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INVITED ARTICLE 

The Importance of Type I Error Rates 
When Studying Bias in Monte Carlo 
Studies in Statistics 

Michael Harwell 
University of Minnesota - Twin Cities 

Minneapolis, MN 

 

 
Two common outcomes of Monte Carlo studies in statistics are bias and Type I error rate. 

Several versions of bias statistics exist but all employ arbitrary cutoffs for deciding when 

bias is ignorable or non-ignorable. This article argues Type I error rates should be used 

when assessing bias. 
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Introduction 

Various outcomes are used to capture the behavior of estimators and statistical tests 

in Monte Carlo studies. Harwell et al. (2018) reviewed 677 articles in six journals 

appearing between 1985-2012 that reported Monte Carlo results and found 33.1%, 

16%, and 44.1% of these studies presented results for bias, Type I error rate, and 

root mean square error (RMSE), respectively. 

Bias 

Bias of an estimator is defined as E(̂  − θ) which is the difference between an 

estimator's expected value and the true value of the parameter being estimated 

(Neter et al., 1996), where ̂  is an estimate of θ. The central feature of bias is that 

it is non-random. The ( ˆ
i  − θ) generated across i = 1, 2,…, J replications in a 

Monte Carlo study lead to several common measures of bias: 

https://dx.doi.org/10.22237/jmasm/1556670360
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A critical feature of the above bias measures in Monte Carlo studies are user-

specified (arbitrary) cutoffs to distinguish important (non-ignorable) bias from less 

important (ignorable) bias: Cutoffs for average bias and absolute bias, equations (1) 

and (2), are unique to individual Monte Carlo studies (e.g., Brannick et al., 2019; 

Yuan et al., 2015), whereas 5% and 10% are typical cutoffs for relative bias and 

absolute relative bias, equations (3) and (4), although other values are sometimes 

used. 

For example, Harring et al. (2012) used an absolute bias cutoff of .05 for 

structural equation modeling estimates; Jin et al. (2016) and Kim et al. (2016) used 

a relative bias cutoff of 5% for estimated factor loadings; Leite and Beretvas (2010) 

used 5% when examining bias after imputing missing Likert-type data; Li et al. 

(2011) used 5% when evaluating bias in estimated correlations; Wang et al. (2012) 

used 5% in their study of the impact of violating factor scaling assumptions, and 

Ye and Daniel (2017) used 5% for assessing bias in cross-classified random effect 

models as did Meyers and Beretvas (2006) and Chung et al. (2018). 

Similarly, Enders et al. (2018) used a relative bias cutoff of 10% when 

evaluating the effect of a method for imputing missing data in multilevel models; 

Holtmann et al. (2016) used 10% for estimated coefficients for a structural equation 

model as did Wang and Kim (2017); McNeish (2016) used 10% for parameter 

estimates in a partially-nested multilevel model, and Chen and Leroux (2018) used 

10% for evaluating estimates for a cross-classified random effects model. Other 

relative bias cutoffs appearing in the Monte Carlo literature include Bai and Poon's 

(2009) 2.5% for estimates in two-level structural equation modeling and Vallejo, 
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Fernandez, Cuesta, and Livacis-Rojas's (2015) 20% for evaluating the impact of 

heterogeneity in multilevel models. 

The rationale for these cutoffs is not statistical but simply that they were used 

in previous Monte Carlo studies. For example, Myers and Beretvas (2006), Li et al. 

(2011), Leite and Beretvas (2010), Harring et al. (2012), Wang et al. (2012), Kim 

et al. (2016), Ye and Daniel (2017), and Chung et al. (2018) cited Hoogland and 

Boomsa (1998) as the basis of employing a .05 or 5% cutoff. Ironically, the 

rationale offered by Hoogland and Boomsa was arbitrary: "A boundary for 

acceptance of .05 is often used in robustness studies." (p. 364). Similarly, McNeish 

(2016) cited Flora and Curran (2004), Chen and Leroux (2018) cited Curran et al. 

(1996), Flora and Curran (2004), and Kaplan (1989) as the basis of their cutoff 

choice, Enders et al. (2018) cited Finch, West, and MacKinnon (1997) and Kaplan 

(1988), and Holtmann et al. (2017) cited Muthén and Muthén (2002) and Koch et 

al. (2014). 

In some cases, cutoffs are ancillary to categorizing bias as ignorable or non-

ignorable because bias values are far from zero. For example, the relative bias of 

79% reported in Wang and Kim (2017) provided strong evidence of non-ignorable 

bias. But bias values close to zero or to a cutoff invite confusing and inconsistent 

interpretations. Consider the Harring et al. (2012) Monte Carlo study of five 

methods for estimating and testing a structural parameter representing a quadratic 

effect in nonlinear structural equation models. These authors employed an absolute 

bias cutoff of .05 and reported 450 bias values for varying estimation methods, 

sample sizes, distributions, and reliabilities, with 19.3% of the values exceeding .05. 

