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CHAPTER 1 INTRODUCTION
The kirchhoff-love plate is a mathematical model used to determine the stresses and
deformations in thin plates subjected to forces and moments under two dimensional case.
It is the extension of Euler-Bernoulli beam theory and was developed in 1888 by Love using
assumptions proposed by Kirchhoff. The theory assumes that a mid-surface plane can be
used to represent a three-dimensional form. There are three assumptions for Kirchhoff-

Love plate theory:

e straight lines normal to the mid-surface remain straight after deformation.

e straight lines normal to the mid-surface remain normal to the mid-surface after de-

formation.

e the thickness of the plate does not change during a deformation.

For the thermoelastic Kirchhoff-love plate, additional assumptions are added[1]:

e strains can be linearly decomposed into elastic and thermal ones.

This thermoelastic Kirchhoff-love plate is a coupling system with parabolic-like properties.

Recently, numerous mathematical models has rised in engineering areas, such as con-
tinuum mechanics in system of equations with various physical quantities, that needs dif-
ferent numerical approximations compared to common ones. The finite element approxi-
mations of such problems with extra independent variables are called mixed finite element
methods. This thesis first introduce the basic concepts from the theory of mixed finite el-
ement methods, and how to get variational form of our kirchhoff-love plate system. After

that, it demonstrates how to solve the system with mixed finite element method and error



estimates. For further theoretical details, the reader is referred to the monographs by Boffi,
Brezzi and Fortin, Brenner and Scott, Ern and Guermond, Gatica and Girault and Raviart.

Since H! Galerkin method requires the C* continuity of the finite element, it has been
attractive and widely used by researchers for parabolic and hyperbolic equations. Earlier
mixed element finite element methods were studied in [2] [3] [4] for elliptic equations, [5]
[6] for parabolic equations, and [7][8] for hyperbolic equations. However, mixed element
method has the requirement of LBB consistency condition in general, and that limits the
choice of finite element spaces. To overcome such difficulty, Pani proposed H' — Galerkin
method for parabolic problems in [9][10]. For hyperbolic problems, [11] reformulate the
problem as a first-order system and propose least square approaches for solution and flux.
As two different V}, and W}, are used, different polynomials orders could apply respectively.
Besides, the main advantage over the standard mixed element method is that, it does not
require LBB condition.

Discontinuous Galerkin method(DG) has been active for hyperbolic and nearly hyper-
bolic equations since Reed and Hill first introduced the DG in [12]. Since that time, DG
method has also been applied to elliptic problems [13] and parabolic problems[6]. Bassi
and Rebay[14], studied the variations and generalize this method, introduced the local
discontinuous galerkin method(LDG). Meanwhile, interior penalty method for DG devel-
oped independently almost the same time in 1970’s. The first DG method for acoustic wave
equation with second formulation was proposed by Rivier in [15] used a nonsymmetric
interior penalty form. It needs extra stablization terms for optimal L? convergence rate.
Symmetric Interior Discontinuous Galerkin(SIP-DG) was presented for the time-dependent

wave equation in [16]. For SIP-DG, symmetrical discretization of the wave equation can



guarantee the stiffness matrix is symmetric positive, semi-discrete formulation is energy-
conserved for all time.

The rest of this dissertation is organized as follows:

Chapter 2 introduces the sobolev spaces, basic theorems and lemmas from inequalities
and finite element spaces. Also reviews the Lagrange elements, H(div) elements and Dis-
continuous Galerkin methods. In section 2.5, it introduces how to establish the thermoe-
lastic Kirchhoff-Love plate system. introduces the thermoelastic equations and theoretical
background of finite element method.

Chapter 3 reviews the general theory of mixed element methods and gives the equiva-
lent variational form for the KL system in section 3.1 and 3.2 respectively. Then it demon-
strates the proof of semi discrete and fully discrete error estimates and the existences and
uniqueness of solutions under those two situations in Section 3.3 and 3.4 Then Chapter
3 shows the numerical experiments and conclusions. reviews the common mixed element
method, and gives out the numerical approach to the thermoelastic kirchhoff-love plate
system.

Chapter 4 mainly talks about the Interior Penalty- Discontinuous Galerkin method (IP-
DG). First establish the corresponding variational form. Later semi and fully discrete anal-
ysis for IP-DG are analyzed.

Chapter 5 is about the main results of H' Galerkin method for the KL system. We
establish the variational problem using H' Galerkin method, and shows the semi and fully
discrete analysis outcomes. Then numerical experiments are conducted and numerical

results are presented.



CHAPTER 2 PRELIMINARIES

2.1 Sobolev spaces
In this work, we assume 2 C R" be a bounded domain with a smooth boundary 0.

Let f denote the Lebesgue integrable function on the domain €.

1/p
1Flhs = ( / \prdx)

For 1 < p < oo, let

and if p = oo,

[ fllo.co.0 = ess Slelg{lf(X)l}

Definition 2.1 (W (2) space and sobolev norms).
Wr(Q) == {u e LP(Q) : D*u € LP(Q),|a| <k}, for1<p<oo

With associated sobolev norm,

1/p
lullwewy = | D 1Dull?,q when 1 <p<oo
la|<k
And
||u||W§O(Q) = Z ||Dau||L°°(sz) when p = oo
|| <k
Also we have the semi norms
1/p
lulwy ) = Z HDO‘UHZ(Q) when 1 <p <oo

la|=k



And

lulwe @) = | D 1D%ullzo) when p = oo
|a|=k

Definition 2.2 (Weak Derivative). If u(x) € L*(Q) has a derivative of order a, « is a

multi-index of non-negative integers and || = Y ;. Provided v € L?(Q), and
/ Dy x)dx = (—1)l / Dy( x)dx o] < k,Vu(x) € C°(Q)

If such v exists, then we define D% = v.
When p = 2, H*(Q) = W"?2(Q) called Hilbert space and the index p is omitted in their

corresponding norms and seminorms. The corresponding inner product,

(U, U)WQIC(Q) = Z (Dau7 Dav)

lal <k
Remark. This dissertation will quite frequently refer to H'(Q2) and H?(2) spaces.

ou
ij

ou 0*u
e i=1 " o ——
axj S ( )7] ) y 1Y 8xlamj

HYQ) = {ueLXQ): — € LX(Q),j=1,--- ,n}

H*(Q) ={ue L*Q): € L*(Q),i,j=1,---,n}

Meanwhile, assuming 0f2 is sufficiently smooth,

HAQ) = {u e HY(Q),u =0 on 9Q}

Let P,(K) be the space of polynomials of degree less than or equal to n over K and

N (k) be the dimension of P, (K) with N (k) = 5(k +1)(k +2). We may denote || - ||z (q) as

1
2



|- eps |- |W5(Q) as | - |kpas |l - ||Hk(Q) as || - |lxo and |- | k() @S | - k0, the domain €2 can be

abbreviated in the text.

2.2 Useful Inequalities

Throughout this article, the letter C or ¢, with or without subscript, denotes a generic
constant which is independent of 4# and may not be the same at each occurence.
Lemma 2.1 (Green formula). Let ) be bounded with Lipschitz continuous boundary 052, for

any u,v € H'(Q), then

/u-@ivdx:—/aiu-vdx—i-/ wo-mds, 1=1,2,---n
Q Q a0

Also, replacing u by du, we get,
/Vu Voudxr = /Au vda:—i—/ —vds u € H*(Q),Yv € H(Q)
a0 8n

Also,

/Vu-ﬁdx:—/uV~z7dx+/ utnds, u € H*(Q),Vv € L*(Q)
Q Q o0

Lemma 2.2 (Holder inequality). If 1 < p,q < oo, and 5 + . = L if f € LP(Q),g € LU(Q),

[ s@atertel < ([ 1@pani [ loran:

Lemma 2.3 (Young inequality). For Ve > 0,a,b € R, then we have,

then

2

b < —I—b
a a® + —
¢ 4e



Lemma 2.4 (Gronwall inequality). Let u(t) be continuous on [0, T], suppose that u(t) > 0

and ®(t) > 0, up > 0 is a constant, if u satisfies the inequality:
t
u(t) < ug —|—/ O (T)u(r)dr, Vte[0,T]
0

then:

u(t) < ug - exp(/ot o(r)dr), Vtel0,T] 2.1)

Lemma 2.5 (Discreted Gronwall inequality). let {u,},{&.}, {®.} be nonnegative series, if

ug < o, Up < &+ D2, Pjuy, n > 1, then:

U S &t Y Greap( Y Py), n=1 (2.2)

0<k<n k<j<n

among that, ®; > 0, and ®,, is nonnegative monotone nondecreasing.

2.3 Finite Element Spaces
Lemma 2.6 (Lax-Milgram theorem). Let V' be Hilbert space, a(-,-) : V x V — is a bilinear

form, and L(-) a linear form, and let those three conditions hold:
1. (Coercivity) a(u,u) > a||ul|}, YueV
2. (Continuity) a(u,v) < Cllullv||v|lv, Yu,v eV
3. L(v) < D|vlly, YveV

Then the problem: Find u € V, such that

a(u,v) = L(v), Yv eV (2.3)



is well-posed and there exists a unique solution if with following stability condition.
C
[ullv < =Ly
(6]

where V' is the dual space of V, || - ||y means the norm defined on V.

Lemma 2.7 (Cea Lemma). If bilinear form a(-,-) is continuous and coersive, let L : V' — R
be a bounded linear operator, V), is finite dimensional subspace of V, consider the problem:
Find u;, € Vj, such that

a(up,vp) = L(vyp), Yv eV, (2.4)

then there exists a constant C, such that

lu = uplly < C inf [Ju—uvplly
vRLEVR

where u and uy, are the solutions of Eq.(2.3) and Eq.(2.4) respectively.

Applying the Lax-Milgram lemma, we know the discrete problem Eq.(2.4) has a unique
solution uy,.
Lemma 2.8 (First Strang Lemma). Let V}, C V, and let a;(-,-) is a continuous and coercive

bilinear form in V}, x V},, there exists a constant « such that

ah(vh,vh) > Oé”UhHZ Yo, € V},



Then there exists a constant C such that

lu—up|| < C | inf |u—vy|y, + sup |an(u, wn) = a(vp, wh)]
vpEVY wp €V}, ||whl|Vh

If ap(up, vp) = a(un, vy), it is called conforming finite element method, otherwise nonconform-
ing finite element method.
Definition 2.3 (Finite Element Method). The finite element method, in its simplest form,
constructs finite dimensional subspaces V},, solve variational problems related to BVP, IVP.
This V}, is called finite element space.

To construct V},, a finite element triple (7, I1,, ¥, ) is established. 7}, is a triangulation
established on (2, the set Q2 is subdivided into a finite number of subsets K, called elements

with following properties:

1. Q=Ug € T
2. For each K € 7y, the set K is closed and its interior K is nonempty.
3. For each pair K, K, € T, one has l%l ﬂl%g = 0.

4. For each K € T, the boundary 0K is Lipschitz continuous.

Second, II; is a subspace of C'(K') with finite dimension n, can be chosen as P,(K) or
Qn(K).

Third, we also assume, 7, satisfies following condition: For any K € T,, let hr denote
the diameter of K and px denote the supremum of the diameter of the spheres inscribed

in K. The mesh size of T, is denoted by 4 = max hx. We say 7}, is regular if there exists a
KeTy,
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constant o such that

h
K <o VKeT,
PK

In the thesis, we always assume mesh 7}, is regular.

A mesh 7}, is called quasi-uniform mesh if there exists a constant x> 0 such that

2.3.1 Lagrange Elements

For any K € T, let a;, be the vertices of K for 1 < j < 3. For any k > 0, let

3 3
1 k—1 .
Se(T) ={z =Y Naj Y A =1 €{0 4 b1 <3}
j=1 j=1

The C° finite element space of order k associated with mesh 7, is defined as
Sk =Ly e C(Q) vk € P(K),VK € Ty}

Then the C° Lagrange element of degree k is defined as (K, Py(K), ¥, (K)). Typical
examples of C° Lagrange elements include linear element and quadratic element. For
linear element, degree of freedom only contains vertices. For quadratic element, degrees
of freedom include both vertices and edge centers. For cubic element, degrees of freedom

include both vertices, element center and trisection points on each edge.

Remark. Note that the choice of ¥, (/') guarantees the continuity of v across the boundaries

of elements in 7;,. Let N, denote the set of all mesh nodes.
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Corollary 2.8.1. Let I, : C(Q) — S™* denotes the Lagrange interpolation operator; i.e.
I = Yu(x)®(x),Yu € C(Q), ®(x) denotes the global basis function, x is the node point.
Then Yv € S™F, v can be written as v = Yv(x)®(x).

Theorem 2.9. Let T;, be a mesh of Q. Let k > 1. Then a piecewise function v € C* : Q — R

over the mesh Ty, belongs to H*(Q) if and only if v € C*~1(Q).

Remark.

C°(Q) = {v : v is a continuous function defined on Q}
(2.5)

C' Q) ={v:veC’Q): D* € C"(0)}

The C° Lagrange elements are often referred to as conforming elements.

2.3.2 Conforming H(div) elements

Definition 2.4 (H(div,)). If Q is with Lipschitz boundary 052

H(div, Q) = {§ € L*(Q)? div € L*(Q)}

with respect to the inner product

(€, @ )div.o = (4,7 )oa+ (V- 4, V- q7a

The associated norm can be denoted as || - || 4iv.0-
Lemma 2.10. Let T}, be a triangulation of §2 and let element K € Ty, W= {7=(q1,92)|q: :

K—RKeT),Vi={G:Q— R||@|x € W} be given by previous definition respectively,
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Assume that

W c H(div,K),K €T,

n- gl =0forale= K;NK; q€ V, where n - ¢|.] denotes the jump of n - q across the
boundary e. ie,

[n : J‘E] =n- q_"eﬂKl —n- J‘QOKJ
Then V), C H(div, ).

2.3.3 Raviart-Thomas elements

Let us first consider the case of simplicial triangulations 7, of Q, for K C 7;, and k € N,.
we set

®(0K) :={¢ € L*(0K)| ¢|. € Pi(e),e € 0K} whend =2

For V¢ € RT,(K), the degrees of freedom ¥;, are given by

/Cf'ﬁpkdsy pr € PR(0K)

/ G Pr1dX, Pr_1 € Pr_1(K)?
K

We have:

dim RTy(K) = (k+ 1)(k +3), d=2

Lemma 2.11. There exist a constant C' > 0, independent of the mesh, such that

lu — up|l1.0 < Cinf ||lu— vl q
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Taking v as the Lagrange interpolation of u, we can get the following H' error estimate.

