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INVITED ARTICLE 

On the Authentic Notion, Relevance, and 
Solution of the Jeffreys-Lindley Paradox in 
the Zettabyte Era 
Miodrag M. Lovric 
Radford University 
Radford, Virginia  
 
 
The Jeffreys-Lindley paradox is the most quoted divergence between the frequentist and 
Bayesian approaches to statistical inference. It is embedded in the very foundations of 
statistics and divides frequentist and Bayesian inference in an irreconcilable way. This 
paradox is the Gordian Knot of statistical inference and Data Science in the Zettabyte Era. 
If statistical science is ready for revolution confronted by the challenges of massive data 
sets analysis, the first step is to finally solve this anomaly. For more than sixty years, the 
Jeffreys-Lindley paradox has been under active discussion and debate. Many solutions 
have been proposed, none entirely satisfactory. The Jeffreys-Lindley paradox and its extent 
have been frequently misunderstood by many statisticians and non-statisticians. This paper 
aims to reassess this paradox, shed new light on it, and indicates how often it occurs in 
practice when dealing with Big data. 
 
Keywords: Jeffreys-Lindley paradox, Point null hypothesis, p-value, true and false 
null hypotheses, Fisherian significance testing, Neyman-Pearson hypothesis testing, Bayes 
factor  
 

Introduction  

The current dominant paradigm in statistical testing of a point null hypothesis is 
inadequate as our expression of uncertainty about the world in the 21st century. For 
decades, it has produced countless criticisms and recently even methodological 
crisis in some fields of science and has done serious damage to the image of 
statistics and statisticians. Within the paradigm, San Andreas fault, the Jeffreys-
Lindley (henceforth JL) paradox is deeply embedded, shaking the foundations of 
statistics and dividing frequentists and Bayesians in an irreconcilable way. In order 
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to solve accumulated anomalies within the current paradigm and rebuilt healthy 
foundations of statistical science it is inadequate just to cast out statistical 
significance (Wasserstein, Schirm, and Lazar, 2019). A method is needed to 
harmonize frequentist and Bayesian inference in hypothesis testing, and one of the 
first fundamental steps is the resolution of JL paradox. Regretfully, because of its 
complexity, statisticians do not interpret this paradox unanimously. They even 
disagree on whether it sheds a negative light on Bayesian or frequentist inference, 
as evidenced by the next two quotes. 
 

 “Lindley’s paradox has been misunderstood in several places, 
including by myself in the distant past. It is unfortunate that opposite 
to Lindley’s written words, his ‘paradox’ has been misunderstood as 
an ‘illness’ of Bayes factors and posterior probabilities.” Pericchi 
(2011, p. 20). 
 
“The Jeffreys-Lindley paradox has played an important role in 
undermining the credibility of frequentist inference…” Spanos 
(2013, p, 91). 
 

Hence, before attempting to derive the solution, it is necessary to clarify its 
meaning.  

Brief historical milieu of the JL paradox 

The first formal significance test was undertaken by Arbuthnott (1710). From 
today's perspective, it can be argued that this was an auspicious event in statistics 
history. However, Arbuthnott opened a Pandora’s box foreshadowing the 
controversies about the role of statistical tests. From one perspective, he correctly 
analyzed data on the yearly number of male and female christenings in London 
from 1629 to 1710 and demonstrated that boys were born at a greater rate than girls. 
This is the first recorded case of confusing statistical with scientific hypotheses, 
because Arbuthnott equated mere rejection of a null hypothesis with an irrefutable 
argument for divine providence. Moreover, this approach in testing was without 
any delay challenged by many (see Hald, 2003, p. 275-285.).  

Modern frequentist statistical tests are usually regarded as an anonymous 
hybrid of two divergent classical statistical paradigms. Fisherian significance 
testing is founded on a single null hypothesis, p values, inductive reasoning, and 
drawing conclusions. By contrast, Neyman-Pearson hypothesis testing is 
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established on two hypotheses: null and an alternative, two types of errors, fixed-
level significance statements, making decisions, and deductive reasoning but 
inductive behavior. These opposing views about the proper manner to conduct a 
test were never reconciled by their authors, nonetheless, been amalgamated by 
contemporary authors of statistics textbooks.  

In the context of point-null hypothesis testing, Bayesians are forced to choose 
between the following two broad options. 

 
1. Assign zero as the prior probability of the null hypothesis, P(H0) = 0, 

because it specifies a single point on the real number line and has 
Lebesgue measure zero under absolutely continuous distribution. The 
reasoning is that H0 : θ = θ0 corresponds to a singleton, that is to the 
set {θ0} that consists of one single point on the real line. The 
unfortunate consequence, however, is that the posterior probability of 
the null hypothesis is always zero and thus, impossible to revise on 
accumulated information. Therefore, Bayesians would never be 
influenced by any data and would always reject sharp nulls on a priori 
grounds, that is, without conducting any test. This standstill can be 
tackled in at least three following ways:  

First, conclude “the Bayesian approach helps to make clear the logical 
deficiencies of point null-hypothesis testing. Thus, at least for 
continuous parameters, we don’t test point null hypotheses in the 
Bayesian approach, and for that matter nor should a frequentist”. 
(Jackman, 2009, 32).  

Second, test point null hypotheses using Bayesian credible intervals 
(for example, Bolstad, 2007). Similarly, when the prior knowledge is 
vague and the prior distribution in the neighborhood is reasonable 
smooth, Lindley (1965, p.61) proposed that credibility of the null 
hypothetical value can be tested by checking whether or not it belongs 
to a chosen Bayesian credible interval. 

Third, circumvent this problem using decision theoretical framework. 
One of the best examples is so-called integrated objective Bayesian 
estimation and hypothesis testing developed by Bernardo (2011a).  

2. As stated by Robert (2007) in order to compete with the traditional 
methods, “for pragmatic reasons Bayesian toolbox must incorporate 
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testing devices, if only because users of Statistics have been 
accustomed to testing as a formulation of their problems” (p. 223). 
Therefore, the majority of Bayesians follow the procedure initiated by 
Jeffreys and generate mixed prior distribution, with the positive 
probability mass assigned to a single point, that is P(H0) > 0. 
Regardless of the probabilistic arguments scrutinized above, Lindley 
(2009, p. 184) considered this concept a triumph that provides a 
general method for the construction of Bayesian tests. 

Lindley’s original formulation of the paradox 

The inharmonious conclusions reached between frequentist tests and Bayesian tests 
when analyzing sufficiently large samples were famously manifested by Lindley 
(1957), based on a comparison of the Fisherian significance test and Bayesian 
posterior probability in case of testing a point null hypothesis θ = θ0 within a normal 
model with known variance σ2. Lindley (1957) did not envisage alternative 
hypothesis and p-values, nor the critical values and regions (as did Neyman & 
Pearson, 1933). The typical Bayesian composition of the prior distribution, initiated 
by Jeffreys (1939), is to assign probability mass c to the single point indicating by 
null hypothesis θ = θ0 and distributing the remainder, (1 – c) according to the 
continuous density g(θ) over θ ≠ θ0. The resulting spike-and-smear prior 
distribution has the following form 
 
   (1) 

 
This prior distribution is a fusion of two components: a discrete part (where 
 represents Dirac mass at θ0) and a continuous part. Following this idea, 

Lindley assumed that the prior probability of the null was P(H0) = c, and that the 
remainder of the prior probability (1 – c) was assigned uniformly to an interval I 
which included hypothesized value θ0. 

