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INVITED ARTICLE 

A Note on Inferences About the 
Probability of Success 
Rand Wilcox 
University of Southern California 
Los Angeles, CA 

 
 

 
 
There is an extensive literature dealing with inferences about the probability of success. A 
minor goal in this note is to point out when certain recommended methods can be 
unsatisfactory when the sample size is small. The main goal is to report results on the two-
sample case. Extant results suggest using one of four methods. The results indicate when 
computing a 0.95 confidence interval, two of these methods can be more satisfactory when 
dealing with small sample sizes. 
 
Keywords: binary data, binomial distribution, categorical data, linear contrasts 
 

Introduction 

Let p denote the probability of success associated with a binomial distribution. 
Schilling and Doi (2014) derived a method for computing a confidence interval for 
p such that the actual probability coverage is greater than or equal to the specified 
level. Moreover, their method is optimal in the sense that the shortest possible 
confidence interval is computed that guarantees that the probability coverage is at 
least 1 – α. However, a practical limitation is execution time quickly becomes 
prohibitive as the sample size increases. There are several alternative methods that 
might be used, which are reviewed in the next section of this paper. A minor goal 
in this note is to point out situations where these methods can perform poorly when 
dealing with the common goal of computing a 0.95 confidence interval and the 
sample size is less than 35. The main goal is to report results on the two-sample 
case. Extant results suggest using one of four techniques. The results indicate that 
when testing at the 0.05 level, two of these methods have a practical advantage. 
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Brief comments on linear contrasts, when there are more than two groups, are 
included. 

Review of Extant Techniques for the One-Sample Case 

Consider the one-sample case where the goal is to compute a 1 – α confidence 
interval for p. Let w denoted the number of successes among n trials. A classic 
approach was derived by Clopper and Pearson (1934). The lower and upper ends 
of their 1 – α confidence interval are B(α/2; w, n – w + 1) and 
B(1 – α/2; w + 1, n – w), respectively, where B(q; u, v) is the qth quantile of a beta 
distribution with shape parameters u and v. It guarantees that the actual coverage 
probability is at least 1 – α, but in general does not give the shortest-length 
confidence interval. 

Brown et al. (2002) compared various techniques and concluded that the 
Agresti–Coull method, which stems from Agresti and Coull (1998), performs 
relatively well. Let 
 

   

 
be the proportion of successes among the n observations and let c denote the 1 – α/2 
quantile of a standard normal distribution. Let 
 
   
 

   

 
and 
 

   

 
The Agresti-Coull 1 – α confidence interval for the probability of success, p, is 
 

p̂ = w
n
,

!n = n+ c2 ,

!w = w+ c
2

2
,

!p =
!w
!n
.
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The Agresti-Coull method is, in essence, a simple approximation of the score 
method derived by Wilson (1927). Wilson’s confidence interval is 
 

  

 
Zou et al. (2009) review the literature in support of Wilson’s method. 

Results reported by Blyth (1986) suggest proceeding as follows when w is 
equal to 0, 1, n – 1 or n. If w = 0, 
 
 cU = 1 – α1/n 

 
 cL = 0. 
 
If w = 1, 
 

   

 

   

 
If w = n – 1, 
 

   

 

   

 
If w = n, 
 

!p ± c
!p 1− !p( )
!n

.

p̂ + c2 / 2n( )± c p̂ 1− p̂( )+ c2 / 4n( )⎡⎣ ⎤⎦ / n( ) / 1+ c2 / n( ).

cL = 1− 1− α
2

⎛
⎝⎜

⎞
⎠⎟

1/n

cU = 1− α
2

⎛
⎝⎜

⎞
⎠⎟

1/n

.

cL =
α
2

⎛
⎝⎜

⎞
⎠⎟

1/n

cU = 1− α
2

⎛
⎝⎜

⎞
⎠⎟

1/n

.
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and 
 
 cU = 1. 
 
The cases w = 0 and w = n can be shown to be the Clopper-Pearson confidence 
intervals. Otherwise, Blyth recommends a method stemming from Pratt (1968), 
which is computed as follows. Let 
 

   

 
   
 

   

 
   

 

   

 
in which case the upper end of the confidence interval is 
 

   

 
As for the lower end, now let 
 

   

 
   

cL =α
1/n

A = w+1
n− 2

⎛
⎝⎜

⎞
⎠⎟

2

B = 81 w+1( ) n− w( )− 9n−8

C = −3c 9 w+1( ) n− w( ) 9n+5− c2( )+ n+1

D = 81 w+1( )2 − 9 w+1( ) 2+ c2( )+1

E = 1+ A B +C
D

⎛
⎝⎜

⎞
⎠⎟

3

cU = 1
E
.

