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CHAPTER 1 

“EPIGENETIC CONSEQUENCES OF PRE-CONCEPTIONAL EXPOSURES IN HUMAN” 

This chapter was adapted in part from the following publication: 

Estill MS, Krawetz SA. (2016) “The Epigenetic Consequences of Paternal Exposure to 

Environmental Contaminants and Reproductive Toxicants.” Current Environmental Health 

Reports 3(3):202-13. doi: 10.1007/s40572-016-0101-4. 

 

i. Summary 

The Developmental Origins of Health and Disease (DOHaD) hypothesis proposes that 

periconceptional environment influences offspring phenotype, partially through epigenetic 

mechanisms [1-3]. Both maternal and paternal peri-conceptional environments are now 

believed to contribute to offspring phenotype. Assisted reproductive technologies, such as in 

vitro fertilization, alter the pre- and post-fertilization environment of the human embryo. 

Manipulation of the early embryo for treating human infertility is suspected of contributing to 

offspring abnormalities through epigenetic mechanisms. While the causal paternal 

components of DOHaD are insufficiently understood, particularly in human, the pre-

conceptional environment of the father may influence several components of the male 

germline. In addition to the haploid paternal DNA, spermatozoa carry RNA, proteins and 

chromatin marks to the embryo. Murine and limited human studies suggest that epigenetic 

marks in the mature spermatozoa may be modified by the paternal environment, including 

common endocrine disruptor exposures. Frequent human exposures to endocrine disruptors, 

exogenous chemicals that can mimic or alter hormonal responses, make it imperative to fully 

define the affected epigenetic marks in human sperm. 

ii. Background 

The Developmental Origins of Health and Disease (DOHaD) theory proposes that 

preconceptional, prenatal and childhood exposures affect health outcomes later in life. 
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Maternal health is a critical component of DOHaD, as maternal stressors, diet, and chemical 

exposures can directly affect both the oocyte and the growing fetus across gestation. Maternal 

psychological stress during gestation, often measured by self-reporting, is often correlated 

with autism symptom severity [4] and toddler cognition and temperament [5, 6]. Maternal diet 

is well documented to be associated with offspring health [7, 8]. Certain chemical exposures 

during human gestation are well known to be detrimental to fetal development. For example, 

gestational thalidomide use, prescribed as an antiemetic to counter morning sickness, leads 

to limb and organ deformation [9]. However, more subtle effects, in the absence of a gross 

fetal morphological phenotype, may occur with gestational exposure to exogenous chemicals. 

For example, diethylstilbestrol (DES), a synthetic estrogen, was once prescribed under the 

assumption that DES would prevent adverse pregnancy outcomes, such as pre-term birth and 

miscarriages. However, gestational exposure to DES has since been associated with 

reproductive system cancers and reproductive tract problems in the exposed offspring [10].  

With the majority of DOHaD studies focus on the maternal contribution to fetal health, 

the paternal aspect of DOHaD remains largely unexplored. However, there is evidence for the 

non-genetic transfer of paternal environmental information to the embryo and subsequent 

fetus (Figure 1.1). Murine experiments on paternal exposure to chemicals, extreme diets, 

exercise or adverse psychological events suggest that the paternal experience is passed 

along to the offspring, presenting an offspring phenotype. For example, male mice fed a 

Western-like diet produce offspring with metabolic dysfunction, an effect which is suggested 

to be mediated by spermatozoal RNAs [11]. The intergenerational effects of paternal diet also 

extend to simpler organisms, with a drosophila model showing that acute paternal dietary 

sugar reprograms offspring metabolism [12]. Stressful events in both neonatal and adult male 

mouse are capable of modifying phenotype, such as fear and anxiety responses, in 

subsequent offspring [13-15].  
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Figure 1.1. DOHaD maternal and paternal contributions. Maternal and paternal germlines 
may be influenced by their environments and stimuli, such as chemical exposures and food 
availability. On the maternal side, the uterine condition can also be affected by the maternal 
environment. Environmental insults to parental reproductive tissues and the developing fetus 
can influence the phenotype (e.g. health) of the offspring during childhood and into adulthood. 
 

Accordingly, environmental perturbations in the human may also affect offspring. 

While the long-term observations are required to demonstrate the isolated/specific paternal 

contribution in humans to the offspring and subsequent generations, historical records of 

isolated communities do suggest that parental nutrition influences the disease risk of 

subsequent generations [16]. Observations of a Swedish parish, Överkalix, suggest that 

dramatic shifts in pre-pubertal food availability of paternal grandmothers increases the risk for 

cardiovascular mortality in female grandchildren, via the F1 sons, suggesting a sperm-

mediated mechanism. Subsequent work on the Uppsala Birth Cohort Multigeneration Study 

further suggested that abundant access to food during the slow-growth period (pre-pubertal 

period) of paternal grandfathers is associated with elevated mortality in grandsons, also 

supporting a sperm-mediated mechanism [17]. The well-documented 1944-45 Dutch famine, 
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caused by a German blockade of the Western Netherlands during World War II, yielded a 

cohort of individuals who experienced gestational undernutrition. Maternal undernutrition 

during gestation of male offspring (F1 generation) resulted in the grandchildren (F2 

generation) being prone to obesity [18].  

To understand the impact of human paternal environment, it is critical to thoroughly 

characterize the components of the male gamete, as well as the mechanisms by which 

common environmental exposures may alter spermatozoal contents. Human populations are 

exposed to a wide spectrum of environmental contaminants, some of which are considered 

reproductive toxins [19]. Certain exposures are intentional, such as the case of 

chemotherapeutic treatments, intended to kill fast-growing cells, including the target cancer 

cells. However, chemotherapy often has negative repercussions on the reproductive system, 

up to and including infertility. Other such reproductive toxins include certain heavy metals, 

such as lead, and endocrine disruptors, such as bis-phenol A (BPA), which can disrupt 

gametogenesis and reproductive functions [20]. Epidemiological studies have examined the 

effect of such toxins on the human male reproductive system. However, the basic tenant of 

epidemiological studies in the male human is to infer how one or more substances alter the 

hormonal profile, seminal characteristics, or both. Unfortunately, except in extreme cases of 

sperm parameter abnormalities, such as azoospermia or globozoospermia, the clinical utility 

of traditional seminal characteristics at predicting fertility is limited [21, 22]. The contribution 

of subtle epigenetic alterations, such as DNA methylation and histone marks, to reproductive 

phenotypes and fertility potential has, until recently, received little attention. 

The mechanisms underlying phenotypic changes in DOHaD are largely proposed to 

be epigenetic. Although genotype and consequent gene-environment interactions certainly 

account for a portion of a response, controlled murine experiments indicate a long-lasting 

effect that perpetuates a phenotype across an individual’s lifetime, and possibly to the 

individuals offspring [11, 23-25]. This long-lasting mechanism occurs despite the mutability of 
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epigenetic marks across an individuals’ lifetime [26-28]. Epigenetics is broadly defined as the 

non-permanent alteration of DNA structure. Common epigenetic alterations are DNA 

methylation, histone modifications, and chromatin states (euchromatin/heterochromatin). 

DNA methylation, the addition of methyl groups to individual bases, occurs primarily in the 

context of methylated cytosines. In mammals, 5-methylcytosine (5-mC) is thought to be the 

primary type of methylated cytosine [29]. Other epigenetic alterations, while being more 

transitory in nature, also can alter DNA structure, such as regulatory RNA and TF binding. 

The involvement of the epigenome in Assisted Reproductive Technologies and the male 

germline is explored below.  

iii. Epigenetics in embryonic development 

Human infertility is a common condition, with approximately 12% of couples of 

childbearing age in the United States experiencing a prolonged time to conception or the 

inability to conceive [30]. Assisted reproductive technology (ART) therapies to address 

infertility range from non-invasive to invasive. Non-invasive therapies include Timed 

Intercourse (TIC) (having intercourse during the predicted window of ovulation), and Intra-

Uterine Insemination (IUI) (manual placement of sperm inside a woman's uterus to facilitate 

fertilization). Invasive therapies include Gamete Intrafallopian Tube Transfer (GIFT) (external 

mixing of sperm and oocyte, followed by immediate transfer to the fallopian tube), In Vitro 

Fertilization (IVF) (in vitro oocyte fertilization, followed by transfer to recipient uterus), and 

Intra-Cytoplasmic Sperm Injection (ICSI) (IVF, with manual fertilization via direct micro-

injection of sperm into the egg. Controlled ovarian hyperstimulation, commonly known as 

superovulation, is the administration of exogenous gonadotropins to promote the release of 

multiple oocytes in a single cycle. Superovulation is often used in conjunction with IVF and 

ICSI, in order to obtain viable embryos and increase chances of pregnancy. 

With regards to offspring health, IVF is considered a safe procedure and is now 

commonplace. Approximately 5 million children have been born through the use of ART [31] 
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since the first IVF child was born approximately 36 years ago. Despite the positive impact of 

ART, this technology presents an atypical nutritional, biochemical, and hormonal environment 

to the developing embryo. Whether this has an effect on the long-term health of the conceptus 

and the magnitude of effect remains to be resolved in humans. 

The “natural” ovulation cycle involves sequential hormone peaks, that result in follicle 

recruitment, maturation, and release at ovulation. Concurrently, the uterine endometrium 

undergoes proliferation and vascularization, to yield a thick endometrial layer capable of 

supporting embryo implantation and growth [32]. Intercourse (or IUI) around the time of 

ovulation, when successful, fertilizes the oocyte within the fallopian tubes. The resulting 

embryo then continues its journey to the uterus, where implantation takes place.  

While each part of the “natural” fertilization process is designed for optimal oocyte 

selection, fertilization, and embryonic development, the focus of IVF is the production of 

sufficient numbers of high-quality oocytes for subsequent fertilization. Over the years, IVF 

procedures have been refined to optimize production of high-quality embryos [33]. However, 

the superovulation procedures, in addition to the psychological and physical stresses of the 

female patient [34], neglect the endometrial health and implantation capacity. In the context 

of DoHAD, the periconceptional environment of a child born through IVF is comprised of the 

oocyte milieu (superovulation, oocyte retrieval, and gamete storage), fertilization, and the 

environment surrounding early embryonic development (in vitro growth and uterine 

environment). Modification of this pre-implantation environment by assisted reproductive 

technologies may have unintended consequences on embryo growth and resulting health of 

the child. Additionally, the growing use of oocyte/embryo cryopreservation may further modify 

the embryonic environment. Overall, the use of ART procedures, particularly IVF and ICSI, 

may unduly alter the epigenome of the fetus. This concept is explored in Chapter 2. 

iv. sperm RNA 
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The male gamete, spermatozoa, serves to deliver the paternal DNA and other cargo 

to the oocyte [35]. Sperm are produced in the seminiferous tubules of the testis through a 

series of pre-meiotic, meiotic and post-meiotic processes known as spermatogenesis 

(reviewed in [36]). Within the seminiferous tubule, post-meiotic processes require the 

transformation of a round spermatid (with typical cellular structure) into the unusual 

spermatozoal structure, containing a flagellum, highly condensed nucleus, mitochondrial 

midpiece, and very little cytoplasm. After sperm differentiation within the testis, the sperm 

enter the epididymis and undergo additional maturation during the approximately two weeks 

of epididymal transit [37]. This epididymal maturation potentiates the sperm’s fertilizing ability 

and motility [38].  

In the past, spermatozoa were perceived to merely be a vessel for the paternal DNA. 

However, sperm were subsequently shown to not only contain DNA, but transmit RNA, 

proteins and chromatin marks to the embryo [35]. Mature spermatozoa are known to be 

transcriptionally and translationally inert. However, labeled probes, microarrays and 

eventually, RNA-sequencing, have identified a wide range of RNAs present in sperm, both in 

mammals and other organisms [35]. The majority (~85%-96%) of sperm DNA is packaged in 

the specialized proteins called protamines, which provide a compact chromatin structure ~10 

fold more compact than the nucleosome structure generated by histones [39-41]. However, 

sperm still contain some histones, which are known to preferentially localize at promoters of 

developmental transcription and signaling factors [39, 42]. In addition to proteins directly 

involved in chromatin structure, other proteins with diverse roles are also delivered to the 

embryo [43]. This additional cargo, which is delivered to the oocyte, may then influence 

fertilization and subsequent fetal health. Recent work on the mammalian epididymis has 

shown that epididymal exosomes (epididysomes), which contain proteins, RNAs and other 

molecules, are integrated into sperm during epididymal transit [44, 45]. The RNA profiles 

observed in the ejaculated spermatozoa thus reflect the final outcome of spermatogenesis, 



8 
 

 
 

which includes both RNAs generated in preparation and those acquired during epididymal 

maturation for transmission to the future embryo.  

Recent work in humans currently indicate that sperm epigenetic marks and RNAs can 

be modified by paternal environment [46]. Comparison of obese males to lean controls 

suggested differential profiles of non-coding RNAs and DNA methylation. Additionally, in a 

cohort of obese men undergoing bariatric surgery, longitudinal observations of sperm DNA 

methylation show shifts in methylation at several genomic loci, including loci involved in 

appetite regulation [Donkin cell metabolism 2016]. In a human trial of endurance training, 6 

weeks of endurance training was sufficient to remodel both sperm RNA levels and DNA 

methylation [47]. While DoHAD studies in human have primarily focused on the maternal 

contributions, the preconceptional environment of the male gamete may also play a role in 

intergenerational offspring health in human [16, 17].  

v. Endocrine disruptors on male reproduction 

Like the female reproductive system, the male reproductive system is under the control 

of the endocrine system. In humans, the hypothalamic–pituitary–gonadal axis (HPG axis) is a 

primary modulator of reproductive function. As shown in Figure 1.2, the hypothalamus 

produces Gonadotropin-releasing hormone (GnRH), which influences the adjacent pituitary 

gland to secrete follicle-stimulating hormone (FSH) and luteinizing hormone (LH) into the 

bloodstream. LH subsequently enters the Leydig cells and promotes testosterone production. 

Concurrently, FSH promotes the release of androgen-binding protein (ABP), allowing the 

binding of testosterone by the Sertoli cells [48]. Androgens, particularly testosterone, are 

critical to maintaining spermatocytes and completion of meiosis. Although FSH is not required 

for spermatogenesis, the targeted uptake of androgens by Sertoli cells optimizes 

spermatogenesis. While testosterone serves as a negative regulator of the hypothalamus and 

pituitary gland, thus producing a negative feedback loop in the HPG axis, the contrasting 

functions of activins and inhibins (Figure 1.2) also likely play a role regulatory role in 
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maintaining spermatogenesis [49]. Among the many functions, activin is a growth factor that 

can stimulate the pituitary gland to secrete FSH. In contrast, inhibin, which is produced in 

reproductive tissues (as well as other tissues), can suppress pituitary FSH production [50, 51]. 

Disruption of the HPG axis in males, by environmental factors, age, or genetic mutations, can 

result in altered spermatogenesis or hypogonadism [52-54].  

 

Figure 1.2. Hypothalamic–pituitary–gonadal axis in the adult human male. The 
hypothalamus within the brain, whose location is approximated by a black dot, secretes 
Gonadotropin-releasing hormone (GnRH). GnRH stimulates the adjacent pituitary gland to 
secrete follicle-stimulating hormone (FSH) and luteinizing hormone (LH) into the bloodstream. 
FSH and LH then enter the testis, promoting the production of androgens, particularly 
testosterone, and inhibin. Testosterone acts in a paracrine manner to create a negative 
feedback loop, suppressing GnRH secretion by the hypothalamus, and also suppressing FSH 
and LH production at the level of the pituitary gland. Concurrently, inhibin produced the Sertoli 
cells acts in an endocrine manner to suppress FSH production by the pituitary gland.  
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Endocrine disruptors, exogenous chemicals that can mimic or alter hormonal 

responses, are a prevalent feature in urban environments [19]. A heterogeneous collection of 

natural and synthetic chemicals have been identified as likely EDs, including several well-

publicized pesticides, such as dichlorodiphenyltrichloroethane (DDT), and plastic 

components, such as bisphenol A (BPA) and phthalate esters [55]. Phthalates, suspected 

endocrine disruptors, are commonly used as solvents and plasticizers in consumer products, 

such as polyvinyl chloride. They have also been incorporated into coatings used in 

medications [56, 57]. Phthalates have been noted to act on peroxisome proliferator‐activated 

receptors (PPAR) [58, 59]. Additionally, different phthalate species, including phthalate 

metabolites, have different capacities for modifying an endocrine response [58-60]. Although 

considerable literature suggests that gestational and neo-natal phthalate exposure is 

detrimental to reproductive function [61], the health effects of phthalates at environmentally 

relevant doses in adult humans is still uncertain, particularly in the adult male, although 

existing human studies are described below. Interestingly, chronic in vivo exposure of rats to 

the tolerable daily intake (TDI) of BPA altered protein expression and histone acetylation [62, 

63]. While rats and mice cannot replace pertinent observations in humans, such model 

organisms do suggest that humans may also be subject to subtle reproductive changes when 

challenged with endocrine disruptors.  