Remark. If the solution u of the equation is in the space H"+! (| H} () and u;, € S;"" is the
solution, then

lu —upll1,0 < Ohk|u|k+1,§2

Using the duality argument, we can prove the following L? error estimate:

lu — unlloq < CA ulryio

2.4 Mixed Element Method

Lemma 2.12 (LBB condition). If V and H are two Hilbert spaces, suppose that a(-,-) :
VxV — R and b(-,-) : V x H — R are both continuous bilinear forms, and moreover that
a is coercive on the kernel of b:

a(v,v) > allv[ly,

for Vv such that b(v,q) = 0 for all ¢ € H. If b(-,-) satisfies the inf-sup or Ladyzhenskaya-

Babuska-Brezzi condition
b(v,q)

[v]lv

sup > Bllgllu

veV,u#£0
Let F € V' and G € H’, consider the variational problem to find v € V and p € H such

that

a(u,v) + b(v,p) = F(v) YveV
(2.6)

b(u,q) =G(q) Vg€ H

Lemma 2.13. If a(-,-) and b(-, -) satisfy:
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1. a(-,-) is continuous on V' x V and coercive on M.

2. b(-,-) is continuous on V x H and satisfy LBB condition.

Then eqn(2.6) has a unique solution (u,q) € V' x H, and there exists a constant C' such that,

lullv + llplla < CE[lv + [[Gllar)

Here M = {v € V|b(v,q) = 0,Yq € H}.

Consider the discrete problem of eqn(2.6), find (uy, pn) € V3 x Hj, such that

an(up, vp) + bp(vn,pp) = F(vy) Yo, € Vy
2.7)

bn(un, qn) = G(qn) Van € Hy,

If V,,,H), are conforming finite element spaces, then ay(up,v,) = a(un, vy) and by (up, vy) =
b(up, vy, ). Next, consider the discrete version of Lemma(2.13),

Lemma 2.14. If a(-,-) and by (-, -) satisfy:

1. ay(-,-) is continuous on V, x Vj, and coercive on M, x My,.

2. by(-,-) is continuous on Vj, x Hj, and satisfy discrete LBB condition.

Then Eq.(2.7) has a unique solution (uy,qn) € Vi, X Hy, and there exists a constant 3* such

that,

br (v, qn .
p bn(Vh 4n) > B*llanllm,  Yan € Hy
[vrlv;,
U}LE‘/}L

Here My, = {vy, € Vi|by(vp, qn) = 0,Vq, € Hy}.
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2.5 Discontinuous Galerkin Method
First consider the case of simplicial triangulations 7, of ), for K C 7;, and k € N,.

Define the DG space
Sp={v € Ly(Q) :v|g € P(K),VK € T}

and P, (K) defines the space of polynomials degree not greater than k. Try to intrduce the

Broken Sobolev space
1
H*(Tp) =4{v € Ly(Q) :v|g € H(K),VK € Tp,}, s > 5

Denote I'y, = | J{e C 0K : K € T,}, when v € H*(T,), from trace theorem, v € Ly(I'y) =
H Ly(e). Letv € H*(Ty),s > 3, K; and K, are two adjacent elements with intersection
ecl’y,

at e = 0K; N OJK,. Use v; = v|gk, denotes the trace of function v restricted on edge e
from element K;, n; = n|yk, is outer normal vector. To deal with discontinuity across the

interior edge e € TV, where I') = T',\0%, T',p = 'Y (JT'p, T'p is Dirichlet boundary. It is

necessary to define jump [v] and average {v},
1 0
[v] = ving +veng,  {v} = 5(?11 +uv2), e€l}
Consider the vector, 7 € [H*(T},)?], define:

1
[T] =vi-n1+va-ng, {7}= 5(7—1"‘7_2)7 66F2
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If e € 09, define:

W =wn, {v}=v; [Fl=7-n {F}=7

Lemma 2.15. Let (v,7) € H*(T,) % [H*(T;)]?, s > 1, then there exist,

Z /BK vT - nds = Z /{7_"} . [v]ds + Z{U} . [T]ds (2.8)

KeTy ecly ecI')

Proposition 1. For disconinuous galerkin approximation of elliptic problem, find u; € S,

such that

ap(up,vn) = (f,vn), Yo, €Sy

We may introduce the bilinear form

ap(up, vy) = (Vu, Vo), = Z (Vu, Vo) — Z /(Vu) -nfv]dS + € Z /(Vv} -nfuldS
KeTy e€l'y, p v ® e€ly,p v ¢
+ 3 hle/[u][v]ds

where + is the penalty parameter, k., = diam(e), e can be —1, 0, 1.

Introduce the DG norm:

lall® = > IVullgi+ D ke ldllse

KGTh €€Fh7D

Lemma 2.16. There exists 5 > 0, independent of the mesh size, such that

an(un, un) 2 |fun|?
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Lemma 2.17. For quasi-uniform meshes T, there holds

an(un, up) = O max{1, B} |Jun |’

with a stability constant C' > 0 that is independent of the mesh size.
Lemma 2.18. If a;,(u, v) is bounded for norm ||| on H'**(T}), then there exists a constant

C > 0, such that

jan(u, v)] < Mllull - lvll,  Yu,v € HF*(Th),s >

N —

Definition 2.5. Let u € H?(Q2), the L? projection P,u € S, of u is defined by requiring that

ap(Ppu,v) = ap(u,v), Yo €V,

Lemma 2.19. If additionally u € H*™1(Q) for k > 1, then

Il — Prulll < CR* a4

lu = o]l < CR o

2.6 Thermoelastic Kirchhoff & Love Plate Model

Let Q € R? be a bounded domain with a smooth boundary representing the midplane
of a thermoelastic plate. u denotes the deflection and 6 is the thermo moment based on
plate thickness. If denoting the thickness of the plate as h, the complete domain of this

plate is Q x (h/2,h/2) in R3. Besides, assume the elasticity, thermal isotropy of this plate,
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and small heat flux. What is more, linearize this plate, and strains are composite of elastic

and thermal parts.

If denoting the displacement vectors as U = (Uy, Uy, Us) and u = (uy, ug, ug). Then the

stresses and strains represented as

o= (0;) and e= %(VU + (VvU)h)

By the assumptions, the stresses and strains can be decomposed into elastic and thermal

parts respectively, o = gelastic _ gthermal

E E
o =7 e (€11 + pea) — ] HJE
E E
Og2 = 3 (pern + €22) — e’
L=p L—p (2.9)
E .,
O = 1 +u€ij (i #7)
033 = 0
\
Consider small displacement,
0 0
U1 Ul—Zﬂ, U2 Ug — 2 u3’ U3 Us
ox
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Besides,
( ouy 0%us
= or : 0x?
Ous 0%us
€9 = 0_y -z 052

(2.10)
. 1 8U1 8u2 82U3

—(=2L 2
2< oy + ox Z(?Q:By)

E'ij

(€13 =€ =653 = 0

For the bending component, us3, replaced by w.

h3 1
phwtt — pl—QAwtt + D(AQT,U =+ %AQ) = f

Assume the change 7 in the temperature is small compared to the reference temperature

Ty and €7 = a7, now we have the thermal-strain-displacement relations,

12X  hA
peby — XA+ —2 (2 4 1)0 + L Aw, = 0
pch?* 2 pc

Here, for simplicity, we consider a simply supported plate held at the reference temperature

at the boundary:
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The nonlinear Kirchhoff & Love thermoelastic plate system can be written as,

(

Uy — Ay + a(—Au)N*u + aNd = f(—Au)
Gt—AQ—i—Q—QAut:O
ulon = Aulag = 0lag =0

u(x,0) = u’(x), u(x,0) = u'(x),0(x,0) = 6°(x)

\
Here we mainly consider:

(

utt—AUtt+A2U+@A9:f
0, — N0+ 0 —alu, =g

ulon = Aulogg = 0loa =0

\u(x, 0) = u’(x), us(x,0) = u'(x),0(x,0) = °(x)
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CHAPTER 3 STANDARD MIXED ELEMENT METHOD
In this section, we introduce how to use mixed element method, with basic definitions
and properties. The existence of a unique solution of semi-discrete mixed element method
and error analysis are given in section 2. And the existence of a unique of its fully discrete
method and error analysis are considered in section 3. Numerical results are presented in

section 4.

3.1 Semi-discrete Mixed Element Formulation

Let Q C R?, we consider the linearized thermoelastical kirchhoff-love plate equation
system.
Problem(I): Find (u, 0) € (W1*(0,T; L?(2)) (N L>°(0, T; W24(Q))) x L>=(0, T; W>4(Q2)) such

that for all 7" > 0,

;

Uy — Auy + N u+ a0 = f, (x,t) € Qx(0,7T)
O, — N+ 0 —alu, =g, (x,t)€ Qx(0,7T)

(3.1)
u=A~A=60=0, (x,t)e 0Qx(0,7T)

u(x,0) = u’(x), u(x,0) = u'(x),0(x,0) = 0°(x), x€ Q

\

where u denotes the displacement of the plate, § denotes the displacement caused by
therm changes, ¢, u°, u' and 0" are given functions. Let ¢ = u;,0 = —/Au, the original
problem(I) would be transformed into:

Problem(I*): Find (q,0,u,0) € L>(0,T; H' () x L>(0,T; Hj(2)) x L>(0,T; Hy(Q)) x

L>=(0,T; Hy(2)) such that, for all 7' > 0
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(

@ —Aqg—Au+AN0=f, (x,t)€Qx][0,T]

et_A9+9_Aq:g> (th)GQX[OaT]
(3.2)

u=0=0=0, (x,t)€dNx]0,T]

\u(x,()) =u’(x),0(x,0) = Au’(x), q(x,0) = u'(x),0(x,0) = °(x), (x,t) €Q

3.1.1 Semi-discrete Mixed Element Formulation

To implement the mixed element method, we consider the following weak formulation:

Problem(I**): Find (¢, 0,u,0) : [0,T] =V x V x V x V such that, VI > 0, Vp,l,w,r € V

(u,p) = (¢,p) =0, (x,1) € 2x[0,T]
(0,1) = (Vu, V1) =0, (x,t) € Qx][0,T]
(g, w) + (Vgi, Vw) + (Vo, Vw) — (VO,Vw) = (f,w), (x,t) € Qx[0,T]
(3.3)
(O, 7) + (VO,Vr)+(0,r) + (Vq,Vr) = (g,7), (x,t) € Qx][0,T]

u=0c=0=0, (x,t)€0Qx][0,T]

u(z,0) = u’(z),0(z,0) = Au(x), q(x,0) = u'(x),0(x,0) = 0°(x), (x,t)€Q

\

Theorem 3.1. Problem [** has a unique solution.

Proof. The existence of the solution follows from the existence and regularity assumption.
By defining ¢ = u;, 0 = —/Au, it immediates comes up with a weak solution for /**. To

prove the uniqueness of the solution, we need to prove the stability first, let ¢}, o, up), 03 €
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H? be the initial data, and ¢, 0%, u’, 6 be the corresponding weak solutions. Then

lo" = 0?1020y + Il = @] 072200y < C(T)lug — | 3.4

where C(T) is a positive constant. Next to prove the stability result.
Denote §=q¢' — ¢%, 6 =o' — 0%, i =u' —u?, 0 = 0 — 2.

7

(At p) = (Ag,p) =0

,1) — (Va, Vi) =0

(3.5)
(G, w) + (V§, Vw) + (Vé, V) — (V6, Vw) = 0
\ (0;,7) + (VO,Vr) + (0,r) + (V§,Vr) =0
Choose p = Ad, | = AG, w = §and r = 6, and adding up all four equations,
1d~2 1d~2 1d ~112 1d~2 012 012 —
S+ SNl + S IVl + S A1+ VAP + 6 =0 (36)

Taking the integral, thus we have the stability. This completes the proof of the theorem.

O

3.1.2 The Existence and Uniqueness Semi-discrete Mixed Element Formulation

In this section, we demonstrate on the existence and uniqueness of the solution of sys-
tem. Now we consider the following semi-discrete form for problem(/**).

Problem([h): Find (qh, Op, Up, Hh) : [O, T] — VhXVhXVhXVh such that V1" > O, Vph, lh, Wh,Th €
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Vi,

(a) (upe,pn) — (qn,pr) =0, (x,t) € Q x [0, T
(b) (Jh,lh) — (Vuh, Vlh) = O, (l’,t) € Q) x [O,T]
(©) (qneswn) + (Vane, wp) + (Vop, Vwy) — (VO V) = (f,wy), (z,t) € Q x [0,T]

(d) (th, Th) + (V@h, VTh) + (0117 Th) + (VQh, VT’h) = (g, T’h>, (ZL‘,t) €0 x [O, T]

\
3.7)

with given ¢, (0), 01,(0), u5(0), 85(0) determined.
Theorem 3.2. Problem I}, has a unique solution.

Proof. Denote G, = q; — q2, 61, = 0} — 0%, Uy, = uj — ui, O, = 0} — 62,

For problem (I,,), work on eqn (¢) and (d), substitute by @, = —Ag, and 7, = —Ab,,

(

(Atng, pr) — (AGn, pn) = 0

(5-h7l) - (Vﬂh, vzh) =0

(3.8)
(Gnt, wn) + (Vane, Voy) + (Vén, V) — (VOy, Vo) = 0
\(éht,’f‘h) + (Véh, VTh) + (éh,rh) + (V(jh, V’f’h) =0
Choose p;, = Ay, I, = NG, w, = G, and r, = 0,, and adding up all four equations,
ld, . o 1d, ..o 1d __ .o 1d = 52 52
- - - ——10 0 0,]° = 3.
S G + S + S S IV + 5107 + 907 + 162 =0 (3.9)

Taking the integral, thus we have the stability. This completes the proof of the theorem.

O
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3.1.3 Semi Discrete Estimates

First we need to introduce the elliptic projection, find R.q, Ryo, Ryu, R,0 € V}, satisfy-

ing:

(V(qg — Rnq),Vv) =0, Yo, eV, (V(u — Rpu),Vv) =0, Yo, €V,

(3.10)
(V(o — Rpo),Vu) =0, Yu, €V, (V(0 — Rp0),Vv) =0, Yo, eV,
The following estimates are well known from [4]: for j = 0,1
lu — Ryull; < CHM'ul|pga lg = Rugll; < CR* ' lqllosa
[(w = Ryu)ill; < CRM 7 lug g (g = Rug)ell; < CHM gk
(3.11D)
16 = Rubll; < CRM 71101 lo = Ryoll; < CR* ol

10 = Ra)ull; < CR N6kl [I(0 = Rao)ill; < CRH ol

Subtracting (/**) from I, we obtain:

.

