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CHAPTER 1 : INTRODUCTION 

1.1 SOFT MATTER PHYSICS 

My research falls in the category of soft matter physics. Here, I will provide a brief 

introduction to these systems. Soft matter physics is a sub-branch of the condensed matter 

physics, which studies the colloidal dispersions, liquid crystals, surfactants, emulsions, polymer 

melts, solutions, gels, and many biological materials. Soft Matter is the study of materials, which 

are neither liquids and nor solids4. Soft materials are widely used in everyday life, such as glues, 

paint, ketchup, and soap. The length scale of the soft materials is in the range from atomic scale 

to macroscopic scale5. 

Colloidal dispersions are solid or liquid sub-micrometer particles dispersed in another liquid. 

An emulsion is a colloidal system, and the liquid colloids are dispersed in a liquid medium. Milk 

and blood are the best examples for biological emulsions.  

Liquid crystals are anisotropic molecules that lead to states with degree of ordering in a phase 

of matter between crystalline solids and liquids. If the properties of the liquid crystals are 

temperature dependent the liquid crystals are said to be thermotropic. One of the most common 

thermotropic liquid crystal phase is “nematic”, where the molecules have no specific positional 

order, but has a long-range orientational order. Nematic liquid crystals show fluidity similar to 

isotropic fluids and simultaneously can be aligned by an external field, such as electric or 

magnetic fields. 

Polymers are of high molar mass molecules that are composed of many small structural units 

connected by covalent bonds6. Examples for biopolymers are mucus, DNA, RNA, cellulose, 
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xanthan, and proteins. Polymer solutions and melts exhibit viscoelasticity, which are significantly 

different from simple fluids. 

Surfactants can be defined as the molecules with two parts: a polar head, which is hydrophilic 

(water soluble) and the tail, which is hydrophobic. Surfactants are amphiphilic molecules. 

Therefore, they tend to form a dense film at the air-water interface. At the interface, surfactants 

align the molecules so that the hydrophilic head is in water and the hydrophobic tail is in the air 

to minimize the surface tension and the free energy. Surfactants are used in the food industry as 

wetting agents, in the cosmetic industry, in dishwasher liquids, laundry detergents etc. 

Brownian motion is an important aspect in soft matter systems because they are small enough 

and the typical energies associated with the bonds in these structures are comparable to thermal 

energy, kBT.   Here, kB is the Boltzmann’s constant and T is the absolute temperature.  The 

constituents in a soft matter system can be visualized as in a constant state of random motion. As 

an example, polymer chains in a solution, always twisting and turning under the influence of 

Brownian motion. Different categories of soft materials are represented in figure 1.1.1. 

 

 

 

Figure 1.1.1 Soft materials (Colloidals, polymer solutions, liquid crystals, and surfactants) 

 

My dissertation research work is mainly focused on soft materials, such as polymers and 

polyelectrolytes, which are discussed in detail below. 
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1.2 POLYMERS 

The word “polymer” means “many parts,” and refers to molecules consisting of a 

repeating structural pattern called “monomers ". The entire polymer structure is generated 

during the polymerization process, whereby the monomers are covalently linked together. The 

molar mass (M) of a polymer can be defined as the product of the degree of polymerization (N) 

and molar mass (Mmon).  

   𝑀 =  𝑁 𝑀𝑚𝑜𝑛    1.2.1 

 

 The chemical identity of monomers determines the properties of polymeric systems. 

Another important factor is the organization of the chain, which is fixed during the 

polymerization process. Polymer microstructure cannot be changed without breaking covalent 

bonds. A variety of isomers can be generated by polymerizing the double bond. There are three 

different categories of isomers: sequence, structural, and stereoisomers. The chains head to head 

and chains head to tail are two main categories of sequence polymers (Figure 1.2.1). Polymers 

that contain a double bond in their backbone may exhibit structural isomerism.  There are three 

different structural isomers called cis, trans, and vinyl according to the orientation of atoms 

(Figure 1.2.2). In stereoisomerism, the carbon atoms connect each other by single bonds and have 

a tetragonal structure.  
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Figure 1.2.1 Two sequence isomers of polypropylene  

 

 

Figure 1.2.2 Three isomeric structures of polybutadiene (cis, trans, and vinyl) 

 

1.2.1 PROPERTIES OF POLYMERS 

If a molecule consists of only a small number of monomers it is called an oligomer. Linear 

polymers contain from 10 up to 20 x 109 monomers. The physical properties of molecules change 

as monomers are linked together.  Boiling point and the melting point of polymeric systems 

increase rapidly with the number of backbones in the chain. Polymer architecture plays an 

important role in controlling the properties of polymeric systems. There are several different 
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types of polymer architectures: linear, ring, star-branched, H-branched, comb, ladder, dendrimer, 

or randomly branched (Figure 1.2.1.1). 

 

 

Figure 1.2.1.1 Examples of polymer architectures: (a) linear; (b) ring; (c) star; (d) H; (e) comb; (f) 

ladder (g) dendrimers; (h) randomly branched. 

 

1.2.2 HOMOPOLYMERS AND HETEROPOLYMERS   

 Polymers that contain only one type of monomers are called homopolymers. Even 

though it is made from one polymer, they can differ by their microstructure, the degree of 

polymerization, or architecture. The combination of several different types of monomer in a 

single chain leads to a new macromolecule called heteropolymers, with properties that are unique 

and depend on the composition of the sequence.  

1.2.3 POLYMER LIQUIDS 

 There are two types of polymer liquids, called polymer melts and polymer solvents. In 

order to make a polymer solution, polymers should dissolve in a solvent. Polymer melts can be 
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obtained by heating the polymer above the glass transition temperature (Tg) and the melting 

point. Polymer solutions can be classified as dilute and semidilute according to the polymer 

concentration, c, which is the ratio of the total mass of polymer to the total volume of the solution. 

The volume fraction 𝜙, which is defined in terms of concentration, is the ratio of the volume of 

the polymer in the solution and the volume of the solution.  

    c =
Mass of the polymer

Volume of the solution
   1.5.1 

    𝜙 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑚𝑒𝑟

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
   1.5.2 

Overlap volume fraction (𝜙*) can be used to define transition from dilute to semidilute 

solutions. The overlap volume fraction is the concentration when macromolecules densely fill 

and chains are just overlapped.7  

    𝜙∗ =
3𝑀𝑤

4𝜋𝑁𝐴𝑅𝑔
3    1.5.3 

 Here, MW is the molecular weight, NA is the Avogadro’s number, and Rg is the radius 

of gyration, which is the square root of the average square distance between the monomers in a 

given conformation and the polymer chain’s center of mass. 

 Solutions are called dilute, at polymer volume fractions below the overlap volume 

fraction (𝜙<𝜙*). Polymer coils in dilute solution are far from each other and do not interact. If the 

volume fraction of the polymer solution is above the overlap volume fraction (𝜙>𝜙*), the solution 

is called semidilute (Figure 1.2.3.1).  
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Figure 1.2.3.1 Schematic diagrams of dilute, overlap, and semidilute polymer solutions 

 Polymers are examples of viscoelastic materials, which exhibit time-dependent 

mechanical properties, a combination of viscous flow at long times (t>τrel), and elastic response at 

short times.8  τrel is the characteristic relaxation time of the system, which marks the ending of 

solid-like behavior and beginning of liquid-like behavior. If t>τrel the behavior is liquid-like, on 

the other hand, if t< τrel the behavior will be solid-like. 

1.3 POLYELECTROLYTES 

Polyelectrolytes are ionizable polymers, which can get ionized in the polar solvents like water. 

Polyelectrolytes dissociate in water and get ionized by leaving the charges on polymer backbone 

and releasing counterions to the solution (Figure 1.3.1).  

Most of the biopolymers, such as DNA (Figure 1.6.2), RNA, F-actin, and microtubules are 

polyelectrolytes. Other examples of polyelectrolytes include, polymethacrylic and polyacrylic 

acid, polystyrene sulfonate, other polyacids and polybases. Properties of polyelectrolytes in polar 

solvents vary with solvent quality for polymer backbone, the fraction of dissociated ionic groups, 

polymer–solvent interactions, and salt concentration. In polyelectrolyte solutions, charges on the 
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polymer backbone play a vital role, and the electrostatic interaction between charges leads to 

qualitatively different behavior in contrast to uncharged polymer solutions9.  

 

Figure 1.3.1 Ionized polyelectrolyte in polar solvent 

 

  

 

 

 

 

 

 

 

 

 

Figure 1.3.2 Example of polyelectrolyte: DNA is a charged biopolymer which releases positive 

ions to the medium and negative ions distribute in the polymer backbone Adopted10 
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Unique properties of polyelectrolytes described below, 

⚫ Transition from dilute to semidilute regime occurs at much lower concentration compared 

to neutral polymers with the same molecular weight. 

⚫ A prominent peak can be observed in the scattering function of the homogeneous 

polyelectrolyte solutions, which increases with the polymer concentration with an 

exponent of ½. This is not observed in neutral polymer solutions.  

⚫ The osmotic pressure of salt-free polyelectrolytes is several orders of magnitudes higher 

in comparison to neutral polymers with the same concentration. Further, the osmotic 

pressure increases linearly with concentration and remain constant with chain molecular 

weight for a wide range of polymer concentration. This concludes that the osmotic 

pressure is mainly due to the counter ions contribution in the solution. 

⚫ According to the Fusoss’s law, the viscosity of the polyelectrolyte solutions scales as 

𝜂~𝑐1/2 while it is proportional to polymer concentration for uncharged polymers. 

Additionally, there is a concentration regime (Fuoss regime), which reduce the reduced 

viscosity as a function of concentration (
𝜂

𝑐
~𝑐−1/2) in polyelectrolyte solutions. In neutral 

polymers, no such a regime exists. 

⚫ Polyelectrolyte solutions follow unentangle dynamics for a wide range of concentration 

in comparison to uncharged polymers. In other words, the crossover from semidilute to 

entanglement occurs further away from the overlap concentration. 
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Dilute Solutions of Polyelectrolytes 

In dilute polyelectrolyte solutions, the interactions can be explained as counterions 

surrounding charged polymer chains in a large unit cell with the size equal to the distance 

between the chains.9 

The potential energy of the polyelectrolyte chain U(r)11 with monomers located at positions r1, r2, 

r3,……,rN and corresponding charges of eq1, eq2,…….,eqN is, 

𝑈({𝑟}) = 𝑘𝐵𝑇 (
3

2𝑏2
∑ (𝑟𝑖+1 − 𝑟𝑖)

2 +∑ ∑
𝑙𝐵𝑞𝑖𝑞𝑗

|𝑟𝑖−𝑟𝑗|
𝑗<𝑖

𝑁
𝑖=1

𝑁−1
𝑖=1 exp(−𝐾|𝑟𝑖 − 𝑟𝑗|) +

𝑈𝑠ℎ(|𝑟𝑖−𝑟𝑗|)

𝑘𝐵𝑇
)  1.6.1 

 The first term in the interaction equation explains the entropic elasticity of harmonic 

bonds, where, b is the length connecting monomers into the polymer chain. The second term in 

the equation describes the screened Coulomb interaction between charged monomers. Here, 𝑙𝐵 is 

the Bjerrum length that explains the length at which the electrostatic interaction between two 

charges (e) in the medium with dielectric constant (𝜀) is equal to the thermal energy 𝑘𝐵𝑇 in terms 

of Boltzmann constant 𝑘𝐵 and 𝑇 in absolute temperature, 

𝑙𝐵 =
𝑒2

𝜀𝑘𝐵𝑇
     1.6.2 

The third term describes the short-range interaction between the monomers (𝑈𝑠ℎ(𝑟)), 

which can be typically explained by the Lenard-Johns potential (𝑈𝐿𝐽(𝑟)). 

𝑈𝐿𝐽(𝑟) = 4𝜀𝐿𝐽 ((
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

)    1.6.3 

Here, 𝜀𝐿𝐽 is the interaction parameter and 𝜎 is the monomer diameter. 

In the chain potential energy equation, the interactions between counterions and salt ions 

or any other ions are not included, and this effect can be taken into account as a Debye screening 

length (𝑟𝐷 = 𝐾−1) as a function of concentration (𝑐𝑠) and the valance 𝑞𝑠of ions. 
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𝐾2 = 4𝜋𝑙𝐵∑ 𝑐𝑠𝑞𝑠
2

𝑙𝐵      1.6.4 

The electrostatic interaction between ions are exponentially screened on the length scales 

larger than the Debye screening length. In a dilute solution, the concentration of counterions is 

very low, so the Debye screening length is larger than the chain size. As a result, ionized groups 

on a chain interact with each through the unscreened Coulomb potential. 

Flory theory describes the free energy of the chain neglecting the interaction between 

monomers. The theory assumes unidirectional elongation of the chains along the z-axis due to 

the electrostatic interaction between the chains but unperturbed in x and y-axis. This leads to the 

ellipsoidal shaped polyelectrolyte chain (Figure 1.3.3) of dimensions of Re in the longitudinal axis 

(z-axis) and ideal chain size (𝑏𝑁1/2) in the transverse axis (x and y-axis). Two terms contribute to 

the free energy of the chains, which are the entropy part and the electrostatic part. Entropy 

decreases with increasing end-to-end distance and hence the free energy increases. On the other 

hand, the electrostatic term increases with an increase in chain size. Therefore, the optimal chain 

size 𝑅𝑒 corresponds to minimal free energy. 

 

 

Figure 1.3.3 Ellipsoidal polyelectrolyte chain 
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Scaling Model 

In dilute solutions, the scaling model of polyelectrolyte chain conformation is associated 

with the assumption of separation of different length scales and the concept of an electrostatic 

blob, which can be described as the conformation of the chain inside the electrostatic blob are 

unperturbed due to the electrostatic interactions. All charged monomers inside electrostatic blob 

have the energy of electrostatic interaction in the order of 𝑘𝐵𝑇. 

In the length scale larger than the blob size, the electrostatic interaction between blobs 

leads to the elongation of the polyelectrolyte chain, which arranges into an array of blobs. The 

size of the chain can be estimated as the product of blob size and the number of blobs per chain11. 

 

Figure 1.3.4 Figure of non-uniformly stretched polyelectrolyte chain in a dilute salt-free solution. 

My research work is focused on studying polymer solution, weak polyelectrolyte 

solutions and colloidal particle mixture using gold nanoparticles. In simple liquids, the 

translational diffusion coefficient, D of isolated spherical particles is given by the Stock-Einstein 

(SE) relation. 

𝐷𝑆𝐸 =
𝑘𝐵𝑇

6𝜋𝜂𝑅𝐻
     1.6.5 
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where 𝑘𝐵  is the well-known Boltzmann constant, T is absolute temperature of the ambient, 

η is the viscosity of the surrounding fluid, and 𝑅𝐻 is the hydrodynamic radius of the diffused 

particle. 

 In contrast to simple liquids, in case of polymer and polyelectrolyte solutions, where 

there are probe particles, polymer polyelectrolyte and solvent molecules, various length scales 

are involved, and the applicability of this relation becomes complicated. This discussion will be 

revisited in the following chapters. 

1.4 SIGNIFICANCE OF MY RESEARCH 

An understanding of transport properties of nanoparticles through a complex, crowded 

macromolecular environment will have applications in fields ranging from biophysics and 

polymer science to drug delivery. The study of the dynamical behavior of metallic nanoparticles 

of different sizes in polymer, biopolymer liquids, and gels provide information about their 

mechanical and viscoelastic properties.  

 Gold nanoparticles exploit their unique physical and chemical properties such as non-

toxicities and ease of synthesis for carriers for drug and gene delivery applications12. Gold 

nanoparticles are excellent candidates for biological sensing because the surface plasma 

absorption band of gold nanoparticles changes significantly with the complex refractive index of 

the medium and the dielectric properties of the environment13, which makes them suitable for 

accurate biological sensing. In addition, surface plasmon-resonance of gold nanoparticles at near-

infrared (NIR) absorption results in heating surrounding the cells. Therefore, utilization of this 

heat is useful in destroying cancer cells as they are more sensitive to heat compared to healthy 

cells. This cancer therapeutically method is called localized hyperthermia 14, 15.  
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Biocompatible polymer solutions can be considered as a good model for such a crowded 

system and provide important information about the mobility of nanoparticles in complex 

macromolecular fluids, gels, and biological systems. Additionally, from the polymer physics 

perspective, the studies can give useful information about the structure of the matrix and verify 

or refine theories of polymer dynamics16. 

This dissertation is organized as follows. Chapter 2 will provide background information 

relevant to the research work in the thesis with some previous work by the experts in the field. 

Chapter 3 outlines the experimental techniques used in the research projects. Specifically, 

fluorescence correlation spectroscopy (FCS), which was used to measure diffusion coefficient of 

gold nanoparticles is described. Chapter 4-6 include the experimental results of my research. In 

particular, the chapter 4, “Diffusion of Nanoparticles in Polymer Solutions and Gels”, chapter 5 

covers the “Nanoparticle Diffusion within Dilute and Semidilute Xanthan solutions, and chapter 

6 focuses on the “Diffusion of Gold Nanoparticles in Semidilute Polyelectrolyte Solution”.  
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CHAPTER 2 : BACKGROUND 

2.1 INTRODUCTION 

The diffusion of colloids and particles in polymer solutions and gels were studied by 

different techniques, such as fluorescence, dynamic light scattering, gravimetry, radioactive 

labeling, and membrane permeation.17 The theoretical models, such as obstruction model, 

hydrodynamic model, and free volume theory are important understanding the diffusion in 

polymer solutions and gels. Probe diffusion in polymer is mainly due to the random motion of 

the molecules, which changes due to the viscosity, probe size, temperature, and microstructure 

of the medium. The following sections 2.1.1, 2.1.2, 2.1.3, 2.14 of this chapter will cover the results 

and discussion of former theoretical, experimental and computational studies, which are most 

relevant to this research and will provide the necessary background for the projects studied in 

this thesis. 

2.1.1 THEORIES AND PHYSICAL MODELS OF DIFFUSION 

2.1.1.1 Hydrodynamic and obstruction model 

 Theoretical modeling of diffusion of probe particles in the polymer solution can be 

classified into two major groups,18 namely hydrodynamic model19-24 and obstruction model25-29. 

The hydrodynamic theories are based on the hydrodynamic interactions between the diffusant 

and the polymer. In the dilute regime, the particles are treated as “hard spheres” if the particle 

size is smaller than the polymer chain size. Here the particle radius is same as the hydrodynamic 

radii.20 In the semidilute regime, the polymer chains are approximated as stationary friction 

centers consist of monomer beads. Hydrodynamic interaction between the diffused particles and 

the monomer beads is considered to be screened beyond the length scale of correlation length, 
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distance from a monomer in one chain to a monomer in another nearest chain,30 (ξ). Further. the 

diffusion coefficient follows a stretched exponential function of particle size and the polymer 

volume fraction. 

Obstruction theory relies on the assumption that the polymer chains are motionless 

relative to the probes, which was first introduced by Fricke in 1924.31 Additionally, the self-

diffusion coefficient of polymer chains is much smaller than that of the probes. The motionless 

polymer chains in the solution make the increase of the path length of the diffusive probes from 

one point to the other. Further, in the obstruction model, polymer chains are visualized as a 

porous network with pore-size determined by the distance between an arbitrary point on the 

polymer chain and the point on the nearest polymer chain. If the particles are larger than the pore 

size, the diffusion coefficient can be written as a function of friction of those pores.  

