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CHAPTER 1: INTRODUCTION 

Researchers have always been interested in the formation of the Great Lakes, a series of 

five lakes sandwiched between the United States and Canada which contain about 20% of the 

world’s surface freshwater and are among the world’s most major freshwater systems 

[Herdendorf, 1990]. For some time now it has been known that Lake Huron, the third-largest 

lake in the system, was divided into two disjointed lakes at certain times during the early 

Holocene by a now-underwater feature called the Alpena-Amberley Ridge [Dyke, 1987]. During 

those times, this ridge was a long, narrow isthmus referred to by geologists as the Alpena-

Amberley Land Bridge which connected what is now Alpena, Michigan in the USA to what is 

now Amberley, Ontario in Canada. Recently, Dr. John O'Shea of the University of Michigan has 

been interested in the tantalizing possibility that caribou used this Land Bridge as a corridor for 

migration between northern Michigan and southern Ontario during the Paleolithic and that 

they were hunted by prehistoric Paleoindian tribes. 

1.1 Initial Project 

There are a couple of crucial factors have heightened the importance of this overall project 

from the very beginning. First, there is the fact that the Alpena-Amberley Ridge would have 

been a crossable isthmus during certain times in the early Holocene, which would have made it 

a geographic bottleneck for migrating caribou. This would have been noticed by human 

hunters, who would have decided to take advantage of this unique geography. Said hunters 
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would logically have built various occupational structures (i.e., hunting blinds, drive lines, etc.) 

to facilitate their hunting activities [O’Shea, 2013]. 

Additionally, there is the fact that any extant Paleolithic sites that are still relatively 

undisturbed and intact are exceedingly rare [O’Shea, 2009]. Lake Huron’s water accomplishes 

two protective purposes: Firstly, the water has for the most part physically blocked modern 

humans from destroying or building over any ancient sites that may lie underneath. Secondly, 

since Huron is a freshwater lake, any ancient material remains, especially those made from 

biodegradable materials such as wood, benefit from freshwater’s preserving effects.  

These reasons are why Dr. O’Shea was so adamant early on about taking advantage of the 

potential for finding intact sites underneath what is now Lake Huron. That is why in 2008, Dr. 

O’Shea applied for, and received, a grant from the National Science Foundation to pursue his 

research goals regarding the Alpena-Amberley Ridge region. Over the following years, Dr. 

O’Shea and his expeditionary team used sonar, underwater autonomous vehicles (UAV’s), and 

human scuba divers to investigate various portions of the region. O’Shea’s hypothesis has paid 

off as his team has found various prehistoric occupational structures such as hunting blinds, 

caribou drive lanes, logistical camps, and caches in this region [O’Shea, 2009, 2013]. His findings 

were also picked up by the popular press and named one of the top 100 scientific discoveries of 

the year 2009 by the popular science magazine Discover [Barth, 2010]. 
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1.2 Cultural Algorithm Team Involvement in the Project 

 In 2009, the Cultural Algorithm team from the Artificial Intelligence Laboratory at 

Wayne State University under the direction of Dr. Robert G. Reynolds became interested in 

collaborating with Dr. O'Shea on the project. The WSU team's main contribution has been the 

"Land Bridge GUI", a program which assists Dr. O'Shea's underwater expedition team in a 

number of ways. The Land Bridge GUI system is the result of the collaborative work of multiple 

Wayne State University graduate students including Kevin Vitale, James Fogarty, Thomas 

Palazzolo, Jin Jin, Gerald Larsen, David Warnke, Areej Salaymeh, and myself under the direction 

of Dr. Robert G. Reynolds. Originally the system was simply designed to simulate the crossing of 

a herd of AI caribou over a landscape created from NOAA height-map data and to provide a 

realistic-looking visualization of their crossing.  However as described in [Stanley, 2013], in 2011 

we developed a "time engine" for the Land Bridge GUI that takes time series data on various 

environmental variables such as water level and temperature and provides a rich visualization 

of the changing environment over time as well as the ability to run experiments during specific 

time periods. Around the end of 2011, we also began developing a hunting blind artifact finder 

system that used input from the constantly changing simulated environment to produce 

dynamic influence maps. These influence maps retain and expand upon relevant knowledge 

about the environment while discarding irrelevant knowledge. These maps provided 

environmental knowledge to (and receive environmental knowledge from) AI “hunting blind 

teams” loaded with a Cultural Algorithm which scored them according to a fitness function 
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determining the most effective hunting blind locations. The program then combined these 

results into heatmaps predicting where archaeological expeditions are most likely to find actual 

prehistoric hunting blinds. In the period that followed the publication of [Stanley, 2013], the 

artifact finder algorithm was overhauled twice and the program was revamped to be able to 

handle other artifact types. It was also reengineered to enable the fast implementation of rules 

and the variables that influence them as suggested by the anthropological archaeology research 

community. The rules and variables were derived from the works of several anthropological 

archaeologists including Lewis Binford [Binford 1978a, 1978b, 1980, 1982, 1991], John O’Shea 

[O’Shea, 2013], and Ashley Lemke [Lemke, 2016]. The main interface of our program is shown 

in Figure 1. 

 
Figure 1: Land Bridge GUI Main Screen 
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1.3 A Cross-Disciplinary Effort 

 This work would not have been possible were it not for the groundwork having been 

laid across several widely disparate disciplines, namely geology, anthropological archaeology, 

information theory, and computer science.  

The artifact heatmaps supplied to Dr. O’Shea are produced from artifact algorithms 

which require compiled environment maps, a generated set of caribou paths, and either 

functions that describe AI agent behavior (for the agent-based approach) or rules that directly 

describe AI artifact behavior (for the rule-based approach). The compiled environment maps 

are produced by Thomas Palazzolo’s program from a combination of heightmap data from the 

National Oceanic and Atmospheric Administration [NOAA, 2012], prehistoric yearly water level 

data from Dr. Mike Lewis [Lewis, 2016], and vegetation data produced by Palazzolo’s vegetation 

simulation algorithm.  

In order to generate the caribou paths, up until 2014 we used an A* algorithm 

implemented by James Fogarty and Jin Jin [Fogarty, 2011] [Jin, 2011] [Stanley, 2013]. In 2014 

we replaced that algorithm with a CA-equipped A* algorithm designed by Thomas Palazzolo 

[Stanley, 2014]. In 2017, that algorithm was replaced with an improved version also designed 

by Thomas Palazzolo which also included an algorithm to simulate the consumption of 

landscape vegetation. In mid-2018, that algorithm was replaced with a CA-equipped version of 

the A*mbush algorithm, also designed by Thomas Palazzolo and which also works with his new 

vegetation algorithm. 
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 Prior to 2015, the process of determining the artifact predictions was governed by a CA-

equipped agent-based algorithm described in [Stanley, 2013, 2014]. In 2015, that algorithm was 

improved by being loaded with a Lamarckian “look-ahead effect” further described in Chapter 

5. In February 2017, that algorithm was replaced with an entirely different algorithm using a 

rule-based approach rather than an agent-based approach. All three algorithms incorporate 

work from Dr. O’Shea in the form of functions and rules, however as time went on, more and 

more effort was made to incorporate more work from different archaeologists (such as Lewis 

Binford and Ashley Lemke) and to streamline this process. This led to the development and 

completion in April 2017 of a rule engine that allows for very fast incorporation and 

implementation of rules, factors that go into those rules, and even whole new artifact types, 

coming from the work of anthropological archaeologists.  

1.4 Artifact Finder Motivation 

In practice, archaological expeditions face time and money constraints. According to Dr. 

O’Shea, it costs an average of $1,000 per day to work out on the research vessel out on Lake 

Huron. Thus it is not possible to do a detailed archaeological survey of every single location on 

the Alpena-Amberley Ridge. The original motivation of our artifact finder was to supply the 

locations most likely to turn up an artifact in the form of heatmaps. Dr. O’Shea can then use 

those heatmaps in conjunction with his own intuition in order to decide which locations to send 

the research vessel out to, and which to ignore. We eventually added functionality to obtain 

predictions for eight different artifact types discussed in the anthropological-archaeological 
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literature and that might logically have been constructed by prehistoric hunter gatherers living 

on the Alpena-Amberley Land Bridge. They are the following: Residential Camps, Logistical 

Camps, Fishing Field Camps, Observation Stands, Large Game Hunting Structures, Small Game 

Trapping Structures, and Caches [Binford 1978a, 1978b, 1980, 1982, 1991] [O’Shea, 2013] 

[Lemke, 2016]. (Specific details for each of these artifact types will be discussed in Chapter 2.) 
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Figure 2: Example Observation Stand Heatmap (11800-8350BP Area 1) 

 
Figure 2 is shown here as an example of a heatmap produced by our system for Area 1 

of the Alpena-Amberley Ridge (whose location is denoted by the larger rectangle in Figure 2 on 

page 8). Area 1 is a place of great research interest to Dr. O’Shea, and during his 2016 

expedition to Area 1 in October, he used the heatmap in Figure 2 to locate two occupational 



 

 

9 

 

structures, one of which was a large game hunting structure containing a hunting blind and 

drive line, the second was a ring of stones with lines radiating out from it which is currently 

unclassified, but may have been an Observation Stand similar to the one in Figure 19, which is 

also mainly comprised of a ring of stones. 

 
Figure 3: Alpena-Amberley Land Bridge. The larger rectangle denotes Area 1. [O’Shea, 2009] 

 
Heatmaps such as the one in Figure 2 are designed as a tool for archaeologists such as 

Dr. O’Shea to use in conjunction with their own intuition in order to plan sorties out to sites 

most likely to bear artifacts of interest. Additionally, if a known artifact is difficult to classify, 

comparing artifact type heatmaps can help to classify it into one (or more) of the preexisting 

artifact types, or into a new artifact type whose properties are specified by the archaeologists.  
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1.5 Boosting the Land Bridge Project with Multi-Objective Optimization 

 In 2018, we realized that rather than merely generating individual heatmaps for each 

structure type, it would be better to predicate the construction of heatmaps directly upon the    

two objectives that most concern archaeological projects such as the one Dr. O’Shea is 

undertaking: Minimizing the number of locations that the archaeological expeditionary team 

has to search, and maximizing the number of culturally-modified structures found. Because 

these are two directly countervailing objectives (the first relates to effort, while the second 

relates to payout), this can be formulated in terms of a bi-objective optimization problem. 

Additionally, it can dovetail with the rule-based approach. Evolving parameters for the rules 

that predict locations within our system can be directly tied in to evolving a Pareto-optimal set 

of (number of locations predicted, number of structures found) ordered pairs. We can produce 

a Pareto-optimal set for each of the eight structure types individually and/or a full combined 

composite Pareto-optimal set for all eight structure types combined. From each point in each of 

these Pareto-optimal set, the system can produce a structure heatmap (like the one in Figure 2, 

for instance, and the archaeologists can choose the one that looks the most promising.   

 Additionally, because these sets are Pareto-optimal, there are only three ways to 

improve on them and the heatmaps created from them: The first way would be to obtain better 

paleoenvironmental data such as better caribou behavior information, better water level data, 

or reliable temperature data for Alpena-Amberley Ridge for this time period, the last of these 

which has yet to be forthcoming at all. The WSU Land Bridge Team is already using the latest 
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data regarding caribou behavior and the latest water level data for the Huron basin [Lewis, 

2016]. The second way would be to obtain better and/or more specification forms of rules, 

something which would require more specialized knowledge from expert archaeologists. The 

WSU Land Bridge Team consults regularly with the anthropological-archaeology professors Drs. 

O’Shea and Lemke and as far as we are aware, our specification forms of our rules are up-to-

date. The third way would be to improve the training set, which happens whenever the 

archaeological team finds more structures on the Alpena-Amberley Ridge. The WSU Land 

Bridge Team currently has the most up-to-date training set, provided as of April 2018.  Because 

none of these three aforementioned things have to do with Computer Science, at least not per 

se, the Computer Science side of the structure-finder project can be considered complete once 

the aforementioned Pareto-optimal sets have been found and documented. 

1.6 Workflow Diagram 

 Once again, this project would not be possible without the combined efforts from a 

number of different people working across a number of different disciplines. We have thus 

produced a workflow diagram in Figure 4 to summarize their individual contributions previously 

discussed and to show how those contributions fit together in order to create this project. 
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Figure 4: Workflow Diagram for the Land Bridge Project 

 

1.7 Component Diagram 

 We now provide a component diagram to show how these various subsystems within 

the Land Bridge Project fit together and interact with one another. 
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Figure 5: Overall System Component Diagram 
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1.8 The Accelerating Cost Hypothesis 

We predict that the Pareto Front discussed in the previous section will be logarithmic in 

shape. In other words, once the first several structures are found, loosening the rules in order 

to include more and more locations in the prediction heatmaps will have diminishing returns. 

Another way to look at this hypothesis is in terms of accelerating cost: If predicting a certain 

number of structures is at the cost of flagging a certain number of locations, then predicting a 

slightly greater number of structures will be at the cost of flagging a much greater number of 

locations. We thus name our hypothesis The Accelerating Cost Hypothesis. Statistical validation 

of the Accelerating Cost Hypothesis is provided in Chapter 7, and implications are discussed in 

Chapter 9. 

1.9 The Low Initial Cost Hypothesis 

 Supposing that the Accelerating Cost Hypothesis is true, the cost-to-benefit ratio will 

always increase at an increasing rate for each of our Pareto fronts. The question is: How big is 

this ratio at the bottom end of the Pareto curve? Does it start out small enough so that the 

lower end of the cost curve is low enough such that archaeological teams of more limited 

means can still afford the lower end of the cost curve? Or is even the lower end of the cost 

curve very expensive and thus out of the reach of teams of more modest means? For the 

purpose of this hypothesis, which we are terming the “Low Initial Cost Hypothesis”, we are 

assuming the former. We will provide more discussion of the Low Initial Cost Hypothesis at the 
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end of Chapter 8, after providing hypothetical scenarios of how different archaeological teams 

might use our system. 

1.10 The Ruleset Size vs. Problem Complexity Hypothesis 

 One of the hardest things about this project is that it is a “worst of both worlds” 

situation that somehow manages to combine the challenges involved with both “Big Data” and 

paucity of data. With regard to the latter, it is very difficult to reconstruct the Early Holocene 

environment due to its extreme antiquity and there are considerably few categories which we 

can reliably model. This leads to our rulesets being necessarily small. On the other hand, we are 

simulating over a timespan of 3,400 years, so even a small number of data categories becomes 

rapidly multiplied into many millions of data entries. The question becomes, which factor will 

win? Will paucity of data categories ensure that this is a simple problem, or will the sheer 

volume of data produced because of the temporal component ensure that this is a complex 

problem? For the purpose of this hypothesis, which we are calling the “Ruleset Size vs. Problem 

Complexity Hypothesis”, we are supposing the latter. We will provide more discussion about 

this hypothesis at the end of Chapter 7. 

1.11 Overview of this Dissertation 

 The rest of this dissertation is arranged as follows: Chapter 2 contains a discussion of 

previous work done in the study of the Alpena-Amberley Land Bridge. Chapter 3 provides 

discussion of the paleoarchaeological background of the Alpena-Amberley Ridge region and the 
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prehistoric artifacts that are expected to be found there. Chapter 4 discusses how a virtual 

world of the prehistoric environment, including prehistoric topography, water levels, and 

vegetation, is modeled. Chapter 5 contains a formal specification of the various structure types 

and the parameters and rules that pertain to each of them, as well as a formal specification of  

these in terms of biobjective optimization problems. Chapter 6 contains a discussion of Cultural 

Algorithms and the CAPSO (Cultural Algorithm / Particle Swarm Optimizer) system that will 

create Pareto Fronts for each structure type out of the biobjective optimization problems 

specified in Chapter 5. Chapter 7 contains said Pareto Fronts along with the evolved rulesets 

that generated each Pareto-optimal point, along with visual maps resulting from applying these 

rulesets into the pertinent area of archaeological study. Chapter 7 also contains a statistical 

validation of the Accelerating Cost Hypothesis. Chapter 8 explores possible ways in which 

hypothetical archaeological teams with different research aims might each choose to 

composite the results in Chapter 7 for the purpose of planning expedition seasons in order to 

achieve their research aims. In Chapter 9, final conclusions, including the implications of the 

Accelerating Cost Hypothesis, are discussed. 
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CHAPTER 2: PREVIOUS WORK ON THE LAND BRIDGE PROJECT  

2.1 Pre-2009 Work and O'Shea's 2009 Huron Expedition 

 The fact that the Alpena-Amberley Ridge was at one point an isthmus connecting what 

is today northern Michigan and southern Ontario across Lake Huron is not itself new 

knowledge. Since at least the 1980's, the models of various respected geologists have shown it 

was an uninterrupted land corridor with two lakes on either side during part of the melt phase 

of the Laurentide ice sheet [Dyke, 1987] [Lewis, 1989] [Lewis, 1994]. In 2008, the University of 

Michigan Museum of Archaeology along with the University of Michigan Department of 

Oceanographic and Atmospheric Engineering and Wayne State University received an NSF High 

Risk Grant to begin the exploration of the Alpena Amberley Land Bridge in search of Paleo-

indian occupational remains. The resultant expedition to Lake Huron was carried out using side-

scanning sonar, underwater autonomous vehicles (UAV's) launched from surface boats, 

remotely operated vehicles (ROVs), and finally human divers. During the expedition, the 

research team found the remains of prehistoric hunting blinds and caribou drive lanes [O’Shea, 

2009]. When these results were published, there was a surge of interest within the 

Anthropological Archaeology community concerning the Alpena-Amberley Ridge, as this is a 

pristine region largely undisturbed by the activities of modern humans that also benefits from 

the preserving effects of freshwater on normally perishable materials such as wood that 

prehistoric peoples often used to fabricate structures. This surge of interest also carried over to 

the Artificial Intelligence community and before long there were researchers who wanted to 
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create computer models of the behavior of the caribou and hunters that roamed the Alpena-

Amberley Ridge when it was dry land in prehistoric times.  

2.2 Learning Group Behavior in Games Using Cultural Algorithms and 

the Land Bridge Simulation Example. 

 The first computer models of caribou behavior on the land bridge were implemented by 

Kevin Vitale and Dr. Robert Reynolds in 2009, discussed in the paper "Learning Group Behavior 

in Games Using Cultural Algorithms and the Land Bridge Simulation Example" [Vitale, 2009]. 

Vitale's program used a Cultural Algorithm (CA) simply to teach caribou agents (represented as 

yellow triangles in Figure 6) how to successfully migrate as a herd across the land bridge. 
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Figure 6: Vitale's Land Bridge model with caribou forming a herd to migrate across the Land Bridge. 

[Vitale, 2009] 
 

 Vitale's CA controls only the "wander behavior" of the caribou, that being defined as the 

deviation at any given time from the predetermined path from start point to end point. The 

kinematic wander behavior is determined by three values: The wander target position, the 



 

 

20 

 

wander circle radius, and the projection distance. Vitale's pseudo-code for his wander behavior 

mechanism is given below: [Vitale, 2009] 

 

getSteering(&outputForce) 

{ 

ΔX = current_X_Target * jitterValue 

ΔZ = current_Z_Target * jitterValue 

newWanderTarget = (ΔX, ΔZ) 

newWanderTarget *= wanderRadius 

newWanderTarget.X += wanderDistance 

newWanderTarget.Z += wanderDistance 

output.angle = SetOrientationTowardsTarget(newWanderTarget) 

output.linearForce += wanderTarget * maxSpeed 

} 
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Figure 7: Schemata of Vitale's Wander Mechanism 
 

 The diagram given in Figure 7 above details how Vitale's wander behavior kinematic 

works. The point c is the wander target position, which is always located on the wander circle C, 

having radius A. B is the projection distance (the distance between the center of the circle and 

the caribou's current position, labeled a on the diagram). A fourth parameter, the jitter value, 

determines the change in the wander target position every time the getSteering function is 
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fired. Of the four critical parameters, only the initial wander target position and the jitter value 

are determined by the cultural algorithm. The latter two parameters, the wander circle radius 

and projection distance, are hardcoded into the program. v0, the initial velocity, is also 

hardcoded into the program. It combines with vw, the velocity produced by the wander 

mechanism described above, to produce vf, which is the final velocity for an individual caribou 

until vw changes, which happens whenever getSteering gets called. 

