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CHAPTER 1 INTRODUCTION

1.1 Real-Time Systems

Real-time and embedded systems, which span a broad scope of complexity from micro-

controllers to highly complicated and distributed systems, require completion of compu-

tation and delivery of service in a timely fashion. The correctness of an operation (an

operation is formally redefined later in Chapter 3) depends not only on its logical correct-

ness, but also on the time in which the operation is performed. Examples of real-time

systems include digital control, signal processing, telecommunication systems, etc, which

provide us numerous important services. The system in a car controls its engine, and brakes

the car in time when we hit the brake pad. When we are sick, the system monitors our

blood pressure, heartbeats, and many other relating statistics. Unlike nonreal-time systems

(e.g., PCs), real-time systems which are often hidden from our view work efficiently and

correctly in our daily life.

The most typical real-time systems are digital control systems which consist of sensors,

actuators, and digital controllers [47]. Figure 1 shows a brake system of a self-driving car

on the roads that require different speed limits. The car needs to brake when runs on a

road with a smaller speed limit. The state of the brake system of the self-driving car is

monitored by sensors and changed by actuators. The system reads the data from sensors

and estimates the current state, and computes a control output based on the current state

and the desired state (input). The output in turn actives actuators to let the system be

closer to the desired state. In the brake system, the speed limit of the road is the input, and

the difference between the current velocity of the car and speed limit is the output. The
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Computation

A/Dinput

A/D

D/A

ActuatorBrake systemSensor

Controller

Figure 1: A simple digital control system. The input of the controller is the speed limit of
the road and the output is the difference between the current velocity of the car and the
speed limit. The output in turn actives actuators to let the speed of the car be closer to the
speed limit of the road.

output, in turn, decelerates the car if current speed is larger than the limit.

The resultant controller is a sampled data system which samples sensors readings

periodically and carries out its computation time in each period. This sequence of output

thus in turn to activate the actuators. In a more complex system, scheduling such operations

with time constraints must guarantee that the successful completion of execution does

not exceed its deadline. In order to obtain the best performance, the parameters of each

operation must be carefully calculated. The determination of the parameters depends

on various input data and the different behavior of the processing environment. Before

introducing our motivation and objective of this thesis, we introduce basic background

information in Chapter 1.1.1 and 1.1.2.

1.1.1 Typical Parameters in Real-Time Systems

Before presenting the motivation and objective of this thesis, we briefly introduce several

fundamental parameters [47] in real-time systems. Detailed definitions and explanations of

the parameters are presented in Chapter 3.
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• Worst-Case Execution Time (WCET):

Execution time is the amount of time that is required to complete an operation.

The execution time of an operation may vary, e.g., when the execution path of the

operation (represented by the directed acyclic graph model) contains conditional

branches. The execution time of the operation thus depends on the input data which

may have different execution paths. Worst-case execution time is the maximum

execution time among all paths of an operation.

• Deadline:

The deadline (absolute) of an operation is the instant time by which its execution

is required to be completed. The relative deadline is the amount of time which is

relative to release time (the instant that the operation is available for execution). We

consider hard deadlines in this thesis. A deadline is hard when the failure to meet the

deadline is considered to be a failure.

• Period:

A period characterizes an operation which repeatedly releases. In this work, we refer

the period as the minimum inter-arrival time of two consecutive release time instants.

The release time of an operation is the instant of time at which the operation is ready

to execute.

A unit of work/operation typically executes recurringly in real-time systems. The

parameters describe a recurring operation and the operation is called a job in real-time

systems. The set of recurring jobs jointly provide a function called a task. A task with
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parameters forms a real-time model. For example, a task of the sporadic task model consists

of an execution time (WCET), a relative deadline, and a period. In this thesis, we analyze

complex models of which a job contains subjobs and the subjobs (can form a subtask) have

execution order requirements (priorities). The execution order describes the dependable

features of subjobs. The subjobs/subtask can also have parameters such as execution time,

deadline, etc. We have task-wise and subtask-wise1 parameters in this thesis.

1.1.2 Schedulability Analysis in Real-Time Systems

In Chapter 1.1.1, we have introduced some typical parameters in real-time systems.

These parameters (i.e., execution time, deadline, period, etc.) of tasks work as input to help

decide whether the system is schedulable. A valid schedule is feasible if all tasks in a system

complete executing by their deadlines. A system is schedulable using a specific algorithm if

the algorithm always produces a feasible schedule for the system. A schedulability analysis

(also known as schedulability test) validates whether all tasks in the system can meet all

their deadlines when scheduled by a scheduling algorithm.

Schedulability analysis is important, especially in hard real-time systems. In hard real-

time systems, all deadlines of tasks are hard and must be met. If the schedulability analysis

of a system is not correctly launched and further causes a deadline miss, severe results may

happen, e.g., the failure of the braking system in a car will cause the loss of money and

threat for people’s safety.

1In this thesis, we refer to an operation as a job which is an instance of a task, and a subjob as a frame of a
job. We formally define them in Chapter 3.
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1.2 Motivation

We have briefly introduced the certain background, basic parameters and schedulability

analysis in real-time systems. Parameters can be considered as input to decide whether

the system is schedulable. The effectiveness of the schedulability analysis hinges upon the

precision of parameter estimates. In Chapter 1.2.1, we present the traditional ways that

calculating/setting parameters in real-time systems. As nowadays applications become

more and more complex, we show the difficulties of calculating/setting parameters and

the opportunities on working the parameter adaptation problem in Chapter 1.2.2. In

Chapter 1.2.3, we introduce the specific area we are working, how we assign the parameters,

and why we consider using such methods.

1.2.1 Traditional Ways in Getting Parameters

• WCET:

The analysis of worst-case execution time is an import research branch of real-time

systems. WCET, in general, is impossible to exactly calculated; Otherwise, the halting

problem can be solved [78]. Even the form of programming in real-time systems is

restricted (programs are guaranteed to stop and iterations of loops are bounded),

WCET is also hard to get due to worst-case input, in general, is not known beforehand

and hard to derive. Due to this reason, researchers estimate WCET by measurement-

based and abstraction-based approaches. The measurement-based approach is based

on a subset of test cases thus underestimates WCET. The abstraction-based approach is

based on the abstract of tasks, which loses detailed information and thus overestimates
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WCET.

• Deadline:

Task deadlines in real-time systems are traditionally calculated from the data that

sensors and actuators discover. For example, a self-driving car with a constant speed

cannot stop immediately (in an arbitrarily small time) when the car detects an obstacle;

instead, the car utilizes a sensor to periodically monitor the distance to the obstacle

and an actuator to brake the car. The deadline for this task can be calculated from the

speed of the car, the distance between the obstacle and the maximum deceleration of

the braking system of the car. This time is also a constraint in turn to the response

time of the sensors which discover the obstacle and activate the brake.

• Period: A period can be considered as, e.g., the multiplicative inverse of a sample rate.

The period is usually a user-defined parameter according to the requirements of a job.

For example, there are sensors and actuators to control the temperature of a room.

The system samples and reads the temperature every 10 seconds which is considered

as the period of the temperature monitor process.

There is some work [18,22] that select deadlines and periods under certain constraints,

but WCET is usually assumed to be immutable once assigned. Details are introduced in

Chapter 2.

1.2.2 Difficulties and Opportunities

We have introduced the basic calculations/settings of some basic parameters. The

calculation of parameters in real-time systems can be quite complicated since nowadays

applications are becoming more and more complex. The mentioned calculation of car brak-
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ing is straightforward; however, the scenario becomes more complex when a task contains

image capture, motion detection, stereovision, object recognition, and path planning. These

subtasks must work in sequence, e.g., the analysis for the pictures starts after capturing

pictures and the analysis must finish before path planning. The system needs to maintain

the end-to-end latency of such tasks to assign appropriate subtask periods and relative

deadlines. In practice, it has been shown that there are more than one hundred engine

control units (ECUs), and more than twenty million lines of code in a typical modern car

system [19]. There are fifty to three hundred functions in a task with varying worst-case

execution time (WCET), and many shared, global data in a ECU software. There are a set

of main challenges [19] of schedulability analysis in such complex applications:

1. There are lots of mode-dependent behaviors.

2. The task periods are randomly generated.

3. Many functions are implemented on top of task self-suspensions.

Due to these challenges, we aim to develop a flexible model to let a subset of param-

eters to be flexible to be chosen in ranges, and develop efficient algorithms to select the

parameters and analyze the schedulability of all tasks.

There is also a large market along these mentioned problems [19]. There are seventy-

five million cars produced each year. In Europe, there are around forty-two billion dollars of

car sales, and twelve million people are employed for making cars. The number of engine

control units (ECUs) also increases rapidly. There are more than one hundred ECUs in a

modern car produced in Year 2012, compared to less than five ECUs in a car produced in

Year 1980 [19]. The number will continue increasing as future cars will certainly have
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more functions, e.g., self-driving, self-docking, and interactive relation with people, etc. In

this thesis, we develop flexible models and efficient algorithms to tackle these scheduling

challenges on such complex systems.

1.2.3 Flexibly Assigning Parameters

Combining the economic opportunities and corresponding challenging scheduling prob-

lems, we aim to develop general models that have the flexibility on choosing the parameters

of complex tasks such as self-suspension tasks and end-to-end flows in uniprocessor systems

and distributed systems, respectively.

We also develop algorithms that jointly considering the selection of a subset of parame-

ters (i.e., frame relative deadlines and periods) and the schedulability analysis of the system,

by linear programming (LP) and mixed-integer linear programming (MILP). The advantage

of the combination instead of two separate steps is detailed in Chapter 2.

1.3 Objective

In this thesis, we aim to create general flexible models that are capable of optimally

selecting the parameters under EDF (earliest deadline first) scheduling in both uniprocessor

and distributed systems. We focus on the tasks which consist of frames that execute in order.

Such tasks represent many important applications like transactions (end-to-end flows)

and self-suspending tasks. Under such flexible frameworks, we aim to develop efficient

algorithms that select parameters (e.g., deadlines and periods) and generate schedulability

analysis jointly.

1.3.1 Thesis

The thesis of this document is:
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The schedulability ratio of task sets can be improved in parameter-adaptable

models than traditional parameter-fixed models. That is, flexible parameters

can be tuned to improve system schedulability. Efficient algorithms for selecting

these parameters can utilize the linear and mixed-integer linear programming

methods. Such algorithms can efficiently select parameters and schedule a task

set at the same time. The enhanced schedulability benefits can be evaluated

and verified using randomly generated datasets. Such a universal model can be

applied in many areas such as scheduling self-suspending tasks in uniprocessor

systems and end-to-end flows in distributed systems, respectively.

1.4 Summary of Contributions

The main contributions of this thesis are listed as follows:

1. We propose new models GMF-PA (the generalized multiframe model with parameter

adaptation) and dGMF-PA (distributed GMF-PA) which permit flexible selections of

frame relative deadlines and periods under EDF scheduling.

2. In uniprocessor systems, we develop a parameter selection algorithm based on MILP

that selects frame deadlines and periods in the GMF-PA model. We prove that the

algorithm is a necessary schedulability test. When parameters are assumed to be

integers, the algorithm is a sufficient and necessary schedulability test, i.e., an exact

test. We develop an MILP-based approximation algorithm and prove that this method

is a sufficient schedulability test.

3. In distributed systems, we extend the algorithms used in uniprocessor systems to be
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capable of selecting frame deadlines and periods for the dGMF-PA tasks.

4. We apply our parameter selection algorithm and its approximation algorithm on

multiple-segment self-suspending tasks in uniprocessor systems. The system is also

extended to an arbitrary-deadline system. We also apply our algorithms on end-to-end

flows in distributed systems.

5. We prove that the speed-up factor of the MILP-based approximation algorithm is 1 + ε

with respect to the exact schedulability test of GMF-PA (dGMF-PA) tasks under EDF

scheduling.

6. We give a case study that applies our MILP-based algorithms to a tracking robot car. A

tracking task consists of several subtasks (e.g., motion detection, stereovision, object

recognition, etc.) and we relax the assumption that some subtasks of a tracking task

are independent. We extensively evaluate our algorithms by varying four parameters

such as network bandwidth, database size, etc.

7. We give a concave approximation algorithm based on the MILP algorithm and prove

the speed-up factor of the algorithm is (1 + δ)2 with respect to the exact schedulability

test of GMF-PA tasks under EDF scheduling on uniprocessors. The positive constant δ

is a user-defined constant which can be made arbitrarily close to zero.

8. Since there is no known tractable way to solve a concave programming problem, we

develop a LP-based heuristic algorithm based on the concave approximation algorithm

for GMF-PA tasks. The LP-based algorithm is an efficient schedulability test and can

select frame parameters at the same time.
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9. We apply the LP-based algorithm to schedule multiple-suspending tasks. To exploit

the unique property of one-suspending tasks, as opposed to multi-suspending tasks,

we present an improved heuristic algorithm for GMF-PA tasks.

10. We conduct extensive experiments and show that the LP-based algorithms with fixed

numbers of iterations outperform previous work in terms of schedulability and average

running time. The fixed numbers of iterations make the LP-based algorithms pseudo-

polynomial (the input size depends on the maximum interval length [8]), which is

more efficient than the MILP-based approach.

1.5 Organizations

The following table shows the next chapters of this thesis:

Table 1: Chapter Contribution Summary

Chapter # Contribution

Chapter 2 Related work

Chapter 3 Models and definitions used in the rest of the thesis

Chapter 4 Parameter selection and schedulability analysis in uniprocessor systems

Chapter 5 A case study on a robot tracking system

Chapter 6 A linear programming based approximation algorithm

Chapter 7 Parameter selection and schedulability analysis in distributed systems

Chapter 8 Conclusion of this thesis

Chapter 9 List of publications
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CHAPTER 2 RELATED WORK

In this chapter, we introduce the related work of our GMF-PA and dGMF-PA models.

GMF-PA and dGMF-PA models extend the GMF model and we introduce the related models

in Chapter 2.1. The traditional models, e.g., the GMF model, are considered to be fixed

parameter models. That is, the parameters are fixed during the task specification time.

We introduce the related work of flexible parameter models in Chapter 2.2. We introduce

the applications such as self-suspension tasks and end-to-end flows in Chapter 2.3 and

Chapter 2.4, respectively.

2.1 The Generalized Multiframe Model

The generalized multiframe model (GMF) was first introduced by Baruah et al. [8] to

extend the sporadic task model and multiframe task model (MF) [52]. A sporadic task

has an execution time, a deadline, and a period, which can be considered as a one-frame

task model. An MF task has multiple frames each of which has its own execution time.

All frames of a job have identical separation time (frame period) and relative deadline.

The GMF model which extends these two models is more flexible. Each frame has its own

execution time, frame period, and frame relative deadline. Frames in the MF and GMF

models must execute in sequence. In the non-cyclic GMF task model [54], frames can

execute out of order and thus reduce the pessimism of the modeling of software-defined

radio [53]. The recurring real-time task (RRT) model [10] is a generalization of the GMF

model to handle conditional codes. The non-cyclic recurring real-time task (non-cyclic

RRT) model [7] can generalize all the models referred above. The digraph model [71]

further generalizes the non-cyclic RRT model to allow arbitrary directed graph (allows
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loops), and the feasibility problem on preemptive uni-processor systems remains tractable

(pseudo-polynomial complexity with bounded system utilization). A complete review of the

above models in uniprocessor systems is surveyed by Stigge and Yi [72].

There are many applications based on the MF and GMF models. Ding et al. [31]

scheduled a set of tasks with the I/O blocking property under the MF model. Andersson [5]

presented the schedulability analysis of flows in multi-hop networks comprising software-

implemented Ethernet switches, according to the GMF model. Liu et al. [48] applied

the MF task model and presented a sufficient schedulability analysis on messages over a

CAN-based system with mixed message queues. Ekberg et al. [32] developed an optimal

resource sharing protocol for the GMF model. The authors combined the protocol with EDF

scheduling to optimal schedule GMF task sets with shared resources. Lipari and Bini [44]

gave a component-based approach to consider the task allocation and parameter assignment

of pipelines of tasks in multi-processor systems. Their frame deadline assignment algorithm

is based on the minimization of the bandwidth required by the transactions, while our

algorithm shown later is based on the system schedulability.

The GMF model has great advantages and been applied to multiple areas, as described

earlier. However, current related models typically assume that parameters are fixed after

task specification time. In the GMF-PA model (detailed in Chapter 3.2) which extends the

GMF model, frame parameters are flexible under system constraints and can be chosen

by the MILP-based approach in uniprocessor systems. The dGMF-PA model (detailed in

Chapter 3.3) extends the GMF-PA model to be a flexible model in distributed systems. The

dGMF-PA model can be applied to end-to-end flows in distributed systems. Similar flexible

models, such as the parameter-adaptation model [22] and elastic model [18], are also used
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in many applications.

2.2 Flexible Parameter Models

The GMF model has great advantages and is applied to multiple areas. However, its

current related models assume that parameters are fixed after the task specification time.

Instead, a subset of parameters is flexible to be chosen under frame constraints and task

constraints (detailed in Chapter 3) in our GMF-PA and dGMF-PA models. We utilized the

advantage of flexible models to make frame periods and deadlines be flexible to be chosen.

The relationship between fixed parameter models and flexible parameter models are shown

in Figure 2.

Figure 2: A solid arrow line between two models means generalization. For instance, the
dGMF-PA model generalizes the GMF-PA model. The dashed arrow line between two models
means partial generalization. For example, task periods are flexible in the elastic model but
are fixed in the GMF-PA model. If task periods are fixed, the GMF-PA model generalizes the
elastic model.

.

A new research direction of task models is motivated by control applications for combus-

tion engines. Tasks can be triggered by specific crankshaft rotation angles and the angular
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velocity of the engine. Task periods which depend on the angular velocity thus are vari-

able. Buttazzo et al. [17] gave a sufficient utilization-based feasibility test on fixed-priority

and EDF scheduling. Biondi et al. [13] gave an exact schedulability analysis under EDF

scheduling, and showed the average performance gain of EDF over FP scheduling over a set

of simulation results. It is interesting to consider mapping our flexible model to such task

models in the future.

2.3 The Self-Suspending Task Model

A typical self-suspension task model [47] contains two computational frames separated

by a self-suspending frame. After the first computational frame finishes, the job suspends

executing the other computational frame until an external operation completes. The order of

the frames is required and a task suspends itself to communicate with external devices, I/O

operations, computation offloading, etc. We call such tasks one-suspension self-suspending

tasks.

We apply the GMF-PA model in uniprocessor systems to self-suspending tasks in this

thesis. Self-suspending tasks were first defined in real-time systems by Rajkumar [65]

and the author gave a sufficient schedulability test for fixed-priority tasks2. Scheduling

self-suspending tasks is NP-hard [66] in strong sense even a task system has only one

self-suspension task. Nelissen et al. [55] also showed that the timing analysis of sporadic

self-suspending tasks is also not easy, and they computed exact worst-case response times

using mixed-integer linear programming (MILP) algorithm. Ekberg and Yi [34] have also

shown that the schedulability test of implicit-deadline tasks under fixed-priority scheduling

2Chen and Brandenburg [26] further explained that the algorithm [65] may cause ever-increasing suspen-
sion lengths which incur deadline misses for self-suspending tasks.



16

in uniprocessor system is NP-hard, which indicates the scheduling of self-suspension tasks is

also hard in such environment.

The traditional scheduling algorithms [47] which consider self-suspending delays as

parts of computation times (i.e., the tasks are transformed to one-frame/sporadic tasks) are

quit efficient, but sacrifice significant system capacity, especially when the delay of a self-

suspension is large. A much accurate way to model the self-suspensions is to consider the

self-suspensions as carry-in jobs [79] or jitters [55]. In this case, the scheduling algorithms

which explicitly consider the delays of suspensions receive much attention on the tasks with

at most one self-suspending frame and tasks with multiple self-suspending frames.

Due to the hardness of such scheduling problems, Chen and Liu [23] gave the fixed-

relative-deadline (FRD) scheduling algorithm to improve the schedulability on sporadic

self-suspending tasks on uniprocessor systems, and quantified the quality of their approach

by analyzing the speed-up factors with respect to the optimal FRD scheduling and any

arbitrary feasible scheduling algorithms. Chen et al. [25] gave a framework to analyze

response time in fixed-priority systems for self-suspension tasks. Brüggen et al. [77] gave

a greedy algorithm that assigns frame deadlines, and proved the speed-up factor of their

algorithm. Later, they [76] proposed a hybrid self-suspension model which limits the upper

bounds for parameters e.g., task execution time, task suspension time, the number of

suspensions, etc.

Multiple self-suspending task models [39] can be divided into two main categories: the

dynamic self-suspending task model and the multiple-segment self-suspending task model.

Dynamic self-suspending tasks consider the maximum aggregate frame execution time and

suspension delay among tasks, i.e., suspensions can take place at any time. Liu and Anderson
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scheduled self-suspending tasks in soft [45] and hard [46] real-time multiprocessor systems.

Chen et al. [27] gave a response time analysis framework for dynamic self-suspending

tasks with fixed priorities. In contrast to the dynamic self-suspending task model, the

multiple-segment self-suspending task model explicitly ensures that all frames must work

in order. In a system where each task has multiple-segment self-suspending frames, Kim

et al. [42] used a MILP-based algorithm to assign frame priorities and deadlines based

on the response time analysis in fixed-priority scheduling systems. Later, Kim et al. [41]

pointed out there is an error in the paper [42], and they correct it mainly in Sections 3.2

and 4.1 of the paper. We also create MILP-based algorithms to select frame parameters

(See more details in Chapter 4.3). The difference is that our analysis is based on the time

interval analysis in EDF-scheduled systems and their analysis is based on the response

time analysis in fixed-priority scheduling systems. Thus, the scheduling algorithms using

the MILP technique are different. Huang and Chen [39] proposed FRD scheduling on

self-suspending tasks with fixed priorities. The multiple-segment self-suspending task model

explicitly ensures that all frames work in order. In this thesis, we propose the GMF-PA model

and parameter-adaptation algorithms that extend the FRD scheduling in arbitrary-deadline

systems. We also apply the GMF-PA model to multiple-segment self-suspending tasks.

Chen et al. [27] showed that several papers of self-suspending task scheduling were

flawed, and some results were unfortunately adopted in the literature of self-suspending

task scheduling. We utilize the classic model GMF to develop schedulability analysis to

ensure the correctness of our work at most. Some recent work. [14,56] also addressed the

flaws of self-suspension scheduling. Recent reviews [24,28,29] are given on scheduling

self-suspension tasks under earliest-deadline-first (EDF) and fixed-priority (FP) scheduling.
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Related Work of Self-Suspension Tasks
Suspending frames per job

Scheduling algorithm One segment Multiple segments
Implicit Explicit Implicit Explicit

EDF scheduled
systems

Ridouard et
al. [66]

Chen and
Liu [23]

Liu et al. [79] This research:
Chapters 4, 5,
and 6

Chen et al. [27] Brüggen et
al. [76,77]

Chen et al. [27]

Fixed prior-
ity scheduled
systems

Rajkumar [65] Huang and
Chen [39]

Nelissen et
al. [55]

Huang and
Chen [39]

Chen and Bran-
denburg [26]

Chen et al. [25,
27]

Liu and Ander-
son [45,46]

Chen et al. [27]

Ridouard et
al. [66]

Ekberg and
Yi [34]

Table 2: Related Work of Self-Suspension Tasks

Many applications have used the self-suspending task model. In mobile cloud computing,

uploading a portion of work can both benefit from reducing the execution time and energy

of tasks in mobile devices. The time taken by the cloud can be considered as a self-

suspension delay of a task on the mobile side. Ahmed et al. [4] analyzed the effect of

tuning network-centric parameters on runtime application migration. Based on optical

character recognition (OCR) applications on android devices, they analyzed that the length

of suspension delay is effected by the size of data, network bandwidth, etc. Nimmagadda et

al. [57] analyzed the decision-making that whether a part of workload should be offloaded

to a server in a tracking robot car. In Chapter 5, we relax an assumption made in the

paper [57] and give extensive evaluations based on the case study.