2.1.1.2 SCALING THEORY 

 The scaling theory for the dynamics of probe particles in polymer solutions was 

developed by B-Wyart and de Gennes.32 The theory was established assuming that the polymer 

solution as a transient statistical network with the size of correlation length (ξ). According to the 

theory, the small probe particles (R< ξ) feel the solvent viscosity and easily slip through the 

polymer network. Larger particles, R>> ξ, feel the bulk viscosity, and intermediate particles (R~ 

ξ) feel an effective viscosity, which is in between the solvent viscosity and the bulk viscosity of 

the medium. This dependence can be explained as a function of the ratio of the particle size to the 

correlation length. There were many research were done in this field to find the particle size and 

concentration-dependent viscosity of the polymer solutions.19, 32-34  
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 Phillies et. al. developed a model to interpret the self-diffusion of macromolecules over a 

wide range of concentration based on the assumptions of the hydrodynamic model. Their 

studies suggested a stretched exponential dependence diffusion coefficient of the probes in a 

polymer solution.33 

𝐷 = 𝐷0exp (−𝛽𝛷
𝜈)      2.1.1.2.1 

Here, D is the diffusion coefficient of particles in the polymer solution, D0 is the diffusion 

coefficient of particles in the neat solvent, β and ν are adjustable parameters, which depend on 

the molecular weight of the polymer and probe size. Experiments35-37 have found that the 

parameter β and  υ changes according to the scaling law of β~𝑀0.9, and 𝜈~𝑀−1/4 within the 

experimental errors for a wide range of molecular weights. Therefore, the generalized Phillies 

equation can be written as, 

In the Phillies model, the hydrodynamic interactions are dominated by the chain-chain 

interactions; however, the theory did not consider the “reptation” motion of the chains in the 

entangled regime. 

Cukier19 introduced a model based on hydrodynamic interactions to describe the 

Brownian motion of spherical particles in semidilute polymer solutions. Cukier considered the 

semidilute solutions and approximated the solution as a homogeneous solution. Moreover, in the 

semidilute regime, the polymer chains are motionless compared to the diffusant probes. Diffusant 

undergo screening due to the overlapped chains, and diffusion coefficient can be explained as, 

𝐷 = 𝐷0exp (−𝜅𝑅ℎ)      2.1.2 

Here, κ represent the screening effect due to the hydrodynamic interaction in semidilute 

solutions, which relates to the resistance between the polymer network, solvent, and diffused 
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probes. Rh is the hydrodynamic radius of the diffusants. For dilute polymer solutions, the 

diffusion coefficient can be simplified as, 

𝐷 = 𝐷0 (1 − 𝜅𝑅ℎ)      2.1.3 

 

The screening parameter 𝜅 is for a rod-like polymer, 

𝜅2 =
𝜁𝑛

𝜂
      2.1.4 

Here, n is the number density of the rod-like polymer molecules and η is the solvent viscosity. ζ 

is the frictional coefficient of one rod, which depend on the length (L) and the diameter (b) of the 

rod.  

𝜁 =
6𝜋𝜂(

𝐿

2
)

ln (
𝐿

𝑏
)

      2.1.5 

For coil like polymer, 

𝜅2 =
𝜁𝑛∗

𝜂
= 6𝜋𝑛∗𝑎      2.1.6 

Here, n* is the monomer number density and a is the monomer radius. 

In the semidilute regime for small particles, the screening constant follows the scaling 

relationship with concentration according to, 𝜅~𝑐𝜐 with υ=0.5 and independent of the polymer 

geometry. Mel’nichenko et al. experimentally studied the diffusion of water in concentrated 

hydrogel solutions as well as the diffusion of polyacrylamide in silica gels, which were in 

agreement with the Cukier theory.38, 39 The limitation of this theory is that this was derived for 

large diffusant such as polymers and proteins.  

 All the above theories ignored polymer dynamics. A recent theoretical study by Cai et al. 

suggested a diffusion model by considering the coupling of polymer dynamics with the probe 

dynamics. They have extended the scaling theory developed by B-Wyart and de Gennes.32 The 
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study was developed for 3 regimes of particle sizes, which were the small size (2R<ξ), 

intermediate size (ξ<2R<a) and Large size (2R> a), where a is the tube diameter, in entangled 

regime. The correlation length (ξ), distance from a monomer in one chain to a monomer in another 

nearest chain, can be written in a power law equation, 

𝜉(𝛷) ≈ 𝑏𝛷
−

𝜐

(3𝜐−1)     2.17 

Here, b is the length of the Kuhn monomer segment, υ is the Flory exponent, which 

depend on the solvent quality. Another important length scale is the entanglement length (tube 

diameter a), which is a length scale use to determine the dynamics of polymer chains in the 

entanglement regime7 and it is typically five times higher than the correlation length.  

𝑎(𝛷) = 𝑎(1)𝛷
−

𝜐

(3𝜐−1)     2.1.8 

Here a(1) is the tube diameter in the melt. 

(a) Region (i): Small size (2R<ξ) particles: Mobility of particles is not affected by the 

polymer chains, and the diffusion coefficient is quite similar to that in solvent. Further, 

the diffusion coefficient of particles is determined by the viscosity of the solvent (ηs), 

which is given in the equation below, 

𝐷𝑠 ≈
𝑘𝐵𝑇

2𝑅η𝑠
     2.1.9 

i.e. 𝐷𝑠 ∝ 𝑅−1     2.1.10 

(b) Region (ii): Intermediate size (ξ<2R<a) particles: Diffusion of particles in this regime is 

not affected by the entanglement of chains but gets coupled with the polymer 

dynamics. At shorter time scale in this particle size regime, the motion of the particles 

is diffusive and feel local viscosity. This diffusive motion last until a time scale τξ, 



20 
 

 
 

τξ = τ0 (
𝜉

𝑏
)
3

     2.1.11 

τ0 =
𝜂𝑠𝑏

3

𝑘𝑩𝑇
     2.1.12 

Here, τ0 is the relaxation time of the monomers and τξ is the relaxation time of a correlation blob 

of size ξ. At time scales longer than relaxation time τξ, particles experience sub-diffusive motion 

as a result of the coupling the with the fluctuation modes of the polymer solutions, and particles 

feel an effective viscosity (ηeff), 

𝜂𝑒𝑓𝑓(𝑡) = 𝜂𝑠 (
𝑡

𝜏𝜉
)
1/2

    2.1.13 

Therefore, the effective diffusion coefficient,  

𝐷𝑒𝑓𝑓(𝑡) ≈
𝑘𝐵𝑇

2𝑅𝜂𝑒𝑓𝑓(𝑡)
≈ 𝐷𝑠 (

𝑡

𝜏𝜉
)
−1/2

   2.1.14 

The sub-diffusive motion continues until the time scale, τD, at which the chain size control 

the viscosity comparable with the particle size. 

τ𝐷 = τ𝜉 (
2𝑅

𝜉
)
4

      2.1.15 

At this time scale, particle diffuse with the terminal diffusion coefficient, 

𝐷𝑡 =
𝑘𝐵𝑇

2𝑅𝜂𝑒𝑓𝑓(τ𝐷)
=

𝑘𝐵𝑇𝜉
2

𝜂𝑠(2𝑅)
3    2.1.16 

The effective viscosity felt by the particle is proportional to the number of correlation 

blobs in the polymer chain size comparable to the particle diameter. 

(c) Region (ii): Large size (2R>a) particles: At this regime, since particle size is larger than 

the polymer mesh size, particles are trapped inside the polymer network by the 

entanglements. At the shorter time scale compared to the entanglement relaxation 
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time (τe), the arrest of the particles motion happens. The entanglement time scale is 

given as 

τ𝑒 = τ𝜉 (
𝑎

𝜉
)
4

≈ τ0 (
𝜉

𝑏
)
3
(
𝑎

𝜉
)
4

    2.1.17 

At the time scale larger that τe the particle dynamics can be explained using two 

mechanisms. First, the topological constraints result by the reputation of surrounding polymer 

chains result at the reputation time (τrep),  

τ𝑟𝑒𝑝 = τ𝑒 (
𝑁

𝑁𝑒
)
4

     2.1.18 

Here, Ne is the number of monomers per entanglement strand.  

 The second mechanism is due to the fluctuations of local entanglement mesh, which 

leads particles to pass through the entanglement gates. This result in a hoping motion1 of 

particles from one entanglement cage to the other. The hopping motion of the particles will be 

discussed in another section. 
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Figure 2.1.1.1 (a) Terminal particle diffusion coefficient Dt as a function of particles size (2R=d) in 

entangled polymer solutions. (b) Normalized terminal diffusion coefficient with the diffusion 

coefficient at pure solvent as a function of polymer volume fraction in entangled athermal 

polymer solutions.18 (Reprinted with permission from Macromolecules 44 (19), 7853-7863. 

Copyright (2011) American Chemical Society.) 

 

2.1.2 PREVIOUS COMPUTATIONAL WORK 

Lui et al. performed molecular dynamics simulation to study the nanoparticle dynamics 

in polymer melts.40 They have studied the effect of polymer concentration, size, the chain length, 

mass of the particles, and polymer- particle interaction on the particle diffusion coefficient. Their 

results showed that when the particle size is greater than the radius of gyration, (2R>Rg) the 

diffusion coefficient matches very well with the SE (Stokes-Einstein) value. On the other hand, 

when the particle size smaller than the radius of gyration (2R<Rg), the diffusion coefficient 

deviated from the SE value, and it is related to the nanoviscosity rather than the bulk viscosity 

The diffusion coefficient was found to be independent with the mass of the particles and followed 

a power law relationship with the particle size, D~R3.  

 Ganesan et al. had proposed a continuum model for nanoparticle dynamics in polymer 

metrices.41 The results suggested that the length scale (L) that controls the transition from 

colloid to solvent is determined by the radius of gyration (Rg) for unentangled. The diffusion 

coefficient changes with the polymer size (Rg) to particle size (R) ratio (Rg/R), and strongly 

depends on the particle size. This study showed that particles feel the macroviscosity in the 

limit of R>L.  

2.1.3 PREVIOUS WORK ON HOPPING DIFFUSION 

 Cai et. al. proposed a model for hopping diffusion of large non-sticky nanoparticles 

subjected to topological constraints in entangled and unentangled polymer networks and gels.1 
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Particles larger than the mesh size, ax, (2R>ax) are confined inside an unentangled network, and 

the large fluctuation of network strand leads to hopping. The fluctuation of the network cage 

should be large enough to allow one of the network strands to slip around the particle to occur 

hopping (Figure 2.1.3.1). In order for a particle to hop from one cage to the neighboring cage, the 

particle should overcome the free energy barrier, which can be defined as the difference between 

the maximum and the initial elastic deformation energy of the network stands during a hopping 

event. 

During a single hoping event, the entropic energy barrier involving in the deformation 

of the loop when it is slipping around the probe can be written as, 

∆𝑈ℎ𝑜𝑝 ≈ 𝑘𝐵𝑇 (
2𝑅

𝑎𝑥
)
2

      2.1.3.1 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.3.1 Figure of a large nanoparticle hops from one network cage to a neighboring cage 

with a network loop (in red) slipping around the particle. (Adopted1) (Reprinted with permission 

from Macromolecules 48 (3), 847-862. Copyright (2015) American Chemical Society. Further 

permissions related to the material excerpted should be directed to the ACS) 
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The hopping barrier measures the probability of the loop fluctuation to a size larger than 

the particle size 2R. The probability is further proportional to the time waiting for a hoping to 

occur (τw) in unentangled network. 

𝜏𝑤 ≅ 𝜏𝑥 (
𝑑

𝑎𝑥
) 𝑒𝑥𝑝 (

𝑑2

𝑎𝑥
2
)     2.1.3.2 

where, 

𝜏𝑥 ≅ 𝜏0𝑁𝑥
2     2.1.3.3 

Here, τ0 is the monomer relaxation time and Nx is the number of monomers in the network. 

τx is the Rouse relaxation time, which is the time a network strand attempt to slip around the 

particle. Even though the loop slips through the particle, hoping motion does not get succeeded 

until t>τw. The probability of the hoping increases with the time for t> τw. Further, the diffusion 

coefficient due to hoping mechanism in unentangled gel, 

𝐷ℎ𝑜𝑝 = (
𝑏2

𝜏𝑥
) (

𝑎𝑥

𝑑
) 𝑒𝑥𝑝 (−

(2𝑅)2

𝑎𝑥
2 )    2.1.3.4 

At time scale smaller than the relaxation time τx, for large particles (i.e. 2R>ax) the diffusion 

is unaffected by the fluctuations of the network strand and the mobility is similar as in polymer 

melts. This will be discussed further in Chapter 4. 

2.1.4 PREVIOUS STUDIES ON DEPLETION LAYER EFFECT 

 Konderinker et al. studied the rotational and translational diffusion of colloidal tracer 

spheres in semiflexible xanthan solutions.42 One of their goals was to investigate how the 

frictional drag coefficient is affected by the hydrodynamic interactions of the tracer particle with 

the surrounding polymer solution. The Stokes frictional drag of tracer spheres in pure solvent is 

proportional to the solvent viscosity η0. They have observed that modifying the solvent viscosity 
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by the low shear viscosity makes the effective viscosity experienced by the tracer particles 

overestimated. According to the phenomenological theory by de Gennes, the hydrodynamic 

screening length (ξH) for semiflexible polymers in good solvents is identical to correlation length 

(ξ) within numerical factors (i.e. ξH≅ξ).30 The experimental results by Konderinker et al. supports 

this. Phillies and the coworkers argued that hydrodynamic screening in polymer solution is 

absent and entanglements in polymer are unimportant for the dynamics of the tracer particles.33, 

35, 36 Further they described that this same mechanism applies to the system with different 

architectures of the tracer particles, such as rigid spheres and flexible chains. However, this was 

disproved by an experimental study using different tracer architectures in the same matrix.43  

 Effective medium theory assumes that tracers experience a homogeneous polymer 

solution, which is Brinkman fluid with the hydrodynamic screening length, ξH. In real solvents, 

there are non-adsorbed polymer segments are around the tracer particles, and as a result, this the 

tracer particles are depleted away a certain distance. The depletion layer thickness will be 

discussed more in Chapter 5. 

2.1.5 PREVIOUS WORK ON POLYELECTROLYTES 

Poling-Skutvil et al. studied the mobility of polystyrene nanoparticles in dilute and 

semidilute solutions of partially hydrolyzed polyacrylamide.44 Study found that the particle size 

to polymer size ratio (2RNP/ξ) controls the long-time diffusivity of nanoparticles. The mean 

squared displacement results show that particle dynamics coupled with the polymer dynamics 

because polymer undergoes similar crossover between dynamic modes. In the longer time scale, 

(i.e. t>τξ) polymer chains move as a chain of correlation blobs. Here, τξ is the relaxation time of a 

correlation blob written as, 
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𝜏𝜉 =
𝜂0𝜉

3

𝑘𝐵𝑇
      2.1.5.1 

η0 is the solvent viscosity and is the ξ correlation length. In the opposite limit (i.e. τξ < t < τR) The 

polymer moves subdiffusively. Here, τξ is the polymer relaxation time which can be written as 

follows. 

𝜏𝑅 ≈ 𝜏𝜉 (
𝑁

𝑁𝜉
)
2𝜐+1

     2.1.5.2 

where N is the number of monomers in the polymer chain and the Nξ represents the number of 

monomers in the correlation blob and ν is the reciprocal of the fractal dimension of the polymer, 

which is equal to ½ if the polymer behaves as an ideal string of correlation blobs. The mobility of 

the polymer chains locally cages the particle until the polymer chain is sufficiently relaxed, and 

this result in a coupling of dynamics between the particles and polymer. At the time scale of t > 

τξ, due to the coupling of dynamics, effective viscosity ηeff(t) felt by the particle increases as, 

𝜂𝑒𝑓𝑓(𝑡)  ∼  
𝑁(𝑡)

𝑁𝜉
≈ 𝜂0  (

𝑡

𝜏𝜉
)
1/2

    2.1.5.3 

The viscosity continues to increase until the polymer relaxes over the size of the particle 

at the time, τR 

𝜏𝑅 ≈ 𝜏𝜉 (
2𝑅𝑁𝑃

𝜉
)
4

    2.1.5.4 

 

 

In the time scale t>τR, particle polymer dynamics decoupled. Therefore, time scale beyond 

t= τR, particle dynamics depend on the effective viscosity of the medium, ηeff, 

𝜂𝑒𝑓𝑓 ≈ 𝜂0 (
2𝑅𝑁𝑃

𝜉
)
2

    2.1.5.5 
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The relative diffusivity (D/D0) results have collapsed onto a single curve for small size 

and follow the predicted scaling relation: D/D0 ∼ (2RNP/ξ)−2. However, for larger particles, relative 

diffusivity somewhat deviates from the curve and they have interpreted their result as particles 

are large enough to experience the viscoelasticity of bulk solution. This discussion will be 

continued in Chapter 6. 
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CHAPTER 3 : FLUCTUATION CORRELATION SPECTROSCOPY 

3.1 INTRODUCTION 

Fluctuation correlation spectroscopy also called fluorescence correlation spectroscopy 

(FCS) is a powerful technique to measure the dynamics of molecular processes by using the 

statistical analysis of fluctuation of fluorescence intensity8, 45, 46. FCS was first introduced in the 

early 1970s by Magde et. al. as a compact dynamic light scattering (DLS) system to measure the 

diffusion and binding of ethidium bromide onto double-stranded DNA. FCS developed further 

to demonstrate single-molecule detection capabilities in 199347. Fluorescence correlation 

spectroscopy provides an important methodology in the fields of biophysics, analytical chemistry 

and cell biology for measuring and probing the mobility, ligand kinetics of biological molecules 

in cellular environment, the nuclear structure of living cells etc.48 FCS can be used as a single 

molecule sensitive spectroscopic technique that can be used to get details about the sample at 

very low concentration (~pM-nM).  

 Fluctuations of the fluorescence (Figure 3.1.1) emitted by the biomolecules or dye 

molecules are useful to obtain the autocorrelation curves (Figure 3.1.2), which carries information 

such as diffusion coefficient, decay time, etc. The autocorrelation curve can be calculated 

according to the autocorrelation function as a function of delay time τ. It measures the similarity 

of the function with itself after a time lag τ. 