 Vitale and Reynolds’ CA ultimately learned in a statistical sense that the most successful 

caribou herds, i.e. those herds who succeeded in getting the largest number of caribou safely 

across the Land Bridge within Vitale’s virtual environment, have initial wander targets located 

about 5° North of North-East and jitter values close to zero, which produce caribou that wander 

very little from the herd. Vitale’s program has no separate algorithm controlling caribou group 

kinematics on top of his CA controlling caribou individual kinematics. However, group 

kinematics are implicitly learned through the CA since the caribou implicitly learn that straying 

from the group as little as possible vastly increases their chance of survival. 

2.3 Serious Game Modeling Of Caribou Behavior Across Lake Huron 

Using Cultural Algorithms And Influence Maps. 

 The next major computer program for modeling caribou behavior on the Alpena-

Amberley Land Bridge was written by James Fogarty and detailed in his 2011 masters thesis 

"Serious Game Modeling Of Caribou Behavior Across Lake Huron Using Cultural Algorithms And 

Influence Maps" [Fogarty, 2011]. Fogarty contributed by providing a herd-level path-planning 
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A* algorithm designed to take caribou from one end of the Alpena-Amberley Land Bridge to the 

other. 

2.3.1 Influence Map 

 As a resource for his Cultural Algorithm, Fogarty proposed an agent-based system which 

creates a composite influence map from three influence map “layers” each containing one of 

the three following factors: The availability of food within each square (topographic 

knowledge), the caribou deaths within each square (situational knowledge), and the difficulty of 

the square's terrain (topographic knowledge -- peaks and valleys are considered "difficult 

terrain", as opposed to level ground which is considered "easy terrain"). These three influence 

map “layers” of the complex system are combined together to produce the composite influence 

map containing the final vertex weights used in Fogarty’s A* algorithm. 

2.3.2 A* Algorithm 

 In Fogarty's program, the land bridge map is a navigation map composed of grid cells. A 

waypoint in the graph is the center of each cell. The path to be produced is a connected 

sequence of waypoints. The program uses the A* algorithm to create a path from a given start 

location to a given finish location [Fogarty, 2011]. 

The A* algorithm itself is an extension of Dijkstra's algorithm with a heuristic included. 

Dijkstra's algorithm is a search algorithm for graphs that finds the shortest path through a given 

graph from a given initial vertex to all other reachable points as taken from Graph Theory 
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[Dijkstra, 1959]. A* is a heuristic extension of Dijkstra’s Algorithm that finds the optimal path 

between two points. "Shortest" in this context means not merely the path containing the least 

number of vertices, but the path containing the smallest sum of vertex weights. The path is 

guaranteed to be optimal if the heuristic used is determined to be “admissible”. In other words, 

it is always a conservation estimate of the distance from one point to another. Euclidean 

distances, for example, are admissible [Yao, 2010]. 

 Fogarty's influence map provides a weight for each of his map squares (which can be 

thought of as graph vertices), and is calculated from the factors described in the Influence Map 

subsection. His A* algorithm generates a shortest path across a representative portion of the 

land bridge based on these weights. When Fogarty's A* algorithm actually generates the path, 

it is visualized as a series of blue diamonds projected onto the program's GUI display, as shown 

in Figure 8. 
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Figure 8: An Optimal Path Produced by Fogarty's CA Over a Portion of the Land Bridge 

2.4 "Path Planning in Reality Games Using Cultural Algorithm: The Land  

Bridge Example" 

 Jin Jin, in his thesis entitled "Path Planning in Reality Games Using Cultural Algorithm: 

The Land Bridge Example", provided an extended variant of the A* algorithm for calculating 

caribou paths similar to Fogarty's. Jin's A* variant returns the least-total-value path from a start 

vertex to a terminal vertex. It uses terrain difficulty value, food value, and distance value as the 

factors that determine the raw value of an individual square [Jin, 2011]. The total value is 

determined by these three terms multiplied by a terrain weight, a food weight, and a distance 
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weight respectively. These weights can be either hard coded into the program (as they were in 

the  2012 version of Jin's program within Palazzolo's framework), or they can be learned using a 

Cultural Algorithm. 

 Jin’s algorithm was used as the caribou path-planning algorithm in [Stanley, 2013]. In 

[Stanley, 2014] a multi-path variant was devised by David Warnke. Further discussion of this 

variant can be found in Section 2.7. 

2.4.1 Geometry Value 

 In Jin's approach, the geometry value of a given square (gs) is determined by the terrain 

that the square is located on, whether it be rocks, grass, sand, water, or another terrain type. 

"Easier" terrains have lower geometry values than terrain types deemed "harder". Note that 

the 2012 version of Jin's program effectively contained only two terrain types: those with water 

and those without. Water squares were given a geometry value of 255, whereas non-water 

squares were given a geometry value of 0. 

2.4.2 Distance Value 

 The "distance value" (ds) of a given square in Jin’s model is the Euclidean distance from 

the center of that square to the center of the terminal square. The greater this Euclidean 

distance, the greater the distance value of the square. 
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2.4.3 Food Value 

 The "food value" (fs) of a given square in Jin’s model is the same as the vegetation value 

in that square. This value was taken from Palazzolo's program which provided the framework 

for Jin's program. Generally speaking, Palazzolo's program assigns higher vegetation values to 

squares which are closer to water, and lower vegetation values to squares which are further 

inland. The greater the food value, the more desirable the square. 

2.4.4 Total Value of a Square 

 In this model the total value of a square is given by the following equation: 

௦ ௚ ௦ ௗ ௦ ௙ ௦ 
Equation 1: Total Value of a Square in Jin's A* Variant 

 
 In equation 1, 𝑉௦ is the overall value of the square, Wg, Wd, and Wf are the geometry, 

distance, and food weights, respectively, and gs, ds, and fs are the square's geometry, distance, 

and food values, respectively. 

2.4.5 Finding the Minimal Value-Sum Path 

 Jin's program finds the path from a given starting location to a given ending location 

which has the minimal combined value of all squares within that path. In other words, it finds 

the path, P, out of all possible paths which yields the minimal quantity for T(P), or the total 

combined value of all squares within path P, via the following function. 
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Equation 2: Total Value of a Path P in Jin's A* Variant 

 

2.4.6 Learning Curve Diagram 

 The learning curve diagram for a sample run of Jin's program using his Cultural 

Algorithm is given in Figure 9 while Figure 10 shows the example terrain upon which he 

performed his experiment. The learning curve shows how the system is able to learn an 

improved path over time.  

 
Figure 9: Jin's CA Learning Curve (Total Score vs. Generation) [Jin, 2011] 
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Figure 10: Jin’s Experiment’s Terrain Model [Jin, 2011]. The darker the color the lower the elevation. 

  

2.5 Conclusions Regarding Previous Work 

 As of the time of this writing, none of the components discussed in this chapter are still 

in use today. They have all been replaced by something more advanced. Vitale’s kinematic 

system discussed in Section 2.2 has long since been replaced by more advanced kinematics, the 

subject of which is outside the scope of this dissertation. Also, Fogarty’s and Jin’s caribou path-

planners, discussed in Sections 2.3 and 2.4 respectively, have been replaced by a more 

advanced caribou path-planner developed by Thomas Palazzolo (shown in Figure 5: Overall 

System Component Diagram as “Caribou CA” and discussed later in this dissertation in Section 

4.5 Caribou Path-Planning CA). Nonetheless, there is value in revisiting this previous work as it 

did lay the initial foundations for the work we have done since.  

  



 

 

30 

 

CHAPTER 3: ARCHAEOLOGICAL BACKGROUND 

3.1 Alpena Amberley Ridge Phases 

As the Laurentide Ice Sheet melted, the Alpena-Amberley Ridge underwent three main 

phases as described in the geological literature: The Algonquin Phase, the Lake Stanley Phase, 

and the Nipissing Phase. Of these, the Lake Stanley Phase and Early Nipissing phases could 

potentially have produced artifacts constructed by Paleoindian hunter-gatherers. Here we have 

done some work on the Early Nipissing Phase, however the main focus is on the Lake Stanley 

Phase since this is the phase most likely to yield discoverable artifacts. It is the phase when 

caribou would have been able to use the Alpena-Amberley Ridge as a crossable land corridor. 

The other phases can be addressed by the system in the future. 

3.1.1 Algonquin Phase  

When the Laurentide Ice Sheet initially receded from the Huron region, what will 

eventually become Lakes Huron and Michigan was a single huge body of freshwater called the 

Lake Algonquin (shown in Figure 11). Due to continuing meltwater inflow from the Superior 

Lobe and overall Laurentide Ice Sheet, the Lake Algonquin’s water level continued to rise until 

ca. 12600 BP, reaching a level of 150m above sea level at its maximal extent [Lewis, 2007]. The 

massive amount of water within Lake Algonquin was held in by an unnamed lobe of the 

Laurentide Ice Sheet (see Figure 11) that separated Lake Algonquin from the Champlain Sea and 

hence the Atlantic Ocean [Dyke, 1987]. 
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Figure 11: Algonquin Phase: Map 1703A Sheet 2 of 3 from [Dyke, 1987] 

3.1.2 Lake Stanley Phase 

Ca. 12,600 years BP [Lewis, 2007], the small ice lobe dividing Lake Algonquin from the 

Champlain Sea and the Atlantic Ocean melted. The lobe not only separated the lakewater from 

the ocean, it depressed the land directly underlying it [Dyke, 1987], meaning that when it 

melted, the force of gravity started propelling Lake Algonquin’s lakewater out through the 

North Bay Outlet out into the Champlain Sea and hence to the Atlantic Ocean. The amount of 

meltwater flowing into Lake Algonquin from the Laurentide Ice Sheet was outstripped by the 

amount of lakewater flowing out of Lake Algonquin through the North Bay Outlet, thus Lake 

Algonquin’s water level began gradually declining. By around 800 years later (ca. 11800 BP) 

[Lewis, 2007], what was once the Lake Algonquin became divided into four much smaller lakes 

as shown in Figure 12: Lake Chippewa in the Southwest, Lake Hough in the Northeast, Lake 
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Stanley, and a smaller unnamed lake that was separated from Lake Stanley by the emergent 

Alpena-Amberley Land Bridge, which was formerly simply a tall ridge under Lake Algonquin 

[Dyke, 1987]. 

The Lake Stanley Phase is the phase of greatest interest for Alpena-Amberley research. 

All of the artifacts that Dr. O’Shea has currently found are most likely to have come from this 

phase. During this phase, the Alpena-Amberley Land Bridge was a geographic bottleneck. Herds 

of migrating animals moving through it would have been relatively constrained, and 

Paleoindian hunter-gatherers could take advantage of that [O’Shea, 2013] [Lemke, 2016]. 

 
Figure 12: Lake Stanley Phase: Map 1703A Sheet 2 of 3 from [Dyke, 1987] 
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3.1.3 Early Nipissing Phase 

Eventually, the pace of the draining of the lakewater from the Great Lakes System into 

the Atlantic Ocean through the North Bay Outlet started to slow due to the postglacial rebound 

of the area [Dyke, 1987]. In other words, the North Bay Outlet begins to “spring back up” after 

the ice which once compressed it has melted away, meaning that gravity is now pushing the 

lakewater out through the Outlet at a slower rate. After ca. 11200 BP, the water flowing from 

Lake Agassiz into the Huron Basin begins to exceed the water flowing out of the Huron Basin 

through the North Bay Outlet. the water level in the Huron Basin is able to rise. The Alpena-

Amberley Land Bridge was hence overrun at a low point in the center-East by the rising water, 

hence Lake Stanley and the smaller unnamed lake that were formerly separated by the Land 

Bridge coalesced into a single larger lake as shown in Figure 13. The only remnants of the Land 

Bridge are two peninsulas with a smattering of small islands between them which used to be 

high points during the Lake Stanley Phase. 

When this phase arrives, caribou were no longer able to use the Alpena-Amberley Ridge 

as a corridor to and from what is now Alpena, USA and what is now Amberley, Canada. 

However, there may still have been very choice fishing spots on the peninsulas and islands 

during this phase that Paleoindian hunter-gatherers could have used. 
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Figure 13: Early Nipissing : Map 1703A Sheet 2 of 3 from [Dyke, 1987] 
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Figure 14: Alpena-Amberley Ridge Choke Points [NOAA, 2012] 

 
Referring to Figure 14, around the time of transition from the Lake Stanley Phase to the 

Nipissing Phase ca. 8400 BP, point β is overrun by rising water, and the Alpena-Amberley Ridge 

becomes no longer a land bridge but rather two peninsulas. Afterwards when point α is overrun 

by rising water, the Alpena-Amberley Ridge becomes two peninsulas with knolls dotting various 

places in the lake between them. 
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3.1.4 Later Nipissing Phase 

 
Figure 15: Later Phase: Map 1703A Sheet 2 of 3 from [Dyke, 1987] 

 

Eventually, the inexorably rising water flowing into the Great Lakes system from Lake 

Agassiz causes lakes Stanley and Hough to coalesce into a single large lake called Lake Stanley-

Nipissing as shown in Figure 15. At this point, all remnants of the Alpena-Amberley Land Bridge 

have been submerged beneath lakewater, where they remain to this day. 

3.2 C. F. M. Lewis’s Interpretation 

 In 2016, C. F. M. Lewis published “Understanding the Closed-Basin Phases (Lowstands) 

of the Laurentian Great Lakes and their Significance,” in which he argued that the lowstand lake 

levels of the Early Holocene Great Lakes were significantly lower than what was surmised by 

earlier geologists such as Dyke and Prest. Lewis argued that outflow through avenues such as 
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the North Bay Outlet was not the only way that the Early Holocene Great Lakes lost water 

during these lowstands. The lakes also lost water through unusually intense evaporation caused 

by an arid climate that was produced by the atmospheric effects of the remnants of the 

Laurentide Ice Sheet [Lewis, 2016]. We believe Lewis’s arguments to be plausable, and indeed 

the water levels published in [Lewis, 2016] are what we are using for this dissertation work. 

(See Figure 25 and Figure 28 in the next chapter.)  

3.3 Locating Occupational Structures 

 This dissertation project is mainly interested in locating occupational structures 

constructed by Paleoindian hunter-gatherers while the Alpena-Amberley Ridge was a crossable 

land corridor (ca. 11800 BP - 8400 BP). Since that region’s climate at that time was semi-arctic, 

one would expect to see structures similar to those produced by modern-day sub-arctic hunter-

gatherers such as the Nunamiut studied by Lewis Binford [Binford, 1978b]. Using this previous 

work as a guide, we provide a list of several types of occupational structures associated with 

sub-arctic hunter-gatherer communities that we expect to find using our system. The structure 

types listed here are by no means an exhaustive list of every structure type that could 

conceivably be left by a Paleoindian hunter-gatherer group. However, in creating this list we 

have to take into account the ability of each occupational structure to have been both 

preserved and also be identifiable by modern-day archaeologists. Although freshwater is an 

excellent preservant, it is still the case that some types of structures will have fared worse than 

others in withstanding thousands of years of the ravages of time. Thus, the selected 
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occupational structures are generally bigger, heavier structures such as camps, hunting blinds, 

and drive lines. However, it should be recalled that smaller artifacts are often found near larger 

artifacts which they are relevant to.  

3.3.1 Hunting Blind 

Hunting blinds of the type found on the Alpena-Amberley Ridge are structures made of 

several large stones that form a rough enclosure for a particular space. Their most obvious 

purpose was to keep the animals from seeing the hunters, so the animals would wander into 

spear or atlatl range where they could be killed. Hunting blinds may be either circular (as shown 

in Figure 16) or V-shaped (as shown in Figure 17). The V-shaped blinds would be useful only 

during a particular season, depending upon the predominant direction of game movement. V-

shaped blinds facing north would have been used in the fall, whereas V-shaped blinds facing 

south would have been used in the spring. 
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Figure 16: Photo taken in June 2011 of the "Dragon Blind", a feature found in Area 1 which is thought 

to be a prehistoric hunting blind [Sonnenburg, 2015]. 
 

 
Figure 17: "V-shaped" hunting blind found in Area 3 [O’Shea, 2013]. 
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3.3.2 Drive Lane 

 According to O’Shea, drive lines, also referred to in the literature as “drive lanes” are “a 

feature designed to channel movement toward a predictable kill zone”. Because “the occupants 

of the AAR [Alpena-Amberley Ridge] were not interested in creating a lot of extra work for 

themselves” [Sonnenburg, 2015], drive lanes on the Alpena-Amberley Ridge were often 

augmented by straight-edges within the natural terrain [O’Shea, 2013] as well as other “natural 

alignments and barriers that this post-glacial landscape offered” [Sonnenburg, 2015]. In 

environments such as the AAR, other structures such as hunting blinds are often found in 

association with drive lines because both can work as a single system in order to maximize the 

potential for killing caribou [O’Shea, 2013] [Sonnenburg, 2015]. 

 
Figure 18: Acoustic Image of Dragon Drive Lane (A) in Assoc. with Dragon Blind (B) [O’Shea, 2009] 
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3.3.3 Observation Stand  

 
Figure 19: Observation Stand at Kollutuk. Fig 7.37 in [Binford, 1979] 

 
Lewis Binford describes an observation stand, also referred to in the literature as an 

“observation site”, as “a station […] which is occupied and used basically for collecting 

information on game presence or movement” [Binford, 1980]. Once prey is found, the observer 

would signal to hunters in waiting that the prey has arrived. Since there were of course no 

telephones or radio signals in prehistory, ancient observers would probably have lit a signal fire 

to indicate the presence of prey. Typically, observation stands are located on high points 

overlooking lower points [Binford, 1980]. If archaeologists were to find a fire ring on a high 

point, they might surmise that this was a prehistoric observation stand. Figure 19 is an example 

of an observation stand described by Binford from his studies of the Nunamiut [Binford, 1979]. 
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3.3.4 Residential Camp 

 
Figure 20: Igloos of Snow Village at Oo-Pung-Ne-Wing [Hall, 1865] 

 

According to Binford, a residential camp, also referred to as a “residential base”, 

“residential village”, or “village”, is “the hub of subsistence activities, the locus out of which 

foraging parties originate and where most processing, manufacturing, and maintenance 

activities take place” [Binford, 1980]. It also provides the central living quarters for the hunter-

gatherer tribe. According to Dr. John O’Shea, a successful find of a residential campsite is 

considered the "Holy Grail" of the project due to their central position within the hunter-

gatherer economy. Figure 20 shows an example of a residential village located on Oo-Pung-Ne-

Wing Island in the modern-day province of Nunavut located in the Canadian High Arctic. 
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3.3.5 Logistical Camp  

 
Figure 21: Model of Alaska Eskimo House Group [Gleason, 1915] 

  

Binford describes a "logistical zone" as "the zone which is exploited by task groups who 

stay away from the residential camp at least one night before returning" [Binford, 1982]. This 

zone begins to be exploited as the area immediately around the residential camp begins to 

become less productive due to overexploitation. These logistical zone task groups mentioned 

by Binford also often build a "logistical camp" so they will have somewhere to sleep since they 

are going to be away from the main residential camp for one night or more. If archaeologists 
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find a camp that resembles a mini-version of a residential camp, they might take this to be a 

prehistoric logistic camp. For the purposes of the Alpena-Amberley Land Bridge research 

project, a logistical camp would probably be the second-most valuable find besides a main 

residential camp. Figure 21 provides a diorama model of a logistical camp. 