One of the Lindley’s motivations was to show vigilance is necessary when 
using a fixed significance level regardless of the sample size, because “5% in to-
day’s small sample does not mean the same as 5% in to-morrow’s large one” (1957, 
p. 189). Hence, it was supposed the value of the sample mean was just significant 
at the α level, that is , where λα/2 stands for the upper α/2 

P θ( ) = cδ θ=θ0{ } + 1− c( )g θ( )I θ≠θ0{ }

δ θ=θ0{ }

x = θ0 + λα /2σ / n
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quantile of the standard normal distribution. He evaluated the posterior probability 
that θ = θ0 as  
 

   (2) 

 
Lindley concluded as sample size increases, posterior probability of the null 

hypothesis approaches one. Therefore, for any value of the prior probability c, a 
value of sample size n can be found such that  

 
I.  is statistically significant at the prescribed α% level (conclusion 

obtained by traditional significance test), and at the same time 

II. the posterior probability that θ = θ0 is (100 – α)% (conclusion reached 
by Bayesian analysis). 

 
For example, when using traditional 5% significance level we are “95% 

confident that θ ≠ θ0, but have 95% belief that θ = θ0” (p. 187). He called this 
conflicting situation the “strong contrast” (p. 190), and the paradox (p. 187). 

Lindley (1957) pointed out this disagreement between frequentist and 
Bayesian results would persist “with almost any prior probability distribution that 
had a concentration on the null value and no concentration elsewhere” (p. 188). 
Essentially, the scope of Bayesian testing was restricted by claiming the 
hypothesized value θ0 is fundamentally different from any other value of θ ≠ θ0. 
This is similar to the suggestion by Edwards et. al. (1963) for Bayesian statisticians 
“no procedure for testing a sharp null hypothesis is likely to be appropriate unless 
the null hypothesis deserves special initial credence” (p. 235). Lindley alleged 
testing some special value θ0 is itself evidence it is likely to be true. To illustrate 
this claim two not so convincing examples (telepathy and genetic) were given, both 
based on the count data, although Lindley related the paradox to the continuous 
parameter testing.  

P H0 |  just significant x( ) = c = cexp −λα /2
2 / 2( )

cexp −λα /2
2 / 2( )+ 1− c( )σ 2π

n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

x
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Bartlett’s inconsistency 

Lindley formulated the paradox without mentioning dependence of the posterior 
probability on the prior variance. Expression of the posterior probability (2) 
indicates Lindley was not aware of this dependence. The only variance analyzed 
was the one of the original population. It was shown when this variance is very 
large and simultaneously sample size relatively small (hence the standard error 

 is also very large), the posterior probability can be smaller than p-value and 
may give very strong evidence against the null hypothesis. Dependence was 
exposed by Bartlett (1957, p. 533) who corrected a slip in Lindley’s analysis by 
including the extra factor for the uniform density 1/I, as follows: 
 

   (3) 

 
As properly revealed by Bartlett, this correction makes the value of posterior 

probability much more unstable, although “one might be tempted to put I infinity 
the silly answer  ensues.” (p. 533). The following upsetting fact (upsetting for 
the Bayes factor) can now be demonstrated: for any fixed data and hence the fixed 
value of λα/2 regardless of its magnitude, posterior probability tends to 1 as I 
increases. Hence, the evidence in favor of the null hypothesis is becoming 
increasingly more substantial. 

Although this is sometimes called Bartlett’s paradox (see, for example, 
Welsh, 1996, p. 87; LaMont and Wiggins, 2015; Bayarri and Berger, 2013, p. 366), 
there is nothing paradoxical in the fact that statistical analysis might be easily 
misused and give nonsensical answers. Hence, this inconsistency of the Bayesian 
testing using flat priors that can always lead to a non-rejection of any point-null 
hypothesis should be called more appropriately Bartlett’s inconsistency. 

The case of Bayes factor 

According to Berger (2006) Bayes factor is the “primary tool used in Bayesian 
inference for hypothesis testing and model selection”. It was proposed as an 
objective” (p. 38) Bayesian answer. “Bayes factor” is a fascinating example of the 
“Stigler’s law of eponymy,” which states “no scientific discovery is named after its 
original discoverer” (Stigler, 1980, p. 147). This name was coined by Irving John 

σ / n

c =
cexp −λα /2

2 / 2( )
cexp −λα /2

2 / 2( )+ 1− c( )
I

σ 2π
n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

c = 1
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Good (Isadore Jacob Gudak). Good (1958) introduced the term “Bayes factor” (p. 
803) and attributed the idea to Turing. It is well-known that Thomas Bayes did not 
mention anything similar to the Bayes factor in his landmark posthumous essay 
with the factual title “A Method of Calculating the Exact Probability of All 
Conclusions founded on Induction”, not “An Essay towards solving a Problem in 
the Doctrine of Chances” (Stigler, 2013, p. 283). Bayes factors are based on the 
Bayes theorem. However, Bayes did not give “the statement of Bayes theorem, 
either in its discrete form… or in its continuous form with integration” (Fienberg, 
2006, p. 3). Although Stigler (1983, p. 290) hypothesized Bayes theorem was 
discovered 12 years before Bayes’s death by Nicholas Saunderson, it is Bayes who 
“deserves and gets credit for noticing an interesting but mathematically trivial 
consequence of the product axiom of probability” (Good, 1965, p. 1). The concept 
of the Bayes factor was explicitly introduced by Wrinch and Jeffreys (1921, p. 387), 
not by Good. Finally, in 1931 J. B. S. Haldane made an “important intellectual 
advancement in the development of the Bayes factor” (Etz and Wagenmakers, 
2017, p. 327). 

The same irreconcilable conflict between frequentist and Bayesian testing is 
shared by the Bayes factor. This conclusion can be simply derived by the expression 
(1) in Bartlett’s comment on the Lindley’s paradox (1957, p. 533): 
 

   (4) 

   
 

Obviously, Bartlett could not specifically mention the term “Bayes factors”, 
because this expression was coined a year later, in 1958. We can deduce that for 
any fixed prior c, and any constant p-value corresponding to a fixed outcome of a 
significance test λ, Bayes factor in favor of the null hypothesis increases as  
with the sample size and goes to infinity. This means Bayes factor might 
exceedingly favor null value θ0 even for datasets extremely inconceivable under 
H0.  

