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1

CHAPTER 1 INTRODUCTION

1.1 Problem description

Motivational Interviewing (MI) is an evidence-based communication technique to

increase intrinsic motivation and self-efficacy for behavior change[96, 98]. A typical

MI interview sessions involve a counselor and a patient. The goal of an MI session

is to increase intrinsic motivation for behavior change through the exploration of the

patient’s own desires, ability, reasons, need for and commitment to the targeted be-

havior change. These statements, referred to as “change talk” (or CT), consistently

predict actual behavior change [10] that can be sustained for as long as 34 months

after an interview [132]. However, communication science approaches to understand-

ing the efficacy of MI are inherently limited by traditional qualitative coding methods

which is a time-consuming and resource-intensive process. Thus, an efficient method

is required to automate the coding process which will accelerate the pace of communi-

cation research in behavioral science. The specific provider behaviors responsible for

the elicitation of change talk, are also less clear and may vary by treatment context.

Therefore, new design objective and perspective are necessary to understand which

provider behaviors and in which contexts lead to patient change talk.

1.2 Our contribution

In this section, we summarize our contributions and outline our dissertation. In

this dissertation, we deal with two types of clinical conversation, one that involves a

face to face dialogue between patient and counselor and another one which involves

an email-based conversation between patient and an ecoach. In the following, we

summarize our three research projects that we accomplished as part of this disserta-

tion. In the first two projects, we focus on the dialogue-based clinical conversation

while the third project mainly focuses on email-based clinical conversation.

• Automatic annotation of clinical conversation. As the first step, we ad-
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dress the problem of manual behavioral coding of MI. Traditionally, clinical

interviews are transcribed and then each utterance is manually annotated with

a set of codes from a pre-defined codebook operationalizing specific behavior

types. Training human coders to reliably and accurately assign codes to textual

fragments requires a large investment of manpower, time and money. For ex-

ample, in a recent MI study [24], training coders to reliability took about four

months and, once trained, coders required five hours to code every recorded

hour. A similar study reported requiring 60 hours of training over six weeks

to attain coder reliability, and the actual coding involved two coding passes

and six coders [101]. This study was using Minority Youth-Sequential Coding

of Process Exchanges (MYSCOPE), which is similar to the codebook of the

proposed project. In the past decade, machine learning (ML) techniques have

begun providing an efficient alternative to intensive cognitive tasks. Therefore,

we leveraged eight supervised classification models to automatically code MI

counseling sessions with 37 African American adolescents with obesity and their

caregivers. This study examined the effectiveness of state-of-the-art supervised

machine learning methods in conjunction with different feature types for the

task of automatic annotation of fragments of clinical text based on codebooks

with a large number of categories. We used a collection of motivational inter-

view transcripts consisting of 11,353 utterances, which were manually annotated

by two human coders as the gold standard (a collection of high-quality and ac-

curate labeled data that can be gathered from experts), and experimented with

state-of-art classifiers, including Nave Bayes, J48 Decision Tree, Support Vector

Machine (SVM), Random Forest (RF), AdaBoost, DiscLDA, Conditional Ran-

dom Fields (CRF) and Convolutional Neural Network (CNN) in conjunction

with lexical, contextual (label of the previous utterance) and semantic (distri-

bution of words in the utterance across the Linguistic Inquiry and Word Count
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dictionaries) features. We found out that, when the number of classes is large,

the performance of CNN and CRF is inferior to SVM. When only lexical fea-

tures were used, interview transcripts were automatically annotated by SVM

with the highest classification accuracy among all classifiers of 70.8%, 61% and

53.7% based on the codebooks consisting of 17, 20 and 41 codes, respectively.

Using contextual and semantic features, as well as their combination, in addi-

tion to lexical ones, improved the accuracy of SVM for annotation of utterances

in motivational interview transcripts with a codebook consisting of 17 classes

to 71.5%, 74.2%, and 75.1%, respectively. With no modification, the SVM

model also tested with other studies, in which SVM model correctly classified

72.0% and 79.8% of patient-provider utterances in HIV clinical encounters and

eCoaching sessions, respectively. These results demonstrate the potential of

using machine learning methods in conjunction with lexical, semantic and con-

textual features for automatic annotation of clinical interview transcripts with

near-human accuracy.

• Sequential analysis of clinical conversation. In our previous project, we

automatically annotate MI transcripts which are used by this project for the

sequential analysis of MI. In this project, we focus on predicting the outcome

of patient-provider communication sequences in the context of the clinical di-

alog, which is the first part of the sequential analysis process, establishing the

sequencing of behaviors to generate evidence for the causal sequencing of com-

munication behaviors. Specifically, we consider the prediction of the motiva-

tional interview success (i.e. eliciting a particular type of patient behavioral

response) based on an observed sequence of coded patient-provider communica-

tion exchanges as a sequence classification problem. We proposed two solutions

to this problem, one that is based on Recurrent Neural Networks (RNNs) and

another that is based on Markov Chain (MC), a probabilistic model that con-
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ditions each observation in a sequence only on preceding observation and not

on any other past observation and Hidden Markov Model (HMM), a proba-

bilistic generative model for sequence data, for modeling sequences of behavior

codes. We compared the accuracy of these solutions using communication se-

quences annotated with behavior codes from the motivational interviews. Our

experiments indicate that the deep learning-based approach is significantly more

accurate than the approach based on probabilistic models in predicting the suc-

cess of motivational interviews (0.8677 versus 0.7038 and 0.6067 F1-score by

RNN, MC and HMM, respectively, when using under-sampling to correct for

class imbalance, and 0.8381 versus 0.7775 and 0.7520 F1-score by RNN, MC

and HMM, respectively, when using over-sampling). These results indicate that

the proposed method can be used for real-time monitoring of progression of

clinical interviews and more efficient identification of effective provider commu-

nication strategies, which in turn can significantly decrease the effort required

to develop behavioral interventions and increase their effectiveness. Although

there is strong empirical evidence linking “MI-consistent” counselor behaviors

and patient motivational statements (i.e., “change talk”), the specific coun-

selor communication behaviors effective for eliciting patient change talk vary

by treatment context and, thus, are a subject of ongoing research. An integral

part of this research is the sequential analysis of pre-coded MI transcripts. In

the second part of our sequential analysis process, we evaluated the empirical

effectiveness of the Hidden Markov Model and closed frequent pattern mining, a

method to identify frequently occurring sequential patterns of behavior codes in

MI communication sequences to inform MI practice. We conducted experiments

with 1,360 communication sequences from 37 transcribed audio recordings of

counseling sessions with African-American adolescents with obesity and their

caregivers. Transcripts had been previously annotated with patient-counselor
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behavior codes using an MYSCOPE codebook. Empirical results indicate that

the Hidden Markov Model and closed frequent pattern mining techniques can

identify counselor communication strategies that are effective at eliciting pa-

tients’ motivational statements to guide clinical practice.

• Segmentation of clinical conversation. The annotation model and sequen-

tial analysis models represent two critical processes necessary to automate be-

havioral coding. However, a segmentation model is needed to process the email

conversation for developing autocoding and sequence analysis models to fully

automate behavioral counseling. In this project, we propose various segmen-

tation models to facilitate behavioral coding of e-Coaching sessions, behavior

interventions delivered via email and grounded in the principles of MI. Segmen-

tation process partitions emails into fragments that correspond to MI behav-

iors which is more challenging in eCoaching sessions because eCoaching data

differs from traditional face to face counseling. Unlike transcribed in-person

exchanges, email correspondence is not clearly segmented into codable speech

acts (i.e., utterances). Thus, the unstructured nature of e-Coaching exchanges

poses a unique set of analytic challenges. Traditionally, trained coders manually

segmented emails before applying the annotation model to predict behavioral

code. Therefore, there is a need for segmentation model to fully automate the

behavioral coding. This project frames email segmentation task as a classi-

fication problem, in which each word or punctuation mark is annotated with

one of the two classes: “new segment” and “same segment”. Our proposed

method utilizes word and punctuation mark embeddings in conjunction with

part-of-speech features to address the segmentation problem. We evaluate the

performance of conditional random fields (CRF) as well as multi-layer percep-

tron (MLP), bi-directional recurrent neural network (BRNN) and convolutional

recurrent neural network (CRNN) for the task of email segmentation. Results
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show that CRNN outperformed CRF, MLP and BRNN achieving 98.9% overall

and 86.4% and 99.3% accuracy for detecting “new segment” and “same seg-

ment”, respectively. Segmentation was also a concern in our dialogue-based

clinical conversation although this project focuses on eCoaching session. Ac-

tually, we also need segmentation for face to face sessions because we allow

counselors’ speech to be segmented, a fact that was ignored in earlier two stud-

ies where the data had previously been parsed or segmented by human coders.

1.3 Organization

The rest of this dissertation is organized as follows. We present our motivational

interview-based clinical conversation works in Chapter 2 and 3. In Chapter 2, we

present eight state-of-the-art machine learning methods and their experimental re-

sults for the automatic annotation of patient-provider clinical conversation. We per-

form two sequential analysis on MIs which is described in Chapter 3. We present deep

learning and probabilistic models to analyze the sequencing of patient-provider com-

munication. We further investigate sequential patterns from the identified sequence

of patient-provider communication. In Chapter 4, we propose traditional machine

learning based approach as well as deep learning approaches for the segmentation

of email-based patient-provider clinical conversation. We conclude and discuss some

possible future research directions in Chapter 5.



7

CHAPTER 2 AUTOMATIC ANNOTATION OF CLINICAL CONVER-

SATION

Annotation of clinical interview transcripts to distinguish different behavior types

is an important and integral part of clinical research aimed at designing effective

interventions for many conditions and disorders. This chapter describes our research

work to automate the process of behavioral coding, which has been traditionally done

by a trained coder. We examine the effectiveness of eight state-of-the-art supervised

machine learning methods in conjunction with different feature types for the task of

automatic annotation of fragments of clinical text based on codebooks with a large

number of categories. We believe that automatic annotation of clinical conversation

can significantly accelerate the pace of research in behavioral science.

2.1 Introduction

Annotation (or labeling) of fragments of clinical text with the categories (or la-

bels, codes) from a predefined codebook is an integral part of qualitative research. It

can also be viewed as classification of textual fragments into a predefined number of

categories (classes). Textual annotation has been traditionally performed manually

by trained coders, which is a tedious, costly and time-consuming process. Further-

more, manual annotation increases the likelihood of errors due to coder fatigue and

bias associated with human subjectivity. To automate tedious cognitive tasks such

as classification, supervised machine learning methods have been recently proposed.

These methods have been shown to be successful at binary (two-class) classifica-

tion [109, 104] (e.g. classifying textual fragments as neutral or opinionated) but

failure for textual classification tasks involving large number of classes. Such tasks,

however, are fairly common in clinical setting (e.g. annotation of clinical interviews,

assignment of ICD-9/10 codes to patient records). Our recent work address this

limitation by utilizing contextual and semantic features and present the results of

an extensive experimental evaluation of state-of-the-art supervised machine learning
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methods in conjunction with lexical and the proposed features for the task of auto-

matic annotation of utterances in clinical interview transcripts with the codebooks

consisting of large number of classes. This chapter provides a guideline for clinical

informatics researchers and practitioners, who consider an option of using machine

learning methods for automatic annotation of clinical text in their projects.

In this chapter, we focused on the transcripts of motivational interviews with obese

adolescents (teens) and their caregivers. Automatic annotation of patient utterances

in clinical communication is a challenging task, since patients usually come from

a variety of cultural and educational backgrounds and their language use can be

quite different [127]. This problem is exacerbated when the interviews are conducted

with children and adolescents due to their tendency to use incomplete sentences and

frequently change subjects.

We reported the results of comprehensive evaluation of 8 state-of-the-art classifiers

(Näıve Bayes [115, 92, 70], Support Vector Machine [34, 42], Conditional Random

Fields [79, 123], J48 [119], AdaBoost [47], Random Forest [21], DiscLDA [77] and

Convolutional Neural Network [71]) for the task of annotating clinical interviews with

a codebook, consisting of a large number of classes. We also offer and experimentally

evaluate two novel features for this task: contextual features based on the label of the

preceding textual fragment and semantic features based on the distribution of words

in the annotated fragment over a linguistic lexicon.

2.2 Related work

Several prior works have reported the results of adopting machine learning meth-

ods, such as topic models [75, 51, 66, 74, 12], classification methods [62, 22, 113, 112]

and neural networks [62, 124, 125] to the tasks of annotating MI transcripts for

the assessment of intervention fidelity. Perez-Rosas et al. [113] developed a natu-

ral language processing system to evaluate counselor fidelity to the MI framework.

Their system employed a Support Vector Machines (SVM) classifier based on n-grams
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(contiguous sequences of words of a specified length), syntactic (structure of the clin-

ician statements) and semantic (cognitive state) features. In our own recent work,

we evaluated the accuracy of state-of-the-art classification methods and deep neural

networks in conjunction with the lexical (words expressed), contextual (prior code)

and semantic (inferred cognitive state based on Linguistic Inquiry and Word Count

dictionaries [126]) features for the task of automated annotation of MI transcripts

using codebooks with varying numbers of behavior codes [62]. An SVM model with

the aforementioned features achieved 75% accuracy for automated annotation of MI

transcripts with 17 behavior codes, accuracy comparable to human coders.

Previous quantitative studies of clinical conversation have resulted in creation of

Generalized Medical Interaction Analysis System (GMIAS) [80], which uses a code-

book with generic hierarchical categories. The small-size codebook in Comprehensive

Analysis of the Structure of Encounters System (CASES) [81] was designed to anno-

tate several meta-discursive aspects of medical interviews, such as assigning “owner-

ship” of topics and partitioning them into distinct segments (speech acts). It was also

shown that the fragments of transcripts of routine outpatient visits consisting of sev-

eral speech acts coded using GMIAS and CASES can be annotated as “information

giving” and “requesting information” [91]. Other related previous studies focused on

categorizing assertions of medical problems in clinical narrative into 5 classes (present,

absent, possible, hypothetical, conditional and associated with someone else) using

SVM [116] and annotating the utterances in hemodialysis phone dialogue with 3

categories using AdaBoost classifier [78].

2.3 Methods

2.3.1 Data collection and preprocessing

The golden standard for evaluation of machine learning methods was created based

on the transcripts of motivational interviews conducted by the clinicians at the Pedi-

atric Prevention Research Center (PPRC) of Wayne State University. Each interview
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is comprised of two parts: conversation of a clinician with an adolescent followed by

a conversation of a clinician with the adolescent’s caregiver. All adolescents in this

project were between the ages of 12 and 17 (M = 14.7, SD = 1.63) and most were

female (n = 27). Most caregivers were biological mothers (n = 36), who were married

or living with a partner (n = 25). The median family income was $16,000–$21,999

ranging from less than $1,000 to $50,000–$74,999. The audio recordings of the inter-

views were first transcribed and segmented into utterances belonging to adolescents,

caregivers, and counselors, preserving the sequence of utterances. Transcripts were

then manually annotated by trained human coders according to MYSCOPE [24], a

specialized codebook including a large number of behavior codes, which was developed

by an interdisciplinary team including a clinical psychologist, a nutrition scientist, a

communication scientist, a linguist and a community health worker specifically for

annotating motivational interviews with obese adolescents. The MYSCOPE is an

adaptation of the original MI-SCOPE [90], a qualitative code scheme to character-

ize patient-counselor communication during MI treatment sessions. The MYSCOPE

was informed by MI fidelity code schemes including the MI Treatment Integrity Scale

(MITI) [102], the MI Skill Code (MISC) [9] and Amrhein’s conceptualization of change

talk and commitment [7]. A primary coder independently coded interview sessions

and a secondary coder co-coded a randomly selected 20% of the transcripts to mon-

itor reliability (κ = 0.696) [24]. The MYSCOPE codebook contains a total of 115

different codes that are grouped into the youth, caregiver, and counselor code groups.

The experimental datasets for this work were constructed based on the transcripts of

37 motivational interview sessions, which include a total of 11,353 segmented and an-

notated utterances. These utterances have been further partitioned into two subsets

based on the structure of motivational interview sessions: one dataset that includes

all utterances from the adolescent sessions (6,579 samples) and the other dataset that

includes all utterances from the caregiver sessions (4,774 samples). A fragment of an
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adolescent session transcript is presented in Table 2.1.

Table 2.1: Fragment of the annotated transcript of a dialogue between a counselor and an
adolescent

Annotation Description Speaker Text
331 Open-ended

question, elicit
change talk
positive

Counselor do you feel like making healthier
choices for your snacks and your
meals is something you would be
able to do ? mm-hmm meaning is
that food available for you ?

117 Low Uptake,
positive

Adolescent Yes

301 Structure Ses-
sion

Counselor okay and thats an important thing
for us to think about cause i would
not want to help you come up
with a plan that you would not be
able to do without somebody else
help so the last part of your plan is
how somebody could be support-
ive to you meaning how they can
help you be successful and so we
should choose somebody who you
feel like is around often enough

112 Change Talk
positive

Adolescent my um aunt

301 Structure Ses-
sion

Counselor okay so lets stick something my
aunt can do

112 Change Talk
positive

Adolescent she could when i am doing when i
am eating something that i should
i could not be eating but so i
can choose something healthy she
could tell me not to eat it

309 Affirm, low Counselor okay that sounds like a really
great suggestion

To conduct a detailed analysis of performance of classification methods, we used

the following two-stage process to create the codebooks with different number of

codes for adolescent and caregiver sessions. In the first stage, we merged conceptually

similar behavior codes as well as the codes with similar data distributions, while in

the second stage, we eliminated the codes with insufficient data samples. In case of

the adolescent sessions, we started with 55 adolescent session-specific codes and, after
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merging the codes with subtle differences (e.g. converting valiances of change talk

CHT+1, CHT+2 and CHT+3 into CHT+), obtained a codebook with 41 classes.

