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1 INTRODUCTION

Power systems are inherently networked systems. Increased penetration of renew-

able and distributed generators (DGs), controllable loads, energy storage systems, and

advanced power electronics systems have ushered in a new paradigm of microgrids

(MGs) on distribution networks [1, 2].

Centralized, decentralized, and distributed control methodologies have been de-

veloped to regulate frequency, control voltage profiles, reduce production costs, min-

imize power losses, and enhance reliability. Centralized control schemes employ a

central processing unit to communicate with all generators and loads [3, 4]. To sup-

port plug-and-play of generators and loads without increasing overwhelmingly system

complexity [5], decentralized or distributed control methods become desirable [6, 7, 8].

1 Problems Statement

For DC MGs, load allocation to distributed generators, line losses, and voltage

profiles are intimately coupled. Achieving a suitable balance among these objectives

is essential for reliable and efficient MG operations and imposes a significant challenge

for control strategy development.

The problem in this work is to develop a distributed optimization strategy that

would address these challenges while achieving the global optimal solution. Con-

tinuing on the work on distributed optimization algorithms, the second part of the

problem will consider subsystem dynamics in DC microgrids.
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1 Objective And Motivation

The motivation behind the work is to develop a new distributed control strategies

for integrated management of load power sharing, line loss reduction, and voltage

quality improvement in DC microgrids.

The first objective is to achieve a multi-objective optimization strategy that ad-

dresses the challenge of achieving a suitable balance among the competing objec-

tives of bus current balance, power loss reduction, and voltage deviation attenuation.

These objectives are expressed in a global optimization performance index. The cor-

responding global optimal solutions are derived. To reduce operational costs, improve

robustness and reliability, and provide scalability, distributed optimal solutions are

sought for this combined power management problem.

The second objective is to consider DC microgrids with subsystem dynamics.

Inclusion of subsystem dynamics accommodates many real systems. impacts perfor-

mance significantly, and complicates system analysis. Expanded dynamics systems

are derived, and stability and convergence analysis are carried out, and the main

properties are established.

This work shows that by designing suitable local optimization criteria and re-

cursive algorithms, our distributed recursive algorithms are convergent to the global

optima.

The control methodology of this work offers some distinct advantages: (1) It re-

quires only neighborhood information exchange among nodes in the network. (2) The
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local optimization can achieve global optimization. This is especially important for a

large network with physically distributed subsystems. (3) It has provable properties

of convergence to the global minima under noisy observations. (4) It is robust against

load perturbations and allows reconfiguration with subsystem addition and deletion.

(5) It is scalable in the sense that system expansion will not significantly increase

control system complexity.

1 Literature Review

In comparison to the existing literature, it is first noted that this work integrates

three performance objectives. Due to technical difficulties, traditional power systems

decompose control tasks into decoupled problems, although the underlined physical

systems are still highly coupled. For example, economic dispatch (by minimizing gen-

eration costs or power losses or a combination of both) and voltage stability are often

separate management issues. Similarly, frequency regulation is commonly performed

by controlling real power, and voltage quality is managed by controlling reactive

power generation or VAR compensation.

To expand on the above, power losses have been studied extensively in traditional

power grids and also in various MGs involving renewable energy resources, control-

lable loads, and energy storage systems [9, 10, 11, 12]. The minimization of power

losses is used to compute the optimal charging profile of plug-in hybrid electric vehi-

cles (PHEV) in [13] . Overloading of lines and minimization of power losses are used

as sensitivity factors to coordinate the charging profile of plug-in electric vehicles
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(PEVs) in [14]. While the cooperative power exchange algorithm is used to minimize

the total power loss in [15], the algorithm only reached near-optimal results. .The

power loss minimization problems in these papers do not include multiple objectives

such as balanced load distribution to generators/feeders or voltage profile manage-

ment. [12] utilizes a control strategy that uses Particle Swarm Optimization (PSO)

to solve the optimization problem of reducing power losses in hybrid energy storage

system (HESS) and state of charge (SOC) balance by employing a centralized voltage

controller that is used to sense the current demand and batteries’ state of charge.

Furthermore, this work seeks distributed strategies to achieve global optimal so-

lutions. MG Central Controllers (MGCC) manage all control and decision actions by

central systems through the information exchange between the MGCC and the load

controllers (LCs) that control groups of loads and microsource controllers (MCs) that

control the storage devices [16].In contrast, droop control methods for standing-alone

MGs are decentralized control techniques [17, 18, 19]. The frequency droop control

of distributed energy resources (DERs) is used as a decentralized control strategy in

MGs [17]. [18] used a decentralized optimization strategy to optimize the system’s

operation cost of DC microgrid which is achieved when the incremental cost of all

distributed generators reach equality through a voltage droop scheme. A distributed

control strategy that will regulate the output of multiple photovoltaic generators

(PVs) in distribution networks is introduced to handle the numerous PV generation

in MGs [19]. Voltage droop control methods have been used for resistive low-voltage

networks [20, 21]. The conventional grid control concept is downscaled to the low volt-
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age grid by implementing the conventional droop control strategy into the distributed

energy resources (DERs) and the renewable energy sources (RESs) enhancing the sta-

bility and safety of the LV-grids [20]. A droop active power strategy for overvoltage

protection in low voltage feeders is used to increase the installed PV capacity and en-

ergy yield, considering both cases of having the same and different droop coefficients

[21]. [22] introduces a robust voltage management droop control strategy under dis-

turbance scenarios taking into consideration the dynamics of the DC/DC converters.

Unlike conventional droop control strategies that don’t address the sudden drop in

DC bus voltage level, [23] overcame that problem using droop based control strategy

for voltage management that took into consideration the dynamics of the loads.

A classic optimal power flow method was adapted for dispatch power in MGs

with DGs [24, 25]. New methods have been proposed, such as cooperative control

schemes for fair power generation and sharing in MGs [19, 26] and voltage stability

[27]. Distributed strategies are employed for economic dispatch and system efficiency

in [28] and [29].In [26], a cooperative control scheme between the classical distributed

optimization algorithm and the operation of multiagent systems is used to solve the

problem of optimal energy exchange between the loads of the MG and the genera-

tion units. A distributed state estimation, used for condition monitoring such as fault

detection by using an implementation of distributed Extended Kalman Filter and dis-

tributed Unscented Kalman Filter [27]. A cooperative robust control strategy of multi

machine power system between an L2 disturbance attenuation excitation controller

for the generators and an adaptive L2 disturbance attenuation excitation controller for
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the superconducting magnetic energy storage (SMES) is used to enhance the system’s

stability [30]. A distributed adaptive droop control is used to optimize the microgrid’s

power distribution of the economic dispatch problem in [28]. The optimal solution is

obtained through using a distributed hierarchical control that eliminates the need of

centralized controllers .In [29], a dynamic consensus based distributed optimization

strategy was used to optimize the efficiency of a droop controlled DC microgrid. The

droop control is used for fair load allocation among the DC/DC converters. [29] offers

higher expandability and flexibility compared to the centralized strategies since each

local agent obtains the global information for its local controller’s decision making.

On the other hand, the consensus method was applied to power system load distribu-

tion in [31]. Global optimality under combined performance objectives has not been

established in these methods except for [28]. On the other hand, [32] showcases a

multi-objective optimization control strategy that uses multi-objective Genetic Al-

gorithm which determines the system’s design based on the objectives of network

size, cost and availability of energy in a hybrid renewable energy system in a smart

microgrid.

Finally, this work employs stochastic approximation (SA) algorithms for real-time

recursive updating of control actions. Different methods have been used in the liter-

ature. In [33], by using a Lyapunov optimization technique, a long-term energy cost

was minimized under uncertainties in electricity price, workload, renewable energy

generation, and power outage state in MGs. Minimization of a combined criterion on

power loss and voltage stability was employed for optimal DG placement in [34]. The



7

problem was solved by using dynamic programming in [34], and particle swarm op-

timization algorithms in [35, 36]. A meta-heuristic harmony search algorithm (HSA)

was used in [37] to solve network reconfiguration problems by minimizing power losses

and improving voltage profiles in distribution networks with distributed generators.

Expanding on power loss reduction and voltage sag avoidance, [38] also included

economical factors such as installation and maintenance costs.

1 Potential Contribution

The objective of using distributed strategies to achieve global optimal solutions

together with the use of SA algorithms is new in this application area.

This work is a significant extension on the distributed control strategies that

integrates three performance objectives in dual-source trolleybus systems [39, 40] by

incorporating voltage profiles and dealing with more general DC MGs. Additionally,

it also incorporates subsystem dynamics in the second part of the work. The reference

[39] treated load sharing only without optimization. Line losses were added in [40]

and the corresponding optimization problem was investigated.

The following aspects of this work are new: (1) The voltage profiles along load

sharing and loss reduction are integrated into the control problem. (2) Due to cou-

plings of network voltages and currents, inclusion of bus voltages adds certain con-

straints and creates complications in achieving global optimality by distributed strate-

gies. This work employs a decoupling weighting to restore global optimality of our

distributed algorithms. (3) Modified recursive and distributed algorithms are devel-
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oped whose convergence properties are established. (4) The methodology is extended

to include generators of different capacities, leading to a weighted consensus for load

sharing. (5) The trade-off among conflicting objectives is studied and demonstrated.

(6) The methodology is extended to include subsystem dynamics.

1 Dissertation Organization

This dissertation is structured as follows:

In Chapter 2, background information about microgrids and the different type of

optimization techniques used in microgrids.

In Chapter 3, a distributed control strategy is developed to solve the multi-

objective optimization problem in order to find the optimal feeder currents in a DC

microgrid, a recursive algorithm that is capable of achieving the global optimal solu-

tion using only neighborhood communications. Multiple case studies were employed

to evaluate the optimization strategy using the power supply system configurations

of the Beijing Dual-Source Trolleybus System in [39] and a 14-DC bus system.

Chapter 4 extends on the work from chapter 3 by including subsystem dynamics in

addition to optimal load sharing, loss reduction and voltage quality in optimization in

DC microgrids. The local dynamics are realized by a state space model. Convergence

analysis is conducted on the modified algorithm. DC-DC buck converter is used as the

subsystem dynamic in the case studies that will be controlled using a PI controller.