@) (une — ug,pn) — (qn — ¢, pn) =0
(b) ((Th — 0, lh) — (Vuh - V'LL, Vlh) =0

© (gnt — g, wn) + (Vane — Vi, wy) + (Vo — Vo, Vuy,) — (VO, — VO, Vwy,) =0

k(d) (Opt — Op,10) + (VO, — VO, V1) + (0, — 0,7r,) + (Va, — Vg, Vry) =0
(3.12)
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Denote:
1d 9
(O(qn — Rrq), qn — Rnq) = =—1lan — Ruq/|
2 dt
1d
(0:V(qn — Rnq), V(gn — Riq)) = §£HV(% — Ruq)|)?
1d
(&(ah — RhO'), V@t(uh — Rhu)) = (Uh — RhO', —8tAh(uh — Rhu)) = 55“(0}1 — RhO')H2
1d 9
(0u(0r, — Ri0), 0, — RLO) = ——||0r, — R0
2 dt
(3.13)
Take decomposition:
g —q=qn — Rpq+ Rpqg — q up, —u = up, — Rpu+ Rpu — u
(3.19)

Uh—UZUh—RhG+RhJ—0' Qh—0:0h—Rh9—|—Rh0—0

Then the equation system can be written as:

(@) (unt — Ruue, pr) — (an — B, pn) = —(Rpue — ue, pr) + (Bag — q,pn)
(b) (o, — Rpo, ) — (Vup, — VRyu, Vi) = —(Rpo — o0,1y) + (VRyu — Vu, Vi)
(gt — Rnqe, wn) + (Vgue — VRyqe, wp) + (Vo — VRyo,Vwy) — (VRLO, — VRL0, Vwy,)
© = — (Rngne — qt,wn) — (VRugne — Vi, wn) — (VRpop, — Vo, V)
+ (VR — V0, V)
(Ont — Rpby, ) + (VO — VRLO, V1) + (6, — Rpb0,11) + (Van, — VRug, Viry,)

(d
= — (th — Rhet, T’h) — (V@h — VR}L@, V’f‘h) — <9h — Rhe, T’h) — (th — Vth, VT}L)

(3.15)
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Theorem 3.3. With u;,(0) = 1y,(0), o4(0) = &4(0), 6,(0) = 0,(0), gu(0) = Gu(0), the following

estimate holds:

lg = anll + 1w = unll + llo — onll + 10 — Ou]| <CR*

C depends on ||Qt||L°°(Hk+1): ||9t||Loo(Hk+1): ||9||L00(Hk+1); ||0||L00(Hk+1): |Q||L°°(H’“+1): ||Ut||L°o(Hk+1)-

Proof. Take docomposition:

G —q=qn— Rpng+Rpg—q=8&+m up, —u = up — Rpu+ Rpyu —u = &+ 13

op—0=0p— Rpo+ Ryo—0 =& +1n O, —0=0,— R0+ Rp0—0=E +mn,

Choose wy, = q, — Rpq and r, = 0, — R0, sum Eq.(c) and Eq.(d).

(él,t; 51) + (Vgl,ta v§1) + (v§27 v§1) + (54,157 54) + <v§4,t7 V§4) + (547 54)

= —(,t,&1) = (Vne, VEL) — (4, €a) — (M4, a)

As to:
(€106) = I
(VEr V&) = S IVEP
(€10,60) = ]l
(V6 Ve = VG, (660 = )2
Besides,

(V£2, Vfl) = (EQ,tv §2) + (772,t7 772) + (52,157 772> + (nQ,t7 52)

d
= (&2, &2) + (M2, m2) + E(&’ 72)
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Let’s deal with the right hand side,

1m0 < Climall? + Cl& P < CRPE Vgl + Cllél?

1(Vn10, VEN | < ClIVnl® + CIVEN? < O lgils + Cll& P

(14, €01 < Clinaa|l? + Cll&al® < CRPEV)G,]17 1, + Clléall?
(14, €)1l < Climal® + Cll&all® < CRFDNONR L, + Cllall?

d
(52,t77]2) = E(&’Th) - (Uz,t7§2)

(2, €)1l < Cllmeel? + Cliéall* < CR** Vo7 1y + Clléel?

When summing those right hand side, we will have:

d 2 d 2 d 2 d 2 d 2 2
L+ L IVaE + Ll + L6l + L 1vel? + e
d d
- _<Th,t7§1) - (an,nvfl) - (774,::754) - (774>§4> - E||772”2 - E(£27T]2)

d
< OR*(llgellZor + 10elEss + 1011 + Nloullin) + CUEN + &ll® + 1€) + = (&2, 12)

Using Cauchy-Schwatz inequality, and apply Gronwall inequality, integrate from 0 to ¢.

T
€011 + IVEN* + l1€l* + 18l + 1 VEal® +/O I€4]1ds
= 1&(O)* + V& O)I* + 1€ (0)I* + |E ) ]I* + [[VE(0) I
T
+ Ch%/o (lgell5 1 + 1005 a + 10N5 11 + llowlli ) ds

T
+ 06/ (1&2ll* + ll&211* + lI€al*)ds + Cell&a]|* + Clina®
0
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Simplify further,

T
€111 + IVE& 1" + (1 = Coll&all* + 16all* + 1 VEall* + /0 I€4]1"ds
= l&(0)* + [IVEO)I* + I€2(0)I* + |& ) ]|* + [[VE(0) I
T
+ Ch%/0 (lgel&y + 10050 + 1ONR 42 + lloelR 1) ds

T
+ 06/0 (I&xll* + lIEl” + lI€all*)ds + CRY [l |)*

Since ||£;(0)]|,]|€4(0)|| has the order of O(h*™!) and ||V (0)]], [[VE4(0)]| has the order of

O(h*). We will have the conclusion,
160l + €2l + llEall < C*

Choose p;, = &3, we can obtain

d
S ZlEsI7 = (61,65) — (5.6 + (1, 5) (3.16)

< Cll&ll? + Cll&sl)? + Clinsell® + Cllm |

Since

nsell* < CRPFH |lugl3
(3.17)

I |* < CR*EH D gll3
Using Cauchy-Schwatz inequality, and apply Gronwall inequality, integrate from 0 to .

Ld

T
sl < IGO) + [ (lulia + lalEds + el G18)
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This completes the proof. O

3.2 Fully Discrete Mixed Element Formulation

3.2.1 The Existence and Uniqueness Full Discrete Mixed Element Formulation

For full discretization, we use the backward Euler method of first order accurate in
time. For the backward Euler method, Let A be a positive integer, then At = T'/M be the
step size of time, t' = iAt,0 < i < M. Further, let ¢ = ¢(t") and 9" = (Y™ — " 1) /At,
for some continuous function ¢ € C°[0, 7], and let (Q™, S™, U™, 0") € V;* x V;* x V;* x V}*
be the mixed element approximation of (¢(t"), o ("), u(t"),8(t")). For each n, the different
time interval is (¢, ¢"™!), the corresponding triangulation is 7;", finite element space V}".
Then the fully discrete mixed finite element solution for problem (/**) may be presented
as follows:

Problem(/}"). Find (Q",S™, U™, ©") € V;* x V;* x V;* x V;* such that, for 1 < n < M,

Von, by Wh, 1 € Vi

/

(aUn7ph> = (Qnuph)
(5™, 1) — (VU™ V1) = 0

(0Q", wy) + (VOQ", wy) + (VS™, Vwy,) — (VO", Vuwy) = (", wy)

(00", 14) + (OVO™, Vry,) + (0™, 14) + (VQ", Vry) = (g",71)

\

Theorem 3.4. Problem I}' has a unique solution (Q™, S™, U™, ©") € V;* x V;* x V;* x V™
PT‘OOf. Denote Qn — Ql,n _ Q2,n’ gn — Sl,n _ SQ,n’ Un — Ul,n _ U2,n’ (:)n — @l,n _ @2,71.

For problem (I}*), work on eqn (c) and (d), substitute by @, = —AQ" and 7, = —AO",
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(AU — AUP? -
( on) — (AQ", pr) =0

T

(5™, 1) — (VU", V1) =0

A An—1 ~n_anfl _ _
(%,wh) + (VQ - @ ,Vw) + (VS™, V) — (VO™ Vwy,) =0
én _ én—l - . -
|(F———270) + (VO", Vra) + (67, 7) + (VQ", Vra) = 0

Choose p, = AU™, I, = AQ™, w, = Q™ and r), = ©", and adding up all four equations,

T rTn—1 _ _ ~ _ ~ ~ -
(AU =l CAU™) — (AQ™, AU™) + (5™, AQ™) — (VU™, VAQ™)

T
A _ n—1 _ VNn_v~n—1
N ORACEL
én _ én—l _ _ ~ ~ ~ B ~
+ (———,0") +(Ve",Vo") + (0",0") + (VQ",Ve") =0

-
(3.19)

,VQ") + (VS™, VQ") — (VOr, VQ)

As the fact,

AU” . AUn_l B AU” 2 AU”_I 2
( AT > I 1* =1l I

T 2T

I An—1 N A2 _ || yn—1]2

@ =@ s 1@ 0
T 27

In An—1 5 |2 An—11|2

Vo —vaQ VO > IVe"|* - [[ve™|

T 2T
n _ Qn—1 _ A2 |1Qn—1(2
(@ © ) > e — e

T 2T

(

Simplify eqn(4.10):

|AU" |2 — | AU N Q™)1 — [|Q" 12 N Iver|* — v N jon]]? — |2
2T 21 2T 21
+ Vo> + (o> <o
(3.20)
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Sum 4.11 forn =1--- M, then

|ATM |2 — |ADO))? N 1QMI* — 11Q°|> N VM2 — [VQ°|? N |OM]|* — ||©°|1>
2T 2T 2T 2T
M (3.21D)

+ Y (IVeP + 1e]*) < 0

=1

By discrete Gronwall inequality, thus we have the stability for fully discrete form. This

completes the proof of the theorem. O

3.2.2 Fully Discrete Error Estimates

For the error estimate, we need to introduce the decomposition.

q(t") — Q" = q(t") — Ruq(t") + Rug(t") — Q" =m + &
o(t") = S"=0(t") — Ryo(t") + Rpo(t"™) — S™ =ny + &

(3.22)
u(t™) = U™ = u(t") — Rpu(t™) + Rpu(t™) — U™ = n3 + &3

O(t") — O™ = O(t") — Ryu(t™) + Ryu(t™) — O™ = 1y + &

We may denote ¢(t") as ¢, here ¢ can be q, o, u, . R, is elliptical projection defined
previously.

Theorem 3.5. Let (Q",S",U",0") and (q, 0, u, 8) are the solutions of (I}}) and (I**). If ¢; €
LoO(HFYY, 0, € L®(H ), uy € L®(H*), uy € L2(HMY), gy € L2(HMY), 0y € LA(HF,

0, € L2(H*Y). Then for Vn > 0, there exist:

Q" — a(t")[| + 18" = 0(t™)|| + [|S™ — o(t")I| < Co(h" +7)

IU" — (")l < Co(h*' +7)
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Proof. Using the system of equation at ¢ = ¢", we obtain

;

(aUnva> - (anpZ)

(S™ 0y — (VU™ Vi) =0
(3.23)

(0Q", w}) + (VOQ", wy) + (VS™, Vw}) — (VO", Vu}) = (F,w})

(00", 1) + (VO™ Vri) + (0™, 1) + (VQ™, Vr) = (G, r})

\

Easily we will have:

p

(981, wy) + (VO&T, Vwy) + (VE;, Vyy) — (V€] Vuy) = —(0n + 71, wpy) — (VO + w3, Vuwy)

| (03,73) + (OVE], Vi) + (&, 73) + (VE], Viry) = —(0nf + 75, 7) — (0, 77)
(3.24)

Take wy, = & and rj, = £, respectively:

(985, €1) + (OVEL, VED) + (&5, €1) + (V& VET) = —(9nf + 3. &F) — (03, &)
(3.25)

Sum those two equations:

(967, €1) + (V& VET) + (Ve VED) + (0, €1) + (OVEL, VE!) + (€1, €1)

= =0} + 71, &) = (VO + 73, VET) — (01 + 73, &) — (0, €4)
(3.26)
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Remark. The following inequalities and identities will be useful.

n||2 _ n—1/2 _ n||2 _ n—112

€317 — llgr "]
2T

(3.27)
(Ver, ven) = Iverl®, (&) = e’

(95, &0) >

Y

Let’s deal with the right hand side, If applying Cauchy Schwartz inequality,

Oh2(k+l) tn .
— [ Il +ClE?

tn—1

1@nt, €M)l < Cllont|I* + ClIE]* <

a..n n a,N n Cth n n n
1(Vany, VED || < CIVant|* + C|VEL|IP < - / a2 + ClIVET|
tn—1

a,.n ¢n a..n ChZ(k+1) n n n
1O, €D < Cllomg|* + ClIE1° < - /t 167 141 + ClIELIP

1, €011 < Cllm 12 + CllER* < O D077, + Cll |

(05, m5) = O(&S,my) — (O, &) (3.28)

N ¢ 7,12 2112 Ch2(k+1) n n||2 n (|2
10, &)l < Cllom|I” + Cll& )" < —— / ot e + Cllgz
tn—1
tn
(77, €M < Cliat|? + CllEd)? < CT/ llgee|I* + CllETN?
tn—1

tn
(w3, &)1 < Cllmz |I* + CllExN” < CT/ lowll* + CllE 1
tn—1

tn
(w5, €01 < Cllmg||* + CllE” < CT/ 1611 + ClF1I*
tn—1

Also, we can transform the term,

(VEs, VEY) = (983, &) + (O ) + (&5, m) + (013, &)
(3.29)

= (93, €5) + (O3 n3) + 0(&5. n3)
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When summing those right hand side, we will have:

€PN + IVETIE + IV EIP + 1E711° + 7 Y (€I + I VEr|®)
0

T
< 1% + IVelll® + l1€* + Ch%(/o lgellisr + 110e]1%40) (3.30)

n

T
+07 [ el + ol + 1641 + O S (UEF + P

0

Besides,
I1Rhg” = ¢l + B[ Rug® — ¢°lls < ChF gk
|Ryo® = o°|| + h*||Ruo® = ®lls < CR** ok
(3.31)
[Rpu’® — | + BF[| Ry’ — |y < O |4

1RA6° — 0°] + h*(| Ru6” — 0°[1 < CRE0]]ksa

Take p;, = &3, we can obtain

n

T T
e 11* < ||£§||2+0h2(k“)/ ||ut\|i+1d8+072/ luel*ds +C7 Y (171 + N1€511%) (3-32)

0 0 0

According to the discrete Gronwall inequality, that proofs the theorem. O

3.3 Numerical Examples

Consider
(

utt—Autt—l—AQu—{—aAG: f
0, — N0+ 0 —aluy, =g

ulon = Aulpg = 0logq =0

\u(x, 0) = u’(x), us(x,0) = u'(x),0(x,0) = 0°(x)
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And o =1,Q =10,1] x [0,1], T"= 1, with exact solution

u = sin(mz)sin(ry)e "

0 = sin(2rx)sin(2ry)e

T is regular pattern triangular mesh, and mixed element space is (P, (K)x P, (K ) x P;(K) x
Py(K)) used to solve the problem. The convergence curves of L? error of the solution
are depicted in the figures. From the plots, we can clearly observe the L? convergence
rate for those four variables (¢, o, u, ) are O(h?),O(h?), O(h?*), O(h?), which has a higher

convergence rate than theoretical ones.