We further reduced this codebook to 20 classes after merging 21 classes with similar

sample distributions. After eliminating the codes that had less than 10 data samples

(to ensure that there can be at least one sample of each class in each fold when using

10-fold cross validation experimental design), we obtained a third codebook with 17

codes. Using the same approach, we created the codebooks containing 58, 19, and 16

caregiver session-specific codes. Table 2.2 shows the distribution of utterances over 16

classes in the caregiver session transcripts. As follows from Table 2.2, the distribution

of utterances over classes is highly imbalanced even for the codebook of the smallest

size, which is fairly common for clinical text.

Table 2.2: Distribution of utterances over 16 classes in the caregiver dataset

Code Description Utterance %
209 Caregiver Change Talk, negative 297 6.82
212 Caregiver Change Talk, positive 1107 25.40
232 Low Uptake, positive 518 11.89
235 High uptake 231 5.30
301 Structure Session 206 4.73
302 General Information, positive 309 7.09
305 Emphasize Autonomy 148 3.40
306 Closed question, Elicit Feedback 50 1.15
307 Support 108 2.48
308 Affirm 289 6.63
315 Reflect, change talk positive, about caregiver 659 15.12
329 Self-disclose 44 1.01
330 Statement, other 121 2.78
331 Open-ended question, elicit change talk positive 200 4.59
343 Open-ended question, target behavior neutral 33 0.76
344 Open-ended question, elicit barriers 38 0.87

After creating the codebooks, we pre-processed the dataset using the Snowball

stemmer available as part of the Weka [59] machine learning toolkit1. We also found

out that stopword removal decreased the performance of classification models for our

1http://www.cs.waikato.ac.nz/ml/weka/
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Table 2.3: Feature representation of each utterance in machine learning pipeline

Feature Type Description Purpose
Lexical features One feature per each distinct

word in the set of training in-
terview transcripts. The value
of each lexical feature is the
number of times that the corre-
sponding word appears in the
utterance.

To capture the vocabulary
that is indicative of each label.

Contextual fea-
tures

One feature per each codebook
label. The value of the feature
is set to 1, if the previous ut-
terance in the dialog was an-
notated with the correspond-
ing label, and to 0, otherwise.

Context changes the likeli-
hood of observing speech acts.
for example, if the previous
speaker was requesting infor-
mation, then the next speech
act is more likely to be provid-
ing the requested information.

Semantic fea-
tures

One feature per each of the
sixty-eight LIWC lexicons.
The value of each semantic
feature is the number of times
a word from the corresponding
dictionary appears in the
utterance.

To capture psycho-linguistic
clues related to the thought
processes, emotional states, in-
tentions and motivations of the
speaker.

task (e.g., in case of the codebook consisting of 17 classes, the accuracy of Näıve Bayes

decreased from 67% to 47.10%, while the accuracy of SVM decreased from 70.76%

to 55.26%). A likely reason is that, although negations are typically considered as

stopwords, they are fairly important clues for inferring certain behavior types (e.g.,

removing the stopword “not” completely transforms the meaning of a phrase “not

great”).

2.3.2 Features

Different feature types used in experiments are summarized in Table 2.3, while

Figure 2.1 illustrates the process of extracting these features from a sample interview

fragment. First, we compared the performance of all classification models using only

lexical features, which were derived from the unigram bag-of-words representation

of utterances. According to this approach, a set of unique terms (vocabulary) of
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size N is first determined for a given collection of textual fragments (in our case,

interview transcripts) and then each textual fragment f (in our case, adolescent or

caregiver utterance) is represented as a feature vector [nw1,f , ..., nwN,f ], where nwn,f is

a feature representing the number of times an nth word from the collection vocabulary

occurred in f . For example, the vocabulary of a collection consisting of only one

textual fragment “what you think about your weight right now and your health”

would be (“about”, “and”, “health”, “now”, “right”, “think”, “weight”, “what”,

“you”, “your”) and the unigram bag-of-words feature vector for this fragment based

on the representation would be [1,1,1,1,1,1,1,1,1,2]. Since the question mark (?) is an

important indicator of some communication types, it was also used as a feature.

Figure 2.1: Features extracted from a sample interview fragment

Second, we expanded lexical features with the features derived from Linguistic

Inquiry and Word Count (LIWC) lexicon [126]. LIWC lexicon consists of the dic-

tionaries, which had been manually compiled and validated for over a decade by

psychologists, sociologists and linguists. Dictionaries are organized around sixty-

eight psychological and social dimensions, which are structured as an ontology-like

hierarchy and may overlap. Each dictionary corresponds to a well-defined concept or

psychological construct (e.g. social, positive emotions, negative emotions, money).

Social dictionary consists of the nouns and pronouns that refer to other people (e.g.,

“they”, “she”, “us”, “friends”) as well as the verbs that indicate interaction (e.g.,
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“talking”, “sharing”). Dictionaries of positive (e.g. “happy”, “love”, “good”) and

negative (e.g. “sad”, “kill”, “afraid”) words cover the entire spectrum of correspond-

ing emotions from happiness to anxiety. We use the vector of counts of terms in

the utterance across LIWC dictionaries as additional semantic features. For exam-

ple, the sentence “what you think about your weight right now and your health” is

represented as a vector [2,...,1,...,3,...,1,...,1,...,1], in which each element is the num-

ber of counts of words that fall under each of the sixty eight categories [cognitive

process,...,pronoun,...,time,...,inclusive,...,physical states,..., preposition]. LIWC has

been applied to successfully predict the onset of depression in individuals based on

the text from social media [37] and characterize the emotional variability of preg-

nant mothers from Twitter posts [36]. In case of annotation of clinical interview

transcripts, LIWC features provide important psychological clues related to thought

processes, emotional states, intentions, and motivations of patients.

Finally, in addition to lexical features, we also considered the context of interview

utterances in the form of the label of the preceding utterance. We hypothesize that

contextual features of an utterance play an important role during annotation process

since the interviews proceed in sequential manner with participants asking or respond-

ing to questions of the previous speaker. Therefore, we use the automatically assigned

category of the preceding counselor (adolescent or caregiver) utterance as an addi-

tional contextual feature when annotating adolescent or caregiver session transcripts,

and vice versa. For example, if the set of codes specific to the counselor utterances

is [109,...,120,...,305,...,311,...,331,...,343,...,344], then the additional contextual fea-

ture vector for the adolescent utterance “i need to lose it”, which is preceded by the

counselor utterance annotated with the code 343, is [0,...,0,...,0,...,0,...,0,...,1,...,0].

2.3.3 Classification models

We first describe a general architecture of the classification system used in experi-

ments and, then provide a brief overview of each evaluated machine learning method.
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Figure 2.2: Architecture of the pipeline for automatic annotation of clinical interview
fragments using different supervised machine learning methods

Figure 2.2 shows the architecture of the pipeline used for the classification of medical

interview transcripts.

The pipeline consists of two stages: training and testing. Prior to the training

stage, we preprocess the collected clinical interview transcripts by performing stem-

ming, punctuation removal, word segmentation and tokenization. Features are then

extracted from the preprocessed data. During this stage, previous label and LIWC

features are used in conjunction with the lexical features to create the feature vectors.

After that, classifiers are trained on the feature vectors extracted from the training

samples and their associated annotations. In the testing stage, after creation of fea-

ture vectors, the previously trained classifiers predict the label of each utterance in

the testing sample. Finally, performance of different classifiers is evaluated by cal-

culating standard metrics such as precision, recall, F-score (F1), kappa measure and

accuracy. Specifically, we evaluated the performance of the following state-of-the-art

supervised machine learning methods.

Näıve Bayes (NB)

Näıve Bayes (NB) is as a popular probabilistic method [68, 122] for text classifi-

cation due to its robustness and relative simplicity. Experimental results reported in
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this project were obtained using standard implementations of binomial Näıve Bayes

(NB) and multinomial Näıve Bayes (NB-M) algorithms [92] provided by the Weka

toolkit.

Support Vector Machine (SVM)

Support Vector Machine (SVM) [34, 42] belongs to a family of generalized linear

binary classifiers, which map an input feature vector into a higher dimensional space

and finds a hyperplane that separates the samples into two classes in such a way

that the margin between the closest samples in each class is maximized. Open-source

implementation of SVM with different kernels in publicly available LibSVM2 [26]

package was used for the experiments reported in this work. The parameters of each

kernel have been empirically optimized using cross-validation. Figures 2.4, 2.5 and

2.3 illustrate the variance in performance of SVM with different setting of parameters

for RBF, polynomial and sigmoid kernels, respectively. As follows from Figure 2.5,

when the number of classes is large, SVM has optimal performance when quadratic

polynomial kernel is used or when γ is set to 0.1 for a sigmoid kernel. The best

performance of SVM among all kernels, however, is achieved when it is used with

a Radial Basis Function kernel (RBF) with the parameters C and γ set to 4.0 and

0.1, respectively. We also found that L1 loss function performs better than L2 loss

function for Linear SVM.

Conditional Random Fields (CRF)

Conditional Random Fields (CRF) [79] is a probabilistic model, which is different

from all other classifiers in that, in addition to lexical features, it also considers

the dependencies between the labels of consecutive data samples. We also explain

more about the CRF model in Chapter 4. We used linear chain CRF provided by

MALLET [93], a publicly available machine learning toolkit3.

2https://www.csie.ntu.edu.tw/ cjlin/libsvm/
3http://mallet.cs.umass.edu/



18

Figure 2.3: Performance of SVM with sigmoid kernel by varying γ

Figure 2.4: Performance of SVM with RBF kernel by varying kernel parameters C and γ

Decision tree (J48)

J48 [119] is an open source implementation of the C4.5 decision tree classification

algorithm provided by Weka. Decision trees are interpretable classifiers, which model

the classification process as a tree traversal.
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Figure 2.5: Performance of SVM with polynomial kernel by varying the degree

AdaBoost

AdaBoost [47] (short for “Adaptive Boosting”) is one of the most widely used and

studied machine learning meta-algorithms. Boosting algorithms belong to a group of

voting techniques [46], which produce classification decision as a linear combination

of the output of other classifiers (also called “base” or “weak” classifiers) [58]. In

particular, we used J48 decision tree classifier as a weak learner for AdaBoost.

Random Forest (RF)

Random Forest [21] is an ensemble method that uses bagging to improve classi-

fication performance by combining the output of several classifiers. The main idea

behind ensemble methods is that a large number of “weak learners” can be used to

create a “strong learner”. In case of Random Forest, a “weak learner” is a decision

tree. Figure 2.6 illustrates the performance of Random Forest by varying the number

of individual decision trees. From Figure 2.6, it follows that increasing the number

of trees beyond 150 results in minor performance improvement. We used 300 trees

for RF, which we empirically determined to result in the best performance of this

classifier the codebooks of different size.
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DiscLDA

DiscLDA [58] is a dimensionality reduction method that incorporates supervision

in the form of class labels into Latent Dirichlet Allocation (LDA) [20] to uncover the

latent structure in document collections and leverage this structure to improve the

accuracy of classification. Experimental results reported in this project were obtained

by setting alpha to 50/T [57] where T is a number of topics and β to 0.1 and running

the model for 150 iterations. Figure 2.7 shows the performance of DiscLDA depending

on the number of topics. From Figure 2.7, it follows that the accuracy of DiscLDA is

maximized when 250 topics are used.
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Figure 2.6: Performance of random forest by varying the number of decision trees

Deep Learning (DL)

Deep Learning (DL) exploits the idea of a hierarchy of explanatory factors, in

which higher level learned more abstract concepts from the lower level ones. A greedy

layer-by-layer method is often used to construct these architectures. Deep learning

helps to disentangle these abstractions and select the features that are useful for learn-

ing. For supervised learning tasks, instead of extracting manually designed features

from the data, deep learning methods translate the data into a compact intermedi-
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Figure 2.7: Performance of DiscLDA by varying the number of topics

ate representation, similar to other dimensionality reduction techniques, and derive

layered structures, which eliminate redundancy in feature representation. We used a

convolutional neural network (CNN) with one layer of convolution [71] on top of the

latent dimensional representation of each word in an interview fragment using the

publicly available word2vec4 vectors, which were obtained from an unsupervised

neural language model [95] estimated on 100 billion word corpus from Google News.

If a word2vec vector was not available for a particular word, we used random ini-

tialization for its latent dimensional representation. In the architecture of this CNN,

shown in Figure 2.8, an interview fragment consisting of n words is represented by n

300 dimensional word2vec vectors, which were fine-tuned for our dataset through

backpropagation. A convolution operation using multiple filters corresponding to the

windows of size 3, 4 and 5 words was then applied to produce new features. After

that, a max-over-time pooling [33] is used to capture the most important feature for

each particular filter. These features form the penultimate layer and are then passed

to a fully connected softmax layer whose output is a probability distribution over

category assignments for a given interview fragment. Based on emperical analysis

4https://code.google.com/p/word2vec/
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in [139], we tuned two important parameters to improve the performance of CNN:

dropout rate and number of featuremaps. The effect of dropout rate and the number

of featuremaps on performance of CNN is shown in Figures 2.10 and 2.9, respectively.

As follows from Figure 2.9, the number of faturemaps does not have a significant effect

on the performance of CNN, when the number of classes is large.

Figure 2.8: Architecture of convolutional neural network for automatic annotation of
clinical interview transcripts
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Figure 2.9: Performance of CNN by varying the number of featuremaps
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Figure 2.10: Performance of CNN by varying the dropout rate

2.3.4 Evaluation

To ensure the robustness of performance estimates, we used 10-fold cross vali-

dation [73] as an experimental design. The performance of different classifiers and

feature sets was evaluated in terms of precision, recall, F1 score (F1), kappa measure

and accuracy using weighted macro-averaging over 10 folds.

2.4 Results

Experimental evaluation of automatic annotation using machine learning included

several dimensions:

• determining the performance of classifiers on the codebooks of different size;

• determining the effectiveness of the proposed contextual and semantic features.

Since clinical researchers typically annotate caregiver and adolescent sessions sep-

arately, we first created two experimental datasets consisting of only adolescent and

only caregiver session transcripts. Second, besides evaluating the accuracy of anno-

tating adolescent and caregiver transcripts with the codebooks containing an entire

set of codes, we also conducted a series of experiments with the codebooks of smaller

sizes created as outlined above. Third, besides training and testing NB, SVM, CRF,
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Decision Tree, Boosting, DiscLDA, Random Forest and CNN classifiers using only

lexical features, we also evaluated the effectiveness of the proposed contextual and

semantic features.

2.4.1 Quality of automatic annotation using only lexical features

Standard performance metrics5 of different classification models using only lexical

features for the task of annotating adolescent and caregiver session transcripts are

summarized in Tables 2.4 and 2.5, respectively.

Table 2.4: Performance of classification models using only lexical features according to
different evaluation metrics for the task of annotating adolescent interview session tran-
scripts. Highest value for each metric and codebook size across all models is highlighted in
boldface.

Cls. Model Acc. Prec. Rec. F1 Kappa
NB 0.544 0.603 0.544 0.552 0.497
NB-M 0.670 0.662 0.670 0.643 0.622
J48 0.595 0.573 0.595 0.580 0.539

17 AdaBoost 0.627 0.600 0.627 0.609 0.574
RF 0.670 0.662 0.670 0.625 0.616
DiscLDA 0.477 0.454 0.477 0.431 0.388
SVM 0.708 0.705 0.708 0.680 0.663
CNN 0.678 0.633 0.678 0.670 0.509
NB 0.487 0.509 0.487 0.482 0.448
NB-M 0.579 0.582 0.579 0.559 0.537
J48 0.479 0.467 0.479 0.470 0.431

20 AdaBoost 0.504 0.488 0.504 0.493 0.458
RF 0.563 0.564 0.563 0.519 0.514
DiscLDA 0.400 0.410 0.400 0.356 0.330
SVM 0.610 0.611 0.610 0.592 0.571
CNN 0.586 0.588 0.586 0.587 0.476
NB 0.406 0.434 0.406 0.405 0.375
NB-M 0.513 0.479 0.513 0.484 0.478
J48 0.396 0.375 0.396 0.382 0.356

41 AdaBoost 0.436 0.412 0.436 0.421 0.398
RF 0.495 0.487 0.495 0.453 0.455
DiscLDA 0.362 0.387 0.362 0.301 0.304
SVM 0.537 0.513 0.537 0.504 0.502
CNN 0.396 0.369 0.396 0.382 0.170

5Cls.: # of classes, Acc.: Accuracy, Prec.: Precision, Rec.: Recall
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Table 2.5: Performance of classification models using only lexical features according to
different evaluation metrics for the task of annotating caregiver interview session transcripts.
Highest value for each metric and codebook size across all models is highlighted in boldface.