A = w
n− w−1

⎛
⎝⎜

⎞
⎠⎟

2

B = 81 w( ) n− w−1( )− 9n−8
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The lower end of the confidence interval is 
 

   

 
Kulinskaya et al. (2008, p. 140) derived yet another method for computing a 

confidence interval. Let  = (w + 3)/(n + 3/4), 
 

   

 
and 
 

   

 
where again c is the 1 – α/2 quantile of a standard normal distribution. Their 1 – α 
confidence interval is (A2,B2). Evidently there are no published results on how this 
method compares to the other methods listed here. 

Finally, there is the Schilling and Doi (2014) method, but for brevity the 
involved computational details are not described. But an R function that computes 
their confidence interval is described in the final section of this paper. 

Review of Methods for the Two-Sample Case 

Consider the two sample case where p1 and p2 are the probability of success 
associated with two independent groups and the goal is to test H0: p1 = p2. The first 

C = −3c 9x n− w−1( ) 9n+5− c2( )+ n+1

D = 81w2 − 9w 2+ c2( )+1

E = 1+ A B +C
D

⎛
⎝⎜

⎞
⎠⎟

3

cL =
1
E
.

⌣p

A = sin arcsin ⌣p( )− c
2 n

⎛
⎝⎜

⎞
⎠⎟

B = sin arcsin ⌣p( )+ c
2 n

⎛
⎝⎜

⎞
⎠⎟
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method described here was derived by Storer and Kim (1990). For the jth group, let 
rj be the number of successes among nj trials. The possible number of successes in 
the first group is any integer, x, between 0 and n1, and for the second group it is any 
integer, y, between 0 and n2. For any x and y, set 
 
 axy = 1 
 
if 
 

   

 
otherwise 
 
 axy = 0. 
Let 
 

   

 
The test statistic is 
 

   

 
where 
 

   

 
and b(y, n2, ) is defined in an analogous fashion. The null hypothesis is rejected 
if 
 
 T ≤ α. 
 

x
n1
− y
n2

≥
r1
n1
−
r2
n2
;

p̂ =
r1 + r2
n1 + n2

.

T = axyb x,n1, p̂( )b y,n2 , p̂( ),
y=0

n2

∑
x=0

n1

∑

b x,n1, p̂( ) = n1
x

⎛

⎝
⎜

⎞

⎠
⎟ p̂x 1− p̂( )n1−x ,

p̂
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T is the p-value. The Storer-Kim method does not provide a confidence interval, 
but it seems it might offer a bit more power than other methods. 

The confidence interval for p1 – p2, derived by Kulinskaya, Morgenthaler and 
Staudte (2010), is  
 

  

 
where again c is the 1 – α/2 quantile of a standard normal distribution, r1 and r2 are 
the observed number of successes, 0 ≤ A ≤ 1 is chosen by the user,  
 

   

 
   
 
   
 

  and 

 
   

 
Here, following the suggestion made by Kulinskaya et al. (2010), A = 0.5 is used. 

The method derived by Zou et al. (2009) is applied as follows. Let (ℓj, uj) be 
a 1 – α confidence interval for pj (j = 1,2). Following Zou et al., the confidence 
interval derived by Wilson (1927) is used. Then an approximate 1 – α confidence 
interval for p1 – p2 is (L, U), where 
 

   

 
and 
 

ŵ
u
sin arcsin uΔ̂ + v̂

ŵ
⎡

⎣
⎢

⎤

⎦
⎥ ± c

u
2n1n2 / N

⎛

⎝
⎜

⎞

⎠
⎟ −
v̂
u
,

u = 2 1− A( )2 n2N + A2
n1
N

⎛
⎝⎜

⎞
⎠⎟
,

Δ̂ = r1 + 0.5( ) / n1 +1( )− r2 + 0.5( ) / n2 +1( ),

ψ̂ = A r1 + 0.5( ) / n1 +1( )+ 1− A( ) r2 + 0.5( ) / n2 +1( ),

v̂ = 1− 2ψ̂( ) A− n2N
⎛
⎝⎜

⎞
⎠⎟
,

ŵ = 2uψ̂ 1−ψ̂( )+ v̂2 .