L?—Convergence rate of at time ¢ = 0.2.
N [l¢" —Qpllo Order [ Jlo" — X3]lo  Order | [Ju™ — Upllo  Order [ [[" — ©}]p Order
2 | 2.065535 4.269080 0.463385 3.378281
4
8

1.119665 0.88 | 3.313670 0.37 | 0.210791 1.14 | 1.493514 1.18
0.341691 1.71 | 1.464374 1.18 | 0.044783  2.23 | 0.473359 1.66
16 | 0.091543 1.90 | 0.515730 1.51 | 0.011396 1.97 0.12637 1.91
32| 0.023339 1.97 | 0.178029 1.53 | 0.002801 2.02 | 0.032157 1.97
64 | 0.005887 1.99 | 0.061717 1.53 | 0.000701 2.00 | 0.008090 1.99

Table 1: The numerical test for MFEM convergence rates ¢ = 0.2

L?—Convergence rate of at time ¢ = 0.4.

l¢" — Qpllo Order | [[o" — X[ Order | [J[u" — Up]ly Order | [[0" — ©}][ Order
1.094914 7.393774 0.695839 2.551924

0.777217  0.49 4.137935 0.84 0.367084  0.92 1.149737 1.15
0.311103 1.32 1.492817 1.47 0.103911 1.82 0.383152 1.59
16 | 0.085048 1.87 0.521902 1.52 0.026937 1.95 0.104057 1.88
32 | 0.022087 1.95 0.157846 1.73 0.006779 1.99 | 0.026956 1.95
64 | 0.005585 1.98 0.052072 1.60 0.001698 2.00 | 0.006807 1.99

0N =

Table 2: The numerical test for MFEM convergence rates ¢t = 0.4
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L?—Convergence rate of at time ¢ = 0.8.

l¢" — Qpllo Order | o™ — X}flo  Order [ [J[u™ — Upflp  Order [ [|§" — ©}][ Order
0.628412 5.309609 0.447831 0.330048
0.638675 -0.02 | 4.010646 0.40 | 0.307582 0.54 | 0.482643 -0.55
0.240155 1.41 | 1.430877 1.49 | 0.105983 1.54 | 0.209806 1.20
16 | 0.06458 1.89 | 0.444102 1.69 | 0.029738 1.83 | 0.059779 1.81
32| 0.016836 1.94 | 0.132804 1.74 | 0.007612 1.97 | 0.015558 1.94
64 | 0.004265 1.98 | 0.040809 1.71 | 0.001917 1.99 | 0.003944 1.98

AN

Table 3: The numerical test for MFEM convergence rates ¢t = 0.8

L?—Convergence rate of at time t = 1.0.
l¢" — Qpllo Order | [[o" — ¥}l Order | [J[u" — Upflo  Order | [|6" — ©}][¢ Order
0.749048 1.271249 0.162699 0.617435
0.306067 1.29 | 0.789878 0.69 | 0.052576 1.63 | 0.258817 1.25
0.086848 1.82 | 0.306119 1.37 | 0.014797 1.83 | 0.076604 1.76
0.022782 1.93 | 0.082206 1.90 0.00381 1.96 | 0.020485 1.90
0.005779 1.98 | 0.21296e-1 1.95 | 0.000959 1.99 | 0.005227 1.97

TR o=

Table 4: The numerical test for MFEM convergence rates ¢t = 1.0

We can observe that the L? error of (g4, o1, up, 05, ) converges at the rate of 2 that is more
than expected. The following four figures, at different time, are using log — log plot, then

the slope is equivalent to the convergence rate, in absolute meaning.
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CHAPTER 4 IP-DG METHOD

In this section, we introduce how to use IP-DG mixed element method, with basic defi-

nitions and properties. The existence of a unique solution of semi-discrete mixed element

method and error analysis are given in section 2. And the existence of a unique of its

fully discrete method and error analysis are considered in section 3. Numerical results are

presented in section 4.

Let Q C R?, we consider the linearized thermoelastical Kirchhoff-Love plate equation

system.

Problem(I): Find (u,0) € (W1(0,T; L2(Q)) () L>=(0, T; W24(Q2))) x L*>°(0, T; W?4()) such

that for all 7 > 0,

(

Ut — Autt —+ AQU—FC(AH = f, (X, t) € O x (O,T)
Qt—Ab’—i—Q—aAut:g, (X,t)E QX(O,T)

u=~Au=60=0, (x,t)e 0Qx(0,7T)

| u(x,0) = u’(x), us(%,0) = u*(x),0(x,0) = 0°(x), x€ Q

where u denotes the displacement of the plate, ¢ denotes the displacement caused by

thermol changes, ¢, u°, u! and ¢° are given functions.

4.1 Semi-discrete IP-DG Mixed Element Formulation

4.1.1 Semi-discrete IP-DG Mixed Element Formulation

Let ¢ = u;, 0 = —/Au, the original problem(I) would be transformed into:

Problem(I*): Find (q,0,u,0) € L>(0,T; H} () x L>(0,T; H} () x L>(0,T; H}(Q)) x
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L>(0,T; H}(Q)) such that, for all T > 0

(

qt—Aqt—Au—i—Aezf, (X,t)E QX(O,T)
O —NO+0—Ng=g, (xt)e Qx(0,7T)

u=0=0=0, (x,t)€ 0 x (0,T)

| u(x,0) = u’(x),0(x,0) = Au’(x), ¢(x,0) = v (x),0(x,0) = °(x), x€
Definition 4.1. The bilinear form ay(u,v) contains the parameter ¢ defined as follows

taking the value —1, 0, 1, and is symmetric when ¢ = —1 and it is nonsymmetric otherwise.

ac(u,v) = (Vu, Vo), = Z (Vu, Vo) — Z /(Vu> -nfv]dS + € Z /(Vv) -n[uldS

KG'Th €€Fh’D 8th,D
gl
— d
+ Z he/e[u][v] s Yu,veV
SGFh,D

4.2)

Remark. Notation:

Average,

1
(v) =" +v7)
2
Jump,
Lemma 4.1. For DG bilinear form, |||, is coervive if there is a positive constant « such that:
Yo € V,llully < ac(v,0)

If e = 1, then obviously k = 1, or k =  if choosing -y large enough for e = 0 or 1.
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To implement the mixed element method, we consider the following weak formulation:

Problem(I**): Find (¢, 0,u,0) : [0,T] -V x V x V x V such that, VI' > 0, ¥Vp,l,w,r € V

(ur,p) = (¢,p) = 0, (z,1) € @ x[0,T]

(0,1) — (Vu, VI)y = 0, (2, 1) € Q2 x [0, 7]

(g1, w) + (Vai, V) + (Vo, Vo), — (VO, V), = li(w), (z,t) € Q x [0,T]
(O, 1) +(VO, V1) + (0,7) + (Vq, V1) = la(7), (z,1) € Q x [0,T]

u=0=0=0,(z,t) € 00 x[0,T]

u(,0) = (), o(2,0) = Au(x), q(x,0) = u' (x), 6(x,0) = 6°, (1) € 2 x [0,T]

\

where V' = L>(0,7T; H}(Q)). Now we consider the following semi-discrete form for
problem (/*).

Theorem 4.2. Problem I** has a unique solution.

Proof. To prove this theorem, just need to prove the bilinear form is coercive and continu-
ous.

The existence of the solution follows from the existence and regularity assumption. By
defining ¢ = w;, 0 = —Au, it immediates comes up with a weak solution for /**. To prove
the uniqueness of the solution, we need to prove the stability first, let ¢}, of, u, 0, € H® be

the initial data, and ¢’, 0%, u’, #° be the corresponding weak solutions. Then

lo" = o® || oo sy + 1wt = Ul oo i20y) < C(T)|lug — ug| 4.3)

where C(T) is a positive constant. Next to prove the stability result.
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Denote §=q' — ¢%, 6 =o' — 0%, i =u' —u?, 0 =0 — 62

(Aty,p) = (A, p) =0
(5,1) — (Vii, V), =
(G, w) + (Vs, V) + (V&, Vo), — (VO, V), =

(By,7) + (Y0, Y1) + (0,7) + (V§, Vr)y =

Choose p = Ad, | = AG, w = §and r = 6, and adding up all four equations,

1d

2 o + |l + e =
S+ 5] e+ |||+ e

1G|I” + I il

2dt” 2dt

Taking the integral, thus we have the stability. This completes the proof of the theorem.

]

4.1.2 The Existence and Uniqueness Semi-discrete Mixed Element Formulation

In this section, we demonstrate on the existence and uniqueness of the solution of
system. Now we consider the following semi-discrete form for problem(/**). Problem(/}):

Find (qh,ah,uh,éh) : [O,T] — Sh X Sh X Sh X Sh such that, VT > 0, Vph, lh,wh,rh € Sh

(@) (untspn) = (qn,pn) =0

(b) (Uha lh) - (Vuha vlh)w =
4.4)

(C) (Qh,t>wh) + (VQh,ta th)w + (fom th)w - (Veh, th)w = ll(wh)

(d) (Onesrn) + (VO NVTR)w + On,70) + (Van, Vru)w = la(1h)



44

with given ¢,(0), 04(0), up(0), 6,(0) determined, /; (wy,) and l»(r,) are two linear forms can
be written as [y (wy) = (fn, ws) and ly(ry,) = (gn, ) respectively, S, is the broken space
defined in Chapter 2, and S;, C V.
Theorem 4.3. Problem I}, has a unique solution.
Proof. Denote G, = q} — ¢, 6, = 0} — 02, @y, = u) —u2, O, = 0} — 63,

For problem (/,), work on Eq.(4.5¢) and Eq.(4.5d), substitute by @, = —Ag, and

7 = — A0y,

4

(Atpg, pn) — (Agn,pn) =0

(Gn, 1) — (Vip, Vip)y =
4.5)

(s wi) + (Vane, V) + (Vén, Vwy)w — (VO V) = 0

\ Ones 1) + (VO V7w + (On i) + (Van, Vra)w = 0
Choose p;, = Ay, I, = Adp, wy, = §, and 7, = 6, and adding up all four equations,

1d
2 dt

1d

2
ol + 5

1 + 5l + 5 8l + ||+ 16 = 0

Taking the integral, thus we have the stability. This completes the proof of the theorem.

]
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4.1.3 Semi Discrete Estimates

First we need to introduce the L? projection: find P,q, P,o, Pyu, P,0 € S), satisfying:

(V(g— Pnq),Vv) =0, Yu, eV, (V(u— Pyu),Vv) =0, Yu, €V}

(V(O’ — PhU), V’U) =0, Yo, € V}, (V(@ — Phﬁ), V’U) =0, Yo, € V},

The following estimates are well known from [15]: for j = 0,1

lu = Puull; < CRE a4 lg = Paall; < CH* gl
I(u = Pyu)elly < CHM 7l (g = Pag)ill; < CRET1 gyl
16 — Pl < CH* 7110114 lo = Pauoll; < CH** o]
10 = Pu):ll; < CRM 716,54 (o = Puo)ill; < CRE Y |loy |l

Subtracting (/**) from I, we obtain:

;

(@) (une — ue,pn) — (g — ¢, pn) =0
(b) (O’h — 0, lh) - (Vuh — VU, Vlh>w =0

(©) (qnt — @, wn) + (Ve — Vi, wp)w + (Vo — Vo, V), — (VO, — VO, V), =0

\(d) (th — Gt, Th) + (V@h — Ve, V?”h)w + (9h — Q,Th) -+ (th — Vq, Vrh)w =0
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Denote:

1d
(Oilgn — Prq), qn — Prq) = 5 dt”qh — Pyql]?
1d
@V(Qh - PhQ% V(Qh - PhQ)) 2 dt H\(Qh - hQ)|||
1d
(8t(ah—PhU),V8t(uh—Phu)) (Uh—PhO' —&gAh(uh—Phu)) 2dt”<0h_PhU)H2
1d 9
(0¢(0n — Pn0), 0, — Py0) = 5 dt||9h — B0

Theorem 4.4. With ’LLh(O) = ﬂh(O), Uh(O) = 6h<0); Hh(O) = Hh(O), qh(O) = (jh(()), thefollowing

estimate holds:

lg = anll + llu = unll + llo = onll + 116 — 6x]| <CR*

C' depends on || qu| oo (rrr+1), |0l oo sy, (101 oo rrnsny, |l oo sy, gl poo rrisnys (vl oo ey

Proof. Take docomposition:

Gh—q=qn—Pg+Pg—q=5&+m up, —u=u, — Pou+Bu—u==E+n;

op—0 =0y~ Po+Po—0=8+n Op —0=0,— B0+ P00 —0=E8 +m

Then the equation system can be written as:
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(@) (une — Puug, pr) — (qn — Pag, pr) = —(Prhuy — ue, pr) + (Prg — ¢, pn)

(b) (o, — Pro, 1) — (Vup — Vppu, Vi) = —(Pro — o, 1y)

o (gnt — Prge,wn) + (Ve — VPogr, wp)w + (Voy, — Vpro, V) — (VPO — VP8, V)
= — (Pagnt — @, wn) — (VPuane — V@i, wp)w

@ (One — Prby,rn) + (VO, — VPO, V1) + (0, — Pu0,7m1) + (Vg — VPrg, V) w
= — (Opt — Py, i) — (6, — Pu0,71)

Take w;, = & and r, = £, respectively:

(fu,fl) + (Vfl,n Vfl)w + (Vfé, V&)w - (V&, V&)w = —(771,157 51) - (V?h,t, Vfl)

(€at:€a) + (Va1 VE)w + (€4584) + (VE1, VE)w = —(Mae, §a) — (1, &a)

Sum those two equations:

(&1,6:61) + (V&4 V&) w + (VE, VE ) w + (§ats &) + (Vs VEa)w + (4, &)
= —(771,15,51) - (an,t; V) w — (774715,54) — (14, &4)
As to:
_d 2
(&1, &1) = %H&H

d

(V&1 VEi)w = £|||51|||2
d

(€a:84) = %H&HQ

(V& VEDw = IE1117, (60, &0) = [IGl®
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Besides,

(V&, V& )w = (&216,&2) + (26, m2) + (&2,6,m2) + (12,45 &2)

d
= (&.4:&2) + (M2,0.m2) + E(&’ 72)

Let’s deal with the right hand side,

1, €)1 < Climalls + CllENG < CR*DqulF 1 + Cll&S
2
1(Vn1e, VEI| < Cll|mel|” + Cllll* < CR* @74y + Cllé I
(a0, €) | < Climaalls + ClENE < CRPFING17, 1 + Cliéalls
1(na, &)l < Climall + Cll&alls < CRPEVN0)1Z L, + Cliéalld
d
(52,t;7)2) = E(fzﬂh) - (Uz,m&)

112, €)1 < Clineellg + CliEally < CR2* Voeli iy + Cllélls

When summing those right hand side, we will have:

d 2 d 2 d 2 d 2 d 2 2
L+ Lhel? + Ll + iel? + She + el
d d
= _<Th,t7€1) - (an,t,V§1)w - (n4,t7£4) - (774754) - %HUQHQ - E(£27772)

d
= CP*(lgellis + 10ellZr + 100E 41 + llonlli) + CUGI + l1€1° + N1€al1%) + — (&2, m2)
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Taking integral of both sides,

T
HEl® + Ml + Heal® + N€all® + all® + /0 €41 ds

= & (O)]1* + € O)IF + [1€2(0) 1 + [1€a(O) 1 + l€a(0) I

T
+ Ch%/ (lgelin + 1007 r + 10N 41 + Nloelisa)ds
0

T
+ 06/ (&2l + N1E2ll* + [1€al*)ds + Celléal* + Clina |
0

Simplify further,

T
el + Ml + (1 = Ce)lléal® + ll€all® + llall® +/0 I€4]1*ds
= (16 O + NEO)I® + 1€2(0) I + €2 (0) 1 + 14 (0) I
T
+ Ch%/o (lgelRn + 10k r + 101K 11 + lloellisa)ds

T
e [ 6P + Gl + s + ChE o],
0
Since [[£1(0)]], 1€ O)I, 1€2(0) ], [|€all, [1€4(0)]| has the order of O(h?). We will have the con-

clusion,

l€all + ll€all + lléall < CR*

Choose p;, = &3, we can obtain

SNl = (61, E) — (mar ) + (1, 5) (4.6)

< Cll&ll? + Cll&sl)? + Clinsell® + Cllm |



50

Since

175,11 < CR** Vg3
4.7)

I |I* < CR** Vg3

Using Cauchy-Schwatz inequality, and apply Gronwall inequality, integrate from 0 to 7.