Epidemiological studies on adult phthalate exposures and semen parameters have 

associated elevated phthalate levels with abnormal sperm morphology [64], sperm 

concentration [65, 66], oxidative stress [67], and DNA damage [68]. Among IVF couples, 

phthalate levels in the male partner are inversely correlated with high-quality blastocysts [67]. 

While a controlled study of adult human males exposed to a low, chronic dose of phthalates 

[69, 70] indicates hypothalamo-pituitary-testis axis dysregulation and declining sperm motility, 

the mechanisms directly underlying the spermatozoal modifications in such individuals are yet 

undetermined. The intergenerational and transgenerational impact of such phthalate 
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exposures in the adult human male remains unknown. However, animal models, and limited 

data in human, suggests that paternal experiences, such as diet or stress, can have 

phenotypic consequences in the offspring. Such intergenerational effects are expected to be 

mediated through epigenetic mechanisms, such as chromatin structure or RNAs delivered by 

the spermatozoon at fertilization [17, 71-73].  

vi. Overview 

The contribution of the male gamete and pre-implantation environment to offspring 

health, while important, is relatively understudied. ART procedures, such as IVF and ICSI, 

can alter the pre-implantation environment of the oocyte, growing embryo, and uterus. Despite 

the manipulations involved in ART, offspring derived from ART procedures are generally 

healthy [74]. However, such offspring may exhibit subtle epigenetic effects, exemplified by the 

small, but elevated, risk of congenital defects due to imprinting disorders, such as Beckwith-

Wiedemann and Prader-Willi syndromes [75]. In Chapter 2, I explore the role of IVF/ICSI 

protocols in the DNA methylation of infants. The study presents DNA methylation changes in 

infants conceived through the use of Fresh Embryo Transfer (ET), Frozen Embryo Transfer 

(FET), or Intrauterine Insemination (IUI). The relative similarity between FET and IUI indicates 

that the fetus’s DNA methylation is either unchanged by, or altered in an inconsistent manner, 

by FET. This is likely due to improved uterine receptivity in FET and IUI conceptions compared 

to ET. Overall, this study supports the use of FET in IVF/ICSI procedures [76]. 

During fertilization, the male gamete contributes DNA, RNA, and epigenetic marks. 

Spermatozoal RNA can also provide an epigenetic mechanism. Chapter 3 explores the RNAs 

present in the male germline and early embryo. This analysis indicates that, in addition to 

annotated transcripts, numerous intergenic and intronic RNAs are present in human 

spermatozoa. These novel RNAs were identified using a pipeline for discovering intergenic 

RNAs from standard read alignments. Implementation of the RNA Element Discovery 

Algorithm (REDa) on somatic, embryonic, and germline tissues revealed presence of both 
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novel RNAs and exonic RNAs in each tissue [77]. Spermatozoa contain many more novel 

RNAs than somatic (e.g. liver) tissue, suggesting that transcription of intergenic and intronic 

RNAs may be important for spermatogenesis. Notably, genomic repeats exhibit a shifting 

transcriptional enrichment pattern across spermatogenesis and early embryogenesis.  

Using the spermatozoal RNAs identified by the REDa approach, Chapter 4 examines 

the impact of phthalate exposure on male reproduction. The Mesalamine and Reproductive 

Health Study (MARS) (NCT01331551) was initiated (https://clinicaltrials.gov/) to directly 

address the physiological effect of in vivo di-butyl phthalate (DBP) exposure on male 

reproduction. Within the MARS study, subjects with Inflammatory Bowel Disease (IBD) were 

exposed to longitudinally alternating DBP exposures. Using a cross-over design and 

longitudinal data structure, each subject acts as their own control, thus mitigating genetic 

variation and environmental variation (e.g. lifestyle and exposome) that often complicates 

causal assessment in epidemiology. The results of longitudinal modeling suggest that 

exposure to, or removal of, high DBP produces transcriptomic effects that require longer than 

one spermatogenic cycle to resolve, if at all. While the two study arms exhibit enrichment of 

different biological pathways, the H1BH2 arm, which initiates the study on high DBP, displayed 

activation of oxidative stress and DNA damage response pathways. Network analysis of small 

RNAs and genomic repeats also suggest that transcription of small RNAs and genomic 

repeats contribute to spermatid development. Together, this work provided insight into both 

the influence of phthalate on the male germline and the RNA dynamics of human 

spermiogenesis. 

  

https://clinicaltrials.gov/ct2/show/NCT01331551
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CHAPTER 2 

“THE IMPACT OF ASSISTED REPRODUCTIVE TECHNOLOGY ON THE EPIGENETIC 

PROFILE OF NEWBORNS” 

This chapter was adapted from the following publication: 

Molly S. Estill, Jay M. Bolnick, Robert A. Waterland, Alan D. Bolnick, Michael P. Diamond, 

and Stephen A. Krawetz. (2016) “Assisted reproductive technology alters deoxyribonucleic 

acid methylation profiles in bloodspots of newborn infants.” Fertility and Sterility, Volume 106, 

Issue 3. Pages 629-639.e10, https://doi.org/10.1016/j.fertnstert.2016.05.006. 

i. Summary 

Little is known of the genome-wide effect of assisted reproductive technologies (ART), 

on the genome and epigenome of the conceptus. To address this shortfall, I have examined 

the DNA methylation profile of newborns conceived naturally, or through the use of intrauterine 

insemination (IUI), or in vitro fertilization (IVF) using Fresh or Cryopreserved (Frozen) embryo 

transfer. Newborn methylation levels of these four different conception types, stratified by 

gender, were compared using the HumanMethylation 450k platform. Perturbation of probe 

clusters within genes and enhancers suggests that the newborns born from ART possess a 

dramatically different methylation profile compared to those naturally conceived. Intriguingly, 

there was a striking similarity of the methylation profile of IUI and IVF-Frozen embryo transfer 

infants, but not IVF-Fresh. This suggests a possible reduction of epigenetic aberrations in the 

IVF conceptions using cryopreservation and implicates that a resetting mechanism is acting 

upon cryopreserved embryos. These results are in accord with the observed reduction in birth 

defects using those protocols that employ cryopreserved embryos. Periconceptual nutrition is 

known to alter epigenomes of offspring at specific loci termed metastable epialleles (MEs). 

IVF culture conditions can mimic various nutritional conditions experienced by the early 

embryo. With this consideration, analysis of the ART methylation changes in MEs was 

undertaken to test the hypothesis that ME loci were sensitive to early nutritional exposure. IVF 

https://doi.org/10.1016/j.fertnstert.2016.05.006
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culture conditions and parental infertility showed consistently altered methylation at certain 

MEs. This is the first study to reveal an impact of ART or fertility status on MEs and suggests 

a lasting epigenetic effect of IVF nutrition on the developing embryo. 

ii. Introduction 

The DoHAD hypothesis [78] suggests that environment during the periconceptional 

period, as well as later stages of embryonic, fetal, and postnatal growth, can persistently 

impact health. Epigenetic modifications, including histone modifications and DNA methylation, 

are suspected to be one of the mechanisms by which prenatal environment influences 

offspring health. Accordingly, nutritional status at the time of conception in rural Gambian 

women altered the DNA methylation profile at metastable epiallele (ME) loci in the children. 

This effect was modulated, at least in part, by methyl donor availability in the food sources 

available at the time of conception [79, 80]. 

Assisted reproductive technology (ART) provides infertile couples several treatment 

options, including ovulation induction followed by intrauterine insemination (IUI), in vitro 

fertilization (IVF), and intracytoplasmic sperm injection (ICSI). Despite the positive impact of 

ART on fertility outcomes, these procedures present an atypical nutritional, biochemical, and 

hormonal environment to the developing embryo. Murine studies suggest that the transient 

stresses that IVF places on the growing embryo can result in a considerable change in gene 

expression, metabolism, and growth trajectory [81-83], which can persist into adulthood [84-

87]. Although there are likely several underlying mechanisms for these effects of IVF, one 

such mechanism that has been proposed is the increased incidence of random epigenetic 

errors, including changes in imprinted genes [83, 88]. 

ART procedures are generally accepted as safe for the mother and conceptus in 

humans. However, there is an elevated risk of birth defects, neurologic disorders, and 

imprinting disorders in conceptions generated through IVF and ICSI [89, 90]. In addition to the 

increased rate of imprinting disorders in the ART population [75, 91], several recent studies 
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comparing the metabolic and cardiovascular health of children conceived by ART with those 

conceived naturally indicate a trend toward impaired glucose metabolism and cardiovascular 

function [92-94]. Such health risks observed in ART-conceived children may result from 

underlying epigenetic aberrations presented by parental infertility or ART itself. However, it is 

important to note that evidence for concerted epigenetic changes in the ART population [95-

100] is countered by a number of studies asserting that the epigenome of ART-conceived 

offspring is essentially unchanged [101-104].  

Studies investigating the effect of ART on the human epigenome often observe a 

limited number of genomic loci, which are usually regions of known interest associated with 

imprinting syndromes. However, two studies recently expanded the number of genomic 

regions examined in ART studies. One described DNA methylation in the promoter regions of 

736 select genes, which were primarily associated with imprinting and growth regulation, from 

10 IVF and 13 in vivo–conceived children [95]. The second used an Illumina Infinium Human 

Methylation27 Beadchip array, identifying 733 CpG sites of differential methylation when 

comparing the cord blood of 8 IVF and 10 naturally conceived children [98]. However, these 

two studies did not address the impact of infertility, which is the primary reason why ART is 

prescribed, nor did they provide a genome-wide assessment. By employing the Illumina 

Infinium HumanMethylation450k BeadChip on newborn blood samples, we began to fill in 

these gaps, revealing that a larger span of genomic sites may be impacted by parental 

infertility and ART than previously appreciated. A targeted investigation of children born after 

transfer of cryopreserved or fresh ICSI embryos further delineated the epigenetic impact of 

these two different ART protocols, while suggesting that embryo cryopreservation may 

indirectly improve epigenetic outcome. 

iii. Materials and Methods 

Acquisition of Newborn Bloodspots 
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Newborn residual bloodspots, which were collected from Michigan newborns between 

24 and 36 hours after birth for metabolic screening, were obtained from the Michigan Neonatal 

Biobank (www.mnbb.org/). After Michigan Department of Community Health (approval 

#037913MP4X), Wayne State University, and Biotrust institutional review board approval, 120 

women (40 per group) were selected who conceived after one of three types of infertility 

treatments (IUI, ICSI with fresh embryo transfer [FH], or ICSI with frozen embryo transfer 

groups [FZ]). Sample requests were then given to the Michigan Biotrust for Health, and 

bloodspots were subsequently requested from the newborn of each of the women in the 

different categories through the Michigan Neonatal Biobank using storage codes only (all data 

were deidentified). For the three procedure categories, a total of 18 IUI, 38 FH, and 38 FZ 

bloodspots were obtained for calculation of DNA methylation, as detailed in Figure 2.1A. 

While the clinical parameters of the newborn and mother for the samples analyzed in this 

study were not known, the majority of bloodspot samples represent individuals born in the 

Detroit and metro Detroit regions. As a naturally conceived control, 16 male and 27 female 

bloodspots were also examined. Intensity Data (IDAT) files from the 450k assay of naturally 

conceived (NAT) newborn bloodspots were graciously provided by Dr. Douglas Ruden, 

Wayne State University [105]. The NAT samples were also previously obtained from the 

Michigan Neonatal Biobank. In total, 137 individuals were utilized in methylation comparisons. 

All methylation analyses were performed at the Wayne State University Applied Genomics 

Technology Center. 
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Figure 2.1. Samples and conception group comparisons subject to differential 
methylation analysis. (A) Number of individuals analyzed in this study, according to 
conception type and gender. (B) Directional arrows indicate that the conception group at the 
source of the arrow is the methylation dataset (control) against which that at the termination 
of the arrow (case) is being compared. (C) Pipeline provided by ChAMP was used to filter, 
normalize, and apply batch correction, to obtain corrected methylation values. Aclust was then 
implemented to calculate methylation changes in probe clusters, followed by downstream 
analyses. Concurrently, the same corrected methylation values were analyzed using a linear 
model to calculate differential methylation of individual probes and verify the results obtained 
from Aclust. 
 

Study Design and Data Processing 

To assess the effects of infertility treatments (specifically ICSI and cryopreservation) 

on genome-wide DNA methylation profiles of newborns, a case–control design was 

implemented (Figure 2.1B). Neonatal bloodspots from newborns conceived through 

unassisted (NAT) and IUI conceptions provided controls from fertile and infertile backgrounds, 

respectively. In this case–control design, a given conception group considered as a “case,” 

such as ICSI fresh embryo transfer, was matched to a “control,” such as IUI. The unassisted 

conception control, NAT, served as a control for the IUI, FH, and FZ conception groups. The 

DNA extracted from bloodspots was assessed for DNA quality (Appendix A) and assayed 
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using the Illumina Infinium HumanMethylation450 BeadChip array. The Chip Analysis 

Methylation Pipeline (ChAMP) pipeline was utilized for processing the datasets into 

methylation profile (as measured by β-values) (Figure 2.1C). 

Each conception comparison, outlined in Figure 2.1B, addressed a specific query. 

Comparison of either FH or FZ with IUI was undertaken to identify ICSI-associated changes 

within the group of parents requiring artificial insemination to conceive. Within the ICSI (FH 

and FZ) group, differences between FH and FZ were assessed to discern the effects of fresh 

embryo transfer and cryopreserved embryo transfer. Subsequent comparison of IUI, FH, or 

FZ with NAT identified differences between children born to parents undergoing infertility 

treatment and those born to fertile parents. Methylation changes between males and females 

within the same conception group were undertaken to examine how the epigenome might 

differ between genders [106-108]. 

The ChAMP pipeline was used to analyze the 450k signals, normalize the methylation 

values to produce β-values (the proportion of methylated CpG sites) and identify the 

differentially methylated probes [109]. Blood cell distributions of each sample were estimated 

using the estimatecellcount function in minfi. The single value decomposition function of 

ChAMP provided the relative influence of plate, assay characteristics, and blood cell 

proportions on sample methylation. In an effort to minimize technical variation, all multiply-

mapped probes, as well as probes containing single-nucleotide polymorphisms in either the 

target CpG or the 10 bases of probe closest to the target CpG site [110, 111], were removed 

from differential methylation analysis. This excluded 91,058 probes from analysis, leaving 

394,454 probes prior to calculating differential methylation. All sample comparisons were 

subjected to batch correction using ComBat, in order to eliminate the effects of array batch. 

To eliminate the risk of identifying false positives due to gender imbalances, I implemented a 

strategy of comparing results from male and female groups separately. This approach 
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increased the confidence in assigning genes and other genomic loci as differentially 

methylated, while removing gender as a confounding variable. 

Batch-corrected β-values from the ChAMP pipeline were used in the A-clustering 

algorithm [112]. The algorithm generates clusters of correlated autosomal probes, followed by 

general estimating equation (geepack) estimation of the differentially methylated autosomal 

clusters. Differentially methylated clusters were as having a minimum absolute average effect 

size (methylation) change of 2.5% and Benjamini-Hochberg adjusted P value of <.05. 

