxation. Right: Characteristic time scales vs. corresponding q-values 

are plotted and the fittings with Eq. 6.4 are shown in solid lines.  
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CHAPTER 7 

OVERALL CONCLUSION AND FUTURE RESEARCH 

This dissertation’s main research included nanoparticle diffusion in concentrated 

solutions of high molecular weight polyethylene glycol, melting in colloidal assembly of discoids 

on water lutidine droplets and anisotropic diffusion of microellipsoids in aqueous media. After 

providing a brief introduction and necessary background required for the scope of this study in 

chapters 1 and 2, main experimental methods i.e. DDM and FCS are briefly explained in chapter 

3 followed by important observations and results reported in the chapters 4-6. As mentioned 

earlier in the thesis, these studies are very important in understanding the transport properties 

of colloids in complex fluids. Understanding colloidal dynamics within different media is useful 

in many interdisciplinary fields such as biophysics, chemical engineering as well as in medicine. 

In chapter 4, we presented our studies in determining the diffusion of nanoparticles (NPs) 

within aqueous entangled solutions of polyethylene oxide (PEO). The results are finally 

compared using two different optical techniques i.e. FCS and DDM. Using FCS, we investigated 

the dynamics of nanoparticles within polymer solutions by measuring the long-time diffusion 

coefficient of 25 nm radius particles dispersed in aqueous solutions of high molecular weight, 

Mw=600 kg/mol PEO. DDM was also used to quantify the wave-vector dependent dynamics of 

nanoparticles inside the same concentrations of PEO. Our results demonstrate normal diffusion 

of nanoparticles with good agreement in the diffusion coefficients resulted from both methods. 

We conclude that DDM can be used to study the dynamics and rheological properties of soft 

matter at nanoscale. The measured diffusion coefficients are comparable to a scaling theory 
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indicating the coupling between nanoparticle and polymer dynamics. In future, the focus can be 

given on situations, where active transport will dominate over the Brownian motion. This 

situation is important in many situations, including bacterial motion, motor protein transport 

within crowded cell, delivery of superparamagnetic particles in desired location guided by 

magnetic field for treatment of diseases, etc. In the case of active transport, τ(q)~q-1 instead of 

τ(q)~q-2 as in Brownian motion. As in many cases, Brownian motion will superimpose on pure 

directional motion, the exponent of τ(q) will range from 1 to 2. Many nanoparticles, including 

gold and silica are stabilized through their charge. This gives the opportunity to modulate their 

motion using electric field.  A set up can be designed and built in the future to control the electric 

field so that we will be able to tune the values of field and observe the changes in particle motion 

accordingly. The set up will involve an AC/DC power supply, function generator, electrodes, and 

optical microscope for imaging. The objective will be to track the motion of the particles and thus 

evaluate the effects of voltage and frequency changes onto their motion. It would be interesting 

to investigate if any reasonable electric field can control the motion of the particles without 

electrical breakdown or change of the medium. This strategy then can be used to create ordered 

structures, which are one of the main requirements for many electronic and medical devices.  

We studied reciprocal space dynamics of self-assembled ordered structures made of 

discoids on the top of dome like surfaces formed by water-lutidine using optical microscopy. We 

observed characteristic peaks in relaxation time vs. wave vector curves that demonstrate slow 

dynamics at specific length scales. We get similar peaks in pair correlation curves at matching 

distances. This is an experimental realization of the de Gennes narrowing phenomenon. We also 

observed melting of those crystal structures and compared with KTHNY theory of 2D melting. 
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The results so far are very interesting and indicate that we have observed an intermediate hexatic 

phase in between crystal and liquid phase. We are currently doing more experiments for 

observing and studying the phase transitions more closely. In future, we are looking forward to 

study and understand hexatic to liquid as well as freezing transitions. 