More case studies were introduced to evaluate the effect of the controller’s dynamics,

converter’s dynamics and step size and sampling interval on the system behavior.
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Chapter 5 highlights a conclusion drawn from the work in addition to providing

some ideas that might be pursued for future work.
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2 BACKGROUND

2 DC Microgrids

2.1.1 Definition Of Microgrids

First, general definitions of microgrids are needed. There are a lot of microgrid

definitions presented by various reports from different research organizations all over

the world. Some of those definitions of a microgrid are as follows:

The U. S. National Renewable energy laboratory (NREL) has provided the fol-

lowing definition of Microgrids in [41]:

“A microgrid is a group of interconnected loads and distributed energy resources

that acts as a single controllable entity with respect to the grid. It can connect and

disconnect from the grid to operate in grid-connected or island mode. Microgrids can

improve customer reliability and resilience to grid disturbances.”

The Congressional Research Service (CRS) presents a Microgrid definition in [42]

as follows:

“ A Microgrid is any small or local electric power system that is independent of
the bulk electric power network. For example, it can be a combined heat and power
system based on a natural gas combustion engine (which cogenerates electricity and hot
water or steam from water used to cool the natural gas turbine), or diesel generators,
renewable energy, or fuel cells. A Microgrid can be used to serve the electricity needs
of data centers, colleges, hospitals, factories, military bases, or entire communities
(i.e., “village power”).”

From these definitions, a microgrid should include the following:

-A microgrid is an integration of microsources, storage units and controllable loads

located in a local distribution grid.
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- A microgrid can operate in grid-connected or disconnected modes.

The next section will briefly discuss the reasons why there is a shift toward mi-

crogrids.

2.1.2 Why Microgrids

There are benefits of using microgrids to the environment, and to utility operators

and customers. In addition to the capability of operating in grid-connected and stand-

alone modes, other benefits and advantages for using microgrids are development

flexibility, increased power quality and efficiency.

Microgrids benefit from distributed generation, eliminating the constraints on high

penetration which results in environmental benefits through the utilization of energy

efficient generation resources. Thus, less fuel is combusted overall, resulting in lower

greenhouse gas emissions [43]. Additionally, the integration of distributed energy

resources increases reliability which may result to reduction in the cost of energy and

reduction in power losses [44].

Microgrids can continuously power buildings and important facilities even if the

surrounding areas are suffering from an outage. This feature of microgrids offers

greater grid resilience from weather-related and cybersecurity issues compared to

those grids without microgrids, which could suffer from outages [45].

For the purpose of the work, DC microgrids will be further discussed in the next

subsections.
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2.1.3 Configuration of DC Microgrids

A microgrid consists of energy resources, loads and management / coordination

units and energy storage units. It is possible to integrate both renewable energy

sources (e.g. photovoltaic, wind) and conventional sources (such as diesel fuel) in a

microgrid. It also has to support main power networks. Conditioning and manage-

ment Units allow voltage level adjustments, interactions with other units in the grid,

and interaction with the loads. Examples of those units are DC/AC Inverters and

DC/DC Converters [46].

By connecting all the sources and loads to the DC inks, DC microgrid is formed.

The AC utility grid and the AC distributed generation units are connected via bidi-

rectional DC/AC inverters. The PV units, energy storage units and DC loads are

linked to the DC bus through DC/DC converters as shown in Fig. 1.

Figure 1: DC Microgrid [47].
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2.1.4 Why DC Microgrids

There are advantages and reasons behind the increase of using DC microgrids over

AC microgrids, some of which are as follow:

1. Sources: there is a resurgence in using DC because of the apparent increase

in DC generation all over the world including solar power and fuel cells. Solar

power is booming all over the world including the United States, which has

experienced annual average growth of 68% in the last decade [48]. Another

example would be Kamuthi Solar PV Power Plant India, which is the world’s

largest solar power plant with an installed capacity of 648 MW [49].

2. Loads: there is also a noticeable increase in DC loads. Most modern electronics

and technologies (such as TVs and computers) require DC power. Data Centers,

for example, require the use of DC power for their equipments such as servers,

motors and batteries. DC data centers are more efficient than the AC ones [50].

3. Distributed Energy: a DC microgrid will enable distributed energy resources

better than an AC microgrid. DC MG with distributed energy involved offers

better conversion efficiency as well as better transmission/distribution efficiency

[47].

Additionally, DC microgrids feature a reduction of AC-DC converters, power loss

reduction and decentralization of the grid.
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2 Optimization

A general definition of optimization in electric power systems is provided by the

National Energy Technology Laboratory (NETL) from the Department of Energy

[51], which is as follow:

“A broad set of interrelated decisions on obtaining, operating, and maintaining

physical and human resources for electricity generation, transmission, and distribution

that minimize the total cost of providing electric power to all classes of consumers,

subject to engineering, market, and regulatory constraints”

Power System Optimization is aimed at improvements in more areas than cost. It

is also aimed at improving the system’s security, reliability, efficiency, friendless to the

environment, economics and stability. Identifying the prime design variables is the

first step to formulate an optimization problem. A design problem usually involves

many design parameters. Other parameters that are not as important usually remain

fixed or vary depending on the relation with the prime design variables. Choosing as

few design variables as possible is an important rule when formulating an optimization

problem[52].

There are two distinct types of optimization algorithms based on the method of

operation[52]:

1. Deterministic Algorithms: referred to the optimization algorithms used to

solve optimization problems whilst providing theoretical guarantees that the

reported solution is indeed the global one [53].
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2. Stochastic Algorithms: referred to the optimization algorithms and strate-

gies used to solve optimization problems ( minimizing or maximizing an ob-

jective function) when randomness is present. Other common names for the

objective function are loss function, performance measure and fitness function.

Usually, randomness enters the optimization problem through the cost function

or the constraint set [54].

For a deterministic algorithm, in each executable step, there exists at most one way

to proceed. If there is no way to proceed, the algorithm is terminated. Deterministic

algorithms do not use randomized numbers in order to decide what to do or how

to modify data, unlike randomized algorithms. Using the same inputs will always

produce the same results when using deterministic algorithms [52].

Optimization algorithms are categorized based on the communication structure

to the following [55]:

1. Centralized Algorithms: algorithms where a centralized entity is responsible

for computational performance, receiving information from agents, and finally

sends new commands accordingly.

2. Decentralized Algorithms: purely local algorithms without any sort of com-

munication between agents.

3. Distributed Algorithms: algorithms where each agent communicate with

its neighboring agents only while there is no centralized entity to give any

commands.
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Centralized optimization and control algorithms have been the prominent algo-

rithms when it comes to electric power systems. Some of the important objectives

of those algorithms are the optimal dispatch of power flow and scheduled load shar-

ing [55]. The increased penetration of distributed energy resources (DERs) such as

PV generation will lead to a potential augmenting of the centralized structure with

distributed algorithms.

Distributed algorithms have several potential advantages over the centralized

counterparts. The fact that the computing agents only share limited information

to the neighboring agents could potentially improve the cybersecurity and reduce the

expanse of communication infrastructure. Additionally, distributed algorithms could

offer better robustness with respect to the failure of individual agents compared to

the centralized approach [55].

2 The Consensus Problem

The consensus problem is a fundamental problem in control of multi-agent systems

that requires agreement among a number of agents or processes on a single data

value. To reach consensus, each agent begins in the undecided state and proposes

a single value after communicating and exchanging values with other agents in each

execution[56].

The requirements of a consensus algorithm are that the following conditions should

hold for every execution [56]:

1. Termination: Every non-faulty process must eventually decide.
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2. Agreement: The final decision of every non-faulty process must be identical.

3. Validity: If all non-faulty agents proposed the same value, then any correct

process in the decided state has chosen that value.

If there is no failure, then reaching consensus is trivial. However, consensus in

the presence of failures can be complex. The complexity differs and depends on the

system’s model and type of failure[57].
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3 OPTIMAL POWER AND VOLTAGE MANAGEMENT

This chapter is going to cover the first part of the work which is to develop the

distributed methodology without including the dynamics of any part of the system.

The chapter is organized into the following sections. Section 3.1 formulates the

main problems. The main network configuration of the DC MGs under study is

defined. A multi-objective global optimization problem is formulated and solved in

Section 3.2. Section 3.3 presents a distributed optimization method that is shown

to achieve the global optimal solution at steady state. The recursive algorithms and

their convergence properties are established in Section 3.4. Finally, case studies are

used to evaluate the methodology in section 3.5.
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3 Problem Formulation

3.1.1 DC Microgrid Networks

Throughout this chapter and the consecutive chapters, the generic word ”node”

is used to represent a physical feeder line, a bus, a supply line segment, etc. Suppose

that a DC power supply network contains r nodes. The nodes are connected by link

lines to form a physical MG. In addition, the nodes communicate with each other

via a communication system, forming an information (cyber) network. This creates a

cyber-physical system. Each node communicates only with its physically connected

neighbors is an assumption made throughout the work. Consequently, the physical

network and information network have the same network topology.

In this DC power network, the real-time supply current of the ith node is Ii(t) (A),

its load is Li(t) (A), and the node voltage is vi(t) (V). We emphasize that the word

“supply” means the consolidated controllable current, which may be a combination

of synchronous generators with AC/DC converters, the manageable part of solar

systems, controllable loads, energy storage devices, etc. The “load” represents the

sum of all uncontrollable currents, such as fluctuations of wind or PV generators,

motors, buildings, EV charge stations, etc.

The network topology is represented by a directed graph G. For (i, j) ∈ G, the

current from the ith node to the jth node is Iij(t) (A), and the line resistance is Rij

(Ω). Since Iij = −Iji, each line will have only one line current. Denote the node

current vector u(t) = [I1(t), . . . , Ir(t)]
T , where the superscript T means transpose.
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Similarly, v(t) = [v1(t), . . . , vr(t)]
T , L(t) = [L1(t), . . . , Lr(t)]

T . By specifying a given

order of the links, y is the column vector of the link currents, R = diag[Rij] is the

link resistance matrix. The supply line of the ith node has rated current γi. Define

the node capacity matrix Γ = diag[1/γi] and γ = [γ1, . . . , γr]
T .

In this work, it is assumed that the DC MG is connected (every node has a path

to any other node); and there are no loops (loops in DC current-supply networks

will cause non-uniqueness in determining the currents in the MG and hence are not

permitted). Under these conditions, the number of the links satisfies ls = r − 1.

Seeking distributed control strategies and impose the following assumptions is sought

to make the control system scalable, reliable, and simple.

Assumption 1 (1) Each node knows its own state and parameters. (2) Each node

knows the link current and link resistance that is connected to it. (3) Each node

knows its neighbor’s rated capacity, but must estimate its neighbor’s supply current

with possible errors.

Example 1 To illustrate these concepts, consider the 6-node DC MG in Fig. 2,

which, for convenience of case studies and comparison, is the same topology used in

[39].
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Figure 2: A DC microgrid with 6 feeders and 5 links.