Calculating Differential Methylation Using Limma 

The β-mixture quantile dilation (BMIQ)-normalized, batch-corrected β-values of all 

reliable probes produced by the ChAMP pipeline were applied to limma, which calculated 

differential methylation of individual probes [113]. Differentially methylated probes were 

defined as having a minimum absolute methylation change of 2.5% and Benjamini-Hochberg 

adjusted P value of <.05. Limma yielded similar proportions of hypermethylated and 

hypomethylated probes, when contrasted to clusters of probes, and generally supported the 

trends in counts of differentially methylated regions between the conception types. 

Calculating Differential Methylation of Promoters and Gene Bodies 

The locations of all RefSeq genes were obtained from Ensembl, build hg19/GRCh37. 

Promoters of genes were defined as 1 kb upstream of the unified gene start site. The 

identification of clusters and probes within gene bodies or genomic loci was performed using 

a series of bedtools utilities and custom R scripts. For a given comparison, all differentially 

methylated clusters (filtered for a methylation change of 2.5% and Benjamini-Hochberg 

corrected P value of <.05) with at least 75% of the cluster intersecting a gene body or promoter 

were assigned to that particular gene. Because of the potential for numerous non-differential 

clusters to reduce average gene body methylation below the threshold of 2.5% methylation 

change, only differentially methylated clusters were considered in the calculations for gene 

body methylation. Therefore, for a given gene, the methylation change was calculated from 
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the average of all effect size (methylation) changes of all differentially methylated clusters 

assigned to that gene. Gene bodies were then further filtered for a minimum absolute average 

effect size (methylation) change of 2.5%. Differentially methylated genes, as calculated using 

Aclust clusters, are referred to as hypermethylated or hypomethylated according to an effect 

size (methylation) change of greater than 0.025 or less than −0.025, respectively. 

Regulatory/enhancer Regions 

Human regulatory regions and putative human enhancers (indicated here as 

“regulators”), were obtained from Andersson et al. [114]. Clusters were intersected with the 

set of 43,011 permissive regulators to identify the clusters overlapping the regulators. The 

change in regulator methylation was calculated as the average of all differentially methylated 

clusters located in the given regulator. To avoid spurious associations of methylation changes, 

all differentially methylated regulators were required to have a minimum absolute average 

methylation change of 2.5%. 

Genome Annotation and Relative Enrichment 

Annotation of significant clusters with respect to promoters, introns, exons, and 

intergenic regions was calculated with the “Annotation & Statistics” function of Genomatix 

(July 2014 build), using the December 2013 Eldorado annotation of the hg19 genome. 

 

iv. Results 

Study Sample Characteristics 

As the cohort was composed entirely of newborns, the postnatal environment was 

expected to have minimal effect on DNA methylation. While cellular composition of blood 

samples can affect methylation profiles, the estimated cellular composition of each sample 

did not significantly impact the methylation status in the cohort. The general differences 

among the samples were small, as determined by pairwise comparison of all autosomal probe 

β-values (minimal correlation of at least 0.90). This is concordant with previous studies, which 
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suggest that the global pattern of methylation of prepubertal children is not affected by ART 

[101, 103]. Supporting the previous observation, I found that principle component analysis 

(unsupervised clustering) did not effectively cluster the NAT, IUI, and ICSI groups. This 

recapitulated previous observations that methylation profiles of ART and control individuals 

do not segregate in clustering analysis [95]. 

Differential Methylation of Probe Clusters 

As outlined in Figure 2.1B, the conception groups were compared to identify 

differentially methylated probes and clusters. Aclust was used to identify each cluster of two 

or more correlated probes and calculate differential methylation at each cluster [112]. While 

numerous previous studies have listed differential methylation at individual CpG sites, the 

biological impact of a single CpG is questionable. Therefore, the Aclust approach was used 

to identify methylation changes across multiple adjacent CpG sites, given that methylation 

differences that extend over multiple CpG sites can be viewed as confirmatory and are likely 

to have a biological impact. To avoid spurious associations of methylation change, regions of 

interest were required to contain multiple differentially methylated probes, as well as exhibit a 

minimum absolute average methylation change of 2.5% [112]. As summarized in Figure 

2.2A,B and Figure 2.3A, several interesting differential methylation patterns emerged. The 

naturally conceived group exhibited considerable differential methylation when compared to 

all three assisted conception groups. Hypomethylated clusters were observed more frequently 

within the ART groups (Figure 2.2B), concordant with a similar result in a non-ICSI sample 

group [98]. Within each conception group, differentially methylated clusters in females 

(compared with the male control) were more frequently hypermethylated than hypomethylated 

(Figure 2.3A). Comparisons between three assisted conception groups revealed 

considerable differences between FH and IUI or FH and FZ, while, in contrast, there were 

comparatively fewer differences between IUI and FZ. It should be noted that the A-clustering 

algorithm used for calculating differential methylation is a comparatively recent technique 
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[112]. Therefore, the possibility that the A-clustering algorithm was responsible for the 

unexpected patterns in methylation changes between assisted conception types was 

considered. In order to verify the A-clustering results with a different method, a commonly 

used linear modeling algorithm, limma, was also used to identify differentially methylated 

probes [113]. Based on the trends observed with A-clust and limma approaches, the similarity 

between the IUI and FZ was considered reliable. This similarity was independent of BMIQ 

normalization and was not due to the batch correction or the A-clustering algorithm or 

inadvertent sampling bias, as shown by random subsampling. 

 

Figure 2.2. Intracytoplasmic sperm injection and IUI compared with NAT show 
differential methylation of clusters and gene bodies. (A) Total counts of differentially 
methylated clusters between conception groups for males and females, shown in blue and 
pink, respectively. Red bracket indicates comparisons of FH and FZ with IUI, presenting the 
greater degree of differential methylation in the FH vs. IUI comparison than that of FZ vs. IUI. 
(B) Distribution of the change in the β-value for statistically significant clusters, as a function 
of conception comparison. Changes in the female and male comparisons are shown in light 
red and blue, respectively. (C) Pie chart labeled “Genome Annotation” indicates the proportion 
of the human genome that lies within exons, introns, promoters, and intergenic regions. The 
pie chart labeled as “Cluster Annotation” provides the proportion of all statistically significant 
clusters (regardless of methylation change) that overlap exons, introns, promoters, and 
intergenic regions. Clusters that overlay one or more features are denoted as “partial.” 
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Figure 2.3. Trends in differentially methylated clusters between males and females of 
identical conception groups. Hypermethylation in the female group (compared with a male 
control) is shown in red, whereas hypomethylation is presented in blue. (A) Counts of clusters 
differentially methylated between females and males of the same conception group. (B) 
Counts of gene bodies differentially methylated between females and males of the same 
conception group. 
 

Differentially methylated clusters tended to be associated with promoters and exons 

of protein-encoding loci (Figure 2.2C) with β-value changes averaging approximately 5% 

(Figure 2.2B). Several clusters exhibited changes larger than 10%, including a 

hypomethylation of the Speriolin-like protein (SPATC1L) promoter in IUI and ICSI (FH and 

FZ) when compared to NAT (with the hypomethylation frequently exceeding 10%). 

Characteristics of Differential Methylation 

Methylation changes between the individual conception methods were first examined 

with respect to the promoters and gene bodies of all unified RefSeq genes. Differential 

methylation in gene bodies was observed more frequently than differential promoter 

methylation. Figure 2.4 summarizes the counts of differentially methylated gene bodies, 

which reflected the overall number and direction of methylation changes of differentially 

methylated clusters for each given comparison. Collectively, these gene-specific methylation 

differences may reflect phenotypic alterations [115] that may occur in the various conception 

groups. 
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Figure 2.4. Intracytoplasmic sperm injection and IUI show considerable differential 
methylation in gene bodies compared with NAT. Bars indicate the counts of differentially 
methylated gene bodies between conception groups. Counts of differentially methylated gene 
bodies generated for (A) male- and (B) female-specific comparisons. Hypermethylated and 
hypomethylated gene bodies are represented in red and blue, respectively. 
 

In addition to providing coverage of RefSeq genes, the Infinium HumanMethylation450 

BeadChip contains probes designed for various intergenic regions. These regions can 

encompass regulatory loci (e.g., enhancers and silencers/regulators) residing outside of 

promoters and gene bodies. Such regulatory loci can act independently or in concert with 

proximal regulatory regions, and consequently alter chromatin organization and tissue 

expression [116, 117]. Using putative regulators identified from the FANTOM5 cap analysis 

of gene expression atlas, changes in the methylation status of regulators [114, 118] between 

conception types was examined. 

Numerous regulators were differentially methylated when the three assisted and NAT 

conception groups were compared (Appendix B). Fewer regulators were differentially 

methylated when FZ was compared with IUI, as opposed to when FH was compared with IUI 

or FZ, reflecting the relative similarity of the FZ and IUI groups (Appendix B). As shown in 

Table 2.1, certain regulators were also altered between males and females of the same 
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conception group, suggesting that certain enhancers may exhibit gender-specific methylation 

patterns. A total of 21 regulators exhibited altered patterns of methylation between the 

genders in two or more conception groups (Appendix C). This common group of 21 regulators 

may play therefore a role in sexual dimorphism of the human fetus [86, 119]. 

Table 2.1. Counts of enhancers altered between males and females of identical 
conception groups. 
 

  

Female 
vs 
Male, 
NAT 

Female 
vs 
Male, 
IUI 

Female 
vs 
Male, 
FH 

Female 
vs 
Male, 
FZ 

Hypermethylated 28 44 5 12 

Hypomethylated 15 4 5 10 

Total 43 48 10 22 

 

Comparing ICSI (FH and FZ) and IUI with a NAT control showed that regulators were 

most frequently hypomethylated (Figure 2.5 and Appendix D), which reflected the general 

trends towards hypomethylation in the complete cluster set for the given comparisons. 

Interestingly, three hypomethylated regulators were consistently differentially methylated 

among all three assisted conception groups and NAT control. In addition, 15 regulators were 

consistently altered between the ICSI (FH and FZ) and NAT control, as well as the subset of 

5 regulators (Appendix D) altered between all three assisted conception groups and NAT 

control. 

 

Figure 2.5. Enhancers consistently altered in ICSI 
groups compared with NAT. Populations of 
hypermethylated and hypomethylated enhancers altered 
in the IUI, FH, or FZ vs. NAT comparison were identified 
and enumerated. Quantities of hyper- or hypomethylated 
enhancers are denoted as “Hyper” and “Hypo,” 
respectively. The quantity of enhancers found in common 
between two or more comparisons and exhibiting identical 
methylation trends (e.g., increased or decreased 
methylation in both comparisons) are indicated in the 
intersections of the Venn diagram. 
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Imprinted Genes are Differentially Methylated in IUI and ICSI Newborns 

Imprinted genes play a critical role in fetal growth and are epigenetically repressed in 

a parent-of-origin-specific manner [120]. Due to this epigenetic repression by cis-acting 

differentially methylated regions, an imprinted gene will exhibit preferential expression from 

either the paternal or maternal allele [121]. In humans, the combination of the 450k platform 

and bisulphite sequencing has allowed for the identification of cis-acting differentially 

methylated regions, which may act as imprinting control regions [121]. 

Previous mouse and human studies have investigated changes in the methylation 

status at imprinted loci, including loci associated with metabolism and fetal growth (e.g., H19 

and IGF2) after ART [75, 83, 88, 90]. Recent work has also shown that high-quality human 

embryos generated from ART exhibit a high degree of DNA methylation errors in imprinted 

loci [122]. Within the collections of differentially methylated genes, an enrichment of imprinted 

genes was found when comparing ICSI (FH and FZ) with the IUI control (Table 2.2), with 

hypomethylated genes contributing strongly to this enrichment. This enrichment trend was 

also observed in the comparison of ICSI (FH and FZ) with NAT. Taken together, imprinted 

genes were differentially methylated more often than expected by chance when comparing 

any assisted conception group with NAT (P value: 1.47 × 10−3 to 2.04 × 10−11). The 

biological implications of the observed methylation changes in the imprinted genes remains 

to be determined.  
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Table 2.2. Imprinted genes are differentially methylated between different conception 
types. Enrichment of differentially methylated imprinted genes between conception groups, 
segregated according to gender. Comparisons yielding P-values less than 0.05 and 0.01 are 
highlighted in red and blue, respectively. 
 

 

Female 
vs Male, 

NAT 

Female 
vs Male, 

IUI 

Female vs 
Male, FH 

Female vs 
Male, FZ 

FH vs 
IUI, 

Male 

FH vs 
IUI, 

Female 

FZ vs 
IUI, 

Male 

FZ vs 
IUI, 

Female 

FZ vs FH, 
Male 

FZ vs FH, 
Female 

IUI vs 
NAT, 
Male 

IUI vs 
NAT, 

Female 

FH vs 
NAT,   
Male 

FH vs 
NAT, 

Female 

FZ vs 
NAT, 
Male 

FZ vs 
NAT, 

Female 

Differentially 
methylated 
genes 687 565 103 197 813 1069 93 85 1417 1187 982 968 695 887 766 922 

Imprinted 
genes 18 18 4 4 23 23 5 10 27 27 32 25 18 25 27 33 

Maternally 
imprinted 
genes 7 9 1 2 8 15 3 1 14 16 16 13 8 13 13 14 

Paternally 
imprinted 
genes 11 9 3 2 15 8 2 9 13 11 16 12 10 12 14 19 

Significance 
of imprinted 
genes 

2.17E-
05 

1.71E
-06 

9.48E-
03 

5.92E-
02 

5.39
E-
07 

3.66E
-05 

1.03
E-
03 

2.85
E-
09 

6.17E-
05 

3.41E-
06 

1.51
E-
10 

9.05E
-07 

2.50
E-
05 

1.96
E-
07 

7.32
E-
10 

7.34E-
12 

Significance 
of maternally 
imprinted 
genes 

2.18E-
02 

7.91E
-04 

2.89E-
01 

1.58E-
01 

1.82
E-
02 

7.83E
-05 

7.37
E-
03 

2.58
E-
01 

2.89E-
03 

7.31E-
05 

8.48
E-
06 

3.24E
-04 

8.66
E-
03 

1.47
E-
04 

3.68
E-
05 

6.00E-
05 

Significance 
of paternally 
imprinted 
genes 

1.03E-
04 

4.25E
-04 

7.56E-
03 

1.41E-
01 

1.30
E-
06 

3.83E
-02 

4.74
E-
02 

7.89
E-
11 

3.38E-
03 

5.89E-
03 

2.79
E-
06 
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The effect of IVF/ICSI conception on long-term health and metabolism is still actively 

debated. Therefore, our collection of imprinted genes were assessed for known associations 

with human metabolism. Differentially methylated clusters in the promoter and gene body of 

the maternally expressed long noncoding RNA H19 were observed when IUI and ICSI (FH 

and FZ) were compared with NAT, but not when ICSI (FH and FZ) was compared with IUI 

(Figure 2.6) [123]. These observed cluster changes occurred in the paternally methylated 

H19 Differentially Methylated Region (DMR) [121]. IGF2, a paternally expressed growth-

promoting hormone, was also hypomethylated in both promoter and gene body clusters when 

female IUI and ICSI (FH and FZ) were compared with NAT (Figure 2.6). The paternally 

methylated IGF2 DMR2 region [121], located in the last two exons of the IGF2 gene, was 

relatively hypomethylated in female IUI and ICSI (FH and FZ) compared with NAT. 
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Figure 2.6. Certain imprinted genes associated with metabolism and cancer exhibit 
differential methylation. UCSC genome browser images of promoter and gene bodies of 
imprinted genes (A) H19, (B) IGF2. Hypermethylated clusters and hypomethylated clusters 
are colored in blue and orange, respectively. Cluster heights represent the magnitude of 
methylation change, in scale with the y axis. 
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MEs are Altered in Both the Infertile Control and ICSI Newborns 

The nutritional environment encountered by the early embryo is among the factors that 

likely differ between unassisted conception and IUI or ICSI (FH and FZ). Correspondingly, a 

modulation of metabolism-associated genes suggests that a nutritional component, such as 

the culture conditions of IVF/ICSI protocols, may affect the epigenome. Therefore, genomic 

loci known to be impacted by periconceptional nutrition (i.e., metastable epialleles), were 

assessed. 