Finally, we demonstrated the power of using DDM to be used as a quick and promising 

technique to calculate ensemble avergared coupled translational and rotational diffusion 

coefficients of anisotropic particles. In bulk, the calculated diffusion coefficients of 

microellipsoids are in a good agreement with theoretical prediction of rods. This makes DDM a 

unique method for studying the dynamical properties of anistropic colloids in aqueous media. 

We are further interested to look at anisotropic particle diffusion in complex fluids and to study 

the effect of aspect ratio of anisotropic particles on their translational and rotational diffusion. 

We have a few more interesting ongoing research projects that are briefly introduced in 

the appendixes.  
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APPENDIX A 

CHEMICAL COLLOIDAL SYNTHESIS OF GOLD NANOSPHERES (AuNSs) 

Nanoparticle synthesis can be carried out in a number of different ways i.e. colloidal 

chemical reduction, thermal decomposition, attrition and pulsed laser methods, etc. We have 

synthesized gold colloidal particles of of size 12 nm and 18 nm using a chemical reduction 

method. These methods are one of the cheapest and useful way of creating colloidal gold of 

different sizes. Typically, the gold salt is reduced to metallic gold on adding a reducing agent 

leaving colloidal gold nanoparticles dispersed in the solution (figure A1). Different sizes of 

nanoparticles are controlled by initial concentrations of reactants. This method requires further 

addition of a stabilizing reagent to prevent aggregation. The underlying half reactions of the 

chemical process are as follows: 

𝐴𝑢3+(𝑎𝑞) + 3𝑒− → 𝐴𝑢 

𝐶6𝐻5𝑂7
3− + 𝐻2𝑂(𝑙) → 𝐶5𝐻4𝑂4

2−(𝑎𝑞) + 𝐶𝑂2(𝑔) + 𝐻3𝑂(𝑎𝑞) + 2𝑒− 

SYNTHESIS OF GOLD NANOSPHERES (AuNSs) of size 12 nm: (adapted from colloidal 

chemical method of Frens188) 

Before preparing the solutions, two Erlenmeyer flasks of size 500 ml and 125 ml were 

washed properly with Aqua regia and finally cleaned with deionized water. First of all, we 

prepared a solution I by mixing 0.006g of HAuCl4 in 200 ml of de-ionized water in an Erlenmeyer 

flask of 500 ml size.  Another solution II was prepared by mixing 0.014g of sodium citrate in 7 ml 

of de-ionized water in an Erlenmeyer flask of 125 ml size. The solution I was heated until it started 

boiling. It took approximately 15 minutes for it to boil. The stirrer was switched on for constant 
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stirring with the boiling and the solution II was added to the boiling solution I and the solution 

started changing color to wine-red within 10 minutes. We kept on boiling the solution with 

constant stirring for next 10 minutes. We controlled the temperature while boiling in a such a way 

that the solution didn’t get vaporized. We noticed that the solution changed color from clear to 

purple first and then it finally changed into wine red. The final solution was kept for cooling for 

about one and a half hour and when it got cooled, we added 2 mg of sodium citrate (to stabilize 

the particles) and shook to mix it properly in the solution. After half an hour, one small amount 

of the final solution was used to find the Diffusion constant using FCS at neutral density filter 

(NDF) value of 1.04 & 1.2. 

SYNTHESIS OF GOLD NANOSPHERES (AuNSs) of size 18 nm: (adapted from colloidal 

chemical method of Frens188) 

Before preparing the solutions, two Erlenmeyer flasks of size 500 ml and 125 ml were 

washed properly with NaOH solution and finally cleaned with deionized water. First, we 

prepared a solution I by mixing 0.008g of HAuCl4 in 250 ml of de-ionized water in an Erlenmeyer 

flask of 500 ml size. Another solution II was prepared by mixing 0.038g of sodium citrate in 25 ml 