    𝐺(𝜏) =
<𝛿𝐹(𝑡).𝛿𝐹(𝑡+𝜏)>

<𝐹(𝑡)>2
   3.1.1 

〈F(t)〉 = (
1

T
)∫ F(t)

T

0
dt denotes the time average of the fluctuation intensity. δF(t) is the fluctuations 

around the mean value of F(t).  
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Figure 3.1.1 Fluctuation of fluorescence particle mobility through the laser focus 

 

 

 

 

 

 

 

 

Figure 3.1.2 Autocorrelation curve as a function of time lag τ Sample: R=5 nm gold 

nanoparticles in deionized water C= 0.95 nM 

 

The rate of photon emission is proportional to the average number of molecules in the excitation 

volume (<N>), which according to Poissson statistics implies that  relative statistical fluctuation 

is larger for samples with smaller <N>. The amplitude of the autocorrelation function is inversely 
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proportional to <N>. Therefore, the signal itself will be stronger for smaller concentration 

samples.45 

3.2 EXPERIMENTAL SETUP 

First, two-photon FCS set up (Berland et al 1995) was inspired by the implementation of 

the two-photon microscopy (Denk et al 1990). Use of non-linear two-photon absorption makes 

high optical resolution in two-proton FCS set up. The absorption of two photons is a quasi-

simultaneous process that happens in a very short time (10-16 s), which require two photons with 

half of the energy that is required for an actual transition(Figure 3.2.1).49 In a two-photon setup, 

the fluorescent emission happens only near the laser focus, where the energy density is maximum 

because the probability of occurring two-photon excitation event is extremely low. Contrary to 

the use of a pinhole in single photon FCS set up, two-photon FCS has an inherent property to cut 

off the background fluorescence in the illumination path by spatial filtering.45 The laser acts as 

the excitation source for the dye molecules. The efficiency of the photon excitation is greatly 

increased by using short illumination pulses because of the probability of the two-photon event 

is directly proportional to the square of the light intensity. Since the excitation intensity is 

inversely proportional to the square of the distance from the focal plan (1/d2) two-photon FCS 

excitation is restricted to tiny detection volume (~1 femtoliters) around the laser focus spot. 

Additionally, the photo damage of the fluorophores is controlled by confining the excitation 

photons only to the vicinity of the focal spot. These characteristics makes the two-photon FCS 

more suitable for sensitive studies of biomolecules compared to one photon FCS set up.49 Another 

advantage of two-photon FCS is that the wavelength of the excited and the emission photons are 

significantly different. As a result, the illumination of laser light is well separated according to 
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the wavelength by introducing a dichroic mirror to the setup. Thus, the emitted fluorescence light 

can be efficiently filtered out. Commonly used lasers for two-photon FCS set up are the 

femtosecond and picosecond Ti:sapphire lasers. On the other hand, one photon FCS set up uses 

continuous laser source. 

 

 

 

 

 

 

 

Figure 3.2.1 Two-photon excitation and emission event. The absorption of two photons with 

identical energy results in emission of one photon with energy greater than one individual 

absorbed photon 

 

Femtosecond Ti:sapphire laser (Mai Tai, Spectra-Physics) of near-infrared light 

(wavelength~800 nm) with the pulse width of 150 fs at a repetition rate of 80 MHz serves as the 

excitation source for fluorophores in our experiments. Neutral-density filters (NDFs) are used to 

reduce and select the appropriate power of the laser according to the specific fluorophores used 

in the experiment. An Axiovert 200, Zeiss inverted microscope act as an experimental platform 

for the experimental setup.  The laser beam passes through the ND filters followed by a beam 

expander. The beam expander consists of two lenses, which were separated by the distance equal 

to the addition of their focal lengths. Beam expander expands the laser beam in the size of ~2 mm. 

Excitation Emission 
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After that, the incoming beam from the beam expander is reflected from a dichroic mirror, which 

is formed of multiple dielectric coatings. The dichroic mirror is a special mirror that separates the 

two light paths by reflecting the excitation light into the objective and transmitting the 

fluorescence emission light from the sample into the detector.  The dichroic mirror is responsible 

of reflecting the light with a wavelength above a certain value called the transition wavelength 

and transmit under that same wavelength. The transition wavelength of the dichroic mirror 

should match with the transition wavelength of the fluorophores used in the measurements. The 

reflected laser beam from the dichroic mirror is focused on the sample through a high numerical 

aperture (N.A.=1.25,100X) oil immersion objective. At the excitation volume, a nanoparticle or 

dye molecule absorbs two photons and emits one photon within the short time interval of a few 

femtoseconds. Since the emitted photon has wavelength less than the absorbed photon, emitted 

photon transmits back through the same path, first collected by the objective and pass through 

the dichroic mirror. Incoming photons were collected by the single-photon sensitive 

photomultiplier tube (PMT) placed after a 50-50 beam splitter. The “afterpulsing” effect of 

photodetectors distort the autocorrelation curve for lag times shorter than 1 μs, because there is 

a finite but low probability that single photon generates two electronic pulses instead of one 

electronic pulse (Figure 3.2.2). The effective solution to reduce the afterpulsing artifact is that 

splitting the incoming light between two detectors and cross-correlate their outputs. The resultant 

cross-correlation function is similar to the autocorrelation function and free of afterpulsing in the 

shorter time lags.  
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Figure 3.2.2 Two-photon FCS set up 

 

A polarized signal is required to measure the rotational diffusion of anisotropic particles 

due to their shape anisotropy. In this situation, a polarized beam splitter is introduced to the set 
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up before the PMTs to obtain polarized resolve signal. There is a short pass filter that is placed 

between the dichroic mirror and PMT to prevent any leakage or scattered light entering the PMT.  

Integrated data acquisition software (ISS, IL) is used to record, organize, and analyze the 

fluctuations of the fluorescents intensity from the PMT at real time (t). The software provides the 

autocorrelation curve or cross-correlation curve during the experiment. Autocorrelation function 

(ACF), G(τ), that is derived from different theoretical models is useful to extract the dynamical 

information, such as diffusion coefficient of the fluorophores, which measures the similarities of 

the function itself after a time lag τ. 

3.3 THEORETICAL APPROACH 

Tiny fluctuations in the fluorescence signal from the excited molecules can be quantified 

by using the autocorrelation function by temporally autocorrelating the recorded intensity 

signal.47 FCS autocorrelation curve, G(τ) contains two different types of information. First, the 

magnitude G(0), measures the number density or characterized molecular aggregates. Second, 

the rate and the shape of the temporal decay, which provides dynamical information. 

The autocorrelation function (ACF) can be defined as, 

𝐺(τ) =
〈𝛿𝐹(𝑡−τ)𝛿𝐹(𝑡)〉

〈𝐹〉2
     3.3.1 

The fluctuation of fluorescence intensity 𝛿𝐹(𝑡) can be written as, 

𝛿𝐹(𝑡) = 𝐹(𝑡) − 〈𝐹〉     3.3.2 

where, 𝐹(𝑡) is the measured fluorescence at time t and 〈𝐹〉 is the average value of the fluctuations 

measured fluorescence 𝐹(𝑡)  at time t. 

It simplifies to,  
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𝐺(τ) =
〈𝐹(𝑡)𝐹(𝑡−τ)〉

〈𝐹〉2
− 1     3.3.3 

The autocorrelation function also can be written using a basic algorithm as below. 

𝐺(𝑖∆𝑇) ≈

[
∑ 𝑛𝑗𝑛𝑗+1
𝑀
𝑗=𝑖+1

𝑀−𝑖
]

(
∑ 𝑛𝑗
𝑀
𝑗=𝑖

𝑀
)

2 − 1    3.3.4 

where, 𝐺(𝑖∆𝑇) is the autocorrelation function (ACF), M is the total no of acquired data  

points, 𝑛𝑗  is the obtained values, and ∆𝑇 is the sampling time, which ranges from 1 µs to ms. 

If only one fluorescent chemical species is present in the sample region, 

𝐹(𝑡) = 𝑘𝑄 ∫𝐸(𝑟)𝐶(𝑟, 𝑡)𝑑𝑟    3.3.5 

where k is a constant, Q is the product of the absorptivity, fluorescence quantum efficiency, and 

experimental fluorescence collection efficiency of the fluorescence molecules, E(r) is the spatial 

intensity profile of the excitation light, and C(r.t) is the number density at position r and t. 

Then, one can further simplify the fluctuations of fluorescence intensity as, 

𝛿𝐹(𝑡) = 𝐹(𝑡) − 〈𝐹〉 = 𝑘𝑄 ∫𝐸(𝑟)𝛿𝐶(𝑟, 𝑡)𝑑𝑟   3.3.6 

where 𝛿𝐶(𝑟, 𝑡) = 𝐶(𝑟, 𝑡) − 〈𝐶〉 

By substituting eq 3.3.3. 

𝐺(𝜏) =
∬𝐸(𝑟)𝐸(𝑟′)〈𝛿𝐶(𝑟,𝑡)𝛿𝐶(𝑟′ ,𝑡+𝜏)〉𝑑𝑟𝑑𝑟′

(〈𝐶〉 ∫𝐸(𝑟)𝑑𝑟)
2    3.3.7 

By using the 3D gaussian model for two photon excitation process, 

𝐸(𝑟) = 𝐸(𝑥, 𝑦, 𝑧) = 𝐸0𝑒𝑥𝑝 (−
4(𝑥2+𝑦2)

𝜔0
2 −

4𝑧2

𝑧0
2 )   3.3.8 

where 𝜔0 is the excitation beam waist and the 𝑧0 is the excitation beam height. 
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For Browninan (translational) diffusion, the fluctuations 𝛿𝐶(𝑟, 𝑡) will have characteristic behavior 

governed by the diffusion equation which is given below, 

𝜕𝛿𝐶(𝑟,𝑡)

𝜕𝑡
= 𝐷∇2𝛿𝐶(𝑟, 𝑡)     3.3.9 

The solution of above equation is given by 

𝛿𝐶(𝑟, 𝑡) =
〈𝐶〉

4𝜋𝐷𝑡
3
2

𝑒𝑥𝑝 (−
𝑟2

4𝐷𝑡
)    3.3.10 

By assuming that the sample is stationary, the probability of finding a diffusive molecule at 

position  𝑟′and 𝑡 + 𝜏, given that the molecule was at position 𝑟 and time 𝑡 is, 

〈𝛿𝐶(𝑟, 𝑡)𝛿𝐶(𝑟′, 𝑡 + 𝜏)〉 =
〈𝐶〉

(4𝜋𝐷𝑡)3
𝑒𝑥𝑝 (−

(𝑟−𝑟′)2

4𝐷𝑡
)  3.3.11 

Using the Gaussian model for the two- photon excitation, we can write the autocorrelation 

function relating the parameters excitation beam waist (𝜔0), excitation beam height (𝑧0), 

sampling concentration (C) and the diffusion coefficient D. 

𝐺(τ) = (
2√2

𝜋√𝜋𝜔0
2𝑧0〈𝐶〉

)
1

(1+
8𝐷τ

𝜔0
2 )√1+

8𝐷τ

𝑧0
2

     3.3.12 

In 3D, the excitation volume can be written as,  

𝑉 =
𝜋√𝜋𝜔0

2𝑧0

23
     3.3.13 

The average number of diffusant molecules is related with the concentration as follows, 

〈𝑁〉 = 𝑉〈𝐶〉     3.1.14 

Therefore, 

𝐺(τ) = 𝐺(0)
1

(1+
8𝐷τ

𝜔0
2 )√1+

8𝐷τ

𝑧0
2

    3.3.15 
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The number of average diffusant molecules or the concentration can be calculated from the 

amplitude of the autocorrelation function G(0) using the following equations. 

〈𝑁〉 =
1

2√2𝐺(0)
, and 〈𝐶〉 =

1

2√2𝑉𝐺(0)
=

2√2

𝜋√𝜋𝜔0
2𝑧0𝐺(0)

  3.3.16 

Similarly, 2D autocorelation functio for two-photon excitation process can be written as, 

𝐺(τ) = 𝐺(0)
1

(1+
8𝐷τ

𝜔0
2 )

     3.3.17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1 Model autocorrelation curves for different kinds of particle motion:free diffusion in 

three dimensions (red), free diffusion in two dimensions, (yellow) and directed flow (Cyan) 

(Haustein 2007)47 
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Additionally, The autocorrelation function can be derived when flow present in the 

sample and it simplify into the following equation,  

𝐺(τ) = 𝐺(0)
1

(1+
8𝐷τ

𝜔0
2 )√1+

8𝐷τ

𝑧0
2

𝑒𝑥𝑝(−
𝑉𝑓𝑙𝑜𝑤
2

𝜔0
2𝑧0(1+

8𝐷τ

𝜔0
2 )√1+

8𝐷τ

𝑧0
2

)   3.3.16 
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CHAPTER 4 : DIFFUSION OF NANOPAERTICLES IN ENTANGLED POLY(VINYL 

ALCOHOL)  SOLUTIONS AND GELS 

4.1 INTRODUCTION 

The following materials has been originally published in Macromolecules (2019)16 

Understanding the diffusion of small molecules, proteins, and nanoparticles within entangled 

polymer solutions and gels is important for both industrial and medical applications. From polymer 

physics perspective, the studies can give useful information about the structure of the matrix and verify 

or refine theories of polymer dynamics.41, 44, 50-59 Several situations are of interest. Above the overlap 

concentration (*) in the semidilute solution, the polymer chains form a transient mesh, characterized 

by correlation length (). Beyond a critical entanglement concentration (e), long chain polymer 

molecules can form an entangled network due to topological constraints.60 A gel can be formed either 

by an external cross-linking agent or by the inherent reactivity of a functional group. Physical gels are 

formed by crosslinking of relatively weaker inter- or intramolecular hydrogen bonding,61 

microcrystallites, or by local helical structures.62 These are common for many biopolymer systems.63 As 

the bond energy is typically only a few times of the thermal energy, the bonds have shorter life time 

and their location can change with time.62 The physical gels are reversible, and they can be melted by 

heating, change of pH, etc. In chemical gels, the network is stabilized by covalent bonds, which are 

much stronger and thus irreversible.  

Dynamic light scattering (DLS),57, 64, 65 forced Rayleigh scattering (FRS), fluctuation correlation 

spectroscopy (FCS),3, 66 and pulse-field gradient spin-echo nuclear magnetic resonance (NMR)67, 68 

techniques had been used to study the diffusion of solvent, small solute molecules like dyes, and probe 

particles in both synthetic and biopolymer gels. Massaro and Zhu17 reviewed a majority of the theories 

and experiments that describe the diffusion of spherical, non-interacting particles and predict reduced 
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diffusion coefficient, D/Do, as a function of particle size and polymer concentration. Here, D is the 

diffusion coefficient in the presence of polymer, and Do is that in the neat solvent. Some assumptions 

about polymer concentration dependence of the mesh size are needed to use these theories. The free-

volume theory by Vrentas-Duda was successfully used to describe the diffusion of particles with size 

much smaller compared to mesh size.69 Needing of several parameters for three-component systems 

(polymer, probe, and solvent), however, limits its application of this theory. More common in this field 

are hydrodynamic scaling theories and various obstruction-diffusion models. Screened hydrodynamic 

theories19 predict a scaling function of the form f(R/) for the reduced diffusion coefficient. Here, R is 

the particle radius, and  is the correlation length in the semidilute solution or mesh size in cross-linked 

gels. These theories assumed that hydrodynamic interaction between the particle and the polymer, 

which is screened at the length scale determined by the correlation length () in semidilute solutions, 

governs the particle dynamics. Obstruction-diffusion models70 rely on the notion that the volume 

occupied by the network is inaccessible to the diffusing species, leading to an increased path length 

between two points. This results in a decrease of the diffusion coefficient compared to that in the 

solvent. Obstruction models work well when the motion of the network is negligible at the time scale 

of particle motion and thus more suitable for a rigid network. These models were widely used to 

investigate the structure of the chemically cross-linked gels from the diffusion data of particles with 

different sizes.17 

The above theories make no distinction between the transient networks as formed in the 

semidilute or entangled polymer solutions vurses permanent cross-links formed in chemically cross-

linked gels. In the former case, mesh size depends upon polymer volume fraction (), while for the 

latter it is independent of . Rheologically, they can be distinguished by their low-frequency response 
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in small amplitude oscillatory shear. In the terminal regime, semidilute or entangled solutions exhibit 

the characteristic of a liquid. However, cross-linked gels show a frequency-independent elastic 

modulus, which is at least one or two orders of magnitude larger than the viscous modulus.65 

Recently, scaling theory had been used to contrast size-dependent diffusion of nanoparticles 

within entangled solution versus cross-linked gels.1, 18 The theory predicted that if 2R << , the particles 

experience mostly the solvent viscosity. Intermediate sized particles, which are characterized by  < 2R 

< ae, experience a length scale dependent nanoviscosity that scales as (R/).51 Here, ae is the tube 

diameter, which depends upon . The diffusion coefficient of large particles, 2R > ae, is determined by 

the polymer relaxation time scale, and D varies according to -3.91/R in good solvents.18 Many aspects of 

this theory have been verified by recent experiments.3 An extension of this theory showed that in 

entangled polymer liquids particles which are slightly larger than the tube diameter can diffuse through 

barrier hopping.1 The activation energy for hopping motion is given by ukT (2R/ae), where k is 

Boltzmann constant and T is the absolute temperature. The diffusion coefficient, therefore, varies 

according to D ~ exp (-2R/ae). According to this theory, the hopping step size is of the order of 

correlation length. The hopping motion is negligible when 2R >> ae, and the only way particles can then 

move is through entanglement relaxation.1  

In contrast to entangled solutions, the hopping motion for particles in cross-linked gels had been 

predicted to have a much stronger dependence on size ratio.1 For particles slightly larger than the mesh 

size (ax), the diffusion coefficient D ~ exp[-(2R/ax)2]. Here, ax is the average distance between two 

permanent cross-links.1 The particles with size 2R >> ax remain trapped in chemically cross-linked gels.1 

The scaling theories ignore numerical prefactors. If the functional dependence presents as exponential, 

the missing prefactor can significantly affect quantitative comparison with the data.  
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A sophisticated force-based microscopic theory has been developed by Yamamoto et. al. to describe 

the diffusion of nanoparticles in entangled and unentangled polymer melts.71 According to this theory, 

the particles smaller than the tube diameter experience a length-scale dependent friction coefficient. 

The particles of size larger than the tube diameter are affected by the entanglement relaxation of the 

polymer chains. The mobility of the particles was found to decreases dramatically as their size increased 

relative to the tube diameter. However, unlike scaling theories, a continuous crossover exists between 

the two regimes as the nanoparticle (NP) motion gets gradually coupled with the polymer relaxation. 

The theory assumed that the particle motion is entirely determined by the collective relaxation of 

polymer density fluctuations, which was argued to be a good approximation for larger particles.  A 

later improvement of the theory treated the particle motion and polymer friction self-consistently.59 The 

deviation of the modified theory from the earlier one is strongest at the size ratio, x=2R/ae close to 1. 