Metastable epialleles (MEs) were first characterized in mouse models [124] and have 

recently been identified in humans [79]. DNA methylation at these loci is stochastically 

established within the blastocyst and is also driven by periconceptional nutritional status [79, 

125, 126]. In order to assess effects of the early embryonic nutritional environment associated 

with ART, the clusters identified as differentially methylated in the comparison of NAT with the 

three assisted conception groups were overlapped with MEs. Of 109 high-confidence MEs 

identified in a recent genome-wide screen [127], 22 were informative in the 450k-based 

analysis. Remarkably, 19 (86%) of these, plus two MEs that were not directly assayed but 

existed within a cluster, were differentially methylated in at least one of all possible conception 

group comparisons (Table 2.3). Hypomethlation predominated the MEs in all three assisted 

vs. NAT comparisons.  Taken together, these clusters suggest that certain epialleles (e.g., 

those associated with DUSP22 and SPATC1L) are indeed susceptible to methylation changes 

in both genders upon IUI or ICSI (FH and FZ) as compared with NAT conception (Figure 2.7, 

Table 2.3). Interestingly, DUSP22, a dual specificity phosphatase, has been implicated as a 

negative regulator of estrogen receptor-α–mediated signaling and STAT3-mediated signaling, 

and hypermethylation of the DUSP22 promoter is correlated with Alzheimer's disease risk 

[128-130]. The function of the protein encoded by SPATC1L is unknown, but it has been 

shown to be expressed in testis as well as certain cell lines. The paralog of SPATC1L, 

SPATC1, encodes a novel sperm centrosome protein (speriolin) that binds CDC20 [131], and 
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perhaps SPATC1L plays a yet undetermined broader role in reproduction. The long-term 

health implications of altering methylation at these sites has yet to be determined. 

 

Figure 2.7. Metastable epialleles at DUSP22 and SPATC1L show considerable and 
concerted differential methylation. University of California Santa Cruz (UCSC) genome 
browser representation of female comparisons between conception groups for MEs located 
at (A) DUSP22 and (B) SPATC1L. Hypermethylated clusters and hypomethylated clusters are 
colored in blue and orange, respectively. Cluster heights represent the magnitude of 
methylation change, in scale with the y axis. 
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Table 2.3. Metastable epialleles are differentially methylated between conception 
types. Differentially methylated metastable epialleles were segregated into hypermethylated 
and hypomethylated loci. Genes associated with the respective epialleles are then indicated. 
The magnitude of the methylation change, in units of β-values, are shown in italics for each 
epiallele. FH = fresh embryo transfer; FZ = frozen embryo transfer groups; IUI = intrauterine 
insemination; ME = metastable epiallele; NAT = naturally conceived. 
 

Conception 
comparisons 

Hypermethylated 
MEs 

Associated 
genes 

Hypomethylated MEs Associated genes 

FH vs IUI, 
male 

chr21:47604201-
47604400 (0.16); 
chr21:47604801-
47605000 (0.16); 
chr21:47605001-
47605200 (0.16); 
chr7:4305001-

4305200 (0.04); 

SPATC1L; 
SDK1 

chr2:113992801-113993000 (−0.15); chr2:113993001-
113993200 (−0.15); 

PAX8; PAX8-AS1 

FH vs IUI, 
female 

chr21:47604201-
47604400 (0.11); 
chr21:47604801-
47605000 (0.11); 
chr21:47605001-
47605200 (0.11); 

SPATC1L chr14:54816001-54816200 (−0.09); chr19:29218001-
29218200 (−0.19); chr2:113992801-113993000 (−0.08); 
chr2:113993001-113993200 (−0.08); chr5:135415601-
135415800 (−0.14); chr5:135415801-135416000 (−0.14); 
chr5:135416201-135416400 (−0.14); chr6:291801-292000 
(−0.29); chr6:292001-292200 (−0.29); chr6:292201-292400 
(−0.29); chr6:292401-292600 (−0.29); chr7:4305001-
4305200 (−0.05); 

LOC100420587; 
PAX8; PAX8-AS1; 
VTRNA2-1; 
DUSP22; SDK1 

FZ vs IUI, 
male 

chr21:47604201-
47604400 (0.14); 
chr21:47604801-
47605000 (0.14); 
chr21:47605001-
47605200 (0.14); 

SPATC1L 
  

FZ vs IUI, 
female 

    

FZ vs FH, 
male 

chr18:74514001-
74514200 (0.07); 
chr2:113992801-
113993000 (0.18); 
chr2:113993001-
113993200 (0.18); 

LOC100131655; 
PAX8; PAX8-
AS1 

chr1:19110801-19111000 (−0.18); chr2:128453201-
128453400 (−0.27); chr2:128453401-128453600 (−0.27); 
chr6:291801-292000 (−0.40); chr6:292001-292200 (−0.40); 
chr6:292201-292400 (−0.40); chr6:292401-292600 (−0.40); 
chr7:4305001-4305200 (−0.04); 

SFT2D3; WDR33; 
DUSP22; SDK1 

FZ vs FH, 
female 

  
chr2:128453201-128453400 (−0.25); chr2:128453401-
128453600 (−0.25); chr21:47604201-47604400 (−0.10); 
chr21:47604801-47605000 (−0.10); chr21:47605001-
47605200 (−0.10); chr4:1523001-1523200 (−0.10); 
chr5:135415601-135415800 (−0.12); chr5:135415801-
135416000 (−0.12); chr5:135416201-135416400 (−0.12); 

SPATC1L; 
SFT2D3; WDR33; 
VTRNA2-1 

IUI vs NAT, 
male 

  
chr21:47604201-47604400 (−0.23); chr21:47604801-
47605000 (−0.23); chr21:47605001-47605200 (−0.23); 
chr7:4305001-4305200 (−0.08); chr2:128453201-
128453400 (−0.21); chr2:128453401-128453600 (−0.21) 

SPATC1L; SDK1; 
SFT2D3; WDR33 

IUI vs NAT, 
female 

chr4:1523001-
1523200 (0.10) 

 
chr21:47604201-47604400 (−0.27); chr21:47604801-
47605000 (−0.27); chr21:47605001-47605200 (−0.27); 

SPATC1L 

FH vs NAT, 
male 

chr4:1523001-
1523200 (0.11) 

 
chr2:128453201-128453400 (−0.16); chr2:128453401-
128453600 (−0.16); chr6:291801-292000 (−0.11); 
chr6:292001-292200 (−0.11); chr6:292201-292400 (−0.11); 
chr6:292401-292600 (−0.11); 

SFT2D3; WDR33; 
DUSP22 

FH vs NAT, 
female 

chr4:1523001-
1523200 (0.06) 

 
chr21:47604201-47604400 (−0.16); chr21:47604801-
47605000 (−0.16); chr21:47605001-47605200 (−0.16); 
chr6:291801-292000 (−0.14); chr6:292001-292200 (−0.14); 
chr6:292201-292400 (−0.14); chr6:292401-292600 (−0.14); 

SPATC1L; 
DUSP22 

FZ vs NAT, 
male 

chr4:1523001-
1523200 (0.10) 

 
chr10:135341601-135341800 (−0.12); chr1:19110801-
19111000 (−0.13); chr2:128453201-128453400 (−0.22); 
chr2:128453401-128453600 (−0.22); chr6:291801-292000 
(−0.13); chr6:292001-292200 (−0.13); chr6:292201-292400 
(−0.13); chr6:292401-292600 (−0.13); chr7:4305001-
4305200 (−0.04) 

CYP2E1; SPRN; 
SFT2D3; WDR33; 
DUSP22; SDK1 

https://www-sciencedirect-com.proxy.lib.wayne.edu/topics/medicine-and-dentistry/methylation
https://www-sciencedirect-com.proxy.lib.wayne.edu/topics/medicine-and-dentistry/embryo-transfer
https://www-sciencedirect-com.proxy.lib.wayne.edu/topics/medicine-and-dentistry/intrauterine-insemination
https://www-sciencedirect-com.proxy.lib.wayne.edu/topics/medicine-and-dentistry/intrauterine-insemination
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Conception 
comparisons 

Hypermethylated 
MEs 

Associated 
genes 

Hypomethylated MEs Associated genes 

FZ vs NAT, 
female 

  
chr10:135341601-135341800 (−0.10); chr21:47604201-
47604400 (−0.22); chr21:47604801-47605000 (−0.22); 
chr21:47605001-47605200 (−0.22); chr6:291801-292000 
(−0.11); chr6:292001-292200 (−0.11); chr6:292201-292400 
(−0.11); chr6:292401-292600 (−0.11); 

CYP2E1; SPRN; 
SPATC1L; 
DUSP22 

Female vs 
male, NAT 

chr19:29218001-
29218200 (0.10); 
chr2:113992801-
113993000 (0.08); 
chr2:113993001-
113993200 (0.08); 

LOC100420587; 
PAX8; PAX8-
AS1; 

  

Female vs 
male, FZ 

  
chr4:1523001-1523200 (−0.08) 

 

 

Several adjacent MEs on chromosome 2 were observed to be hypomethylated solely 

in the male comparisons of ICSI (FH and FZ) groups to NAT. Within the same comparisons, 

these MEs were not consistently altered in the female cohort. These MEs are located in a 

potential regulatory region adjacent to SFT2D3, WDR33, and LIMS2. Additionally, these loci 

were hypomethylated in both FZ as compared with FH males and females. Taken together, 

this suggests that the type of IVF/ICSI treatment (i.e., cryopreserved or fresh embryo transfer) 

impacts methylation status to varying degrees, with FZ embryo transfer increasing the level 

of hypomethylation at this locus in the male cohort. A significant methylation change at this 

ME in males alone (FH vs. NAT, FZ vs. NAT) suggested a gender-specific effect on 

establishing the epigenome of this locus. Although Silver et al. [127] identify the top 10 MEs 

altered by season of conception in Gambian individuals, the DUSP22-, SPATC1L-, and 

SFT2D3-associated MEs found to be hypomethylated in ART individuals compared with NAT 

are not among them. Therefore, the differences in nutritional and periconceptional milieu 

between the rainy and dry season are likely different from those of unassisted and assisted 

conceptions. 

v. Discussion 

ART has been successfully applied to produce many phenotypically healthy human 

children. However, in both humans and model organisms, the impact of ART on the 

epigenome and long-term health of offspring is disputed. This confusion is compounded by a 
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lack of understanding of the epigenetic contribution to the health of ART conceptuses. To 

begin to disentangle the possible epigenetic impact of ART techniques, such as ICSI and 

cryopreservation, from that of underlying infertility, the present cohort included both NAT- and 

IUI-conceived newborns as comparative groups. This work verified previous literature 

indicating that ART does not induce extensive global changes in DNA methylation [103].  

In contrast, numerous differentially methylated loci were identified when conception 

types were compared. The three assisted conception groups also exhibited differences from 

the natural conception group, thus supporting the view that subtle epigenetic changes 

occurred in children from parents who sought fertility treatment, relative to those conceived 

naturally. Consistent with this tenet, 4 of the 18 candidate CpG sites altered in placental tissue 

from children born to fertile parents compared with infertile parents [99] are located in or near 

significant clusters of two imprinted genes, growth factor receptor-bound protein 10 (GRB10) 

and necdin (NDN). While A-clustering recapitulated the hypomethylation of placental GRB10 

CpG sites in bloodspots of ART children compared with fertile controls [99], it was not 

congruent with NDN. This discordance is likely reflective of tissue-specific DNA methylation 

in peripheral blood and placenta. Methylation differences between ICSI and naturally 

conceived controls were generally discordant with previous studies’ conclusions on imprinted 

genes [95, 98]. This discordance is likely reflective of study differences in sample size and 

composition. Overall, a screen of imprinted DMRs does not identify altered DNA methylation 

profiles in placenta and cord blood samples in ART newborns compared with those 

spontaneously conceived [132]. This screen agreed with the conclusions drawn from the 

current cohort, in which the majority of imprinted genes in human do not show consistent or 

significant methylation changes. 

The results of this work suggested that alterations in DNA methylation may explain at 

least a portion of the increased risk of birth defects in fresh embryo transfer, as well as the 
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increased birth defect risk in individuals with a history of infertility [89]. As we have shown, the 

IUI and FZ groups exhibit noted epigenetic similarity.  

This is consistent with the recent suggestion that cryopreservation, in conjunction with 

ICSI, can reduce the risk of birth defects associated with ICSI births to that of the general 

population [89]. Interestingly, a Drosophila model of intergenerational metabolic 

reprogramming recently demonstrated a resetting of the fly sperm epigenome after heat shock 

[12]. It is tempting to suggest that cryopreservation in ART may yield a similar outcome (i.e., 

the epigenetic resetting of the human embryo). However, the true nature of the mechanism 

underlying the reduction in aberrant DNA methylation in the FZ newborns remains unknown. 

In all human studies to date, the combined effects of cryopreservation, embryo quality, uterine 

receptivity, and parental health have yet to be segregated. Moreover, the endometrial 

receptivity of women undergoing ovarian stimulation, which is often utilized in fresh embryo 

transfer, is likely shifted in comparison with that of naturally cycling women undergoing frozen 

embryo transfer [31]. This suggests that the relative endometrial receptivity may play a role in 

establishing the implantation environment and ultimately, the epigenome, of the conceptus. 

Previous studies considering the impact of ART on the human conceptus have largely 

been limited in the number and type of genomic loci examined. Uniquely, the present work 

identified both regulatory regions (i.e., enhancers) and MEs as being affected by infertility and 

ART. The 450k array locus-specific β-values for various MEs, including PAX8, SPATC1L, and 

VTRNA2-1 of Table 2.1, through comparison to quantitative bisulfite pyrosequencing of MEs, 

are known to provide a reliable proxy for methylation status [127]. Altered methylation at 

enhancers, and more broadly, regulatory regions has the potential to impact gene expression 

and long-term health status. Modulation of MEs was consistent with previous nutritional 

studies [79, 127], thus indicating that the periconceptional environment of the early human 

embryo, which includes IVF culture conditions for the IVF and ICSI conceptus, leaves a lasting 

impression on the epigenome. 
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Compared with unassisted pregnancies in the general population, ART pregnancies 

are susceptible to multifetal gestation and adverse pregnancy complications. One must 

therefore consider the clinical characteristics that may impact DNA methylation and blood cell 

populations in neonatal studies. These include gestational age, multifetal pregnancies, 

pregnancy complications, fetal–maternal characteristics, racial characteristics, and 

sociodemographic status, sample characteristics to which this study was blinded. 

Nevertheless, although gestational age ranged from 30 to 40 weeks, approximately 80% 

reached full term; 89.5% were singletons. Accordingly, the majority of each conception group 

was comprised of full-term, singleton pregnancies. 

With current available approaches, the veracity of bloodspot composition estimates 

from newborn bloodspots is unproven [133]. However, methylation at MEs is known to be 

established in the early embryo and remain consistent across diverse tissues ranging from 

blood to hair follicles [79, 127]. Additionally, previous DNA methylation studies suggest that 

although leukocytes are composed of approximately 54% neutrophils, the remaining 

approximately 19 different cell types do not affect the majority of loci examined [134]. In the 

present cohort, leukocyte composition was estimated using the method of Jaffe and Irizarry 

[135], and the resulting blood cell proportion estimates do not significantly influence the 450k 

methylation profiles. Hence, any differences in leukocyte composition do not seem to underlie 

the group differences in ME methylation. 

This work serves as a resource for future studies on IVF populations. It provided the 

first large-scale 450k dataset on cytosine methylation in newborns conceived through three 

different assisted conception procedures: IUI, ICSI–fresh embryo transfer, and ICSI–

cryopreserved embryo transfer, and provided comparison to a naturally conceived cohort. The 

association of methylation changes in these loci with ART-conceived child's clinical 

phenotypes and long-term health can now be investigated. Identification of differentially 

methylated genes between comparisons of conception types suggests that epigenetic 
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mechanisms may at least partly underlie the observed risks of neurologic and birth defects 

seen in the ART population and assisted births [89, 90]. The reduction in birth defects from 

after cryopreserved embryo transfer [89] is suggested here to have an epigenetic basis, given 

that FZ groups exhibited reduced epigenetic changes. This tenant biologically supports the 

use of frozen embryo transfers rather than fresh embryo transfers in association with IVF and 

ICSI.  