FIGURE A1: Illustration of gold nanoparticle chemical colloidal synthesis process. 
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of de-ionized water in an Erlenmeyer flask of 125 ml size. The solution I was heated until it started 

boiling. It took approximately 20-25 minutes for it to boil. The stirrer was switched on for constant 

stirring with the boiling and the solution II was added to the boiling solution I and the final 

solution became colorless. We kept on boiling the solution until the color changed from clear to 

wine red. We controlled the temperature while boiling in such a way that the solution didn’t get 

vaporized. We noticed that the solution changed color from clear to purple first and then it finally 

changed into wine red. It took about 20 minutes of boiling with vigorous stirring for the solution 

to change color from colorless to wine red. The final solution was kept for cooling for about one 

and a half hour and when it got cooled, we added 2 mg of sodium citrate (to stabilize the particles) 

and shook to mix it properly in the solution. After half an hour, one small amount of the final 

solution was centrifuged for 5 minutes at a medium speed (60). The solution gave some 

precipitate at the bottom which was thrown away and supernatant was taken out carefully and 

used to find the diffusion coefficient using FCS at NDF value of 1.04. 

FIGURE A2: Autocorrelation curve for 18nm AuNPs using FCS. 
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One of the intensity correlation graphs that we obtained from FCS is shown in figure A2, 

with the non- linear fitting that gave a diffusion coefficient D with a value of 24.16 µm2/s. The 

mean value of D was found to be 24.235 µm2/s with a standard deviation of 1.09 µm2/s. This is in 

good agreement with Stokes-Einstein equation that 𝐷𝑆𝐸 = 23.80 µm2/s.  
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APPENDIX B 

EFFECT OF EXTERNAL FLOW ON ROTATIONAL DIFFUSION OF GOLD NANORODS 

(AuNRs) USING FLUORESCENCE CORRELATION SPECTROSCOPY 

Our research group has been working on quantifying the dynamics of nanoparticles 

inside various soft matter systems by using different optical techniques, most notably, 

fluorescence correlation spectroscopy (FCS) technique, for quite a long time now. We have been 

successful in finding how different sized gold nanoparticles (AuNPs) move within synthetic 

polymer solutions and proteins71. We have also studied how shape anisotropy modifies the 

diffusive behavior by using nanorods189. In parallel, new theories have been discovered190 in this 

area like statistical dynamical theory, scaling theory, etc. and there are many processes and 
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FIGURE B1: Autocorrelation curves illustrating faster rotational diffusion signal and slow 

translational diffusion signal vs. five flow rates using FCS. 
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mechanism of motions that are still unknown such as hopping motion191. These all involves 

passive motion driven by random thermal energy. The active transport of anisotropic 

nanoparticles within aqueous media is relatively unexplored. 

The gold nanorods were used as purchased from Sigma-Aldrich, Inc with 17 nm diameter 

and 60 nm length giving an expect ration of ≈3.5. The aqueous dispersions of gold nanorods in 

nanomolar concentration were used for rotational diffusion characterization. The rotational 

dynamics takes place at much smaller time (~ few μs) than translational (~few ms) so both 

dynamical signals can be separated with little ambiguity in FCS measurements.  

For studying the flow effect on rotational diffusion of nanorods, we used a two-photon 

FCS set up consisting of a Mai Tai, Spectra-Physics Ti:sapphire laser at 800 nm wavelength that 

pulses at 100 fs at a repetition rate of 80 MHz. In FCS, fluctuations in photon counts are measured 

FIGURE B2: Rotational diffusion coefficients calculated from the fittings of 

autocorrelation curves vs. flow rates using FCS. 
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in a very small focal volume (10−15𝑙) created by diffraction limit with an air objective (N. A.=0.75, 

60X). The emitted photon when the nanorods come across the laser focus are then collected by 

the same objective and detected by two Hamamatsu single photon sensitive modules i.e. photo 

multiplier tubes (PMTs). We get the intensity fluctuation autocorrelation curves G(τ) vs. time for 

different flow rates. The temperature was ≈230C and the laser power was kept below 1 mW to 

prevent heating of the samples during the experiments. A unidirectional flow was introduced in 

the sample under microscope kept inside a flow cell connected with two syringes, tubes and a 