Table 2 shows the classification of the related work of self-suspension task scheduling

algorithms.
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2.4 The Scheduling of End-to-End Flows

The dGMF-PA (distributed GMF-PA) model extends the GMF-PA model (see details in

Chapter 3.2). The dGMF-PA model is used in distributed systems and can transform to the

GMF-PA model when the number of processors is one. We apply the dGMF-PA model to

end-to-end flows and compare the schedulability ratio and running time with the latest

work.

The schedulability analysis of distributed real-time systems has received much attention.

Most applications in distributed real-time systems can be modeled by end-to-end flows/end-

to-end tasks/transactions in which subtasks/frames of a flow execute in a chainlike manner.

The end-to-end tasks can be traced back to the job-shop model [49] in which a task consists

of a chain of jobs. A job in this model is ready to execute when its preceding job completes

executing. Based on the job-shop model, Bettati [11] first focused on the scheduling

of end-to-end tasks to meet their end-to-end timing constraints in distributed systems.

Schedulability analysis of such models has been proposed both for the fixed priority (FP)

scheduling and earliest deadline first scheduling (EDF).

In the category of FP scheduling algorithms, Tindell and Clark [74] first proposed

a holistic analysis, which was later improved by the offset-based analysis [58]. Such

analysis calculates the worst-case response time of each subtask to set the offset and jitter

of the succeeding subtask. The calculation is iterative. Li et al. [43] applied the holistic

schedulability tests to an industrial scheduling tool of a TDMA software radio protocol, and

shows the advantage and limits of the holistic analysis. The FP scheduling of end-to-end

flows was further improved by the offset-based slanted technique [50] which exploits the
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interdependencies among subtasks using offsets. Schlatow and Ernstthis [69] presented a

busy-window analysis for end-to-end tasks in static-priority preemptive systems. Casini et

al. [20] gave response time and scheduling analysis of parallel tasks with suspensions.

In the category of EDF scheduling algorithms, one-time deadline assignments such as

PD [47] (proportional deadline assignment) and NPD [47] (normalized PD) are efficient but

pessimistic on schedulability test. The deadline assignment is fixed after the task specifica-

tion time. Buttazzo et al. [15] divided end-to-end flows to fixed segments, and the segment

deadlines were assigned by the execution time distribution. Such one-time assignments are

efficient; however, the assignments do not consider the resource competition of sub-jobs,

which may fail to schedule a task system. Iterative assignment algorithms such as the

offset-based analysis [59] were presented based on the similar analysis in FP scheduling.

Pellizzoni and Lipari [60] provided new response time analysis and an iterative algorithm

to improve the schedulability analysis. In the iterative-based algorithms, the deadline

assignment of subtasks affects the offsets and jitters of themselves which in turn will affect

the deadline assignment. In the category of online scheduling algorithms, Hong et al. [37]

optimally assigned local frame deadlines of end-to-end flows given known release time

of tasks. Hong et al. [38] extended their algorithms to assign the deadlines of DAG tasks.

Rahni et al. [64] gave a survey of scheduling real-time transactions. Table 3 shows the

classification of the related work of end-to-end flows scheduling algorithms.

There are also some other interesting algorithms in industry, e.g., the reservation

algorithms [16] in a reservation server which assigns task priorities based on the system

supply. Casini et al. [21] analyzed the response time and scheduling of chainlike tasks

in Robot Operating Systems (specifically ROS 2). Another programming framework is
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Related Work of End-to-End Flows
Deadline assignment algorithm

Scheduling algorithm Iterative Non-iterative
Fixed assignment Combined optimization

EDF scheduled
systems

Palencia
and Har-
bour [59],Pel-
lizzoni and Li-
pari [60], Hong
et al. [37,38]

Bettati [11],Liu [47],
Chen and
Liu [23]

This research:
Chapter 7

Fixed prior-
ity scheduled
systems

Tindell and
Clark [74],Pa-
lencia and Har-
bour [50, 58],
Schlatow and
Ernstthis [69],
Li et al. [43],
Casini et al. [20]

Future Work Future Work

Table 3: Related Work of End-to-End Flows

OpenMP [3] and the tasks are scheduled with order constraints and synchronization. Sun

et al. [73] proposed the response time analysis and scheduling of OpenMP tasks for parallel

real-time systems on multi-cores.

In this thesis, we utilize the interface of demand bound functions [6] and mathematical

programming to assign frame deadlines and analyze system schedulability. The iterative-

based algorithms cannot easily compute a demand bound function during an interval length

because the response time of a subtask depends on the end-to-end flows in all processors.

2.5 Summary

In this chapter, we present the related work of our flexible models GMF-PA and dGMF-PA.

Such models in related work have numerous applications. In general, we combine the

advantage of the parameter-flexible models and the state-of-the-art models to create our

flexible models. For each model, we create a scheduling algorithm and its approximation
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algorithm based on the MILP and LP algorithms. The evaluations in this thesis shows that

our scheduling algorithms based on such flexible models can schedule more systems than

fixed-parameter models (in which the parameters are fixed after task specification time).
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CHAPTER 3 MODELS AND NOTATIONS

In this chapter, we review the GMF [8] model in Chapter 3.1. Based on the GMF model,

we define our GMF-PA model in Chapter 3.2 in uniprocessor systems. The multiple-segment

self-suspending task model and how to apply our GMF-PA model to the multiple-segment

self-suspending tasks are presented in Chapter 3.2.1. Based on the GMF-PA model, we define

our dGMF-PA model in Chapter 3.3 in distributed systems. The end-to-end flow model and

how to apply our dGMF-PA model to end-to-end flows are presented in Chapter 3.3.1. At

last, we conclude this chapter in Chapter 3.4.

3.1 The Generalized Multiframe Task Model

We mentioned in Chapter 1 that an operation is a unit of work. In real-time systems, a

job is a unit of infinite recurring work done by computation and communication systems.

The recurring jobs compose a task. A job has many properties, e.g., execution time, period,

deadline, etc., that are introduced in Chapter 1. If we further explore the inner structure of

a job, a job can be represented by more complex models such as the linear graph model

or DAG (directed acyclic graph) model. The GMF model is a linear graph model in which

sub-jobs3 execute in sequences.

A GMF task [8] τi consists of a set of ordered frames and each frame φji has its own

execution time Ej
i , relative deadline Dj

i , and frame separation time P j
i . All frames of a

task τi can be represented by the 3-vector tuple (
−→
Ei,
−→
Di,
−→
Pi) where

−→
Ei=[E0

i , E
1
i ,..., E

Ni−1
i ],

−→
Di=[D0

i , D
1
i ,..., D

Ni−1
i ], and

−→
Pi=[P 0

i , P 1
i ,..., PNi−1

i ]. The `’th frame of task τi arrives at

time a`i , has deadline at a`i + d`i , and worst-case execution time e`i . Since frames arrive in

sequence, the `’th frame corresponds to frame φ` mod Ni
i , and we have:

3We define a part of a job as a sub-job, and define a sub-job as a frame in the GMF model.
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1. a`+1
i ≥ a`i + P ` mod Ni

i

2. d`i = D` mod Ni
i

3. e`i = E` mod Ni
i

In this thesis, we consider that frame parameters (Dj
i and P j

i ) must satisfy the localized

Monotonic Absolute Deadlines (l-MAD) property [8] to maintain frame execution order.

That is, the absolute deadline of the j’th frame must be no later than the one of the j + 1’th

frame (Dj
i ≤ P j

i + D
(j+1) mod Ni
i , ∀i, j). Figure 3 shows an example of the GMF model

with the l-MAD property. The l-MAD property is widely used in systems which use first-in

first-out (FIFO) scheduling for a shared resource. For example, a network can be seen as

a shared resource and packets sent from a computational node to a network node follow

FIFO scheduling. With this property, frames execute in sequence under EDF scheduling. In

other words, j + 1’th frame cannot start executing until the time when j’th frame finishes

executing. We also require the l-MAD property in our GMF-PA model.
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i

Execution Time

· · ·
Dj

i

P j
i P j+1

i

Dj+1
i

Ej+2
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Dj+2
i
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i

Ej−1
i

P j−1
i

Dj−1
i

· · ·

Figure 3: This figure contains all task τi’s ordered frames from the j’th frame to the (j − 1)
mod Ni’th frame (we omit “mod Ni” in this figure for simplicity). The starting frame can be
any frame φji in an interval length t. Note that each frame deadline can be larger than frame
separation time, e.g., Dj+1

i ≥ P j+1
i in this figure. The details will be shown in Chapter 4.3.
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3.2 The Generalized Multiframe Task Model with Parameter Adapta-

tion for Uniprocessor Systems

Based on the GMF model, the GMF-PA model is derived to allow frame parameters

to be assigned instead of fixing them during task specification time. Let T = {τ0, τ2,...,

τn−1} be the task system of n GMF-PA tasks executing on one processor. The task τi=[φ0
i ,

φ1
i , φ

2
i ,..., φ

Ni−1
i ] consists of Ni frames where φji=(Ej

i , D
j
i , D

j

i , P
j
i , P

j

i ). The j’th frame

execution time of the i’th task is Ej
i , and the i’th task-wise execution time is Ei =

Ni−1∑
j=0

Ej
i .

The lower bound of relative deadline Dj
i (respectively, the minimum inter-arrival time

between consecutive frames, P j
i ) is Dj

i (respectively, P j
i) and the upper bound of Dj

i

(respectively, P j
i ) is D

j

i (respectively, P
j

i ). The frame parameters Dj
i and P j

i can be flexibly

assigned in the ranges [Dj
i , D

j

i ] and [P j
i , P

j

i ], respectively. The frame distance Dj,k
i = Dk

i +
(k−j−1) mod Ni∑

p=0

P
(j+p) mod Ni
i represents the relative time between the release of the j’th frame

and the deadline Dk
i of the k’th frame. For example, D2,4

i = P 2
i + P 3

i + D4
i .

The Ni frames which execute in order can be seen as a cycle and the cycle can execute

infinite times. This task/cycle deadline Di is the upper bound4 of DNi−1
i +

Ni−2∑
j=0

P j
i , and

the task period Pi is the upper bound of
Ni−1∑
j=0

P j
i . The utilization of task τi is Ui = Ei/Pi,

4Note that in our paper [61], we define the task/cycle deadline Di is the upper bound of
Ni−1∑
j=0

Dj
i . We

believe that the new definition is more appropriate for modeling the end-to-end constraint both for self-
suspension tasks and end-to-end flows. The change will not affect the evaluation results because the previous

work assumes Dj
i = P j

i (also set for our algorithms in evaluations) which make the two terms
Ni−1∑
j=0

Dj
i and

DNi−1
i +

Ni−2∑
j=0

P j
i be equal.
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and the utilization of a task system is Ucap =
n−1∑
i=0

Ui. Frame parameters (Dj
i and P j

i ) must

satisfy the localized Monotonic Absolute Deadlines (l-MAD) property [8] to maintain frame

execution order. That is, the absolute deadline of the j’th frame must be no later than the

one of the j + 1’th frame (Dj
i ≤ P j

i + D
(j+1) mod Ni
i , ∀i, j).

With the frame deadlines and periods, we introduce the demand bound function and

supply bound function which are used for schedulability analysis under EDF scheduling.

Let dbfi(t, ~Fi) be the task demand bound function of a GMF-PA task τi within the interval

length t. Let ~Fi = [D0
i , P

0
i , D1

i , P
1
i ,..., DNi−1

i , PNi−1
i ] represent an assignment of values for

all the task parameters (frame deadline and separations) of task τi. The task demand bound

function dbfi(t, ~Fi) accounts for task τi’s accumulated execution time of frames which have

both release times and deadlines inside the interval of length t. The supply bound function

sbf(t) gives the lower bound of resources that the system can supply over an interval of

length t. We use the notation dbfi(t,D
j,k
i ) to represent the demand for the k’th frame when

the first frame to arrive in the interval length t is the j’th frame. At any t-length interval,

the total demand must be smaller than the supply to get an successful schedule.

We aim to optimally select frame relative deadlines (Dj
i ) and minimum inter-arrival

times/periods (P j
i ) in the GMF-PA model in uniprocessor systems, under the basic requirements

as follows:

1. Ej
i ≤ Dj

i ≤ Dj
i ≤ D

j

i , ∀i, j

2. Ej
i ≤ P j

i ≤ P j
i ≤ P

j

i , ∀i, j

3. Dj
i ≤ P j

i +D
(j+1) mod Ni
i , ∀i, j
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4. DNi−1
i +

Ni−2∑
j=0

P j
i ≤ Di, ∀i

5.
Ni−1∑
j=0

P j
i ≤ Pi, ∀i

Figure 3 is also an example of a GMF-PA model as long as the parameters satisfy the

basic requirements and the frame deadlines and periods have their own ranges. A task

system must obey the first two inequalities to be feasible. The third inequality is required

by the l-MAD property. The last two inequalities check whether a system is feasible under

the condition that all task deadlines and periods are assigned under their upper bounds Di

and Pi, respectively. We call the first three constraints as frame constraints and the last two

constraints as task constraints in the rest of this thesis.

3.2.1 The Multiple-Segment Self-Suspending Task Model and the GMF-PA Model

Scheduling tasks with self-suspensions has received renewed interests in recent years. A

task suspends itself to communicate with external devices, I/O operations, computation

offloading, etc. A typical model derived from such systems contains two computation

frames separated by a self-suspending frame. After the first computational frame finishes,

the job suspends executing the other computational frame until such an external operation

completes. The multiple-segment self-suspending task model [39] allows a task to suspend

many times. Huang and Chen [39] first identified the relationship between self-suspending

tasks and the GMF model. They called a computational frame as a computation segment and

a suspending frame as a suspension interval; we call both frames instead to be congruent

with the GMF-PA model. Figure 4 shows an example of a multiple-segment self-suspending

task model.
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Figure 4: The computational frames are separated by a set of self-suspending frames. We
analyze a worst-case release pattern in an interval length t and the details are analyzed in
Chapter 4.3.

In the multiple-segment self-suspending task model [39], the task system T = {τ0, τ2, ..., τn−1}

consists of n sporadic self-suspending tasks executing on one processor. Each task τi =

((E0
i , S

0
i , E

1
i , S

1
i , ...S

mi−2
i , Emi−1

i ),Pi, Di) has mi computational frames and mi − 1 suspend-

ing frames. The execution time of a computational frame is Ej
i and the self-suspending

delay of a suspending frame is Sji . The frames work in order and j + 1′th frame cannot start

executing until the time when j′th frame finishes executing. The task period is Pi and task

relative end-to-end deadline is Di.

In order to incorporate with our GMF-PA model, each frame is rewritten as φji =

(Ej
i , D

j
i , D

j

i , P
j
i , P

j

i ). The total number of frames in a cycle of τi is Ni = 2 ∗ mi − 1. For

a computational frame, Ej
i and the parameters in frame constraints consist of a frame

φji = (Ej
i , D

j
i , D

j

i , P
j
i , P

j

i ). For a suspending frame φki , E
k
i = 0, Dk

i = D
k

i = P k
i = P

k

i = Ski .

We change the superscripts of frames in τi = [φ0
i , φ

1
i , φ

2
i , ..., φ

Ni−1
i ] to match our GMF-PA
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model. Frames are ordered such that a suspending frame executes after a computational

frame. The minimum inter-arrival time for τi is Pi, and the end-to-end deadline is Di = Di

which is the upper bound of DNi−1
i +

∑Ni−2
j=0 P j

i .

Our parameter-adaptation methods that are derived in Chapter 4.3 for the GMF-PA

model are immediately applicable to the FRD-scheduling [23,39] for multi-segment self-

suspending tasks.

3.3 The Distributed Generalized Multiframe Model with Parameter

Adaptation for Distributed Systems

In this chapter, we extend the GMF-PA model to define our distributed GMF-PA (dGMF-

PA) model in distributed systems. Note that the dGMF-PA model can be reduced to the

GMF-PA model when the number of processors is one. We review the end-to-end flow model

and apply our dGMF-PA model to end-to-end flows in Chapter 3.3.1.

Let T = {τ0, τ2, ..., τn−1} be the task system of n dGMF-PA tasks executing in a distributed

system. Each task τi = [τi,0, ..., τi,Q−1] consists of Q virtual tasks on corresponding Q

processors. Each virtual task τi,p = [φ0
i,p, φ

1
i,p, φ

2
i,p, ..., φ

Ni−1
i,p ] consists of Ni virtual frames and

executes on processor p. Each virtual frame φji,p = (Ej
i,p, D

j
i,p, D

j

i,p, P
j
i,p, P

j

i,p) is similar to the

frame in the GMF-PA model. In fact, there are only Ni frames in a dGMF-PA task τi and we

require that each real frame must be statically assigned once on one processor. We call a

virtual frame φki,p a real frame if the k’th frame of task τi is assigned on processor p, and

we call a virtual frame φji,p an empty frame if the j’th frame is not assigned on processor

p. Figure 5 shows an example of the dGMF-PA model (frame deadlines and periods are

selected in their ranges). In an empty frame φji,p, we set Ej
i,p = Dj

i,p = D
j

i,p = P j
i,p = P

j

i,p = 0.
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For simplicity, we also refer to a virtual frame as a frame (except when we specify a virtual

frame as a real frame or an empty frame).

The cycle/task deadlineDi of task τi is the upper bound of
Q−1∑
p=0

DNi−1
i,p +

(Ni−2)∑
j=0

P j
i,p

(Note

that we summarize over all processors for all parameters because empty frames take zero

deadlines), and the task/cycle period Pi is the upper bound of
Q−1∑
p=0

Ni−1∑
j=0

P j
i,p. The cycle dead-

line constraint intuitively represents the offset of the last frame’s absolute deadline from the

release time of the task and matches the traditional concept of an end-to-end deadline. The

minimum execution time of the frame in τi is Emin
i = min{

Q−1∑
p=0

E0
i,p,

Q−1∑
p=0

E1
i,p, ...,

Q−1∑
p=0

ENi−1
i,p },

and the total execution time of task τi is Ei =

Q−1∑
p=0

Ni−1∑
j=0

Ej
i,p. The utilization of task τi is

Ui,p =

Ni−1∑
j=0

Ej
i,p/Pi, and the utilization of a task system is Up =

n−1∑
i=0

Ui,p on processor p. The

maximum utilization of a processor in the distributed system is Ucap =
Q−1
max
p=0

Up.

In this thesis, we consider that each frame of a task in the dGMF-PA model has its relative

deadline constrained to be at most its period; that is, for all frames φji,p, D
j
i,p ≤ P j

i,p. This

assumption ensures that each frame has completed before the release time of the successive

frame and simplifies the schedulability analysis for each processor.

With the frame deadlines and periods, we first present the demand bound function

and supply bound function which are used for schedulability analysis on a uniprocessor.

We then show that our schedulability analysis for distributed systems breaks down to the

analysis for uniprocessor systems. The demand bound function dbfi(t, ~Fi, p) accounts for

the task τi’s accumulated execution time of jobs which have both release time and deadline

inside any interval of length t on processor p, and the supply bound function sbf(t) gives

the lower bound of resources that the system can supply over any interval of length t.
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Figure 5: The dGMF-PA task τi executes in two processors p and p+ 1. The real frames φji,p,
φj+1
i,p+1, φ

j+2
i,p+1, and φj−1

i,p execute in an ordered sequence (the real frames between j + 2’th
frame and j − 1’th frame are omitted here).

Note that our MILP algorithm can consider different supply bound functions sbf(t, p) for

different processors. For simplicity, we consider the same supply bound functions sbf(t)

over all processors since we use identical supply bound function for all processors. The

demand must be smaller than the supply at any interval length t among all processors in

the distributed system.

We aim to optimally select relative deadlines (Dj
i,p) and make scheduling decisions

under the basic requirements as follows:

1. Ej
i,p ≤ Dj

i,p ≤ Dj
i,p ≤ D

j

i,p, ∀i, j, p

2. Ej
i,p ≤ P j

i,p ≤ P j
i,p ≤ P

j

i,p, ∀i, j, p

3. Dj
i,p ≤ P j

i,p, ∀i, j, p

4.
Q−1∑
p=0

DNi−1
i,p +

(Ni−2)∑
j=0

P j
i,p

 ≤ Di, ∀i
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5.
Q−1∑
p=0

Ni−1∑
j=0

P j
i,p ≤ Pi, ∀i

A task system must obey the first two inequalities to be feasible. The third inequality is the

constrained frame deadline property. The last two inequalities check whether a system is

feasible under the upper bounds Di and Pi.

3.3.1 Distributed End-to-End Flows and the dGMF-PA Model

In this chapter, we review the distributed end-to-end flow model [60, 67] and apply

the dGMF-PA model to the flows where each processor is scheduled by EDF scheduling

algorithm.

For distributed end-to-end flows, we use a tilde over task parameters to distinguish

from the dGMF-PA model. A task system T̃ = {τ̃0, τ̃1, ..., τ̃n−1} consists of n distributed

end-to-end flows. Each task τ̃i = [φ̃0
i , φ̃

1
i , φ̃

2
i , ..., φ̃

Ni−1
i ] consists of Ni real frames. In each

frame φ̃ji = (Ẽj
i , D̃

j
i , Õ

j
i , J̃

j
i ), Ẽj

i is the execution time, D̃j
i is the global relative deadline

which is relative to the activation time of the task, Õj
i is the offset between the release time

of a flow and the activation time of the frame φ̃ji , and J̃ ji is the maximum jitter between

the activation time and release time of the frame φ̃ji . The end-to-end deadline of the task

τ̃i is D̃i and period between invocations of the task is P̃i. Frames can execute on different

processors and each frame can only be activated when its preceding frame completes

executing. Figure 6 shows an example of the end-to-end flow model.

Now we translate a task in the end-to-end flow model to one in the dGMF-PA model.

For each end-to-end frame φ̃ji , we create Q virtual dGMF frames φji,p for p = 0, 1, . . . , Q− 1.

If the original frame φ̃ji is assigned to processor p, all virtual frames φji,q where q 6= p are

empty frames in the dGMF-PA model. For a real frame φji,p, the manner in which we set the
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Figure 6: This end-to-end flow τi consists of Ni frames which can execute on different
processors. The deadlines and jitters ensure the execution sequence of frames.

frame parameters depends upon the setting: 1) if the offsets and global relative deadlines

are not fixed by the designer, then we can set trivial lower and upper bounds to the frame

periods and relative deadlines (i.e., Dj
i,p = P j

i,p = Ẽj
i and P

j

i,p = D
j

i,p = D̃i); or 2) if the

offsets and/or deadlines are fixed by the designer, then the trivial lower and upper bounds

can be used again for the frame period and relative deadline; however, two additional

constraints must be added: Õj
i =

∑Q−1
q=0

∑j−1
`=0 P

`
i,q and D̃j

i = Dj
i,p +

∑Q−1
q=0

∑j−1
`=0 P

`
i,q. Clearly,

we can always set the frame execution Ej
i,p to be Ẽj

i,p. A jitter J̃ ji can be modeled as a new

independent dGMF-PA frame φj
′
i,p in which Ej′

i,p = 0 and Dj′
i,p = D

j′

i,p = P j′
i,p = P

j′

i,p = J ji,p.