Note that the MG and information network are identical: The node communicates

only with its physically connected neighbors. For this MG,G = {(1, 2), (2, 3), (2, 4), (4, 5), (5, 6)}

and ls = 5, y = [I12(t), I23(t), I24(t), I45(t), I56(t)]T , R = diag[R12, R23, R24, R45, R56].

3.1.2 Design Objectives

Consider the following three control objectives.

1. Fair Allocation of Loads to Generators.

In a networked system, multiple generators/feeders collectively support the

loads on different nodes. Fair load sharing proportional to each generator’s

capacity can alleviate bus overload, reduce cost in generations, and avoid un-

necessary tripping of protection circuits.

2. Reduction of Line Power Loss.
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While allocating loads to different generators alleviates overload issues, trans-

portation of currents among different buses introduces line power loss. A suit-

able control strategy needs to consider the tradeoff between load sharing and

line loss reduction.

3. Maintaining Desirable Voltage Profiles.

Allocating load currents to different generators has an unintended consequence

on voltage profiles throughout the entire network. To guarantee power quality

to the loads, the bus voltages must be managed to be close to their rated values.

To establish rigorous theoretical results on global optimality of the distributed

strategies, to derive convergent algorithms, and to prove convergence under noisy

observations, control objectives in the performance indices were purposely included,

rather than imposing hard limits on them. For example, one may elect to impose hard

bounds on node voltages as inequality constraints, rather than a performance term

to be reduced; or designate link current limits that will ensure safety and implicitly

limit line power loss.

Introducing such nonlinear inequality constraints in the optimization problems is

common in practice. However, analytic or closed-form solutions to such problems

remain unknown, and numerical solutions must be sought Furthermore, at present, it

is not clear if distributed strategies can achieve the global optima under such problem

formulations.

Obviously, these three objectives are in conflict with each other. For example, no
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power sharing will avoid line losses completely, but lead to the worst-case scenario

of bus overload. In this work, a multi-objective control will be formulated and its

distributed optimal solutions are sought.

3 Multi-Objective Global Optimization

In a DC microgrid with r nodes, the node current vector u, link current vector y,

and the load vector L are related by Kirchhoff’s Current Law (KCL)

u = My + L (3.1)

where M is an r × (r − 1) network matrix whose rows are elementary vectors such

that if the lth element of y flows into (or out) the jth node, then the value at (j, l)th

position is −1 (or 1).

It is easy to verify that each column of M has exactly one −1 and one 1, represent-

ing the fact that each link current is from one node to another node, and MT11 = 0,

where 11 is the column vector of all 1s. M is full column rank, indicating that the

link currents can be uniquely determined from the node currents and loads via

y = (MTM)−1MT (u− L). (3.2)

The node voltages are constrained by r− 1 equalities from the link currents, such
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as v1 − v2 = R12I12. This can be written as

MTv = Ry, (3.3)

where R is the link resistance matrix.

Since there are only r − 1 equality constraints in (3.3), one degree of freedom on

the node voltages remains. Imposing an extra condition will be generically expressed

as an equality constraint

ζov = vref , with ζo11 = 1. (3.4)

For example, if one bus, say node 1, is designated as a reference bus whose voltage is

independently controlled to be vref , then ζo = [1, 0, . . . , 0]. If the average value of all

bus voltages is controlled to be vref , then ζo = [1/r, . . . , 1/r].

This requirement will be maintained in distributed algorithms presented in the

subsequent sections. By adding (3.4) to (3.3), we have

H0v = R0y +Wvref (3.5)

where

H0 =

 MT

ζo

 , R0 =

 R

0, . . . , 0

 ,W =

 [0, . . . , 0]T

1

 .

Under the condition that the DC MG is connected, H0 is full rank. Then v can
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be written as a function of y

v = H−1
0 R0y +H−1

0 Wvref . (3.6)

Moreover, from the expression of H0, it is easy to deduce that

H011 =



0

...

0

1


= W,

which implies that H−1
0 W = 11. Furthermore, H−1

0 R0 can be expressed as

H−1
0 R0 = H−1

0

 R

0

 = H−1
0

 I

0

R = QR

in which Q = H−1
0

 I

0

 depends only on the network topology, but not on the

network parameters Rij. These lead to

v = QRy + vref11. (3.7)

It can be verified that Q has rank r − 1; and hence QTQ is full rank.

Example 2 For the MG in Fig. 2 and ζo = [1/6, . . . , 1/6], the corresponding network
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matrices are

M =



1 0 0 0 0

−1 1 1 0 0

0 −1 0 0 0

0 0 −1 1 0

0 0 0 −1 1

0 0 0 0 −1



,

H0 =



1 −1 0 0 0 0

0 1 −1 0 0 0

0 1 0 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

1/6 1/6 1/6 1/6 1/6 1/6



,

Q =



5/6 −1/6 −1/6 −1/6 −1/6

−1/6 5/6 −1/6 −1/6 −1/6

−1/6 −1/6 5/6 −1/6 −1/6

−1/6 −1/6 −1/6 5/6 −1/6

−1/6 −1/6 −1/6 −1/6 5/6

−1/6 −1/6 −1/6 −1/6 −1/6



.

The goal of power management in this networked system consists of three ob-

jectives: (a) Balance the node currents such that u(t) − βγ is small, where β is a
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constant. (b) Reduce line power losses yTRy. (c) Maintain the bus voltages to be

close to the rated value vref , namely v − vref11 should be small.

The desired load sharing is u(t) = βγ. By the current balance, L(t)T11 = uT11 =

βγT11. Therefore, β = L(t)T11/γT11, namely the used (total) capacity in percentage.

Since β involves all the loads, it is a global variable and is not available to distributed

controllers.

A multi-objective performance index is introduced here to define a tradeoff among

these three objectives. Define a weighting matrix Φ = Q(QTQ)−1(QTQ)−1QT , and

J = 1
2
[a(u− βγ)TΓ(u− βγ) + byTRy

+c(v − vref11)TΦ(v − vref11)],

(3.8)

subject to the constraints (3.1) and (3.7). Here a, b, c with a + b + c = 1 are scalar

non-negative weighting coefficients that define a trade-off among the three objectives.

The weighting matrices Γ = diag[1/γi] and Φ serve the purpose of decoupling and

scaling so that distributed strategies can be used.

Denote Γ1/2 = diag[1/
√
γi], M0 = Γ1/2M , and L0 = Γ1/2L. Under the relations

(3.1) and (3.7), the performance index (3.8) becomes

J(y) =
1

2
[a(Γ1/2(My + L)− βΓ1/2γ)T (Γ1/2(My + L)− βΓ1/2γ)

+byTRy + cyTRQT ΦQRy]

=
1

2
[a(M0y + L0 − βΓ1/2γ)T (M0y + L0 − βΓ1/2γ)

+byTRy + cyTRQT ΦQRy]
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=
1

2
[a(M0y + L0 − βΓ1/2γ)T (M0y + L0 − βΓ1/2γ)

+byTRy + cyTR2y].

Consequently, the link current vector y becomes naturally the control variable.

The goal of optimization aims to minimize the performance index

min
y
J(y). (3.9)

Theorem 1 The global optimal solution to (3.9) is

y∗ = −[aMT
0 M0 + bR + cR2]−1aMT

0 L0. (3.10)

Proof: To solve the optimization problem, we calculate the stationary point

∂J(y)
∂y

= aMT
0 (M0y + L0 − βΓ1/2γ) + bRy + cR2y

= [aMT
0 M0 + bR + cR2]y + aMT

0 (L0 − βΓ1/2γ)

= [aMT
0 M0 + bR + cR2]y + aMT

0 L0

= 0.

Here, the fact

MT
0 Γ1/2γ = MTΓγ = MT11 = 0
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is used in the derivation. Hence, the optimal link current vector y∗ is

y∗ = −[aMT
0 M0 + bR + cR2]−1aMT

0 L0.

Furthermore, the Hessian matrix is

aMT
0 M0 + bR + cR2.

Since MT
0 M0 > 0, R > 0, R2 > 0, this matrix is positive definite as long as one of the

coefficients is positive. This implies that y∗ is indeed the minimum point. �

Remark 1 While the global optimal solution can be calculated without any itera-

tion, it requires a central controller and global information on the network parameters

and loads on all buses. Consequently, it needs intensive communication resources.

Furthermore, when the network scales by expanding and shrinking, the network pa-

rameter matrix R, topology matrix M , and local loads L must be updated at the

central controller. In this sense, it is not friendly to network scaling.
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3 Distributed Optimization

The main goal here is to develop a distributed control that does not require a

central controller or global exchange of information, but can still achieve the global

optimal solution (3.10). In addition to Assumption 1, a cooperative and consistent

decision environment is assumed: a decision on the link current Iij (the local control

variable) is shared by node i and node j. As a result, a distributed control strategy

will be an optimization over the link current Iij individually for each link. In other

words, in deciding Iij, a local performance index needs to be used that involves only

Ii, vi, Ij, vj, and Rij.

The main challenge is to determine the local performance index so that the global

optimal solution (3.10) can be achieved without global information exchange.

For each link (i, j) ∈ G, its local objective function is defined as

Jij = 1
2
[a
2

(
Ii
γi
− Ij

γj

)2

+ bRijI
2
ij + c(vi − vj)2]

= 1
2
[a
2

(
Ii
γi
− Ij

γj

)2

+ bRijI
2
ij + cR2

ijI
2
ij].

(3.11)

Theorem 2 The local optimal solutions to (3.11) are identical to the global optimal

solution (3.10).

Remark 2 Each link current Iij is a player who makes its decision on the basis of

the local performance index Jij. This may be viewed as a cooperative game of r − 1

players with network-constrained partial observations. Theorem 2 states that the
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equilibrium of the game exists, is unique, and equals the global solution (3.10).

Proof: The optimal Iij can be derived locally from the local optimality condition

∂Jij
∂Iij

=
a

2

(
Ii
γi
− Ij
γj

)(
∂Ii
∂Iij
− ∂Ij
∂Iij

)
+ bRijIij + cR2

ijIij

= a

(
Ii
γi
− Ij
γj

)
+ bRijIij + cR2

ijIij

= 0,

where the facts ∂Ii
∂Iij

= 1 and
∂Ij
∂Iij

= −1 have been applied.

Since

∂2Jij
∂I2

ij

= a

(
1

γi
+

1

γj

)
+ bRij + cR2

ij > 0,

this is indeed the local minimum point.