Cls. Model Acc. Prec. Rec. F1 Kappa
NB 0.571 0.608 0.571 0.575 0.518
NB-M 0.633 0.629 0.633 0.604 0.573
J48 0.578 0.563 0.578 0.567 0.514

16 AdaBoost 0.602 0.582 0.602 0.588 0.539
RF 0.640 0.631 0.640 0.596 0.574
DiscLDA 0.482 0.442 0.482 0.421 0.362
SVM 0.664 0.653 0.664 0.639 0.606
CNN 0.657 0.641 0.657 0.648 0.512
NB 0.477 0.504 0.477 0.467 0.434
NB-M 0.536 0.539 0.536 0.512 0.487
J48 0.436 0.431 0.436 0.432 0.382

19 AdaBoost 0.467 0.457 0.467 0.460 0.415
RF 0.507 0.508 0.507 0.467 0.450
DiscLDA 0.374 0.370 0.374 0.333 0.287
SVM 0.545 0.547 0.545 0.535 0.497
CNN 0.510 0.498 0.510 0.504 0.401
NB 0.379 0.392 0.379 0.370 0.350
NB-M 0.442 0.404 0.442 0.386 0.401
J48 0.340 0.321 0.340 0.328 0.302

58 AdaBoost 0.381 0.359 0.381 0.366 0.344
RF 0.402 0.358 0.402 0.352 0.358
DiscLDA 0.288 0.258 0.288 0.234 0.229
SVM 0.451 0.420 0.451 0.418 0.414
CNN 0.118 0.102 0.118 0.109 0.032

Several observations can be made based on Tables 2.4 and 2.5. First, SVM consis-

tently demonstrates the best performance while DiscLDA and J48 consistently have

the worst performance in terms of all metrics and for the codebooks of all sizes on

both adolescent and caregiver interview session transcripts. In case of DiscLDA, this

indicates that dimensionality reduction is less effective when the number of classes

is large. In case of J48, this indicates that decisions trees are not effective in case

of sparse high-dimensional feature vectors and large number of classes. Furthermore,

the difference in performance between SVM and other classifiers keeps increasing with

the number of classes in the codebook. For example, in case of adolescent interview
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transcripts, the difference in accuracy between SVM and CNN (the best and second

best) is 3% when the codebook with 17 labels is used, 2.4% when the codebook with

20 labels in used and 14.1% when the codebook with 41 labels is used. This indicates

superior robustness of SVM compared to other machine learning methods. Second,

although boosting with AdaBoost consistently improves the performance of J48 in

terms of all metrics and for the codebooks of all sizes and on both adolescent and

caregiver interview session transcripts, SVM and, in many cases, multinomial NB,

outperformed AdaBoost, particularly in case of the codebooks with large number of

codes (41 labels in case of the adolescent and 58 labels in case of caregiver session-

specific codebooks), which indicates that boosting is less effective for classification

tasks involving large number of classes. Third, CNN outperforms all other classifiers

except CRF and SVM in all codebook sizes except 41 and 58. The differences in

accuracy between SVM and CNN are 0.7%, 3%, 3.5%, 2.4%, 14.1% and 33.3% when

the codebooks of size 16, 17, 19, 20, 41 and 58 are used, respectively. These results

indicate that CNN is less effective for classification problems when the number of

classes is large. Fourth, the performance of all classification models is consistently

lower on caregiver utterances than on adolescent utterances, which can be explained

by the relative simplicity of the language used by the adolescents.

ROC curves in Figures 2.11, 2.12 and 2.13 illustrate the relative performance of

different classifiers for the codebooks of different size.

2.4.2 Quality of automatic annotation using lexical and non-lexical fea-

tures

Summary of performance6 of CRF and SVM using the combinations of lexical

and contextual (SVM-PL), lexical and semantic (SVM-LIWC) and all features (SVM-

AF) on adolescent and caregiver session transcripts is provided in Tables 2.6 and 2.7,

respectively.

6Cls.: # of classes, Acc.: Accuracy, Prec.: Precision, Rec.: Recall
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Figure 2.11: ROC curves for all classifiers when the codebook with 17 classes is used
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Figure 2.12: ROC curves for all classifiers when the codebook with 20 classes is used

Several important conclusions can be made by comparing the experimental results

in Tables 2.6 and 2.7 with Tables 2.4 and 2.5. First, CRF outperformed multinomial

NB, achieving 1.2% and 0.2% higher accuracy and 3.4% and 2.1% higher F1 score

when the codebooks with 17 and 20 labels, respectively, were used to annotate the

adolescent transcripts and 2.1% and 0.3%higher accuracy and 4.9% and 2.8% higher

F1 score when the codebooks with 16 and 19 labels, respectively, were used to anno-

tate the caregiver transcripts. However, CRF provides 2% and 2.7% lower accuracy

with 2% and 2.7% lower F1 score and 2% and 0.4% lower accuracy with 2.7% and
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Figure 2.13: ROC curves for all classifiers when the codebook with 41 classes is used

3.7% lower F1 score when 41 and 58 labels are used respectively. On the other hand,

the accuracy of CRF is worse than the accuracy of SVM using lexical features by

2.6% , 2.9% and 4.4% with codebook size 17, 20 and 41, respectively, on adoles-

cent transcripts and by 7.4% , 0.6% and 1.3% with codebook size 16, 19 and 58,

respectively, on caregiver transcripts. Nevertheless, since CRF considers both lexical

features as well as the labels of previous utterances, these results highlight the impor-

tance of accounting for context when annotating the utterances in clinical interview

transcripts.

Second, the performance of SVM improves in terms of all metrics on both adoles-

cent and caregiver datasets and for the codebooks of all sizes when either contextual

(SVM-PL) or semantic (SVM-LIWC) features are used in addition to the lexical

ones. When both of these features are used together (SVM-AF), the annotation per-

formance of SVM improves even further achieving the best performance in terms of all

metrics using the codebooks of all sizes on both adolescent and caregiver transcripts.

In particular, by using contextual and semantic features in addition to the lexical

ones, the accuracy of SVM improves by 4.3%, 7.2%, and 3.1%, while it’s F1 score

improves by 5.9%, 8.2%, and 4.2%, when the codebooks with 17, 20, and 41 labels,
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Table 2.6: Performance of classification models using a combination of lexical and differ-
ent types of non-lexical features according to standard metrics for the task of annotating
adolescent interview session transcripts

Cls. Model Acc. Prec. Rec. F1 Kappa
CRF 0.682 0.673 0.682 0.677 0.636
SVM 0.708 0.705 0.708 0.680 0.663
SVM-PL 0.715 0.711 0.715 0.696 0.673

17 SVM-
LIWC

0.742 0.740 0.742 0.727 0.704

SVM-AF 0.751 0.750 0.751 0.739 0.715
CRF 0.581 0.579 0.581 0.580 0.540
SVM 0.610 0.611 0.610 0.592 0.571
SVM-PL 0.639 0.642 0.639 0.630 0.604

20 SVM-
LIWC

0.653 0.653 0.653 0.657 0.619

SVM-AF 0.682 0.685 0.682 0.674 0.651
CRF 0.493 0.485 0.493 0.457 0.502
SVM 0.537 0.513 0.537 0.504 0.502
SVM-PL 0.565 0.543 0.565 0.542 0.535

41 SVM-
LIWC

0.538 0.518 0.538 0.507 0.503

SVM-AF 0.568 0.549 0.568 0.546 0.538

respectively, are used to annotate the adolescent transcripts. When contextual and

semantic features are used, the accuracy of SVM improves by 7.4%, 9.3%, and 3.7%

and its F1 score improves by 8.8%, 9.6%, and 4.4% when the codebooks with 16, 19,

and 58 labels, respectively, are used to annotate the caregiver transcripts.

Comparison of performance of different classification models

The accuracy of NB-M, SVM, CNN, CRF, SVM-AF, J48 decision tree, Random

Forest, AdaBoost, and DiscLDA classification models for the task of annotating ado-

lescent and caregiver datasets is compared across the codebooks of different sizes in

Figures 2.14 and 2.15.

From Figure 2.14 and 2.15, it follows that SVM and CRF achieve around 52%,

60%, and 70% accuracy when using the codebooks consisting of 41, 20, and 17 labels,

respectively, to annotate adolescent session transcripts and 45%, 55%, and 66% ac-
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Table 2.7: Performance of classification models using a combination of lexical and differ-
ent types of non-lexical features according to standard metrics for the task of annotating
caregiver interview session transcripts

Cls. Model Acc. Prec. Rec. F1 Kappa
CRF 0.654 0.652 0.654 0.653 0.603
SVM 0.664 0.653 0.664 0.639 0.606
SVM-PL 0.670 0.658 0.670 0.651 0.614

16 SVM-
LIWC

0.730 0.730 0.730 0.717 0.686

SVM-AF 0.738 0.733 0.738 0.727 0.696
CRF 0.539 0.541 0.539 0.540 0.492
SVM 0.545 0.547 0.545 0.535 0.497
SVM-PL 0.566 0.570 0.566 0.559 0.522

19 SVM-
LIWC

0.620 0.625 0.620 0.613 0.581

SVM-AF 0.638 0.639 0.638 0.631 0.601
CRF 0.438 0.409 0.438 0.423 0.385
SVM 0.451 0.420 0.451 0.418 0.414
SVM-PL 0.480 0.462 0.480 0.456 0.446

58 SVM-
LIWC

0.459 0.445 0.459 0.429 0.422

SVM-AF 0.488 0.466 0.488 0.462 0.454

curacy when using the codebooks consisting of 58, 19, and 16 labels, respectively, to

annotate caregiver session transcripts. CNN also has approximately the same perfor-

mance as SVM and CRF, when the codebooks consisting of 16, 17 and 20 labels are

used. However, CNN has significantly lower performance compared to SVM and CRF

in terms of all metrics when the codebook of size 41 and 58 labels are used. SVM-AF

consistently outperforms all other methods across the codebooks of all sizes on both

datasets, achieving the highest accuracy of 75.1% (which is close to human accuracy),

when the codebook consisting of 17 classes is used for annotating adolescent interview

session transcripts, and of 73.8%, when the codebook consisting of 16 classes is used

for annotating caregiver interview session transcripts.

Depending on the type of the interview transcript and the codebook size, SVM-

AF achieves 3%–9% higher accuracy and 4%–10% higher F1 score than SVM and

4%–10% higher accuracy and 4%–11% higher F1 score than CRF, which highlights
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Figure 2.14: Comparison of annotation accuracy of adolescent interview fragments with
different machine learning methods and feature sets
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Figure 2.15: Comparison of annotation accuracy of caregiver interview fragments with
different machine learning methods and feature sets

the importance of contextual and semantic features.

Reliability of the best classifier in other study data

We tested the accuracy and reliability of the best machine learning classification

model developed in the above work in a new treatment setting, HIV medical care.

The training dataset for this study was composed of 80 patient-provider clinical inter-

actions during routine HIV clinic visits previously coded with the MY-SCOPE coding

instrument. We also tested the robustness of our SVM-AF model with 49 eCoaching
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sessions and 129 Obesity sessions. Our working hypothesis was that the classification

model developed in the above study would demonstrate the transferability of knowl-

edge by achieving a high level of coding accuracy. Table 2.8 shows the performance

of the SVM-AF model on HIV, eCoaching and Obesity datasets.

Table 2.8: Performance of SVM model using a combination of lexical and different types
of non-lexical features according to standard metrics for the task of annotating MI interview
session transcripts in HIV, eCoaching and Obesity studies, respectively

Dataset Accuracy Precision Recall F1-Measure
HIV 0.720 0.701 0.720 0.696
e-Coaching 0.798 0.793 0.798 0.782
Obesity 0.751 0.750 0.751 0.739

The SVM-AF model, with no modifications from the above study, achieved 69.6%

F1-score with 70.1% precision and 72.0% recall for the task of automatic annota-

tion of utterances in patient-provider encounters in HIV clinic. The SVM-AF model

also demonstrated good performance in both datasets, achieved 79.8% F1-score with

79.3% precision and 79.8% recall in eCoaching sessions and 73.9% F1-score with 75%

precision and 75.1% recall in Obesity sessions. These results illustrate the effective-

ness of transfer learning strategies or applying machine learning models trained on

one clinical context (e.g., weight loss) to another clinical context (e.g., HIV patient

visits). Effective transfer of machine learning models can significantly reduce the time

and resources needed to develop the training datasets for different types of clinical

discourse.

2.5 Discussion

Our experimental evaluation of supervised machine learning methods for the task

of automatic annotation of clinical interview transcripts resulted in several important

observations and conclusions. First, although CNN has comparable performance

to SVM when the number of classes is relatively small, its performance drastically

decreases when the number of classes gets large. Remarkably, for very large number
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of classes (41 and 56, in our case) Deep Learning is less effective-than a random

guess. Second, multinomial and binomial Näıve Bayes, AdaBoost, Random Forest,

and DiscLDA have been consistently outperformed on both datasets and codebook

sizes by CNN, CRF and SVM, when all models use only lexical features. Superior

generalization ability of SVM even in case of a large number of classes and features

(which is the case when lexical features are used) can be attributed to its ability to

learn the classification model independent of the dimensionality of feature space.

We also observed a consistent trend of performance improvement for SVM when

adding non-lexical features, such as the label of the preceding utterance and the

features derived from LIWC dictionaries, to the lexical ones. The first result indicates

that the context of an utterance in clinical interview transcripts in the form of the

label of the preceding utterance plays an important role in the classification process,

besides the content of the utterance itself. The second result indicates that, for the

purpose of classification, the semantics of an utterance in clinical interviews can be

approximated with a distribution of its words across LIWC dictionaries.

2.6 Summary

In this chapter, we propose novel features and report the results of an extensive

experimental evaluation of state-of-the-art supervised machine learning methods for

text classification using those features, to help clinical researchers and practitioners

assess the feasibility of using these methods for the task of automatic annotation

of clinical text using the codebooks of realistic size. We found out that Support

Vector Machine using only lexical features consistently outperforms all other classifiers

on caregiver and adolescent datasets according to most metrics. Adding contextual

and semantic features further improves the performance of SVM on both datasets,

achieving close to human accuracy when the codebooks consisting of 16 and 17 classes

are used to annotate caregiver and adolescent transcripts, respectively.

This work has important practical implications. First, it can facilitate researchers
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to establish causal relationship between different communication strategies and de-

sired behavioral outcomes without having to repeatedly wade through pages of in-

terview transcripts. Second, since automatic annotation is significantly faster than

manual, it can dramatically accelerate the pace of research in behavioral sciences. Al-

though all experiments were conducted on interview transcripts, the proposed meth-

ods and features are not specific to a particular domain of Motivational Interviewing,

and thus there is also no prima facie reason to believe that they will not be effective

for annotation of any other type of clinical conversation.
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CHAPTER 3 SEQUENTIAL ANALYSIS OF CLINICAL CONVERSA-

TION

In this chapter, we describe the sequential analysis of annotated clinical con-

versation to inform best clinical practice by facilitating the use of more effective

and tailored counselor communication. We first explain the problem of classifying

patient-counselor communication sequences in the context of the clinical conversa-

tion. Specifically, we focus on predicting the success (i.e. eliciting a particular type

of patient behavioral response) of motivational interviews with obese adolescents and

their caregivers based on an observed sequence of coded patient-counselor commu-

nication exchanges during those interviews. We then move on sequential analysis of

pre-coded clinical conversation to identify patterns of patient-counselor communica-

tion in successful and unsuccessful sequences in MI sessions.

3.1 Classification of communication sequences

3.1.1 Introduction

Temporally ordered sequences of discrete or continuous observations generated by

molecular, psychological or psychological process(es) arise in many different areas of

biology and medicine (e.g., DNA base-pairs, protein sequences, ECG measurements,

laboratory results, diagnostic codes, utterances in the clinical dialog). Classification

(or categorization) is a type of analysis of those sequences that has a broad range of

important practical applications, from protein function [137] or structure [39] predic-

tion to detecting individuals with a heart disease [134]. Taking into account both the

entire set of observations in a sequence, as well as the temporal order and potential

dependencies between observations, makes sequence classification a more challenging

task than a classification of independent observations. Predicting the outcome of

those sequences (e.g. physiological or behavioral response) can also be viewed as a

sequence classification problem.

In this work, we address the problem of predicting the outcome of coded patient-
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provider communication (PPC) sequences in the context of the clinical dialog. Specif-

ically, we focus on predicting the success (i.e. eliciting a particular type of patient

behavioral response) of motivational interviews with obese adolescents and their care-

givers based on an observed sequence of coded PPC exchanges during those interviews.

Childhood obesity is a serious public health concern in the United States. Recent

estimates indicate that approximately one-third (31.8%) of U.S. children 2-19 years of

age are overweight and 16.9% are obese [107]. Adolescents, who are obese, are likely

to be obese in adulthood and have a greater risk of heart disease, type 2 diabetes,

stroke, cancer, and osteoarthritis [52]. One approach to effective obesity intervention

is Motivational Interviewing (MI), an evidence-based counseling technique to increase

intrinsic motivation and self-efficacy for health-related behavior change. The goal of

MI is to encourage patients to explore their own desires, ability, reasons, need for and

commitment to the targeted behavior change. These statements collectively referred

to as “change talk” (CHT), consistently predict the actual behavior change[10] that

can be sustained for as long as 34 months[132] after an interview. However, the ability

of providers to consistently elicit this type of patient communication requires knowl-

edge of effective communication strategies for a variety of patients, which can only

be obtained through analysis of a large number of annotated interviews. Since man-

ual examination and analysis of MI interview transcripts is a very time-consuming

process, designing effective MI interventions and tailoring them to particular pop-

ulations can take years. Therefore, there is a need for informatics-based methods

to facilitate the development of effective behavioral interventions, in general, and

theoretically-grounded computational models to explore the mechanisms of MI’s effi-

cacy, in particular.

We compared the accuracy of probabilistic models, such as MC and HMM, and

deep learning methods, such as LSTM and GRU, for the task of predicting the success

of clinical interviews (i.e. eliciting a particular type of patient behavioral response,
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such as CHT) at any point during a clinical interview based on a sequence of coded

previous PPC exchanges in the same interview. This study was a continuation of our

previous work [74, 62], in which we explored several machine learning methods for

automatic annotation of clinical interview fragments with a large number of patient

and provider behavior codes from a specialized codebook [24]. While there have been

some previous qualitative studies of patient-provider dialog in a clinical setting [43],

this is the first work explored the applicability of state-of-the-art methods for sequence

modeling to the analysis of PPC exchanges, in general, and predicting the desired

patient behavioral response in the context of motivational interviews, in particular.