This jitter frame is inserted before its corresponding frames (both empty and real) φji,q for

all q = 0, . . . , Q− 1; once the jitter frame φj
′
i,p “completes”, then the frame φji,p is ready to

execute. The period of task τi is Pi = P̃i, and the end-to-end deadline is Di = D̃i.

Due to the hardness of the frame assignment in distributed systems [35], we assume

that real frames of end-to-end flows are statically assigned on processors (each jitter frame

is bundled with its real frame on a processor). Aside from real frames on each processor

p, we assign the other frames of all tasks to be empty frames on each processor p. That is,
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from the viewpoint of each processor p, all frames of tasks execute on processor p where

some frames are empty.

In this thesis, we deviate from the typical end-to-end flow semantics; in particular, in the

end-to-end flow model, it is often assumed that a frame is released as soon as the previous

frame signals it is complete. Instead, in this thesis, we assume that a frame is eligible to

execute only when its frame is released according to the period parameters of P j
i,p. However,

we conjecture that our schedulability results will continue to hold for the usual end-to-end

semantics by permitting a frame to “early release” its job, but keeping its absolute deadline

fixed to the same it would be in the dGMF-PA model (i.e., deadlines of frames do not shift

when early released). The rationale is that fixing the deadlines but permitting early releases

would only decrease the total execution demand and thus preserve schedulability.

Our combined parameter selection and schedulability test algorithms that are presented

in Chapter 7 for the dGMF-PA model are thus applicable to distributed end-to-end flows.

3.4 Summary

In this chapter, we review the GMF model, and define our flexible models GMF-PA and

dGMF-PA in uniprocessor and distributed systems, respectively. In the next, we introduce

the schedulability analysis and parameter selection algorithms under the GMF-PA model in

Chapters 4 to 6 and the dGMF-PA model in Chapter 7, respectively.



35

CHAPTER 4 PARAMETER ASSIGNMENT AND SCHEDULABILITY
ANALYSIS IN UNIPROCESSORS

In this chapter, we introduce the parameter assignment and schedulability analysis

(considered as a combined technique) in uniprocessor systems under the GMF-PA model.

In Chapter 4.1, we introduce the GMF model (extended by the GMF-PA model) and self-

suspension tasks (an application of the GMF-PA model). Utilizing the GMF-PA model, we

state the problem statement of this chapter in Chapter 4.2. In Chapter 4.3, we introduce

the combined technique using the MILP technique. Due to the technique is not a sufficient

schedulability test in general, and does not scale well. We introduce the sufficient approxi-

mation algorithm in Chapter 4.4. Chapter 4.5 applies the parameter-adaptation method

and its approximation algorithm to self-suspending tasks. Chapter 4.6 does extensive

experiments compared with state-of-art results. We conclude this chapter in Chapter 4.7.

4.1 Introduction

In real-time systems, worst-case execution time (WCET) analysis calculates an upper

bound for each task based on the total aggregate amount of execution required for a

job. Such estimates derived from WCET analysis are used in real-time schedulability

analysis to determine whether every job in a system can finish executing before its deadline.

Therefore, the effectiveness of the schedulability analysis hinges upon the precision of WCET

estimates. Unfortunately, many scheduler properties that simplify schedulability analysis

often introduce pessimism into WCET analysis. For example, the oft-assumed property

of a task is that the worst-case execution times are the same for all jobs. However, this

assumption is inaccurate for tasks which produce a sequence of jobs with heterogeneous

execution times. For example in multimedia systems, the execution time of a job containing
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video-data is not necessarily the same as the execution time of the next job containing

corresponding audio-data.

The multiframe task model [52] (MF) generalizes the periodic task model and reduces

the pessimism by a set of finite recurring frames. The finite set of frames can be seen

as a cycle. This cycle recurs an infinite number of times. Frames can have different

WCETs instead of identical ones. The generalized multiframe task model [8] (GMF) further

generalizes the sporadic task model and multiframe task model [52]. Instead of setting

implicit deadlines and the same minimal inter-arrival times for each frame in the MF model,

the GMF model assigns an individual deadline and a minimal inter-arrival time for each

frame.

The GMF model increases flexibility compared to the sporadic task model and multiframe

task model. Even with this, however, the parameters in the GMF model are fixed during

task specification time. The schedulability will be decreased when the parameters are not

flexible and dynamic, e.g., in multimedia and adaptive control systems. Buttazzo et al. [18]

defined the elastic model in which each period has an upper bound. If a job misses a

deadline, the period is allowed to increase under the upper bound. Chantem et al. [22]

selected the deadlines and periods in the generalized elastic model. The elastic model is

allowed to change parameters during runtime. In this thesis, we extend the GMF model to

let frame periods and deadlines be selected under a set of upper bounds. In this flexible

model, frame periods and deadlines are optimally assigned prior to runtime under our

methods.

We also apply this flexible GMF model to schedule a set of self-suspending tasks under

EDF scheduling. In order to address the pessimistic performance when considering the self-



37

suspension delay as a part of execution time, recent work [23,39] presented fixed-relative-

deadline (FRD) scheduling algorithm. FRD scheduling breaks a task into computation

phases and suspensions phases; each computation phase can be viewed as a frame with its

own relative deadline and execution. Under FRD scheduling, a simple deadline assignment

approach is presented that equally assigns deadlines [23, 39] based on the difference

between the self-suspension and minimum inter-arrival time. However, the proposed

deadline assignment is very restrictive, and we will detail the restriction at the beginning of

Chapter 4.5. We consider a more general, less restrictive deadline assignment strategy to

improve schedulability for multi-segment self-suspending tasks. The system is also extended

to an arbitrary-deadline system.

Our Contributions in this Chapter:

• We develop a parameter-adaptation algorithm that selects frame deadlines and min-

imum inter-arrival times in the GMF-PA model. We prove that the algorithm is a

necessary schedulability test. When parameters are assumed to be integers, we also

prove that the algorithm is a sufficient and necessary schedulability test, i.e., an exact

test.

• We develop an approximation algorithm and prove that this method is a sufficient

schedulability test.

• We apply our parameter adaptation algorithm and its approximation algorithm on

multiple-segment self-suspending tasks. The system is also extended to an arbitrary-

deadline system.

• The speed-up factor of our approximation algorithm is 1 + ε with respect to the exact
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schedulability test of GMF-PA tasks under EDF.

• We implement extensive experiments to show the improvement compared to previous

work.

Next, we state the problem in Chapter 4.2 and introduce the combined technique

(parameter selection and schedulability test) by mixed-integer linear programming (MILP)

in Chapter 4.3.

4.2 Problem Statement

Let dbfi(t, ~Fi) be the task demand bound function of a GMF-PA task τi within the interval

length t. Let ~Fi = [D0
i , P

0
i , D1

i , P
1
i ,..., DNi−1

i , PNi−1
i ] represent an assignment of all task

parameters (frame deadlines and periods) of task τi. The supply bound function sbf(t) gives

the lower bound of resources that the system can supply over an interval of length t. In a

uniprocessor system T , the sufficient and necessary condition [8] for schedulability of a

task set T is shown in Equation 4.1.

∑
τi∈T

dbfi(t, ~Fi) ≤ sbf(t), ∀t. (4.1)

Problem Definition. Given the above model, our goal is to find an optimal and valid assign-

ment ~Fi of frame parameters of all tasks so that the worst-case demand
∑

τi∈T dbfi(t, ~Fi) over

all time intervals of length t is minimized.
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4.3 The Exact Frame Deadline/Period Assignment of Generalized Mul-

tiframe Tasks in the GMF-PA Model

In this chapter, we describe the selection of the deadline and period for each frame

under our GMF-PA model by using mixed-integer linear programming (MILP) under EDF

scheduling. The period and deadline of each frame are flexible to be chosen under the

limit of the frame constraints and cycle constraints. Along with the selection, the algorithm

provides a necessary feasibility test for arbitrary real-valued task parameters. We prove the

sufficiency and necessity of the test when all frame deadlines and periods must be integers.

Mixed-integer linear programming (MILP) is a mathematical optimization model that

contains three parts: an objective function, constraint functions, and ranges of variables. A

subset of variables can be restricted to integers in MILP. An MILP problem aims to find the

optimal value of the objective function under the restriction of constraint functions. We

build our MILP-based algorithm to select the relative deadlines and periods for all frames.

At the same time, the MILP-based algorithm gives a necessary feasibility test. However,

the returned selection of real-valued deadlines and periods may not be feasible since the

MILP algorithm is only necessary. Later, in Chapter 4.4, we give a sufficient approximation

algorithm for the MILP that returns a feasible selection of frame periods and deadlines for

the non-integer case.

In a system where parameters are fixed after task specification time, parameters are

given as constants. However, in this thesis, we let frame deadlines and periods be variables

and select such parameters using the MILP. The demand in this case is also treated as a

variable. For instance, we determine the demand of frame φki over an interval of length t
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Figure 7: For simplicity, the frame demand yj,ki,t in this figure is calculated when t is smaller
than one period by Line 6 of the MILP algorithm in Figure 8.

.

and the frame arrives at the beginning of the interval. If the relative deadline Dk
i is set to

be smaller or equal to t, the demand for this frame is Ek
i ; otherwise the demand is zero.

Figure 7 illustrates a staircase function of the frame demand over the interval of length t.

The notations will be introduced later in our MILP-based algorithm. With the calculation

of all task demand that summarized by all frame demands, Equation 4.1 becomes a set

of constraint functions that a feasible system must obey to find a relative-deadline/period

assignment. In our parameter-adaptation algorithm, the supply bound function is sbf(t) = t

and the length t of any interval is an integer. Our MILP algorithm can return an assignment

if the system is schedulable. That is, we can determine the necessary feasibility of the

system and select potential parameters at the same time.

The general steps of our algorithm are as follows. For a given sequence of frames and

a time interval of length t, we calculate the demand contribution of each frame to that

interval length. Adding the demands of all frames generates the demand of a task, and

adding the demands of all tasks (over all possible sequences of frames) generates the total

demand at the t-length interval. The system is schedulable at a time interval length if the
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demand is smaller than the supply. We check all interval lengths, which are integers, in the

algorithm.

For a given interval length t, we calculate the demand for every possible sequence of

frames of task τi over any interval of length t. Assume that the first frame of τi to arrive

in such an interval is φji (i.e., the j’th frame). The demand of any sequence starting with

the j’th frame over a t-length interval is maximized if the j’th frame arrives exactly at the

start of the interval and subsequent frames arrive as soon as possible (e.g., see Baruah et

al. [8] for GMF schedulability). To calculate the demand from the k’th frame in such a

t-length interval for the specified sequence, yj,ki,t represents the frame demand of the task τi.

We will calculate yj,ki,t for all possible i, j, k, and t. For simplicity, we use the “∀” to represent

the ranges of variables. The task index i ranges from zero to n − 1. The superscripts j

and k represent the starting frame and the current frame respectively, and both have the

ranges from zero to Ni − 1. The range of any interval length t has been shown [8] that the

maximum interval length is bounded by O( Ucap
1−Ucap ·maxτi∈τ (Pi−D0

i )) in which Ucap < 1. We

use H = d Ucap
1−Ucap ·maxτi∈τ (Pi − Emin

i )e as the maximum integer length interval since we do

not know frame deadlines beforehand in our GMF-PA model. We use such abbreviations

across this thesis. The demand of the task τi started from j’th frame in time interval length

t is yji,t. The maximum demand of τi among all starting frames is yi,t.

Figure 8 shows our Parameter Selection and Exact Feasibility Test algorithm, the notations

in bold font are constants and the other notations are variables. Lines 3 to 5 are the basic

constraints introduced in Chapter 3.2. Line 6 calculates the demand of yj,ki,t . The interval

length b tPi c tracks the number of cycle periods in t, and b tPi c ∗ E
k
i is the demand of φki in

such cycle periods. The parameter xj,ki,t is restricted to be an integer value and works as a
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“flag” (either zero or one) to decide whether the demand Ek
i should be added in the interval

length t−b tPi c∗Pi, e.g., showed in Figure 4. Note that all frames release as soon as possible,

the analysis of a demand in [0, t− b tPi c ∗ Pi] is equal to the one in [b tPi c ∗ Pi, t]. The “flag”

xj,ki,t is decided by the constraints in Line 6. Line 6 is the constraint function that decides the

value of xj,ki,t . The length tb in Line 6 is the summation of the previous periods b tPi c ∗ Pi and

the distance from the starting j′th frame to k′th frame
(k−j−1) mod Ni∑

p=0

P
(j+p) mod Ni
i +Dk

i . For

example, the length tb = P 1
i + P 2

i +D3
i + b tPi c ∗ Pi if we consider the interval starting with

an arrival of the first frame and ending at the deadline of the third frame. In the inequality

of Line 6, the lengths tb and t decide whether the demand of k’th frame in t− b tPi c ∗ Pi will

be added to yj,ki,t . The constant realmin is the smallest representable positive number. When

t ≥ tb, the flag xj,ki,t must be one to let MILP feasible and the demand xj,ki,t ∗ Ek
i contributes

to yj,ki,t . When t < tb, the flag xj,ki,t can be either zero or one. However, the demand yj,ki,t is

overestimated when xj,ki,t = 1. Our MILP algorithm tends to choose zero for xj,ki,t because of

the smaller demand, and the details are shown in Lemma 1. Figure 7 shows an example

of the staircase function between frame deadline and demand. Note that the inequality in

Line 6 is always correct when xj,ki,t is one and t ≥ tb, and when xj,ki,t is zero and t < tb.

In Line 7, the demand yji,t of task τi starts from j’th frame. In Line 8, the demand

yi,t is the maximum demand for τi over all possible starting frames. At last, the demand

of all tasks
n−1∑
i=0

yi,t has to be less than the supply bound function for all t as showed in

Equation 4.1; otherwise, the system is not schedulable. In Line 9, L is set to indicate how

schedulable or not schedulable the system is. If the system is schedulable, then L ≤ 1.

In the setting of our MILP algorithm, the variables Dk
i , P

k
i , tb, y

j,k
i,t , y

j
i,t, yi,t, and L are

free variables. The number of all variables is pseudo-polynomial bounded. The flag xj,ki,t is
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Parameter Selection and Exact Feasiblity Test

1 minimize: L
2 subject to:

3 Ek
iE
k
iE
k
i ≤Dk

iD
k
iD
k
i ≤ Dk

i ≤D
k
iD
k
iD
k
i , ∀i, k.

Ek
iE
k
iE
k
i ≤ P k

iP
k
iP
k
i ≤ P k

i ≤ P
k
iP
k
iP
k
i , ∀i, k.

4 Dk
i ≤ P k

i +D
(k+1) mod Ni

i , ∀i, k.

5
Ni−1∑
k=0

P k
i ≤ PiPiPi, DNi−1

i +

Ni−2∑
j=0

P j
i ≤ DiDiDi, ∀i.

6
yj,ki,t = xj,ki,t ·Ek

iE
k
iE
k
i + b tttPiPiPi

c ·Ek
iE
k
iE
k
i , ∀i, j, k, t.

ttt−tb
PiPiPi
≤ xj,ki,t − realminrealminrealmin

PiPiPi
, ∀i, j, k, t.

tb = Dj,k
i + b tttPiPiPi

c · PiPiPi

7 yji,t =

Ni−1∑
k=0

yj,ki,t , ∀i, j, t.

8 yi,t ≥ yji,t, ∀i, j.

9
n−1∑
i=0

yi,t ≤ L · ttt ∀t.

10 and: Dk
i , P

k
i , y

j,k
i,t , y

j
i,t, yi,t,L ∈ R∗, xj,ki,t ∈ {0, 1} .

Figure 8: This figure shows our MILP algorithm. In the concave programming and LP-based
algorithms (shown in Chapters 6.3 and 6.4), we only change the frame demand in Line 6
and remove all integer variables xj,ki,t .
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Ek
i

Dk
i , P

k
i tb xj,ki,t yj,ki,t yji,t yi,t

3,4,7
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L
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P k
i , P

k
i

Dk
i , D

k
i

Di Pi t

Constants

Variables

3,4 6 6-9 7-9,12

Figure 9: Relations of the parameters in the MILP algorithm.

restricted to be an integer variable that is either zero or one. The relationship among the

variables is summarized in Figure 9. The boxes with solid lines contain free variables and the

boxes with dotted lines contain constants. The arrows show the dependable relationships

and the integers on the arrows indicate the number of lines in the MILP algorithm. For

example, Lines 5 to 6 show that the constant Pi has an effect on the variables P k
i , tb, x

j,k
i,t

and yj,ki,t . All variables are connected and restrained in the MILP algorithm. Eventually,

minimizing L also minimizes the total demand
n−1∑
i=0

yi,t.

Next, we first prove that yj,ki,t is an exact demand of k′th frame during the interval length

t started from j′th frame in Lemma 1. Using Lemma 1, we can show in Theorem 1 that our

task demand yi,t within the t-length interval is identical as the one in the GMF model [8].

Last, we prove that our MILP algorithm is a sufficient and necessary schedulability test

for integer parameters (frame deadlines and periods) in Theorem 2, by showing that the

demand only changes at integer-interval lengths in Lemma 2.

Lemma 1. The value of yj,ki,t in the MILP is the exact worst-case demand of frames φki over an

interval of length t when the first frame of τi to arrive in the interval is φji (with respect to the

deadline and periods assigned to each frame of τi by the MILP).
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Proof. We first prove that yj,ki,t is an upper bound of the demand, then prove yj,ki,t is the exact

demand. Worst-case means that the interval length t starts at the release time of j’th frame

and all succeeding frames release as soon as possible.

For an interval of length t, the demand b tPi c ∗E
k
i contributes to yj,ki,t in the first b tPi c cycle

periods. The remaining question is that whether the k’th frame in the b tPi c + 1’th cycle

will contribute to the interval length t− b tPi c ∗ Pi. This is exactly what Line 6 in our MILP

tells. The flag xj,ki,t tells whether the k’th frame in the b tPi c+ 1’th cycle will contribute to the

interval length t− b tPi c ∗ Pi. The flag xj,ki,t has the value which is either zero (not contribute)

or one (contribute).

The inequality in Line 6 decides the value of xj,ki,t . Line 6 shows that tb is the interval

length that compares with the time interval length t. The time b tPi c ∗ P
i tracks b tPi c cycles.

Since the starting frame of t is φji , the starting stage is still φji after b t
Pi
c cycles. Starting

from φji , the length
(k−j−1) mod Ni∑

p=0

P
(j+p) mod Ni
i +Dk

i is compared with t− b tPi c ∗ Pi to check

whether φki in the b tPi c + 1’th cycle contributes. In other words, the inequality t ≥ tb

means that φki in the b tPi c+ 1’th cycle will contribute to yj,ki,t ; Otherwise, the frame does not

contribute when t < tb. Note that we only need to consider the b tPi c+ 1’th cycle because

b tPi c ∗Pi ≤ t < (b tPi c+ 1) ∗Pi. When t ≥ tb, x
j,k
i,t is forced to be one showed in Line 6. When

t < tb, x
j,k
i,t can be either zero or one. Thus, yj,ki,t is an upper bound of the demand when xj,ki,t

is one.

We have proved that yj,ki,t is an upper bound of the demand when xj,ki,t is one. Now we

prove that yj,ki,t is an exact demand. When t ≥ tb, x
j,k
i,t is forced to be one and yj,ki,t is an exact

demand. When t < tb, the system always let xj,ki,t be zero instead of one. The reason is that

we minimize L in the objective function. In Line 9, minimizing L minimizes yi,t. Minimizing
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yi,t also minimizes yji,t and yj,ki,t . In all, yj,ki,t is the exact worst-case demand for φki over the

interval length t started from φji .

Theorem 1. The value of yi,t in the MILP over any interval of length t is exactly the value of

dbfi(t, ~Fi) for the GMF model when the parameters of τi are assigned the values of the deadline

and period variables of the MILP.

Proof. In Lemma 1, we have proved that yj,ki,t in the MILP is the exact worst-case demand

of frames φki over an interval of length t when the first frame of τi to arrive in the interval

is the j’th frame. yji,t is thus the exact demand of task τi,p over length t starting from the

j’th frame, and yi,t is the exact worst-case demand of τi over length t. We prove this by

contradiction. Assume there exists a demand y′i,t which is larger than yi,t, and the worst-case

sequence of y′i,t (yi,t) starts from the frame φj
′
i (φji). If j′ = j, y′i,t = yi,t which incurs a

contradiction with y′i,t > yi,t. If j′ 6= j, yj
′
i,t > yji,t also incurs a contradiction since φji is the

starting frame of the worst-case sequence (See Line 8 in MILP). By Lemma 1, we know that

yji,t is the exact worst-case demand starting from frame φji , and yi,t is the exact worst-case

demand of τi in the t-length interval. Thus, this theorem is proved.

Note that our MILP in general is not a sufficient feasibility test when this integer

constraint is removed since it does not check all real values in the range [0, H].
n−1∑
i=0

yi,t ≤ ttt

is a sufficient feasibility test when Dk
i , P

k
i , t ∈ N shown in Theorem 2. The algorithm is

exact when frame deadlines and periods are integers, since it is shown in Lemma 2 that the

demand changes value in this case only at integer times; thus, the MILP exactly checks all

the relevant time intervals.

Lemma 2. The demand of a task or a task system only increases at integer times when the
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interval length t increases, under Dk
i , P

k
i ∈ N ∀ i, k.

Proof. In the worst case of synchronous arrival pattern, all tasks release at the same time at

the beginning of a t-length interval. Since frame periods P k
i are integers, all frames release

at integer times. Since frame deadlines Dk
i are also integers, the demand of a frame (a task)

only changes at integer times according to the definition of the demand bound function.

More specifically, at any integer-length (e.g., t′) interval, dbfi(t′, ~Fi) = dbfi(t′ + ∆, ~Fi) where

0 ≤ ∆ < 1. The demand of a task system thus only changes at integer times. In total, this

lemma is proved.

Theorem 2. For arbitrary, real-valued parameters, our MILP is a necessary feasibility test.

When the period and deadline parameters must be integers (i.e., Dk
i , P

k
i ∈ N ∀ i, k), then the

MILP is an exact feasibility test.

Proof. The necessity is straightforward to prove. That is, we need to show that our MILP is

feasible if a task system is feasible. If the task system is feasible, the worst-case demand

of the system at any interval length t should not be larger than t. In Theorem 1, we have

proved that yi,t is the exact worst case demand of task τi in the t-length interval. The

demand
n−1∑
i=0

yi,t ≤ L ∗ t and L ≤ 1 in our MILP, and our MILP is thus feasible. The necessity

is proved.

For integer-constrained values of frame periods and deadlines, we prove the suffi-

ciency. That is, we prove that the task system is feasible if our MILP is feasible (L ≤ 1).