T T
16l < [€(0)]” + CR2G+D / Qs + NallZs0)ds + C / l&lPds  (4.8)

This completes the proof. O

4.2 Fully Discrete Mixed Element Formulation

4.2.1 The Existence and Uniqueness Fully Discrete Mixed Element Formulation

For full discretization, we use the backward Euler method of first order accurate in
time. For the backward Euler method, Let M be a positive integer, then At = T'/M be the
step size of time, t' = iAt,0 < i < M. Further, let ¢ = (") and 9" = (Y™ — " 1)/At,
for some continuous function ¢ € C°[0,T], and let (Q™, S, U™, 0") € S x S x S x S
be the mixed element approximation of (¢(¢"), o(t"), u(t"),0(t")). For each n, the different
time interval is (¢", t"*!), the corresponding triangulation is 7;", broken space S;. Then the
fully discrete mixed finite element solution for problem (/**) may be presented as follows:
Problem(/}'). Find (Q",S™, U™, 0") € & x S x S x Sp such that, for 1 < n < M,

vphu lh) Wh, Ty € 8}7
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;

(@ (U™, py) = (Q",p})

(4.9)

© (BQ", wl) + (VOQ", W)y + (VS™, V) — (VO", Vol )y = (f7, w!)

() (90", 77) + (OVO", Vri)u + (0", 17) + (VQ", Vri)u = (¢".77)

Theorem 4.5. Problem I}' has a unique solution (Q™, S™, U™, ©") € S} x S x S} x S}
Proof. Denote Qn — Ql,n _ QZ,n’ gn — Sl,n _ SQ,n’ Un — Ul,n _ U2,n’ én — @1,71 _ @2,n.
For problem (I}*), work on Eq.(4.9c) and Eq.(4.9¢), substitute by @, = —AQ" and

= —AO",

( ,pn) — (AQ™, pp) =0

(5™, 1) — (VU", V1) =0
An _ n—1 An Nn—1
Q" —Q ) + (VQ V@

( T T
én B én—l AN AN n
<—77nh) + (V@ avrh>w + (6 7rh> + (VQ 7vrh)w =0

\ T

NV wn)w + (VS™, Vwg)w — (VO", Vawg)y = 0

Choose p, = AU™, I, = AQ™, w, = Q™ and r), = ©", and adding up all four equations,

T rTn—1 _ B 5 5 5 B B
An _ An—1 _ n An—1 5
(G (Y g
4 T - (4.10)
+(VS", VQ"), — (VO",VQ"), + (———,0")

T

+(VO",ver) + (6,0 + (VQ",ver), = 0
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As the fact,

A~n A~n 1 A~n 2 _ A'vnfl 2
A0 = AT s A0 = AT
2T
Q” Q" Ay o QP — (@
A
~ ~ n—1
ver-vert _ -, Q ‘
(T VY, _
&6t IO 1
T

Simplify eqn(4.10):

- 2
~ ~ _ n—1 ~ ~
AU - IIAU’HH2 Q"> — lQ™~ 1H2 @ e — e ?
2T 27' 2T 2T

+ |||6e"

ez <o

(4.11)

Sum Eq.(4.11) forn =1--- M, then

2 R
M2 770112 AMI12 (|02 oMl — |IlQ° AMI12 _ 116012
AT ZJATPIE | 1QIE = 1 e . 1<, ser 16 .

M 2
r2 (ol e <o
i=1

By discrete Gronwall inequality, thus we have the stability for fully discrete form. This

completes the proof of the theorem. O
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4.2.2 Fully Discrete Estimates

For the error estimate, we need to introduce the decomposition.

o' —=S"=0"— P,o" 4+ Pyo" = S"=1"+Y"
(4.13)
u"—U"=u"— Pu" 4+ Ppu" —U"=46"+7"

en_@n:Qn_Phgn_’_Phen_@n:pn_’_Cn

We may denote ¢(t") as ¢", here ¢ can be ¢, o, u, 0. P, is L? projection defined previously.

Besides,

Theorem 4.6. Let (Q",S",U",0") and (q, 0, u, 8) are the solutions of (I}') and (I**). If ¢; €
LOO(H’C+1)) et c Loo(HkJrl)’ s € Loo(HkJrl), Uy € L2(Hk+1), qu € LZ(HkJrl), o € LQ(HkJrl))

0y € L>(H*1). Besides,

1Puq° — ¢°|| + ¥ |1 Pag® — °lln < CR**Y|qllksa
| Pho® — 0% 4+ h*|| Pyo® — 0y < CH o ||
4.149)

1P — | + R Pra” — u®lly < CRE [l

1P6° — 0°l + R¥[[ Prt® — 6%l < CRE0] k4
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Then for ¥n > 0, there exist:

Q™ — ()] + 18" = 0(t") || + [|S™ — o(t")I| < Co(h* +7)

U™ —u(t™)]| < Co(h* +7)

Proof. Subtracting (I}") from (I**),

(a) (07", pn) — (€",pn) = —(80" + 7", pr) + (0", pn)

() (", 1) — (VA" Vip)w = —(7",1n) = (V6" Vip)w

() (O™ wy,) + (OVE™, Vwp)w + (VU™ V) — (V" Vwy)w = — (0™ + 7", wy) — (OV)™ + 7", V) w

(d> (6Cna Th) + (Vcn> vTh)w + (Cna Th) + (V¢n7 Vrh)w = —(5,0n + Vna Th) - (Pn, 7nh)
(4.15)

\

As we have the fact,

— (", AL") = (09" + 01" + K" + A YT

Choose wy, = £™ and r;, = (", and substitute into Eq.(4.15c) and Eq.(4.15d). Thus,

(gfnv fn) + (5V§n7 vgn)w + (5¢n7 ,wn) - (Vcn» vgn)w
— (A" T EY) — (D + VA, VE)y — (DT 4 K+ Aty (416)

= — (A" + 7", ") — (OV)" + V7", V&) — (07" + K", 9")

(D™, ™) + (VC™, V) + (€ CM) + (VO V) = —(0p™ + 0™, (") — (p7, ¢ (417)
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Take the sum of Eq.(4.16) and Eq.(4.17),

(D€, €M) + (IVE", VE™ )y + (99", ") + (9C", ¢") + (VC", V(M) w + (¢, C)

—_ _(57771 + Wn’gn) o (5vnn + ﬂ_n’ Vgn)w o (57_71 + Hn’wn) o (5pn + Vn7Cn) . (pn’ Cn)
(4.18)

To simplify Eq.(4.18):
L5 n L5 n 15 n 1~ n n n
FOIE 1+ SONE™ I + 504" 1P + AN 1P + NI + llg™ |1
3,1 n a. nl||2 n 3 n n 5 n
< O™ > + =" + o™ [II” + ="l + 197" 1> + [l"]|* + |9p7)> 419

n n n n|||2 n n
P ™ 1P 1M+ ™ 17+ ™ 1P+ 1S 11)
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Consider the RHS.

ot < S [ (4200
HﬂWsW[”MW@ (4.20b)
o l” < clavarie < <= [ i as 4200
Il < CIvee < Or [ s (4.20d)
lor™|* < ﬂ/; loellzsads (4.20e)
e <er [ oulas (4.200

tn—1
191" < ﬂ /t RRTATI (4.20g)

~

["]]? < er /tn 164]12ds (4.20h)

tn—1
1p"1* < CRHEED O™ |14 (4.20i)

Substitute (4.20) into (4.19).

1= n 1~ n 1~ n 1= n n n
SONEP + SBNEM I + 5012 + SN2 + NI + 12

Cth‘ tn tn
< S [ Qi + ol + 18 s+ [ laull + laull + ol + 16]*)ds

tn—1 tn—1

+Cllp" [+ CUE I + e I” + o™ I1* + llc™ 1)
(4.21)
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Sum (4.21) forn =1, ---, M.
) M
HEM 2+ WM™+ 1™ 17+ 0™ 1>+ > S I + 1¢™1%)
n=1

T
2
< 1”1 + ([l + N1 + Ne®* + Ch%/o (lgell 1 + Noellipr + 10:]511)ds

T
407 [ (laulP + laul + ol + 1)
0

M M
+CY " IP+Cr D UEM P+ E™IP + 1™ 1> + 11S™ 1)
n=0 n=0

(4.22)

At least, we need to guarantee 1 — C't > 0 to apply discrete Gronwall inequality.

M
(1= Crle" |2+ (1 = Cn[[e¥ I + (1 = o)™ + (1 = ColICM |2 + (IS I + IC™P)
n=1

T
2
< 11711 + (1[Il + N1 + Ne®* + Ch%/o (lgellz 1 + loellir + 16:]1511)ds

T
+ 072/ (lgsel® + lgeell + loee|* + N6 |*) s
0

M—-1
+ CMBPSDN01E .+ Cr Y (P + €I + 1917 + [1<711%)

n=0

(4.23)
In the numerical experiment, we use 7 = h?, then Mh>* 1) = p2* Applying the discrete

Gronwall inequality, we have the estimate,
1€+ [l ™12 + (¢ 1> < C(h?* +72)

Take p, = 7, we can obtain

T T M
I < 22+ CR2t+Y / g2, s + O / el Zds+C7 S (I + 07 ) (4.24)

n=0
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According to the discrete Gronwall inequality, that proves the theorem. O

4.3 Numerical Examples
Consider Consider

/

Utt—Autt+A2U+O{A0:f
0, — N0+ 0 —al\uy, =g

ulon = Dulsg = 0loa =0

u(x, 0) = u(x), uy(x,0) = v (x), 6(x, 0) = 6°(x)
And o =1,Q =10,1] x [0,1], T = 1, with exact solution

u = sin(mx)sin(ry)e "

0 = sin(2rx)sin(2ry)e™

the linearlized Kirchhoff-Love plate system with zero boundary condition on a unit square
Q= [0,1] %[0, 1] regular pattern triangular mesh will be utilized, and (DG, (K) x DG (K) x
DG, (K)x DG4(K)) is used to solve the problem. The convergence curves of L? error of the
solution are depicted in the figures. From the plots, we can clearly observe the convergence
rate for those variables are O(h!'®), O(h%®), O(h?), O(h'*), which has a higher convergence

rate than theory.
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L?—Convergence rate of at time ¢ = 0.4.

N | lq" — Q¢llo Order | [[o™ — X}lo Order | [u™ — U'[[y Order | [[0" — O] Order
2 | 0.155971 4.653860 0.128919 0.331690

4 | 0.078748 0.99 | 1.147516  2.02 | 0.021667 2.57 | 0.126256  1.39
8 | 0.024106 1.71 | 0.794004 0.53 | 0.005217 2.05 | 0.030676  2.04
16 | 0.010124 1.25 | 0.501864 0.66 | 0.001250 2.06 | 0.011094 1.47
32| 0.003556 1.51 | 0.355609 0.50 | 0.000315 1.99 | 0.003732 1.57

Table 5: The numerical test for SIP-DG convergence rates ¢t = 0.4
L?—Convergence rate of at time ¢ = 0.8.

N | lq" — Q7llo Order | [[o™ — X}|lo Order | [u™ — U'[[y Order | [[0" — O} Order
2 | 0.113938 1.901486 0.077915 0.128894

4 | 0.022832 232 | 0.390783  2.28 | 0.014178 2.46 | 0.080740 0.67
8 | 0.008757 1.38 | 0.087337 2.16 | 0.003472 2.03 | 0.022539 1.84
16 | 0.003640 1.27 | 0.072964 0.26 | 0.001070 1.70 | 0.005677  1.99
32| 0.001390 1.39 | 0.052947 0.46 | 0.000291 1.88 | 0.001713 1.73

Table 6: The numerical test for SIP-DG convergence rates ¢t = 0.8
L?—Convergence rate of at time ¢ = 1.0.