By considering all the links and expressing them in matrix form, the local opti-

mality condition becomes

aMTΓu+ bRy + cR2y = 0. (3.12)

By using (3.1), MTΓM = MT
0 M0, and MTΓL = MT

0 L0, we have

aMTΓ(My + L) + bRy + cR2y = 0,

or

[aMT
0 M0 + bR + cR2]y + aMT

0 L0 = 0,
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which is identical to (3.10). �

Although Theorem 2 establishes an information-theoretical conclusion that the

distributed information is sufficient for obtaining the global optimal solution, the

local optimal solutions cannot be achieved simultaneously in one step since the node

currents are affected by all local controllers at each step and hence are not optimal

in transient. A recursive algorithm will be introduced in the next section to resolve

this issue.
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3 Recursive Algorithms and Convergence Properties

This section introduces a recursive algorithm that is capable of achieving the

global optimal solution (3.10) using only neighborhood communications.

A small time interval τ is selected to update the control actions at t = nτ , n =

1, 2, ... At the nth control step, the node currents are un = [I1
n, . . . , I

r
n]T , the load

currents Ln = [L1
n, . . . , L

r
n]T , and link currents are yn = (MTM)−1M(un − Ln).

We design the following algorithm

un+1 = un − µnMΠ[aMTΓun + bRyn + cR2yn − adn], (3.13)

where {dn} is a sequence of observation noise vectors, {µn} is a sequence of step sizes

satisfying µn ≥ 0, µn → 0 as n → ∞, and
∑n

k=1 µk → ∞ as n → ∞, Π = diag[gij]

is the (r − 1) × (r − 1) diagonal matrix of the same order as R, gij > 0 is the link

specific gain to allow different feedback gains on different links.

3.4.1 Algorithm Derivations

By (3.1), the link currents can be expressed as

yn = (MTM)−1MT (un − L)

= (MTM)−1MTun − (MTM)−1MTL.

(3.14)
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Updating un in each step is defined by ξn

un+1 = un + ξn, (3.15)

where the ith component of ξn is determined by all link control variables λijn from

node i to node j:

ξin = −
∑

j:(i,j)∈G

λijn +
∑

j:(j,i)∈G

λjin (3.16)

The link control λijn depends on the available local information, and is arranged as a

vector Λ of the same order as y. It is easy to verify that

ξn = −MΛ

The network must satisfy the conditions
∑r

i=1 ξ
i
n = 0 to ensure the physical con-

dition that the total supply-side current is equal to the total load-side current

r∑
i=1

uin =
r∑
i=1

Lin.

A link (i, j) ∈ G entails an estimate Îjn(i) of Ijn(i) by node i with observation noise

djn(i).

Îjn(i) = Ijn + djn(i). (3.17)

Let ηn and dn be the (r − 1)-dimensional vectors that contain all Îjn(i) and djn(i),

respectively, arranged in the same order as y. Then (3.17) becomes ηn = H1un + dn,
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where H1 is an (r− 1)× r matrix whose rows are elementary vectors such that if the

lth element of ηn is Îjn(i), then the lth row in H1 is the row vector of all zeros except

for a 1 in the jth position. For the DC MG in Fig. 2,

H1 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Based on the available information, the local objective function (3.11) becomes

Ĵij =
1

2
[
a

2

(
I in
γi
− Îjn(i)

γj

)2

+ bRij(I
ij
n )2 + cR2

ij(I
ij
n )2], (3.18)

whose gradient is

δijn =
∂Ĵij

∂I ijn

=
a

2

(
I in
γi
− Îjn(i)

γj

)(
1

γi

∂I in
∂I ijn

− 1

γj

∂Îjn(i)

∂I ijn

)
+bRijI

ij
n + cR2

ijI
ij
n

= a

(
I in
γi
− Îjn(i)

γj

)(
I in
γi

+
I in
γj

)
+ bRijI

ij
n + cR2

ijI
ij
n

or compactly as a vector

δn = a(H2Γun − ηn) + bRyn + cR2yn,
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where H2 is an (r− 1)× r matrix whose rows are elementary vectors such that if the

lth element of ηn is Îjn(i), then the lth row in H2 is the row vector of all zeros except

for a 1 in the ith position. For the DC MG in Fig. 2,

H2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


.

The local link control action is a gain feedback λijn = µngijδ
ij
n , where gij > 0 is the

link specific gain to allow different feedback gains on different links, and µn is a step

size to be specified later. Let Π = diag[gij] be the (r − 1) × (r − 1) diagonal matrix

of the same order as R. Note that MT = H2 −H1. As a result,

Λ = µnΠ[a(H2Γun − ηn) + bRyn + cR2yn]

= µnΠ[a(H2Γun −H1Γun − dn) + bRyn + cR2yn]

= µnΠ[aMTΓun + bRyn + cR2yn − adn].

Thus, the node control becomes

ξn = −MµnΠ[aMTΓun + bRyn + cR2yn − adn].
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It follows that

un+1 = un − µnMΠ[aMTΓun + bRyn + cR2yn − adn],

which is (3.13).

3.4.2 Convergence Analysis of Algorithm

Note that (3.13) is a stochastic approximation algorithm [58], in which {µn} is

a sequence of the step sizes as given in (3.13). To proceed, the following assumed

condition holds.

Assumption 2 The noise {dn} is a stationary φ-mixing sequence such that Edn = 0,

Ed2+∆
n <∞ for some ∆ > 0, and that the mixing measure φ̃n satisfies

∞∑
n=0

φ̃
∆

(1+∆)
n <∞,

where E is the expectation, and P is the probability.

The φ-mixing sequence defined in Assumption 2 indicates that the remote past and

distant future are asymptotically independent. It is noted that the mixing condition

on the noise is much more realistic and allows the observation noises to be correlated.

To prove the convergence, connect the discrete iteration with a continuous-time

system by defining tn =
∑n−1

k=0 µk. Let u0(t) be a piecewise constant interpolation of

un on the interval [tn, tn+1) and un(t) = u0(t+tn) be its shifted sequence. Denoting the
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“inverse” by m(t) = max{n : tn ≤ t}. By the relationship y = (MTM)−1MT (u− L)

in (4.2), also yn(t) = (MTM)−1MTΓ(un(t)− L).

Then it can be shown that the sequence {un(·)} (and {yn(·)}) is in an appropriate

function space that is uniformly bounded and equi-continuous in the extended sense

(defined in [59]). By using the extended version of the Arzela-Ascoli Theorem (see

also [59]), it can be shown that {un(·)} (and {yn(·)}) has a convergent subsequence

with limit u(·) (and y(·)) such that u(·) satisfies the ordinary differential equation

u̇ = −MΠ[aMTΓu+ bRy + cR2y], (3.19)

and

ẏ = (MTM)−1MTΓu̇

= (MTM)−1MT (−MΠ[a(M)TΓu+ bRy + cR2y])

= −Π[aMTΓu+ bRy + cR2y]

= −Π[(aMT
0 M0 + bR + cR2)y + aMT

0 L0]

The equilibrium point of the ODE for y is the solution to

0 = Π[(aMT
0 M0 + bR + cR2)y + aMT

0 L0].

Since Π is full rank,

y∗ = −[a(MT
0 M0 + bR + cR2]−1aMT

0 L0 (3.20)
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which is identical to the global optimal solution in (3.10).

Consider the error between the global optimal solution and the local link current

e = y − y∗ (3.21)

where y∗ is given by (3.20). In view of (3.21),

ė = −Π[aMT
0 M0 + bR + cR2)y + aMT

0 L0]

= −Π[aMT
0 M0 + bR + cR2)(e+ y) + aMT

0 L0]

= −Π[(aMT
0 M0 + bR + cR2)]e

(3.22)

knowing that (aMT
0 M0 + bR + cR2)y + aMT

0 L0 = 0. This system has the unique

equilibrium point e = 0 and is stable.

Theorem 3 Under Assumption 2, yn(· + qn) → y∗ with probability 1 as n → ∞,

where qn →∞ as n→∞ and y∗ is the stable stationary point of the ODE (3.22).

Proof:

This is a sketch highlighting the main ideas of the proof. More details can be

found in [59].

First, the convergence of the global optimal solution u∗ follows the convergence

standard arguments in [59]. The convergence of the distributed solution u follows

the convergence of the global optimal solution u∗ under the condition that the Limit

ODE is asymptotically stable.
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To show stability, note that Π is diagonal and positive definite, and can be written

as Π = ψ2 with ψ = diag[
√
gij].

Now, the eigenvalues

Π[(aMT
0 M0 + bR + cR2)] = ψψ[(aMT

0 M0 + bR + cR2)]

are exactly the same as the eigenvalues of ψ[(aMT
0 M0 + bR+ cR2)]ψ which are all

real and positive. From the above as a result, Π[(aMT
0 M0+bR+cR2)] is asymptotically

stable and is the stationary point of the ODE [40]. �

Note that the consequence of the above theorem is that the sequence of iterates

converges to the desired optimumthe stationary point.
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3 Case Studies

3.5.1 Trolleybus Systems

Trolleybus systems will be the first example of microgrids that the methodology

will be applied on. In the literature, power losses in addition to other individual

performance considerations,economic dispatch, frequency regulation using real power

control, and voltage management using VAR compensator, have been studied in var-

ious MGs involving renewable energy resources, controllable loads, electric vehicles

(EVs), and energy storage systems [13, 14, 15, 9].

For methodology evaluation, the power supply system configurations of the Beijing

Dual-Source Trolleybus System in [39] are used for simulation case studies on the new

power management methods introduced in this work. Here, only some features that

are necessary for our model construction are summarized.

Vehicle line 

Feeder line2Feeder line1

Other segment 

AC bus_10kV

Transformer1

PWM

 rectifier unit

Segment1 Segment2

Power flow

Transformer2
Other branches

Adjust 

output

Figure 3: Diagram of the trolleybus power supply network.
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Fig. 3 is re-produced from [39, 40].

Consider the trolleybus system in Fig.2. The system consists of six segments

and five communication links G = {(1, 2), (2, 3), (2, 4), (4, 5), (5, 6)}. The feeders’

initial currents are I(0) = [713, 811, 960, 844, 887, 823]T (A), the (constant) load vec-

tor is L(t) = [681, 783, 1009, 842, 921, 803]T , the link currents are labeled as y(t) =

[I12(t), I23(t), I24(t), I45(t), I56(t)]T . The line resistances are calculated based on the

station supply radii with valuesR = diag[R12, R23, R24, R45, R56] = diag[0.4, 0.38, 0.34,

0.31, 0.36] (Ω). The rated bus voltage is 650 (V).

The typical voltage tolerance bounds in case studies are within (10%) tolerance.