However, 13.3% of the 450 bias values were between .040 and .060 and 25.1% 

were between .030 and .070, raising the question of why, for example, reported 

values of .044 and .054, represented ignorable and non-ignorable bias. It's also 

possible that bias values near zero (e.g., 55.5% were ≤ .02) interpreted as ignorable 

bias simply reflect sampling error. 

Similarly, Wang and Kim (2017) used a relative bias cutoff of 10% to identify 

non-ignorable bias in evaluating the effects of model misspecification on structural 

coefficients. These authors reported 144 relative bias values, 56.2% of which were 

described as representing "severe" bias because they exceeded 10%. An 

examination of these values shows that 24.3% were between 5% and 10% with 10 

values (6.9%) equal to 9% and seven (4.9%) equal to 10%, leaving readers to 

wonder why an estimate that produced a relative bias of 10% represented "severe" 

(non-ignorable) bias but an estimate with 9% bias was ignorable. Moreover, bias 

values near zero (e.g., 14.4% were ≤ .03) may simply reflect sampling error. 

Similar patterns appear in many studies reporting Monte Carlo results (e.g., Chung 
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et al., 2018; Ye, 2015; Jin et al., 2016; Lachowicz et al., 2018; Li et al., 2011; 

McNeish, 2016). 

Type I Error Rate 

Another common outcome in Monte Carlo studies in statistics is Type I error rate. 

An empirical Type I error rate ( )̂  is computed as the proportion of rejections of a 

true statistical null hypothesis across J replications; comparing ̂  to the user-

specified Type I error rate (e.g., α = .05) provides evidence of the ability of a 

statistical test to control its Type I error rate, which is crucial (Serlin, 2002). 

Relatedly, many Monte Carlo studies report confidence intervals about parameters 

of interest. For example, the coverage rate (CR) for confidence intervals about 

parameters of interest is frequently used as an indicator of standard error bias 

(Brannick et al., 2019; Chen & Leroux, 2018; Maas & Hox, 2004; Seco et al., 2013; 

Vallejo et al., 2015). A CR such as 88% for a confidence interval with a nominal 

coverage probability of .95 often reflects negatively-biased standard errors, 

whereas a CR of 98% reflects positively-biased standard errors. The empirical Type 

I error rate is simply 1- CR, for example, ˆ 1 .88 .12 = − = . 

The relationship between bias and Type I error rates in Monte Carlo studies 

suggest the latter can be important in evaluating the former. In data analysis 

retention of a statistical null hypothesis H0: θ = 0 implies ( ̂  − θ) represents 

sampling error whereas rejection implies (̂  − θ) represents sampling error plus an 

effect. In Monte Carlo studies in statistics retention of H0: θ = 0 (where it is known 

θ = 0) implies ( ̂  − θ) represents sampling error not bias, whereas rejection of 

H0: θ = 0 (where it is known θ = 0) implies (̂  − θ) represents sampling error plus 

bias. If relative bias is 4.4% when estimating   and for the same simulated data 

ˆ .048 =  for a test of H0: θ = 0 (α = .05 and it is known θ = 0), bias equals zero and 

the 4.4% represents sampling error regardless of the chosen cutoff. On the other 

hand, if relative bias is 4.4% when estimating θ and for the same simulated data 

ˆ .12 =  for a test of H0: θ = 0 (α = .05 and it is known θ = 0), the difference 

between .12 and .05 should be treated as reflecting sampling error and bias. The 

decision of what constitutes ̂   and ̂  , and for the latter whether bias is 

ignorable or non-ignorable, relies on the judgment of authors who can use Type I 

error rates to support claims an estimator is or is not biased. 

It's possible to further quantify the magnitude of bias by computing RMSE 

and partitioning this quantity into (squared) bias and sampling variance: 
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Values of equation (6) closer to one signal that (squared) bias is dominating 

differences between estimates and a parameter (sampling error is comparatively 

modest), and values closer to zero that (squared) bias is playing a modest or 

negligible role (sampling error is comparatively large). 

For example, 42.2% of the empirical Type I error rates reported in Harring et 

al. (2012) exceeded the bounds of acceptability these authors employed via the 

Bradley liberal criterion (Bradley, 1978) ˆ.025 .075  , meaning 57.8% were 

within these bounds and the associated bias values should be treated as sampling 

error (Harring et al. reported the results of two Monte Carlo studies, one focused 

on bias when estimating a quadratic effect and the associated RMSE, and a second 

focused on empirical Type I error rates and power when testing a quadratic effect 

against zero. It's unclear whether the same simulated data were used in both studies 

but for illustrative purposes it is assumed the bias, Type I error rate, and RMSEs 

generated by the two Monte Carlo studies for the quadratic effect are comparable). 