3.1.2 Related work

In general, sequence classification methods fall into one of three major classes:

feature-based, distance-based and model-based. Feature-based methods transform

a sequence into a feature vector and apply a standard supervised machine learning

method, such as Support Vector Machine [83] or Decision Tree [32] to arrive at classi-

fication decision. The methods in this class have had limited success since traditional

feature representation methods cannot easily account for the order of and dependen-

cies between observations in a sequence. For an example, behavioral codes could

be represented as a bag of codes (features) disregarding the order of its codes but

keeping counts. Distance-based methods classify a sequence by finding the most sim-

ilar sequences with known classes based on a distance metric. The most commonly

used distance metric is Euclidean distance, the similarity between two sequences of

the same length can be computed by taking the sum of the ordered point-to-point

distance between them. Another metric Dynamic Time Wrapping (DTW) [69] makes

distance comparisons more robust because it supports a variable length sequence and

insensitive with respect to signal shifting and scaling. However, these distance metrics

are primarily designed for time series data, in which the observations are discretized

by timestamps.
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The third type of sequence classification methods first creates a probabilistic

model, such as the Markov Chain (MC) or Hidden Markov Model [114] (HMM),

for sequences in each class based on the training data and then, classifies new se-

quences by applying the created models. While MCs and HMMs can capture first-

and second-order dependencies between adjacent observations in a sequence, learning

higher-order dependencies with these models requires prohibitively large amounts of

data and utilized as a baseline for our sequence classification study. [63] By encoding

sequences into low-dimensional representations, Recurrent Neural Networks (RNNs)

are able to capture both short- and long-term dependencies and were shown to be ef-

fective at modeling different types of sequential data [84]. Long Short-Term Memory

(LSTM) [65] is a variant of RNNs, which successfully addressed the vanishing gra-

dient problem [17] of traditional RNN. LSTM demonstrated excellent performance

in different domains, from speech [55] and handwriting recognition[106] to health in-

formatics [85, 30]. LSTM was also effectively used for predicting the diagnosis and

medication codes, given a sequence of codes from the previous patient visits [30]. A

further simplification and improvement of LSTM model, called the Gated Recurrent

Unit (GRU)[31], was later proposed. LSTM and GRU demonstrated markedly better

performance among all other RNN variants for a variety of tasks in different domains.

3.1.3 Methods

Dataset

The experimental dataset for this work was constructed from the transcripts of 129

motivational interviews, which consist of a total of 50,239 segmented and annotated

utterances. Each transcript corresponds to an MI interview session, which typically

involves a counselor, an adolescent and a caregiver. The utterances were annotated

based on the MYSCOPE codebook [24], in which the behavior codes are grouped

into the patient (adolescent and caregiver) codes and the counselor codes. Annotated

utterances were divided into successful and unsuccessful communication sequences.
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Table 3.1: Fragment of the annotated transcript of a dialogue between a counselor and
an adolescent. MYSCOPE codes assigned to the utterances and their meaning are shown
in the first two columns.

Code Behavior Speaker Utterance
SS Structure Session Counselor Okay. Can I meet with Xxxx

alone for a few minutes?
OQO Open-ended ques-

tion, other
Counselor So, Xxxx, how you doing?

HUPO High uptake,
other

Adolescent Fine

OQTBN Open-ended ques-
tion, target be-
havior neutral

Counselor That’s good. So, tell me how do
you feel about your weight?

CHT+ Change talk posi-
tive

Adolescent It’s not the best.

CQECHT+ Closed question,
elicit change talk
positive

Counselor It’s not the best?

CHT+ Change talk posi-
tive

Adolescent Yeah

CQTBN Closed question,
target behavior
neutral

Counselor Okay, so have you tried to lose
weight before?

HUPW High uptake,
weight

Adolescent Yes

Successful communication sequences are the ones, which resulted in positive change

talk (CHT+) or commitment language (CML+) statements by an adolescent or a

caregiver, while unsuccessful sequences are the ones, which resulted in negative change

talk (CHT-) or commitment language (CML-), or the ones, in which no change talk

or commitment language statements were made.

A fragment of an adolescent session transcript is presented in Table 3.1. In this

example, SS → OQO → HUPO → OQTBN → CHT+ is a successful sequence, in

which a counselor starts with an open-ended question and ultimately is able to elicit a

positive change talk statement. As follows from this example, similar utterances, such

as “Yeah” and “Yes”, can be assigned different behavior codes (CHT+ and HUPW),

depending on the context.
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The resulting experimental dataset was highly imbalanced. Out of 5143 observed

sequences, 4225 or 82.15% were positive and only 918 or 17.85% were negative. No

major differences were observed in the average length of successful (9.79 utterances)

and unsuccessful (9.65 utterances) sequences.

Since severely imbalanced datasets often distort the true performance of a classi-

fication method relative to a simple “majority vote” baseline (e.g. simply classifying

every communication sequence as successful would result in 82.15% accuracy on our

dataset), it is important to properly address the class imbalance. We evaluated the

performance of probabilistic and deep learning methods using both under-sampling

and over-sampling for balancing the number of samples in different classes. Synthetic

Minority Over Sampling Technique (SMOTE) [27] is a widely used oversampling

method for imbalanced datasets, in which new synthetic examples are generated for

minority classes. Specifically, we generated synthetic examples at the borderline be-

tween the majority and minority classes [105]. On the other hand, the under-sampling

method reduces the number of samples in majority class by replacing the clusters of

samples identified by the k-means clustering algorithm with the cluster centroids.

Sequence classification methods

In general, a sequence can be viewed as a temporally ordered set of observations.

An observation corresponds to a behavior code, which has a symbolic representa-

tion, such as LUP+ (low uptake, positive), OQECHT+ (open-ended question, elicit

change talk positive), etc. Given a sequence of behavior codes Si = {c1, c2, ..., cn} rep-

resenting PPC exchanges during some part of a motivational interview, the task of pre-

dicting interview success can be considered as sequence classification. Given a set of

class labels L = {l1, l2, ..., lm} (in our case, the labels are “successful” and “unsuccess-

ful” motivational interview), a sequence classifier C learns a function Si → li, li ∈ L

that maps a sequence Si into a class label li ∈ L.

Our designed baseline prediction method consists of two steps. In the first step,
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we model successful and unsuccessful patient-provider interactions using first and

second-order Markov Chain and Hidden Markov Model, which are popular probabilis-

tic models for discrete observation sequences with finite vocabulary. In the second

step, we classify each test sequence based on the maximum likelihood of generating

that sequence from each model. Although HMM was originally developed for speech

recognition [114], it is one of the most widely used methods for sequence modeling

[103, 135]. However, the latest advances in deep learning suggest that RNNs may

provide better results than conventional machine learning methods for the task of

sequence classification. To verify this hypothesis, we employed two state-of-the-art

variants of RNN in our experiments: Long Short-Term Memory (LSTM) [65] and

Gated Recurrent Unit (GRU) [31].

Markov Chain (MC) is a probabilistic model that conditions each observation in

a sequence only on preceding observation and not on any other past observation. First,

we estimated two Markov models M and M , summarizing counselor strategies and

patient responses, in the cases of successful (M) and unsuccessful (M) motivational

interviews. A Markov model M can be represented as a weighted directed graph

G = (V,E, p), in which:

• V = {CML+, CHT+, CHT−, AMB−, LUP+, LUP−, HUPW,CQECHT+, ...}

is a set of vertices, consisting of adolescent, caregiver and counselor MI behavior

codes;

• E ⊆ V × V is a set of edges corresponding to possible transitions from one MI

behavior code to the other in a sequence;

• pM : E → [0...1] is a function that assigns probability p(ci|cj) to an edge between

the MI behavior codes ci and cj based on the maximum likelihood estimation:

PM(cj|ci) =
nci,cj

nci

(3.1)
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where nci,cj and nci are the number of times a transition between the MI behavior

codes ci and cj and the number of times the code ci have been observed in the training

data, respectively. Given a Markov model M (such that S ⊆ V ), the probability that

a sequence of MI behavior codes S = {C1, ..., CN} has been generated from a Markov

model M is:

PM(S) =
N∏
i=2

pM(ci|c1, . . . , ci−1) =
N∏
i=2

pM(ci|ci−1) (3.2)

In the second step, we quantify the likelihood of success of a given motivational

interview at a certain time point given a sequence of MI behavior codes S observed

prior to that point as:

p(S → successful) = log

(
PM(S)

PM(S)

)
=

N∑
i=2

log pM(ci|ci−1)−
N∑
i=2

log pM(ci|ci−1) (3.3)

If p(S → successful) > 0, a communication sequence is predicted to be successful (i.e.

result in positive change talk or commitment language). Otherwise, it is predicted to

be unsuccessful.

The above model is also referred as first-order MC, since it only considers imme-

diately preceding behavior code, when computing the state transition probabilities.

In our experiment, we also considered second-order Markov model, which conditions

each observation on the preceding two observations.

Hidden Markov Model (HMM) is another probabilistic model used for mod-

eling processes varying in time. HMMs are widely used for sequence analysis because

of their ability to identify hidden states, corresponding to clusters of observations.

Mathematically, HMM can be defined as λ = (A,B, π), where:

• A is an N ×N state transition probability distribution matrix A = {aij}

• B is an N ×M matrix B = {bj(k)} with observation symbol probability distri-

bution for each state
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• π is the initial state distribution vector π = {πi}

Hence, N is a number of hidden states in the model and M is a number of distinct

observations per hidden state, i.e. the discrete vocabulary size. The key difference be-

tween HMM and MC is that HMM requires specifying the number of hidden states as

a model parameter. HMM deduces a sequence of hidden states that best explains the

observations along with the state transition probabilities and the distributions of ob-

servations (emission probabilities) per each hidden state. The Baum-Welch algorithm

[114] is used to estimate the parameters of HMMs for successful and unsuccessful in-

terviews using the corresponding training set, while the Viterbi algorithm [114] is

used to determine the most likely sequence of hidden states for a given sequence of

observations. After assignment of hidden states, the log-likelihood of success for an

interview can be estimated using Eq. 3.3 as well.

Behavior code embeddings. Representation of behavior codes was inspired

by the recent success of word embeddings[16, 95, 111]. Embedding is a representa-

tion of an object in low-dimensional space using a real-valued vector. In our study,

embeddings of behavior codes were obtained as a by-product of training LSTM and

GRU after feeding one-hot vectors as a representation of behavior codes as input

to these RNNs. Behavior code embeddings have the property of representing sim-

ilar codes with the vectors that are close to each other in low-dimensional space.

Figure 3.1 illustrates the MYSCOPE code embeddings visualized in 2-dimensional

space by t-SNE [88]. It can be seen that positive behavior codes such as OQECHT+,

OQECML+, AF, AFL, SUP, RCML+S, CQECML+, etc. formed a cluster in the left

part of Figure 3.1. The nearest neighbors of CQECML+ are highlighted by different

color intensity (i.e. OQECML+ being more purple indicates that it is more similar to

CQECML+). The right part of the figure demonstrates another cluster formed with

negative behavior codes including CQECML-, AMB-, RCHT-C, OQECHT-, GINFO-

, RBAC, LUP-, RCHT-S, RPTBC, RAMBC, AMB-, RCML-S, etc. It is interesting
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that the behaviors intended to elicit CHT+/CML+ group together, whereas the ones

intended to elicit CHT-/CML- also group together and are located in the opposite

regions of semantic space.

Figure 3.1: 2-D representation of behavior code embeddings

Recurrent Neural Networks (RNN) are a class of neural networks that have

an internal memory, which makes them particularly suitable for processing sequences

of observations. The ability of RNNs to capture long-term dependencies and remem-

ber past observations for predicting future observations is their main advantage over

MCs and HMMs. These features are very useful in the analysis of motivational inter-

views, in which any behavior observed at a particular point in the interview may be

indicative of other behaviors that are observed later. In order to mitigate the vanish-

ing gradient problem of earlier versions of RNN [17], Hochreiter et al.[65] proposed

Long Short Term Memory networks (LSTM). There are several variants of LSTM

model, among which the most notable one is the Gated Recurrent Unit[28] (GRU).

GRUs are simpler than LSTMs and have been shown to be effective for a variety of
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Natural Language Processing tasks [28]. GRU is formally defined as follows:

zt = σ(Wzxt + Uzht−1 + bz) (3.4)

rt = σ(Wrxt + Urht−1 + br) (3.5)

h̃t = tanh(Whxt + rt � Uhht−1 + bh) (3.6)

ht = zt � ht−1 + (1− zt)� h̃t (3.7)

In Eq. 3.4-3.7, σ corresponds to sigmoid function and � designates an element-wise

product. The update gate zt and reset gate rt at time step t are computed by the

Eq. (3.4) and (3.5), where Wz, Wr, Wh, Uz, Ur, Uh are the weight matrices and bz, bh

and br are bias vectors. The activation ht of the GRU at time t is a linear combination

of the previous activation ht−1 and the candidate activation h̃t, which is represented

by Eq. (3.7) and (3.6).
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Figure 3.2: Proposed RNN model with target replication (TR)

The RNN architecture employed for sequence classification is shown in Figure 3.2.

As can be seen from Figure 3.2, softmax is used at each time step to predict the

class of a sequence observed so far. Since the sequence label is predicted at each

observation, the proposed architecture is referred to as Recurrent Neural Network

with Target Replication (TR). It was trained by minimizing the following hybrid loss
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function:

L̃ = α · 1

T

T∑
t=1

L(ȳ(t), y(t)) + (1− α) · L(ȳ(T ), y(T )) (3.8)

As follows from Eq. 3.8, the total loss L̃ is a convex combination of the final loss

L(ȳ(T ), y(T )) and the average loss over all observations in a sequence, where T is the

total number of observations, ȳ(t) is the output at step t, and α ε [0, 1] is a hyper-

parameter controlling the relative importance of each loss type. We experimentally

determined that the best performance is achieved when α = 0.5. Our model also con-

tains several other hyperparameters, such as the number of embedding dimensions,

the number of hidden units, learning rate, batch size, etc., which were optimized on

the validation set. We implemented our models in Tensorflow with Adam optimizer

as well as early stopping based on the validation loss and observed that our model

converges after 100 epochs.

Evaluation

Performance of probabilistic and deep learning methods was evaluated in terms of

precision, recall, and F-measure using 10 folds cross-validation and weighted macro-

averaging of these metrics over the folds. However, LSTM and GRU were trained on

80% of the data and validated on 10%, with the remaining 10% of the data used for

testing.

3.1.4 Results

All sequence classification methods were evaluated in the case of both under and

over-sampling. Predictive performance summary of all methods is summarized in

Table 3.21.

1Prec.: Precision, Reca.: Recall
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Table 3.2: Performance of MC, HMM, LSTM and GRU with and without target replication
(TR) for predicting the success of patient-provider communication sequences when under-
and over-sampling were used to balance the dataset. The highest value for each performance
metric is highlighted in bold.

Method
Under-sampling Over-sampling

Prec. Reca. F1 Prec. Reca. F1
Markov Chain 1st Order 0.7060 0.7044 0.7038 0.7932 0.7799 0.7775
Markov Chain 2nd Order 0.6395 0.6385 0.6379 0.7111 0.7029 0.7000
Hidden Markov Model 0.6244 0.6143 0.6067 0.7775 0.7567 0.7520
LSTM 0.8672 0.8626 0.8622 0.8411 0.8372 0.8368
LSTM-TR 0.8733 0.8681 0.8677 0.8424 0.8385 0.8381
GRU 0.8674 0.8648 0.8646 0.8379 0.8342 0.8337
GRU-TR 0.8705 0.8676 0.8673 0.8412 0.8377 0.8373

Predictive performance in the case of under-sampling

We used a small learning rate of 0.00005 and the batch size of 8 along with

early stopping strategy for training deep learning models on the dataset balanced

with under-sampling. Five major conclusions can be drawn from the results in Ta-

ble 3.2. First, recurrent neural networks outperform probabilistic models and achieve

16.39%-26.1% higher F1-score. Second, LSTM with target replication has the best

performance over all other RNN methods, and achieved F1-score 0.8677 with preci-

sion 0.8733 and recall 0.8681. Third, target replication strategy improves the per-

formance of GRU and LSTM, with conventional GRU showing better performance

than traditional LSTM. Fourth, among probabilistic models, the MC based method

generally outperforms HMM across all metrics for under-sampled sequences. Fifth,

second-order MC has lower precision, recall, and F-measure than first-order MC. In

particular, precision, recall and F-measure decrease by 9.42%, 9.36% and 9.36%, when

going from first to second-order MC model.

Predictive performance in the case of over-sampling

Similar to the under-sampling scenario, early stopping strategy was also employed

for training deep learning models on the dataset balanced with over-sampling. How-
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Table 3.3: Most likely communication sequences in successful and unsuccessful motiva-
tional interviews.