Note that in such an optimization problem, if the voltages and currents are only

required to be within the given bounds, one may formulate it as a constrained opti-

mization problem, without including the voltage term in the performance index. In

our problem, the voltages are not only required to be in the range, but also to be

close to vref .

3.5.2 Optimality

We start with an evaluation of the distributed stochastic approximation algorithm

(3.13) in terms of its ability to achieve the global optimal solution asymptotically.

Suppose that the weighting coefficients are a = 0.3, b = 0.2 and c = 0.5 and the

step size is selected as µn = 1
nv with 0.5 < ν < 1. Link observation noises are i.i.d.

sequences of Gaussian random variables of mean zero and variance 6.

Fig. 4 shows the simulation results. Subplot (a) shows that the feeders’ currents
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Figure 4: Feeder currents, optimality error trajectories, and voltage profiles under
a = 0.3, b = 0.2 and c = 0.5

converge to their final values. Subplot (b) is the error trajectory of the differences be-

tween the performance levels that are achieved by the distributed recursive algorithm

and the global optimum. Subplot (c) shows the voltage profile. The errors converge

to zero, indicating asymptotic global optimality of the algorithm.

Under the selected weighting coefficients a = 0.3, b = 0.2 and c = 0.5, the total link

power loss is 9.926 kW. In comparison, without optimization, the initial link power

loss is 22.7 kW. Table 1 compares the optimal feeder currents using the recursive

distributed algorithm and those from the global optimal solution.
Table 1: Optimality of Distributed Control

Current I1 I2 I3 I4 I5 I6

Distributed
Optimization

(Local, n = 400)
Amps

777.4 831.6 892.3 843.4 854.4 838.8

Global
Optimization,

Amps
779.4 831.8 890.4 843.8 854.9 838.7
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It is apparent that the distributed optimization can reach asymptotically the

global optima with errors less than 1%, which stem from observation noises.

3.5.3 Voltage Profiles

We now investigate voltage profiles. One important objective for the trolleybus

systems is to maintain bus voltages within a small tolerance of their rated values.

If the weighting coefficients a = 0.3, b = 0.2 and c = 0.5 were to be used as

before, Fig. 4 Subplot (c) shows that V1 and V2 deviate from the rated 650 (V)

significantly. To improve the voltage profile while still allowing the nodes to support

other neighboring nodes, the weighting coefficients can be tuned.

To have an acceptable voltage profile while still allowing the nodes to support other

neighboring nodes, the weighting coefficients should be carefully tuned according to

practical conditions of the network. For instance, to reduce voltage deviations in the

original case study. Now, increase the weighting on c by using a = 0.1, b = 0.3 and

c = 0.6. The results are shown in Fig. 5. The voltage profiles have been improved

significantly.

Next, let c = 1 (this is a strategy of voltage management only). Intuitively, this

should create a uniform voltage value as the optimal solution. This is indeed the case

as illustrated in Fig. 6. The currents are now distributed solely according to the local

loads. We can see that by supporting only the local loads, the line currents are equal

to 0, thus the link power losses are also 0, which is the global optimal solution for

this specific case.
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Figure 5: Voltage trajectories under a = 0.1, b = 0.3 and c = 0.6

0 1 2 3 4 5 6 7 8 9 10
600

700

800

900

1000

1100
(a) Current Distribution Trajectories

Cu
rre

nt
 (A

)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
(b)  Error Trajectory

Er
ro

r %

0 1 2 3 4 5 6 7 8 9 10
550

600

650

700

750
 (c) Voltage Profile

Vo
lta

ge
 (V

)

Time (s)

Figure 6: Voltage trajectories under a = 0, b = 0 and c = 1

Looking at the voltage profile, it is clearly seen that all node voltages are equal

to the reference value, and the currents are equal to their corresponding local load

L(t) = [681, 783, 1009, 842, 921, 803]T .
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3.5.4 Robustness to Load Disturbance

Trolleybuses systems experience very frequent and significant load disturbances

due to vehicles’ unpredictable power demands. As a result, the feeder currents will

experience sudden changes so that the optimality is lost at the time of load distur-

bance. The control algorithm then uses local information exchange to correct such

deviations and restore optimality at the new equilibrium point.

Suppose that there is a sudden increase in node 4’s load at t = 5 (second) from

842 to 950 (A). Fig. 7 demonstrates the current trajectories of the feeders after the

load disturbance using the weighting coefficients a = 0.3, b = 0.2 and c = 0.5, which

converge asymptotically to the new optimal point of operation.
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Figure 7: Robustness to load disturbance

To showcase the robustness even more, suppose there is a sudden increase in nodes’

2,4, and 6 from 811 (A) to 961 (A), 842 to 942 (A), and 823 to 883 (A) respectively.

Fig.8 showcases the current trajectories and optimality error of such scenario using
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the weighting coefficients a = 0.3, b = 0.2 and c = 0.5. It is clear that the trajectories

converge asymptotically to the new optimal point of operation.
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Figure 8: Robustness to a more extreme load disturbance

3.5.5 Scalability

Trolleybus systems are subject to structural changes. For example, a segment may

be added after a maintenance service or a new construction, or removed due to power

interruption. An appealing feature of distributed control is that adding or subtracting

segments from the network only affects the neighboring segments. After removing a

segment, the remaining segments must share the extra load. Similarly, when adding

a new segment, it will have its share of the total load through distributed control.

First, suppose that a segment labeled as node 7 is added with its initial current

I7 = (0)900 (A) and load L7(0) = 920 (A), connected to node 6 as shown in Fig. 9

with line resistance R67 = 0.33 (Ω).
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Figure 9: The expanded network topology after a node addition

Now, the trolleybus system has 7 feeders and 6 communication links G = {(1, 2),

(2, 3), (2, 4), (4, 5), (5, 6), (6, 7)}. The initial feeder currents are I(0) = [713, 811, 981,

844, 887, 823, 900]T , the load vector is L(t) = [681, 783, 1009, 842, 921, 803, 920]T , and

the link currents are y(t) = [I12(t), I23(t), I24(t), I45(t), I56(t), I67(t)]T . The line resis-

tances areR = diag[R12, R23, R24, R45, R56, R67] = diag[0.4, 0.38, 0.34, 0.31, 0.36, 0.33].

The weighting coefficients remain as a = 0.3, b = 0.2 and c = 0.5.

After the new segment is added, the distributed control algorithm distributes the

load fairly among all feeders in the modified power network. Fig. 10 shows the feeder

currents converge to the optimal solution, evidenced by the convergence of optimality

error trajectories to zero.

Similarly, the methodology can also be used when the network is reduced as shown

in Fig. 11.
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Figure 10: Feeder currents and error trajectories of the expanded system

Figure 11: The 5-node network topology after one node is removed

The trolleybus system now has 5 feeders and 4 communication links G = {(1, 2),

(2, 3), (2, 4), (4, 5)}. The initial feeder currents are I(0) = [713, 811, 960, 845, 907]T ,

the load vector is L(t) = [681, 783, 1009, 842, 921]T , and the link currents are y =

[I12(t), I23(t), I24(t), I45(t)]T . The line resistances are R = diag[R12, R23, R24, R45] =
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diag[0.4, 0.38, 0.34, 0.31]. The weighting coefficients are selected the same as previous

cases a = 0.3, b = 0.2 and c = 0.5. Fig. 12 shows the feeder current trajectories and

optimality error trajectories of the system when node 6 is removed from the system.
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Figure 12: Feeder currents and error trajectories of the reduced system

3.5.6 Including Feeders with Different Capacities

We now apply our method to the case of different feeder capacities. Using the same

weighting coefficients a = 0.3, b = 0.2 and c = 0.5 as before, this case study now con-

siders feeders of different (relative) capacities with γ1 = 0.8, γ2 = 0.9, γ3 = 1.2, γ4 = 1.05,

γ5 = 1.1 and γ6 = 0.95. Note that the summation of the relative capacities of all feed-

ers is equal to the number of nodes r = 6 (
∑r

i=1 γi = r).1 Thus, the nodes’ relative

capacity matrix Γ becomes Γ = diag[1/0.8, 1/0.9, 1/1.2, 1/1.05, 1/1.1, 1/0.95].

Fig.13 shows the currents trajectories and the optimality errors when using dif-

ferent feeders capacities. From subplot(a) of Fig. 13, it is clear that the higher the

1The previous uniform feeder capacities have γ1 = · · · = γ6 = 1 whose summation is also 6.



51

relative capacity of the feeder is, the more that feeder supplies the network.
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Figure 13: Feeder currents and error trajectories of the system with different capaci-
ties

3.5.7 Evaluation on a 14-bus DC System

In order to demonstrate that our methodology can be efficiently used in other

DC microgrids, the method will be applied to a 14-bus DC system whose topology is

shown in Fig 14.

Now, the system has 14 feeders and 13 communication links G = {(1, 2), (2, 3),

(3, 4), (3, 5), (5, 6), (6, 7), (7, 8), (8, 9), (8, 10), (8, 11), (11, 12), (12, 13), (12, 14)}. The

initial feeder currents are I(0) = [723, 810, 960, 845, 887, 825, 740, 790, 960, 844, 887,

823, 980, 680]T , the load vector is L(t) = [850, 783, 1009, 802, 960, 800, 640, 740, 1009,

690, 921, 800, 950, 800]T , the line resistances are R = diag[R12, R23, R44, R35, R56, R67,

R78, R89, R8−10, R8−11, R11−12, R12−13, R12−14] = diag[0.4, 0.38, 0.34, 0.31, 0.36, 0.35,

0.4, 0.42, 0.37, 0.34, 0.36, 0.4, 0.39]. The weighting coefficients are selected as a = 0.3,
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Figure 14: The 14-bus DC system network topology

b = 0.2 and c = 0.5.

Fig. 15 shows the simulation results. Subplot (a) shows that the feeders’ currents

converge to their final values. Subplot (b) demonstrates global optimality of our

algorithm by showing that the errors between the performance values achieved by the

distributed recursive algorithm and the global optimum.
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Figure 15: Feeder currents and error trajectories of the 14-bus DC System
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For extended methodology evaluation on the 14- Bus DC System, Fig.16 shows

the feeder’s current trajectories and optimality error when there is a disturbance

happening in the load side. An increase of 50 (A), 100 (A), 90 (A) and 150 (A)

occurs to the loads of nodes 2, 4, 6 and 9 respectively.
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Figure 16: The 14-bus DC system network topology with load disturbance

Fig.16 demonstrates that the current trajectories converge asymptotically to the

new optimal point of operation.

3.5.8 Guidelines on Selecting Weights

Selection of the weights a, b, and c is a practical matter and highly problem

specific. They provide a tuning mechanism to define the optimization problem to

accommodate specific needs.