  



37 
 

 
 

Chapter 3 

“DEFINING THE SPERM TRANSCRIPTOME: RNA ELEMENT DISCOVERY FROM GERM 

CELL TO BLASTOCYST” 

This chapter was adapted from the following publication: 

Molly S Estill, Russ Hauser, Stephen A Krawetz. “RNA element discovery from germ cell to 

blastocyst”. Nucleic Acids Research. 2018 Dec 21. Cover feature. doi: 10.1093/nar/gky1223. 

i. Summary 

Recent studies have shown that tissue-specific transcriptomes contain multiple types 

of RNAs that are transcribed from intronic and intergenic sequences. The current study 

presents a tool for the discovery of transcribed, unannotated sequence elements from RNA-

seq libraries. This RNA Element (RE) discovery algorithm (REDa) was applied to a spectrum 

of tissues and cells representing germline, embryonic, and somatic tissues and examined as 

a function of differentiation through the first set of cell divisions of human development. This 

highlighted extensive transcription throughout the genome, yielding previously unidentified 

human spermatogenic RNAs. Both exonic and novel X-chromosome REs were subject to 

robust meiotic sex chromosome inactivation, although an extensive de-repression occurred 

in the post-meiotic stages of spermatogenesis. Surprisingly, 2.4% of the 10,395 X 

chromosome exonic REs were present in mature sperm. Transcribed genomic repetitive 

sequences, including simple centromeric repeats, HERVE, and HSAT1, were also shown to 

be associated with RE expression during spermatogenesis. These results suggest that 

pervasive intergenic repetitive sequence expression during human spermatogenesis may play 

a role in regulating chromatin dynamics. Repetitive REs switching repeat classes during 

differentiation upon fertilization and embryonic genome activation was evident. 
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ii. Introduction 

Expression profiles of known RNAs have been catalogued for a range of cell types, 

with the use of expression arrays and, more recently though RNA deep-sequencing studies. 

This has yielded a series of useful databases including GTEx 

(https://www.gtexportal.org/home/), EMBL-EBI’s Expression Atlas 

(https://www.ebi.ac.uk/gxa/home/), The Human Protein Atlas (https://www.proteinatlas.org/), 

and ENCODE (www.encodeproject.org) [135-140]. These databases and RNA-seq studies 

generally focus on annotated genes and transcript variants that are derived from transcript 

modeling programs such as Cufflinks [141] and are provided as part of the Refseq and 

Gencode annotation [142, 143].  

Both coding and non-coding RNAs play major roles in all cellular processes. In addition 

to protein-coding RNAs, at present, there are 48 different non-coding and pseudogene 

classes of RNA documented in the version 27 annotation of the Human Gencode. 

Approximately 40% of the annotated genes in Gencode correspond to long and short non-

coding RNA genes [144]. Non-coding intergenic regions are known to contain regulatory 

RNAs. These include long intergenic non-protein coding RNA (lincRNA), enhancer RNA 

(eRNA), piwi-interacting RNA (piRNA) and circular RNAs, with others just beginning to be 

described [145-148]. The human transcriptome is likely to be more complex than even these 

annotations indicate, as an estimated three quarters of the human genome is transcribed 

[149]. This would include novel tissue-specific RNAs, whose roles remain to be established 

[150]. 

The palette of RNAs appear enriched in certain specific tissues, with each providing a 

specialized function, e.g., brain - cognitive and functional system level control, and germline 

– stem cell – defining development [151-153]. Their corresponding complexity is exemplified 

in the testis by the collection of unique structural and functional spermatozoal-specific 

transcript variants [154] that are observed during maturation, as sperm assume their unique 

https://www.proteinatlas.org/
http://www.encodeproject.org/
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shape. This culminates with the compaction of the sperm nucleus to a transcriptionally and 

translationally inert structure. The latter is ensured by fragmenting rRNAs [155], as well as 

others and completes with the expulsion of the majority of the cytoplasm. In addition to the 

paternal genome and sperm encapsulated RNAs [156], RNA/proteins and other molecules 

from distant tissues acquired during epidydimal transit [71, 157] are delivered at fertilization. 

This provides a pathway for soma-to-germline transmission [156, 158, 159] that perhaps 

conveys signals echoing how other tissues have responded to the environment (reviewed in 

[160]).  

Previous literature has shown that unannotated transcripts corresponding to intronic 

and intergenic regions of the spermatogenic genome are comparatively abundant in human 

sperm [154, 161-163]. They vary amongst species and in response to and can provide 

markers of disease [163-165]. These observations drove the development of an algorithm to 

systematically identify the genomic locations of RNAs, defined as RNA elements (RE)., i.e., 

regions transcribed throughout the genome. This unbiased analysis tool is not limited to those 

RNAs currently defined in the databases as it does not seek to generate gene structures from 

REs. It is compatible with a range of Next Generation Sequencing (NGS) platforms, RNAs 

from varied sources, abundance, quality, and levels of fragmentation, i.e., FFPE-like RNAs. 

The RNA Element Discovery algorithm (REDa) approach only requires the BAM file of 

genomic alignments to detect transcribed regions of novel loci in conjunction with well-known 

annotated loci. 

RE discovery was applied from the perspective of the human male germ cell to 

blastocyst paradigm. A series of spermatogenesis and embryogenesis pattern specific 

intergenic human REs were identified, indicating that the transcriptome extends well-beyond 

the annotated genes, including those delivered at fertilization. Tissue-specific REs comprised 

of intronic and intergenic REs were uncovered and, in some cases, exon boundaries 

extended. Transcribed genomic repetitive sequences, such as simple repeats, HERVE, and 
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HSAT1, were shown to be associated with RE expression during spermatogenesis, and may 

play a developmental stage specific role. Similarly, in the human embryo, MER73 was 

associated with RE transcription at the minor wave of zygotic genome activation and MLT2A1 

and SVA-D expressed through the major wave during the transition to the embryonic genome. 

This provided a deeper understanding of the dynamic transcriptome of human sperm, as well 

as uncovering the possible role of specific repetitive sequences in the spermatogenesis. 

iii. Materials And Methods 

RE discovery  

The current study used Gencode release 26 (for GRCh38) and the GRCh38 genome 

for RE discovery, which is detailed in Appendix E. RNA-seq samples used in RE discovery 

are described in Appendix F. Sample reads were pre-processed prior to RE discovery with 

Trimmomatic version 0.36, trimming Illumina adaptors and poly(A+) sequences, where 

appropriate, with parameters “LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15”. Reads 

were aligned to the GRCh38 genome using HISAT2 (version 2.0.6), using the parameters “-

p10 -max-seeds 30 -k 2”. Read coverage was provided to the RE discovery tool in bigwig 

format, generated by converting BAM files to bedgraph format, using the bedtools tool 

genomeCoverageBed, with the parameters “-split –bg”, and subsequently bigwig format, 

using the bedGraphToBigWig program (available from the UCSC Genome Browser utilities). 

The threshold parameter µ for RE discovery was set to 2.5 reads per million, to minimize their 

contribution of background noise. Novel REs from each study were combined using custom 

R commands, which merged overlapping novel REs, re-annotated the merged REs, and 

added the merged REs to the exonic REs, to produce a collective set of REs. The collective 

set of REs for the different samples was subsequently used in all analyses. For comparison 

of RE discovery to established transcript-building software, Cufflinks (v2.2.1) and Stringtie 

(v1.3.4) were used on the same pre-processed reads previously used for RE discovery [141, 
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166]. Default parameters for both Cufflinks and Stringtie were employed, using Gencode 

release 26 (for GRCh38) as the reference annotation.  

Differential expression (LMEM, fold change, LM) 

A linear mixed-effects model (LMEM) was used to calculate differential expression 

between poly(A+) and total RNA libraries from oocyte through early embryonic development 

[167-169]. The LMEM was used with a random slope and intercept for each cell type, to 

consider heterogeneity across cell types [formula= RPKM ~ RNA.type + (1 + RNA.type | 

Tissue)]. Residuals of randomly selected REs were analyzed for homoscedasticity, ensuring 

that the assumptions of the LMEM were satisfied. Multiple testing correction was applied to 

P-values for resultant slopes, using Benjamini-Hochberg correction [170].  

Differential expression of poly(A+) and total RNA libraries in sperm and testis tissue 

was determined using a fold-change (Fold change= 𝑙𝑜𝑔2 (
𝑚𝑒𝑎𝑛(𝑇𝑜𝑡𝑎𝑙 𝑅𝑁𝐴)

𝑚𝑒𝑎𝑛(𝑝𝑜𝑙𝑦(𝐴+))
)). The use of an 

expression ratio, rather than linear modeling, was necessary due to the technical differences 

between the total RNA sperm samples [163] and the three poly(A+) sperm libraries [171], as 

well as the absence of multiple independent total RNA testis samples [154]. 

RE enrichment for repetitive sequences 

In cases when median RE RPKM in spermatozoa exceeded 1 RPKM (thus removing 

REs with low coverage in most samples), peak RE RPKM was 25 RPKM and subsequently 

used as an expression threshold. REs were first assigned as “Expressed” if the median RPKM 

for the cell/tissue type was greater than 25 RPKM. The enrichment or depletion of repetitive 

sequences in the expressed REs was calculated using UCSC’s Repeatmasker track (for 

GRCh38), a hypergeometric test and custom R code. The proportion of each genomic repeat 

in all available REs was used as input probability, with the number of expressed REs for the 

given cell type used as the sample size. The probability of drawing the actual number of 

expressed REs overlapping the given repeat type was adjusted using a Bonferroni correction 
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[172]. To identify repeats of interest, significantly enriched or depleted repeats were 

additionally filtered to remove repeats with minimal over- or under-enrichment. Thus, only 

repeats whose difference between the expected and observed RE count was greater than 10 

REs were retained.  

Expression clustering 

Expression patterns across spermatogenic cell types were identified using the R 

package Mfuzz [163, 173-175]. Mfuzz is designed for soft clustering of gene expression time-

series data. Soft clustering is a form of clustering where a data point (e.g. transcript) can 

belong to more than one pattern. The samples used in clustering were the Jan et al. 

spermatogenesis libraries [175], as well as a set of 7 ejaculated sperm samples from fertile 

males [163]. It should be noted that these 7 samples are a subset of the 52 “Control” sperm 

samples used for expression comparisons in Chapter 4. The median expression value for the 

7 mature sperm samples was used to represent the mature sperm samples as a single value. 

The RE dataset was then composed of a single library for Adark SSCs, Apale SSCs, 

Leptotyne/Zygotene, Early Pachytene, Late Pachytene, and Round spermatids, while the 

library for ejaculated sperm was the median expression value for 7 fertile males. In a step 

intended to remove universally lowly expressed REs, REs were processed to remove those 

which did not exceed 25 RPKM in at least one sample. Mfuzz clustering was performed, 

generating 20 cluster patterns, with a minimal membership of 0.7 required for inclusion of an 

RE in a pattern.  

Paternal/maternal transmission 

REs were assigned as maternally transmitted to the zygote with median zygotic level 

˃ 10 RPKM, sperm < 2 RPKM, and oocyte > 25 RPKM. REs were assigned as paternally 

transmitted with moderate confidence with median zygotic level > 10 RPKM, sperm > 25 

RPKM, and oocyte < 5 RPKM. REs were assigned as paternally transmitted with greatest 

confidence with median zygotic level > 10 RPKM, sperm > 25 RPKM, and oocyte < 2 RPKM. 
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FDR calculation for GTEx and PPV calculation for sperm 

The accuracy of the RE discovery algorithm to identify expressed loci was calculated 

using the Jodar et al. dataset, which consisted of 7 fertile human sperm samples, prepared 

using total RNA [163]. RE discovery was performed on the 7 samples, at a range of µ from 1 

to 10 RPM, at increments of 0.5 RPM. The RPKM of the resulting novel REs for each sample 

was calculated, along with the median RPKM across the 7 samples. Experimental thresholds 

for calling a RE as “expressed” ranged from 1 to 200 RPKM, at increments of 1 RPKM. At 

each expression threshold, the number of REs with a median RPKM at or exceeding the 

threshold were recorded. The Positive Predictive Value (PPV) at each expression threshold 

and µ was calculated as  

𝑃𝑃𝑉 =
𝑁𝑜𝑣𝑒𝑙 𝑅𝐸𝑠 > 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑁𝑜𝑣𝑒𝑙 𝑅𝐸𝑠 > 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝑁𝑜𝑣𝑒𝑙 𝑅𝐸𝑠 ≤ 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

The ability of the RE approach to recapitulate tissue expression in the established 

databases was determined using the testis expression in the GTEx database [138]. The 

median TPM for all GTEx testis samples was downloaded and was processed to replace 

duplicated common gene names with the mean TPM for all instances of the gene name. Only 

gene names found in both GTEx and exonic REs were used in subsequent intersect analysis. 

The unique gene names with expression exceeding 5 TPM were compared to those of the 

exonic REs exceeding 25 RPKM. 

Gene ontology 

Ontological analysis was performed with the Genomatix software suite 

(https://www.genomatix.de/), version 3.10. The GeneRanker function (using Genomatix 

Eldorado version 12-2017) generated the ontological enrichment of signaling pathways.  

 

 

 

https://www.genomatix.de/
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iv. Results and Discussion 

RE identification and classification 

The RE discovery algorithm was designed to detect expressed regions of the genome 

using RNA-seq, regardless of the sequencing platform or read structure. A detailed 

description of RE discovery is presented in Appendix E, and the corresponding code is 

provided online (https://github.com/mestill7/RE_discovery). Briefly, the known gene 

annotation (e.g., RefSeq, Ensembl, Gencode) for the genome of interest is parsed into 

individual exon locations. In the current study, Gencode release 26 (GRCh38) was used, with 

non-coding entries considered as annotated “exons” [144]. As summarized in Figure 3.1A, 

RE discovery first requires the sequenced reads to be processed, e.g., adaptors trimmed and 

low-quality bases removed, prior to alignment to the genome of interest. For the unannotated 

regions of the genome, the mean read coverage was calculated for each 10 bp genomic 

segment and the 10 bp segments with sufficient read coverage, determined by a threshold µ, 

retained. For the purposes of this study, µ = 2.5 reads per million provided well-balanced 

signal to noise ratio (Figure 3.2) that was suited for RNA libraries generated from low-input, 

potentially fragmented RNAs, as is often found in clinical Formalin-Fixed Paraffin-Embedded 

(FFPE) samples and spermatozoa [154, 176]. The overlapping 10 bp regions were 

subsequently merged to yield the final novel REs for each collection of samples studied. The 

merging steps allow for a maximum of 150 bp between element bins, intended to allow for 

gaps in coverage caused by sequencing bias and/or biological fragmentation.  

https://github.com/mestill7/RE_discovery
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 Figure 3.1. Pre-processing for RE 
discovery. (A) RNA-seq reads, in fastq 
format are processed to remove low-
quality bases and adaptor sequences. 
The trimmed reads are then aligned to 
the genome, and the duplicate 
alignments removed. Read coverage is 
then used to identify 10 bp segments with 
read coverage surpassing μ. The 
expressed 10 bp segments (shown in 
blue) are merged and annotated 
according to their adjacency to exons 
(shown in red). (B) RE discovery 
workflow for four theoretical RNA-seq 
samples. Each sample has a different 
library size, and correspondingly, 
different read coverage thresholds at a μ 
of 2.5 Reads per million (RPM). Non-
exonic regions of read coverage 

surpassing the assigned threshold are deemed “Novel REs”. Merging novel REs from the four 
different samples, yields two novel REs, one from Sample 1 (S1) and one from Sample 3 (S3) 
that are separated by up to 150 bp. Novel REs of the different samples S1 and S3 are merged 
into a final RNA element, represented in purple. Exonic REs are excluded from this merging 
step. The final novel RE set for the four samples is then annotated as intronic, near-exon, 
purple, (<10kb from exon), and orphan REs (>10kb from exon). 
 