Correspondingly, the bias values linked to error rates outside these bounds, such as 

the 11.1% of the error rates equal to .08, should be treated as reflecting both 

sampling error and bias. Similarly, Wang et al. (2012) reported that 66 of 144 

(45.8%) bias values exceeded the selected 5% cutoff but an examination of 

empirical Type I error rates shows that only seven (4.8%) fell outside the cutoffs 

of .025 and .075 chosen by these authors using Bradley's liberal criterion. As a 

result, 57 (86.3%) of the 66 values described by these authors as showing bias 
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should be treated as representing sampling error, which changes the interpretation 

of the Monte Carlo results. 

As an example, Harring et al. (2012) reported an average bias of .106 for the 

latent variable score (LVS) estimation method, a nonnormal distribution (NN-1), 

indicator reliability = .45, and n = 50 which implies bias is non-ignorable given the 

chosen cutoff of .05. These authors also reported Type I error rates assuming 

α = .05. For the above conditions (LVS estimation, NN-1, indicator reliability = .45, 

n = 50) Harring et al. reported ˆ .07 =  which was within their bounds of 

acceptability using the Bradley criterion (Bradley, 1978), implying the reported 

bias of .106 should be treated as sampling error (bias = 0). Similarly, for the LVS 

method, a different nonnormal distribution (NN-2), indicator reliability = .45, and 

n = 50 Harring et al. reported a bias of .105 and ˆ .08 = . The latter falls outside 

their bounds of acceptability using the Bradley criterion and implies the reported 

bias value of .105 should be treated as reflecting sampling error and bias. Harring 

et al. also reported RMSEs which allows equation (6) to be used. For the LVS 

method, bias = .105, NN-2, indicator reliability = .45, n = 50, and ˆ .08 =  equation 

(6) produces 
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or almost 11%, suggesting bias plays a modest role in differences between estimates 

and the parameter (sampling error is comparatively large). 

The same logic can be applied to other versions of bias reported in Monte 

Carlo studies. For example, McNeish and Harring (2017) cited Bradley (1978) in 

using cutoffs of 92% and 98% for CRs about parameters in 95% confidence 

intervals, with CRs outside these values treated as reflecting biased standard errors. 

Marrying Type I error rates with bias means the bias of standard errors associated 

with 92% ≤ CR ≤ 98% should be treated as zero, whereas the bias of standard 

errors associated with CR < 92% or CR > 98% is not zero. Similarly, Brannick et 

al. (2019) used Monte Carlo methods to study the impact of distribution, number 

of studies, and study sample size in a meta-analysis on the lower bound of 

confidence intervals for correlations and employed a cutoff of .02 for bias. Table 3 

in this article shows that eight (11.1%) of the estimated correlations were biased 

using the .02 cutoff and of these six were between .02 and .03, whereas Table 4 
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shows that 13.2% of the conditions provided adequate coverage based on choice of 

CR ≥ 90% meaning ˆ .10   was deemed acceptable. If the Bradley liberal 

criterion was used bias values associated with 85% ≤ CR ≤ 95% would be treated 

as zero, whereas values associated with CR < 85% or CR > 95% would be treated 

as providing evidence of bias. Bias, Type I error rates or CRs, and RMSEs are 

frequently reported in Monte Carlo studies (e.g., Chen & Leroux, 2018; Chung et 

al., 2018; Lachowicz et al., 2018; Seco et al., 2013; Vallejo et al., 2015). Many that 

don't could, permitting the calculations illustrated above. 

Conclusion 

Monte Carlo studies in statistics frequently report measures of bias that are judged 

to be ignorable or non-ignorable based on arbitrary cutoffs. Linking Type I error 

rates of statistical tests (or coverage rates of confidence intervals about parameters 

of interest) with the bias values of estimators used in those tests offers a quantitative 

framework based on simple statistical theory: If a statistical null hypothesis 

H0: θ = 0 (where it is known θ = 0) is retained then (̂  − θ) represents sampling 

error and if it is rejected in a Monte Carlo study (̂  − θ) represents sampling error 

and bias. This strategy presumes a statistical test is available for an estimator either 

analytically or using a Monte Carlo-based sampling variance. If the root mean 

square error is reported the impact of squared bias can be estimated, helping to 

quantify the impact of bias on (̂  − θ). Bias, empirical Type I error rates, and root 

mean square error values are usually straightforward to compute and report in a 

Monte Carlo study and marrying these quantities when interpreting bias should 

enhance interpretations of Monte Carlo results and move decisions about bias 

towards a quantitative framework. 
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