Due to system coupling, the three control objectives cannot be achieved simul-

taneously. In principle, if load assignment to feeders is more critical, a needs to be
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increased. This is exemplified by the scenarios of heavily loaded feeders and the desire

to fully utilize the existing MG to support more loads. On the other hand, if voltage

excursions under certain contingent conditions are too large, c needs to be increased.

Similarly, when feeder capacities are sufficient and voltage profiles are well within

their limits, a and c could be reduced, but b is increased so that power loss can be

reduced. Such a calibration process is inherent in all multi-objective optimization

problems and is considered one critical step in control design.

To elaborate more on what has been said, Fig. 17 shows a set of consensus error

curves in which the weighting coefficient a is changed from 1, 0.8, 0.6, 0.4, 0.2 with b

and c share the remaining value.
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Figure 17: Consensus error using gradual change in the weighting coefficient a

Similarly, Fig. 18 shows a set of voltage errors from the reference voltage in which

the weighting coefficient c is changed from 1, 0.8, 0.6, 0.4, 0.2 with a and b share the

remaining value.
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Figure 18: Voltage error from the reference value using gradual change in the weight-
ing coefficient c
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4 INCLUSION OF SUBSYSTEM DYNAMICS

This chapter introduces a distributed methodology based on the one in the pre-

vious chapter that includes subsystem dynamics. The chapter is organized into the

following sections. Section4.1 gives a quick literature review on proposed work in this

chapter. Section 4.2 formulates the main problems. The algorithms are introduced in

Section 4.4. The main properties of the algorithms are established. Finally, section

4.5 presents case studies to demonstrate the performance of the proposed algorithms.
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4 Introduction

Continuing on the distributed optimization strategies introduced in the previous

chapter for optimal load sharing, loss reduction and voltage quality in optimization

in DC microgrids, the framework is further extended to include subsystem dynamics.

Inclusion of subsystem dynamics accommodates many real systems, especially con-

verter dynamics, impacts performance significantly, and complicates system analysis

are introduced in this part of the work.

For distribution power systems with renewable and distributed generators, see

[1, 2]. Centralized, decentralized, distributed control methods for power grid man-

agement have been extensively studied in the recent years [3, 4, 5, 6, 7]. For dif-

ferent performance considerations, power losses have been considered in many MGs

[13, 14, 15, 9]. Within centralized strategies, global optimality has been analyzed in

[16]. On the other hand, the traditional frequency and voltage droop control methods

for standing-alone MGs are decentralized [17, 19, 20, 21]. Distributed strategies have

been pursued in recent years [24, 25] with some promising new methodologies [19, 26].

A consensus method was introduced to power system load distribution in [31]. These

results do not include distributed optimization with subsystem dynamics.

The control methodology of this part retains the key advantages: (1) It requires

only neighborhood information exchange among nodes in the network. (2) The local

optimization can achieve the global optimization. This is especially important for a

large network with physically distributed subsystems. (3) It has provable properties
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of convergence to the global minima under noisy observations. (4) It is robust against

load perturbations and allows reconfiguration with subsystem addition and deletion.

(5) It is scalable in the sense that system expansion will not significantly increase con-

trol system complexity. By accommodating subsystem dynamics, the new algorithms

have broader applications and more realistic conditions.
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4 Problem Formulation

The problem formulation of this chapter follows what was presented in Chapter

(3). The main difference is that the subsystem dynamics are now included. Since

subsystems’ physical dynamics have an essential impact of stability and convergence,

the methodology in this chapter is different from what has been introduced in the

previous chapter.

4.2.1 Equality Constraints

The same DC networks used in the first part is also used here to illustrate the

main variables and concepts, and is included in here; see Fig. 19, for illustration and

case studies.

Figure 19: A DC microgrid with 6 feeders and 5 links.

For this DC power network, the real-time supply current of the ith node is Ii(t)

(A), its load is Li(t) (A), and the node voltage is vi(t) (V) noting that the word “node”

represents a feeder line, a bus, etc. The network topology is represented by a directed

graph G. For (i, j) ∈ G, the current from the ith node to the jth node is Iij(t) (A),
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and the line resistance is Rij (Ω), and Iij = −Iji. Denote u(t) = [I1(t), . . . , Ir(t)]
T ,

v(t) = [v1(t), . . . , vr(t)]
T , L(t) = [L1(t), . . . , Lr(t)]

T . By specifying a given order

of the links, y is the column vector of the link currents, R = diag[Rij] is the link

resistance matrix. The supply line of the ith node has rated current capacity γi.

Define Γ = diag[1/γi] and γ = [γ1, . . . , γr]
T . For the 6-node DC MG in Fig. 19, G =

{(1, 2), (2, 3), (2, 4), (4, 5), (5, 6)} and ls = 5, y = [I12(t), I23(t), I24(t), I45(t), I56(t)]T ,

R = diag[R12, R23, R24, R45, R56].

Assumption 3 (1) The DC MG is connected, but no loops. (2) The node commu-

nicates only with its physically connected neighbors. (3) Each node knows its own

state and parameters. (4) Each node knows the link current and link resistance that is

connected to it. (5) Each node knows its neighbor’s rated capacity, but must estimate

its neighbor’s supply current with possible errors.

The following relationships are elementary from the basic circuit laws:

u = My + L (4.1)

where M is an r×(r−1) network matrix, satisfying MT11 = 0, where 11 is the column

vector of all 1’s and M is full column rank, and hence

y = (MTM)−1MT (u− L). (4.2)
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The voltage law implies

MTv = Ry. (4.3)

Following the tradition of power systems, an extra condition is given by

ζov = vref , with ζo11 = 1. (4.4)

For example, if node 1 is designated as a reference bus whose voltage is independently

controlled to be vref , then ζo = [1, 0, . . . , 0].

By adding (4.4) to (4.3), we have H0v = R0y +Wvref , where

H0 =

 MT

ζo

 , R0 =

 R

0, . . . , 0

 ,W =

 [0, . . . , 0]T

1

 .

Since M depends only on the network topology and C is pre-determined, H0 depends

only on the system structure but not system parameters.

When the DC MG is connected, H0 is full rank, v = H−1
0 R0y + H−1

0 Wvref , and

H011 =

[
0, . . . , 0, 1

]T
= W , which implies that H−1

0 W = 11. Furthermore, H−1
0 R0

can be expressed as

H−1
0 R0 = H−1

0

 R

0

 = H−1
0

 I

0

R = QR
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in which Q = H−1
0

 I

0

 depends only on the network topology, but not on the

network parameters Rij. Leading to

v = QRy + vref11. (4.5)

It can be verified that Q has rank r − 1, and hence QTQ is full rank.

4.2.2 Performance Index and Distributed Optimization

Without consideration of subsystem dynamics, a multi-objective performance in-

dex was introduced in section 3.2. Define a weighting matrix Φ = Q(QTQ)−1(QTQ)−1QT ,

and

J =
1

2
[a(u− βγ)TΓ(u− βγ) + byTRy + c(v − vref11)TΦ(v − vref11)] (4.6)

subject to the constraints (4.1) and (4.5). This performance index represents a

tradeoff among the load distribution to suppliers (the first term), the power loss on

the transmission line (the second term), and voltage quality (the third term). The

weights a, b, c ≥ 0 with a + b + c = 1 are used to tune a desired trade-off among the

three objectives.

Denote Γ1/2 = diag[1/
√
γi], M0 = Γ1/2M , and L0 = Γ1/2L. Under the relations

(4.1) and (4.5), the performance index (4.6) becomes

J(y) = 1
2 [a(M0y +L0 − βΓ1/2γ)T (M0y + L0 − βΓ1/2γ)

+byTRy + cyTR2y].
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Consequently, the link current vector y becomes naturally the control variable. Our

objective is to minimize the performance index

min
y
J(y). (4.7)

The following results are from section 3.2 and section 3.3 respectively.

Theorem 4 The global optimal solution to (4.7) is

y∗ = −[aMT
0 M0 + bR + cR2]−1aMT

0 L0. (4.8)

Proof: In order to solve the optimization problem, we calculate the stationary point

∂J(y)
∂y

= aMT
0 (M0y + L0 − βΓ1/2γ) + bRy + cR2y

= [aMT
0 M0 + bR + cR2]y + aMT

0 L0 − aMT
0 βΓ1/2γ

= 0.

Where,

MT
0 Γ1/2γ = MTΓγ = MT11 = 0

is used in the derivation. The optimal link current vector y∗ is

y∗ = −[aMT
0 M0 + bR + cR2]−1aMT

0 L0.
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Also, the Hessian matrix is

aMT
0 M0 + bR + cR2.

This matrix is positive definite because MT
0 M0 > 0, R > 0, R2 > 0 as long as one of

the coefficients is positive. Which implies that y∗ is indeed the minimum point. �

For each link (i, j) ∈ G, the local objective function is defined as

Jij =
1

2
[
a

2

(
Ii
γi
− Ij
γj

)2

+ bRijI
2
ij + cR2

ijI
2
ij]. (4.9)

Theorem 5 The local optimal solutions to (4.9) are identical to the global optimal

solution (4.8).

Proof: The optimal link current Iij can be derived locally from the local optimality

condition

∂Jij
∂Iij

=
a

2

(
Ii
γi
− Ij
γj

)(
∂Ii
∂Iij
− ∂Ij
∂Iij

)
+ bRijIij + cR2

ijIij

= a

(
Ii
γi
− Ij
γj

)
+ bRijIij + cR2

ijIij

= 0,

where the facts ∂Ii
∂Iij

= 1 and
∂Ij
∂Iij

= −1 have been applied.

Since

∂2Jij
∂I2

ij

= a

(
1

γi
+

1

γj

)
+ bRij + cR2

ij > 0,

Then, this is indeed the local minimum point.
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By considering all the links and expressing them in matrix form, the local opti-

mality condition becomes

aMTΓu+ bRy + cR2y = 0. (4.10)

By using (4.1), MTΓM = MT
0 M0, and MTΓL = MT

0 L0, we have

aMTΓ(My + L) + bRy + cR2y = 0,

or

[aMT
0 M0 + bR + cR2]y + aMT

0 L0 = 0,

which is identical to (4.8) �

The original distributed control updating algorithm, without consideration of sub-

system dynamics, is given in section 3.4 eqn. (3.13) as

un+1 = un − µnMΠ[aMTΓun + bRyn + cR2yn − adn], (4.11)

where {dn} is a sequence of observation noise vectors, {µn} is a sequence of step sizes

satisfying appropriate conditions; Π = diag[gij] is the (r−1)×(r−1) diagonal matrix

of the same order as R, gij > 0 is the link specific gain to allow different feedback

gains on different links.
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4 Subsystem Dynamics and System Integration

4.3.1 General Structure of Local Dynamics and Control Design

When the subsystem dynamics are included, the desired feeder currents calculated

by the distributed optimization algorithm cannot be implemented immediately. In-

stead, local power converter control systems will try to control the feeder currents to

follow the desired values which will be served as the reference input and command sig-

nals, which will be denoted by zj, to distinguish them from the actual feeder currents

uj = Ij, j = 1, . . . , r.