The Bayes factor for the null hypothesis may be arbitrarily large for 
sufficiently large sample size, for almost any choice of mixture prior distribution 
that has a mass on θ and no concentration elsewhere. For example, consider testing 
a point null hypothesis H0 : θ = θ0 versus H1 : θ ≠ θ0 in case of normal mean with 
known variance. Using (1) assign the mass π0 to the null point θ = θ0, and spread 
the remaining mass out on H1 according to the conjugate prior density 

c
1− c

= c
1− c

I
σ

n
2π
exp −λα /2

2 / 2( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Posterior Odds = Prior Odds ×  Bayes Factor

n
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g(θ) = N(μ0,σ0
2), where μ0 is the prior mean, and σ0

2 prior variance. As pointed out 
by Berger and Sellke (1987, p. 112) this prior closely follows Jeffreys 
recommendation for testing a point null.  It can be confirmed (see, for example, 
Migon, et al., 2014, p. 238) Bayes factor in favor of the null over the alternative 
may be expressed as  
 

   (5) 

 
where  is the sufficient statistic for θ. To make a comparison between frequentist 
and Bayesian frameworks, using the exact same conditions as Berger and Sellke 
(1987) and Berger and Delampaday (1987), we will center prior density g(θ) over 
the hypothetical mean value, that is μ0 = θ0, and equate prior variance with the 
known variance, that is, σ0

2 = σ2. Then (5) reduces to 
 

   (6) 

 

where  is a familiar classical test statistic. Therefore, using (6), the 

posterior probability of H0 is simply calculated as  
 

   (7) 

 
Both the Bayes factor and posterior probability are susceptible to the Lindley’s 
paradox.  

Discussion 

As the founder of the Bayes factor, Jeffreys (1939) was the first statistician who 
had noticed the disagreement between p values and Bayes factor. In the Appendix 
B, it was pointed out “at large numbers of observations there is a difference, since 
the test based on the integral [p value] would sometimes assert significance at 

B01 x( ) = σ 2 + nσ 0
2( ) /σ 2⎡

⎣
⎤
⎦
1/2
exp

n
2

x − µ0( )2
σ 2 + nσ 0

2( ) −
x −θ0( )2
σ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

x

B01 x( ) = 1+ n( )1/2 exp − z
2

2
n
n+1

⎧
⎨
⎩

⎫
⎬
⎭

z =
n x −θ0( )

σ

π H0 | x( ) = 1+
1−π 0( )
π 0

1
B01

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= 1+
1−π 0( )
π 0

1+ n( )−1/2 exp z2

2
n
n+1

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
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departures which would actually give K > 1 [B01(x) > 1]. Thus there may be 
opposite decisions in such cases. But these will be very rare [italicized by author]” 
(p. 435).  

To verify Jeffreys claim, a program was developed in R, and the source code 
is attached in Appendix A. The results of the simulation are displayed in Table 1. 
The program is based on testing average height (in cm) of women in New Zealand 
under assumption that the population variance is known to be 9. It calculates a 
number of cases for which Bayes factor supports true and false null hypotheses, 
respectively, that were previously rejected using traditional significance testing.  It 
also evaluates posterior probabilities of the null hypothesis in the following normal 
conjugate model testing scenario: 
 
H0 : μ = 170; σ2 = 9; “objective priors” equal 0.5;  

Prior mean = hypothesized value = 170; Prior variance = known variance (σ0
2 = σ2) 

 
Table 1 is based on 1,000 trials (iterations) for each cell and displays 

frequencies of cases for which classical tests produced significant results, yet Bayes 
factors and posterior probabilities inclined to support the null hypothesis (with 
values larger than 1 and 0.5, respectively). To illustrate our argument, that Jeffreys 
claim is incorrect, in case of false null hypothesis, a value in the vicinity of the null 
was taken as the true parameter value (μ = 170.007). 
 
 
Table 1. Number of opposite conclusions made by a significance test and Bayesian 
analysis in 1,000 trials per each cell. 
 

  Sample size n 
  θ = θ0 θ ≠ θ0; μ = 170.007 

z p-value 100,000 1,000,000 100,000 800,000 1,000,000 
1.959 0.050 53 46 103 488 550 
2.326 0.020 22 14 47 343 425 
2.576 0.010 11 9 23 257 332 
2.807 0.005 5 3 14 173 237 

 
 

As Table 1 confirms, Jeffreys’ statement is inaccurate, because he was 
unaware of the conflict between the Bayes factor and frequentist p-value. 
Discrepancies do not happen sometimes, and their occurrences are not very rare: 
discrepancies occur regularly, provided the sample size is large enough. 
Furthermore, his remark did not point to the Lindley’s paradox in its strict sense, 
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but to any disagreement between frequentist and Bayesian testing result. This table 
also demonstrates that the similar claim made by Edwards et. al. (1963, p. 235) 
“that results of [Bayesian and classical testing] procedures will usually agree” is 
unsubstantiated.  

The most striking result in Table 1 is the number of opposite conclusions (237 
out of 1,000) for significance level 0.005 and the sample size one million. This 
disturbing result indicates that the recommendation given by Benjamin and 72 other 
eminent statisticians (2018) to lower the impact of the reproducibility crisis in 
science by lowering threshold for defining statistical significance for new 
discoveries to 0.005 is unfortunately unproductive and cannot reconcile frequentist 
and Bayesian inference. Surely, we applaud their effort, but a different elucidation 
has to be adopted in order to solve all accumulated anomalies in the deepest 
foundations of statistical science. At least, all simulation results are easy to 
reproduce, because each simulation starts with the same seed.  

The notion of the JL paradox may be summarized as follows: In a Gaussian 
model N(θ, σ2) with known variance σ2, when testing a point null hypothesis θ = θ0 
there is a general disagreement between frequentist and Bayesian conclusions when 
an analysis is based on sufficiently large samples. Particularly, for any fixed value 
of significant frequentist test statistic z (and therefore any fixed significant p-value), 
for any fixed prior probability of the null hypothesis strictly larger than 0, 
P(H0) > 0, and for almost any choice of prior distribution that has a concentration 
on the null value θ0, posterior probability of the null hypothesis P(H0 | x) tends to 
1, and at the same time Bayes factor tends to infinity, with increasing sample size. 
This also means that the posterior probability that θ ≠ θ0 tends to zero. In its strict 
sense, JL paradox is attained when the p-value is significant at α% (say 0.005) and 
at the same time the posterior probability that θ ≠ θ0 reaches the same level (0.005). 
In other words, the frequentist test will reject the point null hypothesis and Bayesian 
test will support it. 
 
 
Table 2. Number of wrong conclusions in case of true null hypothesis (1,000 iterations) 
  

Significance test Bayes factor : Evidence against H0 
n p-value = 0.05 p-value = 0.005 Slight Substantial Strong 

20 45 3 74 13 1 
30 55 5 59 14 1 
50 44 6 40 15 0 

100 55 4 25 9 0 
500 47 8 14 6 0 

10,000 53 2 2 1 0 
50,000 52 2 1 0 0 
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It is remarkable to note that Lindley did not relate the paradox to the veracity 
of the null hypothesis, i.e. whether the null hypothesis was true or false. In relation 
to this, the following two disappointing facts can be established.  

 
1. If the null hypothesis is true, significance test will reject the null only 

when Type I error is committed, which according to the Neyman-
Pearson model can be expected in a relatively small proportion of 
cases depending on the preselected significance level α%. In these 
instances, frequentist test will lead to the wrong conclusion and Bayes 
factor will be asymptotically correct. However, small samples can 
mislead Bayes factor to wrongly reject the true null hypothesis since 
the value of Bayes factor depends on the significant value of the 
classical test statistic, as shown in (6). In other words, the Bayes factor 
is also susceptible to the type I error. Table 2 illustrates this situation 
for different sample sizes and is established on the classification of 
different values of Bayes factor given by Kass and Raftery (1995, p. 
777).  