Type Most likely communication sequences
successful GINFO+: General information, positive → LUP+: Low uptake,

positive→ OQTBN: Open-ended question, target behavior neutral
successful SS: Structure session → GINFO+: General information, positive

→ CQECHT+: Closed-ended question, elicit change talk positive
successful SO: Statement, other → LUP+: Low uptake, positive → AF: Af-

firm→ HUPW: High uptake, weight→ OQECML+: Open-ended
question, elicit commitment language positive.

unsuccessful ADV+: Advise, positive → AMB-: Ambivalence negative →
OQECHT-: Open-ended question, elicit change talk negative

unsuccessful CQECHT+: Open-ended question, elicit change talk positive →
RCHT-S: Reflect, change talk negative→ OQECHT-: Open-ended
question, elicit change talk negative

unsuccessful SUP: Support → AF: Affirm → CQTBN: Closed-ended question,
target behavior neutral→ OQECHT-: Open-ended question, elicit
change talk negative → AMB-: Ambivalence negative

ever, in this case, RNN models were trained with the learning rate of 0.00010 and

the batch size of 55. Experimental results indicate that HMM had better perfor-

mance than second-order MC, achieving 9.34%, 7.65%, and 7.43% higher precision,

recall, and F-measure, while HMM still had 1.98%, 2.97%, and 3.28% lower precision,

recall, and F-measure than first-order MC. Also similar to the under-sampling sce-

nario, target replication improves the performance of RNN models and LSTM with

target replication has the highest F1-score among all models. However, the predic-

tive performance of LSTM and RNN decreases when over-sampling is used, while the

performance of probabilistic models increases.

Most likely communication sequences

Table 3.3 provides examples of typical patient-provider communication sequences

that frequently appear in successful and unsuccessful motivational interviews. We ob-

served that in successful motivational interviews information is frequently provided

using patient-centered communication (GINFO+) and structure session (SS) utter-

ances, in which the counselor either explains the therapeutic agenda or attempts to
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transition to a new topic or session content. Sometimes, counselors also acknowledge

the clients’ communication or an off topic comment (SO). We also observed that

affirmations (AF) and open-ended questions (OQECML+) have a strong effect on

eliciting positive change talk or commitment language, which is consistent with MI

theory. It can also be seen that providing advice using non-patient centered strategies

(ADV-) leads to negative ambivalence (AMB-), which results in the interview heading

in therapeutically wrong direction. Questions posed to elicit negative change talk or

commitment language lead to CHT-, CML- or AMB-, which is consistent with the

manual analysis by clinicians.

3.1.5 Discussion

We made the following conclusions after analyzing the experimental results of

different communication sequence outcome prediction methods. First, the overall

predictive performance of RNN based methods is substantially higher than that of

probabilistic models. In particular, the RNN-based methods achieve near-human ac-

curacy for predicting the success of motivational interviews. This indicates that RNN

is able to capture the structure of discourse in motivational interviews by preserving

long-term dependencies among the behavior codes, which reflect the overall progres-

sion of the interviews. This provides evidence that RNNs are able to successfully

replicate human cognitive processes to integrate previous information when making

decisions. In addition to that, embeddings allow to reduce the dimensionality of codes

in PPC sequences and consequently improve both precision and recall of prediction.

Second, using target replication to compute the loss at each time step results in

better performance for all configurations of the proposed RNN-based methods. This

indicates that the average of the losses over all steps emphasizes the dependencies

between the pairs of patient and provider codes, which results in more accurate es-

timates of the model parameters. Better estimates of parameters in RNN models

of motivational interviews are propagated to the next step based on the relative im-
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portance of intermediate output, where they are aggregated into predictions for the

entire sequence. This allows to achieve an improvement in prediction accuracy.

Third, using first-order Markov model results in better prediction accuracy com-

pared to higher-order Markov models, which we attribute to the fact that the number

of states in higher-order Markov models may grow exponentially with their order. As

a result, accurate estimation of transition probabilities requires much larger training

data. Using smaller datasets, which is the case when under-sampling is employed,

will result in a sparsity problem, when many transitions are either not observed in

the training set at all or observed only a few times, leading to missing or potentially

inaccurate probability estimates. Obtaining large training sets cannot be easily ac-

complished in many domains, including motivational interviewing. In this project,

we found out that using first-order Markov models is a reasonable trade-off between

efficiency and accuracy.

Fourth, similar to traditional Markov model, HMM achieves a dramatic improve-

ment in the prediction accuracy when larger training set is used. This indicates that

sufficient training data is required to find the optimal settings of hyperparameters,

such as the number of hidden states, initial state distribution, transition probabilities,

and emission probabilities.

Fifth, the proposed method can be used to identify the most effective commu-

nication strategies for eliciting a particular type of behavioral response. Awareness

of these strategies by researchers can significantly decrease the time and effort re-

quired to develop effective interventions to address many public health conditions,

such as childhood obesity, and tailor these interventions to particular patient cohorts.

Awareness of these strategies by the counselors can lead to a greater success rate of

motivational interviews.



51

3.1.6 Summary

In the first section of this chapter, we compared the accuracy of Recurrent Neural

Networks with Markov Chain and Hidden Markov Model for the task of predicting the

success of motivational interviews. We found out that individual PPC exchanges are

highly indicative of the overall progression and future trajectory of clinical interviews

and can be used to predict their overall success. Our methods can facilitate motiva-

tional interviewing researchers in establishing causal relationships between different

communication strategies and the desired behavioral outcomes during the interviews

without resource-intensive manual qualitative analysis of interview transcripts, which

can significantly decrease the time and effort required to develop behavioral interven-

tions. These methods can also help to identify the most likely sequences in successful

and unsuccessful motivational interviews, which can directly inform clinical practice

and increase the effectiveness of behavioral interventions. Our experimental results

also indicate that our methods can be used for real-time monitoring of the progres-

sion of clinical interviews. This work also has broad implications for public health

research by providing a theoretically-grounded computational approach to qualitative

data analysis.

3.2 Sequential patterns in clinical conversation

3.2.1 Introduction

Motivational Interviewing (MI) is an evidence-based strategy for communicating

with patients about behavior change [97]. The theory underlying MI’s clinical efficacy

posits that behavior change is triggered by fostering an atmosphere of change, which

is accomplished through the exercise of relational and technical skills [97]. The rela-

tional hypothesis suggests that counselors’ use of accurate empathy, positive regard

and congruence create the “spirit of MI”, an optimal therapeutic state to explore

behavior change. MI’s technical hypothesis [98] states that counselors’ use of com-

munication techniques consistent with the MI framework (“MI-consistent” or MICO;
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e.g., open-ended questions, reflections, advise with permission, affirmations, empha-

size control, reframe and support) will lead to patient “change talk”. Change talk is

patient statements during clinical encounters that express their internal desire, ability,

reasons, need for and/or commitment to behavior change [7]. Previous studies [10]

have shown that change talk expressed during treatment sessions consistently predicts

behavior change with results persisting as long as 34 months post-intervention [132].

In contrast, MI-inconsistent communication behaviors (MIIN; e.g., advising without

permission, warning about behavioral consequences and confronting) are hypothe-

sized to lead to arguments against behavioral change and/or to maintain the status

quo (referred to as counter change talk or sustain talk). Multiple studies have linked

high rates of MICO to the expression of change talk and MIIN to sustain talk [89].

These studies have relied on session-level behavior counts and correlational analyses,

which ignore the temporal order of utterances in patient-counselor communication,

thereby limiting researchers’ ability to test MI’s technical hypothesis.

In this project, we focused on computational methods to facilitate the sequential

analysis of pre-coded MI transcripts to identify patterns of patient-counselor commu-

nication in successful and unsuccessful sequences in MI sessions. Analysis of these

patterns provides empirical support for the specific counselor communication strate-

gies that are effective at eliciting patient change talk. This knowledge will inform

MI theory by providing additional evidence to support MI’s technical hypothesis. It

will also inform clinical practice by facilitating the use of more effective and tailored

counselor communication. This study was the first empirical evaluation of the effec-

tiveness of closed frequent pattern mining to analyze patient-counselor communica-

tion sequences during MI sessions. Bertholet et al. [18] used HMM to identify hidden

states in a brief motivational intervention. Limiting their HMM model to three hid-

den states which were characterized as “towards change”, “away from change” and

“non-determined”, these states were used to predict drinking outcomes 12 months
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post-intervention. In this project, we identified the optimal number of hidden states

using HMM modeling of successful and unsuccessful sequences of patient-counselor

communication. The goal of this study was to evaluate the utility of using HMM and

frequent pattern mining to better understand the specific counselor communication

strategies leading to patient change talk and sustain talk during Motivational Inter-

viewing sessions. These two approaches offer the following advantages over the first-

order Markov Chain-based methods most typically used in MI research. First-order

Markov Chain models identify the likely transitions between individual behaviors.

In contrast, HMM summarizes transitions between clusters of related behavior codes

(i.e., hidden states) allowing the identification of clusters of behaviors antecedent to

change talk in successful patient-counselor communications and sustain talk in un-

successful patient-counselor communications. Frequent pattern mining can identify

patterns involving long-range dependencies between patient and counselor behaviors.

Accounting for such long-range dependencies is important, since human behaviors,

such as patient-counselor communications during MI sessions, are informed by all the

antecedent behaviors and not just the immediately preceding behavior.

3.2.2 Related work

Sequential analysis is an analytic approach to examine temporally ordered se-

quences of events or observations [13, 14]. Moyers and Martin [100] were the first

to apply sequential analysis approach in a study of adults in treatment for alco-

hol abuse and found that change talk was significantly more likely after MICO or

“MI-consistent”, counselors use of communication techniques consistent with the MI

framework and sustain talk more likely after MIIN or “MI-inconsistent”, communi-

cation behaviors inconsistent with the MI framework. A follow-up study with the

same population found that change talk was more likely after two MICO behaviors,

counselor questions about the positive and negative aspects of drinking and reflec-

tions of change talk, but these behaviors also led to sustain talk [101]. Surprisingly,



54

MIIN was unrelated to sustain talk, but decreased the likelihood of change talk.

Gaume et al. [50] used sequential analysis to study communication patterns during

brief motivational interviewing for hazardous alcohol consumption with young adults

conscripted into military service. They found that MICO led to both change talk

and sustain talk but the MIIN-to-sustain talk pattern was not observed. A second

study with the same population confirmed that MICO leads to significantly more

change talk and sustain talk [49]. In this sample, MIIN led to greater sustain talk,

but was unrelated to change talk. Further analyses revealed that reflections were

the only MICO behavior linked to increased change talk; reflections and other MICO

behaviors, excluding questions, were related to increased sustain talk. Glynn and

colleagues [53] linked reflections of change talk to the elicitation of change talk and

reflections of sustain talk to the elicitation of sustain talk among incarcerated adoles-

cents with high rates of alcohol and marijuana use. In a study of adolescents engaged

in weight loss treatment, Carcone et al. [24] used sequential analysis to identify three

counselor behaviors likely to result in change talk: open-ended questions phrased to

elicit change talk, reflections of change talk and statements emphasizing decision-

making autonomy. A parallel study of the adolescents’ caregivers [67] drew a similar

conclusion that asking questions phrased to elicit change talk, reflections of change

talk and autonomy-supportive statements were the counselor behaviors, which led to

the elicitation of change talk. Across these studies, counselors’ use of reflections was

consistently linked to change talk; other MICO behaviors, however, led to change talk

in some treatment contexts, but not others, suggesting a need for additional research

to understand the treatment contexts, in which various MICO strategies are effec-

tive. Our sequential analysis contributes to existing knowledge by examining African

American adolescents in weight loss treatment.

The sequential analysis procedure used in the above MI process studies [100, 25,

129, 94] is based on the first-order Markov Chain model [100, 101, 49]. The Markov
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Chain model is a discrete-time stochastic process built on the assumption that the

state of a system or condition changes over time and only depends on the previous

event. Hence, Markov Chain models have two main drawbacks. The first is their

inability to preserve the long-range dependencies between observations in a sequence.

In MI, an observed behavior can be influenced by any of the preceding behaviors. The

second drawback is their inability to consider similarities between behavior codes and,

consequently, first-order Markov chain models are unable to identify multiple similar

behaviors that lead to the same outcome. Thus, first-order Markov models may be in-

sufficient to fully understand the associations between behaviors in patient-counselor

communication sequences. There is a need for more powerful computational meth-

ods, which consider clusters of similar behavior codes and long-range dependencies

between behaviors, to identify causal relationships. To achieve this goal, we tested

the applicability of data mining and machine learning methods to identify effective

patterns of patient-counselor communication. The current work builds on our recent

work [63] by examining the efficacy of Hidden Markov Models (HMMs) and fre-

quent pattern mining for the identification of the counselor communication strategies

leading to patient change talk.

HMMs are widely used for the analysis of sequence data due to their ability

to model long-range dependencies between clusters of discrete observations in a se-

quence. The HMM associates each observation in a sequence with a “hidden” state,

which corresponds to a distribution over all distinct observations in a sequence (i.e.,

probabilities associated with each observation, when HMM is in this hidden state),

such that each “hidden state” corresponds to a different distribution. Sequences of

observations are modeled as transitions between different hidden states and sampling

observations from distributions corresponding to each hidden state. HMMs were orig-

inally proposed for speech recognition [114], in which the states were used to represent

all English language sounds. In biomedical informatics, HMMs were employed for
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the diagnosis of diseases and biological sequence modeling [131, 8]. For example, an

HMM-based classifier was applied to Doppler ultrasound imaging data to extract fea-

tures from the images that were then used to distinguish healthy patients from those

with heart disease [131]. In another study, HMM was used to capture important

characteristics of protein families [8]. In the application of HMM to patient-counselor

communication, hidden states and the sets of related behavior codes associated with

the hidden states may correspond to patients’ underlying motivational state during

a patient-counselor encounter.

Although the MI literature has established patient change talk and commitment

language (a special class of change talk where patients express their intentions, plans

and action steps toward behavior change [15]) as the antecedents of patients’ behavior

change [10], there is less clarity regarding which counselor communication strategies

influence the articulation of change talk. Modeling successful and unsuccessful com-

munication sequences during MI sessions with HMM can provide additional evidence

to identify the counselor communication strategies that are likely to lead to patient

change talk and commitment language.

Frequent pattern mining [4] is a class of data mining methods to identify sets

of items (or observations, referred to as itemsets) which frequently appear together.

Agrawal and Srikant [5] first introduced frequent pattern mining with the Apriori al-

gorithm, developed to identify customer purchasing patterns. Since its introduction,

frequent pattern mining has been applied to several other domains, including health

informatics [2, 108, 19, 136], medical imaging [108], chemical and biological analy-

sis [40, 82, 138], web mining [120] and outlier analysis [3]. Now, our new published

study was the first to use this approach for studying patient-counselor communication.

A major challenge in applying frequent pattern mining methods to patient-counselor

communication sequences is the large number of resulting patterns, which include

redundant patterns. To address this problem, we utilized the closed frequent itemset
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mining method [110], which produces fewer patterns in a more compact form that

are easier to interpret. In this project, we leveraged FPClose [54], an efficient state-

of-the-art closed frequent pattern mining method, to identify the counselor behaviors

that frequently lead to patient change talk. FPClose is a state-of-the-art closed fre-

quent itemset mining algorithm, which has demonstrated good performance in terms

of running time and memory consumption.

3.2.3 Methods

Dataset

This project utilized the same dataset annotated with MYSCOPE codebook de-

scribed in chapter 1 excluding conversations that correspond to greetings, farewell

and interview setups such as table and camera settings. The experimental dataset

consists of 7,192 patient, caregiver and counselor utterances segmented and annotated

with the MYSCOPE behavior codes, illustrated in Table 3.4.

Table 3.4: MYSCOPE codebook

Annotation Behavior Description Example

Counselor

AF Affirmation Positive or complimentary

statements that express

appreciation, confidence,

or reinforce the patient’s

strengths or efforts.

“You guys, as a family, are

already doing a lot of really

positive things.”

AR Action

reflection

Statements that reflect back

the patient’s statement(s)

while at the same time

embedding a solution to a

barrier or an action plan.

“If you decide to follow a

meal plan, it has to include

occasional dessert.”
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Table3.4 (continued)

Annotation Behavior Description Example

EA Emphasize

autonomy

Statements that directly ac-

knowledge, honor, or empha-

size the patient’s freedom of

choice, autonomy, personal re-

sponsibility and so forth.

“Okay. Well, it’s your plan,

so whatever works best for

you. If you feel like you want

one that’s written down that

you can refer back to, then

let’s write it and if not then

that’s fine.”

GINFON General

information

negative

The counselor gives advice,

makes a suggestion, offers a

solution/possible action, gives

feedback, or offers educational

information in a non-patient-

centered manner.

“Healthy weight loss is about

one to two pounds a week

and once we get you set up

and actually into the pro-

gram you can look for that to

happen for about one to two

pounds a week to get you on

that goal.”

GINFOP General

information

positive

The counselor gives advice,

makes a suggestion, offers a

solution/possible action, gives

feedback, expresses a concern,

or offers educational infor-

mation in a patient-centered

manner (i.e., asking permis-

sion, using the third person,

giving the opportunity to re-

ject the information and offer-

ing a menu of options).

“Okay. Alright so I just

wanted to tell you that I will

be asking you a lot of ques-

tions. It may get redundant.

So, if at any point in time

you need a break or I’m ask-

ing too much go ahead and

let me know.”
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Table3.4 (continued)

Annotation Behavior Description Example

QEB Question to

elicit barri-

ers

Questions designed to initi-

ate a discussion of barriers to

change.

“Alright. So, are these ideas

you feel you can put in place

for this week?”

QECHTP Question

to elicit

change talk

positive

Questions that ask about the

patient’s desire, ability, rea-

sons, or need for change or

that reference past action to-

ward behavior change or bar-

riers to change.

“Okay. And tell me a little

bit more about that. Like

what do you foresee your

goal in this program? Like

what do you want to happen

out of this program?”

QECMLP Question to

elicit com-

mitment

language

positive

Questions that ask about cur-

rent or future action toward

behavior change or reference

barriers to change.

“Okay. Is there something

else that you could do eat

maybe instead of a Pop-Tart

that’s a little bit healthier?”