For the jth subsystem, its power converter’s control signal is the duty cycle δoj

and the output is the actual feeder current uj = Ij. The power converter dynamics

can be represented by a linearized system Pj. The converter controller Fj acts on the

difference ej = zj − uj, leading to δoj = Fjej. Together, the closed-loop system from

zj to uj is

Mj =
FjPj

1 + FjPj
. (4.12)

For algorithm development, it is assumed that Mj can be realized by a state space

model

ẋj = Ajxj +Bjzj;uj = Cjxj, j = 1, . . . , r. (4.13)

We emphasize that (4.13) is the model for the closed loop systems.

Assumption 4 (1) The closed-loop system (4.13) is asymptotically stable. (2) The

steady-state tracking error is zero. Namely, limt→∞(zj(t)− uj(t)) = 0.
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By combining these subsystem dynamics for the entire network, we have

ẋ = Ax+Bz, u = Cx, (4.14)

where x = [x1, . . . , xr]
′, u = [u1, . . . , ur]

′, z = [z1, . . . , zr]
′, A = diag[Aj], B = diag[Bj],

C = diag[Cj]. It is noted that local controller design will affect the closed-loop system

Mj, and hence it will affect overall algorithm stability and performance. This will be

discussed in our case studies.

4.3.2 System Integration

By selecting a small and possibly time-varying sampling interval τn > 0, the

system can be sampled, resulting in a discrete-time system

xn+1 = xn + τn(Axn +Bzn), un = Cxn. (4.15)

The coordination algorithm (4.11) must be modified by using the actual feeder current

information un in its updating of the desired values zn. It follows that the new

coordination algorithm takes the form of

zn+1 = zn − µnMΠ[aMTΓun + bRyn + cR2yn − adn]

un+1 = un + τnC(Axn +Bzn)

(4.16)

and yn = (MTM)−1MT (un−Ln). The interaction between the coordination algorithm

and the local dynamics is realized by un and yn in the former, and zn in the latter.
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The interaction is significantly affected by the choice of µn and τn. We will show

that by choosing τn = αµn, the stability of the integrated system can be rigorously

established. Let τn = αµn, where α > 0 is to be designed. This results in

zn+1 = zn − µnMΠ[aMTΓun + bRyn + cR2yn − adn]

un+1 = un + µnαC(Axn +Bzn)

(4.17)
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4 Convergence Analysis

This section analyzes the proposed algorithm. The convergence is established

using the ODE methods in a similar fashion to the convergence analysis in section

3.4.

Assumption 5 (1) The noise {dn} is a stationary φ-mixing sequence such that

Edn = 0, Ed2+∆
n < ∞ for some ∆ > 0, and that the mixing measure φ̃n satisfies∑∞

k=0 φ̃
∆

(1+∆)

k <∞, where E is the expectation, and P is the probability. (2) {µn} is a

sequence of step sizes satisfying µn ≥ 0, µn → 0 as n→∞, and
∑∞

k=0 µk =∞.

The φ-mixing sequence is more realistic and allows the observation noises to be

correlated. Algorithm (4.17) is a stochastic approximation algorithm, whose conver-

gence properties can be established by using the ODE method.

To summarize the steps in proving convergence properties, we define tn =
∑n−1

k=0 µk.

Let u0(t) and z0(t) be a piecewise constant interpolation of un and zn on the in-

terval [tn, tn+1), respectively, and un(t) = u0(t + tn) and zn(t) = z0(t + tn) be

their shifted sequences. Denote m(t) = max{n : tn ≤ t}. By the relationship

y = (MTM)−1MT (u − L), also yn(t) = (MTM)−1MTΓ(un(t) − L). The sequence

{un(·)} (and {zn(·)}, {yn(·)}) is in an appropriate function space that is uniformly

bounded and equi-continuous in the extended sense. By using the extended version

of the Arzela-Ascoli Theorem (see [59]), it can be shown that {un(·)} (and {zn(·)},

{yn(·)}) has a convergent subsequence with limit u(·) (and y(·), z(·)) such that u(·)
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satisfies the ordinary differential equation

ż = −MΠ[aMTΓu+ bRy + cR2y]

ẋ = α(Ax+Bz)

u = Cx, y = (MTM)−1MT (u− L)

(4.18)

It can be derived that for sufficiently small α the equilibrium point of the ODE

is the solution to to the global optimal solution. The stability of the limit ODE can

also be established. The proof of the next Theorem is omitted since it is similar to

that of Theorem 3 in section 3.4.

Theorem 6 Under Assumption 3, yn(· + qn) → y∗ with probability 1 as n → ∞,

where qn →∞ as n→∞ and y∗ is the stable stationary point of the ODE (4.18).
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4 Case Studies

Consider the trolleybus system in Fig. 19. The system has six nodes (segments),

and five communication links represented by G = {(1, 2), (2, 3),(2, 4), (4, 5),(5, 6)}.

The feeders’ initial currents are I(0) = [713, 811, 960, 844, 887, 823]T (A) while the

local loads are L(t) = [681, 783, 1009, 842, 921, 803]T .

The link currents are labeled as y(t) = [I12(t), I23(t), I24(t), I45(t), I56(t)]T . The

line resistances are calculated based on the station supply radii with values R =

diag[R12, R23, R24, R45, R56] = diag[0.4, 0.38, 0.34, 0.31, 0.36] (Ω). The rated bus volt-

age is 650 (V). Typically, in the trolleybus systems the voltage variations are allowed

for 10%, namely in the range of [585, 715].

4.5.1 Power Converter Dynamics and Local Controller

For the trolley bus system with 6 nodes, there are six Buck DC-DC converters.

The topology used for those converters is shown in Fig. 20:

Figure 20: DC-DC Buck converter topology
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Where: R is the inductance resistance, RL is the load resistance, Rt is the sens-

ing resistance, Rc is the capacitances resistance, L is the inductance and C is the

capacitance.

Impedance modeling is used to derive the transfer function P (s) = Io(s)
D(s)

of the

converter from the duty cycle δo (D(s)) to the output current Io as follows.

Zc(s) = Rc +
1

cs

ZL(s) = Rl + Ls

Z1 = Zc//RL =
RLZc
RL + Zc

Z = Z1 + ZL +Rt

Vo(s)

D(s)
= VinP1(s)Z1(s)

P1(s) =
1

Z(s)

Io(s) =
Vo(s)

RL

,

P (s) =
Io(s)

D(s)
=
VinP1(s)Z1(s)

RL

.

For the ith feeder, its plant model Pi(s) can be realized in a state-space model

ẋip(t) = Aipx
i
p(t) +Bi

pδi(t), I io(t) = Ci
px

i
p(t),

or collectively, with obvious vector variables and diagonal matrix expressions,

ẋp = Apxp +Bpδ, u = Cpxp.
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Here u = [I1
o , . . . , I

6
o ]T is the actual feeder currents.

A power-electronic local controller Fi is designed so that the actual feeder current

ui(t) can follow the desired zi(t): Let ei = zi−ui. Then δoi = Fiei. Typical converter

controllers are PI controllers, Fi(s) = Ki
p +

Ki
I

s
, which can be written in a state space

model

ẋiF = ei, δoi = Ki
Ix

i
F +Ki

pei.

Collectively, the local controllers can be written as

ẋF = e, δo = KIxF +Kpe

in which the obvious compatible vectors and matrices are used.

The closed-loop subsystems can be derived, with the desired feeder currents z as

the input and the actual feeder currents u as the output, as follows.

ẋp = Apxp +Bpδo

= Apxp +BpKIxF +BpKpe

= Apxp +BpKIxF +BpKpz −BpKpu

= (Ap −BpKpCp)xp +BpKIxF +BpKpz,

ẋF = e

= z − u

= −Cpxp + z.

The output equation is u = Cpxp. These lead to the final state space model (4.13)
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for the closed-loop subsystems. We now use several simulation scenarios to illustrate

our algorithms and performance.

4.5.2 Comparison to Trolleybus System Without Including the Dynamics

In order to convey the effect of including the converters’ dynamics, it is needed to

showcase the behavior of the system without those dynamics. Fig. 21 is reproduced

from the previous chapter, which shows the system’s behavior for such a case.

0 1 2 3 4 5 6 7 8 9 10
600

700

800

900

1000

1100
(a) Current Distribution Trajectories

C
ur

re
nt

 (A
)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
(b)  Error Trajectory

Er
ro

r %

0 1 2 3 4 5 6 7 8 9 10
550

600

650

700

750
 (c) Voltage Profile

Vo
lta

ge
 (V

)

Time (s)
Figure 21: Feeder currents, optimality error trajectory, and voltage profiles under
a = 0.3, b = 0.2 and c = 0.5

Subplot (a) shows that the feeders’ currents converge to their final values. Subplot

(b) is the error trajectory of the differences between the performance levels that are

achieved by the distributed recursive algorithm and the global optimum. Subplot

(c) shows the voltage profile. Due to the system dynamics, the execution of control

actions is going to face performance limitations such as steady-state errors, overshoot
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and settling time.

When introducing those dynamics, the converter signal processing sampling period

is introduced. The actual convergence speed of feeders’ current control is determined

by how fast the converters can be controlled to follow the desired feeder current of

each converter. Table 2 shows the values of the converters’ parameters that will be

used in the case studies.

Rt

Ω
R
Ω

L
mH

C
mF

Rc

Ω
RL

Ω
Q 1 0.1 0.01 22.5 232 0.09 0.893
Q 2 0.1 0.01 22.5 232 0.09 0.79
Q 3 0.1 0.01 22.5 232 0.09 0.687
Q 4 0.1 0.01 22.5 232 0.09 0.767
Q 5 0.1 0.01 22.5 232 0.09 0.746
Q 6 0.1 0.01 22.5 232 0.09 0.776

Table 2: Circuit elements for each converter

Using the same example from the original case study, Fig.22 shows the system’s

behavior when the dynamics of the converters’ are present.
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Figure 22: Feeder currents, optimality error trajectory, and voltage profiles in the
presence of dynamics
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The difference between the system’s behavior when the dynamics are present is

clearly seen. There is a noticeable overshoot/undershoot and oscillation compared to

the original case study.