Based on Table 2, for moderate and relatively large sample sizes, 
Bayes factor has lower Type I error rate, when “substantial” or 
“strong” evidence against H0 are used. Ironically, the most astonishing 
results are obtained for the class “slight”. It is worth mentioning that 
with small samples, so classified Bayes factor may wrongly reject true 
null in more instances than a significance test. Finally, when 
sufficiently large sample is reached, Bayes factor always support true 
null, i.e. Type I error cannot be committed. On the other hand, a 
significant test is repeatedly (proportionally to the number of 
applications) prone to Type I error, regardless of the sample size. 

2. When the point null value does not hold, JL paradox implies that 
Bayes factor becomes increasingly misleading by supporting false 
null. Contrariwise, with sufficiently large sample, frequentist test will 
detect that the null is false since the test statistic will converge almost 
surely to infinity.  

 
Obviously, the problem is that when we are confronted with a single 

conflicting result—Bayes factor supports H0 and p-value is significant—it is not 
possible to deduce the true cause. We can only treat this inversely, by running 
simulation assuming that null takes different values. Hence, the last section of this 
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paper will try to answer the most important question: how often JL paradox occur 
when testing large samples if the null is true and if the nulls are false. In other 
words, it will answer a rather provocative question stated as a title of the recent 
article written by Aris Spanos (2013): who should be afraid of the JL paradox? 

According to Robert (2014) “[T]here is obviously no mathematical issue with 
the paradox—otherwise it would have been readily dismissed” (p. 218). Consider 
the root of the JL paradox. Lindley required (1957, p. 187)  as n increases. 
Similarly, Sprenger (2013, p. 736) asked the following question: “Why is that this 
result [Bayes factor] diverges so remarkably from the frequentist finding of 
significant evidence against the null?” His opinion is that if the p-value has to 
remain constant when the sample size increases without bound, the sample mean 
has to converge to the hypothesized null value, favoring it over the alternatives. It 
can be argued this occurs because of the unnatural composition of the Jeffreys 
mixed prior model. Dirac's mass at  behaves like a black hole: it exhibits 

such a strong gravitational pull that absorbs any evidence, no matter how strong, 
against the null hypothesis. The point at which the gravitational pull of the Dirac's 
mass becomes so great to exclude any evidence against H0, can be called Jeffreys 
event horizon. This horizon will be always reached; the only question is for what 
sample size. 

 However, according to the Law of Large Numbers the sample mean almost 
surely converges to the true value of the parameter, not to the hypothesized value. 
Consider this as the fundamental statistical inaccuracy as the hidden root of the JL 
paradox, and it is caused by the presence of the Dirac's mass. From this perspective, 
JL paradox could be understood as a rather artificial process, devoid of reality, in 
which a sample mean in the long run converges to the hypothesized value of the 
parameter. This is happening because Lindley required that with an increasingly 
large sample, the sample mean has to be just significant. The interesting question 
is how is it possible to occur? By carefully examining his expression for the 
significant sample mean , we can see that θ0, σ, and λα/2 are 
constants, and that  has to be adjusted relative to n. Using the same testing setup 
as before, θ0 = 170, σ = 3, and λα/2 = 1.96 we obtain Table 3. 

It is now obvious what is the driving mechanism of the JL paradox. As the 
sample size increases, the sample mean in each subsequent sample has to take a 
specific value so that it converges to the hypothesized value ( ). Of course, 
this makes sense only when the point null hypothesis is true. However, when H0 is 
false, by preserving the same significance level, as the sample size increases the 
sample mean is forced to approach wrong hypothesized value. Undoubtedly, this is 

x→θ0

θ0 , δ θ=θ0{ }

x = θ0 + λα /2σ / n
x

x→170
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not justifiable, because the sample mean is an unbiased estimator. In these cases 
significant sample mean will lead to the correct rejection by a classical test. 
 
 
Table 3. Convergence of just significant sample means in case of JL paradox 
 

 θ0 N σ λα/2 
175.880000 170 1 3 1.96 
171.859419 170 10 3 1.96 
171.314808 170 20 3 1.96 
170.588000 170 100 3 1.96 
170.185942 170 1,000 3 1.96 
170.058800 170 10,000 3 1.96 
170.018594 170 100,000 3 1.96 
170.005880 170 1,000,000 3 1.96 

 
 

However, if Bayesians in most applications do not treat point null hypothesis 
as a single point, but as a hazily defined small region (Edwards et al., 1963, p. 214; 
Kadane, 1984, p.54; Bernardo, 2011b, p. 301), Bayes factor by supporting the 
wrong null when effect size is scientifically irrelevant, may provide some 
protection to researchers. In contrast, as observed by Hodges and Lehmann (1954, 
p. 261) “whenever the available data are extensive, the [significance] tests may 
become embarrassingly powerful” and reject trivially significant point null 
hypothesis. We argue that these imprecisions and difficulties should be avoided by 
making a clear distinction between sharp and interval null hypotheses in the 
formulation of the problems. Otherwise, a blind equalization of these two forms of 
null hypotheses will lead to further inconsistencies.  

Different views and attempts to solve JL paradox 
There were many attempts in the literature to resolve detrimental consequences 
imposed by the JL paradox, including (Shafer, 1982; Bernardo, 1980; Robert, 1993; 
Sprenger, 2013; and Naaman, 2016). An excellent review from a non-statistician 
perspective is given in Cousins (2014), from a frequentist perspective in Spanos 
(2013), and from a Bayesian in Robert (2014). Unfortunately, after 56 years of 
intensive discussions and debates since JL paradox was enunciated, Gelman and 
Shalizi (2012, p. 22), assert that the final verdict is that “the Jeffreys–Lindley 
paradox… is really a problem without a solution” [italicized by author]. 

Some tried to uncover a flaw in Lindley’s argument. Bartlett (1957, p. 534) 
suggested that in the uniform priors settings the sample size should be chosen in 

x
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such a way to make  proportional to 1/I. Likewise, Bernardo (1980, p. 613) 
argues that Lindley did not include the factor , thus compensating for the 
different dimensionalities of sharp H0 and infinitely diffuse H1. The most 
convincing explanation for making this adjustment was made by Cox (2006, p. 
106). He strongly advocates modification of the Jeffreys “mixed prior distribution 
paradigm” by showing that the fixed prior density over H1, g(θ), should not be 
independent of the sample size n. He argues that g(θ) should usually be taken in the 
form . The relation between the p-value and the posterior odds 

would be independent of n. However, Bernardo (1999, p. 102) objects this is a 
rather artificial solution. A similar fix of JL paradox is suggested by Naaman (2016, 
p. 1526), by “allowing the significance level to decrease with the number of 
observations in the study”. However, JL paradox strictly requires that the same 
significant level is used throughout the process, hence this resolution can be only 
classified as contradictio in adiecto. In spite of that, this suggestion is offered in 
Wikipedia as a reconciliation of the Bayesian and frequentist approaches to force a 
frequentist test to support a ridiculous claim that in some imaginary city boys were 
born at the same rate as girls.  