 

 Figure 3.2. Background noise for read coverage thresholds. X-axis represents the 
experimental threshold for calling a RE as “true positive (TP)”. The corresponding Positive 
Predictive Value (PPV) is calculated as (TP/(TP+FP)). The PPV curve is provided for levels 
of μ from 1 RPM to 10 RPM. The X-axis represents the expression threshold required for 
assigning a RE as expressed, and ranges from 1 to 200 RPKM. A PPV of 0.95 (corresponding 
to a False Discovery Rate (FDR) of 5%), is shown as a black line. 
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Novel REs were then annotated according to their genomic position, relative to known 

exons (Figure 3.1B). “intronic” REs were located within introns, while any non-intronic REs 

located within 10 kb of an annotated exon were designated “near-exon” REs; “orphan” REs 

were at a distance greater than 10 kb from any known exon. An exonic RE was extended into 

a near-exon RE if they were within 50 bp and the difference in read coverage was < 50%. As 

summarized in Figure 3.3, previously published RNA-seq studies representative of human 

spermatogenesis, mature sperm, oocyte, embryonic stages, and liver samples, detailed in 

Appendix F, were subject to RE discovery. This set of RNA-seq libraries encompassed both 

poly(A+) selected and total RNA preparations. A database of REs across the different tissue 

and types was created by merging the novel REs from each study with the exonic and non-

coding transcript REs and used in all subsequent analyses.  

A specific set of RE discovery parameters (µ = 2.5 reads per million and minimum 

required distances between genomic bins), were used to provide an acceptable signal to noise 

ratio in the sperm RNA libraries. Due to the exploratory nature of this study, maximizing the 

number of REs, while still excluding spurious signals, was of particular interest. Modification 

of the parameters used in the REDa method will allow increased detection stringency (thus 

reducing the number of REs detected) or more permissive RE detection (thus increasing the 

number of REs detected). Increased stringency during RE detection can easily be achieved 

by increasing the required µ (thus increasing the threshold required to mark genomic bins as 

“expressed”) or by increasing the minimum proportion of samples with the required minimum 

read coverage to retain a genomic bin for RE designation.  

The accuracy of the RE approach, which separates exons into individual units, rather 

than linking exons into a whole transcript, was tested by comparing expressed REs in testis 

libraries to the testis expression levels given by GTEx. At least 91% of gene names associated 

with testis-expressed exonic REs overlap with gene names expressed in GTEx testis tissue, 
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suggesting that the RE approach can recapitulate the patterns designated in established 

expression databases.  

 
Figure 3.3. Tissue types used for RE discovery. The male germline within the testis tissue 
is divided into and represented by seven stages of spermatogenesis. The female germline is 
represented by a single-cell oocyte with embryonic stages that range from zygote to 
blastocyst. Somatic tissue is represented by the liver sample. Total RNA or poly(A+) enriched 
RNA-seq libraries are indicated in split squares, with blue representing poly(A+) selected 
samples, red indicating total RNA samples, and a split blue/red square as both library 
preparations. 
 

The above RE identification method was developed to ensure accuracy in face of 

extensive RNA fragmentation, naturally occurring in human sperm. Certain tissue 

preparations, such as FFPE, also yield compromised RNA preparations. Given that several 

established transcript-building algorithms are readily available, I compared both Stringtie 

(v1.3.4) and Cufflinks (v2.2.1) to the RE approach for two random sperm samples and two 

male human cell lines. RNA-seq datasets from human cell lines, i.e., SRR020288 (h1 hESC) 

and SRR3192556 (OCI-LY7, derived from a B cell lymphoma), provided independent datasets 

when testing the RE method. Using minimal thresholds of expression (>10 RPKM in REs, >1 

FPKM in Cufflinks and Stringtie), the majority of expressed REs overlap locations of 

transcripts generated using transcript-building software. Across the 4 samples, 67%-92% of 
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“expressed” REs overlap Stringtie results, and 81%-90% overlap Cufflinks results at the above 

thresholds of expression. Notably, regardless of the transcript-building method and required 

expression thresholds, a majority of REs (complete range 21%-93%) lacking overlaps with 

Cufflinks and Stringtie results are exonic REs, suggesting that the established transcript-

building methods are less than ideal for fragmented or unevenly covered transcripts. 

Additionally, the presence of spliced reads, a critical component to transcript-building, is 

reduced in spermatozoal RNAs (36% - 40%) compared to RNAs from cell lines (41%-64%). 

Other investigators have also employed a targeted Cufflinks [168] discovery approach to 

identify novel linear embryo transcripts. Reflective of the low level of expression and rigor 

required for identification, the majority of these linear transcripts were not discovered using 

the RE strategy (data not shown). 

With the function of the novel REs being unknown, I hypothesized that the novel REs 

may have regulatory roles. To assess this, REs were overlapped with a series of epigenetic 

marks and regulatory genomic sequences (Figure 3.4). For regulatory chromatin marks 

(proximity to DNase hypersensitive regions, proximity to CTCF binding sites, proximity to 

Topologically Associating Domains (TADs), and proximity to ENCODE Transcription Factor 

Binding Sites (TFBS)) [177-182], the novel RE classes largely showed a similar overlap 

proportion as exonic REs. All RE classes showed very little overlap with piRNA clusters [183, 

184]. TADs mark the physical interaction of genomic regions and the minimal overlap of all 

RE classes with TAD boundaries suggests that novel REs are not primarily involved in 

establishing TADs. However, it is important to note that the compilation of REs are detected 

in at least one of a variety of tissues (across spermatogenesis, embryogenesis, and somatic 

tissue). Therefore, the overlaps summarized in Figure 3.4 do not preclude a tissue-specific 

relationship of REs with a given epigenetic mark, such as TADs. Notably, all classes of novel 

REs had a high overlap (>50%) with repetitive sequences (UCSC’s Repeatmasker track (for 

GRCh38) [185], compared to the approximately 22% overlap in exonic REs.  
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Figure 3.4. Overlap of REs with epigenetic marks and regulatory genomic sequences. 
The proportion of each RE class classified as overlapping a given epigenetic mark or genomic 
sequence is indicated on the Y-axis, with the type of epigenetic mark or genomic sequence 
indicated on the X-axis. The type of RE class is indicated with exonic REs in black, near-exon 
REs in light blue, intronic REs in green, and orphan REs in yellow. “DNase” indicates overlaps 
within DNase I Hypersensitivity Peak Clusters from ENCODE (95 cell types) or 5 kb of a 
cluster. “CTCF” indicates overlaps within CTCF binding sites in the GM12878 cell line 
(determined from ChIP-seq) or 5 kb of a binding site. “TAD” indicates overlaps within 5 kb of 
a topologically associating domain (TAD) ending site. “ENCODE TFBS” indicates overlaps 
with Transcription Factor Binding Sites (TFBS) from Encode (ENCODE Mar 2012 Freeze). 
“piRNA Cluster” indicates overlaps with piRNAs in the human genome. “Repetitive 
sequences” indicates overlaps with UCSC’s Repeatmasker track (last updated 2014-01-10). 
 
RNA-seq complexity of RNA elements 

The RE discovery algorithm was developed to identify transcribed intergenic loci from 

RNA-seq data. Many novel loci (e.g., near-exon and orphan REs) were hypothesized to be 

derived from non-polyadenylated RNAs, since this class appears underrepresented in the 

genome and the GENCODE annotations. A series of poly(A+) selected and Total RNAs from 

a range of cell types that capture fertilization to early embryonic development from oocyte, 

zygote, 2-cell embryo, 4-cell embryo, 8-cell embryo, and morula (Figure 3.3) and the male 

germline, through ejaculated sperm and testis, were examined [167-169]. Applying a linear 

mixed-effects model (LMEM) to Total and poly(A+)-selected RNAs from the human oocyte and 

various stages of early embryonic development, revealed a comparatively lower number of 

REs detected within the poly(A+) selected fraction (Figure 3.5). In general, the number of 

novel REs that were either increased or depleted by poly(A+)-enrichment do not markedly 
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differ (Figure 3.5B). Interestingly, the number of orphan REs approximately doubled upon 

poly(A+)-enrichment as compared to the Total RNA fractionation. This suggests that a 

population of orphan REs belong to a larger, yet unknown set of polyadenylated transcripts. 

To determine if poly(A+) enrichment of orphan REs reflected a genomic repeat, the distribution 

of repeats within the 150 poly(A+) enriched orphan REs was assessed and is shown in Figure 

3.5C. Within the 129 orphan REs that contain a repetitive element, the majority were LTRs 

and SINEs. It is worth noting that 40 of the 55 LTR-containing REs were ERVL-MaLRs. This 

is a non-autonomous LTR-retrotransposon element derived from ERV [186, 187] that may 

function in regulating gene expression during the oocyte-to-embryo transition [188]. 

 
Figure 3.5. Orphan REs are enriched in poly(A+) samples. (A) Volcano plot of slope 
changes in REs from LMEM in oocyte and embryo, with the X-axis representing slope change 
in log10-transformed RPKM, and the Y-axis representing the Benjamini-Hochberg-adjusted 
P-value as a negative log10-transformed P-value. Positive slope and negative slope indicate 
increased abundance in total RNA and poly(A+) preparations, respectively. Each point 
represents a single RE, with blue points indicating statistically significant REs (adjusted P-
value <0.05) with absolute slope changes exceeding 25 RPKM. (B) Distribution of REs 
enriched in either total RNA or poly(A+) libraries, according to the annotation class. (C) The 
distribution of orphan REs enriched in either total RNA or poly(A+) libraries, according to 
repeat class.  
 

The effect of poly(A+) enrichment was also assessed individually for human sperm and 

testis samples, providing the other half of the equation to early post-fertilization development. 

Poly(A+) enrichment has contrasting effects on exonic REs in spermatozoa and testis, with 

poly(A+) enrichment depleting and enriching exonic REs in sperm and testis, respectively. 
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However, unlike embryos, novel REs were markedly enriched in sperm and testis total RNA 

libraries, reflective of the relatively uncharacterized state of this cell type (Figure 3.6). 

Although poly(A+) enrichment does effectively reduce RNA library complexity, it does not 

appear to select for RNAs of any given biological function or pathway, with many GO terms 

shared in both the poly(A+)-enriched and Total RNA-enriched gene sets of the human embryo. 

This reiterates previous studies that indicate a reduction of transcript diversity and exon 

expression upon poly(A+) enrichment [189]. 

The number of human zygotic LTR and SINE-associated REs that may be derived 

from poly(A+) intergenic transcripts is of note. In accord with the data of others [190-193], this 

could afford transcript stabilization and nuclear export [194] perhaps increasing their retention 

in a given cell of the dividing embryo. Notably, at least in mouse, the transcription of 

retrotransposon-derived RNAs is thought to impact chromatin accessibility, and thus 

embryonic development [195]. 

 
 

 
 
Figure 3.6. Total RNA libraries are 
enriched for Novel REs in sperm 
and testes. (A) Histogram of fold 
changes (log2 transformed) are shown 
for (A) mature sperm and (B) testes 
samples. The X-axis indicates the 
Log2 of the Total RNA/polyA+ ratio, 
with positive change and negative 
change representing enrichment in 
total RNA and poly(A+) libraries, 
respectively. Note the novel REs all 
exhibit a shift to the right, indicating 
increased expression in total RNA 
samples. 
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RNA element expression across spermatogenesis 

RE expression throughout spermatogenesis was examined as a comparison to 

previously published patterns of whole transcript expression during the spermatogenic 

cycle[175]. The spermatogenic stages encompassed 6 cell types (Spermatogenic Stem Cells 

(SSCs) through Round Spermatids), isolated using laser capture microdissection [175]. 

Clustering of the various REs expression patterns across spermatogenesis was initially 

performed using Mfuzz, [173, 174] with the published 6 cell types [175]. RE expression across 

spermatogenesis recapitulated those patterns previously observed using whole transcripts. 

To extend the analysis to the final stage of spermiogenesis, RNA-seq from ejaculated sperm 

datasets from fertile males [163] were included (Figure 3.3). The addition of mature sperm 

enabled the discovery of several patterns specific to early round spermatids and maturing 

round spermatids, as observed through mature spermatozoa (Figure 3.7A-D). The final 

stages of spermatogenesis involve a burst of transcription, as well as the formation (and 

eventual loss) of the residual body as the majority of the cytoplasm is expunged from the cell. 

The burst of transcription in round spermatids was observed as a general increase in 

transcription of exonic REs that include 34,226 REs found in round spermatids but not in the 

late pachytene stage spermatocytes. Interestingly, a large portion of spermatid and/or mature 

sperm-specific clusters were generated from novel REs, suggesting that intergenic and 

intronic REs play a substantial role in the final stages of spermatogenesis that forms each 

spermatozoon as summarized in Table 3.1. To verify these observations, expressed (median 

expression >25 RPKM) REs for each spermatogenic stage were partitioned according to RE 

class (Figure 3.7E). The vast majority of REs expressed in pre-meiotic and meiotic stages 

were exonic (85%±7%). This was followed by a notable increase in the number of novel REs 

in Round Spermatids and Spermatozoa. The contribution of novel REs to the total 

transcriptome rose to 47% in mature sperm. 
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Figure 3.7. Mfuzz clusters highlighting the round spermatid to spermatozoon transition. 
(A-D) Clusters with increased expression in round spermatids and/or mature spermatozoa. 
(E) RNA element abundance as a function of annotation class and cell type with median 
RPKM >25.  
 
Table 3.1. RE class distribution of Mfuzz clusters. The “Pattern” column indicates the 
expression pattern across spermatogenesis. The count of exonic REs, near-exon REs, 
intronic REs, and orphan REs belonging to the given pattern are indicated in columns “EXON”, 
“NOVEL_10KB_EXON”, “NOVEL_INTRONIC”, and “NOVEL_ORPHAN”, respectively.  
 

PATTERN EXON NOVEL_10KB_EXON NOVEL_INTRONIC NOVEL_ORPHAN 

High Round spermatids 
and Spermatozoa 

1992 513 1333 286 

High Round spermatids 5502 1325 5019 1453 

High Spermatozoa 5012 4157 11874 4458 

High 
Leptotene/Zygotene 

and Round spermatids 
1607 59 167 27 

High 
Leptotene/Zygotene 

3403 345 1727 333 

High Adark and Apale 618 3 11 2 

High Adark 1198 23 105 18 

High Adark, Apale and 
Late Pachytene 

513 29 32 11 

High Apale 996 16 64 10 

High 
Leptotene/Zygotene, 

Low Round spermatids 
& Spermatozoa 

519 28 33 12 

 

Ontological analysis of the exonic and novel REs (with the exception of orphan REs) 

showed that the most abundant REs in round spermatids were enriched for genes involved in 

organelle biogenesis and maintenance. This is in accord with the physiological changes 
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occurring during spermiogenesis. REs that are abundant in both round spermatids and 

spermatozoa were enriched for TNF-alpha signaling, associated with maintaining a 

homeostatic state [196, 197]. The TNF-alpha signaling-associated REs enriched throughout 

the post-meiotic phase of spermatogenesis may be another part of a surveillance mechanism 

to ensure an optimal contribution [165]. REs that were primarily abundant in spermatozoa 

were associated with a range of signaling pathways, such as Glutamate Receptor signaling, 

WNT signaling, NGF signaling, EGFR1, and Signaling by Rho GTPases. WNT signaling has 

several roles in spermatogenesis, from maintenance to maturation, and thus motility [198-

200]. The role of NGF signaling in spermatogenesis in humans is unclear but has been 

implicated in mammalian Sertoli-germ cell signaling, sperm motility, and the acrosome 

reaction [201, 202]. Sperm EGFR activation is a major driver of sperm capacitation [203, 204], 

while Rho GTPases are likely to aid as mediators of the acrosome reaction [205]. Odorant 

receptors may be required for sperm chemotaxis in mammals [171], while glutamate receptors 

may also be involved in capacitation and/or sperm chemotaxis [206, 207] although such 

functions have yet to be demonstrated in mammalian systems. 

Sex-chromosome expression during spermatogenesis 

Meiotic sex chromosome inactivation (MSCI), the process by which genes located on 

the X-chromosome are repressed during meiosis, is essential for successful meiosis during 

human spermatogenesis [208]. However, abundant evidence suggests that numerous X-

linked genes escape post-meiotic X chromosome silencing (PMCI), a process that may be 

less effective in humans than other species [209, 210]. In comparison, most classes of Y-

linked REs undergo silencing during MSCI, with the exception of Y-linked orphan REs that 

are present throughout spermatogenesis.  