The theory predicts that full recovery to Stokes-Einstein (SE) behavior requires a very high size ratio ( 

8), which had been verified by experiments.72 

The two discussed theories assumed that NP dynamics is Gaussian at all times and activated 

hopping was not directly included. The analysis of hopping motion was performed by using a non-

linear Langevin equation.73 The activation barrier height, average hopping time, and jump distance 

depend critically on x-xc, where xc = (2R/ae)c is the critical value for localization that depends upon 

particle size and polymer properties. Except within a small size range between 2R/ae ~ 1.5-2, the 

contribution to particle mobility due to hopping was found to be significantly smaller compared to 

contribution from the relaxation of entangled polymer network. This was verified by computer 

simulation.55 However, in chemically cross-linked gels or in heavily cross-linked network, the hopping 

motion can play a role.  
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The experimental verification of hopping motion and performing quantitative comparison of data 

with any theory present several challenges: (i) finding a model polymer system, where one can 

unambiguously determine  tube diameter (ae) or mesh size in cross-linked gels (ax) and associate an 

uncertainty with those measurements; (ii)  the small range of size-ratio where the hopping can be 

important; (iii) the uncertainty with numerical factors in scaling theories;1 and (iv) limited dynamic 

range of experimental techniques, which can make detection of hopping difficult if the activation 

barrier is very high as predicted in force-based approaches.73   

Experimentally, there is a large volume of literature on probe diffusion within polymer 

solutions. Phillies et. al. have performed many studies with particles of different sizes in various 

polymer solutions within wide range of concentrations, including semi-dilute and entangled regimes.74  

Among the pertinent experiments, Guo and co-workers have studied the subdiffusive motion of 

functionalized gold nanoparticles with thiol-terminated polystyrene (PS) chains in high molecular 

weight polystyrene (PS) solutions using X-ray photon correlation spectroscopy (XPSC).53  The particle 

size was chosen to be comparable to length scale of entanglement. They observed subdiffusive motion 

of the particles, where the anomalous exponent is a function of polymer concentration. They interpreted 

that the particles experience a heterogeneous microenvironment own higher mobility compared to 

predictions from microrheology results. They hypothesized that the extra mobility is due to the 

hopping motion. In contrast to XPCS, our experiments by fluctuation correlation spectroscopy (FCS) 

measures diffusion coefficient at a very different length scale (0.5 µm). In addition, the concentration 

of the polymer in our experiments was chosen to investigate the regime, where the sample behaves as 

a viscoelastic solid.  
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The self-diffusion coefficient of fluorescein isothiocyanate (FITC)-labeled dextran and 

fluorescence labeled polymeric latex was studied in semidilute solutions of hydroxypropyl cellulose 

(HPC).75 Most of the diffusion data can be fitted well with the Langevin-Rondelez equation using the 

assumption that the probes are dense spheres. HPC is a semiflexible polymer, so that the effect of 

segmental dynamics on probe motion is not significant. The dextran as a probe can change its’ size as a 

function of polymer concentration, which farther complicates data analysis.  

In this paper, we studied a polymer solution that has properties intermediate between an 

entangled network and a permanently cross-linked gel. The concentration of the polymer was chosen 

such that the entanglement effect cannot be ignored, which is accompanied by transient, relatively loose 

physically cross-linked structures. We choose a poly(vinyl) alcohol (PVA)-water solution because its 

physical and rheological properties were well characterized previously.76 PVA is widely used in 

industries for applications, such as membranes, films, thickeners, and fibers.76 Biocompatibility, 

biodegradability, and water solubility make PVA gels useful in biomedical applications66 as well, such 

as for drug delivery and tissue scaffolding. Because of the presence of hydroxyl group in the repeat 

units, PVA can form both inter- and intramolecular hydrogen bonds.61 The density of bonds increases 

with PVA concentration, which can give a relatively stable network.  
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Figure 4.1.1 Diffusion of gold nanoparticles in physically cross-linked PVA gels 

We are aware of a couple of studies of probe diffusion in PVA solutions and chemically cross-

linked gels.61, 66 The diffusion of a small fluorescent dye molecule was studied as a function of PVA 

concentration and cross-linking densities.77 At relatively higher concentration, it was shown the 

chemical cross-linking caused an additional slowing down of the dye diffusion. The difference in time-

scale of diffusion between the transient network and cross-linked gel scaled with gel elasticity. In 

another study, different sized proteins, dextran molecules, and polystyrene latex spheres were used.66 

The reduced diffusion coefficient was found to follow a stretched exponential function. These studies, 

however, were restricted to semidilute solutions.   

In our experiments, we used solid, spherical, and non-interacting particles, which allowed more 

direct comparison with theories. We vary the particle size systematically from 5 to 30 nm, while not 

altering the interaction with the matrix. We selected long chain PVA molecules and cover the range of 

concentrations so that a transition from entangled solutions to physically cross-linked gels can be 
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studied.  We compared our results with the available theories and found potential evidence of hopping 

motion. We expect that the results presented here will have significance in areas ranging from polymer 

physics to transport in biological gels. 

4.2 EXPERIMENTAL SECTION 

Poly (vinyl alcohol) powder (MW  89,000 g/mol, the degree of hydrolysis >98%) was 

purchased from Sigma-Aldrich. Colloidal gold nanoparticles (AuNPs) of radius (R) = 2.5 , 5, 10, and 15 

nm were obtained from Ted Pella, Inc. The concentrations of 2.5, 5, 10 and 15 nm NPs as received in the 

stock solution were 83, 9.5, 1.09, and 0.35 nM, respectively, which were further diluted to prepare the 

samples for two-photon fluctuation correlation spectroscopy (FCS) experiments. PVA powder was 

dissolved in Milli-Q water with the prior addition of AuNPs at 90 0C and stirred to prepare 12 different 

polymer concentrations of PVA solutions with volume fractions () ranging from 0.078 to 0.22. 

Dissolution of PVA in aqueous solution above =0.22 was found to be difficult; therefore, no 

experiments were performed beyond this volume fraction. All solutions prepared for our experiments 

were optically transparent. 

Commercially available 8 chambered cover glass of thickness 0.13 - 0.17 mm was used as a liquid 

cell for two-photon FCS experiments. The final concentrations of 2.5, 5, 10, and 15 nm NPs in PVA 

samples were 13.8, 1.58, 0.18, and 0.06 nM respectively. The solutions were poured into the sample 

chamber when those were hot and kept undisturbed for at least 24 h before the FCS experiments to get 

a homogeneous particle distribution in the bulk.  

An Axiovert 200, Zeiss inverted microscope was used as an experimental platform, and the cell 

was mounted on the mechanical stage of the microscope. Femtosecond Ti:sapphire laser (Mai Tai, 

Spectra-Physics) of near-infrared light (wavelength=800 nm) with the pulse width of 150 fs at a 
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repetition rate of 80 MHz was focused on the sample through a high numerical aperture 

(N.A.=1.25,100x) oil immersion objective. Emitted photons were collected by two photomultiplier tubes 

(PMTs) having single-photon sensitivity placed after a 50-50 beam splitter. The photon counts were 

cross-correlated to eliminate the artifacts associated with PMT after-pulsing. The autocorrelation 

curves, G () were obtained by using ISS (Urbana, IL) integrated data acquisition software. From the fit 

of G(τ) by using known equation for three-dimensional diffusion, translational diffusion coefficient (D) 

of nanoparticles were determined.78 Each correlation curve was collected for about 5 minutes and a 

minimum of six different FCS trials were done for each concentration. By using a common dye 

rhodamine 6G, whose diffusion coefficient in water is well-known (D=414 μm2/s) we determined that 

the focused laser beam had a half-width, ω0=0.3 μm and half-height, z0=1 μm. 

 

Rheological measurements were performed on TA Instruments DHR3 rheometer with a 20 mm 

parallel plate with a solvent trap. Small-amplitude oscillatory shear experiments were performed using 

standard protocols. The linear viscoelastic region was determined by conducting a strain sweeps for 

samples of different concentrations. Frequency sweeps in the range of 0.1 to 500 rad/s were performed 

at fixed strain within the linear viscoelastic region of each sample. 

4.3 RESULTS AND DISCUSSION 

Figure 4.3.1 shows autocorrelation curves for four particles at a volume fraction, =0.14. We 

observed normal diffusion in all situations, where the mean-square-displacement (MSD), r2  t 

(Figure 4.3.1 inset). Several studies had reported anomalous diffusion of particles in polymer solutions 

and gels.79 These include situations, where the structural length scale of the matrix is comparable to 

experimental length scale and particles that are constrained within a cage at the time scale of experiment 
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or if the porous medium is fractal.80 Agarose gel is an example of the fractal medium. There is no 

characteristic length scale in these systems and diffusion was found to be anomalous at all time and 

length scales in both experiments80 and computer simulations.81 FCS measured the diffusion coefficient 

at the time scale of few milliseconds to seconds and length scale  0.5 m. The observation of normal 

Brownian diffusion rules out the possibility of confinement of NPs by the network or presence of any 

large-scale heterogeneities. The heterogeneity formed by the transient hydrogen bonding is at a few nm 

length scales, and after the NPs sample through different nano-environment, a single time-averaged 

diffusion coefficient was obtained.   

 

Figure 4.3.1 Normalized FCS autocorrelation functions for particles within PVA solution of 

volume fraction,  0.14. The particle radii are indicated. The solid lines are fits with the 3-

dimensional diffusion of normal Brownian motion. The inset showed the mean-square-

displacement (MSD) as a function of time in a log-log plot. The straight lines have a slope of 1 
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We considered the possible association between NPs and the PVA molecules, which will 

complicate the data analysis. A majority of the theories considered neutral or repulsive interaction 

between probe and polymer18. The interaction has been tested by two different ways. First, we did a 

time-lapsed measurement of the hydrodynamic radius of NPs in dilute solutions of PVA and did not 

observe any change. Second, we measured the absorption spectra of gold nanoparticles in water and 

compared it with a solution containing PVA. Any complexion between NP and polymer will change 

the position of the peak due to the sensitivity of surface plasmon resonance (SPR) of gold to local 

nanoenvironment. As shown in figure 4.3.2 SPR showed identical spectra in both solutions ruling out 

any association between the probe and the polymer. 

 

 

 

 

 

 

 

 

Figure 4.3.2 Surface plasmon resonance (SPR) absorbance spectra of R=10 nm gold particles in 

water (closed circles) and in PVA solution (open circles) showed no shift in the peak wavelength 

indicating no association between the nanoparticles and PVA 
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PVA-water solutions had been well characterized rheologically by different groups.76, 82 We 

performed small amplitude oscillatory shear measurement to probe the equilibrium microstructure.  

Figure 4.3.3 Elastic and viscous modulus as a function of small amplitude angular frequency. 

Both moduli increase as the PVA volume fraction increases. The curves are for different volume 

fractions. Squares: 0.078; circles: 0.112; up triangles: 0.143; diamonds: 0.17; down triangles: 0.2 

We selected five different concentrations, and the results agreed well with previous 

experiments. In Figure 4.3.3, we showed elastic and viscous modulus, G’() and G”() as a function of 

angular frequency, . Both moduli increase with polymer concentration, and for all volume fractions 

the elastic modulus exceeds the viscous modulus at law oscillation frequencies. For volume fractions 

above =0.14 and at low frequency elastic modulus become almost independent of frequency, larger 

than the viscus modulus. This kind of rheological response can be contrasted with entangled polymer 

liquids, where in the terminal regime, G’()  2 and G’’()~1 are expected.76 
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Figure 4.3.4 Loss tangent tan  the ratio of viscous to elastic modulus, is shown as a function of 

small- amplitude oscillation frequency (). The dashed horizontal line indicates the crossover 

from solid-like to a liquidlike response. The data shows predominantly solid-like behavior at long 

time scales (low frequencies). The volume fraction of PVA in water was indicated in the upper 

inset 

 

Figure 4.3.4 shows loss tangent, tan =G/G’ as a function of angular frequency. For tan  > 1, 

viscous characteristics dominate, while for tan  < 1 elastic or solid-like characteristics dominate. All 

samples showed predominantly solid-like behavior at long time scales (low frequencies). Except for 

=0.078, all solutions exhibited a peak, which systematically moved to higher frequency with increasing 

polymer volume fraction. The sample for =0.2 showed predominantly solid-like behavior at all 

frequencies examined. These results are similar to previous observations and were interpreted as 

formation of inter- and intramolecular hydrogen (H) bonding network giving rise to predominately 

elastic behavior at equilibrium.76 The cross-linking density increases with polymer concentration as 

shown by a gradual decrease of tan . As the frequency of the oscillation is increased, the network 

breaks down and the liquidlike behavior begins to emerge. At higher frequency shear-induced local 
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orientation can favor formation of new intermolecular bonds., which explains the downturn of tan  at 

concentrations of 0.112 and 0.143. 

 

 

 

 

 

Figure 4.3.5 Complex viscosity as a function of angular frequency shows shear thinning for all 

samples. The viscosity decreases due to the breakage of hydrogen bonding. The curves are for 

different volume fractions. Squares: 0.078; circles: 0.112; up triangles: 0.143; diamonds: 0.17; down 

triangles: 0.2  

 

Figure 4.3.5 showed complex viscosity as a function of angular frequency. For many polymer 

solutions, the Cox−Merz rule is often used to infer shear-viscosity behavior from small amplitude 

oscillatory shear responses.62, 76, 83 Therefore, fitting the power law model helps parametrize the 

viscosity at different polymer concentrations. From Table 4.3.1, all samples behave like a shear 

thinning fluid with flow behavior indexes (n) ranging from 0.2 to 0.7. One possible explanation is 

that breakage of H-bonds by shear dominates over the formation of new H-bonds during shear 

thinning, which is commonly related to shear-induced alignment of the polymer chains. Our 

experiments did not observe the low-frequency G’’()   behavior even for the two lowest 
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concentration samples. In Figure 4.5, we have shown the plot of G”()/ as a function of , which 

showed strong frequency dependence. At angular frequency of 0.1 rad/s, we obtained G”()/ is 

1 and 10 Pa.s for polymer volume fraction of =0.078 and =0.112, respectively. These values 

match well with previous steady shear rheology measurements by a different group.76 

Table 4.3.1 Parameterization of complex viscosity graph in Figure 4.3.5. The curves were fitted 

with a power law model: η=k𝝎n-1, where k is flow consistency index and n is flow behavior index. 

For shear thinning fluid, n < 1.  

 Volume fraction (Φ) k n 

0.078 0.63 0.7 

0.112 6.3 0.63 

0.143 34 0.58 

0.17 340 0.33 

0.2 1600 0.23 

  

For the systems studied, gel formation tests by inverting the sample. The gel forms above the 

concentration of =0.11. Note that this is not a precise test. As shown in Figure 4.3, the elastic modulus, 

G’ and viscous modulus G’’ showed some frequency dependence for all samples, Although the 

frequency dependence of G’() becomes weaker as the volume fraction is increased. A relatively 

frequency-independent G’ () is obtained at low frequencies for the highest volume fraction sample, 

=0.2. Therefore, it is likely that the transition from entangled liquid to gel is gradual. The concentration, 

=0.11 is well above the critical entanglement concentration, e=0.02 as found in previous experiment.84   

This suggests that substantial overlappings of the chains are required to form a gel, which corroborates 

that interaction strength of the individual bond is relatively weak. 

For permanently cross-linked gels and classical elastomers, the mean distance between the 

crosslinks (ax) can be estimated from the terminal elastic modulus (G’) by using rubber elasticity 

theory,62 which assumes kT per network chain contribution to G’. Instead of a flat horizontal line as in 



54 
 

 
 

a perfect network, we observed that G’() increases slowly with frequency and G’’() is only about an 

order of magnitude lower compared to G’(). The sample with the highest volume fraction of PVA, 

=0.2, showed a relatively flat elastic modulus at low frequencies. By using the relation,7, 85 

G’=(4/5)kT/ax3. we estimated that ax  13 nm at =0.2. There are several uncertainties, which are difficult 

to estimate with this calculation.  The prefactor also depends upon the model of the network7 e.g., for a 

phantom network the prefactor depends upon the number of chains connected at a junction. In 

addition, only the elastically active bonds contribute to the elastic modulus. The contribution from 

enthalpic interaction was ignored in the above equation.62 In the situation where a flat elastic modulus 

was not obtained, one can use the inflection point in the stress relaxation curve and use the relation 

G’=RT/Me, where  is the density, R is the universal gas constant, and Me is the molecular weight 

between two points in entanglement. This relation also has some of the similar assumptions as before. 

Therefore, the determination of ae or ax unambiguously or estimating the associated uncertainty is often 

difficult. This experimental issues needs to be kept in consideration while performing the analysis of 

the data and comparison with any theory as ae and ax enter as an input to the theory.  

Some physical properties of PVA,86 such as degree of polymerization (N)  2090, the radius of 

gyration, Rg  16.5 nm, entanglement molecular weight, Me 5100 g/mol, and the tube diameter in the 

melt, ae(1)  3 nm, will be useful for future discussions. The overlap volume fraction, *,which is the 

onset of semidilute regime is given by: *=¾Mw/(NARg3)  0.006. Here, NA is the Avogadro number. 

Our experiments were performed with polymer concentration of at least ten times *. Experimentally, 

the transition between different concentration regimes can be determined by measuring the specific 

viscosity (sp) as a function of polymer volume fraction. Bercea et. al. had performed rheology 

measurements with a series of PVA solutions of different molecular weights.84 They observed that for 
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all samples the transition to entanglement regime occurs at a c*sp =2.05, where c is the polymer 

concentration in g/dL. For PVA sample of same molecular weight as in our experiments, this gives the 

crossover at e=0.02. This corroborates that all our samples are above entanglement concentration.  

The correlation length () and entanglement tube diameter (ae) in solution vary according to 

Rg(/*)-, aeae(1)-, respectively, where   0.76 for good solvents. 7 In our experiments, () varied 

from 1 to 2.5 nm and ae() varied between  9-20 nm. The tube diameter is thus an order of magnitude 

higher compared to the correlation length.  