QEF Question to

elicit feed-

back

Statements that solicit the pa-

tient’s thoughts, ideas, or feel-

ings about a specific recom-

mendation or piece of infor-

mation.

“So, do you have any ques-

tions about that?”

QEST Question

to elicit

sustain talk

Questions designed to elicit

negative change talk or nega-

tive commitment language.

“And about how many hours

would you say you watched

TV for today? Or played

video games or YouTube?”
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Table3.4 (continued)

Annotation Behavior Description Example

QO Question

other

Open- or close-ended ques-

tions unrelated to the target

behavior.

“Yup. What do you think

might get in your way of be-

ing able to provide that kind

of support for [your daugh-

ter]?”

RCHTP Reflect

change talk

positive

A reflective listening state-

ment that captures and re-

turns a patient’s statement or

behavior from the current or

a previous session that de-

scribes the patient’s desire,

ability, reasons, or need for

change or past action or bar-

riers to change.

“So, it sounds like you just

want to be healthy and you

want to be stylish. You

want to fit into some differ-

ent types of clothes.”

RCMLP Reflect

commit-

ment lan-

guage

positive

A reflective listening state-

ment that captures and re-

turns a patient’s statement or

behavior from the current or

a previous session that de-

scribes current or future ac-

tion or references barriers to

changing with the goal of

problem-solving.

“You are ready to start this

plan today.”
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Table3.4 (continued)

Annotation Behavior Description Example

RO Reflect

other

A reflective listening state-

ment that captures and re-

turns a patient’s utterance or

behavior from the current or

previous session that is unre-

lated to the target behavior.

“You are having a hard time

at work.”

RST Reflect sus-

tain talk

These statements reflect neg-

ative change talk or negative

commitment language made

by the patient.

“Oh okay. So, money influ-

ences your environment.”

SO Statement

other

An utterance eliciting feed-

back, offering support, self-

disclosure, or of some other

form besides a strategy or re-

flection

“You’re being pulled in a

million directions”

SPT Support These are generally support-

ive, understanding comments.

They have the quality of com-

menting on a situation, or of

agreeing or siding with the pa-

tient in a genuine way.

“I’m concerned about you,

given all these difficulties

you’ve been having.”
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Table3.4 (continued)

Annotation Behavior Description Example

SS Structure

session

A communication strategy

that suggests an attempt to

describe what will happen in

the session or to refocus a me-

andering conversation back to

the target behaviors

“Maybe when the three of us

come together in a few min-

utes, that’s something that

we could just clarify with

her, like is that really what

she wants.”

SUM Summary A reflective listening state-

ment that captures and re-

turns at least 2 different ideas

from a patient’s utterance or

behavior from the current ses-

sion

“You have thought a lot

about this. Sometimes it

feels like losing weight is just

too hard. Yet you have lots

of reasons to lose weight. If

you could find a program

you could stick to, a pro-

gram that would not have

too many changes at once,

you would consider it.”

Patient

CT Change

Talk

Statements that express the

patient’s desire, ability, rea-

sons, need for, or commitment

to (intentions, plans and ac-

tion steps) changing their be-

havior

“I will try to buy less junk

food.”
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Table3.4 (continued)

Annotation Behavior Description Example

ST Sustain

Talk

Statements that express the

patient’s desire, ability, rea-

sons, need for, or commitment

to (intentions, plans and ac-

tion steps) to maintain the

status quo or not change their

behavior

“I didn’t get to the gym this

week.”

HUPW High up-

take weight

A turn that does develop

the topic of the conversation.

High Uptake statements in-

clude: weight-related state-

ments about actions of com-

mitment, change talk and am-

bivalence that occurred in the

past, patient questions to the

counselor and session inter-

ruptions by persons who are

not an active part of the treat-

ment session.

“Support is always good.

You know that’s a key fac-

tor. Mm-hmm.”

HUPO High up-

take other

An utterance that develops

the topic of the conversation

but is about non-target be-

haviors or interruptions

“Yeah because the mentor

comes and they take off and

they go someplace for a little

while.”
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Table3.4 (continued)

Annotation Behavior Description Example

LUP Low uptake An utterance that does not

develop the topic of conversa-

tion but still allows it to con-

tinue

“Mm-hmm. Right.”

Data preprocessing

Utterances in MI session transcripts were segmented into successful and unsuccess-

ful communication sequences which is shown in section 4.1. For each MI transcript,

the stream of behavior codes from the beginning of a session to the end of the ses-

sion was analyzed. Successful sequences were defined as those that resulted in a

patient change talk or commitment language statement. Unsuccessful sequences were

similarly created for sequences resulting in sustain talk. A total of 1,360 sequences

were generated using this approach. The majority of the sequences (n=1,102) were

successful, which is expected for a treatment-seeking population, in which patients

initial motivation for behavior change is typically high. Successful sequences had an

average length of 5.28 utterances, while unsuccessful sequences had on average 5.29

utterances.

Data modeling

Hidden Markov Model: We applied the Hidden Markov Model (HMM)2 to

identify clusters of behavior codes corresponding to successful and unsuccessful com-

munication sequences and to describe the relationships (transitions) between these

clusters. Given a set of behavior code sequences, the posterior inference of HMM

parameters involves the deduction of a temporal sequence of hidden states that best

2we used the implementation in the hmmlearn package publicly available at
http://hmmlearn.readthedocs.io/
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explains observations in each sequence. The rows in the emission probability matrix

correspond to the distribution of observation symbols (i.e., the MYSCOPE behaviors

displayed) for each hidden state and the transition probability matrix describes the

transitions between the hidden states. Training an HMM with a given number of hid-

den states (N) involves estimating the following parameters using the Baum-Welch

algorithm:

• M is the number of distinct observations symbols per state, i.e. the discrete

codebook size (Table 3.4)

• T is an N×N state transition probability matrix, in which tij is the probability

of HMM transitioning from state i to state j

• E is an N ×M emission probability matrix, in which ejk is the probability of

observing symbol k, when HMM is in state j

• π is the initial state distribution vector where πi is the probability of the ith

state to be the first state

We trained two HMM models, one using all successful sequences and the other

one using all unsuccessful sequences. Each model was trained with the objective of

maximizing the log-likelihood of all observations in the corresponding set of sequences.

The optimal number of hidden states was determined by estimating the Bayesian

information criterion (BIC) of HMM models with a different number of hidden states

and selecting the model with the smallest value of BIC, which takes into account both

log-likelihood and a penalty term for the number of parameters in the model to avoid

overfitting. Experiments with a different number of hidden states in HMMs estimated

on successful and unsuccessful sequences indicated that 5 hidden states were optimal

for successful sequences and 2 hidden states were optimal for unsuccessful sequences

(Figure 3.3).
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Figure 3.3: Bayesian information criterion (BIC) of HMM models of successful (left) and
unsuccessful (right) interviews by varying the number of hidden states

Frequent Pattern Mining: We applied frequent pattern mining to identify

frequently occurring patterns of patient-counselor behavior codes in successful and

unsuccessful communication sequences. Behavior codes in these patterns may be

separated by one or more other codes. For this purpose, we utilized FPClose [54],

an efficient state-of-the-art closed frequent pattern mining algorithm implemented

in SPMF [44, 45], to identify frequent patterns of patient-counselor communication

behaviors in successful and unsuccessful MI communication sequences. SPMF is an

open-source library providing more than 150 data mining algorithms. Popular non-

closed frequent pattern mining algorithms include Apriori [5] and FP-Growth [60]. A

frequent pattern is defined as a pattern of observations, which appears in a given set

of sequences more often than a user-specified threshold called the minimum support

count. For example, {A}, {C}, {D} and {C, D} are frequent patterns in the example

set of sequences in Figure 3.4, since these patterns appear at least 2 times, which

is the minimum support count in this example. In this work, we identified and

analyzed closed frequent patterns among all sequences of behavior codes in successful

and unsuccessful communication sequences. A frequent pattern is closed if none of its

supersets have the same support count [110], where a set X is a superset of another
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Figure 3.4: A sample collection of sequences and different types of frequent patterns
obtained by a frequent pattern mining method with the minimum support of 2

set Y, if X contains all the elements of the set Y. For example, the itemsets {A}, {C},

{D} and {C, D} in Figure 3.4 are not closed frequent patterns since their supersets

{A, B}, {B, C}, {B, D} and {B, C, D} have the same support count. Therefore, {B},

{A, B}, {A, D}, {B, C}, {B, D} and {B, C, D} are closed frequent patterns since

none of their supersets have the same support count. On the other hand, itemsets

{A, C}, {A, B, C}, {A, B, D}, {A, C, D} and {A, B, C, D} have support counts

of 1, 0, 1, 0 and 1, respectively, which is less than the minimum support count

and thus are identified as non-frequent itemsets. Since the threshold for minimum

support count depends on a task and is typically determined by the domain expert,

we followed prior work [99, 86] and set the minimum support count as 10% of the

total number of all communication sequences, which is 110 for successful and 25 for

unsuccessful communication sequences. For each pattern, the statistical significance

of the difference between successful and unsuccessful sequences was computed with

Pearson’s chi-square test.

3.2.4 Results

The transition and emission probability matrices of the HMM models are reported

in Tables 3.5 and 3.6. Three behaviors represented 45-69% of each state’s emission

probability mass and, thus, were used to interpret the emission matrix and label the
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hidden states. We observed 4,724 state transitions in the successful sequences; 4,679

and 45 state transitions occurred between different and same states, respectively. On

an average, 5 state transitions occurred within a sequence for both successful and

unsuccessful sequences. Most (84%) successful sequences began in a state charac-

terized as “high motivation” as evidenced by a greater proportion of three counselor

behaviors: reflections of change talk (29%), reflections of commitment language (17%)

and affirmations (12%). Successful sequences began in a state of “high receptivity”

11% of the time. “High receptivity” sequences were characterized by nearly equal

proportions of information offered using patient-centered strategies (18%), questions

to elicit change talk (16%) and affirmations (15%). Few successful sequences began

in states of “moderate receptivity” and “low receptivity” (2% and 3% of the time,

respectively). These two states were characterized by different proportions of the

same behaviors. “Moderate receptivity” sequences were distinguished from “low re-

ceptivity” sequences by a greater proportion of counselor questions to elicit change

talk (20% versus 11%) and a lower proportion of patient low uptake statements (16%

versus 28%); counselor statements emphasizing the patient’s autonomy were about

the same (14% versus 17%). No (0%) successful sequence began in the “active feed-

back” state, which was characterized by three patient behaviors, low uptake (47%),

weight-related high uptake (12%) and other-related high uptake (10%). Successful

sequences transitioned from “high motivation” to “active feedback” most often (41%).

“Active feedback”, in turn, most frequently transitioned to “high receptivity” (39%).

The “moderate receptivity” state most often transitioned to “active feedback” (27%)

and back to “moderate receptivity” (24%) or to “low receptivity” (23%) with similar

frequency. The full transition matrix is presented in Table 3.6.

In contrast, 1,106 state transitions occurred within the unsuccessful sequences; 697

and 409 state transitions happened between different and same states, respectively.

The majority of unsuccessful sequences (98%) began in a state of “ambivalence”
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as indicated by the greater proportion of counselor reflections of both change talk

(20%) and sustain talk (12%) as well as affirmations (13%). About 2% of the time

unsuccessful sequences started in a state of “avoidance”. Higher rates of patient low

uptake (29%) and other-related high uptake (11%) statements and counselor patient-

centered information (18%) distinguished “avoidant” sequences. Both “ambivalent”

(84%) and “avoidant” (61%) states most frequently transitioned to the “avoidant”

state.

Results from frequent pattern mining analysis are presented in Table 3.7. Re-

flections of change talk were the most frequent counselor communication behavior

in both successful (36.1%) and unsuccessful sequences (33.7%). Successful sequences

were distinguished from unsuccessful sequences by a higher frequency of counselor

questions phrased to elicit change talk (30.8% versus 17.4%, Pearson’s chi-square test

p < 0.001), statements emphasizing the patient’s decision-making autonomy (28.5%

versus 18.6%, p=0.001), questions phrased to elicit commitment language (18.1% ver-

sus 11.6%, p=0.011) and reflections of commitment language (20.7% versus 15.1%,

p=0.042). In contrast, unsuccessful sequences were characterized by greater frequency

of questions to elicit perceived barriers (14.7% versus 0%, p < 0.001), reflections of

sustain talk (27.1% versus 15.8%, p < 0.001), providing information (28.7% versus

22.1%, p=0.025) and other reflections (11.6% versus 0%, p < 0.001). In 14.0% of the

successful sequences, reflections of change talk were paired with a question phrased to

elicit change talk; this pattern did not appear in >10% of the unsuccessful sequences.

In contrast, in 10.5% of the unsuccessful sequences, reflections of change talk were

paired with information; this pattern did not appear in >10% of the successful se-

quences.

3.2.5 Discussion

We applied HMM and frequent pattern mining to test the fundamental hypoth-

esis guiding Motivational Interviewing, which posits that counselors use of “MI-
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Table 3.7: Frequent communication patterns in successful and unsuccessful patient-
counselor communication sequences

Successful Unsuccessful

LUP 573 52.0%LUP 118 45.7%
RCHTP 398 36.1%RCHTP 87 33.7%

LUP, RCHTP 224 20.3% LUP, RCHTP 45 17.4%
QECHTP 339 30.8%GINFOP 74 28.7%

LUP, QECHTP 184 16.7% LUP, GINFOP 44 17.1%
AF 314 28.5%RST 70 27.1%

LUP, AF 166 15.1% LUP, RST 30 11.6%
EA 314 28.5%AF 68 26.4%

LUP, EA 188 17.1%EA 48 18.6%
GINFOP 244 22.1% LUP, EA 28 10.9%

LUP, GINFOP 143 13.0%QECHTP 45 17.4%
RCMLP 228 20.7%RCMLP 39 15.1%

LUP, RCMLP 121 11.0%QEB 38 14.7%
QECMLP 200 18.1%RO 30 11.6%
RST 174 15.8%QECMLP 30 11.6%

LUP, RST 114 10.3%SUM 29 11.2%
RCHTP, QECHTP 154 14.0%SS 28 10.9%
SUM 138 12.5%RCHTP, GINFOP 27 10.5%
LUP, SS 112 10.2%HUPO 47 18.2%
HUPO 173 15.7%

Note: Patterns that are aligned to the right are included in the immediately preceding
pattern count. In these patterns, a counselor behavior was paired with a patient low up-
take/facilitative comment, which is a marker of patient attention to the conversation and
feedback suggesting the line of discussion may continue.

consistent” communication strategies (MICO) will lead to patient change talk [98].

Previous studies have empirically linked counselors’ use of MICO communication

strategies to higher rates of patient change talk in first-order Markov Chain mod-

els [100, 101, 49]. Our study leveraged data mining methods to provide an even

stronger evidence for MI’s fundamental hypothesis by considering longer-range de-

pendencies in the data. Unlike simple first-order Markov Chain models, frequent

pattern mining considers behavioral antecedents beyond the counselor behavior im-

mediately preceding a patient change talk statement, while HMM identifies groups

of communication behaviors occurring in successful and unsuccessful communication



72

sequences. The ability of HMM and frequent pattern mining to identify critical pat-

terns in patient-counselor communication sequences advances research in the field of

Motivational Interviewing, which has previously relied upon simple Markov Chain

models [100, 101, 50, 49, 53, 24, 67].

In both analyses, MICO communication strategies were characteristic of successful

sequences (i.e., those resulting in a change talk statement). In HMM, the majority of

successful sequences began in the “high motivation” state, when counselors frequently

use reflections of change talk or commitment language as well as affirmations. Other

high-frequency counselor behaviors observed in successful sequences included state-

ments emphasizing patients’ decision-making autonomy, questions phrased to elicit

change talk and the provision of information using patient-centered strategies. The

frequent pattern mining results were similar. Reflections of change talk was the

most frequent counselor communication strategy in successful sequences, followed by

open questions phrased to elicit change talk, affirmations, statements emphasizing the

patient’s decision-making autonomy and sensitively provided information. Previous

studies of MI behavior code sequences, which relied on first-order Markov Chain mod-

els to analyze communication sequences, have linked patients’ expression of change

talk to counselor reflections of change talk, [101, 49, 53, 24, 67] open questions phrased

to elicit change talk, [101, 24, 67] and statements emphasizing the patient’s decision-

making autonomy [24, 67]. However, these studies did not find a link between change

talk and counselors’ use of affirmations or the provision of information, when ex-

amining specifically which of the MICO communication strategies were empirically

linked to the elicitation of change talk. Thus, this publication is the first to pro-

vide empirical evidence for these causal linkages. One reason for this unique finding

may be the treatment context, adolescent patients engaged in a voluntary weight loss

trial. Adaptations of MI for the healthcare setting suggest that asking questions,

demonstrating active listening through reflections and the provision of information
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are critical communication skills for encouraging health-related behavior change [41].

Thus, providing information in a patient-centered manner in the context of health

care treatment may be necessary to ensure patients have the requisite knowledge of

their health care problem and its treatment.