3.3.6 Fishing Field Camp  

 
Figure 22: Fishing Field Camp [UWLSC] 

University of Washington Libraries, Special Collections, AWC6362 
 

Binford describes a fishing field camp is a small camp where fishermen base their fishing 

operations [Binford, 1980]. In our particular case, a cache of prehistoric fishhooks might be 
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indicative of a prehistoric fishing field camp. Also, a location containing multiple prehistoric 

fishhooks wedged in rocks and logs might indicate that a prehistoric fishing field camp was 

located nearby. However, the most telling finds would be the remnants of a fish trap or fish 

drying racks, such as those displayed in Figure 22, which is a photograph taken in the early 20th 

century of a small fishing field camp built by modern-day Inuit near the native village of Ekuk, 

located on the Nushagak River in Alaska. A fishing field camp would be an excellent find since it 

would be interesting to find out what type of fishhook and fish trap technology the Alpena-

Amberley hunter-gatherers might actually have had. Multiple fishing field camp finds from 

various time periods would be even better because archaeologists could see the progression of 

fishhook evolution among hunter-gatherers in the region. 
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3.3.7 Small Game Trapping Structure 

 
Figure 23: Inuit Fox Trap [Stopp, 2002] 

 
Figure 23 is an example of a small game trapping structure, specifically a fox trap, built 

by ancient Inuit. These prehistoric structures had no moving parts, rather they were cleverly 

designed with openings just large enough so that a small animal could enter into them, but 

once inside, the animal could not get out. 
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3.3.8 Cache 

 
Figure 24: Inuit Meat Cache [LAC, 1930] 

 
The purpose of a cache (example shown in Figure 24) is to store recently killed meat for 

later consumption. Thus, caches are typically found near kill sites [Binford, 1980]. Prehistoric 

caches were essentially a crude, pre-modern version of today’s electric freezers which only 

worked when temperatures were low enough for meat to naturally freeze: In order to prevent 

spoilage, the meat would have had to be cached during the fall or winter. 

3.4 Conclusions 

 This concludes our review of the geological and archaeological literature regarding Early 

Holocene conditions pertinent to the Alpena-Amberley Land Bridge and what structures may 

have existed there. We now discuss how we create a virtual model of this ancient environment.  
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CHAPTER 4: MODELING THE PREHISTORIC ENVIRONMENT 

4.1 Introduction to Virtual World System 

In the previous chapter, we provided an overview of the paleogeology of the Alpena-

Amberley Ridge Region during the Early Holocene along with the occupational structure types 

that might be expected to have existed there during that time. The next step is to create an 

actual computer model of the Alpena-Amberley Ridge Region during the Early Holocene. To 

that end, the Wayne State University Land Bridge Team co-created the Virtual World System. A 

component diagram for the Virtual World System can be found in Figure 25. 
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Figure 25: Virtual World Subsystem Component Diagram 
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4.1 Experimental Area and Heightmap 

Topographical data from the National Oceanic and Atmospheric Administration (NOAA) 

was used as the basis for our Virtual World model. We decided to divide the Alpena-Amberley 

Ridge Region into 14 regional data files, each of which represents regions of 25km x 25km in 

dimension, each of which is further divided up into 10,000 data points. Each of those data 

points itself is 250m x 250m in dimension. Figure 26 contains an example segment from one of 

these region data files. Each data point contains initial information on latitude, longitude, water 

flow direction, terrain height, vegetation level, and whether the point is contained within a 

standing water body. Given this information, a simulated topography for the Land Bridge can be 

automatically constructed, as seen in Figure 27. 

 
Figure 26: A Segment of a Region Data File 
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Figure 27: Regions Key 

 

4.2 Topographic (Elevation) Modeling 

 The topography itself plays an important role in any accurate model of the environment. 

It is an important factor for both path selection by caribou and for the selection of structure 

locations by ancient hunters. The topography is determined by elevation data for each of the 

points. This data has been obtained from the National Oceanic and Atmospheric Administration 
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[NOAA, 2012]. For the purposes of the model, we are not taking land erosion into account in 

our simulation.  

4.3 Water Level Modeling 

  The change of water levels is the single greatest source of environmental variability for 

the  period of the simulation. This is because it determines which portions of the landscape are 

underwater, and hence which parts of the map are available for hunters to place their artifacts. 

In [Lewis, 2016], C. F. M. Lewis has provided up-to-date estimates of Huron basin water level 

data from 11,800 BP to 7,600 BP. These estimates came from the radiocarbon dating of the 

remains of various prehistoric organisms such as, tree stumps, driftwood, etc. Lewis's latest 

water level data [Lewis, 2016] will be used in order to produce water levels for our simulation 

period (11800-8400BP). This water level data is shown visually in Figure 28. 
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Figure 28: Lewis Water Level Data [Lewis, 2016] 

 
Note that we did not include in our water level data the highstands indicated with labels 

“2a”, “2b”, “3”, and “4” in Lewis’s water level diagram. Dr. O’Shea believes that these were in 

fact local phenomena rather than phenomena affecting the entirety of the prehistoric Huron 

Basin. 
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4.4 Vegetation Modeling 

 The vegetational component of the prehistoric Alpena-Amberley Land Bridge would 

logically have been similar to that in modern postglacial tundra environments today. It would 

have consisted mostly of lichens, mosses, small shrubs, with perhaps a small smattering of fir 

trees. 

 The vegetation model in our system has been created in consultation with 

Anthropological Archaeologist Dr. Ashley Lemke. The model was created on the precept that for 

vegetation it is much more desirable to be on a slope that faces south than a north-faced slope.  

The amount of Vegetation V at point p is: 

𝑉(𝑝) = ൤ ฬ
1

2
 sin 𝛼 + |cos 𝛼| −  

1

2
ฬ · sin 𝜃 + (1 − sin 𝜃) ൨ · (1 − sin 𝜃) 

Equation 3: Vegetation Equation 
 

where 𝜃 is the angle of the slope of a point of land deviated from horizontal and 𝛼 is the 

deviation of that slope from due East. V(p) is in the range [0.0, 1.0], where a value of 0.0 means 

that point p is completely bare of vegetation, while a value of 1.0 means that point p is 

completely covered with vegetation. 

Shown in Figure 29 is a diagram of Area 1 of the Alpena-Amberley Land Bridge with the 

vegetation filled in. The darker areas are places with heavier vegetation, while the lighter areas 

contain less vegetation. The white areas are vegetation-free. 
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Figure 29: Area 1 Vegetation Example 

 

4.5 Caribou Path-Planning CA 

 The Virtual World system needs a way to create migration routes for the virtual caribou. 

To this end, Thomas Palazzolo designed and implemented a path-planning CA based on the A* 

algorithm. This caribou path-planning CA takes an entry point and an exit direction as inputs, 



 

 

56 

 

and then plots waypoints across the landscape, which the virtual herds follow to their 

destination. (See “Caribou path-planning CA” in Figure 25.) 

4.6 Time Engine 

 In Chapter 3, we detailed the drastic environmental changes that befall the Great Lakes 

Region throughout the Early Holocene. During this time, the Alpena-Amberley Ridge Region was 

clearly a very tenuous, volatile environment. Because environmental change over time played 

such a major role, it became clear that our Virtual World program would have to have a 

temporal component. The “Time Engine” was thus created for this purpose. Using the Time 

Engine, the user or the system itself can choose a year and a season, and then the Time Engine 

supplies the relevant environmental data from its time series databases to the Virtual World’s 

environmental generation engine so that it generates an accurate reconstruction of the actual 

Land Bridge environment corresponding to that given point in time. The Time Engine was 

designed to handle time series data for water levels, temperature, and any number of other 

environmental variables in a time series format. For the purposes of [Stanley, 2013], the team 

decided at the time to use only water level data in the temporal engine for sake of simplicity. 

However, for the purposes of the new work done in this dissertation, the Time Engine also 

supplies the Caribou CA with the current season so that the Caribou CA generates north-to-

south migrations are generated during Fall, and south-to-north migrations during Spring. 
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4.6.1 Time Engine Algorithm 

1. A component that needs information about a temporally-dependent quantity sends a 
request to the Time Engine. 
 
2. The Time Engine picks out the database associated with the requested quantity. 
 

a.) The Time Engine determines the current time (Year BP, Season). 
 

b.)  The Time Engine determines if there is a database entry in the relevant quantity 
database associated with the current time. 

 
i.) If there is, then the time engine returns the entry to the requester. 
ii.) If there isn’t, then the time engine uses linear interpolation to 

approximate the requested quantity, then returns the approximation to 
the requester. 

 

4.6.2 Time Engine and Water System 

 Right now, there are two components in the Virtual World Program that use the Time 

Engine. The first of these is the water system. When the program needs to know what the 

water level is for a given time, it calls the Time Engine, which provides either a direct value from 

the database containing the [Lewis, 2016] water level data or an interpolated value. That value 

tells the program where the water table is for the requested year and season. Then, the water 

flow component activates and uses Thomas Palazzolo’s water flow algorithm to determine 

exactly where all the water is going to end up during the given year and season. 

4.6.3 Time Engine and Caribou CA 

 The second usage of the Time Engine is regarding the Caribou CA. The caribou migration 

pattern is different depending upon the season: If it is fall, then the caribou start in the 
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northwest and migrate to the southeast. If it is spring, then the caribou start in the southeast 

and migrate to the northwest. So when the Caribou CA is about to start, it sends a request to 

the Time Engine for a starting location and a direction based upon the current season. If the 

Time Engine determines that the current season is Fall, it provides the caribou with an entry 

point in the northwest of Region 6 and tells them to exit through the southeast of Region 9. On 

the other hand, if the Time Engine determines that the current season is Spring, it provides the 

caribou with an entry point in the southeast of Region 9 and tells them to exit through the 

northwest of Region 6.  

4.6.4 Time Engine Example 

Figure 30, Figure 31, and Figure 32 all show the same exact location (382310E, 

4964730N, UTM-16) but at three different times in prehistory: 9888 BP, 7540 BP, and 7000 BP. 
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Figure 30: Test Environment 9888 YBP (382310 Easting, 4964730 Northing) 

 

 
Figure 31: Test Environment 7540 YBP (382310 Easting, 4964730 Northing) 
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Figure 32: Test Environment 7000 YBP (382310 Easting, 4974730 Northing) 

 

4.7 Environmental Parameter Database 

 With regard to the rest of this dissertation, the main purpose of the Virtual World 

system is to determine environmental parameter values for each of the relevant timesteps. 

Because the relevant time period is 11800BP-8400BP (inclusive), and we are using a timestep 

size of 200 years, there are 18 timesteps, each of for which 13 different pieces of data have to 

be collected (see Table 1 in Chapter 5) for each of the 40,000 locations in Regions 6-9. This gives 

a grand total of 9,360,000 pieces of data needed for the Expert System to be discussed in the 

next chapter. We store this data in a database (labeled “Environmental Parameter Database”) 

in Figure 25: Virtual World Subsystem Component Diagram. 
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4.8 Conclusion Regarding the Virtual World System 

 The Virtual World System is an excellent tool in its own right, as it allows the user to 

“travel back in time” to see what the environment was like in the ancient past. As we have 

demonstrated in this chapter, it also serves as an excellent subsystem for this dissertation 

project; the collection of the data that we need for the rest of this project could not happen 

without it. Finally, the Virtual World System is by no means limited by the Alpena-Amberley 

Land Bridge metaproject. Given relevant heighmap data, water level data, and a time frame for 

another part of the world that archaeologists are interested in studying, the Virtual World 

System should be usable in other projects as well. 
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CHAPTER 5: AGENT-BASED APPROACH 

5.1 Intro to Agent-Based Approach 

The work done in [Stanley, 2013] and expanded upon in [Stanley, 2014] was the first 

attempt at creating a system for the prediction of sites potentially containing occupational 

structures. Our approach was based on two central premises. Firstly, if a location was used 

more frequently by ancient hunters, there is a greater chance that archaeologists will find 

artifacts there rather than in another location that was not used as often. Secondly, in deciding 

where to place their artifacts, ancient hunters were influenced by environmental conditions, 

their own intelligence, and the stored cultural knowledge of their society.  

In this approach, referred to as the “agent-based approach”, there are a number of 

agents, each of which is responsible for placing an occupational structure of a given type 

somewhere in the landscape during each generation. Each agent has a set of beliefs about the 

relative importance of various factors within the environment, such as distance to the caribou 

trail, height above the caribou trail, and distance to the closest other occupational structure of 

the same type. The agents have only partial knowledge of the landscape. In other words, the 

agents are only able to choose certain portions of the landscape, i.e. those that have been 

recently explored or re-explored, to place their structures. Each agent “scores” each location 

within this knowledge bank according to its own personal beliefs about pertinent geographic 

categories, and places its structure in the highest-scoring location according to its beliefs. 
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There is then a single-objective fitness function which is used to calculate the “true” 

scores for each of the locations at the given timestep. Each of the agents is then ranked 

according to the “true” score of its location. The top 10% are admitted into the elite.  

Meanwhile, each square within a specified radius of any agent becomes “discovered” 

(or rediscovered) and is admitted into the topographic knowledge base. Then each square in 

the topographic knowledge base that has not been “rediscovered” within a certain number of 

generations is “forgotten” from the topographic knowledge base. 

Then, the elite reproduce. Genetic operators are used to create children with beliefs 

which are various recombinations of those of the parents. Then, the time engine moves to the 

next timestep, and the fitness function is made to calculate the “true scores” for each location 

once again since the dynamic environment has now changed. The entire process is started over 

again until a stop condition is reached.   

Originally, the agent-based algorithm was used only to predict the locations of Hunting 

Blinds. However, it was eventually expanded to be able to generate prediction maps for the 

Observation Stand and Fishing Field Camp structure types as well. 

5.2 Agent-Based Algorithm 

On the following pages is a listing of the core algorithm used in the agent-based 

approach [Stanley, 2013]: 
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Definitions: 

Let 𝐵ത  be the belief space. 

Let 𝑃ത be the population space. 

 

Let a belief space entry  𝐵௜ ∈  𝐵ത ∶ 𝐵௜ = (𝐵௜೗ೌ೟
 , 𝐵௜೗೚೙

, 𝐵௜೏೟೎
, 𝐵௜೓ೌ೎

, 𝐵௜೏೎೚
, 𝐵௜೏೟ೢ

) 

where 𝐵௜೗ೌ೟
 , 𝐵௜೗೚೙

, 𝐵௜೏೟೎
, 𝐵௜೓ೌ೎

, 𝐵௜೏೎೚
, and  𝐵௜೏೟ೢ

 are respectively the 

values for the latitude, longitude, distance to the caribou 

trail, height above the caribou trail, distance to the 

closest hunting blind, and distance to water that are 

recorded in 𝐵௜.     

Let a population member  𝑃௜ ∈ 𝑃ത ∶ 𝑃௜ = (𝑃௜೗ೌ೟
, 𝑃௜೗೚೙

, 𝑃௜೏೟೎ೢ
, 𝑃௜೓ೌ೎ೢ

, 𝑃௜೏೎೚ೢ
, 𝑃௜೏೟ೢೢ

) 

where 𝑃௜೗ೌ೟
 , 𝑃௜೗೚೙

, 𝑃௜೏೟೎ೢ
, 𝑃௜೓ೌ೎ೢ

, 𝑃௜೏೎೚ೢ
, and 𝑃௜೏೟ೢೢ

 are respectively the 

values for Pi’s latitude, Pi’s longitude, Pi’s weight for 

the distance to caribou trail category, Pi’s weight for the 

height above the caribou trail category, Pi’s weight for the 

distance to the closest other hunting blind category, and 

Pi’s weight for the distance to water category. 

 

Define weight function 𝑤 ∶  𝐵ത × 𝑃ത  →  ℝ , given for some 𝐵௜ ∈ 𝐵ത 

and some 𝑃௝ ∈ 𝑃ത by 

𝑤(𝐵௜ , 𝑃௝) = 𝐵௜೏೟೎
𝑃௝೏೟೎

+ 𝐵௜೓ೌ೎
𝑃௝೓ೌ೎

+  𝐵௜೏೎೚
𝑃௝೏೎೚

+ 𝐿𝑜𝑔ଵ଴(𝐵௜೏೟ೢ
𝑃௝೏೟ೢ

) 

 

Define the fitness function 𝑓 ∶  𝑃ത  →  ℝ , given for some 𝑃௜ ∈ 𝑃ത 

by: 

 𝑓(𝑃௜) =  ቊ
−30𝑃௜೏೟೎ೢ

+ 50𝑃௜೓ೌ೎ೢ
+ 8𝑃௜೏೎೚ೢ

        𝑖𝑓 (𝑃௜೗ೌ೟
 , 𝑃௜೗೚೙

) 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑛𝑑𝑒𝑟𝑤𝑎𝑡𝑒𝑟

−∞                                                            𝑖𝑓 ൫𝑃௜೗ೌ೟
 , 𝑃௜೗೚೙

൯ 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟𝑤𝑎𝑡𝑒𝑟        
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Algorithm: 

Initialize t = start year before present. 

 

Loop While (t = t – timestepSize) ≥ end year: 

(Update Environment Variables): Use the caribou algorithm and 

the environment engine to update dtc (distance to 

caribou), hac (height above caribou), dto (distance to 

closest other hunting blind), and dtw (distance to 

water) for all of the locations in the search area for 

time t. 
 

(Population Placement Phase): For each Pi in 𝑃ത, find the Bx in 𝐵ത 

that maximizes 𝑔(𝑃௜ , 𝐵௫). Then, set 𝑃௜೗ೌ೟
 = 𝐵௜೗ೌ೟

 and      

𝑃௜೗೚೙
=  𝐵௜೗೚೙

.  Then, set 𝑃௜೏೟೎
, 𝑃௜೓ೌ

, 𝑃௜೏೟೚
,  and 𝑃௜೏೟ೢ

 to the 

corresponding dtc, hac, dto, and dtw values supplied 

at the location corresponding to (𝑃௜೗ೌ೟
,𝑃௜೗೚೙

)for time t by 

the environment engine. Record (𝑃௜೗ೌ೟
,𝑃௜೗೚೙

) in heatmap. 

 

(Population Fitness Evaluation/Evolution Phase): ∀𝑃௜ ∈ 𝑃ത,   𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓(𝑃௜) . 

The bottom 90% of performers become mutated versions 

of the top 10%, then undergo crossover. The top 10% of 

performers remain unaltered.  

 

(Belief Space Expansion Phase): Then, for each 𝑃௜ ∈ 𝑃ത, for each 

location L such that Llat, Llon is within a 3-square Moore 

radius of Plat,  Plon, BL in B = (Llat,  Llon,  Ldtc,  Lhac,  Ldto,  Ldtw). 

 

(Belief Space Culling Phase) ∀𝐵௜ ∈ 𝐵ത if 𝐵௜ was not updated for ≥10 

timesteps, remove 𝐵௜ from 𝐵ത. 
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5.3 Component Diagram for Agent-Based System 

 
Figure 33: Component Diagram for Agent-Based System 
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5.4 Results 

 Here are several of these frames from representative years showing the learning 

process of the agent-based CA. We also provided the location of the Funnel Drive Structure (the 

most complex artifact found to date on the Alpena-Amberley Ridge [O’Shea, 2013]) within each 

of these year frames for comparative purposes. 

5.4.1 Projected Hunting Blinds in 11800 BP 

In 11800 BP, the Alpena-Amberley Ridge first became a crossable land bridge. Since this 

is the first generation, hunting blinds are simply placed in random non-water squares. 

Projection results are shown in Figure 34. 
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Figure 34: Projected Hunting Blinds in Land Bridge Area 1 in 11800 BP [Stanley, 2013] 

 

 
Figure 35: 2013 Yearframes Map Key 
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5.4.2 Projected Hunting Blinds in 11750 BP 

After just 10 generations (50 years), the algorithm has learned to have the hunting 

blinds tightly track the caribou trail. However, it has not yet learned to keep the hunting blinds 

at a reasonable distance from one another, and hence many of the hunting blinds are still losing 

a lot of points as the result of tight clustering. 