For R=2.5 nm, the particle size (2R) is greater than correlation length, but smaller than tube 

diameter for all PVA concentrations. According to scaling description, these particles fall in the 

intermediate size range.1 In this situation, the frictional force to particle motion originates from the 

segmental motion of the polymer chains with size comparable to the particle diameter. The volume 

fraction dependence1 of D is given as 2. As  ~ -0.76, D is expected to vary according to ~-1.52. In an 

earlier publication, we showed that the diffusion of gold nanoparticles in semidilute polyethylene 

glycol (PEG) solutions followed this scaling relation.3 This scaling relation, however, was not obtained 

for the present system. The difference is that PEG solution was a viscoelastic liquid, whereas for PVA 

solutions solidlike behavior dominated at long timescale. At high polymer concentrations, as in these 

experiments, intra- and intermolecular bond formations can significantly slow down polymer 

segmental motion. Different hydrodynamic and obstruction theories had been proposed to explain the 

volume fraction dependence of reduced diffusion coefficient in these systems.17  

Fig. 4.3.6.a shows D vs.  for R=2.5 nm particles in semi-log plot. The hydrodynamic models, 

such as by Cukier ignores topological constraints and only consider the hydrodynamic interaction (HI) 

between the polymer and probe.19 It assumes that HI is screened at the length scale set by the correlation 
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length and gives a scaling relation of the form: D/Do= exp(-R/). By writing, -dependence of correlation 

length as =b -, the fitting of the data for R=2.5 nm particles was shown with  and b as adjustable 

parameters. We found 0.76 consistent with water being a good solvent for PVA at room 

temperature.61 The fitting also gives b1 nm, which is comparable to the size of the Kuhn monomer as 

was reported in a previous AFM experiment.87 

In contrast to hydrodynamic theories, obstruction models assume that a probe can move, when 

it finds successive openings greater than its own size, the probability of which decreases with the 

increasing size. They predict the reduced diffusion coefficient in terms of particle radius, gel network 

cross-sectional radius (rf), and mesh size (). For many biopolymer networks, rf could be a few nm or 

larger and cannot be ignored for small probe diffusion. No distinction is made in these models between 

the pore size in gel and mesh size in the semidilute solution.17 Amsden model used a Gaussian 

distribution of pore size at a fixed volume fraction, which had been widely used to analyze protein 

diffusion in polymer and biopolymer gels.70 It gives the following expression for the reduced diffusion 

coefficient: D/Do=exp[-


4
 (
𝑅+𝑟𝑓

+2𝑟𝑓
 )2]. The radius of the polymer chain, rf0.64 nm for PVA.70 Amsden theory 

also gives a reasonable fit for 2.5 nm radii particles with similar values for the correlation length as a 

function of polymer concentration as in Cukier theory19 (Figure 4.3.6). We also tested (not shown) 

several other theories, including Ogston26 and Petit models,17 but concluded that they could not explain 

our data even qualitatively with any reasonable fitting parameters.  
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For larger size particles both hydrodynamic and obstruction model by Amsden failed, when the 

parameters, b and  were fixed to the values that were obtained for R=2.5 nm particles (Figure 4.3.6 (a) 

&(b)). These parameters are specific to a polymer-solvent system and should not depend upon the 

particle size.70   

 

Figure 4.3.6 Semilog plot of the reduced diffusion coefficient, D/D
o
 as a function of PVA volume 

fraction in water for (a) R=2.5 nm, (b) R= 5 nm, and (c) R=10 nm particles. The fittings are with 

hydrodynamic Cukier theory (solid line) and obstruction diffusion model by Amsden (dashed 

line). For R= 5 nm and R=10 nm, we kept the solution parameters same as were obtained for R=2.5 

nm particles. The poor agreement with the data suggested that the above-mentioned theories are 

not adequate for describing diffusion for a wide range of particle size and polymer concentrations  

 

Michelman-Ribeiro66 used a stretched exponential function of the form D/Do=exp(-c) to fit  

their diffusion data of probe molecules in the size range of 1-12 nm in semidilute PVA solution. This 

scaling model is based upon Langevin-Rondelez,88 which assumed that the semidilute solution is a 

transient network. They found c=0.73-0.84 for all particles within the volume fraction range of 1-

8.6% w/v, which is consistent with good-solvent quality of PVA in water. The prefactor, c increases 

slightly with the increase of particle size.66 Our result is consistent with their data for the lowest 

particle size. For the particle radius of 2.5 nm we obtained good agreement by using the exponent, 

0.76. As shown in Figure 4.3.7), for larger particles and higher concentrations, the fittings 
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significantly deviate from the data, and unreasonable values for the exponent (c) were obtained as 

the particle size is increased. The deviation of data from hydrodynamic models is not surprising for 

the higher concentration samples, as they behaved as viscoelastic solids, where this model is not 

expected to be valid. An alternative explanation is, therefore, needed to explain the data. 

 

 

 

 

 

 

 

Figure 4.3.7 Stretched exponential fittings of reduced diffusion coefficient, D/Do vs. volume 

fraction. The particle sizes are as indicated. The inset shows the exponent (c) as a function of 

particle radius (R). Except for R=2.5 particles, the exponent for higher particle sizes is not 

consistent with good-solvent quality of PVA in water 

All PVA samples are above the critical entanglement concentration. The entanglement tube 

diameter, ae(1) in melt is given by7: ae(1)bNe½, where b is the size of Kuhn monomer and Ne is the 

number of Kuhn monomers per entanglement strand. As determined previously, b0.64 nm,87 Me5100 

g/mol and the molecular weight of a Kuhn monomer, Mm300 g/mol, which gives ae(1) 3 nm. The 

volume fraction dependence of tube diameter is given by,7 ae= ae(1)-0.76 in the good solvent. In Figure 

4.3.8 we showed semi-log plot of D vs. the size ratio x=2R/ae. We included data for all particles, but only 

for x ≥ 0.5. The data can be fitted reasonably well with a straight-line, which is given by the expression 

DDp exp (-x). The fitting gives, 1.4 and Dp80 m2/s. As the particle size is comparable to the tube 
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diameter within an uncertainty of some numerical factor, we compare the results with the recent theory 

of activated hopping.1 In entangled liquids, the theory predicts that D  Dh exp(-2R/ae), whereas our 

data indicates a slightly steeper decay of D, though  is close to 1. The scaling theory also gives an 

expression of the prefactor,1 Dh2/e, where the hopping step size is assumed to be of the order of 

correlation length,  and the time scale, eoNe2. Here, o is associated with the Kuhn monomer 

relaxation time and is given by, o=6b3/kT, where  is the solvent (water) viscosity. We estimated that 

o 1 ns. Ignoring the volume fraction dependence of the correlation length, which varies between 1 to 

2.5 nm in the experimental range, we obtained, Dh 15 m2/s, which is about a factor of 5 lower from 

the experimental data but nonetheless is within an order of magnitude. As mentioned earlier it was 

difficult to determine unambiguously ae or ax from our rheology data. Because of the exponential 

dependence of D on the size ratio, this uncertainty can have a very large effect. We note that using 1.4 

gives the activation barrier in Figure 4.3.8 to range from 0.7-3.2 kBT. It can be argued that a process is 

not truly activated unless the barrier is at least greater than 2 kBT. This is important to consider for 

quantitative comparison with theory. 

The experimental points deviated strongly from the straight line in Figure 4.3.8 for both 2R=20 

and 30 nm particles, when the size ratio become, x  1.7 and x  2.5, respectively. For both particles, the 

ratio corresponds to ae  12 nm with the associated volume fraction of 0.15. A power-law fitting of 

the data for larger particles at volume fractions above 0.15 showed a very high exponent (10). The 

force-based microscopic theory59 predicts a continuous, but a very sharp, decrease of diffusion 

coefficient at x1. For entangled polymer melts, the theory predicts D/DSE as a function of 2R/ae for 

different degree of entanglement, M/Me.  Here, DSE is the diffusion coefficient predicted from Stokes-

Einstein relation with full melt viscosity. As M/Me is increased, the ratio D/DSE decreases more sharply 
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as the particle motion gets coupled with polymer relaxation. For a small range of x1-2, D/DSE vs. 2R/ae 

can exhibit a power law with very high exponent. This theory is for viscoelastic liquids.   

The samples above volume fraction =0.15 are in the gel phase and the effect of physical cross-

linking can no longer be neglected on particle motion. Smaller particles are not affected by the cross-

linking as long as they are much smaller than the distance between two cross-linking points, but larger 

particles experienced an additional resistance to the motion. In Figure 4.3.8 (inset) we showed 

separately the data which deviated from the straight line in Fig. 4. For both particle size, the data can 

be fitted with an exponential function, D~ exp (-x), however, with a much larger prefactor 7.5. The 

hoping model proposed by Dell et. al73 found that activation barrier for hopping is very large and 

average hopping time varies exponentially according to hop~exp (-16x). The prefactor to the exponential 

depends upon a dimensionless confinement ratio, xc at the onset of localization, which is a polymer-

specific number. A very high exponent, such as =16, however, will be very difficult to observe 

experimentally for a wide range of size ratios due to limited dynamic range of experiments.  

Any uncertainty in ae or ax can significantly affect any quantitative comparison with the theory 

because of the exponential dependence of D on the size ratio.  We used the size of Kuhn monomer, 

b=0.64 nm as obtained for PVA in a previous experiment.87 The fitting of our data in Fig. 3a gives b1 

nm. This changes the value of  from 1.4 to 2.2 for the slower exponential process and from 7.5 to 11.7 

for the faster decay. We can associate this range of  values as uncertainty originating from 

determination of ae. These numbers may need revision if more accurate experimental determination of 

tube diameter or mesh size becomes possible by complementary experimental methods.  
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Figure 4.3.8 Semilog plot of D vs size ratio (x); i.e., particle size/tube diameter is plotted for 0.5 < 

x < 2.5. The solid line is according to D  exp (-x), where 1.4. The particle radii are as indicated. 

For particles with radius 10 nm and 15 nm the data deviated from the straight line at volume 

fraction above 0.15. Inset: A second exponential process can be observed for particle raddi 10 

and 15 nm above 0.15 with an exponent 7.5 

  

Qualitatively different models of fluid flow, the shoving model for example, connects 

activation energy with the shear modus.89 In this model the activation energy is dominated by the 

work done to shove around the surrounding isotropically in an elastic solid. The friction 

coefficient is expected to follow the exponential function, ζ ∼ exp(VGe/kT), where V is the volume 

of the particle and Ge is the terminal elastic modulus. In glasses and supercooled liquids, this 

model predicts a linear relationship between the glass transition temperature (Tg) and elastic 

modulus. To determine the effect of elastic modulus on diffusion coefficient, we assumed that 

friction to the nanoparticle diffusion is additive. The additive assumption was previously used to 
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explain the diffusion of small dye molecules in chemically cross-linked gels.77, 90 It was observed 

that when a semidilute solution was cross-linked by the addition of an external moiety, diffusion 

slows down significantly.90 For our system, we assumed that in addition to constraint imposed 

due to the presence of polymer entanglement there is an additional slowing down due to physical 

cross-linking. We determined the extra friction factor by calculating =kT(1/Dexp – 1/Dent), where 

Dexp  is the experimentally measured diffusion coefficient and Dent is the diffusion coefficient as 

expected from the straight-line fitting. In Figure 4.3.9, we plotted  as a function of the elastic 

modulus (G’). Even though limited amount of data is available, they showed that  increases 

monotonically with G’ and is a strong function of the particle size. For the same elastic modulus, 

the friction factor is enhanced by about two orders of magnitude when the particle size is 

increased by a modest factor of 1.5. The transition from entangled solution to cross-linked gel, 

thus has a significant effect on nanoparticle diffusion. However, as shown in Figure 4.3.9, the 

variation of friction coefficient is not exponential with elastic modulus and verification of volume 

dependence will require a few more particle sizes. 
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Figure 4.3.9 The friction factor associated with the additional slowing down normalized by 

thermal energy is plotted as a function of terminal elastic modulus for R=10 nm (filled triangles) 

and 15 nm (squares) 

 

4.4 CONCLUSION 

We studied the diffusion of gold nanoparticles in poly(vinyl alcohol) entangled solutions and gels. 

The nanoparticle diameter was varied from 5 to 30 nm and PVA concentrations were selected so that 

the transition from entangled solution to gel can be studied. We determined that for a wide range of 

size ratio, x=2R/ae, where R is the particle radius and ae is the tube diameter, diffusion coefficient follows 

a simple exponential scaling relation given by D~ exp(-x), where  is of the order of unity. This 

functional form is similar to a recent theoretical result of activated hopping in entangled solutions. For 

larger particles, an additional sharp slowing down of D was observed beyond a critical volume fraction. 

The diffusion coefficient of this second process also follows an exponential function, but with a much 



64 
 

 
 

larger   7.5. This can be compared with the theoretical prediction of  =16 from the force-based non 

linear Langevin theory. The quantitative comparison with any theory should be taken with caution. 

The scaling theory ignores numerical prefactors, which is an issue. The force-based theory predicts that 

the activation barrier is very high and hopping is negligible except for highly cross-linked gels and size 

ratios between 1.5 and to 2. The limited dynamic range of experimental techniques can make it difficult 

to verify this theory.  Our rheology data did not show a pronounced terminal elastic modulus. It was 

difficult to accurately calculate tube diameter or gel mesh size from this data and estimate their 

uncertainty. As theories of hopping motion predict an exponential dependence of diffusion coefficient 

on the size ratio, any uncertainty with those measurements could significantly affect the value of . A 

revisit of the presented analysis thus may be needed if the polymer parameters can be determined with 

less uncertainties in the future. The synthesis of well-characterized cross-linked polymer solutions and 

gels, where tube diameter or mesh size can be varied controllably and measured unambiguously, will 

significantly aid any comparison with the theories.   We expect that the results presented here will help 

to understand the size-dependent nanoparticle and molecular diffusion in polymer network and 

motivate farther theoretical work in polymer physics. As gels formed by many biopolymer networks 

are by physical cross-links, our result will also be important in the area of biological transport.    
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CHAPTER 5 : NANOPARTICLE DIFFUSION WITHIN DILUTE AND SEMIDILUTE 

XANTHAN SOLUTIONS  

5.1 INTRODUCTION 

The following materials have been originally published in Langmuir (2019)91 

The active and passive transport of nanoparticles within biopolymer solutions or gels are 

of significant contemporary interest.74, 92, 93 Xanthan gum and cellulose are two polysaccharides 

that are widely used in various applications, including pharmaceutical, food, cosmetic, and 

petroleum industries due to their safety, biocompatibility, biodegradability, and unique 

rheological properties.94 Xanthan gum is secreted from Gramnegative bacterium Xanthomonas 

campestris at the cell wall surface by a complex enzymatic process. Synthetic gums are produced 

by a complex fermentation process and were determined to have almost identical structure and 

composition to naturally occurring gums.42, 95 The primary structure consisted of five repeated 

sugar units: two glucose, two mannose, and one glucuronic acid. The backbone of xanthan has 

the same composition as in cellulose but differ by their side-chain conformation.95  

Due to the presence of glucuronic acid in the side chain, xanthan in water behaves as an 

anionic polyelectrolyte.95 Solution studies had shown that xanthan behaves as a semiflexible 

polymer with short segments of single- or double-stranded helices.42 In salt-free condition, the 

xanthan is stiffer and possessed more disordered conformation compared to ionic solutions. 

Above a certain temperature, which depends upon the ionic condition of the solution, xanthan 

gum undergoes a helix to random coil conformational change. This transition was shown to be 

reversible and accompanied by a change in viscosity.95  

Xanthan solutions exhibit interesting rheological properties, which had been studied by 

several groups.2, 42, 96-98 Steady and oscillatory shear measurements by Wyatt et al. demonstrated 
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that xanthan in salt-free solutions behaves as a semiflexible polyelectrolyte. The dilute solution 

prevails up to a concentration of c* ≈ 70 ppm, and the onset of entanglement effect occurs at ce ≈ 

400 ppm. All solutions, beyond a concentration of 20 ppm, showed shear-thinning behavior-an 

initial high zero shear rate viscosity decreases with increasing shear rate. The extent of shear 

thinning and the zero shear rate viscosity increase as the polymer concentration is increased. The 

onset of shear thinning moves to lower shear rate as the concentration is increased in the dilute 

regime and reaches a peak value at the overlap concentration, c*. The dependence of viscosity can 

be well described by the Cross model. The shear thinning behavior was shown to follow a power 

law, 𝜂 ∝  𝛾̇ −𝑛, where the exponent (n) increases from 0.34 at c = 50 ppm to n = 0.58 at c = 200 ppm. 

The viscosity vs shear rate graph can be fitted with a power law in the shear-thinning regime and 

a best fit straight line in the Newtonian plateau. The inverse of the shear rate, where the two lines 

intersect, can be identified with the mesh relaxation time (τR).2 The concentration dependence of 

the relaxation time and zero shear rate viscosity of xanthan was found to be consistent with 

polyelectrolyte solutions in these experiments.  

Koenderink et al. performed measurements of tracer diffusion in an ionic (0.1 M aqueous 

NaCl) semidilute solution of xanthan of high molecular weight (Mw = 4 × 106 g/mol) at 

concentrations up to 30c*. They used optically anisotropic fluorocarbon spheres of diameter 190 

nm and measured translation and rotational diffusion coefficients using depolarized dynamic 

light scattering (DDLS) technique.42 Both translational and rotational diffusion were slowed down 

by the same factor as the polymer concentration was increased. Additionally, the authors 

performed sedimentation measurements, which showed that the sedimentation rate has a much 

stronger dependence of polymer concentration. They concluded that transport processes, such as 
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diffusion and sedimentation, differed from each other due to the time- and length-scale 

dependence of friction coefficient (ζ). An effective medium theory, which treats the polymer 

solution as a homogeneous Brinkmann fluid with hydrodynamic screening length the same as 

the concentration-dependent static correlation length (ξ), can explain the concentration 

dependence of the rotational diffusion coefficient and sedimentation rate. In contrast, the 

translation diffusion coefficient was best explained by assuming the presence of an 

inhomogeneous depletion layer around the particles. Diffusion of particles was found to be much 

faster compared to the expectation based from the Stokes−Einstein (SE) relation using the zero 

shear rate viscosity. This is expected as the polymer relaxation occurred at a much longer time 

scale compared to particle motion. Though the experiments extended well into the entangled 

regime, the authors did not distinguish between transient mesh as formed in semidilute solution 

vs the topological constraints as presented by entanglement in more concentrated solutions.18 The 

experiments were also performed in size regimes where the particle size is greater than the 

correlation length in the semidilute solution.42  

In the present paper we used particles which are much smaller than the correlation length. 

In combination with previous rheology measurements as performed on the same system, we 

showed that our experiments probed the short-time diffusion coefficient, i.e., the time scale of 

particle diffusion (τD) is faster compared to the polymer mesh relaxation time scale (τR). This 

means that although FCS experiments gave a single diffusion coefficient with mean square 

displacement (MSD) proportional to time, the diffusion time as measured is much faster 

compared to the matrix relaxation time. We showed that within dilute polymer solutions the 

diffusion coefficients of d = 5 and 10 nm particles were governed by obstruction effects presented 
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by the presence of relatively extended stiff rods. At semidilute solutions, an additional 

hydrodynamic interaction between the particle and the polymer as given by Darcy flow42 through 

porous medium became operative. For larger particles (d = 30 nm), the presence of depletion 

around the particles could not be ignored. We used the scaling results of a recently developed 

self-consistent mean-field theory99 of depletion of rods around a spherical particle to qualitatively 

explain the diffusion coefficient vs volume fraction results. Analysis of the data is presented by 

using a minimal set of adjustable parameters.  

5.2 EXPERIMENTAL SECTION 

Xanthan gum powder of molecular weight Mw ≈ 2 × 106 g/mol was donated by CP Kelco. 

The powder was used for sample preparation without further purification since the manufacturer 

certified the high purity, which is according to the standards used in the industry.2 Tannic acid-

stabilized gold nanoparticles of size 5, 10, and 30 nm were purchased from Ted Pella, Inc. We 

previously measured the size and polydispersity of the particles by TEM measurements. The 

typical polydispersity of the particles is about 15%, and their size matched well with the 

manufacturer-supplied information.72 Concentrations of stock solutions of these particles were 

83, 9.5, and 0.35 nM, respectively, which were further diluted in xanthan gum solutions for two-

photon fluctuation correlation spectroscopy (FCS) experiments. The xanthan gum solutions 

(concentration ranges from 10 to 300 ppm) were prepared by dissolving the powder in deionized 

water followed by magnetic stirring for 1 h at room temperature. The xanthan solutions were 

kept undisturbed for 24 h and then mixed with nanoparticles using a vortex mixture at a speed 

of 50 rpm to get a homogeneous distribution of particles. The mixture was additionally kept for 

4 h undisturbed for equilibration before performing FCS experiments. We performed control 
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experiments with FCS and a viscometer, where instead of vortex mixing the sample was only 

gently stirred for a longer time. We used 200 ppm polymer sample as a reference. The measured 

diffusion coefficient of 5 nm particles and viscosity of xanthan solution were in excellent 

agreement within experimental errors for samples with and without vortex mixing. 