The analysis of unsuccessful sequences, i.e., those resulting in a patient sustain

talk statement, was typified by a combination of MICO and MI-inconsistent commu-

nication strategies (MIIN). Specifically, the majority of unsuccessful sequences in the

HMM analysis began in a state of “ambivalence” which was characterized by large

proportions of counselor reflections of both change talk and sustain talk. Similarly, in

the frequent pattern mining analysis of unsuccessful sequences, reflections of change

talk and sustain talk were two of the three most frequent counselor behaviors ob-

served. These results are consistent with those of Gaume et al. [49] who found both

MICO and MIIN were linked to the elicitation of sustain talk in a sample of at-risk

young adult drinkers enlisted into the military. Specifically, counselors’ use of simple

and complex reflections and “other MICO” behaviors (an index of affirmations, state-

ments emphasizing patient control, reframing and support) were empirically linked

to the elicitation of sustain talk; neither open or closed questions were related to the

elicitation of sustain talk. Carcone et al. [24] found counselors’ questions and reflec-

tions specifically phrased to elicit patient sustain talk were the counselor behaviors

most likely to elicit sustain talk among adolescents engaged in a weight loss trial. In

contrast, Moyers et al. [101] found questions about the positive and negative aspects

of the target behavior and reflections of sustain talk were empirically linked to the

elicitation of sustain talk but MIIN was not. These variable findings suggest a need

to tailor the MI communication strategies to the treatment context.

The task presented in this section is part of a line of research to develop machine-

learning models to annotate (code) and analyze patient-counselor communication

patterns. We have previously reported on the development of probabilistic genera-
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tive models [75, 74] and application of novel features for maximum margin and deep

learning classifiers [62] with the goal of automated annotation of MI session tran-

scripts. Experiments applying the annotation model to novel datasets are underway

to assess the generalizability of the model to more diverse types of clinical encoun-

ters (e.g, email coaching to increase fruit and vegetable intake, HIV clinical care

visits [23]). We also developed and evaluated probabilistic and deep learning meth-

ods for the task of predicting the change talk at any point during the motivational

interview [63]. The above work built on this past work to automatically annotate

clinical encounters, specifically, this study presented two approaches for the sequen-

tial analysis of patient-counselor communication data for the purpose of identifying

the counselor communication strategies linked to the elicitation of change talk and

sustain talk. We are planning to examine the performance of the HMM and fre-

quent pattern mining models in diverse data sets representing different populations

and behavioral problems. Annotation and sequential analysis models together form

the basis of a complete system to automatically code and analyze patient-counselor

interactions. An automated system for behavioral coding and analysis could sub-

stantially accelerate the pace of research on the causal mechanisms of Motivational

Interviewing and inform both the theory and clinical practice by providing clinicians

with information about how to best tailor their communication strategies to different

patient populations.

The above study was limited by the use of one dataset composed of 37 Motiva-

tional Interviewing transcripts of counseling sessions with African American adoles-

cents in weight loss treatment. Thus, there is a need to replicate these findings with

larger and more diverse data samples as the findings may not be representative of

communication patterns in other contexts employing the Motivational Interviewing

framework. In fact, when interpreted in light of the published literature, the results

obtained in these experiments suggest that communication patterns are likely to vary
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given the treatment context. There are, however, consistencies with previous Motiva-

tional Interviewing process studies providing support for the validity of our findings

and suggesting some counselor communication strategies may cut across treatment

contexts. Another limitation of this work was the fact that successful and unsuccess-

ful sequences were analyzed independently. One implication of this approach is that

the utility of a counselor behavior, such as the provision of information, to shift an

interaction destined for failure to success, cannot be determined from these analyses.

3.2.6 Summary

Experimental results reported in this section, add to the growing evidence base

examining the mechanisms of effect in Motivational Interviewing using modeling ap-

proaches that overcome critical shortcomings of previous methods. While counselors’

use of “MI-consistent” communication behaviors has been previously linked to higher

rates of change talk in correlational studies [100, 25, 129, 94] and simple Markov

Chain models [100, 101, 49], the use of HMM and frequent pattern mining analyses

improves upon these approaches by considering long-range dependencies in the data.

The results of this pattern mining work suggest a more complex pattern between

counselor communication behaviors and patient talk that varies depending on the

context in which Motivational Interviewing is being used.
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CHAPTER 4 SEGMENTATION OF CLINICAL CONVERSATION

In the previous two chapters, we examined the utility of machine learning methods

for automated annotation [62, 74] and sequential analysis [63, 61] of in-person MI

sessions. Experimental data utilized in those studies were transcribed auto recordings

of in-person MI sessions with a counselor, which were segmented into counselor and

client utterances during the transcription process. In this chapter, we focus on email-

based clinical conversation to automate the segmentation of clinical conversation into

groups of codable MI behaviors.

4.1 Introduction

The emergence of e-Health technologies has greatly expanded the reach of be-

havioral interventions. One such intervention is email-delivered Motivational Inter-

viewing (MI). In this project, we focus on the analysis of email-delivered MI, or

e-Coaching, to promote healthy eating among young adults. The e-Coaching dataset

is composed of email correspondence between an MI counselor and the young adult

patient. Unlike transcribed in-person exchanges, email correspondence is not clearly

segmented into codable speech acts (i.e., utterances). Thus, the unstructured na-

ture of e-Coaching exchanges poses a unique set of analytic challenges. Segmentation

of e-Coaching exchanges into textual fragments that correspond to distinct e-Coach

and patient communication behaviors is a significant barrier to qualitative analysis of

this type of clinical conversation. Automating this task is a unique and challenging

problem due to the following reasons:

1. Emails are unstructured text containing informal information exchange in a

non-traditional format. For example, an e-Coach usually responds to several

previous patient statements in one email. In contrast, in a traditional, in-

person MI session, each utterance is assumed to be a response to an immediately

preceding utterance.



77

2. Discourse segments in e-Coaching do not have a clear breakpoint, such as the

end of a sentence or a paragraph. One sentence may be divided into fragments

corresponding to multiple MI behaviors. On the other hand, an MI behavior

may comprise several sentences.

Figure 4.1: Example of an e-Coaching exchange segmented into fragments corresponding
to MI behaviors of an e-Coach and a patient

Figure 4.1 illustrates a segmentation of an e-Coaching exchange, in which the first

sentence is segmented into 2 MI behavior fragments, while the fourth and fifth MI

behavior fragments comprise one and three sentences, respectively. Segmentation of

e-Coaching exchanges constitutes a special case of clinical discourse analysis [133]

aimed at better understanding the effective communication strategies specific to this

type of behavioral interventions.

The goal of this project is to assess the effectiveness of deep learning methods for

the task of automated segmentation of e-Coaching emails into textual fragments cor-

responding to individual patient and provider behaviors. For this study, we utilized

the data from MENU GenY (Making Effective Nutrition Choices for Generation Y)

[6], a web-delivered public health intervention with email-based coaching to encour-

age increased fruit and vegetable intake among young adults, aged 2130. A secondary
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goal of the MENU GenY project was to identify the specific communication strate-

gies used by e-Coaches to elicit change talk for healthier eating among young adult

patients. Segmentation of clinical conversation in the context of electronically deliv-

ered interventions into groups of MI behaviors is traditionally performed manually

by MI researchers, which significantly slows down its qualitative analysis. This work

is the first work to evaluate the empirical effectiveness of deep learning architectures

in addressing the problem of discourse segmentation in the context of email-based

behavioral interventions.

Specifically, we evaluate the effectiveness of distributed representations (i.e. em-

beddings) of words and punctuation marks as well as part-of-speech (POS) features

in conjunction with both traditional supervised machine learning methods, such as

linear-chain Conditional Random Fields (CRF) [79] and deep learning methods, such

as Multi-Layer Perceptron (MLP) [117], Bidirectional Recurrent Neural Network

(BRNN) [118] and Convolutional Recurrent Neural Network (CRNN) [130], to de-

termine the best performing method and feature combination for the task of segmen-

tation of e-Coaching emails into MI behaviors.

4.2 Related work

Prior work on textual segmentation in the biomedical domain primarily focused on

sentence boundary detection [56, 76, 130] and segmentation of clinical documents in

patients’ electronic health records (EHR) into sections and headers. [11, 38, 128, 29]

In particular, maximum entropy models [128] and Support Vector Machine (SVM)

along with word vector similarity metrics and several heuristics [11] have been applied

to identify specific sections in EHR, such as general patient information, medical

history, procedures, findings, etc. Denny et al. [38] proposed SecTag algorithm,

which combined natural language processing techniques, terminology-based rules and

a Näıve Bayes classifier to identify sections and headers in EHR. Segmentation of e-

Coaching emails, however, is different from segmentation of other clinical documents,
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since the focus is on dialog acts in clinical conversation.

SVM in conjunction with prosodic and part-of-speech features [76] and recurrent

convolutional neural networks [56] have also been utilized for sentence boundary detec-

tion in general text. Liu et al. [87] demonstrated that a linear-chain CRF outperforms

Hidden Markov and maximum entropy models for this task.

Segmentation of e-Coaching emails is also different from traditional shallow dis-

course analysis [48], which besides identification of speech acts, also aims to determine

the types of transitions between speech acts and label speech acts with the speakers

who performed them in a multi-speaker conversation. The proposed methods will

automate the process of segmenting clinical exchanges into MI behaviors, which will

significantly reduce the time and resources required to perform such segmentation

manually. Furthermore, these methods can be integrated with the automated MI

behavior coding methods [62, 74] to create a software pipeline for fully automated

analysis of email-delivered behavioral interventions.

4.3 Methods

4.3.1 Dataset

The experimental dataset for this work was constructed from 49 e-Coaching ses-

sions, which include 330 and 281 emails by e-Coaches and patients, respectively. Var-

ious statistics of the experimental dataset are provided in Table 4.1. Each e-Coaching

session represents an MI intervention delivered via email. Emails were segmented into

3,138 text fragments and annotated with MY-SCOPE codebook. Email segmentation

can be considered as sequence tagging, which can be framed as a binary classification

problem, in which each word or punctuation mark is annotated with one of the two

class labels (“new segment” or “same segment”) to indicate whether it is a beginning

of a new MI behavior segment or not. In total, the dataset consists of 95,777 words

and 7,140 punctuation marks and includes 3,138 “new segment” and 99,779 “same
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segment” instances, illustrated in Table 4.11. In this study, we experimented with

traditional machine learning methods, such as Conditional Random Fields (CRF)

[79] and deep learning methods, such as Multi-Layer Perceptron (MLP) [117], Bi-

directional Recurrent Neural Network (BRNN) [118] and Convolutional Recurrent

Neural Network (CRNN) [130]. In the case of MLP, training and testing samples

were created based on a sliding window of 2n words or punctuation marks over each

position (which could be a word or a punctuation mark) in a given input sequence,

such that each sample consists of the n words or punctuation marks after the current

position and n words or punctuation marks prior to the current position, including the

position itself. In the case of CRF, BRNN and CRNN models, an e-Coaching email

was taken as an input sequence, POS tags and embeddings of each word or punc-

tuation mark were used as input and binary labels corresponding to “new segment”

and “same segment” classification decisions were considered as the model output. In

the gold standard, words or punctuations within the same segment were assigned the

label of 0 and the last word or punctuation mark of a segment were assigned the label

of 1.

Table 4.1: Summary of statistics of the experimental dataset and example of a segmented
sequence

Instances
Class labels Tokens Emails Annotation
new same words punc. pat. prov. method codes

102,917 3,138 99,779 95,777 7,140 281 330 MYSCOPE 115

4.3.2 Features

We utilized three types of features in conjunction with CRF, MLP, BRNN and

CRNN: word embeddings as lexical features, punctuation and POS features. Syntac-

tic abstractions of individual words, such as POS tags, have been previously shown

to be effective features for similar natural language processing tasks [87, 130]. To

extract POS features, we pre-processed e-Coaching emails using the NLTK POS tag-

1punc.: punctuation marks, pat.: patient, prov.: provider
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ger2. Punctuation marks, which correspond to one of the symbols {‘.’, ‘,’, ‘!’, ‘?’, ‘:’,

‘;’} between a pair of words, were also used as a feature, since punctuation marks

designate the boundary of a sentence, clause or a phrase and often also correspond to

a segment boundary [29]. For natural language processing (NLP) tasks, inputs are re-

ceived as textual fragments, in which individual words are as the basic lexico-semantic

units. Therefore, it is important to represent a word in such a way that preserves

all relevant lexical and semantic information. Embedding is a form of distributed

representation, when each word is associated with a dense real-valued vector in low-

dimensional space. Embeddings have been previously shown to effectively capture

semantic, syntactic and morphological properties of words [111, 95]. For experiments

reported in this study, we utilized word embeddings pre-trained on Google News

corpus consisting of 1.6 billion words using word2vec software package.3 For words

or punctuation marks, which do not have pre-trained embeddings, we utilized the

embeddings of the same dimensionality trained on the experimental dataset. CRF

utilized lexical features, POS tags and the preceding label.

4.3.3 Segmentation models

We experimented with 4 different classifiers, including one traditional machine

learning model (CRF) and three deep learning methods (MLP, BRNN and CRNN).

Since deep learning architectures provide a flexible mechanism for constructing com-

plex models, we take advantage of this flexibility to test different variations of MLP,

BRNN and CRNN models for the task of segmentation of e-Coaching emails.

Conditional Random Fields (CRF): CRF has been widely used in various

NLP tasks that involve sequence annotation, such as part-of-speech tagging.[79, 64]

Unlike the maximum-entropy Markov model, which uses per-state exponential mod-

els for conditional probability of the next state given a current state, CRF model

directly estimates a distribution of the entire output sequence conditioned on the ob-

2https://www.nltk.org/
3https://code.google.com/p/word2vec/
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servation sequence. A linear-chain CRF model is defined as a conditional probability

distribution p(y|x) of output sequence y, given input sequence x:

p(y|x) =
1

Zx

exp

(
T∑
t=1

∑
k

λkfk(yt−1, yt, x, t)

)
(4.1)

where Zx is a normalization factor, fk(yt−1, yt, x, t) is a feature function, and λk is

a learned weight associated with feature fk. The optimal output sequence y∗ for input

sequence x, y∗ = arg maxyp(y|x), is obtained efficiently using the Viterbi algorithm.

In our experiments, the following features were utilized in conjunction with CRF: i)

current word or punctuation ii) next and previous 3 words or punctuations iii) binary

feature indicating whether a word or punctuation is a special character (’;’, ’?’, ’.’,

’,’, ’ !’, ’:’, etc.) or not iv) binary feature indicating whether a word is a title word or

not (e.g. “The” is a title word but “the” is not) v) POS tags.

Multi-Layer Perceptron (MLP): MLP is a neural network, which consists of

multiple fully connected layers that map an input to one or several outputs [117].

Figure 4.2 illustrates a multi-layer perceptron with a single hidden layer. MLPs have

no cycles or loops. Information in them flows only forward, from the input layer

through the hidden layer(s) to the output layer. The MLP in this study utilizes one

hidden layer consisting of 128 neurons and rectified linear unit (ReLU) as a nonlinear

activation function. In order to prevent over-fitting, we applied dropout (random

masking of neurons [121] to fully connected layers during training. Dropout was also

applied to a fully connected layer in CRNN.

Input layer hidden layer output layer

x1

x2

x3

x4

y1

y2

Figure 4.2: Multi-layer perceptron with a single hidden layer
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Bi-directional Recurrent Neural Network (BRNN): BRNN is a neural net-

work designed to capture sequential patterns by considering both past and future in-

puts as well as complex relationships between input features and output labels [118].

The hidden state of BRNN is an aggregation of the hidden states of a forward and

backward recurrent neural networks (RNNs). Gated Recurrent Units (GRU) [31] ca-

pable of handling variable size input sequence and having internal memory, which can

be reset, were utilized as an RNN in this work.

Convolutional Recurrent Neural Network (CRNN): CRNN[130] shown in

Figure 4.3 is a deep neural architecture, which combines convolutional and recurrent

layers. Our implementation of CRNN consists of 5 layers: 1) input layer 2) embed-

ding layer 3) convolution layer with max pooling 4) BRNN layer 5) fully connected

layer with dropout and sigmoid output. E-coaching email exchanges are represented

as a sequence of m words and punctuations, which are fed into the input and embed-

ding layers to produce a m× ne matrix after fetching the embeddings for words and

punctuations in the input sequence. This matrix is a distributed representation of an

input email exchange, which contains rich morpho-syntactic information that can be

utilized for its segmentation. When POS tags are utilized along with word embed-

dings, they are represented with a 10-dimensional vector, which is concatenated with

300-dimensional word embeddings to obtain new embedding vectors ne = [nw;np]

of size 310. The primary purpose of a convolution layer is to extract new features

for each word or punctuation mark based on the neighboring words or punctuation

marks. A one-dimensional (1D) convolution operation is utilized in this layer in our

implementation of BRNN. In 1D convolution, one filter is responsible for the extrac-

tion of one feature. After applying nf different filters with zero-padding on both sides

of the input text, nf features are produced by the convolution layer for each word.

A max pooling over time operation is then applied to find the most significant fea-

tures in a textual fragment. The bi-directional recurrent layer receives new features
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extracted from the convolution layer. Unidirectional RNNs are typically utilized to

capture long-range dependencies in a sequence of observations. Bi-directional RNNs,

on the other hand, are capable of capturing both past and future contexts through

forward and backward traversals of a sequence. The purpose of the fully connected

layer in CRNN is to use the output of the bidirectional RNN layer for classifying each

word or punctuation into “new segment” or “same segment” classes. Since a fully

connected layer has a larger number of parameters, they are more likely to excessively

co-adapt to other parameters in the network and result in over-fitting. To prevent

this, we utilized dropout by randomly ignoring 50% of the connections in the fully

connected layer of CRNN. Finally, logistic sigmoid outputs the probability of clas-

sifying or labeling each word or punctuation mark with “same segment” class. We

experimentally determined the optimal parameters using 5-fold cross-validation and

found out that the best performance is achieved when filter length in the convolution

layer is 7, number of filters is 100, max pooling size is 3, ReLU is used as an activation

function in the convolution layer, hyperbolic tangent is used as an activation function

in the bi-directional RNN layer and the number of dimensions in the hidden state of

RNNs is 200. Adam [72] with 50 epochs, the batch size of 32 and learning rate of

0.001 was used for optimization and the early stopping strategy was applied.4

yeah
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embeddings 

of words and 

punctuation 

marks

GRU

GRU

GRU

GRU
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Ynew

embeddings, generate m ×ne input matrix convolving with h ×ne filter
(m ×nf )

max over time 
pooling (hm = 3)

fully connected layer with 
dropout and sigmoid output

BRNN (m ×nr)

Ysame

Figure 4.3: Architecture of a convolutional recurrent neural network for automated seg-
mentation of e-Coaching emails into fragments corresponding to MI behaviors

4source code of all methods is available at https://github.com/teanalab/

eCoaching-Text-Segmentation
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4.3.4 Evaluation

We report standard metrics of precision, recall and F1-measure to evaluate the

performance of the classifiers [1]. Accuracy is not reported as a performance metric,

since it is highly sensitive to the distribution of prior class probabilities, which is

skewed when datasets with unbalanced classes are involved. The results are reported

based on 5-fold cross-validation (one fold was used as a test set and the remaining 4

folds were used as a training set) and weighted macro-averaging over the folds. We

also report the area under the precision-recall curve (AUPR), due to its effectiveness

in measuring the performance of binary classifiers in the case of the datasets with

imbalanced class distribution [35].