L = p̂1 − p̂2 − p̂1 − ℓ1( )2 + u2 − p̂2( )2
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Simulation  

Consider the one-sample case and momentarily focus on the Clopper-Pearson (CP) 
and the Agresti-Coull (AC) methods. A simulation was performed for a sample size 
of n = 25 when computing a 0.95 confidence interval. This was done for p = 0.05 
(0.01) 0.95, where for each value of p, 10,000 replications were used to estimate 
the actual value of α, the probability that the 0.95 confidence interval does not 
contain the p. Figure 1 shows a plot of the results, where the dashed line is for 
method AC and the solid line is method CP. Bradley (1978) has suggested that as 
a general guide, when α = 0.05, the actual value should be between 0.025 and 0.075. 
The top horizontal line in Figure 1 is 0.075 and the bottom line is 0.025. As can be 
seen, AC performs reasonably well for 0.2 ≤ p ≤ 0.8, but otherwise it can be highly 
unsatisfactory. Moreover, concerns persist when using Pratt’s (P) method, the 
method derived by Kulinskaya et al. (KMS) as well as Wilson’s (WIL) method. 
Consider, for example p = 0.15. Based on a simulation with 50,000 replications, the 
actual value of α is 0.112, 0.113, 0.024, 0.113, and 0.117 for methods AC, P, CP, 
KMS and WIL, respectively. As for the method derived by Schilling and Doi (SD), 
the actual level was estimated to be 0.044 (based on 5000 replications) consistent 
with results reported in their paper. Increasing the sample size to n = 30 the 
estimates for AC, P, CP, KMS and WIL are 0.073, 0.073 0.024, 0.073 and 0.077, 
respectively. For n = 35 the estimates are 0.053, 0.053, 0.037, 0.053 and 0.053. 

Consider the two-sample case where the goal is to test H0: p1 = p2 at the 0.05 
level. Table 1 shows estimates of the actual Type I error probability for various 
sample sizes when p1 = p2 = 0.05, 0.10, 0.15, 0.25 and 0.50. As can be seen, when 
n1 = n2 = 10, the actual levels for all four methods are less than the nominal level. 
For p = 0.05 and 0.10, all four methods have levels less than 0.025. Overall, Beal’s 
method is the least satisfactory. A feature of methods SK and KMS is that the actual 
level never exceeds the nominal level. There are situations where ZHZ performs 
better than the the other methods, but for n1 = n2 = 20 and p1 = p2 = 0.15 the actual 
level is 0.08. Increasing the sample sizes to n1 = n2 = 30, the level is estimated to 
be 0.065 and for n1 = n2 = 35 it is 0.054. For p1 = p2 = 0.2 and n1 = n2 = 20 the Type 
I error probability is 0.074. In general, ZHZ might perform reasonably well when 
the minimum sample size is less than 35, but the extent this is true depends on the 
unknown probabilities. If the goal is to keep the actual Type I error probability close 
to or less than the nominal level, SK and KMS are safer than ZHZ when either 

U = p̂1 − p̂2 + u1 − p̂1( )2 + p̂2 − ℓ2( )2 .
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sample size is small. As previously noted, method ZHZ is based on confidence 
intervals for p1 and p2 using Wilson’s method. Replacing Wilson’s confidence 
interval with the Agresti-Coull confidence interval does not improve matters. 
Replacing Wilson’s confidence interval with the Schilling-Doi confidence interval 
does improve the ability of ZHZ to avoid Type I error probabilities greater than the 
nominal level, but now ZHZ has no practical advantage over SK and KMS. 
 
 

 
 
Figure 1. The probability of an inaccurate confidence interval when using the Agresti-
Coull method (dotted line) and the Clopper-Pearson method (solid line). 
 
 
 

Table 2 reports estimated power for various sample sizes and choices for p1 
and p2. Note that ZHZ tends to have the highest power, even in situations where it 
avoids Type I errors well above the nominal level. Beal’s method is the least 
satisfactory and SK tends to have about the same or higher power than KMS. 
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Table 1. Estimated Type I error probabilities when testing H0: p1 = p2 at the 0.05 level. 
 
    p SK Beal KMS ZHZ 

n1 = 10, n2 = 10 

0.05 0.001 0.000 0.001 0.001 
0.10 0.008 0.001 0.008 0.010 
0.15 0.023 0.006 0.023 0.029 
0.25 0.032 0.016 0.032 0.058 
0.50 0.041 0.040 0.041 0.053        

n1 = 10, n2 = 30 

0.05 0.024 0.003 0.003 0.023 
0.10 0.031 0.006 0.009 0.029 
0.15 0.037 0.016 0.023 0.039 
0.25 0.043 0.028 0.037 0.068 
0.50 0.043 0.027 0.047 0.059        

n1 = 20, n2 = 20 

0.05 0.002 0.002 0.002 0.014 
0.10 0.018 0.012 0.014 0.057 
0.15 0.037 0.023 0.025 0.080 
0.25 0.048 0.024 0.040 0.061 
0.50 0.042 0.021 0.040 0.044        

n1 = 10, n2 = 100 

0.05 0.051 0.006 0.006 0.031 
0.10 0.043 0.005 0.010 0.033 
0.15 0.042 0.011 0.019 0.039 
0.25 0.044 0.039 0.053 0.065 
0.50 0.048 0.026 0.049 0.046 