 
Figure 36: Projected Hunting Blinds in 11750 BP [Stanley, 2013] 



 

 

70 

 

5.4.3 Projected Hunting Blinds in 11700 BP 

By this time the agents have learned to space out adequately, as well as to stay close to 

where the caribou path is most likely to be. A few are also seeking out high ground in order to 

gain extra points for having a vantage above the caribou. Most of the results from the individual 

generations from here on look more or less similar to this figure (Figure 37). 

 
Figure 37: Projected Hunting Blinds in 11700 BP [Stanley, 2013] 
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5.4.4 Projected Hunting Blinds in 11370 BP 

In Figure 38, when the simulated hunting blind agents chose the spot where Dr. O'Shea 

found the Funnel Drive Structure, it is almost always during the Early Stanley and Mid Stanley 

lowstand periods, which run from about 11430 BP to 10000 BP. That is when the water level is 

the lowest [Lewis, 2007], and the caribou path responds by running very close to where the 

Funnel Drive Structure was found. The actual caribou path seldom actually runs through the 

spot, but there is a Y-shaped hill very near it, and the hunting blinds often choose this area in 

order to gain a vantage point above the caribou. Also, the hunting blind agents are trying to 

space themselves out adequately to gain points for doing that, so as a consequence, a hunting 

blind will often choose the exact spot where Dr. O'Shea actually found one during the Early and 

Mid Stanley lowstand periods. Already, four of them have chosen the hill just a few generations 

into the Early and Mid Stanley periods. 



 

 

72 

 

 
Figure 38: Projected Hunting Blinds in 11370 BP [Stanley, 2013] 
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5.4.5 Projected Hunting Blinds in 9400 BP 

Figure 39 shows the typical behavior for the Mid-Late Stanley period, when lake levels 

are quite high. The caribou path is now significantly far to the southwest of the Funnel Drive 

Structure's location. The AI hunting blind agents now no longer have incentive to go near the 

drive’s location again. A new desirable spot now emerges on a hill overlooking the southeastern 

part of the caribou path. 

 
Figure 39 Projected Hunting Blinds in 9400 BP [Stanley, 2013] 
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5.4.6 Projected Hunting Blinds in 8360 BP 

Figure 40 represents the "final hours" of the Late Stanley phase, and therefore the end 

of the Alpena-Amberley Land Bridge. The flooding at the end of the Late Stanley period, unlike 

earlier instances of flooding, will be permanent. A good deal of the land area has been 

submerged already, and the land bridge as a whole is destined to enter the "island phase" in 

about 10 years (two generations). Once this happens, caribou will no longer be able to use the 

Alpena-Amberley Land Bridge as a crossing point, and it will thus cease to be an attractive 

caribou hunting location. Eventually, even the "island" left in the center will disappear beneath 

Lake Huron as lake levels continue to rise. 
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Figure 40: Projected Hunting Blinds in 8360 BP in [Stanley, 2013] 
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5.5 Learning Curve for Agent-Based CA 

 We now provide a "learning curve" graph in Figure 41 of the 10-generation moving 

average of the score of the highest-scoring hunting blind vs. the year. 

 
Figure 41: Learning Curve 10-Generation Moving Average in [Stanley, 2013] 

 
 The learning curve seen here is unlike most other CA learning curves. However, there 

are important reasons for that, the most important being that our objectives are not static. 

Caribou paths, and most importantly water levels, are subject to sudden and unpredictable 

change. What had been an excellent hunting spot for a few or even many generations may not 

be so good, or may be completely unavailable, the next generation. In addition, the four major 

catastrophic water rises which befell the land bridge will force the agents to adjust their 

strategies, because they create significant periods in which the caribou do not even attempt to 

cross the land bridge, creating a major disruption for the hunters. Nevertheless, we can see that 

the algorithm is indeed learning. Notice how the 10-generation moving average reaches its 

overall peak during Mid Stanley, even though the water level is lower (and hence more hunting 
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spots are available) during Early Stanley. Also, even the Late Stanley peak for the 10-generation 

moving average is higher than for the Early Stanley period, even though the water level is 

significantly higher in Late Stanley than Early Stanley. It is only during Mid-Late Stanley, when 

the water level is extremely high and there are many fewer good hunting spots available than in 

the other periods, that the peak fails to exceed that of the Early Stanley period. 

5.6 Heatmap 

 In order to fully demonstrate the results, we created another program which generates 

different kinds of heat maps, including one that shows the average number of hunting blinds in 

a square over the 16 simulation runs vs. the 690 generations (3,450 years) that the land bridge 

is crossable. The program also places a square cyan overlay around the location where Dr. 

O'Shea found the Funnel Drive Structure (4964407.461N, 0381773.819E are the exact 

coordinates). The quadrant of this heatmap that is pertinent to the Funnel Drive Structure is 

shown in Figure 42. (For the full heatmap, please see [Stanley, 2014].) 
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Figure 42: Artifact Heatmap in [Stanley, 2013] 
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5.7 David Warnke’s Multipath Results 

Around the time of the publication of the initial results in [Stanley, 2013], Dr. Robert 

Reynolds and David Warnke suggested the possibility of multiple entry points for the caribou 

and provided us with the following overlay in Figure 43. 

 
Figure 43: Team's 2013 Results vs. Multipath Scenario Caribou Projections 

 

In Figure 43 above, the dotted lines indicate conjectured caribou paths and the ? 

symbols denote the 20 most highly predicted artifact locations as published in [Stanley, 2013]. 

Reynolds and Warnke devised a new experiment with the caribou entering Area 1 from 

multiple locations before converging into a single path and leaving to the south. This 
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experiment covered the years from 11405 BP to 11244 BP with a timestep of 1 generation per 

year. Figure 44 contains a screenshot from this experiment which was included in [Stanley, 

2014]. The black dots designate the hunting blind predictions while the white line is the caribou 

path. 

 
Figure 44: Screenshot from David Warnke's Multipath Experiment [Stanley, 2014] 
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5.7.1 80x80 map 

 Figure 45 below, is a plot of the results of Warnke’s experiments against Dr. O’Shea’s 

Area 1 finds as of April 2014 as reported in [Stanley, 2014]. 

 

 
Figure 45: Predictions from Warnke’s Multipath Experiment vs. Actual Finds 80 x 80 Map 
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5.7.2 40x40 map 

 We also investigated Figure 45’s data on a 40x40 grid, shown in Figure 46 below 

[Stanley, 2014]. 

 
Figure 46: Predictions from Warnke’s Multipath Experiment vs. Actual Finds 40 x 40 Map 
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5.8 Results from Fall 2016 

 
Color No. of gens that the square contained an Obs. Stand as a % of the time that Land Bridge was crossable (i.e, 690 gens; 3,450 yrs) 
Black >20% 
Brown 10-20% 
Red 5-10% 
Orange 3-5% 
Yellow 2-3% 
Light Yellow 1-2% 
Blue <1%, but an AI Observation Stand occupied this square at least once during the simulation. 

Figure 47: Observation Stand Heatmap 
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In Fall 2016, we produced the heatmap in Figure 47 for Dr. O’Shea for the Observation 

Stand structure type. As part of his 2016 expeditionary season, he went out to two highly-

predicted locations designated on our heatmap. These were 375000E, 4971000N and 373200E, 

4970300N (UTM-17). In the latter location, Dr. O’Shea found a potential Observation Stand in 

association with a potential Drive Line and Hunting Blind.  

5.9 Lingering Issue 

 The main issue that continually haunted the agent-based approach was the inability to 

find “the perfect balance” between occupational structures predicted and locations flagged. It 

was possible to tweak the agent-based approach to flag less locations, by for instance, 

decreasing the number of agents or increasing the threshold needed to flag a location. 

However, getting the system to flag less locations invariably resulted in less structure 

predictions, since structures are inside of locations. Conversely, there were also ways to make 

the agent-based approach predict more structures, by for instance, increasing the number of 

agents or decreasing the threshold needed to flag a location. However, doing any of these 

things resulted of course in an increased number of flagged locations. For some time, the “way 

forward” seemed to be to change from an agent-based system to a rule-based expert system, 

and then to go through the Anthropological Archaeology literature to find “the perfect ruleset” 

in order to generate “the perfect balance” of locations flagged and structures predicted.  
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5.9.1 Change to Rule-Based Expert System and Search for the “Perfect Ruleset” 

 In 2017, the agent-based system was indeed “mothballed” and the change to a rule-

based expert system (fully described in Chapter 6) was indeed made. However, the search for 

“the perfect ruleset” for describing hunter-gatherer settlement systems on the Alpena-

Amberley Land Bridge proved just as fruitless. This is because there is a fundamental problem 

with reconstructing Early Holocene settlement systems by comparing them with modern-day 

Inuit settlement systems which cannot entirely be gotten around. The core problem is that by 

the time that anthropological and archaeological scholars reached the lands of the Inuit in the 

North American Arctic, their way of life had irrevocably changed from that of the Paleoindians. 

Even by the 1800s, factors such as guns, dogs, and modern life in general had irretrievably 

changed the nature of the hunt, and thus the settlement systems that revolve around it. This is 

probably why anthropological-archaeology experts have never made any attempt to come up 

with quantitative rules such as “Caches should be no more than 0.5km from the fall caribou 

trail” or “Hunting Blinds should be no more than 4km from a logistical camp” to try to describe 

life in the Early Holocene. This has to be the reason why said experts have always limited 

themselves to stating their rules qualitatively, such as “Campsites are typically located in a high-

vegetation area to use plants for fuel for fires.” or “Cache sites are likely to occur where any 

chance at hunting is located near a campsite if they are closer to hunting opportunity than they 

are to the village” [Binford, 1978b]. These qualitative rules are still very likely to be correct. 

However, it has become abundantly clear that there is no way to engineer “the perfect 
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quantitative rules” out of them. And since in a rule-based expert system, what locations are 

flagged (and what structures are predicted) depends upon quantitative rule thresholds, the 

idea of “the perfect balance” between locations flagged and structures predicted must likewise 

be abandoned. 

5.9.2 Change in Perspective 

 When we abandoned the ideas of “the perfect ruleset” and “the perfect balance”, we 

reimagined the entire problem as an economic cost vs. benefit problem, specifically according 

to Pareto economic theory. Vilfredo Pareto originally became an economist in the 1880’s; when 

he originally became an economist, nearly all other economic theories of value were intrinsic 

(i.e., “objective”) theories. The vast majority of these were “labor theories” of value that stated 

in one form or another that the value of a good was proportionate to the labor applied into its 

production. According to intrinsic theories of economic value, it is possible to objectively 

calculate the value of each good and thus rank goods via a single objective according to 

supposed intrinsic values.  

Pareto was among the earliest economists to reject conventional intrinsic (i.e., 

“objective”) theories of economic value. He called for the replacement in economics of the 

notion of “objective optimality” with “Pareto-optimality”. In Pareto Theory, a “Pareto-optimal” 

solution is a solution that is not dominated by any other. “Dominance” in Pareto Theory can be 

defined in the following way [Best, 2009]: 

For an m-objective minimization problem, a solution x1 dominates x2 if ∀ i = 1, …, m,  
fi(x1) ≤ fi(x2) and ∃ i ∈ {1, … , m} | fi(x1) < fi(x2). 
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 In Pareto Theory, dominated solutions are the only ones that are considered sub-

optimal. For any given multi-objective problem, once all sub-optimal solutions have been 

removed, what is left over is a Pareto-optimal set of solutions, sometimes known as a “Pareto 

Front”, which constitutes the “final result” for the problem. Pareto Theory does not outright 

reject judgments about what items within a Pareto Front are better than others, but it does say 

that such judgments are ultimately subjective.  

5.10 Conclusion 

 After considering the problems with our agent-based approach, we decided to change 

our approach to a rule-based expert system approach, described in Chapter 6. However, we 

were still confronted with the same problem of being unable to find “the perfect balance” 

between locations flagged and structures predicted. We decided to abandon the idea of “the 

perfect balance” and to reformulate the problem as an economic cost vs. benefit problem 

according to Pareto Theory. In Chapter 7, we discuss our use of a Pareto-based multi-objective 

optimization system in order to winnow out sub-optimal solutions, producing for each 

occupational structure category a Pareto Front containing only Pareto-optimal locations vs. 

structures pairs, each with a corresponding evolved ruleset. 
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CHAPTER 6: RULE-BASED EXPERT SYSTEM SPECIFICATION 

6.1 Objectives 

In any rule-based expert system that is designed to output lists of suggested locations in 

the real world to prospect for where desired items might be found, the system must strive to 

minimize the effort spent prospecting out in the field while maximizing the payout gained 

through said prospecting. Thus, there are two countervailing objectives in producing location 

lists: The number of the desired items contained within locations in the list should be 

maximized, and the overall number of locations in the search list is minimized.  

We are using Dr. O’Shea’s latest set of discovered artifacts, provided to our team in April 

2018, as a training set. Given the specification of the environment, the training set, and the 

general forms of the rules, what the system must do is discover the Pareto-optimal set of 

(number of locations flagged, number of training set artifacts in those locations) ordered pairs. 

In doing this task, the system is forced to evolve what is effectively a Pareto-optimal set of 

rulesets from the general forms of the rules provided by the archaeologists and the 

archaeological literature with each ruleset corresponding to a point within the aforementioned 

Pareto-optimal set of ordered pairs. These rulesets, and the lists of locations to be prospected 

that are produced by each of them, can only be improved in one of three ways: Obtaining 

better data about the prehistoric environment from the geologists and the geological literature, 

obtaining a better training set from the archaeologists, or obtaining more and/or better general 

forms of rules from the archaeologists and the archaeological literature. 
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6.2 Component Diagram 

 
Figure 48: Expert System Component Diagram 
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6.3 Experimental Framework 

For the rule-based expert system approach, Dr. O’Shea asked us to work with a 5km by 

5km “jumbo region” comprising of Regions 6, 7, 8, and 9 (whose locations are shown in Figure 

27). We divide the “jumbo region” into 40,000 individual locations which are 250m x 250m each 

in size. The system we are about to discuss works with our time engine which we discussed in 

Chapter 4. As explained in Chapter 4, we are investigating the time period of 11800 BP to 8400 

BP (inclusive). We are dividing this time period up into 18 intervals of 200 years each.  

6.4 Environment Specification 

An environment model E is a set of elements h such that each h ∈ E is a latitude, 

longitude, pair denoting a location somewhere in the environment. The term h i can be used to 

denote location h at time i. For all ℎ௜ ∈ 𝑬  , there exists 𝑃௛೔
, which is a set of environment 

parameters at location h at time i. Also, for all ℎ ∈ 𝑬  , there exists 𝑞௛ , which is a variable equal 

to the number of actual artifacts of a given type if the archaeologists have found any at location 

h, or equal to -1 if the archaeologists have looked in location h and found nothing (false 

positive), or 0 in any other case. 

6.5 Prediction Model Specification 

A hypothetical prediction model, M, is an ordered pair (T, R) where T is the prediction 

threshold and R is a set of rules such that 𝑹 = {𝑹𝒎, 𝑹𝒔}, where 𝑹𝒎 is the set of musthave rules 

within R, and 𝑹𝒔 is the set of standard rules within R. These sets can further be divided into 
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their individual constituent rules such that 𝑹𝒎  = {𝒓𝒎𝟏
, 𝒓𝒎𝟐

, 𝒓𝒎𝟑
, … }  and 𝑹𝒔  =

{𝒓𝒔𝟏
, 𝒓𝒔𝟐

, 𝒓𝒔𝟑
, … }. Each rule rj in R, regardless of whether it is standard or musthave, can be 

defined as a function that can be evaluated at node hi containing parameters 𝑃௛೔
. 

𝒓௝(𝑃௛೔
) returns 1 if 𝑃௛೔  satisfies 𝒓௜, and 0 otherwise. R itself can be evaluated at each hi 

such that  

𝑹(ℎ௜) = ෑ[𝑟௠ೖ
(𝑃௛೔

)]

௨

௞ୀଵ

 ∙  ෍[r௦೙
(𝑃௛೔

)]

௩

௡ୀଵ

  

Equation 3: Evaluation of Ruleset R 
  

where u is the number of musthave rules, v is the number of standard rules. 

We define t as the timestep threshold, the threshold at which for location h at time i, if 

𝑹(ℎ௜) ≥ 𝑡, then one point is added to the prediction score for location h. We then define T as 

the prediction threshold. For all  𝑖 ∈  Λ where Λ is the set of time periods being investigated, for 

a given ℎ ∈ 𝑬, if  ∑ [𝑹(ℎ௜) ≥ 𝑡] ≥ 𝑇௜∈ஃ  , then h is considered to have been predicted in M. The 

quantity 𝑞௛ is denotes the total number of structures of the relevant type in the training set at 

location h. The quantity 𝑞௛ can be thought of as location h’s individual “payout” granted for 

predicting it. Prediction model M can itself be evaluated over E in terms of the total number of 

predictions made such that  

𝑴(𝑬) =  ෍ 𝑞௛ ∙ ቐ൝ ෍[𝑹(ℎ௜) ≥ 𝑡] 

௜∈ ஃ

ൡ ≥ 𝑇ቑ

௛ ∈ 𝑬

  

Equation 4: No. of Relevant Structures Successfully Predicted by Model M (Total Payout: Maximize) 
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 In words, M(E) gives the number of structures that model M has successfully predicted 

within environment E. Obviously, we want to maximize M(E), since all other things being equal 

it is better for the model to successfully find more structures than less structures. At the same 

time, however, we want to minimize the total number of locations that are predicted by model 

M, since all other things being equal it is better for the archaeologists using the model to have 

to visit fewer locations than more. This provides our second objective, which can be expressed 

as L(M(E)), where 

𝐿(𝑴(𝑬)) =  ෍ ቐ൝ ෍[𝑹(ℎ௜) ≥ 𝑡] 

௜∈ ஃ

ൡ ≥ 𝑇ቑ

௛ ∈ 𝑬

  

Equation 5: No. of Locations Predicted by Model M (Total Cost: Minimize) 
 

Again, L(M(E)) is the total number of locations predicted by a model M, and it should be 

minimized.   

Optimizing M(E) and L(M(E)) as bi-objective functions will produce a Pareto Front which 

we can plot out as M(E) vs. L(M(E)). Each point on this Pareto Front will correspond to a certain 

prediction model M with a model score M(E) and a total number of predicted locations L(M(E)). 

(Ultimately, our system receives 𝑞௛ for each h from the work that has already been done by the 

archaeologists and P from the environment engine. The process of bi-objective optimization 

implicitly generates a ruleset R and a prediction threshold t for each model M in the Pareto 

Front.) 
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6.6 Rule Parameter Design 

Table 1 contains the categories for the parameters that we collected from the Virtual 

World system. These are the parameters that are going to go into the rules detailed later in this 

chapter. Each occupational structure category will be predicted based upon a subset of these 

rules. 
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Name Variable Name Description 

Distance to Fall Caribou 
Trail 

distToFallCaribou The distance from the closest approach point of 
the fall caribou trail to this location. 

Height Above Fall Caribou 
Trail 

heightAboveFallCaribou This location’s height above (or below) the 
closest approach point of the fall caribou trail. 

Distance to Spring 
Caribou Trail 

distToSprCaribou The distance from the closest approach point of 
the spring caribou trail to this location. 

Height Above Spring 
Caribou Trail 

heightAboveSprCaribou This location’s height above (or below) the 
closest approach point of the spring caribou trail. 

Distance to Caribou Trail distToCaribou The distance from this location to the closest 
approach point of the caribou trail at during 
either season in the given year.  

Height Above Caribou 
Trail 

heightAboveCaribou The height of this location above (or below) the 
closest approach point of the caribou trail at 
during either season in the given year. 

Distance To Water distanceToWater The distance from this location to any water 
body. 