N [ lq" —Qpllo Order | [[o" —X}]lo Order | [u" —U'[[, Order | [[§" — O], Order
2 | 0.098843 1.396027 0.059813 0.119414

4 | 0.018618 2.41 | 0.289390 2.27 | 0.011609 2.37 | 0.066128 0.85
8 | 0.004650 2.00 | 0.084935 1.77 | 0.003007 1.95 | 0.016115 2.04
16 | 0.003176  0.55 | 0.026624 1.67 | 0.000793 1.92 | 0.004653 1.79
32| 0.001266 1.33 | 0.025795 0.05 | 0.000202 1.98 | 0.001488 1.65

Table 7: The numerical test for SIP-DG convergence rates ¢t = 1.0
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The following three figures are for SIP-DG, at different time ¢ = 0.4,0.8, 1.0, are using

log — log plot, then the slope is equivalent to the convergence rate, in absolute meaning.

t=0.4
10t ‘ T

—©—q
VP
u E

—A—0

|

NIP-DG Error
=
o
N
T

L
10° 10t 10?
Degree of freedom

Figure 5: SIP-DG L? convergence rate, time ¢ = 0.4
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Figure 6: SIP-DG L? convergence rate, time ¢t = 0.8
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t=1.0
T
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Figure 7: SIP-DG L? convergence rate, time ¢t = 1.0
NSIP-DG L?—Convergence rate of at time ¢ = 0.4.
N | llq" —Qpllo Order | [[o" — X}]lo Order | [u" — U'[[y Order | [[0" — O], Order
4 | 0.682449 5.511690 0.212949 0.689707
8 | 0.313659 1.12 | 5.187170 0.09 | 0.082745 1.36 | 0.311912 1.14
16 | 0.102740 1.61 | 3.562770 0.54 | 0.021483 1.95 | 0.098739 1.66
32| 0.032585 1.66 | 1.710790 1.06 | 0.004980 2.11 | 0.031392  1.65
64 | 0.008806 1.89 | 3.316620 -0.96 | 0.001191 2.06 | 0.008768 1.84
Table 8: The numerical test for NSIP-DG convergence rates t = 0.4
NSIP-DG L?—Convergence rate of at time ¢ = 0.8.
N | lq" — Q7llo Order | [[o™ — X}|lo Order | [u™ — U'[[y Order | [[§" — O} Order
4 1 0.257494 5.471160 0.241653 0.128610
8 | 0.182394 0.50 | 2.189670 1.32 | 0.080026  1.59 | 0.138881 -0.11
16 | 0.070341 1.37 | 0.835353 1.39 | 0.018095 2.14 | 0.064290 1.11
32| 0.020312 1.79 | 0.471876 0.82 | 0.004216 2.10 | 0.019019 1.76
64 | 0.005468 1.89 | 0.286252 0.72 | 0.001070 1.98 | 0.005209 1.87
Table 9: The numerical test for NSIP-DG convergence rates ¢t = 0.8
NSIP-DG L?—Convergence rate of at time ¢ = 1.0.
N [ lq" —Qpllo Order | [[o" —X}]lo Order | [u" —U'[[, Order | [[§" — O], Order
4 | 0.448340 4.009150 0.161125 0.369467
8 | 0.219525 1.03 | 1.701410 1.24 | 0.047769 1.75 | 0.201786  0.87
16| 0.059488 1.88 | 0.773496 1.14 | 0.012396 1.95 | 0.057879 1.80
32| 0.016482 1.85 | 0.341843 1.18 | 0.003011 2.04 | 0.016152 1.84
64 | 0.004679 1.82 | 0.185809 0.88 | 0.000706  2.09 | 0.004563 1.82

Table 10: The numerical test for NSIP-DG convergence rates t = 1.0
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The following three figures are for NSIP-DG, at different time ¢t = 0.4, 0.8, 1.0, are using

log — log plot, then the slope is equivalent to the convergence rate, in absolute meaning.
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Figure 8: NSIP-DG L? convergence rate, time ¢ = 0.4
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Figure 9: NSIP-DG L? convergence rate, time ¢ = 0.8
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Figure 10: NSIP-DG L? convergence rate, time ¢ = 1.0

4.4 Conclusions

In this chapter, we used both symmetric and nonsymmetric interior penalty discontin-
uous galerkin methods to approach the thermoelastic Kirchhoff-Love plate system. First
prove the existence and uniqueness of the problem for both NSIP-DG and SIP-DG, the only
difference is the coercive coefficient. If applying sufficiently smooth solutions, for SIP-DG,
the penalty needs to be large enough to guarantee stability, and the a-priori L* error for
Qn, On, un, 0 are at the rate of O(h* + 7), O(h*~! + 7), O(K**! + 1), O(h**! + 1), for for
NSIP-DG, the penalty needs to be set nonnegative, thus set 4, and the a-priori L? error for
Qn, O, up, Oy, are at the rate of O(h**! + 7), O(h* + 1), O(h*! + 1), O(h**! + 1), therefore
showing a greater convergence performance than SIP-DG. Here h is the mesh size, and 7
is the time step, k£ denotes the polynomial degree.

Since the SIP-DG bilinear form guarantees symmetric, continuous, coercive and adjoint
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consistent properties, that leads to the stability of the numerical scheme. And this method
conserves energy for stability property all time, that transits to the convergence proof.
however the main issue is the penalty needs to be large enough. NSIP-DG has a less

requirement on penalty term.

Remark. The convergence results holds for fully DG method where the underlying bilinear

form is symmetric, continuous, coercive and adjoint consistent.
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CHAPTER 5 H1-GALERKIN MIXED ELEMENT METHOD
In this section, we introduce how to use H1-Galerkin mixed element method, with
basic definitions and properties. The existence of a unique solution of semi-discrete mixed
element method and error analysis are given in section 2. And the existence of a unique of
its fully discrete method and error analysis are considered in section 3. Numerical results

are presented in section 4.

5.1 Semi-discrete Mixed Element Formulation

5.1.1 Semi-discrete Mixed Element Formulation

Let Q C R?, we consider the linearized thermoelastical kirchhoff-love plate equation
system.
Problem(I): Find (u, ) € (W1(0,T; L*(Q)) () L>=(0, T; W24(Q2))) x L*>(0, T; W24(Q)) such

that for all 7" > 0,

(

Ut — Autt —+ AQU + al\f = f, (X, t) € O x (0, T)

Qt—AE’—i—Q—aAut:g, (X,t)G QX(O,T)
(5.1)

u=~Au=60=0, (x,t)e 0Qx(0,7T)

| u(x,0) = u’(x), us(x,0) = u(x),0(x,0) = 0°(x), x€ Q

where u denotes the displacement of the plate, # denotes the displacement caused by ther-
m changes, g, v, u' and ¢° are given functions. Introduce the intermediate variables, the
original problem would be transformed into:

Problem(I*): Find (¢, p, 0,7, 5, W, u,0) € L>(0,T; HY(Q))x L>(0,T; H3 () x L>°(0, T; H3(2)) %
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L>(0,T; H(div, Q))x L>(0, T; H(div, ) x L=(0, T; H(div, ) x L>=(0, T; Hy (2))x L>(0,T; H} (Q))

such that, for all 7" > 0,

(@) q=w, (x,t)€ Qx(0,T)
(b) p=oy, (xt)€ Qx(0,T)

(¢c) Vu=r, (xt)e Qx(0,T)

=
~—
<

oc=5, (x,t)e Qx(0,7)

(5.2)
() o+V- =0, (x1t)e€ Qx(0,T)
(f) Vo=, (x1t)e Qx(0,7T)

(9) @+p—V-§+V-d=f (xt) e Qx(0,7)

(h) 6=V -w+0+p=yg, (x,t)e Qx(0,T)

To implement the mixed element method, we consider the following weak formulation:
Problem(I**): Find (¢, p, 0,7, 5, W, u,0) € L=(0,T; Hj (2))x L>(0,T; H}(Q))x L>(0,T; H3(Q)) x
L>(0,T; H(div, Q) x L>=(0, T; H(div, ) x L>=(0, T; H(div, ) x L>=(0, T; H} (2))x L>(0,T; H} (Q))

such that, for all 7" > 0
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(a) (q,x) = (us, x)
©) (. x) = (o6,%)
(¢) (Vu,Vx) = (7, Vx)
(d) (Vo,Vx) = (5,Vx)
(5.3)
(6) <J7VX))+(VF7V>Z):O

(f) (VO,Vx) = (@, Vx)

(h) (0, V-X) = (V-u,V-X)+ (0, V-X)+ (p,V-X) = (9, V- X)

However we need to change the variance form. As:

(pta % Y) = _(thai) = _(vo’tb)Z) = _(gttv)z)

(qta & X)) = _(VQtJZ) = _(vuttvij = _(ﬁtai)
(5.4)

(Q,V ' )Z) = _(V'gvxj = _<w7 )2)

(8157 v : X’) = _(VHH)Z) = _(wh)z)

Then the last two equations of (/**)can be transformed into:

(7, X) + (50, X) + (V- 5V - X) = (V- 0, V-X) = =(f, V- X) 55

Theorem 5.1. Problem [** is equivalent to Problem I*
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Proof. («<=). Suppose (q,p,o0,7,5, W, u,0) € VxV xV xW xWx W xV xV is the

solution of problem (/*), it is obviously a solution of (I**).
(=). From (5.3) Eq.(5.3a) and Eq.(5.3b), easy to know ¢ = w, and p = 0.

Since 7, §, W can be rewritten into,

7=V& + ¢
5= V& + b (5.6)
@ = Vs + b3

where &,&, & € L°(0,T; H*(Q) N HE(Q)), b1, b, ¢ € L2(0,T; H(div,Q2)), and V - ¢; =

0 (i=1,2,3)., substitute into eqn(c), eqn(d) and eqn(f), apply Green formula,

(V&L VX) = (Vu, V)

(V&, V) = (Yo, Vy) (5.7)
(V&, Vx) = (VO, V)
Then,
7=Vu+ ¢
§=Vo+ s (5.8)
W = VO + ¢
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Substitute into the last two equations:

_(uttav'%)+($l,tta>2> - (Uttav'X') + ((52,1%7)2) + (Vé’—V'LU,V)Z) = _<f7v>z>

04,V - X) + (036, X) + (V- 8, V%) — (0,V - X) + (93, X) — (04, V - ¥) + (P24, X)

Choose x' = ¢, + ¢o, in the first equation.

d
E(Cblﬂ: + ¢2,t7 ¢1,t + (bz,t) = (Cbl,tt + ¢2,tt7 ¢1,t + ¢2,t) =0

That leads to

(P14 + Do, D1 + P24) = (01,4(0) + 92.4(0), $1,4(0) + 2,4(0))

Choose the initial value,

Then,

$14(0) =0, 62,(0) =0

5.9)

And we can get, ¢ ; + ¢ = 0. Multiplying both sides by ¢, + ¢», integral over time [0, t],

(f1 + b2, 1 + b2) = (61(0) + ¢2(0), #1(0) + ¢2(0))

(5.10)
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Choose the initial value,

Thus,

Then, from eqn(5.10),

¢1+ @2 =0

_(UthV‘%) - (Utt7V%)+(V§—vw7V%> = _<f7v>z>
(5.11)
For any p; +q; — f € L>(0,T; L*(Q)), 3F € L>(0,T; H(div,Q)) and for any §; + 0 +p—g €

L>(0,T; L*(%)), 3G € L>(0,T; H(div,)) such that,

V-F:pt—i—qt—f€L2(Q)

(5.12)
V-G=0;+0+p—g
Substitute into the equation,
(V-FV-X)—(V-§=V -4, V-X)=0
(5.13)
(V-G V-X)=(V-4,V-X) =0
As x can be chosen from H (div), such that
V-F—(V:-§=V-w)=0
(5.14)
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Then we have following conclusion

@ +p—V-5+V-d=f
(5.15)

0, —V-w+0+p=g

That proves (=). O
Theorem 5.2. Problem [** has a unique solution.

Proof. The existence of the solution follows from the existence and regularity assumption.
By defining ¢ = uy, p = 04,7 = Vu,§ = Vo, = V0, it immediates comes up with a weak
solution for I**.

To prove the uniqueness of the solution, we need to prove the stability first.

let (pi, qb, ob, 7, T, s, ul, 0) be the initial data, and (p', ¢*, 0%, 7, 7", @', u’, 0°) be the
corresponding weak solutions.

Denotec]:ql—qZ,ﬁ:pl—pz,6:01—02,ﬂ:u1—u2,9~:01—92,7~?

I
g
|
i

=5 — &%, w=u' —

Q/J?l
Sy

b
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< (5.16)

(9) (Pt X) + (52, X) + (V-5,V-X) = (V-@,V-X) =0

- —

| () (@0, )+ (V- @,V - %) + (@, 7) + (5, §) = 0

Choose last two test functions, ¥ = 7, and X = w, and adding up those two equations,

1d,. o 1d,., oy
— = gt v
Sl S SIS + 1 )2 +

Ld

=112 A2 202
S IV V- 2 + [V =0

Taking the integral, thus we have the stability. This completes the proof of the theorem.

O]

Now we consider the following semi-discrete form for problem(/**).

Problem([h): Fil’ld (qh,ph,ah,Fh,.?h,zﬁh,uh,@h) : [O,T] — VhXVhXVhXWhXWhXWhXVhXVh
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(@) (an, x) = (unt: X)

() (Pn> x) = (Ot X)

(€) (Vun, Xn) = (7h, Xn)

(d) (Von, Xn) = (Sh: Xn)

(€) (o, xn) + (V- T, xn) = 0
(£) (V0. Xi) = (@, Xi)

(9) (@nt, V- Xn) + 0nt, Vo Xn) = (V- 80, VX)) + (V- Wh, V- X)) = (fn, V- Xa)

(h> (eh,b % )Zh) - (V : wha V- )Z)h) + (eha V- )Zh) + (phv % )Zh) = (gh7 A )zh)

(5.17)
with given 04(0), u,(0), 0,(0) determined.
Corespondingly, Eq.(5.17g) and Eq.(5.17h) can be transformed into,
(Thoats Xn) + (St Xn) + (V- 50, V- Xn) = (V- 0h, V- X)) = = (o, V- Xn) 5.18)
5.18

(Wht, Xn) + (V- Wh, V- Xn) + (W, Xn) + (V- The, V- Xn) = —(9n, V - Xn)

5.1.2 The Existence and Uniqueness Semi-discrete Mixed Element Formulation

In this section, we demonstrate on the existence and uniqueness of the solution of
system.

Theorem 5.3. Problem I}, has a unique solution.

Proof. The existence of the solution follows from the existence and regularity assumption.
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By defining ¢, = ups, pp = o, ™ = Vuy, S, = Vo, W, = V6, it immediates comes up
with a weak solution for 1.

To prove the uniqueness of the solution, we need to prove the stability first.

let (Pho, Thos Thos Thos Thos Who» Unos o) De the initial data, and (pj,, ¢;,, o}, 7%, 74, @y, uj,, 0},)
be the corresponding weak solutions.

Denote G, = q} — @2, P = ph — P2, O = 0 — 02, Uy = ul —u2, 0, = 0} — 02, 7, = 7 — 72,
Sp= 5t — &, w0y, = Wl — a2

(

(@) (qn, xn) = (Unt, x)
(0) (Br xn) = (Gnes Xn)
() (Viin, Xn) = (Th, Xn)
(d) (V&n, Xn) = (51, Xn)
(5.19)
(e) (Fn, xn) + (V- iy Xn) =0
(f) (VOn, Xn) = (@, Xn)

(9) (Ftes Xn) + oty Xn) + (V- 30, V- Xn) — (V- w0n, V- Xa) = 0

(h) (Wns, Xn) + (V- W, V - Xn) + (@n, Xn) + (5n5 Xn) = 0

\

Choose last two test functions, ¥ = 7, and Y = «, and adding up tbose two equations,

1d
5@”“ht\| +

1d - 1d

Sl IV B4l + S SN + 9 2 + [V =0

Taking the integral, thus we have the stability. This completes the proof of the theorem.