 
 
Table 2. Estimated power. 
 
      p2 SK Beal KMS ZHZ 

n1 = 10, n2 = 10, p1 = 0.3 
0.05 0.215 0.096 0.215 0.260 
0.10 0.144 0.074 0.144 0.184 

n1 = 10, n2 = 10, p1 = 0.5 
0.05 0.631 0.509 0.631 0.704 
0.30 0.128 0.124 0.128 0.167 

        

n1 = 10, n2 = 30, p1 = 0.3 
0.05 0.522 0.309 0.361 0.535 
0.10 0.330 0.163 0.230 0.333 

n1 = 10, n2 = 30, p1 = 0.5 
0.05 0.892 0.748 0.812 0.889 
0.30 0.201 0.116 0.162 0.224 

        

n1 = 20, n2 = 20, p1 = 0.3 
0.05 0.535 0.444 0.470 0.593 
0.10 0.340 0.248 0.290 0.366 

n1 = 20, n2 = 20, p1 = 0.5 
0.05 0.942 0.894 0.928 0.949 
0.30 0.218 0.164 0.218 0.244 
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Illustration 

The results are illustrated using data from a study dealing with shoulder pain after 
surgery (Jorgensen et al., 1995). There were two independent groups. The first 
received an active treatment and the other was a control group. Shoulder pain was 
measured at three different times after surgery using integer values ranging between 
1 (low pain) and 5. First focus on the control group and consider the issue of 
whether pain decreased between the first and third times pain was measured. This 
was tested using the sign test based on method SD. The sample size is 19, but after 
eliminating tied values, the sample size was 10. The estimate of p, the probability 
that pain is lower at time 1, was 0.7, the 0.95 confidence interval was (0.381, 0.913) 
and the p-value for H0: p = 0.5 was 0.35. Using method AC instead, the 0.95 
confidence interval was (0.392, 0.897) and the p-value was 0.22, the only point 
being that the choice of method can make a difference. For the treated group, the 
estimate of p was 0.09, the 0.95 confidence interval was (0.005, 0.404) and the p-
value was 0.02 using SD. Now the sample size is 11. Using AC, the p-value was 
0.001. 

Consider the goal of comparing the two groups in terms of p1, the probability 
that pain is rated 1 at time 3 for the treated group, and p2, the probability that pain 
is rated 1 at time 3 for the control group. The estimates of p1 and p2 were 0.818 and 
0.263, respectively. The p-value using method SK was 0.0003 versus 0.001 using 
KMS. 

Conclusion 

For small sample sizes, when dealing with the one-sample case, the Schilling-Doi 
method offers a distinct advantage. However, execution time becomes an issue as 
the sample size increases. A simple strategy is to use the Schilling-Doi method 
when n < 35. For n ≥ 35, the choice of methods appears to make little or no 
difference when computing with a 0.95 confidence interval. 

As for the two-sample case, there are situations where ZHZ performs well in 
terms of accurate probability coverage and offers a power advantage over the other 
methods considered here. However, when dealing small sample sizes, there are 
situations where it is unsatisfactory. If the goal is to avoid Type I errors well above 
the nominal level, when testing H0: p1 = p2, the results suggest using SK or KMS. 
Method SK might offer a power advantage but at the expense of no confidence 
interval. 
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Zou et al. (2009) derived a generalization of ZHZ for testing linear contrasts 
for J ≥ 2 groups. A few simulations were performed when J = 3 and J = 4 when the 
sample sizes are small. In contrast to J = 2, all indications are that it provides good 
control over the Type I error probability. That is, results reported here for the one-
sample case suggest that ZHZ might be unsatisfactory when dealing with small 
sample sizes. This was found to be the case when for J = 2, but not when J > 2.  

The R function binom.conf applies all of the methods considered here for the 
one-sample case and is available in the file Rallfun-v36 at 
https://dornsife.usc.edu/cf/labs/wilcox/wilcox-faculty-display.cfm. It defaults to 
the Schilling-Doi method if n < 35, otherwise the Agresti-Coull method is used. 
But the other methods can be used via the argument method. The R function 
binom2g deals with the two-sample case. It defaults to the KMS method, which 
provides a confidence interval. To use method SK, with the possibility of more 
power at the expense of no confidence interval, set the argument method = ‘SK’. 
For linear contrasts, the R function lincon.bin can be used. 
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