4.5.3 Impact of Converter PI Control

Suppose that a more aggressive controller compared to the previous example is

used to force a faster settling time for each of the corresponding converter’s response.

The goal would be to force a faster convergence rate. Choosing suitable gains for the

proportional and integral parts of the controller is important.

First, controller 2 was selected to showcase a faster response for Feeder 2 and the

system as a whole. Fig. 23 shows the response of the system when such measures are

taken.

0 1 2 3 4 5 6 7 8 9 10
600

700

800

900

1000
(a) Current Distribution Trajectories

C
ur

re
nt

 (A
)

0 1 2 3 4 5 6 7 8 9 10
0

5

10
(b)  Error Trajectory

Er
ro

r %

0 1 2 3 4 5 6 7 8 9 10
600

650

700

750

Time (s)

Vo
lta

ge
 (V

)

 (c) Voltage Profile

 

 

Figure 23: Feeder currents, optimality error trajectory, and voltage profiles when
controller’s 2 gains are selected as KP = 0.02018 and KI = 0.02018
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Noticeable oscillations are occurring when controller’s 2 gains are selected as KP =

0.02018 and KI = 0.02018. On the other hand, using a balanced tuning method in

the selection of the proportional and integral gains of each converter’s controller will

bear better results compared to the original case study. Fig.24 shows the behavior of

the system after tuning the controllers of each converter.
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Figure 24: Feeder currents, optimality error trajectory, and voltage profiles with
tuned PI controllers

Table 3 shows the gain values for all controllers.

Cntrlr.
1

Cntrlr.
2

Cntrlr.
3

Cntrlr.
4

Cntrlr.
5

Cntrlr.
6

KP 0.00035 0.00008 0.00008 0.00008 0.0008 0.00008
KI 0.0035 0.0008 0.0008 0.0008 0.008 0.0008

Table 3: PI controllers’ gain values
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4.5.4 Effect of Converters’ Dynamics

Changing the dynamic of any of the converters will affect the system’s behavior.

The changes include the change in inductance, capacitance or any of the resistances.

The effect ranges from introducing oscillation to the system’s response to making

the system unstable. Going back to the original case study, Fig.25 showcases the

system’s behavior when the inductance value of the second converter is changed to

L2 = 1.81mH.
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Figure 25: Feeder currents, optimality error trajectory, and voltage profiles when L2

is changed

We can see that there is a large oscillation present in the feeder current of node 2

and the voltage profile of all the other nodes.
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4.5.5 Step Size and Sampling Interval

In this part, the effect of sampling interval and step size on feeder currents and

optimality error trajectories will be discussed. First, Fig. 26 shows the trajectories

when the step size µ and the sampling interval τ are independent of each other (case

1). Noting that the step size type used is fixed step size.
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Figure 26: Feeder currents, and optimality error trajectory, τ = 0.05 and µ = 0.1

When compared to the case in Fig.24 where τ is fixed and µ is dependent on τ

(case 2) through the relation (αµ = τ), it is apparent from the error trajectories that

the latter case converges faster to the optimal solution. Fig.27 shows the optimality

error trajectories of both cases.
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Figure 27: Optimality error trajectory for both cases of τ and µ selection.

It is clear that case 2 ,where there is a relation between τ and µ, has a faster

convergence rate than the other case.

To further discuss the effect of sampling interval and step size on feeder currents

and optimality error trajectories, different values of µ are tested by changing the

value of α , and the selected values will be used to showcase the effect on the system’s

behavior. The value of τ is picked to be 0.05 for all cases.

Fig.28 shows the feeders’ current trajectories and optimality error trajectory when

α = 1 and µ = ατ = 0.05.
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Figure 28: Feeders’ current trajectories and optimality error trajectory for τ = 0.05,
α = 1.
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It is noticed from Fig.28 that the feeders’ currents will converge to the optimal

solution after a long period of time, which shows that the convergence rate for such

case is slow.

In order to achieve faster convergence rate, a larger value for α will be selected

α = 1/10 and µ = 0.5. Fig.29 shows the currents and error trajectories for this

specific case.
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Figure 29: Feeders’ current trajectories and optimality error trajectory for τ = 0.05,
α = 1/10.

While the convergence rate in Fig.29 is faster compared to Fig.28, a small oscilla-

tion is started to merge on the system’s response.

Next, an even larger value of α = 1/20 will be picked to make the convergence

rate faster. Fig.30 will the show the system’s behavior for such a case noting that the

step size µ = 1.
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Figure 30: Feeders’ current trajectories and optimality error trajectory for τ = 0.05,
α = 1/20.
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5 CONCLUSION AND FUTURE WORK

5 CONSCLUSION

The work in chapter 2 introduced a new control methodology for balancing feeder

currents, reducing power loss, and maintaining acceptable voltage profiles. The

methodology aims to achieve global optimization through distributed algorithms by

using neighbor communications only. The recursive algorithms are shown to be con-

vergent, asymptotically optimal, robust against load disturbances, and scalable with

respect to node addition and deletion. The scalability is achieved without overwhelm-

ingly increasing communication, control, or computational complexities.

By incorporating subsystem dynamics (physical systems) and integrating them

with distributed optimization algorithms (in the cyberspace), the methodology in

Chapter 3 presents a useful integration of cyber and physical systems. It is shown

that coordination of cyber-physical systems is essential, in which the decision step

size and the physical system’s sampling rate must be selected together so that the

resulting algorithms can be stable and convergent.

5 FUTURE WORK

There are several important open issues to be resolved in the future. The work

done so far does not consider the costs of node power generation. Including such

costs will be an interesting direction. Finally, it will be essential to study implemen-

tation issues such as costs on communication equipment, delays in operating power
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electronics devices, data loss and latency in communication systems.

1. A distributed optimization strategy requires support from communication net-

works. Even though the utilization of such networks would improve the system’s

reliability, it always suffers from communication restraints. Those restraints

could degrade the system’s stability and performance. One of those restraints

is the delay in operation of electronic devices. Therefore, the effects of com-

munication delays on distributed control schemes for distributed optimal power

and voltage management of DC microgrids comes to the motivation of this task.

This distributed control strategy should accomplish a suitable tradeoff between

the objectives.

2. Studying the effect of switching in DC microgrids and how we would reconfigure

the optimization strategy accordingly. The motivation behind this topic is to

develop the current control strategy so it can withstand the switching. For

instance, if we would like to cut off a certain node from the grid for maintenance

reasons, the developed distributed strategy would handle the switching without

suffering from any stability or reliability issues.

3. In the problem formulation, the limits on line capacities are implicitly embedded

in the term on the line costs which penalize large line currents. Similarly, the

feeder line limits are implicitly embedded in supply current consensus (to be

close to the average value) and the bus voltages (to be close to the rated voltage).

For all these variables, it is possible to impose hard limits on them as inequality
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constraints. As such, the optimization problems will be nonlinear and only

numerical solutions can be pursued. The plan is to keep on investigating such

practical constraints and nonlinear optimization and optimal control (including

dynamics) in the future.

4. Finally, I would like to extend the current strategies to AC and hybrid AC/DC

microgrids
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DISTRIBUTED OPTIMAL POWER AND VOLTAGE
MANAGEMENT IN DC MICROGRIDS
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The work developed new control strategies to address fundamental issues of power

balance, line loss reduction, and voltage profile management in DC microgrids. In

microgrids of distributed renewable generations and controllable loads, load alloca-

tion to different distributed generators, line losses, voltage stability and quality are

intimately coupled, departing significantly from traditional power grids in which eco-

nomic dispatch and voltage stability are typically separate control tasks.

In this work, a multi-objective optimization strategy is introduced to address the

challenges imposed by these coupled issues. Global optimal solutions are derived.

Recursive optimization algorithms for distributed control strategies are introduced

and shown to converge to the global optima. Case studies using DC-powered trolley-

bus systems are conducted to evaluate the algorithms, showcasing their convergence,

ability to function under scalable networks, and robustness to load perturbations.
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Finally, the work develops optimal control strategies for management of DC micro-

grids including subsystem dynamics. The inclusion of subsystem dynamics accounts

for many real systems, especially converter dynamics, impacts performance signif-

icantly, and complicates system analysis. A comparison to the trolley bus system

without the inclusion of subsystem dynamics was part of the case studies. Addi-

tionally, case studies covering the effect of controllers and dynamics of the DC-DC

converter are conducted to evaluate the modified algorithm. Sampling interval and

step size effects on the system’s behavior were also discussed.



98

AUTOBIOGRAPHY

Education:

• Current Ph.D. student at Wayne State University, Electrical Engineering De-

partment, since August 29th, 2015.

• Master of Science in Electrical Engineering from Wayne State University, De-

troit, Michigan, United States, Fall 2015.

• Bachelor of Science in Electrical Engineering from King Abdulaziz University,

Jeddah, Saudi Arabia, Fall 2008.

Work Experience:

• Electromechanical Inspector, Maintenance & UtilityDepartment, King Abdu-

laziz International Airport (KAIA), from 03-2009 to 12-2011

• Electrical Engineer, Engineering Services Deaprtment, SAFARICO. from 14-

10-2008 to 29-2-2009.

Publications:

• E. Sindi, L. Wang, M. Polis, G. Yin and L. Ding, ”Distributed Optimization in

DC Microgrids with Subsystem Dynamics”, The 2019 8th International Con-

ference on Systems and Control (ICSC’2019), Marrakesh, Morocco, 2019. Ac-

cepted.

• E. Sindi, L.Y. Wang, M. Polis, G. Yin, and L. Ding, ” Distributed Optimal

Power and Voltage Management in DC Microgrids: Applications to Dual-

Source Trolleybus Systems”, IEEE Transactions on Transportation Electrifi-

cation, 4(3), pp.778-788, June 2018.

• E. Sindi, L. Wang, M. Polis, G. Yin and L. Ding, ”Distributed Optimal Power

and Voltage Management in DC Microgrids”, in 2017 SIAM Conference on

Control and Its Applications, Pittsburgh, 2017.

• L. Ding, Q. Han, L. Y. Wang and E. Sindi, ”Distributed Cooperative Optimal

Control of DC Microgrids With Communication Delays,” IEEE Transactions

on Industrial Informatics, vol. 14, no. 9, pp. 3924-3935, Sept. 2018. doi:

10.1109/TII.2018.2799239


	Distributed Optimal Power And Voltage Management In Dc Microgrids
	Recommended Citation

	tmp.1599681605.pdf.UkYH7