As shown in Figure 3.8, repression of exonic X-linked REs during spermatogenic 

MSCI is evident. This is followed by de-repression of X-linked exonic and novel REs, that 

return to pre-meiotic levels in mature sperm (Figure 3.8A). Notably, several X-linked REs 
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were intensely expressed (at a threshold of 25 RPKM) in solely one spermatogenic stage, 

including the post-meiotic stages, i.e., round spermatids and to a greater extent, mature sperm 

(Figure 3.8B). Overall, the patterns of X-linked REs across spermatogenesis imply a larger 

upregulation of genes and novel REs in the post-meiotic stages than previously thought, with 

the number of expressed X-linked REs largely following the patterns laid by autosomes. Of 

the 289 paternally transmitted REs, two were located on the X-chromosome, and both were 

exonic REs. The two REs are located (in hg38 coordinates) at chrX_2717605_2717652 and 

chrX_149929645_149930127, corresponding to CD99 and XX-FW81066F1.2, respectively. 

The spermatogenic roles of CD99, a cell surface glycoprotein involved in T-cell adhesion 

processes, and XX-FW81066F1.2, a poorly described transcript with a putative protein 

structure or antisense lncRNA function [135], are unknown. Although few paternally derived 

zygotic RNAs are X-linked, the expression patterns of REs located on the X chromosome 

were largely congruent with the current paradigm of Meiotic sex chromosome inactivation 

(MSCI) and reactivation during spermatogenesis [210]. However, the data also suggest that 

the process of post-meiotic X chromosome silencing (PMCI) during human spermatogenesis 

is selective, as many genes and novel REs escape silencing. 
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Figure 3.8. X-chromosome expression during spermatogenesis. (A) The number of 
expressed REs across each spermatogenic stage, for two representative autosomes (upper 
panels chr1 and chr2) and the sex chromosomes (lower panels chrX and chrY). The 
connected points are colored according to the RE class, with exonic REs in orange, intronic 
REs in green, near-exon REs in light blue, and orphan REs in purple. The X-axis of each 
graph presents the spermatogenic stage, with the pre-meiotic stages represented by Adark and 
Apale, the meiotic stages represented by Leptotene/Zygotene, and early/late Pachytene, and 
the post-meiotic stages represented by round and mature sperm. (B) An expression heatmap 
of X-chromosome REs that are primarily expressed (>25 RPKM) at one spermatogenic stage. 
RE class, shown adjacent to the RE expression column, shows exonic REs in black, intronic 
REs in green, near-exon REs in light blue, and orphan REs in yellow. 
 
Paternal transmission of REs to the human embryo 

It has been proposed and shown in vitro that human sperm deliver a cadre of RNAs 

upon fertilization [154, 160, 211, 212]. In the current study, the series of human RNA-seq 

profiles from sperm, oocyte, and embryo allowed for the identification of REs that are 

transmitted to the human oocyte solely by sperm. These are in addition to those 26,740 

zygotic REs (5% FDR), associated with a total of 6,118 individual named genes, which are 

essentially provided by the oocyte, but not present in sperm (Figure 3.9). Up to 289 sperm 

REs were identified as a majority contributed by paternal transmittance, with an FDR of ~3.4%, 

and 75 REs essentially provided by the sperm, at an FDR of ~2.7% (Figure 3.10A,B). 
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Interestingly, the 289 REs were enriched for “cycling of RAN in nucleocytoplasmic transport” 

(p=8.36 x 10-8) and the Unc 51 Like Kinase (p=1.47 x 10-3). RAN cycling is required for 

effective translocation of RNA and proteins across the nuclear pore. The human sperm REs 

contain RANGAP1, XPO7, XPO6, NUP210, and NUP214, as members of the nucleoporin 

complex. Interestingly others have shown that at least in embryonic stem cells, the 

nucleoporin complex may regulate parentally imprinted genes [213]. In comparison, the Unc 

51 Like kinase is associated with autophagy a process that is essential for the oocyte-to-

embryo transition [214]. These observations are consistent with the view that the paternal 

RNAs may contribute to re-establishing nuclear transport in the zygote and clearance of 

extraneous cellular complexes post-fertilization, when cell lineages begin to be established.  

Compared to the oocyte’s maternal contribution, relatively few paternal full-length RNAs are 

likely to be exclusively contributed to the embryo [156]. Of note, the genes associated with 

the paternally transmitted REs did not overlap those long RNAs suggested to be paternally 

derived in mouse [215]. This is likely due to the differences in genome activation, which occurs 

in the late 1- cell zygote in mouse [216], compared to the later 4-8 cell stage of human 

embryos, or other sperm derived RNAs providing a substitutive function [154, 217].  
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Figure 3.9. Expression heatmap of 
maternally derived REs. The overall 
expression level is represented in “RE 
expression”, with red indicating a median 
expression exceeding 25 RPKM. RE class, 
shown adjacent to the RE expression 
column, shows exonic REs in black, intronic 
REs in green, near-exon REs in light blue, 
and orphan REs in yellow. The REs 
presented are supplied by the oocyte to the 
zygote (Sperm < 2 RPKM; Oocyte > 25 
RPKM; Zygote > 10 RPKM)  
 

 

 

 

 

Figure 3.10. Expression heatmap of paternally derived REs. The overall expression level 
is represented in “RE expression”, with red indicating a median expression exceeding 25 
RPKM. RE class, shown adjacent to the RE expression column, shows exonic REs in black, 
intronic REs in green, near-exon REs in light blue, and orphan REs in yellow. The REs 
presented are supplied by the sperm to the zygote, with strong sperm preference (A) Sperm 
> 25 RPKM; Oocyte < 2 RPKM; Zygote > 10 RPKM and moderate sperm preference (B) 
Sperm > 25 RPKM; Oocyte < 5 RPKM ; Zygote > 10 RPKM 
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Differential gene expression during embryogenesis 

Transcriptomic changes across mammalian embryogenesis have been well-studied, 

using both microarrays and RNA-seq [218-222]. However, these experiments have not 

addressed the contribution of intergenic RNAs to embryogenesis and, importantly, during 

human embryogenesis. Towards filling this gap, examination of expression changes of novel 

REs from oocyte to blastocyst, while considering the contribution of the spermatozoon, tested 

the hypothesis that both exonic and novel REs would exhibit distinct patterns. 

To identify differentially expressed REs, a linear model was applied to the single-cell 

oocyte and embryonic RNA-seq datasets [168, 223]. Differential expression with REs 

reiterated previous analysis of RefSeq-annotated genes suggested that the oocyte, zygote, 

and 2-cell embryo contain a similar distribution of transcripts [168]. Few differences (59 REs) 

were identified between oocyte and zygote, and no differential REs were identified between 

zygote and 2-cell embryo (Figure 3.11). As expected, exonic REs exhibited characteristics of 

maternal genes, which are supplied by the oocyte and diluted as the embryo develops in 

anticipation of the 4 & 8-cell stage extensive Embryonic Genome Activation (Figure 3.12) 

[224]. This included a set of novel maternal REs specific to the early zygote (maternal genes) 

and EGA (the 4 & 8-cell stage). The majority of these novel maternal REs were intronic, 

suggesting e.g., (1) incomplete processing, (2) expression within an intron, (3) retention of 

circular RNA, or some other form. They were supplemented by a series of maternal intergenic 

orphan REs. Interestingly, novel REs also followed similar patterns, defining clusters of REs 

that are present during the minor first wave of human ZGA, as well as clusters that are active 

during EGA (Figure 3.13). While the novel REs with a maternal gene pattern are enriched for 

neuronal genes (Neuronal system, p=2.12e-05), those expressed during EGA are associated 

with protein metabolism (p=4.90e-06), consistent with the energy requirements of the early 

embryo. 
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Figure 3.11. Differential RE expression across early embryonic development. The count 
of differential up- and down-regulated REs as embryogenesis proceeds is shown below the 
diagrams of cell types. The annotation classes of the total differential REs are summarized in 
the bottom table. 
 

 

Figure 3.12. Expression heatmap of differentially expressed exonic REs across early 
embryogenesis. The overall expression level is represented in “RE expression”, with red 
indicating a median expression exceeding 25 RPKM. RE class, shown adjacent to the RE 
expression column, shows exonic REs in black. The REs presented are differentially 
expressed across at least one stage.  
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Figure 3.13. Differential novel REs across embryogenesis. The overall expression level is 
represented as left panel “RE expression”, with red indicating a median expression exceeding 
25 RPKM. RE class, shown adjacent to the RE expression column, shows intronic REs in 
green, near-exon REs in light blue, and orphan REs in yellow. The REs presented from oocyte 
to blastocyst are differentially expressed across at least one developmental stage.  
 
Expression of genomic repeats across spermatogenesis and embryogenesis 

Genomic repetitive elements and small non-coding RNAs are thought to play a role in 

confrontation-consolidation of the maternal and paternal genomes after fertilization [162, 225]. 

As novel REs tend to overlap genomic repetitive sequences, I examined RE expression to 

determine what genomic repeats may influence RNA expression throughout spermatogenesis 

and early human embryo development (Figure 3.14). The relative enrichment or depletion of 

repetitive sequences in the expressed REs was calculated for each available cell type. Briefly, 

the number of instances of genomic repeats overlapping expressed REs in each cell type 

were compared to an expected random distribution, with the random distribution drawn from 

the repeat occurrence in all available REs. Using a hypergeometric test, both relative 
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enrichment and depletion of repeat families were calculated across cell types. Despite the 

many instances of repeat depletion, there were relatively few instances of enrichment.  

Figure 3.14. Expression of repetitive sequences across spermatogenesis and 
embryogenesis. Moderate enrichment (mean RE expression > mean expression across all 
cell types) is shown in pink, and strong enrichment (mean RE expression is an upper outlier) 
is shown in red. The name of the genomic repeat is given on the left of the diagram, and the 
cell type is shown at the top of the diagram. 
 

Although several studies have examined the influence of environment on epigenetic 

marks, such as DNA methylation, at genomic repeats in spermatozoa, much less is known 

about genomic repeat expression during spermatogenesis and if genomic repeats are in part 

driving spermatogenesis, perhaps through transcriptional regulation or chromosomal 

reorganization [226, 227]. Four repeat families, LTR71B, HERVE-int, HSAT1, and MER1A 

were primarily expressed in both round spermatids and mature spermatozoa, while the 

centromeric repeat AATGG(n) showed greatest expression in the leptotyne/zygotene and late 

pachytene stages through the post-meiotic phase [228]. The simple repeat AAGA(n) was 

enriched solely in mature spermatozoa. The genomic repeats identified here as expressed 
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during spermatogenesis suggest that different repeats have different roles in 

spermatogenesis. For example, the centromeric repeat AATGG(n) likely plays a role in 

establishing stage specific chromosomal structure and position throughout spermatogenesis 

[229, 230]. The simple repeat AAGA(n) and HSAT1, primate-specific Satellite repetitive 

element, may also play a role in organizing sperm nuclear structure through Matrix-Associated 

Regions (MARs) of sperm, which are enriched in TTCT(n) and TCTT(n) repeats [230]. The 

remaining spermatogenesis-associated repeats LTR71B, HERVE, MER1A are all members 

of the HERV family of retroviruses or DNA transposons. The murine embryo and sperm are 

known to express a LINE-1-encoded Reverse Transcriptase (RT) that may serve to reverse 

transcribe the sperm-supplied retroviral and transposon RNAs for integration into the genome 

[44, 231, 232]. Insertion by retrotransposition might then act to provide regulatory networks, 

or genetically/epigenetically modify the developing embryo [44, 231] during syngamy. 

However, the presence of LINE-1-encoded RT in mature murine spermatozoon does not 

appear to extend to an enrichment of LINE1 RNAs in human sperm or zygote. This likely 

reflects a species differences, although one cannot exclude the influence of differing 

methodologies. However, MLT2A1 and SVA-D were both present during EGA, while MER73 

was strongly enriched in oocyte and the early embryo (Figure 3.14). Both MLT2A1 (primate-

specific) and MER73 are LTRs for ERVL endogenous retrovirus, while SVA-D is a hominid-

specific composite retroelement (SINE-R + VNTR + Alu) [187]. Although SVA-D is a marker 

of naive human ESCs, consistent with the enrichment from 4 cell to morula stage, it is not 

enriched in blastocyst stage, from which human ESC cell lines are derived [233]. The ERVL 

retrotransposon has been previously implicated in mammalian embryonic development [188]. 

Notably, the presence of an RT in the early embryo would provide the opportunity for LTR71B, 

HERVE-int, and MER1A, components of HERVs and DNA transposons, to undergo 

transposition [234]. 
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 Overall, the above data suggest that the mechanism(s) driving spermatogenesis may 

involve the use of repetitive sequences as regulators of transcription and/or chromatin states 

[195, 235, 236]. Its nuclear architecture reflects the complex and orchestrated compaction 

and restructuring of its chromatin via protamination. This is linked through the nuclear 

matrix/lamina in a non-random manner [237], consistent with the current 3D models [238]. 

The enrichment of centromeric AATGG(n) repeat RNAs appears in the leptotyne/zygotene 

and late pachytene stages through the post-meiotic phase [228]. This repeat can form a 

double folded hairpin [228], that in mice can promote RNA:DNA hybrids mediating 

heterochromatin formation [239]. Perhaps this aids in excluding large repetitive DNA domains 

from homology searching enhancing the fidelity of meiosis as observed by the clustering of 

pericentromeric chromatin during meiosis [240]. 

In summary, this work introduced a RE discovery algorithm (REDa) that identifies 

tissue and cell type specific expression in both exonic and intergenic REs. Expression patterns 

of REs were identified across human spermatogenesis, extending the current knowledge of 

the transcriptome in developing human sperm. In addition to observing considerable effects 

of poly(A+) enrichment, the sheer abundance of intergenic RNAs suggests that they play a 

large role in spermiogenesis. Of note, extensive expression of repetitive elements during 

spermatogenesis, suggests that perhaps these are driving spermatogenesis, while sperm-

delivered repeat-derived RNAs may play more of a regulatory role in the human embryo. 
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CHAPTER 4 

“THE EFFECTS OF DI-BUTYL PHTHALATE EXPOSURE FROM MEDICATIONS ON 

HUMAN SPERM RNA” 

This chapter was adapted from the following publication: 

Molly Estill, Russ Hauser, Feiby L. Nassan, Alan Moss, and Stephen A. Krawetz. “The effects 

of high exposure to di-butyl phthalate from medications on human sperm RNA among men”, 

In review with Scientific Reports. 

i. Summary 

Endocrine disruptors, chemicals that perturb hormonal function, are suspected of 

affecting reproductive function. Low-dose exposures to endocrine disruptors such as 

phthalates, widely used as plasticizers, is widespread. Patients with Inflammatory Bowel 

Disease (IBD) are often prescribed mesalamine, that in some forms is encapsulated within a 

di-butyl phthalate (DBP)-containing coating. The Mesalamine and Reproductive Health Study 

(MARS) was designed to address the physiological effect of in vivo phthalate exposure on 

male reproduction. As part of this effort, sperm RNA profiles among men with IBD and their 

relationship to DBP was longitudinally assessed across binary (high or background) DBP 

crossover exposures. As the level of DBP was altered as +/- DBP (H, high vs B, background), 

numerous changes in the composition of sperm RNA elements were detected. This was 

observed when the acute and recovery phases were compared, suggesting that, exposure to, 

or removal from high DBP, produces effects that require longer than one spermatogenic cycle 

to resolve, if at all. While the two study arms exhibit enrichment of different biological 

pathways, the arm which initiates the study on high-DBP mesalamine displayed activation of 

oxidative stress and DNA damage response pathways. However, DBP exposure has a 

minimal effect on small RNAs. Small RNAs were negatively correlated with specific genomic 

repeats, suggesting that they may contribute to repeat regulation. This provided insight into 
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both the influence of phthalate on the male germline, as a dynamic function of RNA during 

human spermiogenesis. 

ii. Introduction 

Endocrine disruptors, exogenous chemicals that can mimic or alter hormonal 

responses, are a prevalent feature in urban environments. A heterogeneous collection of 

natural and synthetic chemicals have been identified as likely EDs, including several well-

publicized pesticides, such as dichlorodiphenyltrichloroethane (DDT), and plastic 

components, such as bisphenol A (BPA) and phthalate esters [55]. Phthalates, suspected 

endocrine disruptors, are commonly used as solvents and plasticizers in consumer products, 

such as polyvinyl chloride. They are also incorporated into coatings used in medications [56, 

57]. Phthalates have been noted to act on peroxisome proliferator‐activated receptors (PPAR) 

[58, 59]. Additionally, different phthalate species, including phthalate metabolites, have 

different capacities for modifying an endocrine response [58-60]. Although considerable 

literature suggests that gestational and neo-natal phthalate exposure is detrimental to 

reproductive function [61], the health effects of phthalates at environmentally relevant doses 

in adult humans is uncertain, particularly in the adult male. 