The diffusion coefficient of nanoparticles was measured using fluctuation correlation 

spectroscopy (FCS).16 Femtosecond Ti:sapphire laser (Mai Tai, Spectra-Physics) was used as the 

excitation source, which generates 100 fs width near-infrared laser pulses of the wavelength 800 

nm at a frequency of 80 MHz. A Zeiss inverted microscope (Axiovert 200) was used as the 

experimental platform. The laser beam was focused onto the sample through a high numerical 

aperture (N.A.= 1.25, 100×) oil immersion objective. The emitted photons were collected using 

two photomultiplier tubes (PMTs). The counts were cross-correlated to avoid artifacts from after 

pulsing. The autocorrelation curve was averaged for a few minutes. The well-known diffusion 

coefficient of rhodamine 6G in water (D = 414 μm2/s) was used to calibrate the FCS focal volume, 

which gives the calibration parameters.78 We determined that the halfwidth of the laser beam ω0 

≈ 0.3 μm and the half-height z0 ≈ 1 μm. Each sample was measured six times by FCS, from which 

the average D and the standard deviation were calculated. The error bars in the figures where 

reported are statistical error from the repeated measurements. The absorption spectra of d = 30 

nm gold nanoparticles were collected using a USB-650RED TIDE spectrometer in deionized water 

and in dilute xanthan gum solution. 
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5.3 RESULTS AND DISCUSSION 

Figure 5.3.1 shows normalized autocorrelation functions with the fitting using the model 

of 3d diffusion with normal Brownian motion. In normal diffusion, the mean-square-

displacement (MSD) is proportional to time, i.e., ۦr2(t)ۧ ≈ tα, where α = 1. Keeping the exponent α 

as a free parameter did not improve the quality of fitting. From the fitting we can extract the 

diffusion coefficient (D) of the nanoparticles. Koenderink et al. observed that the translational 

diffusion coefficient of 190 nm particles was reduced by about 10% and 50% at a volume fraction 

of 10-4 (3c*) and 10−3 (∼30c*), respectively, compared to neat solvent.42  

 

 

 

 

 

 

 

 

Figure 5.3.1 Normalized autocorrelation functions for 10 nm diameter particles diffusing in 

xanthan solutions of different concentrations, which are indicated. The curves have been 

normalized so that the increase of the diffusion time with concentration becomes clear. The solid 

lines are fitting with 3-dimensional model of normal diffusion. Diffusion coefficients (D) were 

obtained from these fittings 

 

A comparison with our data showed a much more dramatic decrease of D for all three 

particles studied. The measured D can be related to a characteristic diffusion time of the particles 
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through the laser focus τD = w02/8D, which is approximately the time, where the autocorrelation 

function decays to one-half of its short-time magnitude. As shown in Figure 5.3.2.a for 10 nm 

particles, τD increases from 0.43 to 3.46 ms as the polymer concentration was increased from 10 to 

300 ppm. This time scale can be compared to the collective relaxation time of polymer mesh (τR) 

as obtained previously by rheology measurements.2 In Figure 5.3.2.b we plotted the relaxation 

time scale as a function of polymer concentration up to c = 300 ppm.  

 

 

 

 

 

 

 

Figure 5.3.2 (a) Diffusive time scales of particles with d=5 nm (black squares), d=10 nm (red 

circles), and d=30 nm (blue triangles) as a function of xanthan concentration. Error bars are 

indicated, but in some cases, they were smaller than the size of the symbol. (b) polymer mesh 

relaxation time scale (τR) for xanthan as was determined from Ref.2 

 

The relaxation time increases from 1 s at c = 10 ppm to 20 s at c* = 70 ppm and then decreases to 

10 s at c = 300 ppm. The local peak near the overlap concentration is in contrast to neutral polymer 

solutions, where the relaxation time increases monotonically with polymer concentration.7 

However, these experimental data compared well with the theory of polyelectrolytes in salt-free 

solutions.100 
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In Figure 5.3.3 we plotted the ratio τD/τR vs polymer concentration, which indicates that 

τD ≪ τR with a minimum close to the overlap concentration.  

 

 

 

 

 

 

 

Figure 5.3.3 The ratio of particle diffusive time scale (D) to xanthan network relaxation time scale 

(R). D was obtained from the FCS data and R was obtained from the steady state rheology data 

in Ref.2 The ratio is much less than unity at all concentrations indicating that the polymer can be 

viewed essentially static at the time scale of particle motion  

 

The graph showed that the diffusion time scale of nanoparticles is much smaller compared 

to the network relaxation time scale. Thus, the mesh remains almost static at the time scale of the 

particle motion, and the particle motion is not coupled to the polymer relaxation time. In this 

situation, the particle diffusion coefficient (D) is expected to be much faster compared to the 

expectation based on the Stokes−Einstein (DSE) relation using the zero shear rate viscosity. 

Therefore, instead of analyzing the ratio D/DSE, it is more appropriate to study the concentration 

dependence of the reduced diffusion coefficient D/Do, where Do is the diffusion coefficient of the 

nanoparticles in neat solvent. As xanthan molecules are much larger compared to NPs, even a 

temporary attachment with a segment of the polymer chain will dramatically slow down the 

particle diffusion coefficient, which was not observed experimentally. We, therefore, rule out the 
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adsorption, which was further verified by noting identical absorption spectra of gold 

nanoparticles in water and within a solution containing xanthan (Figure 5.3.4). However, we 

cannot rule out transient bonding between the particles and the polymer segment at a time scale 

much shorter compared to the experimental time scale. The polydispersity of xanthan is another 

issue, which previous experiments did not address. We believe that as the particle size is much 

smaller compared to the polymer, the particles only feel the local polymer segments and not the 

effect of the whole chain, which is affected by polydispersity. The effect of polymer dispersity on 

the nanoparticle mobility by FCS is not systematically studied to the best of our knowledge. 

Some important properties of xanthan solutions will be important for future discussion. 

The overlap concentration for transition from dilute to semidilute solution, where the chains 

begin to overlap, is c* ≈ 70 ppm. The transition from semidilute to entanglement concentration 

occurs at a concentration of ce ≈ 400 ppm.2 The maximum concentration used in our experiment 

of 300 ppm was thus below the entanglement concentration. This concentration is also sufficiently 

low so that some of the complications as reported in the literature, such as aggregation, phase 

separation, or existence of nematic ordering, can be avoided.42 The persistence length (Lp) of 

xanthan in ionic solutions had been reported to be ∼50 nm for single helix97 and ∼120 nm for 

double helix.42, 97 
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Figure 5.3.4 Absorption spectrum of d=30 nm gold particles in water (red circles) and in 10 ppm 

xanthan gum (black squares) showed no shift in the absorption peak indicating no association 

between the gold nanoparticles and xanthan 

 

In salt-free solutions, a good estimate of Lp was not available, but it was noted that xanthan 

retained a high degree of rigidity.97 The thickness of xanthan chain had been reported to be 2rf = 

2.4 nm, which cannot be ignored for smaller nanoparticles.42 Each monomer of xanthan 

(C35H49O29) has a molecular weight Mo = 723 g/mol corresponding to about 2500 repeat units for 

Mw ≈ 2 × 106 g/mol. The contour length (Lc) of xanthan was estimated101 to be ∼1 μm using the 

relation that molar mass per unit contour length is 1940 g mol−1 nm−1. In the isotropic state, the 

mesh size, or the static correlation length of the xanthan network follows the scaling relation ξc = 

ξo(c/c*)−0.75, where the power-law exponent corresponds to good solvent condition. The correlation 

length amplitude (ξo) for the worm-like chain model can be calculated by using the theory of 

Doi,102 which gives ξo ≈ 70 nm. Only at the highest concentration considered here, the mesh size 

(ξc ≈ 23 nm) is comparable to the diameter of the biggest gold particles (d = 30 nm) (Figure 5.3.5). 
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The picture of polymer mesh with the static correlation length as the most important 

length scale is valid in the semidilute, unentangled solutions.103 Our experiments also spanned 

the dilute regime. One expects a significant difference in the structure of the polymer network on  

 

 

 

 

 

 

 

 

 

Figure 5.3.5 Correlation length as a function of the concentration of the xanthan solution. The 

correlation length decreases with polymer concentration 

 

crossing from dilute to semidilute solution. Scaling theories by de Gennes32 and Rubinstein18 

showed the importance of different size ratios, e.g., particle size/correlation length or particle 

size/entanglement tube diameter in controlling the particle mobility. There are several 

experiments in recent years, which investigated the effect of different length scales on the 

diffusion coefficient,3, 16 time dependence of mean square displacement,56, 104, 105 and crossover 

among different size ratios.72, 78, 106 According to the language used by de Gennes and Rubinstein, 

the particles in our experiments fall in the category of the “small” particle. The scaling theory is 

not applicable in this regime. As the particle size is smaller compared to the persistence length 

0 50 100 150 200 250 300
10

100

 

 
C

o
rr

e
la

ti
o

n
 l
e
n

g
th

 
 (

n
m

)

C (ppm)



76 
 

 
 

and as concluded from Figure 5.3.3, polymer can be considered static on the time scale of particle 

motion; we hypothesize that particle diffusion is akin to in an environment of isotropic 

suspension of the thin rods.17 We, therefore, used theories of sphere diffusion in a network of rod-

like obstacles. An obstruction−diffusion theory, which ignores the hydrodynamic interaction 

between the particle and the rods, was proposed by Ogston.107 The theory assumed that the 

solution is formed by long, thin straight fibers and that diffusion is obstructed only when the 

particle encounters the polymer chain. The theory gives a functional form of the reduced diffused 

coefficient as D/Do = exp(−(d + 2rf)/χm), where χm is the average spacing in a uniform random 

suspension of chains, χm = kL−1/2. Here, L is the length of the chain per unit volume with unit of 

nm−2, which is proportional to the volume fraction of xanthan, and k is a numerical constant, 

whose value depends upon the geometric model used to describe the network.17, 108 The functional 

form has the advantage that it depends upon a minimum number of adjustable parameters. The 

gold nanoparticles in our experiments are tannic acid stabilized. We need to add the thickness of 

this organic layer, which is ∼1 nm.78  
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Figure 5.3.6 The reduced diffusion coefficient, D/Do, plotted against xanthan concentration, c 

(ppm). 1 ppm=1 mg/L. Do is the diffusion coefficient of the nanoparticles in pure water. The 

overlap concentration as determined from previous rheology measurements was indicated, c*≈70 

ppm. The obstruction model by Ogston is shown by the red solid line and the hydrodynamic 

Darcy flow is the blue dotted line. As both effects are expected to be present in the semidilute 

polymer solutions their combination is shown by the black solid line. The model parameters are 

kept same for both particle sizes, d= 5 nm and d=10 nm. The models ignore semiflexible nature of 

xanthan, dynamics of the network, the effect of particle diffusion in polymer motion, interaction 

between particles and polymer segment. These can cause deviation from the experimental data  

 

As shown in Figure 5.3.6, for concentrations less than the overlap concentration, c* ≈ 70 

ppm, the Ogston model can explain the reduced diffusion coefficient for 5 and 10 nm particles 

with k ≈ 10. For a random network of thin, straight fibers, Ogston107 obtained a mean value of ۦkۧ 

≈ 3 and modal value km ≈ 4. The value of k in this theory was determined without considering the 

thickness of the fiber and flexibility of the chain, so a perfect agreement cannot be expected.17 For 

higher concentrations and in the semidilute regime the obstruction model significantly 

underestimates the reduction of diffusion coefficient. 

The excess reduction of the particle mobility can be explained by considering that polymer 

chains act not only as obstacles but also as a source of hydrodynamic resistance. The solvent 

molecules slowed down near almost stationary polymer chains. This increases the friction drag 

on the probe particles and reduces the diffusion coefficient compared to the obstruction effect 

alone.42 For 5 and 10 nm particles, the particle size is much smaller compared to the static 

correlation length. The theory developed by Dhont et al. considered this case, where the spheres 

can easily slip through the network.109 The distortion of the microstructure due to the motion of 

the tracer particles is neglected in this situation. The friction coefficient is determined by the 

hydrodynamic interaction between the particle and the polymer. However, the theory cannot 
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predict a screening length, which is an adjustable parameter obtained by fitting of the 

experimental data.110 

The effective medium theory, which assumed that the polymer chain consists of randomly 

distributed immobile scattering centers, had been put forward by several researchers. 

Altenberger et al. determined that the reduced diffusion coefficient depends upon the obstacle 

volume fraction and hydrodynamic interaction coupling constant.111 The latter is determined by 

the ratio of the obstacle size to the distance of the closest approach. The authors claimed that the 

validity of their theory improved with decreasing coupling strength (≪1) or in the limit of point 

obstacles. The reduced diffusion coefficient varies as −1/2 at low volume fraction and -n at higher 

volume fraction (), which is similar to theory developed by Phillies.74 The value of n can range 

from 0.5 to 0.75 depending upon the chain stiffness and solvent quality. The reduced diffusion 

coefficient, according to their theory, does not depend upon the size of the particle. The effect of 

particle size, which comes from indirect interaction of the obstacles with the mobile particle, was 

not considered in their theory. This specific feature of this theory, however, contradicts our 

experimental result, where we observed that the reduced diffusion coefficient is a function of the 

particle size at a fixed polymer concentration. In addition, as shown in Figure 5.3.7, the 

concentration dependence of the reduced mobility does not follow the power-law behavior with 

exponent −0.5 as predicted in the low-concentration regime. 

An explicit probe size dependence of the reduced diffusion coefficient was obtained by 

the hydrodynamic theory proposed by Cukier, which also assumed that rods be fixed on the time 

scale of the sphere diffusion.19 The scattering of hydrodynamic waves from the sphere motion 

interacts with the rods, which slows down the sphere motion. In dilute polymer solution, Cukier 
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obtained an exact result of the form D/Do = (1 + d/κ +...)−1, where κ is the screening length and is 

given by κ = (η/ ζn)0.5. Here, η is the viscosity of the neat solvent, ζ is the friction coefficient of the  

 

 

 

 

 

 

 

 

Figure 5.3.7 The reduced diffusion coefficient is compared with prediction of model by 

Altenberger et. al. The theory predicts D/Do ~ ½, which was not observed in our experiments. 

The symbols have the same meaning as in Figure 5.3.2.a 

 

rods, and n is the number density of the rods. According to their theory, κ ≈ −1/2, where  is the 

polymer volume fraction. The friction coefficient of rods is given by ζ = 3πLη/ln(L/b), where each 

molecule is modeled as a prolate ellipsoid with the major and minor axis, L and b, respectively 

(L ≫ b). The above expression of D/Do is exact for dilute polymer concentrations.17 At semidilute 

concentration, an ansatz was used by Cukier to obtain D/Do = exp(−d/κ), which reduces to exact 

functional form for d/κ ≪ 1. The exponential function was shown to explain the concentration 

dependence of the reduced coefficient data well for many polymer systems. Specific to xanthan 

solutions, experiments by Jamieson112, 113 with microspheres of radius 1.1 μm diffusing in xanthan 

solution of Mw = 2 × 106 g/mol (L = 1.5 μm, b = 2 nm) at a concentration of 0.1% (w/v) the 
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experimental value of reduced diffusion coefficient 75 matches well with Cukier theory 

prediction of 84. The functional dependence of D/Do on concentration, however, was not verified 

in those experiments. Note that the functional form as given by Cukier is similar to the obstruction 

theory developed by Ogston et al., which is purely geometric and does not rely on hydrodynamic 

screening. The exponential dependence of D/Do is given by the same functional form αR1/2, 

where the prefactor (α) depends upon the model used.17 

 Alternate models exist on the assumption that spherical particles embedded in a 

homogeneous porous medium consist of fixed frictional obstacles. The flow through the porous 

medium is described by a modification of Darcy’s equation. Phillips et al. used a different 

approach than Altenberg et al. to calculate the friction coefficient using Brinkman’s equation, 

which combines Darcy’s law for flow in a porous medium with the usual low Reynold numbers 

approximation of the Navier−Stokes equation.108 The ratio of the mobility in Brinkmann fluid to 

neat solvent is given by D/Do = [1 + (d/κ) + 1/3(d/κ)2]−1, where κ2 is the hydrodynamic (Darcy) 

permeability of the porous medium and it measures the resistance of the polymer network to a 

fluid flow. 

According to the scaling theory developed by de Gennes, a semidilute solution can be 

viewed as a transient network, where the hydrodynamic interaction gets screened at a length 

scale determined by the correlation length (ξ).103 The correlation length varies with concentration 

according to ξ ≈ c−0.75, the exponent corresponding to good solvent condition.7 Koenderink et al. 

identified κ with the static correlation length (ξc).42 However, there is disagreement in the 

literature about the difference between the static (ξc) and hydrodynamic (ξH) screening lengths. 

Though some experiments suggested that they are almost identical within a numerical factor, 
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other theories and experiments observed a significant difference between them.114-117 Wiltzius et 

al. experimentally observed that the ratio ξc/ξH increased from 1 to 4 and the ratio ξH/RH decreased 

by a factor of 10 as the polymer concentration is increased in the semidilute solution.116 RH is the 

hydrodynamic radius of the polymer. 

Analysis of the hydrodynamic effect neglected the effect of “obstacles” presented by the 

polymer chain. Conversely, the obstruction models ignore the hydrodynamic resistance to the 

solvent flow presented due to the presence of the nearimmobile chains. As in most systems both 

obstruction and hydrodynamic effects can be assumed to be both present, it was proposed that 

effects of obstruction and hydrodynamics are multiplicative so that the reduced diffusion 

coefficient is a product of the two D/Do = (D/Do)hydro(D/Do)obst. 

In Figure 5.3.6 we have shown the result, where both effects were considered. A 

reasonably good agreement with experimental results was obtained with the hydrodynamic 

screening length in Darcy flow varying according to κ ≈ 25c−0.75 for both 5 and 10 nm particles. 

The amplitude of κ, however, is smaller compared to ξo, which is ∼70 nm. However, as noted 

earlier, there is disagreement whether the correlation length and the hydrodynamic screening 

length are strictly equal. The qualitative agreement is satisfactory as the models used considered 

only static rods and do not consider the effect of rod mobility on probe diffusion.102 It had been 

established both experimentally3 and theoretically18, 71 that the mobility of the particles can also 

affect polymer dynamics. These two effects need to be considered in a self-consistent manner.59 

Though there had been progress for flexible polymers, currently no theories exist for NP diffusion 

in semiflexible polyelectrolyte solutions.  
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For the largest size particles (d = 30 nm), our data is consistent with the obstruction model 

in the low concentration regime with the same value of κ as was used for other particle sizes, but 

it overestimates the reduction of the diffusion coefficient in the semidilute solution (Figure 5.3.8). 

We interpret this as an indication that polymer segments are depleted near the particle surface.  