There are numerous possible resolutions with a goal to avoid JL paradox by 
finding alternatives to the standard Bayes factor. For example, Shafer (1982) 
proposed using the theory of belief functions. Robert (1993) advocated 
noninformative answer by imposing dependence between the prior probability of 
the null hypothesis and the prior variance under the alternative hypothesis that leads 
to the same decisions as the p value. Claiming that both frequentist significance 
tests and subjective Bayesian inference failed to resolve the JL paradox, Sprenger 
(2013) recommended using Bayesian Reference Criterion (see, for example, 
Bernardo, 1999) that gives a sensible treatment of the paradox. Many other variants 
of the Bayes factors have been proposed to overpower problems related to the usage 
of improper priors, like intrinsic Bayes factor (Berger and Pericchi, 1996), 
fractional Bayes factors (O'Hagan, 1995), etc. Another important reference is Li et 
al. (2014), who proposed a new Bayesian test statistic based on the difference 
between the two deviances averaged over the posterior distribution. This test is 
immune to JL paradox and constructed in a decision theoretical framework.  

The most impressive approach in modern Bayesian analysis that, inter alia, 
dismisses JL paradox, is the “Integrated objective Bayesian estimation and 
hypothesis testing,” (Bernardo, 2011a). Since the Jeffreys pioneering book, 
Bayesians have usually used two fundamentally different types of priors, one 

n
n

g θ −θ0( ) n{ } n
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category for estimation and radically different (and often polemic) for testing point-
null hypotheses. Bernardo’s all-encompassing approach facilitates objective 
decision-making by using prior distributions that only depend on the assumed 
model and the quantity of interest. Particularly, the same prior distribution may be 
used for point estimation, region estimation, and point-null hypotheses testing.  

However, Bernardo’s usage of loss functions may not be directly relevant to 
inference problems. In Fisher’s words (Fisher, 1935, pp. 25-26) “In the field of pure 
research no assessment of the cost of wrong conclusions, or of delay in arriving at 
more correct conclusions can conceivably be more than a pretense, and in any case 
such an assessment would be inadmissible and irrelevant in judging the state of the 
scientific evidence”. A similar attitude was shared by Lindley (in Bernardo, 1999, 
p. 122), that “hypothesis testing is, in principle…the calculation of P(H0 | x), for 
data x. It is part of our total expression of uncertainty about the world…it has no 
element of decision-making in it.” Furthermore, Bernardo’s approach suffers from 
certain still unresolved problems and is not fully accepted among Bayesians (see, 
for example, Bernardo (2011a, pp. 25-50) for opposing views. 

Consider some different views and misapprehensions of the JL paradox. One 
idea is to show how extremely complex and confusing the nature of this paradox 
is. It is curious that in the vast literature where JL paradox is discussed, many 
authors reduce its importance or interpret it quite differently. 

 
1. The concept of JL paradox is not identical to Bartlett’s inconsistency. 

Even if we consider Jeffreys-Lindley-Bartlett paradox as a single 
entity with two dimensions (Lindley’s and Bartlett’s), solving one 
dimension is just a local solution, not the global one. This equivalence 
was incorrectly alleged in Robert’s early paper (1993, p. 601): “[T]he 
Jeffreys-Lindley paradox, namely the fact that a point null hypothesis 
will always be accepted when the variance of a conjugate prior goes 
to infinity…” As we have already discussed, what Robert emphasizes 
by this, is just a troublesome behavior of the Bayes factor that could 
be misused by unethical researchers to “prove” any null hypothesis. 
Specifically, from (5) it is clear that for any fixed  and prior 
probability of H0, B01(x) ⟶	∞ as prior variance (set by a researcher), 
σ0

2, increases ad infinitum. Simultaneously, regardless of the data, for 
any fixed prior, π0, the posterior probability (6) of the null hypothesis 
can be made as close to one as desired. As Bernardo (1980, p. 607) 
rightfully observes, this is “rather disturbing, for a large prior variance 
has been traditionally accepted as a description of vague initial 

x
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knowledge.” Lindley’s posterior probability given in (3) exhibits the 
same deficiency. 

There are three interesting points related to the abovementioned 
Robert’s paper with the title “A note on Jeffreys-Lindley paradox”.  

a) If one substitutes all occurrences of the words “Jeffreys-
Lindley paradox” with “Bartlett’s inconsistency” his analysis 
would be correct,  

b) No one has noticed this slip, although many have quoted it, 
and  

c) Subsequently, Robert denied (Rousseau and Robert, 2011, p. 
137) the usefulness of his “solution of the Jeffreys-Lindley 
paradox”, claiming that it is flawed from the measure 
theoretic-angle. A simple proof that Robert grossly missed the 
topic is the fact that Lindley was not at all aware of the 
dependence of the posterior probability on the prior variance; 
he even made an omission by excluding the width of the 
interval from the posterior probability . 

The JL paradox is an enormously complex and slippery issue. Robert 
(2007, 2014) revisited the JL paradox to correct the initial viewpoint 
and stated there is a “dual interpretation” (2014, p. x). Unfortunately, 
the earlier 2007 reference stimulated authors to the same 
misinterpretation. For example, Villa and Walker (2017, p. 12290) 
claimed Lindley “shows that, for point null hypothesis testing, there 
may be a concern with the objective Bayesian approach. In the specific 
example used, if the prior for the location parameter, in the alternative 
model to the parameter being zero, has infinite variance, then the 
Bayesian will always select the null model, regardless of the observed 
data.” As pointed above, it is clear that Lindley never showed that. 
Analogous imprecision is also shared by Moreno (2011, p, 41). 
Similarly, Baskurt and Evans (2013, p. 579) presented their solution 
of the JL paradox, but their discussion was based on Bartlett’s 
inconsistency. It seems that the solution of JL paradox should be 
equated with the solution of the problem of squaring the circle. 

c
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2. According to Good (1982, p. 342) , “Jeffreys paradox is closely 
related to the fact, not mentioned by Jeffreys, that a user of tail-area 
probabilities [a frequentist] can cheat, and can reach arbitrarily small 
tail-area probabilities, if he is allowed to use optional stopping, even 
when the null hypothesis is true.” However, we have just proved that 
the similar endless opportunities for cheating exist also within the 
Bayes factor framework. 

3. JL paradox is not “the fact that in testing a point null hypothesis for a 
fixed prior, and posterior cutoff points… as the sample size goes to 
infinity, P(H0 ) ⟶	1.” (Gill, 2015, p. 228). It is the posterior 
probability of H0 that tends to 1, not prior. In Gill’s notation (from 
page 218), this should be corrected to P(H0 | data)	⟶	1. 

4. The moral of the JL paradox is not “that if you pick a stupid prior, you 
can get a stupid posterior” (Christensen et al., 2011, p. 60). As pointed 
out by Lindley, almost any prior distribution concentrated on the 
hypothetical value θ0 inevitably leads to the paradox. Nevertheless, 
Christensen is more unambiguous in (2005, p. 123): “Bayesian tests 
can go seriously wrong if you pick inappropriate prior distributions.” 

5. JL paradox does not indicate that “if the convention of applying a 
significance level of 0.01 or 0.05 is followed, then Lindley's `paradox' 
shows that with growing sample size, any hypothesis will be rejected.” 
(Keuzenkamp, 2000, p. 54). 