We prove by contradiction, i.e., our MILP is feasible, but the task system is not feasi-

ble. Suppose our MILP is feasible and L ≤ 1, we have a parameter assignment A =

(A0
0, A

1
0, ..., A

Ni−1
0 , A0

1, A
1
1, ..., A

Ni−1
1 , ..., A0

n−1, ..., A
Ni−1
n−1 ), where Ni is the maximum number
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of frames for each task and n is the number of tasks. A pair Aji = (Dj
i , P

j
i ) indicates an

assignment of frame deadline and period for φji . Such an assignment is feasible for our

MILP but not feasible for the task system. Under this assignment, there exists an interval

length t that is not larger than the demand of the system. Since we check all integer values

of t, there exists two situations which make the system infeasible. The two situations are

that the violation happens on integer length t or non-integer length t. For integer length t,

we directly obtain a contradiction since our MILP calculates demand
n−1∑
i=0

yi,t for all integer

lengths t, which by Theorem 1 corresponds to the demand within the t-length interval for a

feasible system. For non-integer length t, we have shown in Lemma 2 that demand does not

change at non-integer times when Dk
i and P k

i are integers; thus, the MILP exactly calculates

demand
n−1∑
i=0

yi,t for all the relevant time intervals. Similarly to the case of integer lengths t,

we obtain a contradiction. In total, this theorem is proved.

4.4 The Approximation Algorithm Based on the MILP

In the previous chapter, we have built our MILP which can select the frame deadlines

and periods of GMF-PA tasks under EDF scheduling. The method also indicates a neces-

sary feasibility test at the same time. However, solving an MILP is NP-hard in general.

Furthermore, the feasibility of our MILP is coNP-hard that trivially transformed from the

feasibility test of sporadic tasks [33]. In this chapter, we modify the MILP to obtain an

approximation based on reducing the number of time interval lengths being tested5. We

also show that the speed-up factor of our approximation algorithm is 1 + ε with respect to

5The approximation is still an MILP (and thus still potentially intractably), but a reduction in constraints
leads to a significant improvement in time efficiency as shown in the evaluation chapter.
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the exact schedulability test of GMF-PA tasks under EDF scheduling. We have introduced

an approximation algorithm under the GMF-PA model and such similar technique can be

traced back to admission control for the arbitrary demand curves [30].

The number of t-length intervals being tested in the MILP is H (defined in Chapter 4.3),

and the number of time intervals being tested in the approximation algorithm is Ha. The set

of test interval lengths in the MILP is T = {1, 2, 3, ..., H} and the set in the approximation of

the MILP algorithm is Ta. The supply bound function used in MILP is shown in Equation 4.2.

sbf(t) = t. (4.2)

Since the number of variables and equations in MILP depend on H, the size of the algorithm

grows quickly when H grows. We propose an approximation method based on reducing

the number of time intervals. We start from the initial time interval length t0. The

increasing rate is ε > 0. We choose the time interval lengths by the increasing rate; thus,

Ta = {t0, t0 ∗ (1 + ε), t0 ∗ (1 + ε)2, ..., t0 ∗ (1 + ε)Ha−2, H}. Note that the Ha − 2’th element

is not larger than H, and we add H at the end as the Ha − 1’th element. Note that the

increasing rate between the last two elements is not larger than ε. For example, the set Ta

is [1, 1.5, 2.25, 3.375, ..., 17.0859375, 20] for H = 20, t0 = 1 and ε = 0.5. The supply sbfa(t) in

the approximation algorithm is showed in Equation 4.3.

sbfa(t) =



0, 0 ≤ t ≤ t0

t0 ∗ (1 + ε)k, t0 ∗ (1 + ε)k < t ≤ t0 ∗ (1 + ε)k+1

H, t = H

(4.3)
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Figure 10: In this Figure, line y=t is the supply bound function sbf(t) of MILP. The stair
case function drawn in dotted line is the supply bound function sbfa(t) of an approximation
algorithm. The staircase function drawn in dashed line is an example of a demand dbf(t) =∑

τi∈T dbfi(t, ~Fi). The square points on sbfa(t) are the only required test intervals that is
proved in Theorem 9. In this example, the total demand

∑
τi∈T dbfi(t, ~Fi) ≤ sbf(t) at all

time interval length t except for the demand
∑

τi∈T dbfi(t, ~Fi) > sbfa(t) that is shown at the
red circle.

.

In our sbfa(t), the starting time interval length is t0 = minτi∈T E
min
i and the range of

integer k is [1, Ha−2] in our approximation algorithm. Figure 10 shows an example of the

relationship among
∑

τi∈T dbfi(t, ~Fi), sbf(t) and sbfa(t). It is straightforward to show that

the number of elements in Ta is O(log1+εH).

Next, we modify the general schedulability condition of Equation 4.1 with respect to the

reduced set of testing points Ta.

Theorem 3. Consider any task system composed of tasks T (e.g., GMF tasks) where the

dbfi(t, ~Fi) is computable (e.g., see Baruah [8]) for any τi ∈ T . Then, by checking the following

modified condition: ∑
τi∈T

dbfi(t, ~Fi) ≤ sbfa(t), ∀t ∈ Ta, (4.4)

where t0 of sbfa(t0) must not be larger than the mini,j{Dj
i }.
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We have the following guarantee:

1. If
∑

τi∈T dbfi(t, ~Fi) ≤ sbfa(t), ∀t ∈ Ta, the system is EDF-schedulable on a unit-speed

processor.

2. If ∃t ∈ Ta,
∑

τi∈T dbfi(t, ~Fi) > sbfa(t), the system is EDF-infeasible on a 1
1+ε

-speed

processor.

Proof. We first show the sufficiency on unit-speed processors for Equation 4.4 by contradic-

tion.

Assume the task system satisfies Equation 4.4 but is infeasible. This means that there

exists a time interval length t′ when Equation 4.1 is violated (i.e.,
∑

τi∈T dbfi(t′, ~Fi) > sbf(t′)),

since it is a necessary and sufficient condition. Assume that t′ ∈
(
t0 ∗ (1 + ε)k, t0 ∗ (1 + ε)k+1

)
for some k ∈ N. Note that sbfa(t′) equals sbf(t0 ∗ (1 + ε)k+1) which is t0 ∗ (1 + ε)k. However,

note that it is known that the demand function is monotonically non-decreasing [8]. Thus, if∑
τi∈T dbfi(t′, ~Fi) > sbf(t′) > sbfa(t′), then

∑
τi∈T dbfi(t0 ∗ (1+ ε)k+1, ~Fi) > sbfa(t0 ∗ (1+ ε)k+1)

which is a contradiction of Equation 4.4.

We now proof the infeasibility on a slower processor when Equation 4.4 is not satisfied.

In order to prove the “speed-up factor”, assume
∑

τi∈T dbfi(t∗, ~Fi) > sbfa(t∗) at time t∗. It

must be that t∗ > t0 since for all values of t ≤ t0 the dbfi(t, ~Fi) is zero by supposition that t0

exceeds the minimum frame relative deadline. Furthermore, it is easy to observe that for

all t ≥ t0, the sbf(t) is at most (1 + ε) times larger than sbfa(t). From this, we have:
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max
t>0

∑
τi∈T dbfi(t, ~Fi)

sbf(t)
≥
∑

τi∈T dbfi(t∗, ~Fi)
sbf(t∗)

≥

∑
τi∈T dbfi(t∗, ~Fi)

(1+ε)

sbf(t∗)
(1+ε)

≥
∑

τi∈T dbfi(t∗, ~Fi)
sbfa(t∗) ∗ (1 + ε)

(By Equation 4.3)

≥ 1

1 + ε
(By assumption).

Thus, we have proved that the speed-up factor is 1 + ε.

We can now apply Theorem 3 to modify the MILP to create a sufficient approximate

feasibility test for the GMF-PA task model with arbitrary, real-valued parameters. To do

so, we simply limit the range of t to now be Ta for all constraints that depend upon t,

and modify Line 9 of MILP to be
n−1∑
i=0

yi,t ≤ L ∗
ttt

1 + ε
. Clearly, this reduces the number

of constraints by a logarithmic factor (dependent upon our choice of ε). We refer to this

approximate assignment algorithm as MILP-ε.

In all, the approximate MILP is a sufficient feasibility test. The number of the time

interval lengths being tested is reduced from O(H) to O(log1+εH). Since the number

of variables and number of equations depend on the number of intervals, the running

time is greatly reduced. We have done exhaustive experiments in Chapter 4.6. Our MILP

algorithm and approximation algorithm also work for the multi-segment self-suspending

tasks represented by our GMF-PA model. The transformation is presented in the next

chapter.
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4.5 Fixed-Relative-Deadline Assignment for Multi-Segment Self-Suspension

Tasks

Before applying the GMF-PA model to multiple-segment self-suspending tasks, we first

state the limitation of the deadline assignment in the previous papers [23] [39]. Equal-

deadline assignment (EDA) assigns each computational frame of τi the same deadline

Dj
i =

Pi−
∑mi−2
j=0 Sji
mi

. Such assignment is restrictive because the system is already infeasible if

Cj
i > Dj

i . The situation may happen in several applications. For example, in computation

offloading of a robot car [57], the cost of the first computational frame (image capture)

and the suspending frame occupy most of the time in one period, and the cost of the second

computation frame (path planning) is relatively small.

In order to generate a fair comparison with the recent results [23,39], our MILP will

be transferred to schedule the self-suspending tasks under implicit-deadline system. We

set Dk
i = P k

i (Line 4 in MILP will be automatically satisfied) and Di = Pi. The variables

Dk
i , P

k
i ,Di, and Pi are reduced to Dk

i and Pi for all i and k. In this case, the end-to-end

deadline of τi is Pi. Because the previous work [23, 39] have no frame constraints, we

set Dk
i = Ek

i and D
k

i = Pi for any computational frame φki . Note that Dj
i = Sji in any

suspending frame φji due to the setting introduced in Chapter 3.2.1. The constraints from

Lines 3 to 5 thus become:

1. Ek
iE
k
iE
k
i ≤ Dk

i , ∀i, k.

2.
Ni−1∑
k=0

Dk
i ≤ PiPiPi, ∀i.

Since the evaluations [23] contain the situation when Ucap = 1, the range of the interval
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length t becomes dmin
(

Ucap
1−Ucap ·maxτi∈τ (Pi − Emin

i ), hyperperiod
)
e. The task system hyper-

period hyperperiod = lcm{P0,P1, ...,Pn−1} is the least common multiple of the n tasks’

cycle periods. The other lines in our MILP and approximation algorithms remain the same.

4.6 Evaluation

We have implemented our MILP-based algorithm and its approximation algorithm

MILP-ε using the commercial solver GUROBI [1] in MATLAB. GUROBI is a state-of-the-

art mathematical programming solver that has great performance in solving linear and

mixed-integer programming problems.

As far as we know, there is no previous work to directly compare with the flexible

generalized multiframe model, and we compare our work with the application to self-

suspending tasks [23, 39] on uniprocessor systems. We restrict our model to compare

with one-segment self-suspending tasks using EDA under EDF scheduling [23]. We also

compare our work with multiple-segment self-suspending tasks [39] using EDA under EDF

scheduling. Since EDF scheduling is optimal under uniprocessor systems, we compare EDA

and our algorithms for multiple-segment self-suspending tasks under EDF. MILP-0.0 is our

necessary feasibility test and MILP-ε (ε > 0) is our approximation algorithm. The algorithms

used in the previous paper [23, 39] are EDA and EDA-linear [23]. The algorithm EDA

assigns each task the identical deadline for each computational frame and EDA-linear is

EDA’s approximation algorithm.

For one-segment self-suspending tasks, we follow the similar setting of the previous

paper [23]. Tasks are randomly generated. There are three ranges for task utilizations

and the length of self-suspensions. The ranges for task utilization Ui are [0.01, 0.1] (l,
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(a) mm-ratio,Pi ∈ [1, 10]

(b) mm-time,Pi ∈ [1, 10]

short for “light”), [0.1, 0.3] (m short for “medium”), and [0.3, 0.6] (h, short for “heavy”).

The ranges for the length of suspensions are [0.01 ∗ (1 − Ui) ∗ Ti, 0.1 ∗ (1 − Ui) ∗ Ti] (s,

short for “short”), [0.1 ∗ (1 − Ui) ∗ Ti, 0.3 ∗ (1 − Ui) ∗ Ti] (m, short for “medium”), and

[0.3 ∗ (1− Ui) ∗ Ti, 0.6 ∗ (1− Ui) ∗ Ti] (l, short for “long”). Tasks are randomly generated

until the total utilization is equal to Ucap. The utilization of the last task is reduced if the

total utilization is larger than the cap.
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We show the results for medium utilization and medium suspension length in two

different settings. The results of the other combinations follow a similar pattern. For the

reason that the least common multiple of periods could be very large, e.g., 2.3 ∗ 108 for the

period range [1, 20]. We first generate Figure 11(a) and 11(b) in which the tasks have small

cycle periods that randomly chosen in [1,10]. Such task systems are randomly generated 50

times under each utilization cap and the running time in the figure is the average running

time. The schedulability ratio is the number of feasible systems over the total systems

generated. MILP and MILP-0.1 have higher schedulability ratio than EDA and EDA-linear,

but have longer running times as shown in Figure 11(b). MILP-0.1 can schedule at most

16 (44) % more than EDA (EDA-linear) when Ucap = 1 (0.9). MILP (MILP-0.1) uses at

most around 184(70) seconds more than EDA and EDA-linear when Ucap = 1. In order

to generate a set of tasks with larger hyperperiods, we have the experiments shown in

Figure 11(c) and 11(d). The cycle period of each task is randomly chosen in [1,50] and

has lower and upper bounds. Such task system is randomly generated 20 times at each

utilization cap. In the figure, MILP-0.1 behaves better on both schedulability ratio and

running time.

For multiple-segment self-suspending tasks, we follow the similar setting of the previous

paper [39]. Due to high execution times for both EDA and MILP, we apply the same

approximation of Theorem 3 to EDA and compare with our MILP-ε. The cycle periods Pi

are randomly generated from [10, 1000]. Under each Ucap, ten tasks are randomly generated.

The UUniFast algorithm [12] is used to divide the utilizations Ui of the ten tasks under Ucap.

The total execution time Ci = Pi ∗Ui, and the total suspension delay is generated under the

three ranges which are the same as the ones in one-segment self-suspending tasks [23]. The



57

(c) mm-ratio,Pi ∈ [1, 50]

(d) mm-time,Pi ∈ [1, 50]

Figure 11: The utilization of tasks is in medium (m) range and the suspending lengths are
in medium (m) range. In Figures 11(a) and 11(b), task periods Pi are in the range [1, 10].
In Figures 11(c) and 11(d), task periods Pi are in the range [1, 50]. In Figures 11(c) and
11(d), let the maxTaskNum(Ucap, luti) = dUcap

luti
e be the maximum number of tasks under

the utilization cap Ucap and the minimum utilization luti in a utilization range (For example,
Ucap = 0.3 and luti = 0.1 under the medium utilization and maxTaskNum(0.3, 0.1) = 3).
We let the upper bound of the hyperperiod be hpu = min(2 ∗ 106, 50maxTaskNum(Ucap,luti)) and
the lower bound of the hyperperiod be hpl = 0.5 ∗ hpu.
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UUniFast algorithm is also used to divide total execution times and suspension lengths to

the ones for multiple frames. Figure 11 shows that our MILP-ε is better than EDA-ε for both

two and five suspending frames. Note that the utilization, execution time and suspending

length are uniformly distributed. The result of EDA in other distributions may be even

worse since the deadlines are equally assigned.

In all, our MILP and MILP-ε algorithms always yield higher schedulability ratio on both

one-segment and multi-segment self-suspending tasks. MILP-ε has the lowest running time

when the hyperperiod is large.



59

(a) 2 s/m/l-ratio

(b) 5 s/m/l-ratio

4.7 Summary

Under the flexible GMF-PA model, we propose a mixed-integer linear programming

(MILP) based algorithm that can select deadlines and periods. Our MILP-based algorithm

is an exact feasibility test when parameters are integers, and a necessary feasibility test

in general. In order to reduce the running time of the MILP algorithm, we propose an

approximation algorithm MILP-ε based on the supply bound function. The number of time

intervals being tested is bounded by a logarithmic function of the task system parameters.

We prove that the MILP-ε is a sufficient feasibility test.

We apply our MILP and MILP-ε to self-suspending tasks. We remove the assumption that
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the deadlines are fixedly equally assigned in the previous work. Exhaustive experiments

for both one-segment and multiple-segment self-suspending tasks have shown that our

algorithms have improved the schedulability ratio and running time compared to the

previous results.
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(c) 2 s/m/l-time

(d) 5 s/m/l-time

Figure 11: Figures 12(a) and 12(b) compare the schedulability ratio for the tasks that
have two-suspending and five-suspending frames, respectively. Three ranges of the self-
suspending length are considered. For instance, MILP-1.0-s shows the ratio from the
approximation algorithm MILP-1.0 on scheduling short self-suspending tasks. Since there
are ten tasks in a system under each Ucap, the average execution times of a system under
different Ucap are around the same. Figures 12(c) and 12(d) show the corresponding
average execution time. The average execution time for the task system with two and five
suspending frames is around 60 and 240 seconds, respectively.
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CHAPTER 5 A CASE STUDY OF A ROBOT CAR TRACKING SYSTEM IN
UNIPROCESSORS

In this chapter, we give a case study of a robot car tracking system [57]. This case

study is based on the settings/parameters of a real robot and a server6 [57] and we run our

MILP-based algorithms on such systems. We use this case study for two reasons:

1. We first relax an assumption made in previous work [57, 75, 79]. The papers

assumed the stages of the image analysis are independent. The stages should be

dependent [70] (details are shown in Chapter 5.2), and we then map the image

analysis procedures to GMF-PA tasks.

2. We map the image analysis of the tracking robot to GMF-PA tasks and compare our

parameter-assignment algorithm MILP-ε algorithm with EDA. Using the data generated

by [57], MILP-ε can schedule more systems than EDA (shown in Chapter 5.3).

We state the components of a tracking robot car in Chapter 5.1. Based on current

components, we state the assumption made in previous papers and first propose its solution

for scheduling dependent components in Chapter 5.2. We give the parameter setting of our

case study and experiment results in Chapters 5.3 and 5.4.

5.1 Components of a tracking robot

In this subchapter, we introduce the basic components of a tracking robot car [57].

A typical tracking robot consists of image capture, image analysis, and path planning

procedures. Image capture and path planning procedures which execute in robot cars

6We reuse the data generated by [57]. The systems they used are a robot car and a Linux server. The car
is a pioneer 3DX robot with an Intel core2-duo 2 GHz processor and two cameras. The resolution of both
cameras is 640× 480. The server is an Intel Xeon Linux server with eight quad-core 2.33 GHz processors and
8 GB RAM.
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usually take small execution time relative to the image analysis procedure. We focus on

the image analysis procedure since it takes relatively longer execution time and sometimes

offloads a portion of execution to a remote server. When a portion of execution is offloaded

to a server, the time for transmitting the execution to the server and later back to the car,

and the time for executing on a server can be considered as self-suspension lengths on a car.

Image analysis consists of three modules that are motion detection, stereovision, and

object recognition. Motion detection is a module that detects the motion of a target object.

The paper [57] used background subtraction to detect the differences of two adjacent

pictures taken by cameras. The module binocular stereovision is to detect the distance

between the target object and the robot car, by a left and a right cameras on the robot

car. The binocular stereovision [57] used the disparity map to compute the distance of

the object. Basically, the distance is calculated by the shifted amount of pixels (disparity)

between two adjacent images and current known distance. Object recognition consists

of feature extraction and the search through the feature database. The running time of

feature extraction depends on the number of features which are effected by the background

complexity of the image. The running time of the search depends on the number of features

and the size of target object database.

5.2 Assumption in current research

In a tracking robot car, [57] assumed that the modules of image analysis are independent,

because the data exchanges between modules are small and there is only one moving object

which is tracked by the robot car. Based on this case study, multiple works, e.g., server

resource reservation and computation offloading by using timing unreliable components [75,
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79] make the same assumption that modules are independent in their case studies. The

modules should be dependent [70] in a real more complex situation especially when there

are multiple moving objects. As far as we know, we are the first to relax this assumption in

real-time systems and the modules should not be independent. The execution sequence

is object recognition, motion detection and stereovision. Note that this sequence is also a

valid sequence7 in the previous work [57]. That is, we should first detect the target object

from images taken by cameras, and detect its motion and the distance to the robot car. In

all, we model an image analysis procedure as a GMF-PA task. Each GMF-PA task represents

a target object and this model can be extended to multiple-object recognition and tracking.

In this chapter, we relax the assumption that the modules of image analysis are indepen-

dent for the purpose of evaluating our schedulability analysis. Note that we are only using

the data from the original experiment and not implementing the robot car system. Due

to this assumption is applied to different areas and system setup [57,75,79], we do not

compare experiments with them. For example, the goal of the paper [57] is to minimize

the total execution time of modules, but not to analyze the schedulability in hard real-time

systems. The papers consider each module as an independent task and each task can be

considered a one-segment self-suspending task. We instead extend and map the modules

of image analysis to a multiple-segment self-suspending/GMF-PA task, then compare our

algorithm with EDA on scheduling self-suspending tasks.

7In the work [57], the execution of modules are represented by a graph, we choose a reasonable valid
sequence from the graph. The aim is to relax the independence of the modules. This sequence is also
compatible with the sequences in a more general context [70].
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5.3 Parameter calculations and computation offloading decisions

In this subchapter, we present how to calculate parameters (i.e., running time, sus-

pensions, deadline, etc.) of each module in image analysis. With these parameters, we

present the computation offloading decisions and how we map image analysis procedures

to GMF-PA tasks.

Each module of image analysis can execute on a car, a server, or both (partial offloading).

The decision to offload computation to a server (or not) depends on network bandwidth

and execution times on the server and car. If the execution time of a module is smaller on

a car, we do not offload; otherwise, we offload the computation to a server. If we offload

the computation to a server, we consider the total time (transmission, and execution on

a server) as self-suspension lengths on a car. In this case, we simplify the execution on

two-processor systems to uniprocessor systems. Our GMF-PA model and the MILP-based

algorithm thus can be applied to such applications. This offloading decision is based on the

previous work [57], and we reuse the data [57] to investigate a more extensive test.

The running times of motion detection (Emd,r)8 and stereovision (Esv,r) tested on a

robot are 0.06 seconds and 0.2 seconds, respectively. The running times of motion detection

(Smd,s) and stereovision (Ssv,s) on a server and transmission (suspensions on a car) are

calculated by Equation 5.1.

Smd,s =
Emd,r

η
+
dI
β

Ssv,s =
Esv,r

η
+ 2 ∗ dI

β

(5.1)

8In the GMF-PA model, Ej
i is the j’th frame execution time of task τi. In this subchapter, we omit subscript

for simplicity.
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The processing speed ratio η between a server and a robot can be up to a factor of 20.

I.e., the sever processor has higher processor speed and 20 times than the robot processor

speed. Each file size dI is 10 kB, and wireless bandwidth β is up to 140 kbps (according

to the setup of [57]). Emd,r

η
is the running time of motion detection on the server. dI

β
is

the transmission time for one image. The summation of the two is the considered as the

suspension length Smd,s on the robot car. The suspension of the module stereovision is

similar. In the module stereovision, the robot sends two images captured by the left and

right cameras on the robot, and the two images are used to accurately compute the distance

of the object so that the transmission time is 2 ∗ dI
β

. In our case study, we vary server

processing speed ratio η and bandwidth β.