4.4 Results

Experimental results of this work spanned three dimensions. First, we determined

the optimal sizes of word embedding vectors and the sliding window of MLP. Second,

we evaluated the performance of different methods with respect to detecting “new

segment” as well as the weighted average over “new segment” and “same segment”

classes. Third, we assessed the impact of different types of features as well as their

combination on the performance of different machine learning methods on the e-

Coaching email segmentation task.
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Figure 4.4: F1-measure of CRNN on the task of e-Coaching email segmentation by varying
the number of dimensions in pre-trained and corpus-based GloVe and word2vec embeddings
(left). F1-measure of MLP on the task of e-Coaching email segmentation by varying the
size of the sliding window (right).
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Figure 4.4 (left) illustrates the performance of CRNN on the task of e-Coaching

email segmentation by varying the number of dimensions in pre-trained and corpus-

based GloVe 5 and word2vec embeddings. We observed that the best performance is

achieved with pre-trained 300-dimensional word2vec word vectors, when three types

of features are used together. Therefore, we report the results for other deep learning

models used in this study when 300-dimensional word2vec embedding vectors are

utilized. The input layer of MLP consists of a sum of embeddings of n words or

punctuation marks before and the sum of embeddings of n words or punctuation

marks after the word or punctuation mark, which is the center of a sliding window of

2n words or punctuation marks. Figure 4.4 (right) demonstrates the performance of

MLP on e-Coaching email segmentation by varying the size of the sliding window. It

can be observed that the best performance of MLP is achieved when the size of the

sliding window is 4 (or n = 2). Therefore, MLP results in the remaining experiments

are reported when n is set to 2.

Table 4.2: Performance of CRF, MLP, BRNN and CRNN on “new segment” detection as
well as the weighted average over “new segment” and “same segment” classes when only
lexical features are used. The highest value for each performance metric is highlighted in
boldface.

Method
New Segment Overall

AUPR
Prec. Reca. F1 Prec. Reca. F1

CRF 0.782 0.691 0.733 0.983 0.984 0.984 0.780
MLP 0.836 0.593 0.694 0.982 0.983 0.982 0.736
BRNN 0.606 0.680 0.641 0.977 0.976 0.976 0.655
CRNN 0.775 0.797 0.785 0.986 0.986 0.986 0.818

As follows from Table 4.26, CRNN outperforms all other methods in terms of recall

and F1-measure achieving 0.797 recall and 0.785 F1-measure for new segment detec-

tion. CRNN also shows superior performance according to all performance metrics

calculated as a weighted average over “new segment” and “same segment” classes.

BRNN had the lowest performance among all models in terms of precision and F1-

5https://nlp.stanford.edu/projects/glove/
6Prec.: Precision, Reca.: Recall



87

measure. On the other hand, MLP had the highest precision of 0.836 when lexical

features are used to identify “new segment”. CRF achieves 0.733 F1-measure, the

second highest in identifying “new segment”. CRF also demonstrated the second

best performance among all models according to all metrics calculated as a weighted

average over both classes. Experimental results indicate that the performance of all

classifiers according to all metrics calculated as a weighted average over both classes

is significantly higher than their performance on “new segment” detection, which is

expected since 96.95% of instances belong to the “same segment” class and 99.3%

of them are correctly classified. For example, CRNN achieves 27.23%, 23.71% and

25.61% higher precision, recall and F1-measure calculated as a weighted average over

“new segment” and “same segment” classes, compared to the “new segment” detec-

tion.

Table 4.3: Performance of CRF, MLP, BRNN and CRNN on “new segment” detection as
well as the weighted average over “new segment” and “same segment” classes when all types
of features are used together. The highest value for each performance metric is highlighted
in boldface.

Method
New Segment Overall

AUPR
Prec. Reca. F1 Prec. Reca. F1

CRF 0.813 0.772 0.792 0.988 0.988 0.988 0.877
MLP 0.817 0.710 0.760 0.986 0.987 0.986 0.842
BRNN 0.683 0.820 0.745 0.985 0.983 0.984 0.770
CRNN 0.789 0.864 0.825 0.990 0.989 0.989 0.867

Table 4.37 summarizes the results of all models on the task of segmentation of

e-Coaching emails when word embeddings or lexical features are used in combination

with punctuation and POS features. Similar to results in Tables 4.2, CRNN demon-

strates the best performance among all methods achieving 0.864 recall with 0.825

F1-measure for “new segment” detection and 0.990 precision with 0.989 recall and

F1-measure overall. BRNN and CRF demonstrated the lowest and second highest

performance on the task of email segmentation among all methods, respectively. We

7Prec.: Precision, Reca.: Recall
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observed that classification performance significantly improved for “new segment”

detection when lexical features are used in combination with punctuation and POS

features. Specifically, precision increases by 3.96%, -2.27%, 12.71% and 1.81%; re-

call increases by 11.72%, 19.73%, 20.59% and 8.41%; and F1-measure increases by

8.05%, 9.51%, 16.22% and 5.1% for CRF, MLP, BRNN and CRNN methods, re-

spectively, on new segment detection when all types of features are utilized together.

Similarly, precision increases by 0.51%, 0.41%, 0.82% and 0.41%; recall increases by

0.41%, 0.41%, 0.72% and 0.3%; and F1-measure increases by 0.41%, 0.41%, 0.82%

and 0.3% for CRF, MLP, BRNN and CRNN methods, respectively, as a weighted

average over “new segment” and “same segment” classes when lexical features are

used in combination with punctuation and POS features.

Table 4.4: Area under the precision-recall curve (AUPR) values of all classifiers demon-
strating the impact of different types of features on e-Coaching email segmentation per-
formance. Highest AUPR value for each feature set across all models is highlighted in
boldface.

Features CRF MLP BRNN CRNN
word embeddings only 0.780 0.736 0.655 0.818
word embeddings + POS 0.797

(+2.18%)
0.746
(+1.36%)

0.647
(-1.22%)

0.798
(-2.44%)

word embeddings + punctu-
ation

0.876
(+12.31%)

0.835
(+13.45%)

0.774
(+18.17%)

0.874
(+6.85%)

all features 0.877
(+12.44%)

0.842
(+14.4%)

0.770
(+17.56%)

0.867
(+6%)

Table 4.4 illustrates the impact of different types of features as well as their com-

bination on e-Coaching email segmentation performance. Punctuation and POS fea-

tures have similar effect measured by the AUPR, which increases by 12.44%, 14.4%,

17.56% and 6% for CRF, MLP, BRNN and CRNN, respectively, when all features are

used together. Individually, although punctuation features improve the performance

of all classifiers, POS features improve the performance of only CRF and MLP. CRF

achieved the highest AUPR when all types of features are used together. On the

other hand, POS features degraded the AUPR of BRNN and CRNN.
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4.5 Discussion

This study is the first effort to design and evaluate machine learning methods for

automated segmentation of e-Coaching sessions. Experimental results indicate that

CRNN is the best model among all machine learning methods considered for this

study. CRNN achieved 0.989 F1-measure overall and 0.825 F1-measure for detecting

“new segment”. The robust performance of CRNN provides an evidence that deep

learning models are capable of detecting the boundaries of patient and provider be-

haviors in email delivered behavioral interventions. Our experiments also highlight

the importance of punctuation and POS features along with word embeddings for all

machine learning methods employed this study. Although the domain of this study

was intentionally focused, we believe that the proposed methods are not limited to

e-Coaching sessions and our conclusions can be generalized to other domains, which

require discourse segmentation.

Punctuation marks and POS features resulted in significant improvement in the

performance of traditional machine learning and deep learning methods. Punctuation

features had a stronger individual impact on model performance than POS features.

In all cases, CRF and MLP performed better, when word embeddings were used in

conjunction with punctuations and POS features. Considering punctuations improved

the performance of BRNN and CRNN measured by precision, recall and F1-measure,

while POS features lowered their AUPR.

The convolution layer made a significant difference between the performance of

CRNN and BRNN in MI session discourse segmentation. CRNN had 22.46% and

10.74% higher F1-measure in “new segment” detection and 1.02% and 0.51% higher

F1-measure overall compared to BRNN, when word embeddings and all other features

were used, respectively. In CRNN, a convolution layer performs a series of convolution

and pooling operations, which produce a number of important high-level features from

input embeddings. These high-level features are then utilized by the bidirectional
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RNN layer in CRNN, which translates to a significant increase in performance. In

contrast, BRNN utilizes the input embeddings directly as features.

Although punctuation marks play an important role in segmentation boundary

detection, a few errors were triggered by the presence of punctuation marks. For

example, a text segment from an e-Coaching email “A typical day in regards to fruit

and vegetable has me eating about a serving at breakfast (our cafe has cut up fruit)

and then maybe a piece of fruit later in the day or as a snack. Vegetable tends to be

a side serving at lunch and dinner and I get celery or carrot cuts with dressing for a

snack a lot of times. I could probably add some sort of vegetable into my breakfast (like

spinach in an omelet) and snack on another piece of fruit when I am hungry rather

than the junk food I tend to eat.” was incorrectly segmented after the first sentence,

when period was encountered. Similarly, additional information is a common cause for

misclassification of an email segment into multiple segments. For instance, although

the first sentence in the above email segment represents a positive commitment to

behavior change, the next two sentences provide additional information to support

the patient’s commitment.

4.6 Summary

Segmentation is the first step of qualitative analysis of unstructured clinical com-

munications, such as e-Coaching. Although several studies have focused on the seg-

mentation problem in biomedical context, they are limited to segmenting clinical

text in EHR into sections and sentences. No previous studies considered the task of

automated segmentation of clinical communications into groups of MI behaviors in

the context of unstructured MI sessions. By comparing the performance of machine

learning methods for the task of segmentation of e-Coaching emails, we found out

that convolutional recurrent neural networks demonstrate the best performance in

terms of most performance metrics. Manual segmentation of e-Coaching sessions is

a very resource-intensive and time-consuming task, which can significantly decrease
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the time and effort required to develop effective behavioral interventions. Our pro-

posed methods can help to identify textual segments corresponding to MI behaviors

in unstructured clinical dialog, which can then be annotated with MI behavior an-

notation methods in a pipeline setting. Automated segmentation and annotation of

e-Coaching emails can significantly decrease the time to identify effective communi-

cation strategies in email-based MI.
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CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this dissertation, we presented our research accomplishments to fully automate

the analysis of patient-provider counseling and understand the MI mechanism of

effect.

First, we propose novel features and report the results of an extensive experi-

mental evaluation of state-of-the-art supervised machine learning methods for text

classification using those features, to help clinical researchers and practitioners assess

the feasibility of using these methods for the task of automatic annotation of clinical

text using the codebooks of realistic size. We found out that Support Vector Machine

using only lexical features consistently outperforms all other classifiers on caregiver

and adolescent datasets according to most metrics. Adding contextual and semantic

features further improves the performance of SVM on both datasets, achieving close

to human accuracy when the codebooks consisting of 16 and 17 classes are used to

annotate caregiver and adolescent transcripts, respectively.

Second, we perform two sequential analysis of pre-coded MI transcripts. In the

first experiment, we compared the accuracy of Recurrent Neural Networks with

Markov Chain and Hidden Markov Model for the task of predicting the success of

motivational interviews. We found out that individual PPC exchanges are highly

indicative of the overall progression and future trajectory of clinical interviews and

can be used to predict their overall success. Our methods can facilitate motivational

interviewing researchers to identify the most likely sequences in successful and un-

successful motivational interviews, which can directly inform clinical practice and

increase the effectiveness of behavioral interventions. In our second experiment, we

overcome the critical shortcomings of previous methods. While counselors’ use of

“MI-consistent” communication behaviors has been previously linked to higher rates

of change talk in correlational studies [100, 25, 129, 94] and simple Markov Chain
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models [100, 101, 49], the use of HMM and frequent pattern mining analyses im-

proves upon these approaches by considering long-range dependencies in the data.

The results of this pattern mining work suggest a more complex pattern between

counselor communication behaviors and patient talk that varies depending on the

context in which Motivational Interviewing is being used.

Finally, we propose various segmentation models because segmentation is the

first step of qualitative analysis of unstructured clinical communications, such as

e-Coaching. Although several studies have focused on the segmentation problem in a

biomedical context, they are limited to segmenting clinical text in EHR into sections

and sentences. By comparing the performance of machine learning methods for the

task of segmentation of e-Coaching emails, we found out that convolutional recurrent

neural networks demonstrate the best performance in terms of most performance

metrics. Our proposed methods can help to identify textual segments corresponding

to MI behaviors in unstructured clinical dialog, which can then be annotated with

MI behavior annotation methods in a pipeline setting.

5.2 Future research directions

We plan to explore the following possible future research directions.

First, our study in this dissertation has focused on manual feature extraction

methods. An interesting automated feature extraction method can be considered to

improve the performance of utilized machine learning models.

Second, Attention-based models are increasingly popular because information is

lost by compressing variable-length long sequences into a fixed-size vector in RNN.

Therefore, we would like to consider attention-based neural networks in order to

improve the performance of our annotation, segmentation and sequence models.

Third, our experimental results indicate that ML methods can be used for real-

time monitoring of the progression of clinical interviews. We plan to integrate the

sequential model with segmentation and auto-coding classifiers to develop a fully
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automated e-Coaching.

Finally, the limitation of our study is that our dissertation data is collected from

a single medical institute; formatting, style and email segment can be different in

other settings. Therefore, there is a need to replicate the experiments with different

data sets. As our future work, we plan to evaluate our approach on the datasets from

other behavioral interventions.
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APPENDIX

Gold Standard: a term used to describe a collection of a labeled dataset which

has been manually labeled by the experts.

State-of-the-art: the most recent or latest version of a particular technology. State-

of-the-art machine learning methods refer to the best available machine learning meth-

ods developed using modern techniques and technologies.
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Motivational Interviewing (MI) is an evidence-based communication technique

to increase intrinsic motivation and self-efficacy for behavior change. This goal is

achieved through the exploration of the patient’s own desires, ability, reasons, need

for and commitment to the targeted behavior change. However, communication sci-

ence approaches to understanding the efficacy of MI are inherently limited by tradi-

tional qualitative coding methods which is a time-consuming and resource-intensive

process. Thus, an efficient method is required to automate the coding process which

will accelerate the pace of communication research in behavioral science. The specific

provider behaviors responsible for the elicitation of change talk, are also less clear and

may vary by treatment context. Therefore, new design objective and perspective are

necessary to understand which provider behaviors and in which contexts lead to pa-

tient change talk. In this dissertation, we deal with two types of clinical conversation,

one that involves a face to face dialogue between patient and counselor and another

one which involves an email-based conversation between patient and an ecoach.

First, we leverage eight supervised machine learning models to automatically an-

notate counseling sessions with 37 African American adolescents with obesity and

their caregivers. We examine the performance of classifiers using lexical, contextual,

and semantic features, to predict the behavioral codes in the previously coded data.
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Second, understanding motivational interviewing mechanisms of effect, we focus

on deep learning and probabilistic models and analyze the sequencing of patient-

provider communication. The goal of these experiments is to identify the commu-

nication behaviors leading to the elicitation of client change talk, a marker of suc-

cess in MI, and counter change talk, a marker of unsuccessful communication. Two

approaches, recurrent neural networks and Markov models, were tested. As a con-

tinuation of our sequential analysis, we analyze pre-coded MI transcripts to identify

the specific counselor communication behaviors effective for eliciting patient change

talk. We evaluate the empirical effectiveness of the hidden Markov model and closed

frequent pattern mining to inform MI practice.

Finally, we propose various segmentation models for the analysis of email-based

counseling sessions since segmentation is a necessary and critical step to process

email-based conversation for developing autocoding and sequence analysis models.

We formulate the segmentation task as a classification problem and utilizes word and

punctuation mark embeddings in conjunction with part-of-speech features to address

it. We evaluate the performance of conditional random fields as well as a multi-

layer perceptron, bi-directional recurrent neural network and convolutional recurrent

neural network for the task of clinical text segmentation.

Experimental results indicate that machine learning models achieve performance

near human coders for the segmentation and annotation of clinical conversation, which

will significantly increase the pace of communication research in behavioral science.

Our methods can facilitate motivational interviewing researchers to identify the most

likely sequences in successful and unsuccessful motivational interviews, which can

directly inform clinical practice and increase the effectiveness of behavioral interven-

tions. We can integrate the sequential model with segmentation and auto-coding

classifiers to develop a fully automated system for the analysis of clinical conversa-

tion.
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