]
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5.1.3 Semi Discrete Estimates

First we need to introduce the elliptic projection and Raviart-Thomas Projection: find

Rug, Rup, Ruo, Ry0, Ryu € Vi, and 11,7, 11,5, I, € W), satisfying:

(V(q — th), Vl)h) =0, Yo, € Vy, (V(U — Rhu), Vvh) =0, Vvh eV,
(V(O’ — RhO'), Vvh) = O, Yo, € Vi, (V(H — R}ﬂ), Vvh) = 0, Yo, € V),
(V(p — th), Vvh) =0, Yu, € Vi, (V . (§— thj), V- ’Uh) =0, Yu, € Wh

(V'(T_’)—th),V'Uh):O, VUhGWh (V-(@—th),th):O, vthWh

(5.20)

Subtracting (/**) from I, we obtain:

(Un,e — we, Xn) — (g — ¢, xn) = 0

(Ont — o1, xXn) — (Pn — P, X0) = 0

(V(un — ), Xn) — (T — 7, Xn) = 0

(V(on — ), Xn) = (8n — 5, Xn)

(o — oo xn) + (V- (7 — ), x5) =0

(V(0n = 0),X0) = (wh — &, X3) = 0

(Fret — 7oty Xn) + (Bng — 86, %0) + (V- (55 — 8), V- X)) — (V- (W, — 5), V- X)) =0

— — — — - = —

(wh,t — W, fh) + (V ) (wh - w), V- Xh) + (wh - U)?Xh) + (Sh,t — 51, )Zh) =

(5.21)
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Assume:

q—gqn=(u— Rpu) + (Rpu —up) =& +m (5.22)
p—pn=(p— Rap) + (Rpp — pn) = & + 12 (5.23)
o—op,=(0—Ryo)+ (Rpo—op) =&+ 13 (5.24)
7= = (F = I7) + (Iy7 — 7) = & + 74 (5.25)
§— 8 = (§—,3) + (45 — &) = & + 775 (5.26)
@ — 1wy, = (@ — W) 4 (Id — @) = & + 7 (5.27)
u—up = (u— Ryu) + (Rpu —up) =& + 17 (5.28)
0 —0n = (0 — Rpt) + (Rnd — 0h) = s + 18 (5.29)

The following estimates are well known[9] for Raviart-Thomas projection operator II,, :

W—>Wh, ifVZﬁhEWh,QEW

(V-(q—-1q),V-@) =0
la — Hpall < CR™H|Qlms1,0 (5.30)

|V - (a—1La)| < Ch"||d][m

And elliptical projection operator R, : V' — V,,, for Vv, € Vj,, pe V

(v(p - th)7 vvh) =0
(5.31)

Ip — Rupl|+h||Vp — VRyp|| < CE*|p|lhsn

Remark. V;, and W, are the subspaces of V and W, use V}, as P, space, and W, as RT,,
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space. Ry is the finite element interpolation operator on V}, and II, is the interpolation

operator on Wj,.

Then the equation system can be written as:

(@) (&r6:xn) — (&1, xn) = —(N7.6, Xn) + (01, Xn)

(0) (&3, xn) — (§25 xn) = — (M35 Xn) + (12, Xn)

(¢) (Vér, Xn) = (60, %) = —(Vr, ) + (7, )

(d) (Vés, Xn) — (&, Xn) = —(V, Xn) + (75, Xn)

(€) (&, xn) + (V- & xn) = — (13, xn) + (V- 72, Xn)

(f) (V&s,X0) = (&6, X0) = —(Vs, Xi) + (76, X)

(9) (€xues Xn) + (o, X)) + (V- &5,V - Xn) = (V- €6,V - Xn) = = (a0, Xn) — (5.0, Xn)
— (Vi V- X0) + (V- 6, V - )

(h) (G605 X) + (V- &6,V - Xn) + (€6, Xn) + (V- Eus ¥) = = (o Xn) — (V- 176, V - Xn)

= (76, Xn) = (V + 7ae, V - X)

Theorem 5.4. Given ,(0) = ¢(0), pn(0) = p(0), 7(0) = 7(0), 5,(0) = 5(0), @, (0) = W(0),

up(0) = u(0), 0,(0) = (0), 6,(0) = 6(0), the following estimate holds:

17— 7|l + 1T — || + lo — onl| + |5 — 5| < CR™P™R)

Ip = pall + llg = @l + 1w = ]| + 118 = 6al] < et

Where C dependS on ||ﬁt||Loo(H'm+1), ||117t”Loo(H77L+1), ||/Ll_j‘“Loo([.[7n+l)J ||7:;§||LOO(HWL+1)) ||‘§tt‘|Lw(H7’L+1))
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||w0||Loo(Hm+l ||T0||Loon+1 ||UO||L00(Hk+1 ||O't||Loo(Hk+1 ||T||Loo(Hm+1 ||u||Loon+1)

Proof. Take Eq.(5.32g) and Eq.(5.32h) test function as &t and 56

1d . .
5 dtH&‘t“Q + 2dt”§6H2 + ||V - 56“2 + ||776H2 (f5,tta§4,t) +(V-&,V- 54,t)
—(Tagts €a) = (T, €6) — (V16 V-&6) — (7T, E6) — (V -Tag, V-E6) — (Ts,00, Ea) — (Vo1 V-Eaz)
(5.33)
We have the identity
§=Vo=V(-V)i=—AF
That means:
. ; 1d )
(&5t + Toat, Ear) = (Dunr, Ear) = 7 dt||v£4t|| (5.34)
(V- (& +775), V- (Ep +7ar)) = (A& + 1), — (&3 +1m3)0) = (VEs, VEsy) = 2dtHf:%H2
(5.35)

Then we need to estimate:

NG+ 1V - &2 + Il + 32 IVElE + 2dt||V§3H2

2
—(774,&,5_;1,0 — (7.1, &) — (V- 175,V - &) — (76, &) — (V - Taes V €s) + (ﬁ5,tta€1,t>

2 dt

+ (V- &,V - us)
(5.36)
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If taking integral from 0 to ¢:

t t
1€a.l1* + NIl +/ IV - & %ds +/ 1€6/1%ds + [[VEaal]? + | VEs]®
0 0
t
= / (= (Taaes Ea) — (Toe:&6) — (V 156, V - &6) — (16, &6) — (V- 1144, V - &6) + (75,405 Eat)
0
+ (V- &5,V - iaa))ds + € (0)]* + |E(0) ]2 + [[VEL(0) || + V& (0)]?

S LA T+ I+ I+ Iy 4 Ig + I + [|€0,(0) |2 + (166 (0)]1% + [ VEL(0)||> + [ VE3(0) ||

(5.37)
Working on the RHS:
t t .
hSC/HmeHf/H&W%
0 0
t t .
gsc/u%mw+g/mw%
0 0
t t o
ASQ/WWMW&H/HV@W®
0 0
t t .
I4 S C/ Hﬁ6H2d$ + 6/ H&;HQdS (538)
0 0

t t
QSC/HVﬁm%Hffﬂvﬁﬁw
0 0
t t .
%SC/H%M%Hf/H&W%
0 0

t t
nsc/umww+g/mww
0 0

Since for the initial values

| Rhoo — ool| + B* || Rnoo — ooll1 < ChM oo lksa
1,70 — 7ol| + A" TIn7o — 70| m(aiv) < CR™ |71

|y — o || + R"||Hpo — Wol| mr(ain) < CR™ 1o |1
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As:

t t
Gl + Wl + [ 19 - Gllds + [ 1GIPds + [ 9Ew? + V&2
0 0
t
= / (_(ﬁ4,tt7€4,t> - <ﬁ6,t7£6> - (v : ﬁﬁ? v * 56) - (ﬁﬁ?gﬁ) - (v : ﬁ4,t7 V : £6) + (ﬁ5,tt7£4,t)
0
(V&Y i))ds + GO + &) + [ VEL O + V&)
t t . t t . t
SC/H%ﬂwwffH&W%+C/W%w%Hf/H&%h+0/HVﬂW%
0 0 0 0 0
t . t t . t t .
4e/HV@W@+c/W%W@+Q/Mw%+O/HVﬁmwsm/HV@Wm
0 0 0 0 0
t t . t t .
+o/u%wwwf/n@ww+c/Wmmw&u/mew
0 0 0 0

+ 1€ O + 1€ O) 1 + [ VEL O + IVE(0)

(5.39)

In the RHS, integral including &; can be controlled by the LHS. Then,

— — t — t — — —

P +IGI+ [ 19 Ellds+ [ 1ElPds + [Vwl? + IVEI?
0 0
t t t
<C [ WialPds+€ [ NwalPds +-C [ 19 illds

0 0 0 (5.40)

t t t
+o/W%W%+0/vamww+c/u%ﬂws
0 0 0

+ 0/0 s llPds + 1€ (O)II + 16 (0)]1* + I VELO)II* + [ VE(0)?
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Try to estimate terms with 7;,

t t
Awmm@scmmménﬁmﬂﬁ
t t
/H%mwécmwmfumﬁﬂ
0 0
t t
/nvw%wsmW/W@mﬂ
0 0
t t
/‘W%stscmﬂmﬂ{/|wmaﬂ
0 0
t t
/nmwwscmmm/nmmﬂ
0 0

t t
Awhmwscﬁwmgu%ﬁﬂ

(5.41)

Substitute those inequalities,

t
[€0e1? + l1E6l® + IV Ewl® + V&> < Crmm2emb) /0 (I75elmr + 10l sr + 1054

17l mgs + 15kl sr + Idollm + 170l 41 + lloollis)ds

(5.42)
From Eq.(5.32b), choose x;, = &
16017 = (130, &2) + (E3,6,&2) — (02, &2)
(5.43)
< Clnsall? + Cllgsall* + ell&all” + Clinall?
That leads to
(1= e)[l&l* < Clinsll? + Cligsll” + Clinal?
< ChQ(kH)HUtHiH 1 Op2min(mt Lkt ChQ(kH)Hpﬂz (5.44)

< Oh? min(m+1,k+1)
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From Eq.(5.32¢), choose x;, = &

IVEN? = (&4 + i, &)

< Cll&all” + Cllll* + ellé|?

That leads to
(1= O)|IVE&N? < ClEl? + Ol

< Cthin(m,k) + Ch2(m+1)||7?||m+1
< Cthin(m,k)

Similarily for Eq.(5.32f), choose y; = &5

(1= OlIVEI® < Cligsl* + Clls |
< C«thin(m,k) + Ch2(m+l)Hme+l

< Ch2 min(m,k)

In Eq.(5.32a), choose x;, = &

(1= ll&l? < Cllérel® + Clligrall®

< Oh2 min(m+1,k+1)

In Eq.(5.32d), choose x;, = V&;

(1 _6)‘|£;||2 < Cthin(m,k)

which proves the theorem.

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)
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5.2 Fully discrete error

5.2.1 The Existence and Uniqueness Fully Discrete Mixed Element Formulation

For fully discretization, we use the backward Euler method of first order accurate in
time. For the backward Euler method, Let M be a positive integer, then At = T'/M be the
step size of time, t' = iAt,0 <4 < M. Further, let ¢ = ¢(t") and 9" = (Y™ — " 1) /A,
for some continuous function ¢ € C°[0,7]. Find Find (Q", P, ¥", X", S" A", U",0O") €
Vi x Vit x Vit x Wi x WP x Wi x V' x V)" be the mixed element approximation of
(q(t™), p(t™), o (™), 7(t"), F(s™), W(t"), u(t"),0(t")). For each n, the different time interval is
(t",t"*1), the corresponding triangulation is 7,", finite element spaces are V;* and W7.
Then the fully discrete mixed finite element solution for problem (/**) may be presented
as follows:

Problem(/}’). Find Find (Q", P, X", X", S", A", U™, O") such that, for 1 < n < M, If
denoting:

" = (Un+1 o Un)/T
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.

OU™, xi) = (Qh, x7)
(P, xi) = (0%, x7)
(VER, Xr) = (S5 X»)
(5.50)
(Xhxn) + (V- X5, 1) =0
(VO X1) = (A}, Xr)

(0Q, V- X3) + (0P, V - X)) = (V- S|,V - Xu) + (V- AL V- X) = F

k(5927V->€"£) — (VAL VX5 + (05, V- X5) + (P, V- X5) =G
Theorem 5.5. Problem I}’ has a unique solution (Q}, P, >3, X}, Sy, A7, U, OF) € V' x
Vit x Vi x Wi x WP x WP x Vit x Vpm.
Proof. The existence of the solution follows from the existence and regularity assumption.
By defining ¢, = ups, pr, = one, 7™ = Vuy, s, = Vo, W, = V6, it immediates comes up
with a weak solution for Ij,.

To prove the uniqueness of the solution, we need to prove the stability first.

let (plo, Qhos Thos Thos Shos Whos Uno, 04,) e the initial data, and (pi, ¢i, oh | 7, 7, W, ul, 63)
be the corresponding weak solutions.

Denote Q" = Q' — Q?n, p» = pln — p2n ¥, — $ln _ 320 [, = Uln — 20,

éh — @1,n _ @2,71’ ‘Y‘n — Tl,n _ T2,n’ gn — Sl,n - SQ,n’ ]\n — Al,n o A2,n-
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) L
~ Un — Un—l

(@™, xn) = (f,x)
~ in _ infl

(P, xn) = (—————xn)

(VU™ %) = (X", Xn)
(VE", Xn) = (8™, Xn)
(in’ Xh) + (V ’ Tn’ Xh) =0

(vén’ )Zh) = (Ana )Zh)

Tn—l—l _ Q'i‘n + 'i‘n—l ~ Sn—l—l _ QSn + Sn—l ~ ~ ~ 5 ~
( = ,Xn) + ( = Xn) + (V-85 VX)) = (V- A, Ve X3) =0
An _ Anfl . _ . _ . én _ Snfl .
| X) + (VA" V- X0) + (A X) + (——X0) = 0
(5.51)
"i‘n—H _ 'i‘n -
Choose last two test functions, Y = — and y¥ = A", and adding up tbose two
T

equations,

=P = = = P IO, ISP — 1S™ 1 — ISM 1 + ISO1> |, AM? — 1A%
+ +

2 2

T T T

M
+ Y (IV-SP+ [V - AP+ [ VS)?) = 0
=0

(5.52)
Using discrete Gronwall inequality, thus we have the stability. This completes the proof of

the theorem. ]
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5.2.2 Fully Discrete Error Estimates

For the error estimate, we write,

¢"—Q"=(¢"—Rpg")+ (Rpg" - Q") =m+&
Pt =" = (0" = Bup") + (Bup" = P") =+ &
o" =YY"= (00— Rpo") + (Rpo" = X") =3+ &
— X = (P I, (LT - X) =+ €
(5.53)
—S"= (" -1, ") + (I, s" = S") =15 + &
T — A" = (B" — IL,@") + (LB — A™) = s + &

u" —U" = (u" — Rpu™) + (Rpu™ = U™) =07 + &

0" — O" = (0" — Rp0") + (Rp0"™ — O") = s + &

Theorem 5.6. If (QY), PP, X9, Y% SV, AY, UP, 09) determined, there exist,

17 =) + 15 = S| + [ = A|| + [lo? = 2| < C(h™™0) 4 7)

lg” = Q7 + [lp” = Pl + [lu? = U7 + |67 = ©7]| < C(RmmHED 1)

where C depends on |7y || oo (grm+1), || Wy || oo (rrm+1), |W]| poo(rrm1y, |72l Loo (rmt1y, (|54 || oo (rrm1y,

||w0||Loo(Hm+1 ||T’0||Loo Hm+1)y, ||O'0||Loo(Hk+1 ||O't||Loo(Hk+1 ||T||L<x>(Hm+1 ||U||Loo (Hk+1)-
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(CL) (55% Xh) - (6?7 Xh) = _(gn?7 Xh) + (77?7 Xh)

(b) (D5, xn) — (€5, xn) = =005 xn) + (15, xn)

(€) (V&R Xn) — (€8, Xn) = — (Vi Xn) + (75, Xn)

(d) (v&?? ¥h> - (gg, Yh) = _(VUZ?? Yh) + (7_7)7;7 Yh)

(e) (&, xn) + (V- gfﬁ Xn) = =05, xn) + (V- 74, Xn)

(f) (V€ Xn) — (€8, %n) = —(V, Xn) + (e, Xn)

AsS = Vo =V(-V")

T

= —-Arand V- S = Ao Thus,
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Then we have:

2—>n 750 2—>n aAEn A=n [ En —n =n —>n Zn
=—(07},08)) — (VO 77}, VO&Y) — (0m5,086) — (V-1g, V- £6) — (76, §6)

Besides,
(Rngy — QF) = (Rug — 9¢") + (9¢" — Q})
(Rpo — Y1) = (Rpo? — do™) + (D™ — £7)
(5.56)
(Rupy — Pl') = (Rupy — 0p™) + (Op" — P)
(Rp0} — ©F) = (Rp0; — 90™) + (96" — ©F)
Noted:
9> _—— 11— —— _9—> _— 11— ——
(0°€3,082)" = IO, (VO £5.VOET) = S|VaL]|?