Harvard 2000 Phd syringe pump up for refill/infusion. We investiaged the rotational diffusion in 

the flow range of 1 to 10 ml/min. We extracted the rotational diffusion intensity autocorrelation 

𝐺(𝜏) vs. characteristic time scale 𝜏 curves and fitted with the following function: 

𝐺(𝜏) = 𝑅 ∗ 𝑒𝑥𝑝(−6𝐷𝑅𝜏) 

The rotational diffusion coefficients 𝐷𝑅 of AuNRs in aqueous media are extracted from 

the autocorrelation curve fits and plotted vs. flow rate (figure B2). From the investigated flow 

rates, the results indicate a decrease in the roational diffusion of golf nanorods with increase in 

the induced flow rates. We have to still do further analysis to validate our results. 
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APPENDIX C 

COLLOIDAL DIFFUSION WITHIN POLYVINYL ALCOHOL(PVA) AND XANTHAN 

SOLUTIONS USING DIFFERENTIAL DYNAMIC MICROSCOPY 

We have also studied the diffusion of nanoparticles in polyvinyl alcohol (PVA) entanged 

solutions and microparticle diffusion within dilute, semi-dilute and entangled solutions of 

Xanthan Gum using differential dynamic microscopy (DDM).  

We determined that the fluorescent carboxylate spheres of 50 nm size follow normal 

diffusion within an aqueous PVA (𝑀𝑊= 89,000 g/mol) solutions with 15 % volume fraction. And 

the q dependence of relaxation time is found as shown in the figure C1 .The measured 

translational diffusion coefficent 𝐷𝑇 has a value of 0.0031 ± 0.008 µm2/s.  

FIGURE C1: Characteristic time vs. wave vector graphs resulted from the fittings of Image 

Structure Functions demonstrating normal diffusion in 15 % concentration of PVA using 

DDM. 
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DDM was also used to measure the translational diffusion coefficient of micrometer sized 

silica particles in dilute (10 ppm), semi-dilute (70 ppm) and entangled concentrated regime (600 

ppm) of Xanthan (𝑀𝑊= 200,000 g/mol) solutions. We found that the translational diffusion 

decreased with increase in xanthan concentration (figure C2). These results are interseting but we 

still have to validate them with the theories present. 
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FIGURE C2: Translational diffusion coefficients obtained from the fittings of characteristic time 

curves vs. wave vector graphs at three xanthan concentrations using DDM. 
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Soft matter is a subfield of condensed matter physics that includes the study of colloidal 

dynamics. This is important in multidisciplinary fields for technological and medical 

advancements. My research focused on quantifying the dynamics of nano and micron-sized 

particles within various media using two-photon fluorescence correlation spectroscopy (FCS) and 

differential dynamic microscopy (DDM). FCS is a single photon sensitive technique that detects 

spontaneous fluctuations in fluorescence during dynamical processes over time while DDM used 

optical microscopy to analyze the colloidal motion in Fourier space. The diffusion coefficient (D) 

of 25 nm radii particles within aqueous entangled solutions of polyethylene oxide (PEO; Mw=600 

kg/mol) demonstrated normal diffusion with almost identical values using DDM and FCS and 

followed a scaling theory. We observed characteristic peaks in relaxation time τ(q) of 

microdiscoids dispersed in aqueous water lutidine solutions that indicate slow relaxations in 

certain structural rearrangements explained with de Gennes narrowing phenomenon. Melting of 

the crystal structures formed by microdiscoids on top of droplets is comparable to a 2D melting 
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theory. In case of microellipsoids (aspect ratio ≈2.8), DDM is proven to be a quick and powerful 

method to determine the translational and rotational diffusion coefficients. 
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