6. The following misconception is similar to the previous one. It 
amounts to the claim that “the large n sample problem was initially 
raised by Lindley” by pointing out that “there is always a large enough 
sample size n for which any simple null hypothesis H0 : μ = μ0 will be 
rejected by a frequentist α-significance level test” (Spanos, 2014, p. 
646, and similarly in 2013, p, 73). First, large n problem was initially 
discussed by Berkson (1938), not by Lindley. Second, Lindley based 
his paradox explicitly on selecting sample means that were just 
significant at the α percentage point, regardless of the sample size. 
Finally, Lindley showed that for all these significant means, 
regardless of the significance level, for sufficiently large samples, 
posterior probability can be calculated that would support the null 
hypothesis. Hence, there is always a large enough sample size n for 
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which any simple null hypothesis H0 : μ = μ0 will be supported by the 
Bayes factor, not rejected by a frequentist test. To illustrate this, 
consider a normal model with conjugate priors. If a frequentist test 
based on just five elements produced a significant value that is ten 
standard errors away from the hypothesized mean (z = 10), than for 
the huge sample size n = 1049, Bayes factor (1,928.75) and posterior 
of the null (0.999), would strongly favor null hypothesis over the 
alternative. 

7. JL paradox does not describe a situation “when the p-value is very 
close to zero but the probability of correlation being true is very close 
to zero as well” (Zhu et al., 2012, p. 41). 

How often JL paradox may occur in applied Statistics? 
To answer this question, we will present the results of simulations obtained by a 
program developed in R. Before that, let us summarize some main conclusions we 
have reached so far, for the fixed level of significance, in Figure 1. 
 
 

 
 
Figure 1. Implications of JL Paradox 
 
 
 

Figure 1 shows the conflicting conclusions derived using a frequentist test 
and Bayesian testing when a sample mean is taken to be just significant, and sample 
size increases. When this condition is imposed, one of the most striking 
implications is that Bayes factor will always support null hypothesis, be it true or 
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false, even for data that are extremely implausible under the null hypothesis. As per 
our previous example, this would happen for a very large frequentist test statistic 
Z = 10, when the sample size is n = 1049. In this case Bayes factor (1,928.75) and 
posterior of the null (0.999), would strongly favor null hypothesis over the 
alternative. To find the answer what would be appropriate scientific conclusion in 
this conflicting case (frequentist or Bayesian), let us quote Jeffreys opinion. While 
commenting differences between z ≤ 2 and z ≥ 3. (1980, p. 453) he stated that 
“…differences up to twice standard error usually disappear when more or better 
observations become available, and that those of three or more times usually persist 
[italicized by author]." What would Jeffreys think about persistence of 26 standard 
errors difference away from the hypothesized value, with a huge sample size 10299 
where Bayesian analysis (Bayes factor = 1,616 and ) exceedingly 
support the null value? 

As portrayed in Figure 1, we considered only the cases of JL paradox in its 
strict sense. Consequently, as a first step, we have found minimum sample size that 
is required for JL paradox to materialize, depending on the significance level. These 
values are displayed in Table 4, for both cases (original Lindley’s set-up and normal 
conjugate priors). For example, when the level of significance is fixed at 5% level, 
the smallest sample size to produce JL paradox in Lindley’s set-up is 105,685 and 
with normal conjugate priors 16,816 (Lindley made several slips in his 1957 paper 
when calculating similar minimum sample sizes; on page 190 bottom, correct 
sample size to reach the strong contrast in his paradox is 105,685, not 10,000; on 
page 191 top, number of trials in an experiment to raise our belief that telepathy did 
not exist to 95% is not 1,600, but 16,910). 
 
 
Table 4. Minimum sample size to induce of JL paradox in its original denotation 
   

Minimum n 
α level P(H0 | just significant ) Lindley's set-up Normal conjugate priors 
0.050 0.950 105,685 16,816 
0.040 0.960 245,701 39,098 
0.030 0.970 728,954 116,011 
0.020 0.980 3,380,074 537,945 
0.010 0.990 46,875,786 2,195,961 
0.005 0.995 657,481,111 104,625,626 
0.001 0.999 315,983,097,898 50,212,131,719 

 
 
 

P H0 | x( ) = 0.999

x
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Table 5. Frequency of occurrences of JL paradox in its original sense for normal 
conjugate priors 
   

Sample size n   
H0 : μ = 170 H1 : μ ≠ 170 

z p-
value 100,000 800,000 10,000,000 250,000,000 Δ = 0.01 

100,000 
Δ = 0.007 

800,000 
Δ = 0.002 

10,000,000 
Δ = 0.0004 

250,000,000 

1.959 0.050 31 45 53 44 107 308 417 506 

2.054 0.040 18 42 45 36 54 237 354 454 

2.170 0.030 - 18 31 28 - 141 284 394 

2.326 0.020 - 4 16 14 - 35 198 310 

2.576 0.010 - - 1 5 - - 30 169 

2.807 0.005 - - - 3 - - - 38 

 
 

Simulation results based on 1,000 iterations are presented in Table 5 for 
various fixed level of significance, several values of n, for a true null hypothesis, 
and also for several false null hypotheses, where Δ denotes the distance between 
the true alternative and the false null hypothesis. For instance, when Δ = 0.01 the 
true alternative value was taken to be 170.01. The implication of the JL paradox is 
evident. The most remarkable empirical result is obtained for the samples n = 250 
million units and the shift value 0.0004; JL paradox occurs in more than 50% of 
trials. This outcome conveys a clear alarming message: JL paradox happens 
frequently and persistently in the Zettabyte Epoch, where statistical analysis and 
data science are routinely applied on enormous datasets. 

A graphical comparison of the number of times JL paradox occurs depending 
on the power of a frequentist test for significance level 0.05 is given in Figure 2.  

The bottom curve that is superimposed shows empirical frequencies when H0 
is true, with the sample size chosen to correspond to Δ = 0.01. It is easy to notice 
several regularities: 1) for the same power, frequencies are considerably larger for 
the false null hypothesized value closer to the true parameter values, 2) the shape 
of the empirical frequency curves are similar, with the largest number for power 
between 0.6 and 0.8, and 3) as anticipated JL paradox occurs much more often for 
false null hypotheses. However, it would be imprudent just to compare frequencies 
and to conclude that Figure 1 and Figure 2 when observed jointly convey a sinister 
message to the Bayesians that they should be afraid of JL paradox. This naturally 
depends on the proportion of the true null hypotheses. Nevertheless, Figure 2 
reiterates one of the most important commandments to the Bayesian statisticians: 
“for Bayesian statisticians, however, no procedure for testing a sharp null 
hypothesis is likely to be appropriate unless the null hypothesis deserves special 
initial credence.” (Edwards et. al., 1963, p.235). 
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Figure 2. Frequency of occurrences of JL paradox depending on the power of the 
frequentist test 
 
 

Conclusion 

“We [statisticians] will all be Bayesians in 2020, and then then we 
can be a united profession” A. Lindley (Smith, 1995, p. 317). 

“I have lamented that Bayesian statisticians do not stick closely 
enough to the pattern laid down by Bayes himself: if they would 
only do as he did and publish posthumously we should all be saved 
a lot of trouble” (Kendall, 1968, p. 185). 