The computation9 of object recognition cor is given by Equation 5.2.

cor = cf + cs

cf = kf ∗ nf

cs = ks ∗ nf ∗ γ

nf = −16089α4 + 30411α3 − 14268α2 + 3692α + 1135

(5.2)

Object recognition consists of feature extraction and the search through a feature database.

The computations of extraction cf and search cs depend on their algorithm-specific con-

stants kf and ks, respectively. The number nf of features varies on images and background

complexity α. Complexity α ranges between 0 and 1. By regression, the equation between

nf and α obtains a recognition accuracy of at least 90%. For example, when background

9The paper [57] refer to computations as cycles. For example, cf is the total number of cycles needed to
extract the features of a picture.
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complexity α = 0.5, nf = 2210 features ensure accuracy at least 90%. γ is the size of the

object database. The running time and suspension of object recognition are calculated in

Equation 5.3 below:

Eor,r =
cor
fr

Sor,s =
Eor,r

η
+
dI
β

Eor,p =
cf
fr

Sor,s =
cs
frη

+
df
β

(5.3)

fr is the processor speed of the car and df is the file size of features. The partial

offloading consists of the feature extraction time Eor,p =
cf
fr

on the robot and search time

Sor,s = cs
frη

on the server. We vary α, β, and γ to evaluate this case study. For example,

Eor,r =
kf∗nf
fr

= 1.7 when nf = 2210 in the base case, we vary α to calculate nf and Eor,r in

our evaluation.

For each module in the image analysis, the decision to offload to a server (or not)

depends on Equation 5.4 below. This equation is affected by the network bandwidth and

execution times on the server and car. If the execution time of a module is smaller in a

car than the server, we do not offload; otherwise, we offload the computation to a server.

For example, if Emd,r > Smd,s for a motion detection module, we offload the execution to

the server. The running time of this module is 0, and the self-suspension length is Smd,s.

Similarly, for Eor and Sor, we calculate min{Eor,r, Sor,s, Eor,p +Sor,p} to make the offloading

decision. For example, if Eor,p + Sor,p is the smallest of the three values, we partially offload
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and set Eor = Eor,p, Sor = Sor,p.

Emd =


0, if Emd,r > Smd,s

Emd,r, otherwise

Smd =


Smd,s, if Emd,r > Smd,s

0, otherwise

(5.4)

Esv =


0, if Esv,r > Ssv,s

Esv,r, otherwise

Ssv =


Ssv,s, if Esv,r > Ssv,s

0, otherwise

(5.5)
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Eor =



Eor,r, if Eor,r = min{Eor,r, Sor,s, Eor,p + Sor,p}

Eor,p, else if Eor,p + Sor,p = min{Eor,r, Sor,s, Eor,p + Sor,p}

0, otherwise

Sor =



0, if Eor,r = minEor,r, Sor,s, Eor,p + Sor,p

Sor,p, else if Eor,p + Sor,p = min{Eor,r, Sor,s, Eor,p + Sor,p}

Sor,s, otherwise

(5.6)

Until now, we have stated how to calculate the execution times and self-suspensions

of three modules in image analysis and in what situations to offload computation. If the

execution of a module is offloaded to a server, we consider the execution time on the server

as a self-suspension length or a new frame with zero execution time on the robot car. The

end-to-end/task deadline is calculated by d sin θ
vt

. The distance between the robot and the

object is d, camera’s angle view is θ, and the speed of the target object is vt. We assume an

implicit deadline system in which each task deadline equals task period.

Now, we introduce the mapping of an image analysis procedure to a GMF-PA task. For

simplicity, we first map an image analysis procedure to a multiple-segment self-suspending

task. The mapping from a multiple-segment self-suspending task to a GMF-PA task is

introduced in Chapters 3.2.1 and 4.5. In the image analysis procedure, each module is rep-

resented by a computational frame and a self-suspending frame. Modules of image analysis

are dependent and execute in sequence. Each self-suspending task τ = ((Emd, Smd, Esv, Ssv,

Eor, Sor), D,D). That is, the frame execution sequence of this self-suspending tasks on

the robot car is motion detection, stereovision, and object recognition. The calculation of
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Table 4: Notations.

Symbols Definitions
Emd, Esv, Eor frame execution time
Emd,r, Esv,r, Eor,r, Eor,p robot execution time
Smd, Ssv, Sor frame suspension length
Smd,s, Ssv,s, Sor,s, Sor,p robot suspension length
D task deadline and period (implicit system)
α background complexity
β wireless bandwidth
γ database size
dI file size
η speed ratio between a server and a robot
cf , cs, cor computations of feature extraction, search database,

and object recognition
θ, vt, d camera angle, object speed, and distance to the object
nf number of features

frame executions and suspensions (offloading options) depends on Equation 5.4. Due to

the implicit system, task periods equal task deadlines (D = d sin θ
vt

). This multiple-segment

self-suspending task then can be transferred to a GMF-PA task as shown in Chapters 3.2.1

and 4.5. In all, the notations can be referred in Table 4.

5.4 Experiments

In this subchapter, we compare our algorithm MILP-ε (ε = 0.1) and EDA on scheduling

GMF-PA tasks. In the experiment of this case study, the car keeps track of three objects,

i.e., three GMF-PA tasks. The distances d of the objects and the robot are 2, 3 and 4 meters,

respectively10. The angle view θ is 90◦, and the speeds of the objects are 1.5 m/sec. The

task deadlines are thus 1.3, 2, and 2.6 seconds, respectively.

We divide α, γ, and η into three ranges as shown in Table 5. There are three ranges

(small, medium, and high) divided by the upper bounds of real data [57]. For instance,

10In this case, it is assumed that the three objects have same speed and move parallel, this can be applied in
the scenario of tracking cars in different lanes [70].
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Table 5: Ranges of α, γ, and η.

α γ η
small 0.1 ∼ 0.4 1000 ∼ 2000 1 ∼ 7
medium 0.4 ∼ 0.7 2000 ∼ 3000 7 ∼ 14
high 0.7 ∼ 1.0 3000 ∼ 4000 14 ∼ 20

the processing speed ratio η can be at most 20 in the setting of the server and network

bandwidth β can be at most 140kbps [57]. We vary β from 10 to 140 with a step 10. At each

value of β, we test 50 systems with randomly generated α, γ, and η in their corresponding

ranges. There are multiple range combinations of α, γ, and η. We show two representative

results since the pattern of figures is similar.

We test high range of the background complexity α and the database size γ which

represent a high workload of object recognition, and evaluate all ranges of speed ratio η and

network bandwidth β which represent the capability of resources. For small and medium

workloads (α and γ), the lines in Figure 12 will be shifted left compared to high workload,

which means algorithms can schedule more systems. We test our sufficient schedulability

test MILP-0.1 and EDA11. Figure 12 shows our algorithm MILP-0.1 has high schedualbility

ratio than EDA on medium and high ranges of bandwidth. Since no algorithms can schedule

any system in any bandwidth at the low range of bandwidth, we do not show the figure.

There are two main reasons that our algorithm can schedule more systems. First, MILP-

0.1 jointly consider the deadline assignment with the schedulability test. Second, object

recognition takes more running time than motion detection and stereovision so that the

identical deadlines assigned by EDA cannot reflect the needs of the modules. Some frame

11Note that the EDA algorithm in the previous paper [23] only considers one-segment self-suspending tasks,
we extend EDA using our MILP. In MILP, we add one more constraint to let the frame deadlines of each task
be equal.
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(e) high η

(f) medium η

Figure 12: Under different network bandwidths β, this figure shows the schedulability ratio
under high workload with high speed ratio η in Figure 12(e) and medium η in Figure 12(f).
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execution time is larger than the assigned deadline by EDA. Since there are three GMF-PA

tasks, the running time difference between MILP-0.1 (around 4 seconds) and EDA (around

0.7 seconds) is small.
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CHAPTER 6 PARAMETER ASSIGNMENT BASED ON LINEAR
PROGRAMMING VIA CONCAVE APPROXIMATIONS OF DEMAND

In Chapter 4, we present an MILP-based approximation algorithm. The algorithm runs

efficient but still is MILP-based. In general, an MILP-based algorithm does not scale well. In

order to solve this problem, we give an efficient linear programming (LP) based algorithm

in this chapter. Other than that, the MILP-based approximation algorithm is based on the

supply bound function while the LP-based algorithm presented in this chapter is based on

the demand bound function.

6.1 Introduction

We introduce our GMF-PA model and its application self-suspension tasks that can

be represented using the GMF-PA model but the problem size can be very large, e.g., in

automotive systems. In the keynote [19] of ECRTS 2012, Buttle has shown many scheduling

challenges as the number of ECUs in vehicles increases rapidly each year; there are more

than 100 ECUs nowadays and each task can easily have 50-300 functions. In such complex

systems, there are several self-suspension tasks (each consisting of multiple functions) and

their end-to-end latencies need to be maintained in distributed settings.

We analyze the scheduling of suspension tasks between a robot car and a remote server

in Chapter 5. We also analyze the scheduling of self-suspension tasks in distributed systems

in Chapter 7. The MILP-based techniques can give successful schedules, but not time-

efficient in general. More time-efficient methods are needed as the needs of more complex

functions in distributed/multi-core environments required in complex systems such as car

systems. Due to this reason, this chapter analyzes an approximation scheme based on linear

programming to improve time efficiency.
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Although the GMF-PA model is more flexible than the GMF model, it has been shown

that both the feasibility and the parameter selection problems are very hard to solve.

On the feasibility side, Ekberg and Yi [33] proved that the feasibility of sporadic task

systems remains coNP-complete under bounded utilization. On the parameter selection

side, the priority assignment of subtasks in end-to-end task systems (originally the classical

job-shop scheduling algorithm) has been shown to be NP-hard [36]. The scheduling of

self-suspending tasks (even for self-suspending tasks with at most two frames) is NP-hard in

the strong sense [66].

In order to address the feasibility test and parameter selection problem, We gave an

exact schedulability test of GMF-PA tasks when frame parameters are integers. The test is

based on mixed-integer linear programming (MILP) under EDF scheduling in uniprocessor

systems. A sufficient, MILP-based schedulability test was also developed. Although this

sufficient approximation algorithm is quite efficient, it is still MILP-based and thus may

require exponential-time to solve in general. The goal and contribution of this chapter are

to give an efficient linear programming-based algorithm that can determine the feasibility

and select the frame parameters of GMF-PA tasks.

The MILP-based algorithm contains a set of integer variables which form a set of staircase

functions/constraints (detailed in Chapter 4). To transform the MILP-based algorithm into

a LP-based algorithm, our idea is to use a set of linear functions to approximate all staircase

functions. As such, the selection of the slope values of the linear functions is directly

related to the schedulability of a system; if the slope values are not properly set, the linear

functions can grossly over-approximate, resulting in low schedulability ratio (the number

of successfully scheduled systems over the total tested).
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In order to get a close approximation, we first use a set of concave functions that

very closely tracks the demand staircase functions to incur only a very small speed-up

factor compared to the MILP algorithm. Since there exist no known efficient methods to

solve concave programming problems, we use the concave functions to guide the slope

assignment of linear functions in our iterative LP-based algorithm. That is, the LP algorithm

runs multiple times during which the algorithm adjusts the slopes of the linear functions

based on the concave functions. According to experiments, after a small number of

iterations, the LP-based algorithm can approach (or reach) the local optimal12. We apply the

LP-based algorithms to schedule self-suspending tasks under EDF scheduling in uniprocessor

systems as a test case.

Our Contributions in this Chapter:

• We give a concave approximation algorithm based on the MILP algorithm and prove

the speed-up factor of the algorithm is (1 + δ)2 with respect to the exact schedulability

test of GMF-PA tasks under EDF scheduling on uniprocessors. The positive constant δ

is a user-defined constant which can be made arbitrarily close to zero.

• Since there is no known tractable way to solve a concave programming problem, we

develop a LP-based heuristic algorithm based on the concave approximation algorithm

for GMF-PA tasks. The LP-based algorithm is an efficient schedulability test and can

select frame parameters at the same time.

• We apply the LP-based algorithm to schedule multiple-suspending tasks. To exploit

the unique property of one-suspending tasks, as opposed to multi-suspending tasks,

12The local optimal of the iterative LP-based algorithm is reached when all variables converge.
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we present an improved heuristic algorithm for GMF-PA tasks.

• We conduct extensive experiments and show that the LP-based algorithms with fixed

numbers of iterations outperform previous work in terms of schedulability and average

running time. The fixed numbers of iterations make the LP-based algorithms pseudo-

polynomial (the input size depends on the maximum interval length [8]), which is

more efficient than the MILP-based approach.

We state the goal of this chapter in Chapter 6.2. The concave approximation algorithm

based on the MILP algorithm is presented in Chapter 6.3. Since concave programming

algorithm does not scale well, two iterative LP-based algorithms are presented in Chapter 6.4.

After applying the LP-based algorithms to self-suspending tasks, Chapter 6.5 provides

extensive experimental results compared to state-of-the-art results. At last, Chapter 6.6

concludes this chapter.

6.2 Problem Statement

Let dbflinear
i (t, ~Fi) be the task demand bound function of a GMF-PA task τi within the

interval length t generated by our approximation LP-based algorithm. Let ~Fi = [D0
i , P

0
i ,

D1
i , P

1
i ,..., DNi−1

i , PNi−1
i ] represent an assignment of values for all the task parameters

(frame deadlines and periods) of task τi. We let sbf(t) = t since we focus on the demand

bound function in this chapter. In a uniprocessor system T , the sufficient condition for

schedulability of a task set T is shown in Equation 6.1.

∑
τi∈T

dbflinear
i (t, ~Fi) ≤ t, ∀t. (6.1)
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Problem Definition. Given the above model, our goal is to find fast and effective assignment

~Fi of frame parameters of all tasks so that the worst-case demand
∑

τi∈T dbflinear
i (t, ~Fi) over all

time intervals of length t closely approximates the exact demand
∑

τi∈T dbfi(t, ~Fi) under the

MILP.

6.3 The Concave Approximation Algorithm

For the ease of references, we also show the MILP algorithm in Chapter 4 in Figure 13.

In this subchapter, we give a concave approximation algorithm for the MILP algorithm

and prove the speed-up factor of the concave approximation algorithm (compared to the

optimal FRD/the MILP algorithm) can approach one. Although there is no known efficient

way to solve a concave programming problem, our concave approximation algorithm plays

a key role in the LP-based algorithms presented in the next subchapter.

6.3.1 The Concave Functions

We first use the concave function (Equation 6.2) (illustrated by the blue dashed curve of

Figure 14) to approximate the exact frame demand determined by the MILP in Line 6 of

Figure 13.

dbfconcave
i (t,Dj,k

i ) = max {0, Ek
i · (1 + δ)− Ek

i · δ · e
µ·(Dj,ki +b tPi c·Pi−t)}+ b tPi

c · Ek
i

(6.2)

The concave programming algorithm is constructed by replacing all staircase functions in

Line 6 of Figure 13 with yj,ki,t = dbfconcave
i (t,Dj,k

i ) and removing all integer variables. The

other lines in Figure 13 remain the same.

Equation 6.2 shows our proposed concave approximation function dbfconcave
i (t,Dj,k

i )

(e.g., the blue dashed curve in Figure 14) for the k’th frame demand of task τi during the
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Parameter Selection and Exact Feasiblity Test

1 minimize: L
2 subject to:

3 Ek
iE
k
iE
k
i ≤Dk

iD
k
iD
k
i ≤ Dk

i ≤D
k
iD
k
iD
k
i , ∀i, k.

Ek
iE
k
iE
k
i ≤ P k

iP
k
iP
k
i ≤ P k

i ≤ P
k
iP
k
iP
k
i , ∀i, k.

4 Dk
i ≤ P k

i +D
(k+1) mod Ni

i , ∀i, k.

5
Ni−1∑
k=0

P k
i ≤ PiPiPi, DNi−1

i +

Ni−2∑
j=0

P j
i ≤ DiDiDi, ∀i.

6
yj,ki,t = xj,ki,t ·Ek

iE
k
iE
k
i + b tttPiPiPi

c ·Ek
iE
k
iE
k
i , ∀i, j, k, t.

ttt−tb
PiPiPi
≤ xj,ki,t − realminrealminrealmin

PiPiPi
, ∀i, j, k, t.

tb = Dj,k
i + b tttPiPiPi

c · PiPiPi

7 yji,t =

Ni−1∑
k=0

yj,ki,t , ∀i, j, t.

8 yi,t ≥ yji,t, ∀i, j.

9
n−1∑
i=0

yi,t ≤ L · ttt ∀t.

10 and: Dk
i , P

k
i , y

j,k
i,t , y

j
i,t, yi,t,L ∈ R∗, xj,ki,t ∈ {0, 1} .

Figure 13: This figure shows the MILP algorithm. In the concave programming and LP-based
algorithms (shown in Chapters 6.3 and 6.4), we only change the frame demand in Line 6
and remove all integer variables xj,ki,t .
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Dj,k
i

Frame Demand

(0, Ek
i ) (t, Ek

i )

(t, 0)

(0, y′)
(0, Ek

i · (1 + δ))

(t′, 0) (t · (1 + δ), 0)

Figure 14: This example shows the frame demand within interval length t < Pi. The blue
dashed curve is a concave function and the staircase function in black solid line represents
the exact frame demand in the MILP. The red dotted staircase line with error rates δ on
both axes represents an upper bound on the concave function.

t-length interval in which the starting frame is the j’th frame. We define the system-wide

maximum error rate13 δ. The rate δ must be larger than zero to ensure the demand of any

approximation function be larger than the staircase function for any given deadline. We set δ

as a designer-defined constant in the system, and set the constant µ = 1
δ
· ln
(
1 + 1

δ

)
as shown

in Lemma 3. In Lemma 3, we prove that the maximum error rate of the concave function is

smaller than the system maximum error rate δ, and the concave function approaches the

staircase function when δ decreases.

Lemma 3. The demand of the concave function in Equation 6.2 over-approximates the one in

the MILP algorithm, and the error rate of the concave function is smaller than the system error

constant δ when we set µ in Equation 6.2 as follows,

µ =
1

δ
· ln
(

1 +
1

δ

)
. (6.3)

13The error rate (with respect to the exact frame demand function) of an approximation function is its
percentage increase in the y-axis direction for t ≤ Dj,k

i or its percentage increase in the x-axis dimension if
t > Dj,k

i . The maximum error rate is the largest error rate over all t > 0. E.g., the error rate on the x-axis of
the point (t · (1 + δ), 0) in Figure 14 is δ. The maximum error rate of any approximation function must be
smaller than the system-wide maximum error rate δ.
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Proof. Let δy and δd be the worst-case error rates on the demand (on y-axis) and deadline

(on x-axis) directions of concave functions, respectively. Let tb = Dj,k
i + b tPi c · Pi − t. The

worst rates happen when, in Figure 14 for example, Ek
i · (1 + δy) = y′ and t · (1 + δd) = t′.

We will prove that δ ≥ δy and δ ≥ δd.

When 0 ≤ tb ≤ t, the largest demand of the concave function happens at tb = 0. By

substituting Ek
i · (1 + δy) (respectively, 0) for yj,ki,t (respectively, tb), the concave function

becomes Ek
i ·(1+δy) = Ek

i ·(1+δ)−Ek
i ·δ·eµ·(0−t). After simplification, we get δy = δ−δ·eµ·(−t).

Thus, δ ≥ δy and δ is an upper bound of δy. Since the concave function is a decreasing

function and it passes the points (0, Ek
i · (1 + δy)) and (t, Ek

i ), the concave function over-

approximates the corresponding demand in MILP when 0 ≤ tb ≤ t.

When tb > t, the maximum error on the deadline direction happens at tb = t · (1+δd). By

substituting 0 (respectively, t · (1 + δd)) for yj,ki,t (respectively, tb), we have 0 = Ek
i · (1 + δ)−

Ek
i · δ · eµ·(t·(1+δd)−t). After simplification, we have δd = 1

t·µ · ln(1 + 1
δ
). We set µ = 1

δ
· ln(1 + 1

δ
),

and δd = δ
t

after replacing µ in δd. Since t ≥ 1, δ ≥ δd.

6.3.2 Speed-Up Factor Analysis

A speedup factor is a value that quantifies the quality of an approximation algorithm

with respect to the optimal scheduling algorithm. A speedup factor S > 1 [9] means that an

approximation algorithm can schedule a task system at a speed-S processor if an optimal

algorithm can schedule the system at a speed-one processor.

Let LMILP be the value of the objective function returned by the MILP algorithm and

Lconcave be the value returned by the concave programming algorithm. We will prove
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that LMILP < Lconcave < LMILP · (1 + δ)2. LMILP < Lconcave indicates that a task system

will be deemed schedulable by the MILP algorithm if the system is schedulable by the

concave programming algorithm (which means LMILP < Lconcave ≤ 1). By the definition

of the speed-up factor, Lconcave < LMILP · (1 + δ)2 indicates that the speed-up factor of our

concave programming algorithm is (1 + δ)2 with respect to the MILP algorithm. In other

words, Lconcave/(1 + δ)2 < LMILP indicates a task system can be scheduled by the concave

programming algorithm under a (1 + δ)2-speed processor if the system can be scheduled by

the MILP algorithm under the corresponding one-speed processor.

We prove LMILP < Lconcave in Lemma 4, and Lconcave < LMILP · (1 + δ)2 from Lemma 5

to Lemma 8. By Lemmas 4 and 8, we prove that the speed-up factor of our concave

programming algorithm is (1 + δ)2 with respect to the MILP algorithm in Theorem 4.

Lemma 4. Let LMILP and Lconcave be the values returned by the MILP and concave program-

ming algorithms (assume they exist), respectively. We have:

LMILP < Lconcave. (6.4)

Proof. Let L′MILP be the value calculated as follows. Assume there exists such a solver that

can solve the concave programming algorithm and return Lconcave, frame deadlines and

separations. We assign the returned frame parameters from the concave programming

algorithm to the formulation of the MILP algorithm and get the value of L′MILP .

Under the same values of frame parameters, any frame demand of concave programming

algorithm is larger than its corresponding demand of the MILP algorithm, as shown in

Lemma 3. The task demands of concave programming algorithm with the preassigned



83

frame parameters are thus also larger than the ones from the MILP approach. When we

summarize task demands over any interval length, L′MILP is thus always less than Lconcave.

Since L′MILP is calculated by preassigned frame parameters, L′MILP must not be smaller

than LMILP . If the frame parameters returned by the MILP and concave programming

algorithms are all identical, L′MILP = LMILP . In all, LMILP ≤ L′MILP < Lconcave and this

lemma is proved.

In order to prove Lconcave < LMILP · (1 + δ)2, we first define L′concave. Let the MILP

algorithm return LMILP , frame deadlines and separations. If we fix the deadline and

separation variables of the concave programming formulation to be the values returned

by the MILP, we calculate the value of L′concave. We will prove Lconcave ≤ L′concave <

LMILP · (1 + δ)2. Lconcave ≤ L′concave is proved in Lemma 5. Based on the demand bound

functions defined in Equations 6.8 and 6.9, we prove L′concave < LMILP · (1+ δ)2 in Lemma 8.

Lemma 5. Let Lconcave be the optimal value returned by the concave programming algorithm,

and L′concave be the value calculated by the concave programming algorithm using the frame

parameters returned by the MILP. We have:

Lconcave ≤ L
′
concave. (6.5)

Proof. Since the concave programming algorithm minimizes Lconcave, Lconcave must be the

smallest value over all feasible-assigned/preassigned frame parameters, and Lconcave <

L′concave. If frame parameters returned by the MILP and concave programming algorithms

are same, Lconcave = L′concave. In all, Lconcave ≤ L′concave.