Distance To Large Water 
Body 

distToLargeWaterBody The distance from this location to a large water 
body. Only the two large lakes that sandwich the 
Alpena-Amberley Land Bridge and any fjords and 
rivers that are connected to them are considered 
“large”. All other water bodies are considered 
“small”. 

Vegetation Level vegetationLevel The amount, as a percentage, of vegetation in the 
square. 0.0 means that the square is completely 
bare of vegetation, while 1.0 means that the 
square is completely covered with vegetation. 

Distance To Closest 
Training Set Logistical 
Camp 

distToTSetLogCamp Distance to closest actually-found logistical camp 
within the training set. 

Distance To Closest 
Training Set Hunting 
Blind 

distToTSetHuntingBlind Distance to closest actually-found hunting blind 
within the training set. 

Distance To Closest 
Training Set Drive Line 

distToTSetDriveLine Distance to closest actually-found drive line 
within the training set. 

Distance To Closest 
Training Set Cache 

distToTSetCache Distance to closest actually-found cache within 
the training set. 

Table 1: Rule Parameters 
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6.7 Rule Design 

The specification forms of rules provided have all have the same overall form, which is: 

𝑔൫𝑌, 𝑓(𝑋)൯ = [𝑓(𝑋) ~ 𝑌] 
Equation 6: Overall Form of Rules 

 
where X is the set of environmental variable arguments that are being tested, Y is a 

threshold, f is some function that acts upon the environmental variable arguments, and ~ is 

some relation between f(X) and Y. If the rule fires, it returns a 1, otherwise it returns a 0.  

Most of the time, Y is treated as a mutable variable that the optimizer system is able to 

alter in its task of trying to optimize the bi-objectives listed in Equation 4 and Equation 5. 

However, in a few situations where the rule would not make sense otherwise, Y is a fixed 

variable which is always equal to 0. (An example is the “Don’t Be Underwater Rule”, which is 

formulated as “distToWater > 0”.) 

All of the specification forms of rules listed in the tables on the next pages come either 

from the anthropological-archaeological literature or discussions with Drs. John O’Shea and 

Ashley Lemke. References to specific pieces of literature within anthropological-archaeology 

are provided when available. 
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6.7.1 Logistical Camp Rules 

Rule Name Rule Type Rule Description 
Rule Specificaton Commentary (if any) 

dontBeUnderwaterRule 
(“Don’t Be Underwater 
Rule”) 

Musthave Artifact cannot exist underwater (or on top 
of water). 

distToWater > 0 

distToFoodSourceRule Musthave This rule is fulfilled for a candidate site for a 
logistical camp if the site is within a certain 
distance of a caribou trail (for caribou 
meat) or major water source (for fish), 
whichever is lesser. 

MIN(distToCaribou, 
distToLargeWaterBody) <= Y 

vegetationRule Standard This rule is fulfilled for a candidate site for a 
logistical camp if it contains a certain 
amount of vegetation, as this is desirable 
for firewood and protection from wind. 

Vegetation% >= Y “Camping within a willow stand is, during 
most periods of the year, desirable since 
there is ready firewood, protection from 
the wind, and, generally, water from 
springs.” [Binford, 1978, p. 256] 

distToTSHuntBlindRule Standard This rule is fulfilled for a candidate site for a 
logistical camp if it within a certain distance 
of a hunting blind within the training set, as 
the logistical camp could provide quarters 
for the people manning the hunting blind. 

distToTSHuntingBlind <= Y 

distToTSCacheRule Standard This rule is fulfilled for a candidate site for a 
logistical camp if it within a certain distance 
of a cache within the training set. 

distToTSCache <= Y Logistical camps built after hunting season 
is over can be used to house workers who 
do the work of preparing food from caches 
stored during the hunting season. 

Table 2: Logistical Camp Rules 
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6.7.2 Hunting Blind Rules 

Rule Name 
 

Rule Type Rule Description 
Rule Specificaton Commentary (if any) 

dontBeUnderwaterRule  
(“Don’t Be Underwater 
Rule”) 

Musthave 
 

At the time that it was being used by 
prehistoric hunter-gatherers, this structure 
cannot have been located underwater. distToWater >= Y 

lanceRule (musthave) Musthave A candidate site for a hunting blind must be 
within a certain distance of the caribou trail. 

distToCaribou >= Y “As it seems clear that hunters employing 
lances must get relatively close to the animals 
in order to kill them, there must be some other 
mechanism or condition that enabled the lance-
armed hunters to do so from the AAR hunting 
structures. The size of the hunting blinds would 
provide sufficient concealment to allow the 
hunters proximity to the animals without 
raising undue alarm.” [O’Shea, 2016] 
 
“The expectations for hunting architecture sites 
with atlatls is likely intermediate between the 
long range of arrows and the shorter range of 
lances, but the exact numbers cannot be certain 
as most known hunting architecture sites did 
not use this technology. Therefore, while atlatls 
cannot be ruled out, the current evidence is 
inconclusive.” [Lemke, 2016] 

levelWithCaribouRule Standard A candidate site for a hunting blind must be 
roughly level with the caribou trail. |heightabovecaribou| <= Y 

vegetationRule Standard This rule is fulfilled for a candidate site for a 
hunting blind if it contains a certain amount of 
vegetation, as this can be used to help build the 
blind. 

vegetation% >= Y 

campClosenessRule Standard This rule is fulfilled for a candidate site for a 
hunting blind if it is within a certain distance of 
a residential or logistical camp. 

distToLogCamp <= Y 

obsStandClosenessRule Standard This rule is fulfilled for a hunting blind 
candidate site for if it is within a certain 
distance of an observation stand.  

distToObsStand <= Y 

Table 3: Hunting Blind Rules 



 

 

98 

 

6.7.3 Drive Line Rules 

Rule Name Rule Type Rule Description 
Rule Specificaton Commentary (if any) 

dontBeUnderwaterRule  
(“Don’t Be Underwater 
Rule”) 

Musthave At the time that it was being used by 
prehistoric hunter-gatherers, this structure 
cannot have been located underwater. distToWater > 0 

caribouClosenessRule 
“Caribou closeness rule” 

Musthave A candidate site for a drive line must be 
within a certain distance of the caribou trail. distToCaribou <= Y 

distToTsetHBRule 
(“Training Set Hunting 
Blind Closeness Rule”) 

Standard A candidate site for a drive line receives a 
bonus if it is within a certain distance of a 
hunting blind within the training set. distToTsetHuntingBlind <= Y 

distToTsetLCRule 
(“Training Set Logistical 
Camp Closeness Rule”) 

Standard A candidate site for a drive line receives a 
bonus if it is within a certain distance of a 
logistical camp within the training set. 

distToTsetLogCamp <= Y 

Table 4: Drive Line Rules 
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6.7.4 Cache Rules 

Rule Name Rule Type Rule Description 
Rule Specificaton Commentary (if any) 

dontBeUnderwaterRule  
(“Don’t Be Underwater Rule”) 

Musthave At the time that it was being used by 
prehistoric hunter-gatherers, this 
structure cannot have been located 
underwater.  

distToWater > 0 

huntingBlindClosenessRule Standard This rule is fulfilled for a candidate site 
for a cache if it is within a certain 
distance of a hunting blind that has 
been already found by the 
archaeologists. 

distToHuntingBlind <= Y “Caches are common components of a 
logistical strategy in that successful 
procurement of resources by relatively 
small groups for relatively large groups 
generally means large bulk. This bulk 
must be transported to consumers, 
although it may on occasion serve as 
the stimulus for repositioning the 
consumers. In either case there is 
commonly a temporary storage phase. 
Such "field" storage is frequently done 
in regular facilities, but special facilities 
may be constructed to deal specifically 
with the bulk obtained.”  
 
“On occasion kills (locations) may be 
made directly from a hunting stand, 
and the meat may be processed and 
temporarily cached there.” [Binford, 
1980] 

fallcaribouPathClosenessRule Standard This rule is fulfilled for a candidate site 
for a cache if it is within a certain 
distance of the fall caribou path.  distToFallCaribouPath<=Y 

TSLogCampClosenessRule Standard This rule is fulfilled for a candidate site 
for a cache if it is within a certain 
distance of a logistical camp in the 
training set. 

distToTSLogCamp <= Y 

Table 5: Cache Rules 
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6.8 Conclusion 

 We now need to optimize the various rulesets that we have laid out for our expert 

system, however our expert system does not have native optimization. It must rely upon an 

outside multi-objective optimizer to provide optimization services for it. For this purpose, we 

have created the CAPSO (Cultural Algorithm Particle Swarm Optimizer) system, which we 

explain in detail in the next chapter.    
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CHAPTER 7: MULTI-OBJECTIVE OPTIMIZATION SYSTEM AND 

CULTURAL ALGORITHMS 

7.1 Overview 

 Our system that we developed to solve the problem specified in the previous chapter is 

a parallelized multi-objective optimizer that combines elements from Cultural Algorithms (CA), 

Particle Swarm Optimization (PSO) [Eberhart, 1995], and Vector-Evaluated Genetic Algorithms 

(VEGA) [Schaffer, 1985]. We have named our optimizer system “CAPSO”, which is short for 

Cultural Algorithm/Particle Swarm Optimizer. 

7.2 Multi-Objective Optimization 

Typically, a multi-objective problem is specified with three components: The set of 

functions to be optimized, the set of constraint functions, and the parameters along with 

parameter ranges. (In a multi-objective problem, “optimizing” the objective functions might 

mean minimizing all of them, maximizing all of them, or minimizing some and maximizing 

others.) A general formulation of a multi-objective problem can be written as such: 

Let 𝐹: {𝑓ଵ, 𝑓ଶ, 𝑓ଷ, … , 𝑓௡} be the set of objective functions. 

Let 𝐺: {𝑔ଵ, 𝑔ଶ, 𝑔ଷ, … , 𝑔௠} be the set of constraint functions. 

Let 𝑥⃑ = < 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௞ > be the vector containing the parameters. 

Let [𝑟௜భ
, 𝑟௜మ

] be the range for each parameter 𝑥௜.  
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7.3 Cultural Algorithm Background 

7.3.1 History 

 Cultural Algorithms (CA’s) were originally devised by Dr. Robert Reynolds in the 1970s 

[Reynolds 1978, 1979]. In creating CA’s, Dr. Reynolds drew an analogy between group learning 

and the tendency of group knowledge acquired in the past to influence current decisions by 

individual members of groups [Reynolds, 1994]. 

 Reynolds was originally motivated to invent Cultural Algorithms when he was working 

on a research project in the 1970s concerning a Genetic Algorithm (GA). During this research 

work, Reynolds wasn't sure how much that the GA was actually learning. His solution was to 

create a "scorecard" for the GA in order to formally keep track of the knowledge that it was 

uncovering. Eventually, Reynolds realized that his "scorecard" functioned as a social "memory" 

for the GA population, and that it could not only receive knowledge from the GA, it could 

provide knowledge to the GA in order to guide its progress. Eventually, Reynolds called this 

shared social memory the belief space and invented the name cultural algorithms. Reynolds 

and his fellow CA researchers realized that this "scorecard", which he eventually termed the 

"belief space", could be attached just as well to other algorithms besides GAs (for instance, PSO 

algorithms), and could collect from and provide knowledge to them in just the same manner. 

Hence today the name cultural algorithm has been expanded to any algorithm or population 

based framework such as agents that uses a belief space and contains a communication 

protocol and dual inheritance between the population and belief spaces. 
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7.3.2 Structure of a Typical Cultural Algorithm  

 Formally, cultural algorithms contain a population space which is influenced by a belief 

space via a communication protocol. The Population space is defined as a set of solutions to the 

problem which have the ability to evolve from generation to generation. The belief space can 

be defined as the collected set of experiential or domain knowledge, which has the ability to be 

influenced by individuals within the population space according to their varying degrees of 

success, and which has the ability to influence subsequent generations of individuals within the 

population space. 

 The following is a general statement of a generic Cultural Algorithm: 

 1. The population space and belief space are initialized. 

 2. Population members are evaluated through a fitness function, and the population is 

 ranked. 

 3a. The population members ranked highest are allowed to influence the belief space. 

 3b. In some cultural algorithms, the population members ranked lowest are also allowed 

 to influence the belief space by providing various forms of negative information to it 

 about their solutions. 

 4. The best solutions are allowed to reproduce and create children. Operators are 

 applied to at least some of the children which make them into mutated variants of their 

 parents. 
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 5. The belief space influences the children's genomes and/or their behavior in the 

 problem space. 

 6. Steps 2 through 5 are repeated until a stop condition is reached. 

 A visualization of this process can be found in Figure 49: 

 
Figure 49: Schemata of Cultural Algorithms [Jin, 2011] 
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7.3.3 Acceptance Step 

 Depending upon the individual cultural algorithm being used, either all individuals in the 

population space will be allowed to influence the belief space, or only some. Oftentimes, the 

acceptance function is specified in terms of a percentage. An example might be “The best 10% 

of individuals according to the fitness function will be allowed to influence the belief space.” 

[Reynolds, 2017]. In CAPSO, the top 1/7 of scorers for each objective are allowed to influence 

the belief space. 

7.3.4 Belief Space Update Step 

 In the update function, the knowledge received through the acceptance function is 

encoded into the belief space. Also during this step, knowledge that is obsolete or otherwise no 

longer relevant can be discarded from the belief space. One way of doing this is through a 

function that uses certain criteria to identify obsolete knowledge and remove it from the belief 

space [Stanley, 2013, 2014]. Another way is by having a competition during the update step in 

which the new knowledge that was just received and the preexisting knowledge already in the 

belief space can be made to vie against each other. The different beliefs can be evaluated 

against each other through a “belief fitness function” or through some kind of game 

mechanism. A certain percentage of the beliefs that perform worst according to the evaluation 

mechanism used can then be culled from the belief space.  
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7.3.5 Influence Step 

 In the influence step, the different belief space knowledge sources cooperate and/or 

compete in order to influence each agent within the population space. Some of the different 

methods that have been used are simple random selection [Peng, 2005], a weighted roulette 

mechanism, an auction mechanism [Reynolds, 2013], or a complex game [Reynolds, 2018].  

 When a population agent calls the influence function, an influencer knowledge source is 

selected through a mechanism such as those described above, an individual in the belief space 

corresponding to that knowledge source is selected or randomly generated, and the population 

agent’s values are “pulled towards” those of the individual within the belief space. 

7.3.6 CA Belief Space Knowledge Source Types 

 Generally, researchers who use CAs divide knowledge into five different types: 

Normative knowledge, domain knowledge, topographical knowledge, historical (or temporal) 

knowledge, and situational (or exemplar) knowledge [Best, 2010]. In some CA implementations, 

different knowledge types compete against one another for the opportunity to influence 

individual agents [Reynolds, 2006]. In other implementations, the different knowledge types 

are cooperative and participate collectively in influencing the agents. We now describe each 

knowledge type in more detail: 
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Normative Knowledge 

 Normative knowledge is a set of variable ranges that either are initially expected to 

produce good fitness values for experimental agents or are known to have produced good 

scores in the past [Best, 2009]. It can be thought of as general "behavioral boundaries" within 

which individual behavioral adjustments can be made [Reynolds, 1997]. 

 Normative knowledge in CAPSO works as thus: CAPSO’s Normative Knowledge 

container contains a range for each of the parameters in the problems. When Normative 

Knowledge is selected, a velocity is randomly generated from within the ranges contained in 

the Normative Knowledge source. Then, as for the individual who called the influence function, 

its velocity is changed to a randomly-weighted average between its old velocity and the 

generated one. 

During the update step, for each population agent that was given permission during the 

Acceptance Step to influence the belief space, a simple average is taken between the 

population agent’s velocity within each dimension and the nearest edge of the Normative 

Knowledge interval for that dimension, and that edge of the Normative Knowledge interval for 

that dimension is changed to the result of this simple average. 

Historical (Temporal) Knowledge 

 Historical knowledge, also called temporal knowledge concerns important events that 

happened during the search and the general state of the search space at a specific point in 
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time. It can contain a record of good (and bad) solutions that happened in the past so that 

future agents can go toward (or avoid) those solutions. 

 Historical knowledge in CAPSO works as thus: CAPSO’s Historical Knowledge container 

has a number of velocities that have adjoined elite particles in the past. Each of these historical 

velocities also contains the latest time in the past in which it was accepted or re-accepted into 

Historical Knowledge. During the influence step, when Historical Knowledge is selected as a 

knowledge source, CAPSO randomly selects one out of all the velocities in the Historical 

Knowledge container. Then, as for the individual who called the influence function, its velocity 

is changed to a randomly-weighted average between its old velocity and the chosen velocity. 

During the Update Step, the entire Historical Knowledge container is checked and if any 

historical velocity has not been accepted or re-accepted in over 500 generations, it is removed 

from the Historical Knowledge container. 

Situational Knowledge 

 Situational knowledge concerns positive and negative exemplars which agents can use 

to guide their behavior [Reynolds, 1997]. Solutions that score high are considered positive 

exemplars, and cultural algorithms can take this into account and look for similar solutions that 

might be even better. In some CAs, situational knowledge can also include negative exemplars. 

In these CA’s, solutions that score low are considered negative exemplars, and the CA can take 

them into account and steer clear of similar solutions, so as to avoid wasting time with them. 
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 Situational knowledge in CAPSO works as thus: At the beginning of the program, CAPSO 

generates a number of initial guesses (exemplars) and assigns a selection probability to each of 

them. Each of these initial guesses can be thought of as a vector-point in hyperdimensional 

space. When Situational Knowledge is chosen as a knowledge source, CAPSO chooses one of 

these exemplars and produces a randomly weighted average between the exemplar and the 

velocity of the individual that called the influence function. The individual that called the 

influence function then has its velocity changed to this weighted average. 

During the update step, CAPSO checks if any accepted individual’s velocity is sufficiently 

close (i.e., within 1%) to an exemplar velocity within the Situational Knowledge container. If so, 

the chance that this exemplar will be chosen out of the situational knowledge container in the 

future is incremented by 1%, and the exemplar itself is changed to a randomly-weighted 

average between its old value and the velocity of the aforementioned accepted individual.  

For example, if a particle whose velocity is <1, 2, 5> calls Situational Knowlege, and the 

Situational Knowledge Source chooses an exemplar velocity of <8, 9, 4>, and the random 

weight chosen is 0.3, then the new velocity for the particle will be 0.3·<1, 2, 5> + 0.7·<8, 9, 4> = 

<5.9, 6.9, 4.3>. 

Domain Knowledge 

Domain Knowledge concerns the overall shape of the search space itself [Best, 2009]. 

The purpose of Domain Knowledge is to deduce the shape of the search space and to explore 
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the search space’s margins. Because optimal values are often found out on the margins of the 

search space, Domain Knowledge is great as a “finalization mechanism” in an optimizer system.  

In CAPSO, the Domain Knowledge container contains points believed to be on the boundary 

of the search space. If a particle selects Domain Knowledge as its knowledge source, a point is 

selected from the Domain Knowledge container, and a target velocity is generated equal to the 

vector difference between the location of the point on the boundary and the current location 

of the particle. Then, the particle’s velocity is changed to a randomly-weighted average 

between its old velocity and the target velocity. 

During the Acceptance Step, for each solution set newly accepted into the Pareto Front, a 

location is created from a randomly-weighted average taken between the point in the search 

space corresponding with said solution set and the closest other point in the search space that 

corresponds to another solution set within the Pareto Front. Each of these locations is then 

placed within the Domain Knowledge container. During the Update Step, if any point on the 

Pareto Front dominates any point in the Domain Knowledge container, the dominated point is 

removed from said container. 

Topographic Knowledge 

 Topographic Knowledge was first devised as a knowledge source in [Jin, 1999]. 

Topographic Knowledge is knowledge concerning the layout and different regions of the search 

space itself and the performance landscape. In other words, Topographic Knowledge concerns 

which portions of the search space have yielded good solutions and which have not.  
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In Cultural Algorithms, the Topographic Knowledge Space is effectively a map of the 

search space consisting of “Belief Cells”. Belief Cells that fail to produce enough optimal results 

are pruned, while those that do produce enough optimal results are divided into “sub-cells”. 