 
Probably the most appropriate characterization of JL paradox is given by Bernardo 
(2011b, p. 302): “unappealing behaviour of posterior probabilities based on sharp, 
non-regular priors—generally known as Lindley’s paradox— is always present in 
the conventional Bayesian approach to sharp hypothesis testing”. The JL paradox 
is induced by the assignment of a probability mass (Dirac's mass) to a single point 
that has Lebesgue measure zero in the Jeffreys mixed prior model. This is contrary 
to Lindley’s assertion (1957) “paradox arises because the significance level 
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argument is based on the area under a curve and the Bayesian argument is based on 
the ordinate of the curve” (p. 189-190) This is not the case, because the JL paradox 
does not occur in one-sided testing when it is possible to reconcile measures of 
evidence between the frequentist and Bayesian paradigm. As proved by Casella and 
Berger (1987, p. 106) for many categories “of reasonable prior distributions the 
infimum of the Bayesian posterior probability of H0 is equal to the p-value, or even 
strictly lower bound on the p-value”. Why there is no general conflict in one-sided 
testing? Because in this case, Bayesians do not need Jeffreys mixed prior model! 

Lindley formulated the paradox to show it is not always appropriate to use the 
same prescribed significance level. There is nothing unanticipated in his 
recommendation. For example, Fisher (1973) shared the same opinion: “no 
scientific worker has a fixed level of significance at which from year to year, and 
in all circumstances, he rejects hypotheses; he rather gives his mind to each 
particular case in the light of his evidence and his ideas” (p. 44-45).  

Using simulation, a conjecture by Jefferys (1990) that JL paradox is not a 
“pathological result of little practical interest” (p. 154), but instead a general 
phenomenon was confirmed. Hence, this paradox is not of “questionable relevance” 
(Berger & Delampady, 1987, p. 322). With zettabyte datasets, the number of 
conflicting conclusions between frequentist and Bayesian measures escalates. As 
an illustration, consider the radically different answers among Bayesian 
statisticians in Bernardo (2011a, pp. 25-50), when analyzing a huge sample 
(n = 104,490,000 with 52,263,471 successes) obtained while testing for extra 
sensorial perception. The very small p-value, 0.0003, suggests compelling evidence 
against the point null hypothesis (θ0 = 0.5). Bernardo (2011a, p. 19) reached the 
same conclusion based on the minimum likelihood ratio against the null 1,400. 
However, the Bayes factor obtained using a mixed prior distribution with a uniform 
prior under the alternative amounts to 12, and thus supports H0 (Jefferys, 1990, p. 
159). 

If the next “generation of statisticians must build tools for massive data sets” 
(Laan & Rose, 2010, p. 38), then this generation should not leave fundamental 
paradoxes unresolved. Otherwise, it is highly likely that other journals will follow 
the example of BASP (Basic and Applied Social Psychology) by banning 
“NHSTP” (Null Hypothesis Significance Testing Procedures), and lead us to a 
deeper crisis. After all, BASP editors did not put the veto only on the statements 
about significant differences, but also on p-values, t-values, and confidence 
intervals (Trafimow and Marks, 2015). To regain confidence in statistical testing 
within the scientific community we need to reconcile measures of evidence between 
frequentist and Bayesian approaches. This was brilliantly indicated in the next two 
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Good’s sentiments: “The resolution of inconsistencies will always be an essential 
method in science” (1952, p. 107), and “a Bayes/non-Bayes compromise or 
synthesis is necessary for human reasoning” (1980, p. 489). In the case of JL 
paradox there are at least seven options: 

 
1. Abandon p-values as requested by Berger and Delampady (1987, p. 

330), since there exists “irreconcilability of traditional measures and 
evidence” (Berger and Sellke, 1987). In addition, a) with increasing 
sample size p-value consumers will reject almost any sharp null 
hypothesis, and thus frequently highlight trivial findings, and b) 
conclusions based on p-values are always susceptible to type I and II 
errors, 

2. In the light of recent Robert’s article “The expected demise of the 
Bayes factor”, put the kibosh on the standard Bayes factor because 
with large enough samples it will almost always support any point null 
value; ultimately, as stated by Bernardo (2011a, p. 56), “Bayes factors 
have no direct foundational meaning to a Bayesian: only posterior 
probabilities have a proper Bayesian interpretation.”, 

3. Dismiss JL paradox by relying on Bernardo’s integrated objective 
Bayesian estimation and hypothesis testing (or similar), 

4. Calibrate p-values or posterior probabilities, 

5. Develop a different Bayes factor that is not prone to JL paradox, 

6. Keep on searching for “the statistical holy grail: prior distributions 
reflecting ignorance” (Fienberg, 2006, p.5),  

7. Develop a new paradigm of Bayesian testing like in Kamary et. al. 
(2014), or 

8. Abandon testing point-null hypothesis following the ideas in Rao and 
Lovric (2016), and many other statisticians. 

 
The first two suggestions are not supportable, because they do not settle a 

dispute by mutual concession. The Jeffreys-Lindley paradox need not be feared, 
once it disengaged from applied statistics suggestions 3 through 7. This leaves 
suggestion 8 as the most tenable. 
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Appendix A 

This is the original code for the program that was used in this paper to compare 
number of occurrences of the Jeffreys-Lindley paradox in case the null hypothesis 
is true or false. 
 

# This analysis is based on the normal conjugate model with a known variance 

# 

# Written by M. Lovric March 16, 2019 

########################################################################## 

rm(list = ls())            # clear memory 

set.seed(12345)         # set the same seed for all comparisons 

# BF_interpret function interprets values of Bayes factor according to the  

# paper "Bayes factors", by Robert Kass & Adrian Raftery (1995), 

#                         JASA, Vol. 90, No. 430. pp. 773-795. 

# 

# BF in this program is BF_0_1, not BF_1_0 hence the inverse values are taken 

# 

BF_interpret <- function(BF){ 

    if (1/BF > 150){ 

      res <- "Very strong evidence against Ho." 
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    }else if(1/BF > 20){ 

      res <-  "We have strong evidence against Ho." 

    }else if(1/BF > 3){ 

      res <-  "We have positive evidence against Ho." 

    }else if(1/BF > 1){ 

      res <-  "Not worth more than a bare mention evidence against Ho." 

    }else{ 

      res <- "supports Ho."   

    }  

  } 

# Set alpha level 

alpha_level = 0.05  # Initial significance level 

sigma_2 <- 9          # Known variance 

 

#################################################################### 

# First initialize vectors for the comparison at 0.05 level 

Z_vector <- c()                                  ## Vector that contains z-values 

BF_Wrongly_Support_H_0 <- c()    ## Bayes factor wrongly supports false null hypothesis  

Posterior_H_0_Wrong <- c() 

p_value_Correct <- c()   ## vector of  p-value that correctly reject false null  hypothesis 

 

# now initialize vectors for comparison at 0.04 level 

Z_vector_004 <- c() 

BF_Wrongly_Support_H_0_004 <- c()     

Posterior_H_0_Wrong_004 <- c() 

p_value_Correct_004 <- c()   

 

# now initialize vectors for comparison at 0.03 level 

Z_vector_003 <- c() 

BF_Wrongly_Support_H_0_003 <- c()     

Posterior_H_0_Wrong_003 <- c() 

p_value_Correct_003 <- c()  ## p-value correctly rejects false null hypotheis 

 