For ease of proof, we consider a staircase approximation function dbfai (t,D
j,k
i ) illustrated
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by the red dotted line in Figure 14 for task τi over the t-length interval, and the solid line

shows an example of the staircase demand dbfi(t,D
j,k
i ).

Equation 6.6 shows dbfi(t,D
j,k
i ) as the k’th frame-demand function of task τi over the

t-length interval that starts with the j’th frame. The corresponding task demand dbfi(t, ~Fi)

is shown in Equation 6.8, and the reasoning is same as to the relationship between yi,t and

yj,ki,t in the MILP algorithm. I.e., we take the maximum demand over all sequences as the

task demand. The approximate frame-demand dbfai (t,D
j,k
i ) and task-demand dbfai (t, ~Fi) (for

dbfi(t,D
j,k
i ) and dbfi(t, ~Fi), respectively) are defined in Equations 6.7 and 6.9, respectively.

We prove that the approximation demand over-approximates the concave demand in

Lemma 6.

dbfi(t,D
j,k
i ) =



0, 0 ≤ t < Dj,k
i

Ek
i , Dj,k

i ≤ t ≤ Pi

Ek
i · b tPi c+ dbfi(t− Pi · b tPi c, D

j,k
i ), t > Pi

(6.6)

dbfai (t,D
j,k
i ) =



0, 0 ≤ t <
Dj,ki
(1+δ)

(1 + δ) · Ek
i ,

Dj,ki
(1+δ)

≤ t ≤ Pi

Ek
i · b tPi c+ dbfai (t− Pi · b tPi c, D

j,k
i ), t > Pi

(6.7)

dbfi(t, ~Fi) =
Ni−1
max
j=0
{
Ni−1∑
k=0

dbfi(t,D
j,k
i )} (6.8)

dbfai (t, ~Fi) =
Ni−1
max
j=0
{
Ni−1∑
k=0

dbfai (t,D
j,k
i )} (6.9)
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Lemma 6. The demand of task τi over any interval length t in Equation 6.9 is an upper bound

of its corresponding concave approximation demand.

Proof. In Lemma 3, we proved that δd ≤ δ. Let t∆ = t− Pi · b tPi c. From Equation 6.2 and

the definition of δd, the concave demand with any value assigned for Dj,k
i ∈ [0, t∆ · (1 + δd)]

is smaller than Ek
i · (1 + δ), and the demand is zero when Dj,k

i > t∆ · (1 + δd). Since

dbfai (t,D
j,k
i ) = Ek

i · (1 + δ) when Dj,k
i ≤ t∆ · (1 + δ) and δd ≤ δ, the demand function

dbfai (t,D
j,k
i ) over approximates the concave demand. For task-wise demand dbfai (t, ~Fi), we

take the summation of all frame demand dbfai (t,D
j,k
i ) of task τi over all sequences (sequences

differ from the starting j’th frame in the t-length interval), and take the maximum demand

over all sequences as the task demand. The task demand dbfai (t, ~Fi) also over approximates

the corresponding concave demand. In all, we have proved this lemma.

With the demand bound functions shown in Equations 6.8-6.9, we prove L′concave <

LMILP · (1 + δ)2 in Lemmas 7-8.

Lemma 7. For the task τi’s demand dbfi(t, ~Fi) and its approximation demand dbfai (t, ~Fi) in

the t-length time interval, we have: dbfi((1 + δ) · t, ~Fi) · (1 + δ) ≥ dbfai (t, ~Fi).

Proof. We first prove dbfi((1+δ)·t,Dj,k
i )·(1+δ) ≥ dbfai (t,D

j,k
i ), and dbfi((1+δ)·t, ~Fi)·(1+δ) ≥

dbfai (t, ~Fi) can be extended by Equations 6.8 and 6.9. We classify all interval lengths t in

three sets:

T1 : 0 ≤ t < Dj,k
i /(1 + δ),

T2 : Dj,k
i /(1 + δ) ≤ t ≤ Pi,

T3 : otherwise.
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When t ∈ T1, dbfi(t,D
j,k
i ) = dbfai (t,D

j,k
i ) = 0. Since demand bound functions are monotoni-

cally increasing functions, dbfi((1 + δ) · t,Dj,k
i ) · (1 + δ) ≥ dbfi(t,D

j,k
i ) = dbfai (t,D

j,k
i ).

When t ∈ T2, we know that dbfi(t∗, D
j,k
i ) = Ek

i at Dj,k
i ≤ t∗ ≤ Pi from Equation 6.6. Let

t∗ = t·(1+δ), we have dbfi(t·(1+δ), Dj,k
i ) = Ek

i at Dj,k
i /(1+δ) ≤ t ≤ Pi. From Equations 6.6

and 6.7, we know that dbfi(t · (1 + δ), Dj,k
i ) · (1 + δ) = dbfai (t,D

j,k
i ) at Dj,k

i /(1 + δ) ≤ t ≤ Pi.

When t ∈ T3, it is trivial to see the fact that dbfi((1 + δ) · t,Dj,k
i ) · (1 + δ) ≥ dbfai (t,D

j,k
i )

since the demand is iteratively calculated from the demand when t ∈ T1 ∪ T2.

Lemma 8. Let LMILP be the optimal value returned by the MILP algorithm, and L′concave be

the value calculated by the frame parameters returned by the MILP. We have:

L′concave < LMILP · (1 + δ)2. (6.10)

Proof. Line 9 of Figure 13 shows that L is the largest value of
∑n−1
i=0 yi,t
t

for all values of t in

the MILP algorithm (can be derived from Lemma 1). We also require this line in the concave

programming algorithm. From Lemma 7, we know that dbfi((1+δ)·t, ~Fi)·(1+δ) ≥ dbfai (t, ~Fi)

for any task τi over any t-length interval. Let t = (1 + δ) · t∗, we have:

LMILP = max
t>0

∑
τi∈T dbfi(t, ~Fi)

t
By Lemma 1

=

∑
τi∈T dbfi((1 + δ) · t∗, ~Fi)

(1 + δ) · t∗

=

∑
τi∈T dbfi((1 + δ) · t∗, ~Fi) · (1 + δ)

(1 + δ)2 · t∗

≥
∑

τi∈T dbfai (t
∗, ~Fi)

(1 + δ)2 · t∗ By Lemma 7

≥ L
′
concave

(1 + δ)2
By Lemma 6

(6.11)
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Theorem 4. When the concave programming algorithm returns integer frame deadlines and

separation times, the speed-up factor of our concave programming algorithm with respect to

the MILP algorithm is (1 + δ)2.

Proof. In Lemmas 4, 5, and 8, we have proved that LMILP < Lconcave < LMILP · (1 + δ)2.

LMILP < Lconcave indicates that a task system is deemed schedulable (with integer frame

parameters) by the MILP if the task system is deemed schedulable (with integer parameters)

by the concave programming algorithm. LMILP < Lconcave shows our concave programming

algorithm is an approximation algorithm for the MILP.

We divide (1 + δ)2 on both sides of the inequality Lconcave < LMILP · (1 + δ)2 to get

Lconcave/(1 + δ)2 < LMILP . Lconcave/(1 + δ)2 represents that we change the speed of the

processor from one to (1 + δ)2. Thus, a task system must be scheduled by the concave

programming algorithm with a (1 + δ)2-speed processor if the task system is scheduled by

the MILP on a single speed processor. From the definition of the speed-up factor, we have

proved that the speed-up factor of our concave programming algorithm with respect to the

MILP is (1 + δ)2.

6.4 The Linear Programming-Based Heuristic Algorithm and its Appli-

cation to One-Suspension Self-Suspending Tasks

Until now, we have constructed the concave programming approximation algorithm

for the MILP-based algorithm. Due to the difficulties in solving concave programming

(or non-convex optimization) problems in general, we use a heuristic LP-based scheme to

efficiently select frame parameters of GMF-PA tasks, and apply it to self-suspending tasks.
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The LP-based Algorithm for GMF-PA tasks

1 Initialize D as Dk
i ← (Ek

i /Ei) · Pi, Llast ←∞, and Lcur ←∞
2 repeat
3 Llast ← Lcur

4 S ← computeSlope(D)
5 [D,Lcur]← Heuristic-LP (D,S)
6 until Llast − Lcur < ε
7 Process frame deadlines D to integers.
8 [Lcur]← Heuristic-LP -fixedDeadline(D,S)
9 if Lcur ≤ 1

10 then return schedulable
11 else return unschedulable

Figure 15: The LP-based algorithm for GMF-PA tasks.

For ease of presentation, we let Dk
i = Ek

i , D
k

i = Pi, and P k
i = Dk

i . In this case, frames

deadlines are constrained by frame execution time and the l-MAD property. We present

the LP-based heuristic algorithm in Chapter 6.4.1, and further to optimize the LP-based

algorithm to schedule one-suspension self-suspending tasks in Chapter 6.4.2.

6.4.1 The Linear Programming-Based Heuristic Algorithm

The general routine of the LP-based scheme for GMF-PA tasks is: 1) We initialize frame

parameters of GMF-PA tasks. 2) Given the frame parameters, we recalculate a set of linear

functions, which approximate the staircase functions for frame demands in the MILP, guided

by the concave programming algorithm. 3) We run the LP algorithm (shown later) based

on the assigned linear functions, and receive frame parameters as outputs. If the difference

in L values between the current and the last iterations is no smaller than some threshold,

the program goes back to Step 2. 4) We round frame parameters to integers and run the LP

algorithm with the fixed integer-valued parameters to get the final assignment.



89

computeSlope(D)

1 Calculate all Dj,k′
i from D

2 t′ ← t− b tPi c · Pi
3 yj,k

′

i,t′ ← Ek
i · (1 + δ)− Ek

i · δ · eµ·(D
j,k′
i −t′)

4 if Dj,k′
i > t′

5 then sj,ki,t ← (0− Ek
i )/( 1

µ
· ln(1 + 1

δ
) + t′ − t′)

6 elseif Dj,k′
i == t′

7 then sj,ki,t ← ∂

∂Dj,ki

[
dbfconcave

i (t′, Dj,k
i )
]

8 else sj,ki,t ← (yj,k
′

i,t′ − Ek
i )/(Dj,k′

i − t′)
9 return S

10 . S is the matrix that stores all slopes sj,ki,t .

Figure 16: This algorithm calculates all slopes given all frame deadlines.

dbflinear
i (t,Dj,k

i ) = max {0, sj,ki,t · (Dj,k
i − t′) + Ek

i }+ b tPi
c · Ek

i , t′ = t− b tPi
c · Pi

(6.12)

In The LP-based Algorithm for GMF-PA Tasks (Figure 15), we initialize frame deadlines by

proportional deadline assignment (PDA [47]) to Dk
i = (Ek

i /Ei) · Pi. Given the deadline

matrix D which stores all Dk
i , we calculate all slopes and store them in matrix S. We

replace Line 6 of Figure 13 with Equation 6.12 to transform the algorithm into a LP

algorithm Heuristic-LP (D,S) (Line 5 of Figure 15). The slope element sj,ki,t of S, which

corresponds to yj,ki,t , is calculated in the algorithm shown in Figure 16 and all lines pass

the point (t′, Ek
i ). The linear functions are illustrated by the red lines in Figures 17-19. If

the deadline Dj,k′
i (generated from the previous iteration) is smaller than t′ = t− b tPi c · Pi,

we calculate the demand yj,k
′

i,t′ of the concave function at Dj,k′
i . The slope of the line is

calculated by two points (Dj,k′
i , yj,k

′

i,t′ ) and (t′, Ek
i ) illustrated in Figure 17. If the deadline

Dj,k′
i equals t′, we calculate the slope by taking the tangent of the concave function at the
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point (t′, Ek
i ) shown in Figure 18. If the deadline is larger than t′, we use two points (t′, Ek

i )

and
(

1
µ
· ln(1 + 1

δ
) + t′, 0

)
, which is the cross point of the x-axis and the concave function,

to calculate the slope, and the line with the slope is shown in Figure 19. The slope matrix S

is adjusted in each iteration of the loop in Figure 15.

Dj,k
i

Demand

(t′, Ek
i )

(t′, 0)Dj,k′
i

Figure 17: The frame dead-
line Dj,k′

i of the last iteration
is smaller than t′ in this case.

Dj,k
i

Demand

(t′, Ek
i )

(Dj,k′
i , 0)

Figure 18: The frame dead-
line Dj,k′

i of the last iteration
equals t′ in this case.

Dj,k
i

Demand

(t′, Ek
i )

(t′, 0) Dj,k′
i

Figure 19: The frame dead-
line Dj,k′

i of the last iteration
is larger than t′ in this case.

The loop in Figure 15 will not stop recursively calling function Heuristic-LP (D,S)

until the difference of the L values in two consecutive iterations is smaller than the

positive threshold ε. Llast and Lcur represent the L values of the last and current iterations,

respectively. The Heuristic-LP -fixedDeadline(D,S) algorithm (Line 8 of Figure 15) uses

the integer deadlines to maintain sufficiency for schedulability, which is proved in Theorem 6.

We first round up frame deadlines to be integers. For each task, we keep reducing the largest

frame deadline by one until the summation of them equals to its task deadline/period. We

assign the deadline variables to the integer values in Line 7 of Figure 15 and the other parts

are the same as in the Heuristic-LP (D,S) algorithm. The system is schedulable if L ≤ 1.

We prove in Theorem 5 that the while loop of the algorithm The LP-based Algorithm

for GMF-PA Tasks function stops after a finite number of iterations. The sufficiency of the

LP-based algorithm for schedulability is proved in Theorem 6.

Theorem 5. The while loop of the function The LP-based Algorithm for GMF-PA Tasks stops
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in a finite number of iterations.

Proof. We first prove that L decreases from one iteration to the next. Before each iteration

of the algorithm Heuristic-LP (D,S), we use the deadline assignment D′ from the last

iteration to calculate the slopes S of frame functions in the current iteration. Let Llast be

the value of L in the last iteration. In the current iteration, let us assume that we use the

same set of the deadlines D′ to calculated the value Lcur.

In the first and third cases shown in Figures 17 and 19, the frame demand is either

smaller (if the last iteration is the first iteration) or equal to the one in the last iteration. In

the second case, the frame demand is the same as the one in the last iteration. From all

cases, we know that the same set of deadlines causes Lcur ≤ Llast. Since we minimize L in

the algorithm, the returned deadlines by the algorithm Heuristic-LP (D,S) must generate

a value of L that is smaller than Lcur. Thus, we have proved that L decreases from one

iteration to the next. We also set a threshold to be the difference of the L values in two

consecutive iterations, and we know that the lower bound of L equals
∑n

i=1 Ui. In either

cases, the loop of the function The LP-based Algorithm for GMF-PA Tasks stops in a finite

number of iterations.

Theorem 6. The LP-based algorithm is a sufficient schedulability test when L ≤ 1.

Proof. This proof is similar to Theorem 2. The sufficiency of any approximation/heuristic

algorithm (w.r.t. the MILP algorithm) for schedulability requires two conditions: 1) the

demand of the algorithm over any t-length interval is larger than the one in the MILP. 2)

frame parameters must take integer values. The first condition ensures that the demand

over approximates on any t, and the second condition ensures that the demand only changes
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at integer values. We require the second condition since all lengths (represented by t) can

only be integers in the MILP algorithm. The LP-based algorithm over approximates system

demand among all t, and the algorithm adjusts frame deadlines to be integers in the last

iteration.

6.4.2 The Application of the LP-Based Algorithm to One-Suspension Self-Suspending

Tasks

The LP-based scheme can be applied to multiple-segment self-suspending tasks directly.

In this chapter, we further optimize the algorithm for one-suspension self-suspending tasks

by reducing the number of free variables and equations. Given that n is the number of tasks

and H is the maximum interval length, the algorithm uses 8 · n ·H + n fewer variables and

15 · n ·H + n fewer number of constraints than the ones in the standard LP-based scheme.

For each task τi, we use variables D1
i and Pi− Si−D1

i (instead of D1
i and D2

i ) to denote

frame deadlines to reduce the number of variables and constraints. Si is the suspension

length of task τi. In this case, the demand bound function only relies on D1
i and t and

~Fi = [D1
i , D

1
i ,Pi − Si −D1

i ,Pi − Si −D1
i ] since we let P k

i = Dk
i . A task demand falls in four

cases which are shown and proved in Theorem 7.
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Theorem 7. The demand bound function of a task τi lies in one of the following four cases:

dbfi(t, ~Fi) =



dbf1i (t, ~Fi) =



E1
i , 0 < D1

i ≤ t

0, t < D1
i < Pi − Si − t

E2
i , Pi − Si − t < D1

i ≤ Pi − Si

when 0 < t < (Pi − Si)/2

dbf2i (t, ~Fi) =



E1
i , 0 < D1

i < Pi − Si − t

max {E1
i , E

2
i }, Pi − Si − t ≤ D1

i ≤ t

E2
i , t < D1

i < Pi − Si

when (Pi − Si)/2 ≤ t < Pi − Si

dbf3i (t, ~Fi) = E1
i + E2

i ,

when Pi − Si ≤ t ≤ Pi

dbf4i (t, ~Fi) = b tPi c · (E
1
i + E2

i ) + dbfi(t− b tPi c · Pi, D
1
i ),

when t > Pi

(6.13)

Proof. Figures 20-21 show an example of the staircase demand of dbf1i (t, ~Fi) and dbf2i (t, ~Fi)

with black solid lines, respectively. Roughly, the two staircase/concave demand curves

head toward each other when t increases. The first two cases differ when the two staircase

functions meet as t increases. The demand dbf3i (t, ~Fi) considers the total task demand and

dbf4i (t, ~Fi) iterates over the first three cases.

For the demand dbf1i (t, ~Fi) in the first case, when 0 < t < (Pi − Si)/2, we know that
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t < Pi − Si − t by simple mathematical transformation. In this case, we have two separate

staircase functions as shown in Figure 20. When D1
i ≤ t, the demand of the first frame is

E1
i , the demand of the second frame is zero because D1

i ≤ t < Pi − Si − t. D1
i < Pi − Si − t

means t < Pi − Si −D1
i which indicates the deadline of the second frame is larger than t.

Thus, dbf1i (t, ~Fi) = E1
i when D1

i ≤ t. When t < D1
i < Pi − Si − t, dbf1i (t, ~Fi) = 0 because

t < D1
i and t < Pi − Si −D1

i . When D1
i ≥ Pi − Si − t, i.e., t ≥ Pi − Si −D1

i , the demand

dbf1i (t, ~Fi) equals E2
i . Thus, we have proved that the demand of task τi is this case when

0 < t < (Pi − Si)/2.

For the demand dbf2i (t, ~Fi), the proof is similar to the one of the demand dbf1i (t, ~Fi).

We know Pi − Si − t ≤ t since (Pi − Si)/2 ≤ t. By comparing the deadline and length t,

dbf2i (t, ~Fi) = E1
i when 0 < D1

i < Pi − Si − t and dbf2i (t, ~Fi) = E2
i when t < D1

i < Pi − Si.

When Pi − Si ≤ t ≤ Pi, we know that either frame can contribute to the demand. However,

the two frames cannot contribute together since t < Pi − Si. In other words, the interval

length t cannot fit both frames. Thus, we take the maximum execution of the two frames as

the demand when Pi − Si ≤ t ≤ Pi.

It is trivial to see that dbf3i (t, ~Fi) = E1
i + E2

i when Pi − Si ≤ t ≤ Pi, and the fourth case

iterates over the first three cases. In all, we have proved this theorem.

The LP-based algorithm for one-suspension tasks is based on approximating the exact

demand in Theorem 7 and the algorithm The LP-based Algorithm for GMF-PA Tasks in Fig-

ure 15. We replace Lines 6-8 in the MILP algorithm with the linear functions shown in

Equation 6.16 to get the LP algorithm Heuristic-LP (D,S) in Line 5 of Figure 15. The

linear functions shown in Equations 6.14-6.15 are to approximate the two concave portions



95

D1
i

dbf1i (t, ~Fi)

(0, E1
i ) (t, E1

i )

(t, 0)

(Pi − Si − t, E2
i )

(Pi − Si − t, 0)(D1′
i , 0)

Figure 20: The black solid line shows the demand dbf1i (t, ~Fi), the blue dashed line shows its
concave approximation, and the red dotted line shows its linear function when the deadline
D1′
i of the last iteration lies between (t, 0) and (Pi − Si − t, 0).

D1
i

dbf2i (t, ~Fi)

(0, E1
i )

(t, 0)

(Pi − Si − t, E2
i )

(Pi − Si − t, 0)

Figure 21: Similar to Figure 20, the dashed and dotted lines show the concave and linear
functions of the demand dbf2i (t, ~Fi), shown with the solid line, respectively. The black dotted
line shows the frame-wise demand.
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of the task demand for dbf1i (t, ~Fi) and dbf2i (t, ~Fi), respectively, illustrated by the red dotted

lines in Figures 20-21.

dbf1,linear
i (t, ~Fi) =



max


dbflinear

i (t,D1
i )

dbflinear
i (t,Pi − Si −D1

i )

when 0 < D1′
i ≤ t

max



0−E1
i

D1′
i −t′
· (D1

i − t) + E1
i

0−E2
i

D1′
i −(Pi−Si−t′)

· (D1
i − (Pi − Si − t)) + E2

i

0

when t < D1′
i < Pi − Si − t

max


dbflinear

i (t,D1
i )

dbflinear
i (t,Pi − Si −D1

i )

when Pi − Si − t ≤ D1′
i < Pi − Si

(6.14)

dbf2,linear
i (t, ~Fi) =



max


dbflinear

i (t,D1
i )

E2
i

when E1
i ≥ E2

i

max


dbflinear

i (t,Pi − Si −D1
i )

E1
i

when E1
i < E2

i

(6.15)
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dbflinear
i (t, ~Fi) =



dbf1,linear
i (t, ~Fi) when 0 < t < (Pi − Si)/2

dbf2,linear
i (t, ~Fi) when (Pi − Si)/2 ≤ t < Pi − Si

dbf3,linear
i (t, ~Fi) = E1

i + E2
i ,

when Pi − Si ≤ t ≤ Pi

dbf4,linear
i (t, ~Fi) = b tPi c · (E

1
i + E2

i ) + dbfi(t− b tPi c · Pi, D
1
i ),

when t > Pi

(6.16)

The approximation demand dbflinear
i (t, ~Fi) is calculated based on the t-length interval.

Equation 6.14 shows that the task demand is approximated when 0 < t < (Pi − Si)/2.

This case is illustrated by the red dashed lines shown in Figure 20. The functions are also

based on the LP-based iterative process and the initial deadline D1
i is assigned by PDA

(Pi − Si) · E1
i

E1
i +E2

i
. The slope of the linear function depends on the frame deadline D1′

i from

the last iteration. If the deadline D1′
i lies in the region (t,Pi − Si − t), we use the two

red dotted lines shown in Figure 20 to approximate the staircase demand. The first line

passes the points (t, E1
i ) and (D1′

i , 0), and the second line passes the points (D1′
i , 0) and

(Pi−Si− t, E2
i ). When the frame deadline D1′

i lies in the region (0, t] or [Pi−Si− t,Pi−Si),

we reuse the linear function dbflinear
i (t,D1

i ) shown in Equation 6.12 to calculate the slopes.