Topographic Knowledge can be implemented as a recursive “drill-down” mechanism [Reynolds, 

2018], and indeed this is the way that it is implemented in CAPSO. 

In CAPSO, Topographic Knowledge is the knowledge source that governs how the 

algorithm searches through the search space as a whole rather than governing individual agent 

behavior. As mentioned before, Topographic Knowledge works on a recursive “Drill-Down” 

basis. If the algorithm is searching within a certain portion of the search space and it discovers a 

parameter set that corresponds to either an entirely new point for the Pareto Front or a point 

that dominates another point within the Pareto Front, the Topographic Knowledge component 

will divide the aforementioned portion of the search space into four equal subportions, and the 

algorithm will recursively search within those subportions. 

7.4 CAPSO Population Component 

In CAPSO, the Cultural Component (Belief Space) described in the previous section (6.3) acts 

upon the overall algorithm by influencing a population component. CAPSO’s population space 

uses a particle swarm optimization (PSO) algorithm that borrows its elite selection process from 

VEGA (Vector Evaluted Genetic Algorithms). VEGA was originally devised in the 1980s by David 

Schaffer as a type of genetic algorithm for doing multi-objective problems in which the elite is 

comprised by admitting a certain percentage of the top scorers for each individual objective 
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function taken singly in turn. This is the way that the population elite are chosen in CAPSO’s 

population space algorithm. (In CAPSO, the top 1/7 of scorers for each of the individual 

objective functions in the problem are admitted into the population elite.) In standard 

implementations of VEGA, various genetic operators such as mutation and crossover are used 

to generate a decent spread of individuals so as to partially compensate for the fact that the 

elite are chosen from the objective functions taken singly. CAPSO, too, uses such genetic 

operators, but unlike in standard VEGA, individuals in CAPSO are additionally able to take 

advantage of CA knowledge from the various knowledge sources in the belief space. All-in-all, 

the CA dovetails well with VEGA because VEGA’s simplicity works well in a compound 

algorithm, likewise cultural knowledge from the CA is able to drastically ameliorate, and 

oftentimes entirely resolve, the specific shortcomings that come out of VEGA’s simplicity. 

7.5 CAPSO Component Diagram 

 Having explained the main parts of CAPSO, we now provide a full component diagram in 

Figure 50. 
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Figure 50: CAPSO Component Diagram 
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7.6 CAPSO Pseudocode 

The CAPSO system is a hybrid system composed of a Particle Swarm and Vector 

Evaluated Genetic Algorithm population component operating under the control of a Cultural 

Algorithm framework. The guiding principle in its design is to keep each as vanilla as possible in 

order to facilitate their interaction and support explicit parallelism in the search process. 

The Main function recursively calls SearchInSpace to generate a new swarm thread. A 

swarm population is associated with that thread via a call to PopSpaceAlg. PopSpaceAlg is in 

charge of updating the swarm associated with the thread. If any swarm ever goes 

maxGensWoImprov generations without improving the Pareto front, it is removed and the 

thread associated with it is joined with the main thread.  If on the other hand it survives for a 

number of generations equal to the subdivision threshold (“subdivThresh"), four child threads 

are spawned each containing an offspring particle swarm, each of whose territory consists of 

one fourth of the parent swarm’s old territory. After this act of reproduction, the parent swarm 

dies (is removed) and the thread associated with it is joined with the main thread. 

In PopSpaceAlg, selection of an elite takes place via the VEGA method: The population’s 

agents are ranked according to their performance vis-a-vis each individual objective function 

taken in turn. If an agent is in the top 1/7 of performers for any of the objective functions, it is 

added to the elite. Genetic operators (i.e. Crossover, Mutation, and Vector Weighted Average) 

are then used to create a new generation with an adequate amount of agent “spread”. 
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CASteps is then called and accepts a certain number of points, elite, into the Belief Space in 

order to update it. It then applies the knowledge sources to selectively modify the remaining 

ones based upon their relative performance using a weighted Roulette Wheel mechanism. 

The process continues recursively until all swarm threads have finished and have joined 

with the program’s main thread. In that case the system can be restarted with a new random 

swarm but still using the acquired knowledge from the currently completed run and any 

previous runs that resides in the Belief Space. In the problems described below most were 

solved in one pass with a second and third try producing no new points. Only SRN benefited 

from a second and third iteration as shown in Figure 58 in the next section. There the existing 

front was successfully refined in each the subsequent two steps.   

CAPSO Pseudocode Listing: 

Function Main() 
pFront = ParetoFront.Initialize() 
CA.Initialize() 
SearchInSpace(initSearchSpace) 
#The last line here is recursive, and will continually subdivide #the search domain and #“drill 
down” into each subdivision until specificed stop conditions are reached.   

 
 
Function SearchInSpace(topographicCell): 

particleSwarm = new ParticleSwarm(topographicCell) 
t = new Thread(func = PopSpaceAlg, arg = particleSwarm) 
if t adds at least 1 new point to ParetoFront && maxRepeats is reached by PopSpaceAlg: 
 newSubspaces = DivideIntoEqualPortions(subspace) 
 foreach sSpace in newSubspaces: 

searchInSpace(sSpace) 
 

Function PopSpaceAlg(partSwarm): 
 
DO: 
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#Particle Swarm Movement Step 
Foreach indiv in partSwarm: 

indiv.position += indiv.velocity 
 

 #Pareto Front Update Step 
Foreach indiv in partSwarm: 

If no pFront members dominate or equal F(indiv): 
pFront.Add(F(indiv)) 

If F(indiv) dominates an item(s) in pFront: 
remove dominated item(s) from pFront 

 
#Particle Swarm Elite Selection Step 
elite = SelectElite(VEGA Method [Schaffer, 1985], select top 1/7 of performers according 
to each individual obj function.) 
 
#Particle Swarm Velocity Update Step 
Foreach indiv in partSwarm and not in Elite: 

rndNum = randomBetween(0, 1) 
 

If rndNum<0.2: #both crossover and mutation 
Indiv.velocity = Crossover(elite.pickrandom().velocity, indiv.velocity) 
Indiv.velocity = Mutation(Indiv.velocity) 
 

Else if rndNum<0.4: #(crossover but no mutation) 
Indiv.velocity= Crossover(elite.pickrandom().velocity, indiv.velocity) 
 

Else if rndNum<0.6: #(mutation but no crossover) 
Indiv.velocity = Mutation(Indiv.velocity) 
 

Else if rndNum<0.8: #(weighted average) 
Indiv.velocity = vectorWgtAvg(elite.pickrandom().velocity, indiv.velocity) 
 

Else: #Neither crossover nor mutation 
 

CASteps(partSwarm, elite) 
 

UNTIL (++numRepeats == maxRepeats) OR no pFront Improvement for maxGensWoImprov 
generations 

 
Function CASteps(pop, elite): 

CA.Acceptance(elite) 
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CA.Update() 
Foreach indiv in pop but not in elite: #CA Influence Step 

 indiv.knowSource = CA.ChooseKnowSource(situational, normative, historic, or domain) 
 targVelocity = CA.Influence(indiv, indiv.knowSource) 
 indiv.velocity = vectWgtAvg(indiv.velocity, targVelocity) 

 

7.7 Creating Learning Curves 

 In situations where an evolutionary algorithm is used in a single-objective problem, a 

“learning curve” is typically used to track the progress of the algorithm. It is typically a plot of 

the best-achieved fitness function value vs. the number of generations elapsed. For this 

problem, we cannot use that methodology because our final deliverable is a Pareto Front rather 

than a single best-achieved value, so we have come up with an alternate methodology to track 

the progress of the algorithm: If a solution set (represented by a point in vector-space) is added 

to the Pareto Front and it does not dominate any existing points in the Pareto Front, a raw 

score of 5 is added to the total score for the knowledge source currently influencing the particle 

that achieved that point (10 if it is the first point ever added to the Pareto Front). However, if a 

point is added to the Pareto Front and it does dominate one or more existing points within the 

Pareto Front, the total score for the knowledge source currently influencing the particle that 

achieved the new point is incremented by the absolute value of the vector distance between 

the new point and the closest dominated point. 
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7.8 Benchmark Tests 

For initial evaluation purposes, we are testing our system on four very well-known 

benchmark problems found in the multi-objective optimization literature: CONSTR, SRN, TNK, 

and KITA. We have taken the formulations for each of these benchmark problems from [Zhao, 

2007] with the exception of KITA which we have taken from [Raquel, 2005]. For each of our 

benchmark tests, we produce a Pareto Front, learning curves, and a graph of knowledge source 

dominance over time. 

For all four of these benchmark problems, we use the same program input parameters, 

found in Table 6 below: 

Particles in Swarm 1000 
Initial Guesses for Situational Knowledge 40 
Nonimprovement Thread Cutoff Threshold 3 generations 
Max Generations Thread Cutoff Threshold 
(If this threshold is hit, the subspace currently being searched will be 
subdivided and new threads will spawn subswarms in each of the 
subdivisions as described in the pseudocode.) 

30 generations 

Number of Runs 3 
Table 6: CAPSO's Inputs 

 
We now present the specifications for the four benchmark problems and CAPSO’s 

results for each: 
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7.8.1 CONSTR 

Problem Formulation 

Functions (minimize): Constraints Parameter Ranges 
𝑓ଵ =  𝑥ଵ 

 

𝑓ଶ =
(1 + 𝑥ଶ)

𝑥ଵ
 

𝑔ଵ =  𝑥ଶ +  9𝑥ଵ − 6 ≥ 0 
 

𝑔ଶ =  −𝑥ଶ +  9𝑥ଵ − 1 ≥ 0 

𝑥ଵ  ∈ [0.1, 1.0] 
 

𝑥ଶ ∈ [0, 5] 

Table 7: CONSTR Multi-Objective Optimization Benchmark Problem 
 

Problem Overview 

CONSTR was first proposed by Kalyanmoy Deb in [Deb, 2001]. CONSTR’s Pareto Front is 

constrained on the right side by x1’s parameter range, it is constrained on the left side by 

constraint g2, and it is constrained on the bottom by a combination of x2’s parameter range and 

constraint g1. What makes this problem interesting is that a portion of the unconstrained 

Pareto Optimal region is infeasible. Therefore, constrained optimal Pareto front is a 

concatenation of the first constraint boundary and a portion of the unconstrained optimal 

Pareto front. 
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Our Results for CONSTR 

 
Figure 51: Our Results for CONSTR Multi-Objective Benchmark Problem 

 

 
Figure 52: CONSTR Search Space 
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Figure 53: CONSTR Learning Curves 

 

 
Figure 54: CONSTR Knowledge Source Domination 

 

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000

Sc
or

e

Gen #

Sit Know Scr Nor Know Scr His Know Scr Dom Know Scr Tot Scr

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000

%

Generation

Sit Know % Nor Know % His Know % Dom Know %



 

 

122 

 

 
Figure 55: CONSTR: Number of Threads Per Run (Topographic Knowledge Source Progress) 

 

CONSTR Results Discussion 

CONSTR was Historical Knowledge’s worst performance out of the four problems. This is 

most likely because the parameters corresponding to the Pareto Front (Figure 51) form two 

distinct intersecting lines with a very abrupt transition between the two. Any Historical 

Knowledge gained through the discovery of one of these lines is useless in intuiting the other.  

On the other hand, CONSTR was Situational Knowledge’s best performance among the 

four problems, reaching nearly 50% dominance among the four knowledge sources (Figure 53). 

This is probably because there happened to be two (or more) initial guesses corresponding to 

the correct velocity “moves” needed to discover the two lines. 
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7.8.2 SRN 

Problem Formulation 

Functions (minimize) Constraints Parameter Ranges 

𝑓ଵ = (𝑥ଵ − 2)ଶ + (𝑥ଶ − 1)ଶ + 2 

𝑓ଶ =  9𝑥ଵ − (𝑥ଶ − 1)ଶ 

𝑔ଵ =  𝑥ଵ
ଶ +  𝑥ଶ

ଶ − 225 ≤ 0 

𝑔ଶ =  𝑥ଵ −  3𝑥ଶ + 10 ≤ 0 

𝑥ଵ  ∈ [−20, 20] 

𝑥ଶ ∈ [−20, 20] 

Table 8: SRN Multi-Objective Benchmark Problem Specification 
 

Problem Overview 

SRN was first proposed by N. Srinivas in [Srinivas, 1994]. SRN is a difficult problem is due 

to the large search space and the large number of particle moves needed to flesh out the entire 

Pareto Front (see Figure 57). 
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Our Results for SRN 

 
Figure 56: CAPSO’s Results for SRN Multi-Objective Benchmark Problem 

 

 
Figure 57: SRN Search Space 
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Figure 58: SRN Learning Curves 

 

 
Figure 59: SRN Knowledge Source Dominance Graph 
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Figure 60: SRN Threads Per Run (Topographic Knowledge Progress) 

 

SRN Results Discussion 

In our evaluation of SRN, Historical Knowledge was the best-performing knowledge 

source. This is probably because the set of parameter pairs corresponding to the Pareto Front 

(Figure 57) is mostly composed of a thick central “shaft”. This “shaft” can be discovered through 

making similar back-and-forth velocity motions that can be stored within the Historical 

Knowledge space. 

7.8.3 TNK 

Problem Formulation 

Functions (minimize) Constraints Parameter Ranges 
𝑓ଵ =  𝑥ଵ 

𝑓ଶ =  𝑥ଶ 

𝑔ଵ =  −𝑥ଵ
ଶ −  𝑥ଶ

ଶ + 1 + 0.1 cos ൬16 𝑎𝑟𝑐𝑡𝑎𝑛 ൬
𝑥ଵ

𝑥ଶ
൰൰ ≤ 0 

𝑔ଶ = (𝑥ଵ − 0.5)ଶ +  (𝑥ଶ − 0.5)ଶ − 0.5 ≤ 0 

𝑥ଵ ∈ ൣ0, 0.5 + √0.5൧ 

𝑥ଶ ∈ [0, 0.5 + √0.5] 

Table 9: TNK Multi-Objective Benchmark Problem Specification 
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Problem Overview 

TNK was first proposed by M. Tanaka in [Tanaka, 1995]. TNK’s second constraint, g2, 

designates as infeasible any solution set that is outside a circle whose center is at (0.5, 0.5) and 

whose radius is √2. The effect of this constraint is to “clip” the Pareto Front so that the leftmost 

and rightmost ends are slightly shorter than they otherwise would be. The first constraint 

designates as infeasible any solution set lying inside a hypotrochoid whose formula is given by 

g1. TNK’s Pareto Front has two discontinuities. The first is caused by the fact that the portion of 

the hypotrochoid going from x1 ∈ (0.195, 0.459) lies up and to the right of the portion going 

from x1 ∈ (0.056, 0.186), the latter thus dominating the former. The second discontinuity is 

caused by the fact that the portion of the hypotrochoid going from x2 ∈ (0.173, 0.460) lies 

directly above the portion going from x2 ∈ (0.057, 0.173), the latter once again dominating the 

former. 
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Our Results for TNK 

 
Figure 61: TNK Pareto Front 

 

 
Figure 62: TNK Search Space 
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Figure 63: TNK Learning Curves 

 
 

 
Figure 64: TNK Knowledge Source Dominance 
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Figure 65: TNK Threads Per Run (Topographic Knowledge Progress) 

 

TNK Results Discussion 

TNK is an interesting problem not only because the Pareto Front is disjoint, but because 

each of the functions are simply set equal to each of the parameters (i.e., f1 = x1 and f2 = x2), 

thus the graph of TNK’s Pareto Front (Figure 61) is exactly the same as the graph of the 

parameter values used to achieve it (Figure 62). Historical Knowledge was the best knowledge 

source in our evaluation of TNK, finishing with around 32.6% dominance among the four 

knowledge sources. This is probably because even though the Pareto Front is disjoint, there are 

some parts which are extremely similar to other parts. For instance, the portion stretching from 

f1 ∈ (0.05, 0.2) is extremely similar in shape and slope to the portion stretching from f1 ∈ (0.8, 

0.92). Thus, Historical Knowledge used to fully discover one of these could be used to fully 

discover the other.  
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7.8.4 KITA 

Problem Formulation 

Functions (maximize) Constraints Parameter Ranges 

𝑓ଵ =  −𝑥ଵ
ଶ +  𝑥ଶ 

𝑓ଶ =
𝑥ଵ

2
+  𝑥ଶ + 1 

𝑔ଵ =
𝑥ଵ

6
+  𝑥ଶ −

13

2
≤ 0 

𝑔ଶ =
𝑥ଵ

2
+  𝑥ଶ −

15

2
≤ 0 

𝑔ଷ =
5

𝑥ଵ
+  𝑥ଶ − 30 ≤ 0 

𝑥ଵ  ∈ [0, 7] 

𝑥ଶ ∈ [0, 7] 

Table 10: KITA Multi-Objective Benchmark Optimization Problem Specification 
 

Problem Overview 

KITA was first proposed by H. Kita in [KITA, 1996]. Out of the four benchmark problems 

that we evaluated, Domain Knowledge most came into play in KITA. 

Our Results for KITA 

 



 

 

132 

 

 
Figure 66: KITA Pareto Front 

 

 
Figure 67: KITA Search Space 
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Figure 68: KITA Learning Curves 

 
 

 
Figure 69: KITA Knowledge Source Dominance 
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Figure 70: KITA Threads Per Run (Topographic Knowledge Progress) 

 

KITA Problem Discussion 

KITA was Situational Knowledge’s best-performing problem because the parameter values 

corresponding to the achieved Pareto Front almost entirely corresponded to a single line with 

domain x1 ∈ (0, 3) and with a slope of -2.167. The velocity “moves” needed to “flesh out” this 

line after its initial discovery would thus logically correspond with this slope, which is a fact very 

easily remembered by Historical Knowledge. In our evaluation of KITA, Historical Knowledge 

finished with around 43.4% dominance, way ahead of the other knowledge sources. 

Domain Knowledge finished third out of the four knowledge sources for KITA. KITA was the 

only problem where Domain Knowledge did not finish last out of the knowledge sources. In 

general, Domain Knowledge is usually the least-dominant knowledge source because it is 
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effectively the “clean-up crew” which polishes up Pareto Fronts which have been achieved by 

the other knowledge sources.  

In KITA, Domain Knowledge played an explorative role by helping establish the outer 

boundaries of the Pareto Front along with an exploitative role by removing certain subtly non-

Pareto optimal solution sets. This is because the leftmost side of  KITA’s Pareto Front contains a 

“tail” that begins when f1 < -3 and after a certain point begins to very subtly start bending 

backward, putting forth solutions that are very subtly non-Pareto optimal. In preliminary trials 

of CAPSO, before Domain Knowledge was implemented into the program, this “tail” would 

sometimes reach as far back as f1 = -42. Once Domain Knowledge was implemented, the sub-

optimal portions of the “tail” stopped appearing in the results. The remaining portion appears 

to be weakly Pareto-optimal. 

7.9 Benchmark Test Conclusions 

 In all four of these benchmark problems, the exploitative knowledge sources (i.e., 

Situational and/or Historical) dominate from the very start. These problems have some very 

interesting and even potentially deceptive features (e.g., the “KITA tail”). It is probably worth 

testing one’s optimizer system to see how it deals with these sorts of features, on the other 

hand, the start-to-finish dominance of exploitative knowledge sources betray a certain lack of 

complexity to these problems when compared to, for instance, the real-world problems 

detailed in the next chapter. The reason why there is such a dominance of exploitative 

knowledge sources for these problems is that most of the work here consists of continually 
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filling in smaller and smaller gaps in their long and continuous Pareto fronts. Frankly, these 

Pareto fronts would probably look the exact same to the human eye if the optimizer’s cutoff 

point was far sooner for these problems.   
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CHAPTER 8: EXPERIMENTAL SETUP AND RESULTS 

The problem that we need to do for each of the four structure types (Hunting Blinds, 

Drive Lines, Caches, and Logistical Camps) is a bi-objective optimization problem in which 

Equation 5 from Chapter 5 determines the number of flagged locations, and is minimized while 

Equation 4 from Chapter 5 determines the number of structures of a given type within those 

locations, and is maximized. Before setting up this problem in CAPSO, we must first generate 

the environmental parameter data described in Table 1 in Chapter 5 which is what goes into the 

rules that determine the values of Equations 5 and 6 during each evaluation thereof. The Land 

Bridge Environmental Parameter Program (interface shown in Figure 1 in Chapter 1) is what 

generates this data. 