# now initialize vectors for comparison at 0.02 level 

Z_vector_002 <- c() 

BF_Wrongly_Support_H_0_002 <- c() 

Posterior_H_0_Wrong_002 <- c() 

p_value_Correct_002 <- c()  
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# now initialize vectors for comparison at 0.01 level 

Z_vector_001 <- c() 

BF_Wrongly_Support_H_0_001 <- c()  

Posterior_H_0_Wrong_001 <- c() 

p_value_Correct_001 <- c()   

 

# Finally, initialize vectors for comparison at 0.005 level recommended by Benjamin et. al. 

Z_vector_0005 <- c() 

BF_Wrongly_Support_H_0_0005 <- c()    ## Bayes factor wrongly supports false null hypothesis  

Posterior_H_0_Wrong_0005 <- c() 

p_value_Correct_0005 <- c()     

# priors for H_0 and H_1 

pi_H_0 <- 0.5   #  assign “objective” priors for the point null and alternative 

pi_H_1 <- 1 - pi_H_0 

   

n= 250000000  # sample size 

   

N = 1000  # number of iterations (“trials”) 

   

Theta_0 = 170  # hypothesized value of the parameter (mean) 

   

######### a loop for a false or true null hypothesis 

for (k in 1:N){ 

        NormalRandomSample <- rnorm(n, mean = 170, sd = sqrt(9)) # take a random sample of size 

n from a normal 

        x_bar = mean(NormalRandomSample) 

        Z <- (sqrt(n)*(x_bar - Theta_0))/sqrt(sigma_2) ;  # calculate the value of the Z test 

statistic 

        p_value <- 2*pnorm(-abs(Z)) ; 

        BF <- (1 + n)^(1/2) *exp((-0.5*Z^2)*n/(n+1))   ;  # calculate Bayes factor for a normal 

conjugate prior case 

        # next find the posterior probability of the null hypothesis 

        

        Post_H0_two_sided <- (1 + ((1 - pi_H_0)/pi_H_0)*(1 + n)^(-1/2)* 

                                exp((0.5*Z^2)*n/(n+1)))^(-1);        

        print(k)  # print the number of iterations on the screen 
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        if (Post_H0_two_sided > 0.95  & p_value < 0.05)  {    # Impose a condition for strict 

JLP, when a comparison is made at 0.05 level of significance 

        print ("F O U N D   JLP")  # Print on the screen when a JLP is found 

        BF_Wrongly_Support_H_0 <- c(BF_Wrongly_Support_H_0, BF); 

        Posterior_H_0_Wrong <- c(Posterior_H_0_Wrong, 

                               Post_H0_two_sided); 

        p_value_Correct <- c(p_value_Correct, p_value); 

        Z_vector <- c(Z_vector, Z) 

        } 

        if (Post_H0_two_sided > 0.96  & p_value < 0.04)  { # the same for 0.04 significance  

          print ("F O U N D   JLP at alpha = 0.04") 

          BF_Wrongly_Support_H_0_004 <- c(BF_Wrongly_Support_H_0_004, BF); 

          Posterior_H_0_Wrong_004 <- c(Posterior_H_0_Wrong_004, 

                                   Post_H0_two_sided); 

          p_value_Correct_004 <- c(p_value_Correct_004, p_value); 

          Z_vector_004 <- c(Z_vector_004, Z) 

        } 

        if (Post_H0_two_sided > 0.97  & p_value < 0.03)  { #  the same for 0.03 significance 

          print ("F O U N D   an occurrence of JLP! At alpha = 0.03") 

          BF_Wrongly_Support_H_0_003 <- c(BF_Wrongly_Support_H_0_003, BF); 

          Posterior_H_0_Wrong_003 <- c(Posterior_H_0_Wrong_003, 

                                   Post_H0_two_sided); 

          p_value_Correct_003 <- c(p_value_Correct_003, p_value); 

          Z_vector_003 <- c(Z_vector_003, Z) 

        } 

        if (Post_H0_two_sided > 0.98  & p_value < 0.02)  { #  the same for 0.02 significance 

          print ("F O U N D   JLP") 

          BF_Wrongly_Support_H_0_002 <- c(BF_Wrongly_Support_H_0_002, BF); 

          Posterior_H_0_Wrong_002 <- c(Posterior_H_0_Wrong_002, 

                                   Post_H0_two_sided); 

          p_value_Correct_002 <- c(p_value_Correct_002, p_value); 

          Z_vector_002 <- c(Z_vector_002, Z) 

        } 

        if (Post_H0_two_sided > 0.99  & p_value < 0.01)  { #  the same for 0.01 significance 

          print ("F O U N D   JLP for alpha = 0.01") 

          BF_Wrongly_Support_H_0_001 <- c(BF_Wrongly_Support_H_0_001, BF); 

          Posterior_H_0_Wrong_001 <- c(Posterior_H_0_Wrong_001, 

                                   Post_H0_two_sided); 
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          p_value_Correct_001 <- c(p_value_Correct_001, p_value); 

          Z_vector_001 <- c(Z_vector_001, Z) 

        } 

        if (Post_H0_two_sided > 0.995  & p_value < 0.005)  { #  the same for 0.005 significance 

          print ("F O U N D   JLP at 0.005 level") 

          BF_Wrongly_Support_H_0_0005 <- c(BF_Wrongly_Support_H_0_0005, BF); 

          Posterior_H_0_Wrong_0005 <- c(Posterior_H_0_Wrong_0005, 

                                   Post_H0_two_sided); 

          p_value_Correct_0005 <- c(p_value_Correct_0005, p_value); 

          Z_vector_0005 <- c(Z_vector_0005, Z) 

        } 

    } 

# Finally, store simulation results in data frame objects 

Output005 <- data.frame(BF_Wrongly_Support_H_0, Posterior_H_0_Wrong, Z_vector, p_value_Correct) 

edit(Output005) 

length(Output005$BF_Wrongly_Support_H_0) 

   

Output004 <- data.frame(BF_Wrongly_Support_H_0_004, Posterior_H_0_Wrong_004, Z_vector_004, 

p_value_Correct_004) 

edit(Output004) 

length(Output004$BF_Wrongly_Support_H_0_004) 

     

Output003 <- data.frame(BF_Wrongly_Support_H_0_003, Posterior_H_0_Wrong_003, Z_vector_003, 

p_value_Correct_003) 

edit(Output003) 

length(Output003$BF_Wrongly_Support_H_0_003) 

     

Output002 <- data.frame(BF_Wrongly_Support_H_0_002, Posterior_H_0_Wrong_002, Z_vector_002, 

p_value_Correct_002) 

edit(Output002) 

length(Output002$BF_Wrongly_Support_H_0_002) 

  

Output001 <- data.frame(BF_Wrongly_Support_H_0_001, Posterior_H_0_Wrong_001, Z_vector_001, 

p_value_Correct_001) 

edit(Output001) 

length(Output001$BF_Wrongly_Support_H_0_001) 
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Output0005 <-data.frame(BF_Wrongly_Support_H_0_0005, Posterior_H_0_Wrong_0005, Z_vector_0005, 

p_value_Correct_0005) 

edit(Output0005) 

length(Output0005$BF_Wrongly_Support_H_0_0005)d type II conflicts:", length(BF_Critical)/5) 
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