Equation 6.15 shows the task demand when (Pi − Si)/2 ≤ t < Pi − Si, the demand

functions differ by the values of E1
i and E2

i . In the case of the demand dbf2i (t, ~Fi), the first

line equals min {E1
i , E

2
i }, and the second line uses the previous method computeSlope(D)

to adjust the slope of the linear function as shown in Figure 21. Figure 21 shows the

approximate lines when E1
i < E2

i , and the case is similar when E1
i ≥ E2

i . When t ≥ Pi − Si,
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the demand dbf3,linear
i (t, ~Fi) and dbf4,linear

i (t, ~Fi) are identical to dbf3i (t, ~Fi) and dbf4i (t, ~Fi)

of Equation 6.13, respectively. Thus, we have created the LP-based algorithm for one-

suspension tasks.

6.5 Experiments

We implement our LP-based algorithms using the commercial solver GUROBI [1] in

MATLAB on a 2 GHz Intel Core i5 processor and 8 GB memory machine. We compare

our LP-based algorithm with the MILP algorithm and its application to self-suspending

tasks [23,39] on uniprocessor systems. The algorithm LP-δ is the LP-based schedulability

test given the maximum error δ of the concave programming algorithm. The algorithm

niter-LP-δ limits the number of iterations to be niter. Note that we set δ = 0.1, as the constant

µ = 1
δ
· ln
(
1 + 1

δ

)
(e.g. the exponential constants in Equation 6.2) will be out of range if δ is

too small.

The MILP algorithm is introduced in Chapter 4. The algorithm EDA (equal deadline

assignment [8, 23]) assigns each frame the same deadline (Dk
i = (Pi −

∑Ni−1
i=0 Ski )/Ni),

and the algorithm PDA [8, 47] assigns frame deadlines proportional to frame execution

time (Dk
i = (Pi −

∑Ni−1
i=0 Ski ) · Ek

i /Ei). Note that we use the schedulability test in the

GMF model [8] with the EDA and PDA deadline assignment, since the upper bound of

the maximum interval length is bounded [8]. The details of application from GMF-PA to

self-suspending tasks is introduced in Chapter 4.5. Comparative results on tasks with one

suspension and multiple suspensions are shown in Chapters 6.5.1 and 6.5.2, respectively.
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6.5.1 The Experiments for One-Suspension Self-Suspending Tasks

For one-suspension self-suspending tasks, we compare schedulability ratio and total

running time among the algorithms in Figures 22 and 23, respectively. Since the MILP

algorithm does not scale well with an increasing number of tasks (Figure 25) and task

periods, we test multiple-suspension self-suspending tasks in Figures 29 and 32 without the

MILP algorithm. The schedulability ratio is the number of feasible systems over the total

systems. The total running time consists of matrix building time and solver running time.

In the task systems, task periods Pi are randomly generated in the range [Plow, Phigh].

Plow and Phigh are the low and high bounds of the task periods. The UUniFast algorithm [12]

divides the utilizations Ui of n tasks under system utilization Ucap. The total execution time

is Ei = Pi·Ui, and the suspension delay is generated from [Slow ·(1−Ui)·Pi, Shigh·(1−Ui)·Pi].

Slow and Shigh in suspension range [Slow, Shigh] are the low and high suspension index

bounds, respectively. The UUniFast algorithm also divides the total execution time into

frame execution times. ε represents the threshold in the LP-based algorithm shown in

Figure 15 and is set to be 0.01. Since all algorithms perform well under small system

utilization Ucap, we focus on the experiments whose system utilization Ucap ≥ 0.5.

In Figures 22 and 23, the x-axes represent the system utilization Ucap ∈ [0.5, 0.9] with a

step size of 0.05. Each task system contains five tasks. The task configuration parameters are

Plow = 10, Phigh = 100, Slow = 0.3, and Shigh = 0.6. The y-axes represent the schedulability

ratio and total running time in Figures 22 and 23, respectively. The data are the average

numbers of 500 runs on each Ucap. Figure 22 shows that our LP-δ is better than PDA and

EDA algorithms in terms of schedulability ratio. The iteration numbers of all tested LP-δ
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Figure 22: The schedulability ratio of the algorithms at
system utilization [0.5, 0.9].
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Figure 23: The average running time of the algorithms
at system utilization [0.5, 0.9].

Figure 24: The comparison of our LP-based algorithm with the MILP and other polynomial-
time algorithms on schedulability ratio and average running time.
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Figure 25: The average running time of the algorithms as the number of tasks increases.

algorithm are smaller than five. The multiple runs of the LP algorithm make the LP-δ

algorithm take slightly longer than the MILP algorithm shown in Figure 23. The MILP can

be relatively efficient for small enough task systems; however, as the number of tasks/frames

increases, the MILP running time increases exponentially. Note that in Figure 24, we focus

on a small system where we can gauge the effectiveness of the LP in comparison with the

MILP and other algorithms. With Ucap = 0.5, Figure 25 shows that the execution time of

the MILP algorithm increases dramatically when the number of tasks increases. Multiple

input dimensions affect the execution time of the MILP algorithm, e.g., the task periods.

Task periods directly affect the number of integer variables of the MILP algorithm and

the running time is longer with higher task periods even when the number of tasks in the

system is small. The running time of the LP-based algorithm scales relatively well.

Since we use the concave programming algorithm to guide the LP-based algorithm and

have not proved a speed-up factor for the LP-based algorithm, we perform experiments

on L value and maximum error (
√
L/LMILP − 1 by the transformation of Theorem 4). L

shows how close the value of the heuristic algorithm is to the MILP algorithm. L indicates

the minimization of the maximum demands over all tested intervals. E.g., assume there
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exist two heuristic algorithms that generate L = 0.2 and 0.9, respectively. Both algorithms

will give successful schedules in the schedulability ratio test, but the one with L = 0.2 is a

tighter schedule compared to the other one. If L > 1, the system is not schedulable. We

also compare the maximum error of the LP-δ algorithm since the error can be larger than δ.

Figure 26 shows the average L value of the algorithms among all system utilization

points. The LP-0.1 algorithm returns the closest values to the MILP algorithm. The maximum

error values shown in Figure 27 take the maximum values among 500 runs in each

utilization point. Our LP-based algorithm returns the smallest error across all algorithms.

6.5.2 The Experiments for Multiple-Suspension Self-Suspending Tasks

Among the shown experiments on self-suspending tasks with one suspension frame,

the average number of iterations of the LP-based algorithm is smaller than five among all

system utilization Ucap. Since we believe that the algorithms can approach local optimal

with a small number of iterations, we fix the number of iterations to five and test on

multiple-suspending tasks.

In Figures 31 and 34, the data for each system utilization point is based on 100 runs.

Each run of the system contains 30 tasks and each task contains six execution frames

separated by five suspending frames (11 frames in total). Plow = 10 and Phigh = 100. Since

the MILP-based approach in this setting takes much longer than the LP-based algorithm, we

do not include the MILP-based approach in this experiment. The MILP-based approach takes

more than 1.5 ∗ 103 (respectively, 3.0 ∗ 103) seconds with optimality gap (the gap between

the lower and upper objective bounds) which is larger than 10% (respectively, 5%).

In Figure 29, the system utilization Ucap ∈ [0.8, 0.96] with step size of 0.02 is shown

on the x-axis. Figure 29 has the suspension range with Slow = 0.1 and Shigh = 0.3. In
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Figure 26: The L value of the algorithms at system
utilization [0.5, 0.9].
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Figure 28: The quality of the LP-based algorithm on the L value and the maximum system
error.
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Figure 29: The schedulability ratio of the algorithms at
system utilization [0.8, 0.96].
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Figure 30: The average running time of the algorithms
at system utilization [0.8, 0.96].

Figure 31: Comparison of our LP-based algorithm with other polynomial-time algorithms
on the schedulability ratio and average running time.



105

System Utilization
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

S
ch

ed
ul

ab
ili

ty
 R

at
io

0

0.2

0.4

0.6

0.8

1

5-LP-0.1
PDA
EDA

Figure 32: The schedulability ratio of the algorithms at
system utilization [0.5, 0.9].
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Figure 33: The average running time of the algorithms
at system utilization [0.5, 0.9].

Figure 34: The comparison of our LP-based algorithm with other polynomial-time algorithms
on schedulability ratio and average running time.
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Figure 32, the system utilization Ucap ∈ [0.5, 0.9] with a step size of 0.05 is shown on the

x-axis. Figure 32 has the suspension range with Slow = 0.3 and Shigh = 0.6. Figures 29

and 32 show that our LP-δ is the best among all polynomial-time algorithms in terms of

schedulability ratio. The running times in Figures 30 and 30 reveal that LP-δ also scales

well. The improvements for low suspension range [0.1, 0.3] are better than the one with

long range [0.3, 0.6]. The reason is that when the system specification has more slack time

(small frame execution time and short suspending length), the LP-based algorithms can be

“trained” to get near optimal parameters during the five iterations. In other words, e.g., the

frames deadlines will be equal to their corresponding execution times if there are no slacks

for all tasks, and all algorithms will return identical frame deadlines.

Our LP-based algorithm always yields higher schedulability ratio compared to other

polynomial-time algorithms. The average running time is competitive overall even when

compared with non-mathematical-programming based algorithms such as EDA/PDA.

6.6 Conclusions

In this chapter, we propose a concave programming approximation algorithm and prove

its speed-up factor (can approach one) compared to the optimal MILP algorithm. Under

the guidance of the tunable small speed-up factor, we present the general LP-based scheme

to schedule GMF-PA tasks. We further optimize the LP-based algorithm and apply it to

schedule one-suspension tasks. Extensive experiments show that our algorithms improve

the schedulability ratio and have competitive running time compared to the previous results.
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CHAPTER 7 PARAMETER ASSIGNMENT AND SCHEDULABILITY
ANALYSIS IN DISTRIBUTED SYSTEMS

In this chapter, we introduce the parameter assignment and schedulability analysis

(considered as a combined technique) in distributed systems under the dGMF-PA model. In

Chapter 7.1, we introduce end-to-end flows and their schedulability analysis. Chapter 7.2

states the problem of this chapter. Chapter 7.3 presents our combined algorithm which

uses mixed-integer linear programming (MILP) to get a necessary schedulability test under

EDF scheduling. An approximation algorithm of MILP is presented in Chapter 7.4. In

Chapter 7.5, we conduct extensive experiments and compare them with state-of-the-art

results. At last, Chapter 7.6 concludes this work.

7.1 Introduction

A job in the sporadic task model has an individual continuous unit of work. Sporadic

tasks are independent except for resource contention. Such simple models are concise and

able to represent many applications in uniprocessor systems, but not precise enough to

represent complex tasks in distributed systems. In practice, a multimedia function [51] or a

network service [40] usually consists of subtasks which may have precedence constraints.

An end-to-end flow models a precedence graph as a chain in which a subtask becomes ready

to execute when its preceding subtasks on the chain complete. In distributed real-time

systems, subtasks of end-to-end flows can be (sometimes have to be) assigned to execute

on different processors. For instance, in common video applications, data needs to be

transformed from analog signals to digital signals. The digital signals are transmitted over

the networks and transformed back to analog signals at the client side. These three steps

have precedence constraints and can be modeled as an end-to-end flow.
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The schedulability analysis for such distributed real-time systems is drawing increased

attention, as real-time applications are becoming more and more complex. Since the prob-

lem of optimal task assignment in distributed real-time systems is NP-hard [35], we assume

that subtasks are statically assigned to processors before a schedulability test is performed

and focus instead on the priority assignment of subtasks. Due to the NP-hardness [47] of

priority assignment for subtasks in end-to-end flows, many heuristics have been presented.

The schedulability analysis of most heuristics consists of two independent steps. The first

step is priority assignment and the second step utilizes the assignment to make scheduling

decisions. A priority assignment such as PD (Proportional Deadline Algorithm) [47] can

be efficient. PD assigns subtasks relative deadlines that are proportional to their execution

times. However, such analysis often introduces pessimism as schedulability hinges upon the

effectiveness of the priority assignment of subtasks. Iterative-based methods [67] have been

considered to improve schedulability ratio. In such methods, the current iteration of priority

assignment is calculated based on the parameters of the system in preceding iterations, and

the assignment can affect the parameters in the next iterations. The iterations stop when

the system is schedulable or some stopping criterion is met. However, pessimism also exists

in iterative-based methods since the priority assignment and schedulability analysis of a

system are not considered jointly in each iteration.

In order to reduce potential pessimism, we combine priority assignment under EDF

scheduling and schedulability analysis together into one framework which utilizes math-

ematical programming. Two combined algorithms are developed under our dGMF-PA

(distributed generalized multiframe tasks with parameter adaptation) model which extends

the GMF-PA (generalized multiframe tasks with parameter adaptation) model. The dGMF-PA
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model can represent end-to-end flows in distributed systems. We refer to the minimum

inter-arrival time among frames as a period for simplicity. We refer to an end-to-end flow

as a task and a subtask as a frame to be congruent with the dGMF-PA model. The insight

of our work is that deadlines and periods of frames are flexibly chosen to increase the

schedulability of distributed systems.

The first algorithm presented is a necessary schedulability test (in general) under EDF

scheduling. The algorithm becomes an exact schedulability test and can select relative

deadlines and periods of frames when parameters are integers. An approximation algorithm,

which is proved to be (in general) a sufficient schedulability test, can reduce the running

time and select its frame parameters. We also prove the speed-up factor is 1 + ε where

ε can be arbitrarily small, with respect to the exact schedulability test of dGMF-PA tasks

under EDF scheduling. Note that the two algorithms are both offline algorithms. In other

words, parameters are fixed once parameter assignment and schedulability test have been

completed.

Our Contributions in this Chapter:

• In distributed systems, we extend the exact and approximation algorithms used in

uniprocessor systems to be capable of selecting frame deadlines and periods for the

dGMF-PA tasks.

• We apply our parameter selection algorithm and its approximation algorithm on

end-to-end flows in distributed systems.

• We prove that the speed-up factor of the MILP-based approximation algorithm is 1 + ε

with respect to the exact schedulability test of dGMF-PA tasks under EDF scheduling.
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• We conduct extensive experiments to show that our algorithms outperform previous

work in terms of schedulability and average running time.

Next, we state the problem in Chapter 7.2 and introduce the combined technique

(parameter selection and schedulability test) by mixed-integer linear programming (MILP)

in Chapter 7.3.

7.2 Problem Statement

Let dbfi(t, ~Fi, p) be the task demand bound function of a dGMF-PA task τi within the

interval length t on processor p. Let ~Fi = [D0
i , P

0
i , D1

i , P
1
i ,..., DNi−1

i , PNi−1
i ] represent an

assignment of all task parameters (frame deadlines and periods) of task τi. The supply

bound function sbf(t) gives the lower bound of resources that the system can supply over an

interval of length t. In general, the sufficient and necessary condition [8] for a uniprocessor

feasible system is given in Equation 7.1, and all processors in a distributed systems must

satisfy this condition. ∑
τi∈T

dbfi(t, ~Fi, p) ≤ sbf(t), ∀t, p. (7.1)

Problem Definition. Given the above model, our goal is to find an optimal and valid assign-

ment ~Fi of frame parameters of all tasks so that the worst-case demand
∑

τi∈T dbfi(t, ~Fi, p)

over all time intervals of length t and processors p is minimized.

7.3 The Exact Deadline Assignment of End-to-End Flows in the dGMF-

PA Model

In this chapter, we describe the combined technique of deadline selection for each

frame and schedulability analysis under our dGMF-PA model by using mixed-integer linear
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programming (MILP) under EDF scheduling which utilizes demand and supply bound

functions. The deadline of each frame is flexible subject to the frame and cycle constraints.

Along with the selection, the schedulability analysis provides a necessary feasibility test

for arbitrary real-valued task parameters. We prove the sufficiency and necessity of the

schedulability test when task parameters are integers.

Similar to the algorithms in uniprocessor systems, we build our MILP to select relative

deadlines for all frames. At the same time, MILP gives a necessary feasibility test. However,

note that for non-integer parameters, since the MILP is only necessary, the returned selection

of deadlines may not be feasible. Later, in Chapter 7.4, we will give an approximation

algorithm for the MILP that returns a feasible selection of relative deadlines for the non-

integer case.

Since frame relative deadlines and periods are variables which are selected by MILP,

Equation 7.1 becomes a set of constraint functions that a feasible system must obey. Note

that the demand of an empty frame φji,p is always zero since Ej
i,p = 0. Figure 35 illustrates a

graph stating that frame demand is a stair function of deadlines in an interval of length t.

The detailed notations will be introduced later. In our algorithm, the supply bound function

is sbf(t) = t and the length t of any interval length is an integer. Our MILP can return an

assignment if the system is schedulable. That is, we can determine the necessary feasibility

of the system and select potential deadlines at the same time.

The general steps of our algorithm are as follows. For a given sequence of frames and

a time interval of length t, we calculate the demand contribution of each frame to that

interval length. Adding the demands of all frames generates the demand of a task, and

adding the demands of all tasks (over all possible sequences of frames) generates the total
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yj,ki,t,p

D

(t, Ek
i,p)

Figure 35: The demand yj,ki,t,p in this figure is calculated when t is smaller than one cycle
period. When the deadline of frame φki,p ends inside the interval length t, the demand yj,ki,t,p
is Ek

i,p. Otherwise, the demand yj,ki,t,p is zero.

demand in each processor at the time interval length t. The system is schedulable at a time

interval length if the demand is no larger than the supply in all processors. We check all

interval lengths, which are integers, in the algorithm.

For a given interval length t, we need to calculate the demand for every possible

sequence of frames of task τi,p over any interval of length t and processor p. Assume that

the first frame of τi,p to arrive in such an interval is φji,p (i.e., the j’th frame on processor

p). The demand of any sequence starting with the j’th frame over a t-length interval is

maximized if the j’th frame arrives exactly at the start of the interval and subsequent

frames arrive as soon as possible (e.g., see Baruah et al. [8] for GMF schedulability). To

calculate the demand from the k’th frame in such an interval for the specified sequence, yj,ki,t,p

represents the demand of this frame. We will calculate yj,ki,t,p for all possible i, j, k, p, and t.

For simplicity, we use “∀” to represent the ranges of variables. The task index i ranges from

zero to n− 1. The superscripts j and k represent the starting frame and the current frame

respectively, and both have the ranges from zero to Ni − 1. A processor p has the ranges



113

from zero to Q− 1. It has been shown [8] that the maximum interval length is bounded by

O( Ucap
1−Ucap ·maxτi∈τ (Pi − D0

i )) where Ucap < 1. We use H = d Ucap
1−Ucap ·maxτi,p∈τ (Pi − Emin

i )e

as the maximum integer length interval since we do not know deadlines beforehand in

our dGMF-PA model. Note that the range of any interval length t is shown in uniprocessor

systems [8]. We choose the maximum utilization Ucap among processors to calculate the

maximum interval length H. We use such abbreviations across this thesis. The demand of

the task τi,p starting from the j′th frame in time interval length t is yji,t,p. The maximum

demand of τi,p among all starting frames is yi,t,p.

Figure 36 shows our Deadline Assignment and Feasibility Test MILP, notations in bold

font are constants and the other notations are variables. Lines 3 to 6 present the basic

constraints introduced in Chapter 3. Line 7 calculates the demand of yj,ki,p,t. The interval

length b tPi c tracks the number of cycle periods in t, and b tPi c ∗ E
k
i,p is the demand of φki,p

in such cycle periods. The parameter xj,ki,t,p is restricted to be an integer value and works

as a “flag” (either zero or one) to decide whether the demand Ek
i,p should be added in

the interval length t− b tPi c ∗ Pi as shown in Figure 35. Note that all frames are released

as soon as possible. The analysis of a demand in [0, t − b tPi c ∗ Pi] is equal to the one in

[b tPi c ∗ Pi, t]. The “flag” xj,ki,t,p is decided by the constraints in Lines 8 and 9. Line 8 is the

constraint function that decides the value of xj,ki,t,p. The length tb in Line 9 is the summation

of the previous periods b tPi c ∗ Pi and the distance from the starting j′th frame to k′th frameQ−1∑
p=0

(k−j−1) mod Ni∑
q=0

P
(j+q) mod Ni
i,p

+Dk
i,p.

The length tb ensures the sequence of real frames in distributed systems. That is,

since the frames before φki,p may be empty frames on the processor p, we add all the
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Deadline Assignment and Feasibility Test

Initialization: Ek
i,p = Dk

i,p = P k
i,p = 0 if φki,p is an

empty frame.
1 minimize: L
2 subject to:

3 Ek
i,pEk
i,pEk
i,p ≤Dk

i,pDk
i,pDk
i,p ≤ Dk

i,p ≤D
k
i,pD
k
i,pD
k
i,p, ∀i, k, p.

4 Ek
i,pEk
i,pEk
i,p ≤ P k

i,pP k
i,pP k
i,p ≤ P k

i,p ≤ P
k
i,pP
k
i,pP
k
i,p, ∀i, k, p.

5 Dk
i,p ≤ P k

i,p, ∀i, k, p.

6
Q−1∑
p=0

Ni−1∑
k=0

P k
i,p ≤ PiPiPi,

Q−1∑
p=0

DNi−1
i,p +

(Ni−2)∑
j=0

P j
i,p

 ≤ DiDiDi,∀i.
7 yj,ki,t,p = xj,ki,t,p ∗Ek

i,pEk
i,pEk
i,p + b tttPiPiPi

c ∗Ek
i,pEk
i,pEk
i,p, ∀i, j, k, t, p.

8 ttt−tb
PiPiPi
≤ xj,ki,t,p − realminrealminrealmin

PiPiPi
, ∀i, j, k, t, p.

9 tb =

Q−1∑
p=0

(k−j−1) mod Ni∑
q=0

P
(j+q) mod Ni

i,p


+Dk

i,p + b tttPiPiPi
c ∗ PiPiPi

10 yji,t,p =

Ni−1∑
k=0

yj,ki,t,p, ∀i, j, t, p.

11 yi,t,p ≥ yji,t,p, ∀i, j, t, p.

12
n−1∑
i=0

yi,t,p ≤ L ∗ ttt ∀t, p.

13 and:
14 Dk

i,p, P
k
i,p, tb, y

j,k
i,t,p, y

j
i,t,p, yi,t,p,L ∈ R∗, xj,ki,t,p ∈ {0, 1}.

Figure 36: Our MILP algorithm.
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periods of the j′th frame to k − 1′th frame in all processors. For example, the length

tb =

(
Q−1∑
p=0

P 1
i,p +

Q−1∑
p=0

P 2
i,p

)
+ D3

i,p + b tPi c ∗ Pi if we consider the interval starting with the

arrival of the first frame and ending with the deadline of the third frame in the end-to-end

flow τi. In the inequality of Line 8, the lengths tb and t decide whether the demand of

the k′th frame in length t − b tPi c ∗ Pi will be added to yj,ki,t,p. The constant realmin is the

smallest representable positive number. When t ≥ tb, the flag xj,ki,t,p must be one and the

demand xj,ki,t,p ∗ Ek
i,p contributes to yj,ki,t,p. When t < tb, the flag xj,ki,t,p can be either zero or

ones. However, the demand yj,ki,t,p is overestimated when xj,ki,t,p = 1. The solver MILP tends to

choose zero for xj,ki,t,p because of the smaller demand, and the details are shown in Lemma 9.