 

 

 

 

 

 

 

 

Figure 5.3.8 D/Do plotted against xanthan concentration, c (ppm) for d=30 nm particles. The fitting 

with the obstruction model of Ogston is shown by the red solid line using the same model 

parameters as in Figure 5.3.6 The fitting overestimates the reduction of the diffusion coefficient 

in the semidilute solution. The dashed line is a fitting with the depletion theory, where we 

assumed that depletion layer thickness follows a scaling relation with exponent 0.42    

 

In general, one can expect a gradual change of the polymer segmental density, being zero 

at the particle surface to the average bulk value of polymer concentration far away from the 

surface.42, 109 For particles, which are much smaller compared to polymer persistence length, the 

free energy cost to insert the particle is high, so a depletion effect can be neglected. In this case, 

the insertion free energy is dominated by the interfacial term, which originates from the energy 

penalty to create an inhomogeneous distribution of polymer density near the particle.99 However, 

for d = 30 nm particles, the depletion effect can be important. Tuinier et al. considered a simple 

Depl

Obs

0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

 

 
D

/D
O

c (ppm)



83 
 

 
 

model where the polymer density is zero within the depletion layer and the particles feel solvent 

viscosity, while at the outside of it the segmental density is equal to the bulk value and the particle 

feels full bulk viscosity.109 The imposed viscosity gradient generates a slip effect. They assumed 

that the relaxation of the polymer is fast so that the particle motion does not deform the depletion 

layer. By using Stokes’ stream function theory, they derived an analytical form of the frictional 

force. The theory gives an algebraic expression of the reduced diffusion coefficient as a function 

of dimensionless parameters, ε = 2δ/d and λ = ηs/ηm which is given as D/Do = Z(ε,λ)/Q(ε,λ). Here, 

Z(ε,λ) = 2(2 + 3λ)(1 + ε)6 − 9(1 − λ/3 − 2λ2/3)(1 + ε)5 + 10(1 − λ)(1 + ε)3 − 9(1 − λ)(1 + ε) + 4(1 − λ2)2 and 

Q(ε,λ) = 2(2 + 3λ)(1 + ε)6 − 4(1 − λ)(1 + ε). Here, ηm is the bulk viscosity, ηs is the solvent viscosity, 

and δ is the thickness of the depletion layer. The theory correctly predicts two limiting cases. In 

situations where the particle is much bigger than the depletion layer, i.e., ε ≪ 1, the particles feel 

closer to bulk viscosity, and where it is much smaller than the depletion layer (ε ≫ 1), the particles 

feel solvent viscosity. Intermediate-sized particles feel an effective viscosity, which is between the 

solvent and the medium viscosity and is a complex function of ε and λ as given by the above 

expression. These calculations are for flexible polymers. 

For semiflexible and rod-like polymers near spherical particles, Ganesan et al. developed 

a self-consistent mean field theory, which can be used for a wide range of polymer 

concentration.99 The theory gives the thickness of the depletion layer (δ) as a function of particle 

size, static correlation length in the semidilute solution (ξc), and persistence length (Lp) of the 

chain. In the situation where ξc > Lp, the correlation length determines the thickness of the 

depletion layer. In the opposite limit, the polymer segmental density near the particle is a complex 

function of ξc and Lp. Their calculation showed that δ follows a complex scaling law determined 
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by the concentration of the polymer and size of the nanoparticles. For particle size smaller than 

the persistence length, as for our system, Ganesan et al. observed a scaling relation of the form 

δ/d ≈ (d/ ξ)−ν, where ν is an exponent with a value less than 1. The value of the exponent decreases 

gradually as the ratio d/Lp decreases.99 

In Figure 5.3.6 we have shown the experimental result in the semidilute solution for d = 

30 nm particles. For the static correlation length we used the scaling form7 ξ = ξo(c/c*)−0.75. Within 

the small range of polymer concentration, our result indicates that the exponent ν ≈ 0.42. The 

exponent is 1 for a flat surface, where the thickness of the depletion layer follows the static 

correlation length. The much smaller value for the exponent ν indicates a strong effect of the 

surface curvature in the depletion layer thickness. Assuming the persistence length of 120 nm for 

xanthan, R/Lp ≈ 0.125. The mean-field results99 suggested a decrease of ν from 0.89 to 0.73 as the 

ratio R/Lp decreases from 2 to 0.04. The lower experimental value of ν in our experiment, however, 

requires further verification as the results were obtained for a single-sized particle and a limited 

range of concentration. Additionally, in our situation, the structural relaxation of the polymer is 

slower compared to the particle motion. Thus, deformation of the polymer due to the motion of 

the particle is not equilibrated to form a symmetric depletion layer. The particles feel an 

inhomogeneous depletion layer, which changes as the particles move. The theoretical result for 

this situation with a semiflexible polymer, however, is currently unavailable. 

5.4 CONCLUSION 

Diffusion of nanoparticles in a semiflexible polymer is governed by an obstruction effect 

in the dilute solution. A model proposed by Ogston, which approximated the chain as thin long 

straight fibers, can explain the concentration dependence of the reduced diffusion coefficient in 
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this regime. Hydrodynamic interaction between the polymer and the particle makes a significant 

contribution to particle mobility in the semidilute regime. The concentration dependence of the 

screening length follows the same power law as the static correlation length. For a larger sized 

particle, the depletion effect is important. We found a scaling form for the depletion layer 

thickness that varies as (correlation length) 0.42. It is different than the flat surface, where the 

thickness is proportional to the correlation length. The smaller exponent demonstrates the effect 

of surface curvature on polymer density profile near a nanoparticle. As many biopolymers (e.g., 

DNA, actin, etc.) are semiflexible, the results presented here will be important to understand how 

semiflexible or rod-like polymers interact with spherical nanoparticles. 
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CHAPTER 6: DIFFUSION OF SMALL CHARGED NANOPARTICLES WITHIN A 

SEMIDILUTE POLYELECTROLYTE SOLUTION 

6.1 INTRODUCTION 

In the recent years, there is a growing interest to understand the passive and active 

transport of particles and biomolecules in complex fluids, including polymer solutions and gels, 

cytoplasm, and biological networks. Diffusion is the most important passive transport process 

driven solely by thermal energy, kBT where kB is the Boltzmann constant and T is the absolute 

temperature. The theories developed by Langevin, Einstein, and Smoluchowski considered 

situations where a large particle moves within a continuum fluid.  

In particular, for spherical particles much celebrated Stokes-Einstein (SE) equation relates 

the diffusion coefficient with the particle radius (R) and the bulk viscosity (o) of the medium. 

The predicted diffusion coefficient from SE relation using the zero shear bulk viscosity matches 

well with experimentally measured quantity and is a standard method to determine the particle 

size by measuring its’ diffusion coefficient within a small molecule solvent of known viscosity. 

An underlying assumption of SE relation in equilibrium systems is large separation of time scales 

between solvent motion and the particle dynamics. For a micrometer sized particle diffusing in 

water this condition is easily met. The typical solvent motion occurs in the picosecond time scale, 

where the Brownian time scale (B) is of the order of a microsecond for a particle of size 1 µm.  

If the size of the particle approached to the solvent molecules itself, deviation from 

continuum theories is expected and many-body correlation comes into play. An example of this 

situation, which has drawn a lot of interest within the last few years is the diffusion of 

nanoparticles (NPs) within polymer solutions and melts. Sophisticated theories, including scaling 

theory18, 32 force-based statistical dynamical theory,71 mode-coupling theory41, 51, 118 have been 
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developed, and molecular dynamics simulations have been performed.40, 55 In semidilute polymer 

solutions, experiments found that the diffusion of NPs can be 2-3 orders of magnitude faster 

compared to the expectation based upon SE relation if the particle size is smaller than the radius 

of gyration of the polymer chain (Rg).3, 50 The deviation from SE relation increases as the ratio R/Rg 

decreases.119 A transition from subdiffusive to a diffusive behavior had also been observed by 

some research groups, which can explained in terms of a depletion layer around the particles119 

The  scaling theory also predicts a time-dependent viscosity, which gives subdiffusive motion of 

nanoparticles, which crosses over to diffusive motion at a longer time scale.18 Fewer studies in 

heavily entangled polymer solutions and melts discuss where topological constraints created by 

the entanglement of the chains control the flow of the bulk53 The available theories and 

experiments indicated that the tube diameter (dt) is the important length scale and if the particle 

size is below the tube diameter, significantly enhanced diffusion was observed120 The deviation 

from SE relation is a strong function of R/dt and SE relation is obeyed when the ratio R/dt 

approaches a factor of 8-10.71, 72 However, these results have been primarily studied with neutral 

polymers.  

The studies of nanoparticle diffusion within charged polymers or polyelectrolytes are 

limited. The dynamics and rheological properties of polyelectrolytes are interesting and rich as 

noted in pioneering theoretical studies by Colby,11 Rubinstein,7, 9, 100 and MuthuKumar,121 among 

others.122-126 In polar solvents, such as in water, the polymer chain becomes charged with free 

counterions diffusing freely in the solution in the dilute limit. In salt-free solution, the Debye 

length (approximately 0.5 µm) is typically larger than the size of the polymer for moderate 

molecular weight (Mw) chains.9 Therefore, monomers of the chain interact with each other 
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through an unscreened Coulomb interaction. Due to electrostatic repulsion among the monomers 

along the backbone, the polyelectrolytes adopt an elongated ellipsoidal conformation.9 This 

makes the transition from dilute to semidilute concentration regimes to occur at a lower 

concentration compared to linear polymer of similar Mw.11 Theoretical and experimental work 

suggest that semidilute regime persists for a wide range of polymer concentrations.2, 11 The 

entanglement dynamics comes into play only at a much higher concentration, which can be 

orders of magnitude larger than the overlap concentration11, 44, 127 in neutral polymers.127  

The most important length scale in semidilute polymer solution is the correlation length 

(),9, 11 which sets the range of Coulomb, hydrodynamics, and excluded volume interactions.127 

The correlation length is highest at the overlap concentration, but decreases with increasing 

polymer concentration following a power law.127 In good solvents, for neutral polymers, ~ -0.76 

and for polyelectrolytes ~-0.5, where  is the polymer volume fraction. Experimentally, Lin et. al. 

measured diffusion coefficient of polystyrene (PS) particles of size 38 nm by using quasielastic  

light scattering within a solution of poly(acrylic acid) (PAA) of molecular weight, Mw=3 X 105 

g/mol in water. They observed a non-monotonic change of D as a function of PAA concentrations, 

which they interpreted as a change of the apparent hydrodynamic size of the particles. The 

analysis of data was complicated, as in the light scattering experiments both polymer and particle 

can contribute to scattering, which become worse as the polymer concentration increases.128 More 

recently, Poling-Skutvik et. al. used a semidilute solution of partially hydrolyzed polyacrylamide 

and PS particles in the size range of 300 nm to 2 µm.44 The experiments covered the size ratio of 

2R/  0.5-150, where they observed that reduced diffusivity (D/Do) follow a power law with 2R/ 

with exponent of -2. The authors compared the ratio, D/DSE, which is always greater than 1 and 
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depends upon the ratio of Rg/Ro and polyelectrolyte concentration. D/DSE increases as the ratio 

Rg/Ro decreases and the polymer concentration increases.44 The latter results were in accord with 

neutral polymer solutions.3 Sozanski et. al. used molecular probes of size ranging from ~0.5 nm 

(rhodamine dye) to 7 nm (dextran) in high salt solution.119 Under the experimental conditions, the 

Debye screening length was much smaller than the correlation length and therefore chains 

interact through screened Coulomb interaction. At the large length scales, the diffusion of the 

particles followed a scaling relation, which is not much different compared to that of neutral 

uncharged polymer.  

A distinguishing aspect of this article is the use of much smaller nanoparticles (size 

range=5 nm to 40 nm), which complements the earlier experimental studies. The size ratio, 2R/ 

in our experiments ranges from 0.05 to 0.85, which thus corresponds to small particle size-range 

according to the definition of scaling theory.18 The size of the particles is also similar to the average 

size of many proteins, biomolecules, and viruses. The particles also carry a net electric charge, 

similar to many biomolecules in their in vivo state. The results presented here will be important 

to understand how nanoparticles move through a charged and crowded macromolecular 

environment, which will have ramifications in fields ranging from biophysics and polymer 

science to drug delivery. 

6.2 EXPERIMENTAL METHODS 

Poly acrylic acid (PAA) powder (MW ~ 106 g/mol) was purchased from Polyscience Inc, 

Tannic acid stabilized (radius, R =2.5 nm, 10 nm, 20 nm) gold nanoparticles (NPs) were obtained 

from Ted Pella, Inc. The concentration of 2.5 nm, 10 nm, and 20 nm NPs as received in the stock 

solution in water were 83 nM, 0.8 nM, and 0.13 nM respectively, which were further diluted in 
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distilled deionized water for two-photon fluctuation correlation spectroscopy (FCS) experiments. 

The nanoparticle concentration was adjusted such that a good signal-to-background ratio was 

obtained. PAA powder was dissolved in 90 0C in a temperature bath to prepare four different 

concentrations with volume fractions, = 0.37x10-3, 0.72x10-3, 1.09x10-3, and 1.48x10-3. We reported 

concentrations in terms of volume fraction as this is a common practice for neutral polymers. 

Different scaling relations are also expressed in terms of volume fractions. The conversions 

among volume fraction, weight fraction, and mg/ml are given in Table 6.2.1.  

Table 6.2.1 Concentration calculations for PAA samples 

Weight fraction (w/w) C (kg/m3) Volume fraction (v/v) 

0.00042 0.42 0.00037 

0.00083 0.83 0.00072 

0.00125 1.25 0.00109 

0.0017 1.72 0.00148 

 

The conversion requires the density of PAA, which we took as 1.150 g/ml at 25 0C as 

reported by Lin et. al.128 PAA samples were ultrasonicated for 30 minutes after adding 

nanoparticles to make a homogeneous polymer solution. We performed viscosity measurements, 

both before and after the nanoparticles added to ensure that sample preparation method did not 

degrade the polymer. The measurements yielded nearly identical results. The sample preparation 

was done using distilled deionized water (18 M-cm Millipore), but the presence of H+ ions from 

the dissociation of PAA and the absorption of atmospheric CO2 makes the solution acidic with 

the pH ranging from 4.2 (for =0.37x10-3) to 3.4 (for =1.48x10-3) measured using Orion 3 Star pH 

meter (Thermo Scientific, Inc.). Commercially available (Fisher Scientific) 8 chambered cover 
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glass of thickness 0.13 - 0.17 mm was used as a liquid cell for FCS experiments. An Axiovert 200, 

Zeiss inverted microscope served as an experimental platform, and the cell was mounted on the 

mechanical stage of the microscope. Femtosecond Ti:sapphire laser (Mai Tai, Spectra-Physics) of 

near infrared light (wavelength=800 nm) with the pulse width of 150 fs at a repetition rate of 80 

MHz was focused on the sample through a high numerical aperture (N.A.=1.25, 100x) oil 

immersion objective.78 The power at the sample stage was kept below 1 mW. The emission is 

collected with two single-photon counting modules placed after a 50-50 beam splitter. The counts 

are cross-correlated, which eliminates the artifacts associated with photomultiplier tube (PMT) 

after-pulsing. From calibration, we determined that the half-width of the focused laser beam, 

ω0=0.3 μm and the half-height, z0=1 μm by using a common dye rhodamine 6G, whose diffusion 

coefficient in water is well-known (D=414 μm2/s). Each correlation curves were collected for about 

15 minutes and were repeated for at least six times from which the average D and its standard 

deviation were determined.  

 

 

10
-3

10
-1

10
1

0.0

0.2

0.4

0.6

0.8

1.0

 

 

G
 (

)

(s)

0.000 0.045 0.090 0.135
0

30

60

90

120

 (x10
-2
)

 

 

 
D

 (

m

2
/s

)



92 
 

 
 

Figure 6.2.1 Normalized autocorrelation functions are shown for four different concentrations of 

poly acrylic acid (PAA) in water: (squares) 0%, (circles) 3.7x10-4, (triangles) 7.2 x 10-4, (filled 

squares) 1.09x 10-3, (filled circles) 1.48 x 10-3. The measurements were for gold nanoparticles of 

radius 10 nm. The solid lines are fittings with autocorrelation function as described in the 

experimental techniques section. Diffusion coefficients (D) as determined from the fittings were 

listed in Table 6.2.2. The inset shows the average D as a function of volume fraction for all three 

particle radii: (circles) 2.5 nm, (filled circles) 10 nm, (squares) 20 nm. The error bars are standard 

deviation from at least 6 measurements. The fitting in the inset is according to stretched 

exponential function. Fitting parameters are listed in Table 6.2.3. 

 

Table 6.2.2 Experimental diffusion coefficients D of AuNPs (in µm2/s) as measured by 

fluctuation correlation spectroscopy (FCS) 

Φ (x10-3) 

R=2.5 nm R=10 nm R=20 nm 

D δD D δD D δD 

0 102 5 23 1 11 1 

0.37 51 1 14 1 7 1 

0.72 40 3 11 1 4 1 

1.09 30 2 9 0.4 5 0.3 

1.48 23 1 7 1 3 0.2 

 

Table 6.2.3 Fitting parameters β and υ using Phillies equation: D=Do exp(-) 

R (nm) υ β 

2.5  0.53 4.00 

10 0.64 4.10 

20 0.68 4.41 

In Figure 6.2.1 we showed the correlation functions with fittings for R=10 nm particles in 

four different PAA concentrations and the inset shows D as a function of volume fraction. 

Rheological measurements were performed on TA Instruments DHR3 rheometer with a 20 mm 

parallel plate with a solvent trap. Steady state flow and small-amplitude oscillatory shear 

experiments were performed using standard protocols.98 Linear viscoelastic region was 

determined by conducting a strain sweep at 1 Hz. Frequency sweeps were performed at fixed 

strain within linear viscoelastic region.  
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DLS experiments were performed with an ALV compact goniometer system (Model 

ALV/SP-125, Germany) equipped with an avalanche photodiode detector and a digital correlator 

to determine the hydrodynamic size of PAA. Rheology measurements were performed without 

any nanoparticles added. As the concentration of NPs in FCS experiments was much less than 

nM, we expect no perturbation of the system with the particles. Control experiments ruled out 

any adsorption of polymers on the particles. The hydrodynamic size of the particles (as measured 

by FCS) did not change as a function of time when they were kept for several hours in the solution. 

This is also expected as both particles and polymers are similarly charged and there is a repulsive 

interaction between them. 

6.3 RESULTS AND DISCUSSION 

  PAA is a weak polyelectrolyte. In water PAA acquires a negative charge, where the degree 

of ionization depends sensitively upon the pH of the solution. For example, about half of the PAA 

units gets charged at pH=6.5.129 Under our experimental conditions where the pH of the solution 

was ranging from 3.4 to 4.2, previous studies had determined that ionization is between 7-10%.129 

The corresponding Debye screening length ranges between 23 nm to 55 nm (Table 6.3.1), which 

is shorter compared to the size of the polymer. So the charge repulsion among the monomers 

cannot be ignored and it plays a role on the conformation of the PAA in dilute solution. The 

picture that emerges is a weak polyelectrolyte interacting with its monomers through a long-

range electrostatic repulsion. In this situation, the chain adopts a somewhat elongated 

conformation similar to directed random walk, where the length along the chain axis depends 

upon the number of monomers and the strength of electrostatic interaction, while in the 

perpendicular directions the chain adopts a random walk.11  
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Table 6.3.1 Calculated Debye screening length 

Volume fraction 

Φ (x10-3) 

pH [H+] (mol/m3) Debye screening length, 

-1 (nm) 

0.37 4.20 0.063 54.6 

0.72 4.10 0.080 48.7 

1.09 3.61 0.25 27.7 

1.48 3.43 0.37 22.5 

 

DLS provides an orientation-averaged hydrodynamic size of the polymer. With a dilute 

concentration of PAA (a factor of 10 below the overlap concentration), we observed a single 

exponential relaxation at a scattering angle of 250, which gives the hydrodynamic radius of PAA, 

Rh  78 nm (Figure 6.3.1). We used the relation, Rg/Rh=1.45130 to determine the radius of gyration, 

Rg113 nm. An alternate, and sometimes claimed to be more accurate determination of Rg is 

through intrinsic viscosity ([]) measurements, which is a measure of polymer’s contribution to 

the viscosity at a very dilute solution (in the limit of  → 0). We used a falling ball viscometer and 

using well-known relation, [𝜂] = (
5

2
) (

4𝜋𝑁𝑎𝑣𝑅𝑔
3

3𝑀𝑤
), we determined, Rg 105 nm. This is similar 

(within a few percent) of the value obtained from DLS measurements and was used to calculate 

the overlap concentration and correlation lengths at different concentrations. 
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Figure 6.3.1 Autocorrelation function for PAA at volume fraction of 8.7x10-6. The measurement 

was taken at 250 scattering angle. The fitting (solid line) is with a single exponential function. 