Table 11 below contains the initial inputs entered into the Land Bridge Environmental 

Parameter Program: 

Start year  11800 BP 
End year  8400 BP 
Timestep  200 years  
Effort (initial)  10 
Risk (initial)  20 
Nutrition (initial)  90 
Consume  100 
Grow  50 
Herd Size  40 
Calories  400 
Cal Cost  10 
Cal Benefit  100 
Fall Entry  Enter (2, 2) Exit East Deny North & West 
Spring Entry  Enter (193, 199) Exit North Deny South & East 

Table 11: Land Bridge Environmental Parameter Program Inputs 
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Figure 71 below is a composite image of all time slices that were generated by the Land 

Bridge Environmental Parameter Program given our initial inputs in Table 11. Green designates 

land, blue designates water, and red designates the caribou path. (The images in Figure 71 are 

reprinted in full-page scale in the Appendix - Figure 158 through Figure 193.) 

 
Figure 71: 11800BP-8400BP Composite from Land Bridge Environmental Parameter Program 
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We now have the data necessary to do the Land Bridge Problem for each of the four 

structure types. We now place Equation 4 and Equation 5 into CAPSO as two objectives in a bi-

objective problem and tell CAPSO to maximize the former and minimize the latter while 

plugging the data that we just produced from the Land Bridge Environmental Parameter 

Program into these objectives. (If necessary, please review Chapter 5 for the full explanation.) 

As for the CAPSO program inputs, we use the same values throughout our experiments 

in this chapter. These can be found below in Table 12 below. 

Particles in Swarm 100 
Initial Guesses for Situational Knowledge 15 
Nonimprovement Thread Cutoff Threshold 3 generations 
Max Generations Thread Cutoff Threshold 9 generations 
Number of Runs 4 

Table 12: CAPSO Program Inputs for the Land Bridge Problem 
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8.1 Hunting Blinds 

8.1.1 Hunting Blinds CAPSO Output 

Table 13 contains the Pareto Front along with corresponding parameter values for the 

Hunting Blind structure type. It took 172.217 hours for CAPSO to produce these results. 

# 
Predicted 
Locations 

# 
Predicted 
Structures 

Rules: Dist to 
Caribou < 

Height 
Above or 
Below 
Caribou < 

Veg. % > Dist to T. 
Set Drive 
Line < 

Dist to T. 
Set 
Logistical 
Camp < 

Timestep 
Threshold 

Prediction 
Threshold 

1 5 Thresh: 3774.46914 15.1240928 0.75885 159.794246 1669.80513 3 10 

1 5 Thresh: 3767.61556 11.732957 0.766371 8.34140211 1080.33418 3 10 

2 7 Thresh: 3995.00896 7.59481961 0.415068 83.1500666 1827.3879 3 9 

4 10 Thresh: 2746.38521 11.5644474 0.425523 174.77019 1171.70172 3 6 

6 14 Thresh: 2818.98021 9.5374702 0.53204 467.536699 2920.3759 3 11 

10 15 Thresh: 2546.10723 2.17583673 0.640698 474.919748 2057.45224 3 6 

12 16 Thresh: 1284.64311 7.68797613 0.569737 460.102827 2199.27112 3 4 

11 16 Thresh: 1749.15627 19.093634 0.227354 364.499283 2107.42676 3 6 

14 17 Thresh: 3558.70909 2.53402449 0.302898 479.740292 2238.10853 3 6 

17 18 Thresh: 2311.57512 7.19710671 0.093239 399.663707 2027.05686 3 4 

20 25 Thresh: 2919.0686 6.06427488 0.592259 452.615644 2026.8432 3 6 

26 27 Thresh: 3059.78855 6.90097375 0.598525 367.791875 2242.21892 3 5 

31 28 Thresh: 3884.13132 7.36275545 0.647653 453.640866 2350.23546 3 4 

34 29 Thresh: 3551.62591 7.85175025 0.59673 401.002546 4158.5136 3 8 

54 32 Thresh: 3819.47839 6.425704 0.36636 422.931975 2049.36695 3 3 

63 33 Thresh: 3782.30335 8.43152735 0.767992 354.558186 2722.52705 3 3 

91 34 Thresh: 3677.31587 14.4705152 0.203699 524.928862 2539.85266 3 3 

124 35 Thresh: 3733.2714 9.09681636 0.508113 688.283358 2779.21805 3 3 

240 36 Thresh: 3991.75189 15.1047659 0.44677 629.874339 4187.95066 3 3 

306 37 Thresh: 3773.66048 15.0350041 0.440155 521.421269 3802.52468 3 2 

614 38 Thresh: 3826.32138 5.68015002 0.566012 531.261162 4479.54682 3 1 

763 39 Thresh: 3914.94629 1.41021293 0.45298 963.122757 2310.22179 2 3 

2065 44 Thresh: 3972.5843 4.01738891 0.289475 538.89339 3557.65329 2 3 

4539 46 Thresh: 3847.76593 5.15644031 0.28891 332.484986 4277.45444 2 2 

10184 47 Thresh: 3665.22138 15.068512 0.415672 700.907697 4376.57135 2 1 

8189 47 Thresh: 3609.20026 5.94267616 0.343558 63.5010971 4261.34251 2 1 

Table 13: CAPSO Output – Hunting Blinds Structure Type 
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8.1.2 Hunting Blinds Pareto Front and Knowledge Source Progress and 

Dominance Graphs 

Figure 72 through Figure 76 contain graphs of the Pareto Front, knowledge source 

progress, and knowledge source dominance for the Hunting Blind structure type. 

 
Figure 72: Hunting Blinds Pareto Front 

 

 
Figure 73: Hunting Blinds Pareto Front (Logrithmic Scale) 
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Figure 74: Hunting Blinds Learning Curves 

 

 
Figure 75: Hunting Bilnds Knowledge Source Dominance 
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until Generation 450. At that point, Exploitative Knowledge, in the form of Historical 

Knowledge, jumps way ahead.  

 In retrospect, these learning curves make sense for the Hunting Blinds problem, as due 

to the large number of Hunting Blinds in the training set, this is a superbly large and difficult 

problem, far more so than any of our benchmark problems in Chapter 6 or even the three other 

real-world problems relating to the three other occupational structure types. So in this 

extremely large and difficult problem, both Explorative and Exploitative Knowledge have to play 

their various roles at the proper times rather than one of them simply “winning” throughout 

the entire process. Namely, Explorative Knowledge “explores” during the first portion of the 

optimization process until Exploitative Knowledge finds a critical opportunity that its knowledge 

can “exploit”, sending it ahead of Explorative Knowledge at that point. 

 
Figure 76: Topographic Knowledge Progress 
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8.1.3 Hunting Blinds Frames 

We can use a data visualizer system to convert each of the entries in Table 13: CAPSO 

Output – Hunting Blinds Structure Type into a geographical heatmap corresponding to each 

entry. Said heatmaps can be found in Figure 78 through Figure 103. Below in Figure 77 is the 

key for said heatmaps. 

 
Figure 77: Map Key 
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Figure 78: Hunting Blinds Frame (Locations, Structures) = (1, 5) 
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Figure 79: Hunting Blinds Frame (Locations, Structures) = (1, 5) #2 
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Figure 80: Hunting Blinds Frame (Locations, Structures) = (2, 7) 
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Figure 81: Hunting Blinds Frame (Locations, Structures) = (4, 10) 
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Figure 82: Hunting Blinds Frame (Locations, Structures) = (6, 14) 
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Figure 83: Hunting Blinds Frame (Locations, Structures) = (10, 15) 
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Figure 84: Hunting Blinds Frame (Locations, Structures) = (11, 16) 
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Figure 85: Hunting Blinds Frame (Locations, Structures) = (12, 16) 
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Figure 86: Hunting Blinds Frame (Locations, Structures) = (14, 17) 
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Figure 87: Hunting Blinds Frame (Locations, Structures) = (17, 18) 
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Figure 88: Hunting Blinds Frame (Locations, Structures) = (20, 25) 
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Figure 89: Hunting Blinds Frame (Locations, Structures) = (26, 27) 
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Figure 90: Hunting Blinds Frame (Locations, Structures) = (31, 28) 
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Figure 91: Hunting Blinds Frame (Locations, Structures) = (34, 29) 
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Figure 92: Hunting Blinds Frame (Locations, Structures) = (54, 32) 
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Figure 93: Hunting Blinds Frame (Locations, Structures) = (63, 33) 
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Figure 94: Hunting Blinds Frame (Locations, Structures) = (91, 34) 
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Figure 95: Hunting Blinds Frame (Locations, Structures) = (124, 35) 
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Figure 96: Hunting Blinds Frame (Locations, Structures) = (240, 36) 
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Figure 97: Hunting Blinds Frame (Locations, Structures) = (306, 37) 
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Figure 98: Hunting Blinds Frame (Locations, Structures) = (614, 38) 
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Figure 99: Hunting Blinds Frame (Locations, Structures) = (763, 39) 
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Figure 100: Hunting Blinds Frame (Locations, Structures) = (2065, 44) 
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Figure 101: Hunting Blinds Frame (Locations, Structures) = (4539, 46) 



 

 

169 

 

 
Figure 102: Hunting Blinds Frame (Locations, Structures) = (8189, 47) 
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Figure 103: Hunting Blinds Frame (Locations, Structures) = (10184, 47) 
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8.2 Drive Lines 

8.2.1 CAPSO Output for Drive Lines Structure Type 

Table 14 contains the Pareto Front along with corresponding parameter values for the 

Drive Line structure type. It took 19.833 hours for CAPSO to produce these results. 

Locations Structures Rule 
Thresholds: 

(Musthave) 
Dist to 
Caribou < 

(Standard) 
Dist to T. 
Set 
Hunting 
Blind < 

(Standard) 
Dist to T. 
Set 
Logistical 
Camp < 

Timestep 
Threshold 

Prediction 
Threshold 

3 2 Rule 
Thresholds: 

864.8535 202.763782 2317.5791 2 5 

4 3 Rule 
Thresholds: 

2021.395 229.069223 2492.8265 2 10 

8 4 Rule 
Thresholds: 

1660.73 64.4937703 5416.432 2 8 

9 6 Rule 
Thresholds: 

5859.082 247.879092 2451.948 2 11 

13 7 Rule 
Thresholds: 

2099.277 195.377581 4047.5302 2 3 

14 8 Rule 
Thresholds: 

3474.944 95.420956 2817.5381 2 1 

16 9 Rule 
Thresholds: 

5724.179 217.618003 2568.0025 2 6 

20 10 Rule 
Thresholds: 

3735.675 148.299762 3847.7952 2 3 

88 10 Rule 
Thresholds: 

4319.658 285.992888 6520.9502 2 3 

312 11 Rule 
Thresholds: 

6366.46 320.81607 1296.3617 1 6 

1489 12 Rule 
Thresholds: 

5231.485 2828.69317 4196.2472 2 3 

Table 14: CAPSO’s Output – Drive Line Structure Type 
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8.2.2 Pareto Front, Learning Curve, and Knowledge Source Dominance Graphs 

 
Figure 104: Drive Lines Pareto Front 

 

 
Figure 105: Drive Lines Pareto Front (Logrithmic Scale) 
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Figure 106: Drive Lines Learning Curves 

 
 

 
Figure 107: Drive Lines Knowledge Source Dominance 
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smaller ruleset here may have been the reason for this. However, Normative Knowledge, an 

explorative knowledge source, was the second-most dominant. 

 
Figure 108: Drive Lines Topographic Knowledge Progress 

 

8.2.3 Drive Lines Frames 

We can use a data visualizer system to convert each of the entries in Table 14: CAPSO’s 

Output – Drive Line Structure Type into a geographical heatmap corresponding to each entry. 

Said heatmaps can be found in Figure 109 though Figure 119. 
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Figure 109: Drive Lines Frame (Locations, Structures) = (3, 2) 
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Figure 110: Drive Lines Frame (Locations, Structures) = (4, 3) 
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Figure 111: Drive Lines Structure (Locations, Structures) = (8, 4) 
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Figure 112 = Drive Lines Frame (Locations, Structures) = (9, 6) 
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Figure 113: Drive Lines Frame (Structures, Locations) = (13, 7) 
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Figure 114: Drive Lines Frame (Locations, Structures) = (14, 8) 
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Figure 115: Drive Lines (Locations, Structures) = (16, 9) 
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Figure 116: Drive Lines Frame (Locations, Structures) = (20, 10) 
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Figure 117: Drive Lines Frame (Locations, Structures) = (88, 10) 
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Figure 118: Drive Lines Frame (314, 11) 
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Figure 119: Drive Lines Frame (1480, 12) 
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8.3 Caches 

8.3.1 CAPSO Output for Cache Structure Type 

Table 15 contains the Pareto Front along with corresponding parameter values for the 

Cache structure type. It took 6.002 hours for CAPSO to produce these results. 

#Locations #Structures Rules:  (Musthave) 
Dist to 
Caribou < 

(Standard) 
Dist to T. Set 
Hunting Blind 
< 

(Standard) 
Dist to T. Set 
Logistical 
Camp < 

Timestep 
Threshold 

Prediction 
Threshold 

1 1 Rule 
Thresholds: 

789.389 148.3922294 1348.921106 2 7 

4 2 Rule 
Thresholds: 

4257.448 137.369015 2187.217972 2 10 

7 3 Rule 
Thresholds: 

6117.35 242.8696907 897.416077 2 8 

11 4 Rule 
Thresholds: 

3674.529 222.7980764 2164.126084 2 3 

65 5 Rule 
Thresholds: 

4251.174 338.0939142 4013.202386 2 6 

Table 15: CAPSO’s Outputs for Cache Structure Type 
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8.3.2 Pareto Front, Learning Curve, and Knowledge Source Dominance Graphs 

 
Figure 120: Caches Pareto Front 

 

 
Figure 121: Caches Learning Curves 
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Figure 122: Caches Knowledge Source Dominance Plot 

 
 We can see that Normative Knowledge, an explorative knowledge source, dominated 

the entire time for the Cache occupational structure type. This may be due to the fact that 

there is a tough musthave rule in its ruleset (Distance to Fall Caribou is a lot tougher than 

Distance to Overall Caribou, i.e., either spring or fall). 

 
Figure 123: Caches Topographic Knowledge Progress 
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Regarding Figure 123 above, the particular paucity of data for the Cache structure type 

(i.e., there were only 5 structures in the Cache structure category) meant that the task of multi-

objective optimization for Caches was a much smaller and easier task than for the previous 

structure types. Because of this, CAPSO did not feel it necessary to subdivide and parallelize the 

search process, hence the search process proceeded serially and thus Topographic Knowledge 

was not used in this particular case. 

8.3.3 Frames 

We can use a data visualizer system to convert each of the entries in Table 15: CAPSO’s 

Outputs for Cache Structure Type into a geographical heatmap corresponding to each entry. 

Said maps can be found in Figure 124 through Figure 128. 
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Figure 124: Caches Frame (Locations, Structures) = (1, 1) 
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Figure 125: Caches Frame (Locations, Structures) = (4, 2)  
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Figure 126: Caches Frame (Locations, Structures) = (7, 3) 
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Figure 127: Caches Frame (Locations, Structures) = (11, 4) 
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Figure 128: Caches Frame (Locations, Structures) = (65, 5) 
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8.4 Logistical Camps 

8.4.1 CAPSO’s Output for Logistical Camp Structure Type 

Table 16 contains the Pareto Front along with corresponding parameter values for the 

Logistical Camp structure type. It took 7.673 hours for CAPSO to produce these results. 

#Locations #Structures Rule 
Thresholds: 

Dist to 
Caribou < 

Dist to T Set 
H. Blind < 

Dist to T. Set 
Cache < 

Veg % > Timestep 
Thresh 

Prediction 
Thresh 

2 1 Rule 
Thresholds: 

5164.958908 1785.967536 228.1640564 0.1211432 3 2 

10 3 Rule 
Thresholds: 

792.7351219 449.3953659 5312.476698 0.98548791 2 11 

56 4 Rule 
Thresholds: 

5337.35623 399.2700423 6568.208711 0.39096809 2 18 

113 5 Rule 
Thresholds: 

4741.39574 1022.381853 584.804733 0.06654895 2 12 

Table 16: CAPSO’s Output for Logistical Camp Structure Type 
 

8.4.2 Pareto Front, Learning Curve, and Knowledge Source Dominance Graphs 

 
Figure 129: Logistical Camps Pareto Front 
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Figure 130: Logistical Camps Learning Curves 

 

 
Figure 131: Logistical Camps Knowledge Source Dominance Plot 
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Figure 132: Logistical Camps Topographic Knowledge Progress 

 
Regarding Figure 132 above, the particular paucity of data for the Logistical Camp 

structure type (i.e., there were only 4 structures in the Logistical Camp category) meant that 

the task of multi-objective optimization for Logistical Camps was a much smaller and easier task 

than for more numerous structure types such as Hunting Blinds and Drive Lines. Because of 

this, CAPSO did not feel it necessary to subdivide and parallelize the search process, hence the 

search process proceeded serially and thus Topographic Knowledge was not used in this 

particular case. 

8.4.3 Frames 

We can use a data visualizer system to convert each of the entries in Table 16: CAPSO’s 

Output for Logistical Camp Structure Type into a geographical heatmap corresponding to each 

entry. Said heatmaps can be found in Figure 133 through Figure 136. 
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Figure 133: Logistical Camps (Locations, Structures) = (2, 1) 
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Figure 134: Logistical Camps Frame (Locations, Structures) = (10, 3) 
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Figure 135: Logistical Camps Frame (Locations, Structures) = (56, 4) 
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Figure 136: Logistical Camps Frame (Locations, Structures) = (113, 5) 
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8.5 Evaluating the Accelerating Cost Hypothesis 

If the Accelerating Cost Hypothesis is true for a given structure type, then the Pareto 

Front for that structure type should follow a logarithmic pattern. A logarithmic pattern will 

signify that the cost (designated in terms of flagged locations that the model directs the 

archaeologist to search) of the benefit (designated in terms of training set Paleolithic structures 

found within those flagged locations) will increase at an increasing rate. If, on the other hand, 

the Accelerating Cost Hypothesis is false, then the cost of the benefit will increase at a constant 

rate. In other words, it should follow a linear pattern. We can thus test the Accelerating Cost 

Hypothesis by creating logarithmic regression models and linear regression models for each of 

the structure types, and then comparing the logarithmic regression model against the linear 

regression model for each of the structure types by means of F-tests. 

8.5.1 Regression Curves 

 
Figure 137: Hunting Blinds Pareto Front (Linear vs. Logarithmic Models) 
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Value \ Model Logrithmic Linear 

MSM 27602273.98 27446863.58 
MSE 22.09080679 116.1591822 
F-stat 1249491.44 236286.6462 
p < 0.0007 < 0.002 

Table 17: Logarithmic vs. Linear Regression Models – Hunting Blinds 
 

 
Figure 138: Drive Lines Pareto Front (Linear vs. Logarithmic Models) 
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Figure 139: Caches Pareto Front (Linear vs. Logrithmic Models) 

 

Value \ Model Logrithmic Linear 

MSM 9.457709964 6.37875572 
MSE 0.135565813 0.90868893 
F-stat 69.76471253 7.019735257 
p < 0.09 < 0.23 

Table 19: Logarithmic vs. Linear Regression Models – Caches 
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Figure 140: Logistical Camps Pareto Front (Linear vs. Logarithmic Model) 

 

Value \ Model Logrithmic Linear 

MSM 8.532613764 6.94337116 
MSE 0.072719883 0.607157053 
F-stat 69.76471253 7.019735257 
p < 0.07 < 0.21 

Table 20: Logarithmic vs. Linear Regression Models – Logistical Camps 
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conclude that the analysis suggests that the Accelerating Cost Hypothesis is true for the Hunting 

Blind and Drive Line categories. 