Then it comes to,

11— —— 1—- > N — —
53”352||2 + §3||V552H2 HNOERIP+ IV - 5117+ [1€6 12

2—>n 75 on 72 —>n aen A=n [ en —n zn —n
<@ 3, 08D + (VO 77, VO + 1[0, 0€6)| + [[(V - 75, V- £l + [[(77,

+ (VR VDL

=L+ L+I;+ 1+ I+ I
(5.57)

—
n

6

)l
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Consider the RHS.
=2
L <O’ 7 )? +Clacs?

=2 5 =2n
L < C|VI 7L* + C|Vaey|?

I < Cllomg|l* + Clo &gl

w

L < C|V- 751"+ CIIV - &G
Is < Cl|7511° + Cll €517

Is < C||VEN? + C||V - FE|?

(=)

And,

. ChQ(m+1 tn .
10775 11* < f/ @17 ads,  176]1” < CR™ V@7, 1 ds
tn—1

s Ch2 [t "o
Vet < < / |V G2, yds + O / |V | ds
tn—1

tn—1

2, ChQ(m+1) tn tn ~
@ < S [ alds + or [ VRS
T th—1 tn—1

The estimate inequality becomes,

IDER? +IVIE| + Y IOEHP + IV - E4l1P + 11E41%)
§=0

T T T
< Cp2omH) / 17l ds + C72 / V7 |2ds + Ch2m / VGl s
0 0

T .
w07t [ IvaRas + 0w [ s+ O TR
0 g
+ S (CIVER + v - TE

J=0

(5.58)

74l1%)
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From Eq.(5.54b), choose y; = &}

IE311? = (On3, &) + (00" — Rpoy, &5) + (9€5, &) — (03, &5)
(5.59)

< Cllons|* + ClOgI1* + el II* + Clins I* + 100™ — Ruoy|1*

That leads to

n—1 n—1
=9l I+ D _ gl < o )* + Clog|)? + Clus |* + 100™ — Ruo?||?)

j=0 7=0

S Ch?(k+1)|lo_t||i+l + Ch?min(m+1,k+1) + ChQ(kH)HPHzH + CT2||Utt||2

< Othin(m+1,k+1) + 07_2

(5.60)
From Eq.(5.54c¢), choose y;, = &7
IVEH I = (& + 77, Ver)
(5.61)
< ClE* + Cllp I + el ver|®
That leads to
n—1 A n . A
(L= IV + D IIVEP <> (IEIP + CITIP)
j=0 j=0
(5.62)

< ORI 4 ORI, 4 O

< Cthmin(m,k) + OTQ
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Similarily for Eq.(5.54f), choose x;, = &

n—1 n—1
(1= lIVEI*+ D IVEI* <Y (&> + Il
j=0 7=0

< Cthnin(m,k) + Chz(erl)Hme+1 + CTQ (563)
< Cthin(m,k) + 07_2
In Eq.(5.54a), choose x;, = &
n—1 A n—1 . o o A
L=+ D IEIP < Y (102 + ClOTEP + Cllow’ — Ryl ||?)
J=0 J=0 (5.64)
S Ch?min(m—l—l,k—i—l) + CT2||Utt||2
In Eq.(5.54d), choose x;, = V&
n—1 ‘
(L= lleel” + > IE])® < en>mintmk) 4 C7? (5.65)
§=0
That proves the theorem. O

5.3 Numerical Examples

Consider
(

utt—Autt—i—AQU—{—aA@: f
0, — N0+ 0 —al\uy, =g

ulon = Aulag = 0lag = 0

\u(x, 0) = u’(x), us(x,0) = u'(x),0(x,0) = 0°(x)
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And o =1,Q =10,1] x [0,1], T"= 1, with exact solution

u = sin(mz)sin(ry)e "

0 = sin(2rx)sin(2ry)e

Tr is a regular pattern triangular mesh, and P, (K) x P (K)x P (K)x RTy(K) x RTy(K) x
RTy(K) x Pi(K) x Pi(K) x P;(K) is used to solve the problem. The convergence curves
of L? error of the solution are depicted in the Fig. From the plots, we can clearly observe
the convergence rate for those variables are O(h2) for ||o™ — ||, || — Y7, |5 — S7,
|@™ — A7| which has a higher convergence rate than predicted, and ||¢" — Q?||, |[p" — P7|,

|lu™ = U2, ||0™ — ©F|| has the optimal convergence rates.

L2?—Convergence rate of at time ¢ = 0.2.
N [Nl¢" — Q}llo  Order [ [[p" — Py Order [ o™ —Xi]ly  Order [ ™ — T}y, Order
2 | 3.442934 5.086444 0.782822 0.130887
4
8

0.826153  2.06 | 1.790665 1.51 | 0.226591 1.79 | 0.031477 2.06
0.207379 1.99 | 0.484065 1.89 | 0.060803 1.90 | 0.007829  2.01
16 | 0.051023 2.02 | 0.123298 1.97 | 0.015008 2.02 | 0.001874 2.06
32| 0.012759 2.00 | 0.031109 1.99 | 0.003768 1.99 | 0.000457 2.04
64 | 0.003186 2.00 | 0.007827 1.99 | 0.000941 2.00 | 0.000117 1.97

Table 11: The numerical test for H*-Galerkin convergence rates ¢t = 0.2

L?—Convergence rate of at time ¢ = 0.2.
N | |5 — Splly Order | |@" — Ap|l, Order | |u" — Uplly Order | [|¢" — O},  Order
2 | 2.087481 3.764852 0.147388 1.08
4
8

0.789527 1.40 | 0.831732 2.18 | 0.031073  2.25 0.252065 2.10
0.231109 1.77 0.21314 1.96 | 0.007949 1.97 0.065222 1.95
16 | 0.054428 2.09 | 0.053476 1.99 | 0.001864  2.09 0.016438 1.99
32| 0.013275 2.04 | 0.013898 1.94 | 0.000478 1.96 0.004443 1.89
64 | 0.003605 1.88 | 0.003349 2.05 | 0.000116 2.04 | 0.0010306491 2.11

Table 12: The numerical test for H!-Galerkin convergence rates t = (.2
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L?—Convergence rate of at time ¢ = 0.4.

N [l¢" = Qpllo Order [ [[p" — Pl'lo Order | [[o" — X}[[ Order | [l — T}|lo Order
2 | 5.945092 3.186198 1.44 0.28
4 | 1.456603 2.03 | 1.287566 1.31 | 0.529754 1.45 | 0.096680 1.55
8 | 0.367174 1.91 0.36380 1.82 | 0.145848 1.86 | 0.026637 1.86
16 | 0.09052 2.02 | 0.097493 190 | 0.036675 1.99 | 0.006664 2.00
32| 0.02264  2.00 | 0.024712 1.98 | 0.009222 1.99 | 0.001676 1.99
64 | 0.005656 2.00 | 0.006221 1.99 | 0.002306 2.00 | 0.000419 2.00
Table 13: The numerical test for H'-Galerkin convergence rates ¢ = 0.4
L?—Convergence rate of at time ¢ = 0.4.
N | |3 — Splly Order | |@" — Ap|l, Order | [u" — Up|loy Order | 6" — ©p[l, Order
2 | 2.205385 3.233270 1.215843 1.011703
4 | 1.233742 0.84 | 0.742617 2.12 | 0.252495 2.27 | 0.241503  2.07
8 | 0.368538 1.74 | 0.192296 1.95 | 0.062246  2.02 | 0.062355 1.95
16 | 0.093481 1.98 | 0.049189 1.97 | 0.014797 2.07 | 0.015853 1.98
32| 0.023775 1.98 | 0.012332 2.00 | 0.003696 2.00 | 0.003974 2.00
64 | 0.005983 1.99 | 0.003087 2.00 | 0.000921 2.00 | 0.000994 2.00
Table 14: The numerical test for H'-Galerkin convergence rates ¢ = 0.4
L?—Convergence rate of at time ¢ = (.8.
N [l¢" = Qpllo Order [ [[p" — Pl'lo  Order | [[o" — X}[[y Order | [l — Y}|lo Order
2 | 9.561965 0.864762 1.178455 0.241432
4 | 2435440 197 | 0.972961 -0.17 | 0.440979 1.42 | 0.088987 1.44
8 | 0.618396 1.98 | 0.358710 1.44 | 0.124427 1.83 | 0.025732 1.79
16 | 0.153153 2.01 | 0.097117 1.89 | 0.033662 1.89 | 0.007001 1.88
32| 0.038326 2.00 | 0.025057 1.95 | 0.008505 1.98 | 0.001771 1.98
64 | 0.009576 2.00 | 0.006314 1.99 | 0.002137 1.99 | 0.000445 1.99
Table 15: The numerical test for H*-Galerkin convergence rates ¢ = 0.8
L?—Convergence rate of at time ¢ = 0.8.
N | |5 — Splly Order | |@* — A?|l, Order | |u" — Up|ly Order | 6" — ©7|l, Order
2 | 2.541767 1.632467 4.749412 0.849611
4 | 1.142430 1.15 | 0.199947 3.03 | 1.041882 2.19 | 0.191329 2.15
8 | 0.349771 1.71 | 0.046496  2.10 | 0.258533 2.01 | 0.047360 2.01
16 | 0.098373 1.83 | 0.012801 1.86 | 0.062097 2.06 | 0.011921 1.99
32| 0.025149 1.97 | 0.003242 1.98 | 0.015516 2.00 | 0.002981 2.00
64 | 0.006352 1.99 | 0.000816 1.99 | 0.003869 2.00 | 0.000745 2.00

Table 16: The numerical test for H*-Galerkin convergence rates ¢t = 0.8
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L?—Convergence rate of at time ¢ = 1.0.

N [l¢" —Qpllo Order [ [[p* — PPlly Order | [[o" — ¥}[[ Order [ | — T}[[p Order
2 [ 10.841409 1.246099 0.874368 0.177767
4 | 2.812890 1.95 | 1.012360 0.30 | 0.230242 1.93 | 0.044937 1.98
8 | 0.709857 1.99 | 0.371736 1.45 | 0.057012 2.01 | 0.011341 1.99
16 | 0.177888 2.00 | 0.103674 1.84 | 0.014707 1.95 | 0.002925 1.96
32| 0.044499 2.00 | 0.026688 1.96 | 0.003725 1.98 | 0.000740 1.98
64 | 0.01141 1.96 | 0.006509 2.04 | 0.000980 1.93 | 0.000189 1.96
Table 17: The numerical test for H*-Galerkin convergence rates t = 1.0
L?—Convergence rate of at time ¢ = 1.0.
N | ||&" = Sy|lp Order | [@" — Ap|l, Order | |[u" — Uplly Order | ||¢" — ©7[l, Order
2 1.689953 1.213424 6.985828 0.845894
4 | 0.421024  2.01 | 0.096748 3.65 | 1.570450 2.15 | 0.197625 2.10
8 | 0.168368 1.32 | 0.031449 1.62 | 0.380347 2.05 | 0.049362 2.00
16 | 0.053842 1.64 0.009655 1.70 | 0.094300 2.01 | 0.012381 2.00
32| 0.014687 1.87 0.002551 1.92 | 0.023525 2.00 | 0.003099  2.00
64 | 0.00367175 2.00 | 0.000607 2.07 | 0.006358 1.89 | 0.000794 1.96

Table 18: The numerical test for H*-Galerkin convergence rates t = 1.0



95

The following four figures, at different time, are using log — log plot, then the slope is

equivalent to the convergence rate, in absolute meaning.
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Figure 11: H1 Galerkin method L? convergence rate, time ¢ = (.2
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Figure 12: H1 Galerkin method L? convergence rate, time ¢t = 0.4
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Figure 13: H1 Galerkin method L? convergence rate, time ¢ = 0.8
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Figure 14: H1 Galerkin method L? convergence rate, time ¢t = 1.0
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CHAPTER 6 CONCLUSION

This thesis introduces a Thermoelastic Kirchhoff-Love plate system. Traditional mixed
element method, H' — Galerkin method and IP-DG method have been applied to this
system of equations. And above three discrete schemes are all based on mixed forms with
extra variables. The first challenge is how to assign the extra variables with boundary
values and initial values.

IP-DG method is applied, SIP-DG and NSIP-DG schemes are both implemented, they
differ in the penalty parameters. SIP-DG has an advantage over the other DG method,
that is the underlying bilinear form guarantees symmetric, continuous, coercive and ad-
joint consistent properties. However requires a larger penalty parameter than NSIP-DG.
From numerical experiment, we can find out NSIP-DG can achieve a better convergence
performance.

In the mixed element method, how to prove the LBB condition is also problem. To
address this issue, H! — Galerkin method comes to stage. However when analyzing the
semi discrete and fully discrete error estimates, H' — Galerkin method is much more
complicated than the traditional mixed element method. And H' — Galerkin method
shows a better performance than the other two.

Those three methods are observed higher accuracy than the theoretical ones. That is
due to time dependent laplacian terms. However, the system implemented those methods

is still linear. It is a future work to solve the KL system with nonlinear terms.
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In this work, theory background of the sobolev spaces and finite element spaces are
reviewed first. Then the details of how the thermoelastic Kirchhoff-Love(KL) plates nu-
merically established are presented. Later we approaches to the thermoelastic KL system
numerically with mixed element method, H'—Galerkin method and interior penalty dis-
continuous galerkin method (IP-DG).

What is more, the IP-DG also applied to solve this KL system numerically. The well-
posedness, existence, uniqueness and convergence properties are theoretical analyzed.
The gain of the convergence rate is also O(h*), that is 1 less than the observed convergence
rate.

When discussing the H!-Galerkin method, the main advantages over traditional mixed
element method, is LBB condition naturally inherent. It is proved that the existence and
uniqueness of solutions for such discrete scheme. Furthermore, the semi discrete and
fully discrete error estimates details are proposed to show the theoretical convergence
rate is O(h*), which is also 1 lesser the observed convergence rate O(h*!). And optimal

convergence rate O(h*™!) can be obtained only for some variables.
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