 

The transition from dilute to semidilute concentration occurs when the chains begin to 

overlap.106 Because of the extended chain conformation for polyelectrolytes, the transition occurs 

at a much lower concentration compared to neutral polymers.11 The overlap concentration was 

determined by using the relation, c*=Mw/(⁴⁄₃Rg3NA), where Mw is the molecular weight and NA is 

the Avogadro number. By using Rg as obtained from the intrinsic viscosity measurements, we 

calculated c*0.34x10-3 g/ml, corresponding to a volume fraction, *2.9x10-4. So all our 

measurements were performed in the semidilute regime and volume fraction ranges from 1.3* 

to 5*. The entanglement concentration (ce) for polyelectrolytes is a few orders of magnitude 

higher than c* and has not been investigated in this study.11, 44, 127  

The correlation length () is the most important length scale in semidilute solution, which 

is a measure of average distance of a monomer of one chain to the monomer of the next chain.9 
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For neutral polymers in good solvent, ~-0.76, but for polyelectrolytes, the correlation length scales 

as11 -0.5. The calculation of correlation length was shown in Table 6.3.2, which varies from 95 nm 

(=0.37x10-3) to 47 nm (=1.48x10-3).  

Table 6.3.2 Calculated correlation length for each concentration  

Volume fraction 

(v/v) 

𝝃 (nm) 

0.00037 95 

0.00072 68 

0.00109 55 

0.00148 47 

 

The hydrodynamic interaction, excluded volume interaction, and electrostatic interaction 

all get screened beyond correlation length.127 The comparison of correlation length with the Debye 

screening length as a function of concentration will thus indicate a significant conformation 

change of the polyelectrolyte as the volume fraction increases. The ratio of the nanoparticle size 

to correlation length (2R/) is important to understand the dynamics. A majority of the studies 

focused on diffusion of particles within electrically neutral polymer solutions. For size ratio 2R/ 

<< 1, the particles experience mostly the solvent viscosity,119 which is slightly enhanced by the 

presence of the monomers and dissolved counterions in the solution. Hydrodynamic interaction 

between the particle and the polymer is also important at these length scales.127 At length scales 

larger than correlation length (2R > ), hydrodynamic interaction gets screened,44 but the motion 

of the polymer can significantly contribute to the NP dynamics.18 In our experiments we covered 
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the size ratio of ~0.05 to ~0.85, which provides the opportunity to study the small-size and near 

transition to intermediate size regime.  

Rheology measurements (Figure 6.3.2) showed viscosity as a function of shear rate for all 

four concentrations. All samples showed strong shear thinning and a zero-shear viscosity. It was 

noted before that in contrast to neutral polymers, the relaxation time of semidilute polyelectrolyte 

solution increases as the concentration is lowered and the longest relaxation time corresponds to 

overlap volume fraction.127 With the limited concentration range studied in our experiments, we 

were unable to verify this aspect of the theory. We, however, showed that Cox-Merz rule,131 which 

states that viscosity from steady shear measurements is equal to oscillatory measurements, i.e., 

(𝛾̇ ) = *() with 𝛾̇ =  is obeyed, indicating that the system is rheologically simple. 

 

 

 

 

 

 

 

 

Figure 6.3.2 Viscosity as a function of shear rate as measured by a parallel plate rheometer. 

Solid symbols are viscosity from steady shear measurements and open symbols are complex 

viscosity as measured by oscillatory shear measurements. Their overlap indicates PAA 

solutions are rheologically simple fluids. The results showed shear thinning in PAA solutions. 
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Symbols are for four different volume fractions, : (stars, black): 0.37x10-3, (diamonds, red) 

0.72x10-3, (circles, blue) 1.09x10-3, (squares, black) 1.48x10-3. Measurement temperature was 20 
0C. (Inset) Viscosity as a function of stress. The graphs showed small stress of less than 1 Pa can 

cause a large change of viscosity. 

 

The mechanism of relaxation from steady shear is same as from oscillatory shear.42 This 

also rules out formation of gel like network in the system.97 Plotting the rheology data in terms of 

viscosity as a function of stress shows a very small amount of stress (1 Pa) is needed to reduce 

the viscosity by two orders of magnitude (Figure 6.3.2 inset). This implies formation of weak 

structures, which easily breaks down with the application of small amount of stress. i.e., yield 

stress is small and inconsequential. Viscosity of PAA solutions was measured by several 

researchers, including Flory et. al.128 Those experiments were limited to much higher shear rate of 

the order of 1000 s-1 and thus most likely probed the shear thinning regime.132 

de Gennes had proposed that when the particle size is much smaller than the correlation 

length (2R << ), the particles slip easily through the polymer mesh and they only feel the solvent 

viscosity.95 In the opposite limit (2R >> ), they feel the macroscopic zero shear viscosity (0) of 

the solution.3 In the transition region, the particles feel a local viscosity which is between the 

solvent and bulk viscosity, and is given by a scaling function depended only upon the polymer 

concentration through correlation length, but independent of polymer molecular weight.3 Many 

models have been put forth for this function and most of them give a stretched exponential form 

in terms of volume fraction. Some models are based upon the hydrodynamic interactions between 

particles and polymers, where the interaction is screened at the length scale of correlation length. 

For example, Cuckier gave a functional form: D=Do exp (-R/), where  is a screening constant, 
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and Do is the diffusion coefficient in neat solvent.19 Some models are mostly phenomenological, 

such as Phillies equation: D=Do exp(-), where  and  are adjustable parameters.128 A similar 

functional form was obtained by Dhont et. al by considering the effect of depletion layer around 

the particles.23 In Figure 6.2.1 (inset) we showed the fitting with stretched exponential form. The 

exponent  is expected to lie between 0.5 and 1. Our fitting parameters are included in table 6.2.3). 

We obtained =0.54 for R=2.5 nm particles, which increases to =0.68 for R=20 nm particles. 

Similar trend was observed for NP diffusion in neutral polymer (polyethylene glycol solutions)78 

But as the adjustable parameters  and  cannot be predicted, these fittings do not have much 

physical meaning52 

 

 

 

 

 

 

 

 

Figure 6.3.3 D vs.  in log-log plot showing the scaling behavior of D  -0.5
 
for all three particle 

sizes at four different PAA concentrations. (circles) 2.5 nm, (filled circles) 10 nm, (squares) 20 

nm. All particles are in the small size range (2R <  ). (Inset) Comparison is shown for 

nanoparticle diffusion in neutral semidilute polymer solutions, which showed a much stronger 
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dependence on volume fraction with scaling ponent -1.53 (Ref. 3). These experiments are for 

intermediate size particles (2R > ). 

In neutral polymer solutions, Rubinstein et. al. have identified several regimes of particle 

diffusion, where they considered fluctuation of the network in the semidilute concentration and 

the effect of entanglement in the concentrated solution.18 The analysis is useful for situations, 

when the particle size is greater than the correlation length. In a previous publication, we showed 

that our experiments can be well described by their theory, which gives the volume fraction 

dependence of D that follows a power law3 Specifically, in the semidilute solutions, where 

correlation length is the most important length scale, the theory predicts18  D()~2/R3 if 2R > .  

This dependence comes from the arguing that particles experience an effective viscosity 

as if it is within a polymer liquid composed of chains with similar size as of the particles. As -

0.76 for uncharged polymers in good solvent, we expect D()-1.52, which matches closely with the 

observed exponent 1.53 (Figure 6.3.3, inset).11 In Figure 6.3.3 we plotted D as a function of  in 

log-log plot for NP diffusion in PAA solution. In all cases the data fits well with a power law with 

exponent -0.5. Admittedly, there is some uncertainty in determination of the correlation length, 

which can change the size ratio (2R/) as given in SI8. Similarly, the calculation of overlap volume 

fraction assumes a random walk conformation for the chain, while the actual conformation is  ore 

like a directed random walk. All these, however, do not affect the data presented in Figure 6.3.3. 

To obtain the NP size-dependence of diffusion coefficients, we plotted in Fig. 4 (inset a), 

D vs. 1/R. The graphs can be well fitted with a straight line passing through the origin.  Therefore, 

D varies inversely with particle radius as in Stokes friction for spherical particles in liquids 

according to =6effR, where eff is the effective viscosity experienced by the particles. From the 

slopes of the graphs, we got eff for all four particle concentrations as shown in Figure 6.3.4 (inset 



101 
 

 
 

b). The figure also plots zero shear viscosity (0) as a function of polymer concentration as 

obtained from rheology measurements. The increase of 0 is about five orders of magnitude 

compared to pure water viscosity for the highest PAA concentration studied. This is not 

unexpected, because as the particle size is smaller than the correlation length, they mostly 

experience the solvent viscosity that is slightly enhanced due to the presence of the polymers. 

Figure 6.3.4 (main) summarizes the data for three particle sizes and four different concentrations. 

The log-log plot of diffusion coefficient vs. the size ratio (2R/) falls on a single curve with the 

slope of -1. According to scaling theory,18 the probe diffusion coefficient is inversely proportional 

to the particle size in the probe size range of b < 2R < , where b is the Kuhn length. Our 

experiment is in agreement with this prediction. For the volume fraction dependence, the theory 

predicts that D is independent of  in the concentration range of 0 <  < , where =*(Rg/2Ro)x. 

The exponent, x=(3-1)/, where  is the excluded volume parameter. With =0.588 in athermal 

solvent, x=1.32. For polyelectrolytes, using =1,  ranges from 0.128 (for 2R=5 nm) to 0.002 (for 

2R=40 nm). Our experiments were, therefore, performed in the volume fraction,  < . An 

argument can be made that for a weak polyelectrolyte, such as PAA with only about 7% 

ionization, using =1 is not justified. Earlier experiments had obtained for a different 

polyelectrolyte system =0.7-0.8 in salt-free solutions.133 We calculated  using =0.7, which still 

showed    . We are not aware of any theory, which showed scaling behavior of small (2R < ) 

particles within semidilute solutions. Compared to intermediate sized particles (2R > ) in neutral 

polymer solutions, the volume fraction dependence is weak (Figure 6.3.3) for small particles. 

However, our data clearly points to a scaling relation.  
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Both particles and the polymers are negatively charged under the experimental 

conditions. We measured the zeta potential of PAA as -20.1 mV. For 20 nm gold NPs, the zeta 

potential was -39.3 mV. As both of them are negatively charged, we expect particles to experience 

a repulsive force, which prevents them to come into contact with the charged monomers. Within 

Debye-Hückel approximation, the surface potential can be related to the total charge of a 

spherical colloid.134 For nanocolloids, it gives total charge, Q=-3.8 x 10-18 C. For polymers, ions can 

penetrate inside and unlike solid particles, it is soft and flexible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.4 Inset (a) 1/R dependence of diffusion coefficient, from which an effective viscosity 

(eff) can be deduced. Inset (b) Comparison of viscosity results. (Circles): Zero shear viscosity, 

(squares): effective viscosity (eff) derived from diffusion coefficient measurements by FCS, 

which is closer to the solvent viscosity as expected for small particle size. Symbols are for four 
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different volume fractions, : (open squares): 0, (open circles): 0.37x10-3, (open triangles):  

0.72x10-3, (filled squares): 1.09x10-3, (filled circles): 1.48x10-3.  (Main figure) Diffusion coefficient 

vs. size ratio shows a scaling behavior with exponent -1.  Data for all concentrations and particle 

sizes fall on a single curve. (circles): 2.5 nm, (filled squares): 10 nm, (open squares): 20 nm.    

 

There is a large amount of studies on finding the interaction potential between two 

charged solid bodies under different ionic conditions. Here, we are interested in calculating the 

repulsive electrostatic potential energy that NPs experience with the chain size comparable to 

correlation length as the correlation length is the only relevant length scale in the semidilute 

solution.9 A general expression for constant potential boundary condition valid for both large and 

small a is given by Bell et. al,135 ∅𝑅 =
4𝜋𝑅(𝑟−𝑅)𝜀0𝜀𝑟𝜑0

2

𝑟
𝑙𝑛 [1 +

R

(r−R)
exp (−𝜅𝑎)], 𝑟 = (𝑎 + 2𝑅),  Here -

1 is the Debye screening length and a is the surface to surface separation of the particles, and φ0 is 

the Zeta potential. We determined that the interaction energy is about a factor of two times the 

thermal energy of the particles at contact. So, we expect that there is some depletion of polymers 

near the particle surface, but the rubbing of the polymers against the particle surface also cannot 

be totally ignored. Due to relatively large size of laser focus (0.5 m), FCS is not sensitive to the 

motion of the NPs within the depletion region. Assuming, a depletion layer of thickness Rg, the 

time-scale of particle motion within the depletion region corresponds to 0.1 ms. Therefore, we 

measured the long-time diffusion, where the matrix surrounding the particles has enough time 

to relax. The dependence of D on -0.5 or 1 .is still a puzzle, even though this dependence is much 

weak compared to diffusion of NPs in semidilute neutral polymer solutions in the intermediate 

size range. It is possible that the size-ratio in the experiments was in the transition regime, so a 

non-negligible volume fraction dependence was observed. We expect that our results will 

stimulate more theoretical studies of charged NP diffusion within polyelectrolyte solution.  
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6.4 CONCLUSION 

We have shown that diffusion coefficient of small nanoparticles in weakly charged 

semidilute polyelectrolyte solution scales inversely with particle size and depends upon volume 

fraction as a power-law with an exponent of -0.5. The diffusion coefficients fall on a master curve 

when plotted against the size ratio, 2R/ with an exponent of -1.  Rheology measurements showed 

shear thinning and compared to zero shear rate viscosity, the particles experience much smaller 

local viscosity and slightly enhanced solvent viscosity. As most biopolymers are charged, our 

results will help to understand diffusion of charged particles or macromolecules inside 

biopolymer solutions.   
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CHAPTER 7 : CONCLUSION 

The experiments comprising my dissertation have focused on investigating the 

nanoparticle dynamics in polymers, polyelectrolyte solutions, and gels. Understanding the 

dynamical properties of nanoparticles in macromolecular solutions, such as polymer, 

biopolymers, and polyelectrolytes are significant for several interdisciplinary fields of studies as 

well as relevant for many technological applications. By using FCS, we investigated these systems 

studied, which gave the opportunity to understand the structural and dynamical information 

about them at nanometer to micrometer length scale. Important results and findings of these 

experiments have been reported in chapters 4 through 6.  

First, we studied the diffusion of gold nanoparticles within entangled solutions and gels 

formed by high molecular weight poly(vinyl alcohol) (PVA) in water. We found that existing 

hydrodynamic and obstruction models are inadequate to describe the size dependence of the 

particle diffusion coefficient (D). For size ratios x =2R/ae≈ 0.5−2.5, our results suggested a 

functional form for D ∼ exp(−κx), where 2R is the particle diameter, ae is the entanglement tube 

diameter and κ ≈ 1. This result qualitatively agrees with the scaling theory prediction of hopping 

motion for particles within entangled polymer solutions. For larger particles within higher 

volume fractions of polymer, an additional sharp slowing down of the particle motion was 

observed, which also exhibited an exponential dependence on the size ratio, but with a much 

higher value of κ. Such a rare hopping process can be explained qualitatively by recently 

developed force-based nonlinear Langevin theory. 

Second, we measured the translation diffusion coefficient (D) of nanoparticles within 

dilute and semidilute solutions of a semiflexible polymer, xanthan. Our results showed that for 
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particle diameters (d) of 5 and 10 nm, the obstruction theory can explain the concentration 

dependence of D in the dilute regime. Diffusion in semidilute solutions is better explained by 

additionally considering the modified Darcy flow with the hydrodynamic screening length. The 

depletion effect is operative for larger particles (d = 30 nm) within semidilute solutions. We 

interpret our result with a scaling relation for the depletion layer thickness, δ ≈ υ, where is the 

correlation length and the exponent =0.42 Our results showed that when the polymer network 

relaxation is much slower compared to the diffusive time-scale of particles, multiple theories 

needed to explain the full picture. 

Third, we have studied the translational diffusion coefficient of nanoparticles in 

semidilute unentangled polyelectrolyte solutions. The measured diffusion coefficients (D) 

showed a scaling relation, D(R/)-1 in the range of 2R/ between 0.05 and 0.85, where R is the 

particle radius and  is the correlation length. Additionally, rheology measurements showed a 

zero-shear rate viscosity and shear thinning, which are typical of high molecular weight 

polyelectrolytes. The local viscosity experienced by the particles is slightly (a factor of 3-4) more 

compared to solvent viscosity and significantly smaller compared to zero shear rate viscosity. 

As most of the biopolymers are charged and uncharged polymers, our results are 

significantly suitable for understanding the transport properties of nanoparticles and 

macromolecules in biopolymer environment.  
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ABSTRACT 

DYNAMICS OF GOLD NANOPARTICLES IN POLYMER, BIOPOLYMER SOLUTIONS 

AND GELS 
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Degree: Doctor of Philosophy 

Soft matter is a subfield of condensed matter physics including systems, such as polymers, 

colloidal dispersions, liquid crystals, surfactants. Understanding their interaction and dynamics 

is essential for many interdisciplinary fields of study as well as important for technological 

advancements. We used gold nanoparticles (AuNPs) to investigate the length-scale dependent 

dynamics in dilute, semidilute, entangled polymer solutions and gels. Two-photon fluctuation 

correlation spectroscopy (FCS) technique was used to investigate the translation diffusion 

coefficient of AuNPs. For polymer solutions, we found that existing hydrodynamic and 

obstruction models are inadequate to describe the size dependence of the particle diffusion 

coefficient. Within entangled Poly (vinyl) alcohol solutions, our results qualitatively agreed with 

the scaling theory prediction of ‘hopping motion’. In semidilute xanthan solutions, we observed 

that polymer network relaxation is much slower compared to the diffusive time-scale of particles, 

and AuNP diffusion could not be explained by a single theory. The system was better explained 

by additionally considering the modified Darcy flow with the hydrodynamic screening. In the 
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semidilute polyelectrolyte solution, measured diffusion coefficients (D) showed a scaling relation, 

D(R/)-1 in the range of 2R/ between 0.05 and 0.85, where R is the particle radius and  is the 

correlation length.  
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