Note that the inequality in Line 8 is always correct when xj,ki,t,p is one and t ≥ tb, and when

xj,ki,t is zero and t < tb.

In Line 10, the demand yji,t,p of task τi starts from the j′th frame. In Line 11, the demand

yi,t,p is the maximum demand for τi,p over all possible starting frames. At last, the demand

of all tasks
n−1∑
i=0

yi,t,p has to be less than the supply bound function for all interval lengths t

and processors p as shown in Equation 7.1; otherwise, the system is not schedulable. In

Line 12, L is set to indicate the degree of schedulability of the system. If the system is

schedulable, then L ≤ 1.

In the setting of our MILP, the variables Dk
i,p, P

k
i,p, tb, y

j,k
i,t,p, y

j
i,t,p, yi,t,p, and L are free

variables. The number of all variables is pseudo-polynomial bounded. The flag xj,ki,t,p is

restricted to be an integer variable that is either zero or one. The relationship among the

variables is summarized in Figure 37. The boxes with solid lines contain free variables

and the boxes with dotted lines contain constants. The arrows show the dependable

relationships and the integers on the arrows indicate the number of lines in the MILP. For
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example, Lines 6 to 9 show that the constant Pi has an effect on the variables P k
i,p, tb, x

j,k
i,t,p

and yj,ki,t,p. All variables are connected and constrained in MILP. Eventually, minimizing L

also minimizes the total demand
n−1∑
i=0

yi,t,p.

Ek
i,p

Dk
i,p, P

k
i,p tb xj,ki,t,p yj,ki,t,p yji,t,p yi,t,p

3,4,7

9 8 7 10 11
L

12

P k
i,p, P

k
i,p

Dk
i,p, D

k
i,p

Di Pi t

Constants

Variables

3,4 6 6-9 7-9,12

Figure 37: Relationship among the parameters.

In our dGMF-PA model for distributed systems, we prove that our MILP is a necessary

schedulability test in general, and the MILP is also a sufficient and necessary schedulability

test for integer parameters in Lemma 9 and Theorem 8.

Lemma 9. The value of yj,ki,t,p in the MILP is the exact worst-case demand of frames φki,p over

an interval of length t when the first frame of τi to arrive in the interval is j′th frame. (with

respect to the deadline assigned to each frame of τi,p by the MILP).

Proof. If the j′th frame is not assigned on the processor p, the demand yj,ki,t,p is the exact

worst-case demand which is zero. The proof is straightforward since the frame does not

execute on the processor p.

When the j′th frame is assigned on the processor p, it is trivial that yj,k
i,b tPi c∗Pi,p

is the exact

demand b tPi c ∗ E
k
i in the time interval length b tPi c ∗ Pi. We will prove that the worst-case

demand yj,ki,t′,p = xj,ki,t,p ∗Ek
i,p is exact in the interval length t′ = t−b tPi c∗Pi. Worst-case means

that the interval length t starts at the release time of the j′th frame and all succeeding
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frames are released as soon as possible. We will show that yj,ki,t′,p is an upper bound and a

lower bound on the demand. That is, the demand yj,ki,t,p is exact. For simplicity, we refer to

yj,ki,t′,p (xj,ki,t′,p) as y (x).

Assume that t′′ =

Q−1∑
p=0

(k−j−1) mod Ni∑
q=0

P
(j+q) mod Ni
i,p


+ Dk

i,p, there are also two situations: when 0 ≤ t′ < t′′ and t′′ ≤ t′ < Pi. Note that t′ is

smaller than Pi from definition. When 0 ≤ t′ < t′′, x can be zero or one from the MILP.

Since we minimize L in MILP, y is also minimized to take the value zero (by x = 0). When

t′′ ≤ t′ < Pi, y has to be Ek
i,p to satisfy the constraints in Lines 7 to 9 of our MILP.

When 0 ≤ t′ < t′′, y = 0. The demand y is a lower bound since no demand takes

negative values. We prove that y is an upper bound by contradiction. If there exist y′ > y,

y′ = Ek
i,p since x can only take an integer value one or zero. In this case, t′ ≥ t′′ and get a

contradiction with 0 ≤ t′ < t′′. y is an upper bound and a lower bound when 0 ≤ t′ < t′′.

When t′′ ≤ t′ < Pi, y = Ek
i,p since x = 1. The proof of the lower bound is similar to the

proof of the upper bound when t′′ ≤ t′ < Pi. That is the demand cannot be smaller than

y; otherwise, t′ will be smaller than t′′. We prove that the demand y is an upper bound

by contradiction. Assume that the demand y′ is the upper bound which is larger than the

demand y = Ek
i,p. If y′ > Ek

i,p, the corresponding interval length t′ has to be larger than Pi.

This is a contradiction since t′′ ≤ t′ < Pi. y is an upper bound and a lower bound when

t′′ ≤ t′ < Pi.

In total, the demand yj,ki,t,p is the exact worst-case demand for the frame φki,p over an

interval of length t when the first frame of τi,p to arrive in the interval is the j′th frame.

Theorem 8. For arbitrary, real-valued parameters, our MILP is a necessary feasibility test.
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When the period and deadline parameters are integers (i.e., Dk
i,p, P

k
i,p ∈ N, ∀ i, k and p), the

MILP is an exact feasibility test.

Proof. It is straightforward to prove that our MILP is a necessary feasibility test in general.

If a distributed system is feasible, the worst-case demand (
n−1∑
i=0

yi,t,p) of all tasks over any

interval length t must be smaller than t in any processor p.

In Lemma 1, we have proved that yj,ki,t,p in the MILP is the exact worst-case demand of

frames φki,p over an interval of length t when the first frame of τi to arrive in the interval is

the j′th frame. yji,t,p is thus the exact demand of task τi,p over length t starting from the

j′th frame, and yi,t,p is the exact worst-case demand of τi,p over length t.
n−1∑
i=0

yi,t,p ≤ ttt is

a sufficient feasibility test when Dk
i,p, P

k
i,p, t ∈ N. The algorithm is exact when the frame

deadline and period parameters are integers, since it can be easily shown that the demand

function changes value in this case only at integer times; thus, the MILP exactly checks all

the relevant time intervals. Note that our MILP in general is not a sufficient feasibility test

when this integer constraint is removed since it does not check all real values in the range

[0, H].

Due to the fact that our MILP is not an exact feasibility test in general and does not

scale well, we introduce a sufficient feasibility test in general in Chapter 7.4. The sufficient

feasibility test is an approximation algorithm based on our MILP, where the running time is

greatly reduced.

7.4 The Approximation Algorithm Based on our MILP

In the previous chapter, we have built our MILP which can select frame relative deadlines

of dGMF-PA tasks under EDF scheduling. The method also indicates a necessary feasibility
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test at the same time. However, solving an MILP is NP-hard in general. Furthermore, the

feasibility of selecting deadlines in the dGMF-PA model is coNP-hard as the problem can

be trivially transformed from the feasibility test of sporadic tasks [33]. In this chapter,

we modify the MILP to obtain an approximation algorithm based on a reduction in the

number of time interval lengths being tested14. We also show that the speed-up factor of our

approximation algorithm is 1 + ε with respect to the exact schedulability test of dGMF-PA

tasks under EDF scheduling. We have introduced an approximation algorithm under the

GMF-PA model and such similar technique can be traced back to admission control for the

arbitrary demand curves [30].

In Chapter 4.4, we have introduced the supply bound function sbfa(t) that based on

the smallest interval t0, increasing rate ε, and the maximum interval length H. We will

not repeat redefining the terms. Instead, we directly modify the general schedulability

condition of Equation 6.1 with respect to the reduced set of test intervals.

Theorem 9. Consider any distributed task system composed of tasks T (e.g., dGMF-PA tasks)

where the dbfi(t, ~Fi, p) is computable for any τi ∈ T and p ∈ Q (Q is the index set of processors).

Then, by checking the following modified condition:

∑
τi∈T

dbfi(t, ~Fi, p) ≤ sbfa(t), ∀t ∈ Ta, p ∈ Q, (7.2)

when t0 of sbfa(t) must not be larger than mini,j,p{
∑Q−1

p=0 D
j
i,p}.

We have the following guarantee:

1. If
∑

τi∈T dbfi(t, ~Fi, p) ≤ sbfa(t), ∀t ∈ Ta, p ∈ Q, the distributed system is EDF-

14The approximation is still an MILP (and thus still potentially intractable), but a reduction in constraints
leads to a significant improvement in efficiency as shown in the evaluation chapter.
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schedulable on unit-speed processors.

2. If ∃t ∈ Ta and p ∈ Q,
∑

τi∈T dbfi(t, ~Fi, p) > sbfa(t), the system is EDF-infeasible when

each processor is 1
1+ε

-speed.

Proof. We first prove the sufficiency. If
∑

τi∈T dbfi(t′, ~Fi, p) ≤ sbfa(t′) at an interval length

t′ = t0 ∗ (1 + ε)k for any k ∈ Ha in Equation 4.3, all demands over the range of intervals

( t′
1+ε

, t′] are also smaller than sbfa(t′) since the demand bound function is a monotonically

increasing function. In other words, the system is schedulable on any interval length

in ( t′
1+ε

, t′] if the system is schedulable on interval length t′. The test intervals are thus

reduced to the set Ta. If
∑

τi∈T dbfi(t′, ~Fi, p) ≤ sbfa(t) for all t ∈ Ta and p ∈ Q, all unit-speed

processors are EDF-schedulable. The distributed system composed of the processors is also

EDF-schedulable, which indicates the sufficiency in the distributed system.

We prove the infeasibility on a slower processor when Equation 7.2 is not satisfied

(equal to the proof of the “speed-up factor”). Assume
∑

τi∈T dbfi(t∗, ~Fi, p) > sbfa(t∗) at time

interval length t∗ and processor p. It must be that t∗ > t0 since for all values of t ≤ t0,

dbfi(t, ~Fi, p) is zero by supposition that t0 exceeds the minimum frame relative deadline.

Furthermore, it is easy to observe that for all t ≥ t0, the sbf(t) is at most (1 + ε) times larger

than sbfa(t). From this, we have:

max
t>0

∑
τi∈T dbfi(t, ~Fi, p)

sbf(t)
≥
∑

τi∈T dbfi(t∗, ~Fi, p)
sbf(t∗)

≥

∑
τi∈T dbfi(t∗, ~Fi,p)

(1+ε)

sbf(t∗)
(1+ε)

≥
∑

τi∈T dbfi(t∗, ~Fi, p)
sbfa(t∗) ∗ (1 + ε)

(By Equation 4.3)

≥ 1

1 + ε
(By assumption).
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Summing both sides of the above-derived inequality, we get:

∑
p∈Q

(
max
t>0

∑
τi∈T dbfi(t, ~Fi, p)

sbf(t)

)
≥ Q

1 + ε

Q ∗ max
t>0,p∈Q

∑
τi∈T dbfi(t, ~Fi, p)

sbf(t)
≥ Q

1 + ε

max
t>0,p∈Q

∑
τi∈T dbfi(t, ~Fi, p)

sbf(t)
≥ 1

1 + ε

Thus, we have proved that the speed-up factor is 1 + ε over all processors in distributed

systems, with respect to the exact schedulability test of dGMF-PA tasks under EDF scheduling.

We can now apply Theorem 9 to modify the MILP to create a sufficient approximate

feasibility test for the dGMF-PA task model with arbitrary, real-valued parameters. To do

so, we simply limit the range of t to now be Ta for all constraints that depend upon t,

and modify Line 9 of MILP to be
n−1∑
i=0

yi,t,p ≤ L ∗
ttt

1 + ε
. Clearly, this reduces the number

of constraints by a logarithmic factor (dependent upon our choice of ε). We refer to this

approximate assignment algorithm as MILP-ε.

In all, the approximate MILP is a sufficient feasibility test. The number of the time

interval lengths is reduced from O(H) to O(log1+εH). Since the number of variables and

number of equations depend on the number of time interval lengths, the running time is

greatly reduced.

7.5 Evaluation

We have implemented our MILP and approximation algorithm MILP-ε (ε > 0) using the

commercial solver GUROBI [1] in MATLAB. We compare our work with the combination
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(represented by HOSPA-Offset) of the deadline assignment HOSPA [67,68] and offset-based

analysis under EDF scheduling [59] in the MAST suite [2].

In order to generate a fair comparison with HOSPA-Offset, we set Dk
i,p = P k

i,p (Line 5 in

MILP will be automatically satisfied) and Di = Pi. The variables Dk
i,p, P

k
i,p,Di, and Pi are

reduced to Dk
i,p and Pi for all i, k and p. In this case, the end-to-end deadline of τi,p is Pi.

Because HOSPA-Offset has no frame constraints, we set Dk
i,p = Ek

i,p and D
k

i,p = Pi for all

frames. The constraints from Lines 3 to 6 of our MILP and MILP-ε thus become:

1. Ek
i,pEk
i,pEk
i,p ≤ Dk

i,p, ∀i, k, p.

2.
Q−1∑
p=0

Ni−1∑
k=0

Dk
i,p ≤ PiPiPi, ∀i.

We follow the similar setting of the previous paper [67] to randomly generate end-to-end

flows (tasks). There are five processors and eight tasks in the distributed system. Each

task contains five frames which are randomly assigned on the processors in the distributed

system. There are nine system utilization levels (100%, 125%, 150%,..., 300%) each of

which contains fifty distributed systems. In each system, we use the UUniFast algorithm [12]

to generate the utilization of each task and the execution time of each frame. We record the

schedulability ratio (the number of schedulable systems over the total number of systems)

and average running time of the task sets for each utilization level.

For the reason that our MILP is not scalable in general, we first generate Figure 38(a)

and 38(b) in which tasks have small cycle periods that are randomly chosen in [1,10]. Note

that each curve of MILP is a characterization of an “upper bound" on the best we can hope

for in our model. MILP-0.1 and MILP-0.3 have higher schedulability ratio than HOSPA-Offset

as shown in Figure 38(a), but have longer running time as shown in Figure 38(b). MILP-0.1



123

can schedule at most 44 % more than HOSPA-Offset when Ucap = 2, and MILP-0.3 can

schedule at most 18 % more than HOSPA-Offset when Ucap = 2. MILP is at most 19.1 times

slower than HOSPA-Offset, MILP-0.1 is at most 4.8 times slower than HOSPA-Offset, and

MILP-0.3 is at most 0.5 times slower than HOSPA-Offset.
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In order to generate a set of tasks with larger cycle periods, we have the experiments

shown in Figure 38(c) and 38(d). The cycle period of each task is randomly chosen

in [1,1000]. Figure 38(c) shows that any experiment with ε ≤ 0.3 will generate better

schedulability ratio than HOSPA-Offset. MILP-0.3 can schedule at most 18 % more than

HOSPA-Offset when Ucap = 2, and MILP-0.3 uses at most around 303 seconds more than
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Figure 37: The figures show the schedulability ratio and average running time over task
utilization from one to three. Pi ∈ [1, 10] is in Figures 38(a) and 38(b), and Pi ∈ [1, 1000] is
in Figures 38(c) and 38(d).

HOSPA-Offset when Ucap = 1.75.

In all, our MILP and MILP-ε algorithms always yield higher schedulability ratio. The

running time of the combined technique HOSPA-Offset is shorter in general; however, our

MILP-ε is not worse by much and still efficient enough.

7.6 Summary

Upon the flexible GMF-PA model in uniprocessor systems, we propose the dGMF-PA

model in distributed real-time systems. The relative deadlines of frames in end-to-end flows
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can be flexibly chosen in our dGMF-PA model, using mixed-integer linear programming

(MILP). Our MILP-based algorithm is an exact feasibility test when parameters are integers,

and a necessary feasibility test in general. In order to reduce the running time of the MILP

algorithm and give a sufficient schedulability test (in general), we propose an approximation

algorithm MILP-ε based on the supply bound function. The number of time interval lengths

is bounded by a logarithmic function of the task system parameters. Extensive experiments

have shown that our algorithms improve the schedulability ratio of task sets when compared

to the previous results.
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CHAPTER 8 CONCLUSION

In uniprocessor systems, upon the GMF model, we propose the GMF-PA model which has

frame constraints and task/cycle constraints to let the deadline and period of each frame be

flexible. Using the mixed-integer linear programming (MILP), we propose an algorithm that

can select frame deadlines and periods in the GMF-PA model. Our MILP-based algorithm is

an exact feasibility test when parameters are integers, and a necessary feasibility test in

general. In order to reduce the running time of the MILP algorithm and get a sufficient

schedulability test in general, we propose an approximation algorithm MILP-ε based on

the supply bound function. The number of time intervals being tested is bounded by a

logarithmic function of task parameters. We prove that the MILP-ε is a sufficient feasibility

test and the speed-up factor is 1 + ε, with respect to the exact schedulability test of GMF-PA

tasks under EDF scheduling.

We apply our MILP and MILP-ε to self-suspending tasks. We remove the assumption that

the deadlines are fixedly equally assigned in the previous work. Exhaustive experiments

for both one-segment and multiple-segment self-suspending tasks have shown that our

algorithms have improved the schedulability ratio and running time compared to the

previous results. We also apply the MILP-ε algorithm to a robot car and a remote server. By

transforming the tracking tasks to GMF-PA tasks under different environment conditions

(e.g., network bandwidth, processing speed ratio between car and server, etc.), the MILP-ε

algorithm also schedule more systems than EDA.

In distributed systems, we extend the GMF-PA model and propose the dGMF-PA model.

The relative deadlines of frames in end-to-end flows can be flexibly chosen in our dGMF-PA
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model, using mixed-integer linear programming (MILP). Our MILP-based algorithm is

an exact feasibility test when parameters are integers, and a necessary feasibility test in

general. In order to reduce the running time of the MILP algorithm and give a sufficient

schedulability test (in general), we propose an approximation algorithm MILP-ε based on

the supply bound function. The number of time interval lengths is bounded by a logarithmic

function of the task system parameters. We prove that the MILP-ε is a sufficient feasibility

test and the speed-up factor is 1 + ε, with respect to the exact schedulability test of dGMF-

PA tasks under EDF scheduling. Extensive experiments have shown that our algorithms

improve the schedulability ratio of task sets when compared to the previous results.

In order to further improve the efficiency of our MILP-based algorithms by considering

other optimization techniques that remove the integer requirements, we give a recursive

LP-based algorithm. Guided by the concave programming algorithm which closely approxi-

mates the exact task demand, the LP-based algorithm runs efficiently in a small number of

iteration and yields high schedulability ratio. The advantage of the MILP-ε algorithm is that

it has a proved small speed-up factor. The advantage of the LP-based algorithms is that they

have lower running time complexity.

Our overall contribution of this thesis is to give efficient and effective algorithms that can

be used as a general optimization technique for determining parameters in an interactive

real-time uniprocessor and distributed systems. We believe that this thesis can apply to

many chainlike tasks, e.g., flows in multi-hop networks, messages in CAN-based system

message queues, tasks with shared resources, etc. As far as we know, we are the first to

use mathematical programming techniques to schedule such complex task systems towards

system schedulability. The approximation algorithms based on mathematical programming
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are optimized in this thesis so that we believe large-scale systems can also benefit from our

methods. Since our methods are universal and flexible using mathematical programming,

they are extendable for future work. The tasks with graphical models (e.g., the directed

acyclic graph model) can benefit from our methods and the tasks in multi-processor systems

can benefit from our methods. Since our methods based on the LP which has polynomial

time complexity, the methods can be further improved to compare with non-mathematical

programming methods so that the online scheduling algorithms can benefit from our

algorithms.
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Schedulability analysis has been considered as one of the most important subjects in

real-time systems. Schedulability analysis decides whether all tasks work correctly and

safely in a system. For example, the schedulability analysis of an Air Traffic Control (ATC)

system should ensure that all airplanes do not have conflicts on departure lanes and are

scheduled on time. In a modern car system, it has been shown that there are more than one

hundred engine control units (ECUs), and more than twenty million lines of code in a typical

modern car [19]. The scheduling of such complex systems is required to be well developed.

As more sensors and functions (e.g., self-driving) will be added in a car, the scheduling of a

car system faces more challenges that are caused by the dependent behaviors of functions,

the suspending behaviors of functions, and randomness of parameters [19]. We tackle these

challenges in this thesis, and we believe that the scheduling of similar large systems can

also benefit from the techniques in this thesis.

The input of schedulability analysis is the information of task parameters such as

execution times, deadlines, periods, etc. Parameters in a real-time system are typically
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immutable and assigned before the launch of schedulability analysis. Such immutable

parameters lack flexibility and may lead to the failure of schedulability analysis. In order to

tackle this problem, we let a subset of parameters be flexible to be chosen, specifically in

tasks each of which contains dependable subtasks/frames. In this thesis, we introduce new

flexible models GMF-PA (the generalized multiframe model with parameter adaptation)

and dGMF-PA (the distributed GMF-PA) which let frame periods and deadlines be flexible to

be chosen under certain constraints.

The GMF-PA and dGMF-PA models generalize the GMF model which extends the sporadic

task model and multiframe task model. Each frame in the GMF model contains an execution

time, a relative deadline, and a period (minimum inter-arrival time). These parameters are

fixed after task specification time in the GMF model. However, systems such as multimedia

and adaptive control systems may be overloaded and no longer stabilized when the task

parameters in such systems are not flexible. In order to address this problem, task deadlines

and periods may change to alleviate temporal overload, for example in the parameter

adaptation and elastic scheduling model.

Our GMF-PA (dGMF-PA) model allows frame periods and deadlines to be flexible in

arbitrary (constrained) -deadline systems. A necessary schedulability test based on mixed-

integer linear programming (MILP) is given to check the schedulability under EDF schedul-

ing and optimally assign frame deadlines and periods at the same time. We also prove

that the test is a sufficient and necessary schedulability test when task parameters must be

integers. A MILP-based approximation algorithm is also deployed to reduce computational

running time and is a sufficient schedulability test in general. The speed-up factor of our

approximation algorithm is 1 + ε where ε can be arbitrarily small, with respect to the exact
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schedulability test of GMF-PA (dGMF-PA) tasks under EDF scheduling.

We also present a pseudo-polynomial linear programming (LP)-based heuristic algorithm

guided by a concave approximation algorithm to achieve a feasible parameter assignment

at a fraction of the time overhead of the MILP-based approach. The concave programming

approximation algorithm closely approximates the MILP algorithm, and we prove its

speed-up factor is (1 + δ)2 where δ > 0 can be arbitrarily small, with respect to the exact

schedulability test of GMF-PA tasks under EDF. The LP-based heuristic algorithm takes

shorter running time than the MILP-based heuristic algorithm, but the MILP-based heuristic

algorithm has a lower speed-up factor in general.

In uniprocessor systems, we apply the GMF-PA model to self-suspending tasks. By

extending the work on scheduling self-suspending tasks, we remove the assumption that

deadlines are fixed after system specification time in self-suspending tasks, and the system

is extended from constrained-deadline systems to arbitrary-deadline systems. We have

done extensive experiments to show that the schedulability ratio is improved using our

techniques in our GMF-PA model. We also analyze a case study on a robot car to show the

effectiveness of the algorithms.

In distributed systems, we apply the dGMF-PA model to transactions (end-to-end tasks).

By applying our algorithms on scheduling transactions in distributed systems, the schedu-

lability ratio is improved compared to state-of-the-art algorithms. Since our parameter

assignment is jointly considered with schedulability analysis, this combined technique

dominates the previous parameter assignment algorithms based on trial and error.
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