The Cache and Logistical Camp results were the most surprising, although the surprise 

was a very pleasant one. Before doing these F-tests, we thought that there might be a problem 

here due to the paucity of data for these two structure categories. However, paucity of data 

was unable to overcome how well the logarithmic model fit what data did exist for these two 

categories, and decent if not spectacular p-values (p<0.09 and p<0.07, respectively) were 

achieved in the F-tests of the logarithmic models for both of these categories, indicating that 

there is at least some correlation between the data and the logarithmic model for both of 

them. The linear models for the Cache and Logistical Camp categories, however, achieved p-

values (p<0.23 and p<0.21, respectively) that were well worse than what would even arguably 

establish any decent correlation between the data and the model. Based on these results, we 

also affirm that the Accelerating Cost Hypothesis has been validated for the Cache and 

Logistical Camp categories as well. 

8.6 Accelerating Cost Rates 

We can do a comparative plot of the Pareto Fronts for the four structure types in order 

to compare the severity of the accelerating costs of each of them against each other (see Figure 

141 and Figure 142). What we find out is that the less instances there are of a certain structure 

type, the greater the severity the Pareto curve for that structure type. More will be discussed 

on the implications of this fact in Chapter 8. 
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Figure 141: Four Structure Types Pareto Fronts Comparative Plot 

 

 
Figure 142: Four Structure Types Pareto Fronts Comparative Plot (Log Scale) with Regression Curves 
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8.7 Conclusions and Ruleset Size vs. Problem Complexity Hypothesis 

 The Hunting Blind structure type contained two Musthave rules, four Standard rules, 

and two thresholds. The Drive Line structure type contained two Musthave rules, two Standard 

rules, and two thresholds. The Logistical Camp structure type contained two Musthave rules, 

two Standard rules, and two thresholds. The Cache structure type contained two Musthave 

rules, three Standard rules, and two thresholds.  

 For the Drive Line structure type, there were 33 threads in the first run. Looking at the 

Learning Curves and Knowledge Source Dominance Graph, an exploitative source, Historical 

Knowledge, dominated up until the end. For both the Logistical Camp and Cache structure 

types, there was 1 thread in the first run, and Normative Knowledge, an explorative knowledge 

source, dominated the entire time. 

 The Hunting Blind structure type provided the most interesting behavior, probably due 

to the fact that there were far more Hunting Blinds than any other structure type in the training 

set. For the Hunting Blind structure type, there were 129 threads in the first run. Looking at the 

Learning Curves and Knowledge Source Dominance Graph, an explorative source, Normative 

Knowledge, dominated up until Generation 350 and then an exploitative source, Historical 

Knowledge, made a “giant leap” and dominated from then on out. 

 From these results, we submit that we have shown that complex behavior is possible 

even with a relatively small ruleset. We thus submit that we have demonstrated the veracity of 

the Ruleset Size vs. Problem Complexity Hypothesis.  
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CHAPTER 9: PLANNING AN EXPEDITION SEASON 

We now arrive at the task of taking our results from the previous chapter and using 

them to create a consolidated heatmap that can be used to plan an entire expedition season. 

This is done by combining, from each of the four categories, one of the images located in the 

Hunting Blinds Frames, Drive Lines Frames, Caches Frames, and Logistical Camps Frames 

sections from the previous chapter respectively. Due to the nature of Pareto-optimality, there is 

no single image the previous chapter which is objectively “better” than any other single image 

from the same Pareto Front. When combined with the fact that the four different Pareto Fronts 

are of four different structure types that have differing degrees of value to different 

archaeologists and different expeditions, it means that there is no way to automate the final 

step of choosing the four-different category-images to consolidate into a single expedition 

heatmap: A human judgment call must be made in deciding which individual category-images 

to combine into a full consolidated image that can be used to plan an entire expedition season. 

For demonstration purposes, we will dedicate the rest of this chapter to creating several 

“candidate heatmaps” by combining images corresponding to interesting Pareto points located 

in prominent places throughout their various distributions. We will create the first of these 

“candidate heatmaps” by imagining a scenario of a hypothetical archaeological expedition 

which desires most of all to find one or more logistical camps, and values other artifact types to 

a significantly lesser degree. For the fourth “candidate heatmap”, we will imagine a scenario of 

an archaeological expedition which sees caches as the most valuable structure type, logistical 
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camps as the second-most valuable structure type, drive lines are the third most valuable 

structure type, and hunting blinds are the fourth most valuable structure type. For the third 

scenario, we will imagine a hypothetical archaeological expedition which desires most of all to 

find drive lines, followed by caches, followed by logistical camps, then finally by hunting blinds. 

9.1 Candidate Heatmap from Scenario 1 

Scenario 1 involves a hypothetical team of archaeologists (we can call them “Team 1”), 

which prizes logistical camps above all else. They would still value finding a hunting blind, drive 

line, or cache, but far above all they want to find a logistical camp. 

9.1.1 Team 1’s Selection 

 With their goals and priorities in mind, Team 1 chooses the following frames (Figure 

143-Figure 146) with which to create a composite. These frames can be found on the following 

pages. 
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Figure 143: Hunting Blinds Frame (Locations, Structures) = (11, 16) 
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Figure 144: Drive Lines Frame (Locations, Structures) = (8, 4) 
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Figure 145: Caches Frame (Locations, Structures) = (4, 2) 
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Figure 146: Logistical Camps Frame (Locations, Structures) = (113, 5) 
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9.1.2 Scenario 1 Composite 

Team 1 then composites the images in Figure 143-Figure 146, producing Figure 147, 

which they then use to help plan their expedition season: 

 
Figure 147: Scenario 1 Composite 
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9.2 Scenario 2 

Scenario 2 involves a hypothetical archaeological expeditionary team which sees caches 

as the most valuable structure type, logistical camps as the second-most valuable structure 

type, drive lines are the third most valuable structure type, and hunting blinds are the fourth 

most valuable structure type. We will call this team “Team 2”. 

9.2.1 Team 2’s Selections 

 With their goals and priorities in mind, Team 2 selects Figure 148-Figure 151 as their 

constituent images from which to form a whole-season composite. These can be found on the 

following pages. 
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Figure 148: Caches Frame (Locations, Structures) = (65, 5) 
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Figure 149: Logistical Camps Frame (Locations, Structures) = (56, 4) 
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Figure 150: Drive Lines Frame (Locations, Structures) = (20, 10) 
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Figure 151: Hunting Blinds Frame (Locations, Structures) = (10, 15) 
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9.2.2 Scenario 2 Composite 

Team 2 then composites the images in Figure 148-Figure 151, producing Figure 152, 

which they then use to help plan their expedition season. 

 
Figure 152: Scenario 2 Composite 



 

 

222 

 

9.3 Scenario 3 

The third scenario involves a hypothetical archaeological expedition which desires most 

of all to find logistical camps, followed by hunting blinds, followed by caches, then finally by 

drive lines. We will also assume that this hypothetical expeditionary team is a group of 

archaeologists with a significantly larger time, money, and manpower budget than the 

hypothetical teams in Scenario 1 and Scenario 2. We can call them “Team 3”. 

9.3.1 Team 3’s Selections 

 With their goals and priorities in mind, Team 3 selects Figure 153-Figure 156 as 

constituent frames in order to produce an eventual composite. Their selections can be seen on 

the following pages. 
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Figure 153: Hunting Blinds Frame (Locations, Structures) = (763, 39) 
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Figure 154: Drive Lines (Structures, Locations) = (16, 9) 
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Figure 155: Caches Frame (Locations, Structures) = (65, 5) 
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Figure 156: Logistical Camps Frame (Locations, Structures) = (113, 5) 
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9.3.2 Scenario 3 Composite 

Team 3 then composites Figure 153-Figure 156, producing Figure 157 for their season. 

 
Figure 157: Scenario 3 Composite 
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9.4 Conclusions Concerning the Accelerating Cost Hypothesis 

The fact that the Accelerating Cost Hypothesis is true is ultimately a result of the fact 

that we are dealing with incomplete information, which itself results from the fact that the 

objects of study within the Land Bridge Project are Paleolithic structures that were built 

thousands of years before recorded history. No matter how brilliant the archaeologists’ work is, 

and no matter how brilliant our computer models are, perfect information regarding every 

Paleoindian structure that ever existed upon what once was the Alpena-Amberley Land Bridge 

is never going to be achieved.  

That being said, it can be reasonably postulated that for any given structure type, the 

more examples of that structure type that have been discovered, the more information that 

can be added to the overall body of knowledge about that structure type as a whole, since each 

individual structure provides us with information such as its elevation, relation to the 

environment, relation to other structures, etc., which can be added to the consolidated body of 

knowledge about its structure type as a whole. In Figure 141 - Figure 142, the consistent 

pattern is that the more examples that exist of any given structure type, i.e. the more 

information that exists about any given structure type, the less severe is the accelerating cost 

curve for that structure type.  



 

 

229 

 

9.5 Connecting the Accelerating Cost Hypothesis and the Composite 

Results 

 The predicted locations in composites consisting of lower numbers of predicted 

locations (i.e., in composites consisting of lower-cost frames) are almost always in geographical 

association with previously discovered structures. This is markedly the case in Scenario 1 and 

Scenario 2 in the previous chapter. In other words, in composite solutions with lower numbers 

of predicted locations, the locations that are predicted almost always “piggyback” off of the 

locations of structures discovered in previous archaeological expeditions. This is because the 

least cost-intensive way to set about discovering a new structure is to search compelling 

unsearched locations around existing structures in hopes of finding a previously undiscovered 

structure that is associated with the existing structures in some way. Hence, when asked to 

produce maps with lower number of predicted locations (i.e., lower cost), the system will 

produce maps that are mostly filled with predicted locations that are in close geographic 

association with already found structures. 

 The term “accelerating cost” can sound like paying the higher end of it is always a bad 

decision. However, this is not always the case. Frames on the higher end of the accelerating 

cost curve often contain significant numbers of predicted locations that are not in association 

with any previously discovered structure, but have been predicted for other reasons (e.g., they 

are in areas with good vegetation, they are very near to caribou paths that don’t change very 

often, etc.). One of these locations might turn up a totally unexpected structure, seemingly 
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isolated but which could in and of itself be a bridge to finding a bevy of future structures that 

are in association with it.   

 However, neither is paying the higher end of the accelerating cost always a good 

decision, especially if one’s desire is simply to find “low hanging fruit” around previously-

successful areas. In the end, the decision on what cost to pay is, as it must be, left up to the 

individual team using the system based on their own circumstances, priorities, and desires. 

9.6 Evaluating the Low Initial Cost Hypothesis 

 We designed Archaeological Teams 1 and 2 under the assumption that these were 

smaller teams with more limited means. By picking mostly from the low end of the cost curves, 

Expedition Team 1 created a season plan containing 135 250m x 250m locations. The total area 

covered by this season plan is 8.44 sq km, well within the reach of a smaller team with more 

limited means for an expedition season. Also by picking mostly from the low end of the cost 

curves, Archaeological Team 2 created a season plan containing 76 250m x 250m locations. The 

total area covered by this season plan is 4.75 sq km, again well within the reach of a smaller 

team with more limited means for an expedition season. We consider this an adequate 

demonstration of the Low Initial Cost Hypothesis. 
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CHAPTER 10: CONCLUSION 

 We began this dissertation by introducing the Alpena-Amberely Land Bridge Project and 

summarizing previous work on the Project. We then discussed the paleogeology of the Alpena-

Amberley Ridge Region during the relevant prehistoric period (11800 BP – 8400 BP), as well as 

the ways in which the regional environment changes during this 3,400 year period of time. We 

then described all the relevant types of potential occupational structures. We then detailed 

how the prehistoric environment, along with all relevant environmental parameters such as 

prehistoric water levels, terrain elevations, and vegetation levels, are modeled.  

We then posited that the essential problem facing archaeological expeditions could be 

stated in terms of a payout vs. cost tradeoff, and we proposed that this could be stated 

specifically in terms of “occupational structures predicted” vs. “locations predicted”. We then 

devised a rule-based mathematical formula for each of these quantities and demonstrated how 

they could be set against each other in the form of a biobjective optimization problem with the 

former quantity taking the role of “payout” and the latter quantity taking the role of “cost”. We 

demonstrated how solving this biobjective optimization problem for each occupational 

structure type simultaneously creates a “payout vs. cost” Pareto Front for that structure type 

along with a corresponding ruleset for each individual Pareto point.  

We then introduced Cultural Algorithms (CA’s) along with the different knowledge 

source types that CA’s use. We then gave a brief overview of Pareto-based multi-objective 

optimization and provided a description, algorithm, and pseudocode for CAPSO, which is the 
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optimizer system that we would use to solve the biobjective optimization problems posited 

earlier. We then tested CAPSO’s performance using several famous multiobjective benchmark 

problems.  

After determining that the benchmark tests had been successful, we then entered the 

biobjective problems posited earlier with respect to each relevant Paleolithic occupational 

structure type into the CAPSO system. It successfully produced a Pareto Front plus all relevant 

metrics (learning curves, etc.) for each individual structure type. Then, for each individual point 

in each Pareto front, we produced a “frame” containing the point, its corresponding ruleset, 

and prediction map.  

We then proposed the Accelerating Cost Hypothesis (ACH), which can be stated as “If 

predicting a certain number of structures is at the cost of flagging a certain number of locations, 

then predicting a slightly greater number of structures will be at the cost of flagging a much 

greater number of locations.” We evaluated each Pareto Front from each of the four structure 

types (Hunting Blinds, Drive Lines, Caches, and Logistical Camps) using statistical methodology 

and found the ACH to be statistically valid for all four structure types.  

We then proposed the Ruleset Size vs. Problem Complexity Hypothesis, which states 

that a comparatively smaller ruleset size in an expert system does not necessarily proscribe 

complex behavior in the Cultural Algorithm that is providing the optimization services. When 

we evaluated learning curves, dominance graphs, and parallelization behavior, we came to the 

conclusion that the Ruleset Size vs. Problem Complexity Hypothesis is true. 
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Then, to explore how our system might be used in practice, we created three 

hypothetical archaeological teams each with different hypothetical research goals, degrees of 

expertise, and resources available. We explored how each of these teams might use our 

aforementioned results in order to plan their respective expedition seasons. We posited how 

each individual team might respond to the accelerating costs considering its research goals and 

available resources. We then evaluated our Low Initial Cost Hypothesis, which states that the 

lower end of the accelerating cost curve is still affordable even for expeditionary teams of more 

limited means, in light of the two smaller hypothetical archaeological teams. We found that by 

choosing from the lower end of the cost curve, Team 1 was able to assemble a plan covering 

7.25 sq km, and Team 2 was able to assemble a season plan covering 4.25 sq km. We hold both 

of these quantities to be well within the reach of smaller teams of more limited means. 

Finally, we discussed the underlying reason behind the Accelerating Cost Hypothesis 

(i.e., incomplete information) and also discussed some of the ACH’s implications. We revisited 

the expedition planning decisions made by our hypothetical archaeological teams and noted 

that paying the higher end of the accelerating cost curve was not always a bad choice. Indeed, 

certain interesting predictions only become available when the higher end is paid. However, 

paying the higher end of the cost curve of course still remains a bad or perhaps even impossible 

choice for teams with more limited budgets. 
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APPENDIX 

 This appendix contains full-scale frames for all of the images found within Figure 71. 

 
Figure 158: 11800BP Spring 
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Figure 159: 11800BP Fall 
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Figure 160: 11600 Spring 
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Figure 161: 11600 Fall 
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Figure 162: 11400 Spring 
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Figure 163: 11400 BP Fall 
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Figure 164: 11200BP Spring 
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Figure 165: 11200BP Fall 
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Figure 166: 11000 BP Spring 
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Figure 167: 11000BP Fall 
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Figure 168: 10800BP Spring 
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Figure 169: 10800BP Fall 
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Figure 170: 10600BP Spring 
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Figure 171: 10600BP Fall 
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Figure 172: 10400 BP Spring 
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Figure 173: 10400BP Fall 
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Figure 174: 10200 Spring 
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Figure 175: 10200BP Fall 
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Figure 176: 10000BP Spring 
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Figure 177: 10000BP Fall 
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Figure 178: 9800BP Spring 
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Figure 179: 9800BP Fall 
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Figure 180: 9600BP Spring 

 

 



 

 

266 

 

 
Figure 181: 9600BP Fall 
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Figure 182: 9400BP Spring 
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Figure 183: 9400BP Fall 
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Figure 184: 9200BP Spring 
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Figure 185: 9200 BP Fall 
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Figure 186: 9000 BP Spring 
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Figure 187: 9000 BP Fall 
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Figure 188: 8800BP Spring 
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Figure 189: 8800BP Fall 
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Figure 190: 8600BP Spring 
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Figure 191: 8600BP Fall 
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Figure 192: 8400BP Spring 
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Figure 193: 8400BP Fall 
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The recent archaeological discovery by Dr. John O’Shea at University of Michigan of 

prehistoric caribou remains and Paleo-Indian occupational structures underneath the Great 

Lakes has opened up an opportunity for Computer Scientists to develop dynamic systems 

modelling these ancient caribou routes and hunter-gatherer settlement systems as well as the 

prehistoric environments that they existed in. The Wayne State University Cultural Algorithm 

team under Dr. Robert Reynolds has created such a dynamic virtual world system. We 

contributed by providing a rule-based expert system designed to predict locations potentially 

containing undiscovered occupational structures in the Alpena-Amberley Ridge Region. In order 

to evolve the rules and thresholds within this expert system, we also developed a Pareto-based 

multi-objective optimizer called CAPSO, which stands for Cultural Algorithm Particle Swarm 

Optimizer. CAPSO is fully parallelized and is able to work with modern multicore CPU 

architecture, which enables CAPSO to handle “big data” problems such as this one. 
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The crux of our methodology is to set up a biobjective problem with the objectives being 

locations predicted by the expert system (minimize) vs. training set occupational structures 

within those predicted locations (maximize). The first of these quantities plays the role of “cost” 

while the second plays the role of “benefit”. Four separate such biobjective problems are 

created, one for each of the four relevant occupational structure types (hunting blinds, drive 

lines, caches, and logistical camps). For each of these problems, when CAPSO tunes the 

system’s rules and thresholds, it changes which locations are flagged and hence also which 

structures are predicted. By repeatedly tuning the rules and thresholds, CAPSO creates a Pareto 

Front of locations flagged (i.e., “cost”) vs. occupational structures predicted (i.e., “benefit”) 

ordered pairs for each of the four occupational structure types. A visualizer system can produce 

a geographic map of the locations flagged and structures predicted corresponding to each of 

these ordered pairs, and archaeological teams can composite these maps in order to create an 

entire expeditionary season plan that suits their individual budgetary means and research goals. 

We also analyzed the data trends within each of our Pareto Fronts, which can be 

thought of as “cost curves”. Our analysis revealed that as the number of structures predicted 

(benefit) increases linearly, the number of locations predicted (cost) increases exponentially. 

Nonetheless, the low end of each of the cost curves was inexpensive enough such that even 

teams of more limited means could create a season plan using the low end of the cost curves. 

Finally, analysis of CAPSO’s learning curves generated when constructing each of the Pareto 

Fronts demonstrated that complex learning was necessary in order to construct each of them. 
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