To directly address the effect of physiological, in vivo phthalate exposure on male 

reproduction, the Mesalamine and Reproductive Health Study (MARS) (NCT01331551), 

designed as a clinical trial (https://clinicaltrials.gov/ct2/show/NCT01331551), was initiated. 

The MARS study, implemented from 2010-2018, was designed to assess semen quality and 

hormone levels in human males with longitudinally alternating DBP exposures, administered 

via mesalamine-containing medication for the treatment of Inflammatory Bowel Disease and 

Ulcerative Colitis. Patients with Inflammatory Bowel Disease (IBD) are often prescribed 

mesalamine, a medication which, in some formulations, has di-butyl phthalate (DBP) in the 

coating to allow for release of the active ingredient in the distal small intestines and colon [56, 

57]. The DBP-coated medication(s), at maximal dosages, range from 300% - 700% of the 

https://clinicaltrials.gov/ct2/show/NCT01331551
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designated EPA Reference Dose (RfD) for a 150-pound individual [241-243]. The use of the 

DBP-coated medication produces urinary monobutyl-phthalate (MBP) levels 1000x higher 

than the levels found in the general U.S. population [69]. 

With the MARS study longitudinal data structure, each individual acts as their own 

control, thus mitigating the potential exposure fluctuation, genetic variation and minimizes 

within environmental variation that often complicates accurate causal assessment of 

epidemiological data. As shown in Figure 4.1, the recruited subjects provided semen, urine, 

and blood samples across the longitudinal study. The cycle of human spermatogenesis and 

subsequent ductal transport takes approximately 90 days [36]. The MARS study required a 

minimum medication duration of 90 days, ensuring that an entire spermatogenic cycle 

occurred on a single medication. This duration was necessary to ensure that collected semen 

samples had developed solely from the current medication period. A total of 73 individuals 

were recruited for the MARS study. A subset of the individuals provided longitudinal samples 

across alternating DBP exposures, with a total of 60 individuals enrolled in the full protocol 

(baseline, crossover, and crossback visits collected) [69]. 

 

Figure 4.1. Crossover study design. Men enter the study having taken a mesalamine 
medication coated with (+) or without (-) DBP for at least 3 months. Semen, blood and urine 
were collected twice (green star) at baseline, after 4 months on an alternate drug (crossover), 
and after a final 4 months on the original drug (crossback). 
 



68 
 

 
 

Ejaculated spermatozoa, and their RNAs provide a snapshot of transcriptomic 

processes, capturing the influence of the paternal environment [17, 71, 73, 244] during 

spermatogenesis. MARS sperm samples were processed for RNA-seq, generating both a 

series of long RNA (>200 nucleotides) and small (<200 bp) RNA libraries to elucidate the 

biological processes being modified through phthalate exposure. The transcriptomic effects 

of both IBD and DBP exposure were assessed as a function of sperm RNA elements (REs), 

to provide a robust quantitative measure of effect [245]. Differential responses to high-DBP 

exposures were readily apparent in DBP-naïve men and men chronically exposed to high-

DBP mesalamine. RNA levels of genomic repeats were examined to determine both which 

genomic repeats were well-represented in human sperm and which genomic repeats were 

part of the response to high-DBP exposure. While transcription is a dynamic process, the 

interactions of the sperm transcriptome until now remained unknown. Correlations between 

small RNAs and genomic repeats suggest a dynamic regulatory relationship.  

iii. Materials and Methods 

Sperm purification and library construction 

To perform spermatozoal purifications, MARS samples were brought up to 1 ml 

volume with PureSperm Buffer (Nidacon) and laid onto a 50% PureSperm (Nidacon) gradient, 

then centrifuged at 300xg for 20 minutes [246]. The pellet was removed and washed in 

PureSperm Buffer. Cell counts were performed with a hemacytometer and microscope 

including a visual inspection for somatic cells and round spermatids.  

Each sample was added to a 2ml tube containing 500ul RLT buffer (Qiagen) with 7.5ul 

BME (14.3M), 100 mg 0.2 mm nuclease free SS beads. The sample were homogenized, 500 

ul Qiazol (Qiagen) added and homogenized again. 200 ul chloroform (0.124M) was added 

and samples shaken by hand then centrifuged at 12,000 x g for 20 minutes at 4⁰C and the 

upper aqueous layer removed. RNA was isolated from the aqueous layer using a customized 

Qiacube (Qiagen) protocol [246]. RNA samples were treated with 4 U Turbo DNase (Ambion) 
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for 20 minutes at room temperature. Samples were tested for DNA contamination by RT-PCR 

and intron spanning PRM1 primers [246]. Samples still containing DNA were treated a second 

time and tested again by RT-PCR. The RNA samples void of DNA were quantified with a 

fluorescent assay as described [247]. An aliquot of RNA (5 ng or 10 ng) of each sample was 

used to make cDNA with SuperScript III RT (Invitrogen). The cDNA’s were used as template 

for RT-PCR with intron spanning PRM1 primers providing verification of RNA.  

Two nanograms of RNA per sample was used with the Seqplex (Sigma-Aldrich) 

amplification kit prior to library construction. Fifty nanograms of Seqplex cDNA product was 

used with the NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolabs) to 

create sequencing libraries. Complete barcoded libraries were quantified and pooled for 

sequencing at a concentration of 2 nM per sample. All samples were subject to paired-end 

sequencing using either the NextSeq 500 (Illumina) sequencer, HiSeq 2500 (Illumina) 

sequencer or the HiSeq 4000 (Illumina) sequencer. 

One nanogram of small RNA per sample was used with the NEXTflex Small RNA-Seq 

Kit v2 (Bioo Scientific) to create small RNA sequencing libraries. Complete barcoded libraries 

were quantified and pooled for sequencing. Samples were subject to paired-end sequencing 

using the MiSeq (Illumina) sequencer. 

RNA-seq data processing methods 

As a control cohort, RNA-seq datasets from males of idiopathic infertile couples who 

fathered a child were downloaded from the Gene Expression Omnibus (GEO), accession 

number GSE65683 [163]. A total of 52 RNA-seq datasets were downloaded from the Gene 

Expression Omnibus (GEO), accession number GSE65683 [163]. The MARS long RNA 

libraries were processed similarly to the GSE65683 samples. Paired-end reads were trimmed 

of adaptors and low-quality bases using Trimmomatic (version 0.36) [248], using default 

parameters (2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15), and requiring a 

minimum read length of 50 bp (MINLEN:50). The TruSeq Universal adaptor 
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(AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT) 

was used as input to Trimmomatic. Paired and unpaired reads were aligned to the consensus 

human ribosomal RNA (GenBank: U13369.1) using HISAT2 (version 2.0.6) and the non-

default parameters (-p10 --max-seeds 30 -k 2), then aligned to the human genome (hg38) and 

exogenous RNA spike-in sequences, using the same HISAT2 parameters. Reads without 

alignments in either U13369.1, the human genome (hg38), or an exogenous RNA were further 

assessed for alignments to repeat sequences (RepBase, February 2017 release), using 

HISAT2, with the following parameters (-p10 --no-spliced-alignment --max-seeds 10 -k 3). 

Reads without alignments in either U13369.1, hg38, an exogenous RNA, or RepBase were 

aligned to bacterial and viral genomes using Kraken (version 0.10.5-beta) and Jellyfish 

(version 1.1.10), implementing the full Kraken library and filtering alignments with a threshold 

of 0.15. Read alignments to the human genome, exogenous RNAs, and U13369.1 were 

processed to remove duplicated reads using Picardtools MarkDuplicates (version 1.129).  

QC of the MARS study’s long RNA samples was accomplished by examination of 

alignment statistics, allowing for the quantitative classification of samples failing QC (Table 

4.1) into one of five categories (Category 1: Low genomic alignment, Category 2: High 

intergenic reads, Category 3: High bacterial and viral reads, Category 4: High spike-in reads; 

Category 5: High unmapped reads). 
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Table 4.1. Summary of sample quality. The first two columns (“Study arm” and “RNA type”) 
indicate the study arm(s), and RNA type (small RNA or Long RNA library) for the given table 
row. “Total Samples” and “Pass QC samples” indicate the number of RNA-seq samples 
sequenced and the number of sequenced samples that passed quality control, respectively. 
“Subjects with samples” and “Subjects with pass QC samples” indicate the number of patients 
for which sequenced samples and sequence samples that passed quality control measures, 
respectively, were available. “Average pass QC samples per person” indicates the average 
number of sequence samples that passed quality control measures per patient. “Subjects with 
a Pair/trio” indicate the number of patients for whom the sequenced samples that passed 
quality control measures formed either a continouous pair (baseline & crossover visits or 
crossover & crossback visits) or a visit trio (baseline, crossover, and crossback).  
 

Study 
arm 

RNA type Targeted 
Insert 
Size 

Total 
Samples 

Pass QC 
samples 

Subjects 
with 
samples 

Subjects 
with pass 
QC 
samples 

Average 
pass QC 
samples 
per 
person 

Subjects 
with a 
Pair/trio 

H1BH2 
arm 

Long RNAs 150 bp 124 93 27 27 3.4 20 

B1HB2 
arm 

Long RNAs 150 bp 82 59 21 21 2.8 16 

All arms Long RNAs 150 bp 206 152 63 61 2.5 36 

H1BH2 
arm 

Small 
RNAs 

13-50 bp 62 58 21 21 3.0 12 

B1HB2 
arm 

Small 
RNAs 

13-50 bp 24 23 12 12 1.9 6 

All arms Small 
RNAs 

13-50 bp 86 81 33 33 2.6 18 

 

RNA element (RE) discovery algorithm (described in [245]) was applied to the MARS 

and GSE65683 (control) samples. Expression (in Reads Per Kilobase per Million - RPKM) for 

the RE loci was then calculated for all MARS and GSE65683 samples. Due to the use of REs, 

rather than whole transcripts, Paired-end read alignments were treated as individual (single) 

reads, and the common FPKM value was replace by RPKM. Depending on a read pair’s insert 

size and RE length, this approach ran the risk of inflating the read count for a given RE. To 

mitigate this risk, read counts were assessed for the forward and reverse reads separately, 

with the read count from single (non-paired due to mate loss during quality control) reads were 

added to the forward and reverse read counts. The averaged read count between the forward 

and reverse reads were then used for generating the RPKM values. 
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Small RNA data processing methods 

MARS small RNA libraries were trimmed of adaptors and low-quality bases, followed 

by removal of reads smaller than 13 bp. sncRNAbench (version 10.14) [249] was used for 

assigning reads to small RNA species and repeat classes, followed by a custom code for 

generating normalized expression values (RPM- Reads Per Million). Among the 86 samples, 

only one had an insufficient number of reads for reliable analysis (a threshold of 1000 aligned 

sense reads were required). Common small RNA species of interest, such as miRNAs, 

piRNAs, tRNAs, tRNA fragments, and siRNA can be detected with small RNA libraries 

(miRNAs ~22 bp) [250], piRNA ~ 24-31 bp [251], and tRNA fragments ~28- to 34-nt [71]). 

Differential long RNAs 

When comparing IBD samples to normal samples, the control cohort was composed 

of couples with idiopathic infertility. Therefore, to reduce the potential effect of infertility on the 

overall RNA expression profiles and concurrently maximize the size of the control cohort, only 

control sperm samples which presented with live birth (LB) (52 samples) were considered for 

use in differential expression [163]. Due to the idiopathic infertility of the couples composing 

the control cohort, the male component of the control cohort is not considered phenotypically 

normal. However, with respect to inflammatory diseases and in particular, inflammatory bowel 

disease or ulcerative colitis, the control samples were assumed to be disease free, and were 

thus labeled “Normal” in differential analyses. 

To identify REs modified by IBD, a LM was used to compare the Normal sperm to the 

B1HB2 arm of the MARS study, with three total comparisons being performed (Normal vs B1; 

Normal vs H; Normal vs B2). The following formula was used for all three comparisons: 

“lm(value ~ seqset + lib + age + protamine_ct + sigma_ct + RNA_conc + 

cellcount_millions,data=input_data). Multiple-testing correction was applied as Benjamin-

Hochberg. REs modified in a consistent manner (e.g. IBD-enriched or Control-enriched) in 

any two of the three visits (B1, H, and B2) were considered for further investigation. In the 
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current study, the Control samples were all present in a single sequencing batch, so a batch 

effect would be indistinguishable from the designation as a control sample. Several of the 

differential REs initially identified as IBD-enriched were differential solely due to near-zero 

expression values in all Control samples, suggesting a batch effect. Consequently, such REs 

were removed from consideration if the mean Control expression was less than 1 RPKM. This 

step removed 6 of the 32 REs enriched in IBD for at least two visits.  

To identify REs modified by DBP exposure, a Linear Mixed-Effects Model (LMEM) was 

used to detect REs that changed with DBP exposure. Models were applied to each study arm 

independently. Two comparisons were done for each study arm, in order to find the changes 

occurring from Baseline visit to Crossover visits, and again from Crossover visit to Crossback 

visit. The following formula was applied to the H1BH2 arm: “rpkm ~ visit_simp + lib + 

period_asacol + bmi + season_warm + smokstat + age_bq + sigma_ct + 

percent_genomic_duplicated  + percent_genomic + (1 | patient)”. The following formula was 

applied to the B1HB2 arm of the MARS study: “rpkm ~ visit_simp + lib + bmi + season_warm 

+ smokstat + age_bq + sigma_ct + percent_genomic_duplicated  + percent_genomic + (1 | 

patient)”. Due to the large number of REs tested in each comparison, standard multiple testing 

corrections removed all statistical significance. Therefore, a bootstrapped P-value was 

generated using random resampling. One thousand iterations were performed by permuting 

the RE expression value and running the given model, while maintaining the same sample 

order and covariate order. The empirical P-value was thus defined as the proportion of the 

1000 random iterations that resulted in a P-value less than the original P-value. 

 𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑃. 𝑣𝑎𝑙𝑢𝑒 = 1 −  
# 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑃.𝑣𝑎𝑙𝑢𝑒>𝑃0

# 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

REs were subsequently classified into eight unique expression patterns, with 

significance determined if the absolute value of the slope exceeded 10 RPKM and the 

empirical P-value was less than 0.05. REs which changed explicitly with DBP exposure would 
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display a pattern of increased expression from Baseline to Crossover visits, then decreased 

expression from Crossover to Crossback visits, or vice versa. Patterns of acute change were 

defined as those where an RE was significantly up- or down-regulated in the Baseline to 

Crossover comparison, but not altered from Crossover to Crossback. Patterns of recovery 

were defined as those where an RE was unchanged in the Baseline to Crossover comparison, 

but was significantly up- or down-regulated from Crossover to Crossback. Patterns of 

additional interest were those that continuously increased across the study arms or 

continuously decreased across the study arms. 

Differential small RNAs 

The human sperm samples investigated for small RNAs (<50 bp) are described above 

in Table 4.1. A total of 81 small RNA libraries was subsequently used in modeling, using an 

LMEM. Due to the low power in the B1HB2 study arm and insufficient numbers of complete 

trios, the predictive variable used was the DBP state (e.g. High DBP and Baseline DBP levels), 

whereas the long RNA analysis used the study visit as the predictive variable. The formula 

used for both study arms’ small RNAs was “rpm ~ med_simp + bmi + season_warm + age_bq 

+ sigma_ct + percent_genomic_duplicated  + percent_genomic + (1 | patient)”. In this formula, 

the influence of medication (high or low DBP) on small RNA expression was being corrected 

for patient BMI, seasonal warmth, patient age, sigma_ct from long RNA libraries, genomic 

duplication rate from the long RNA libraries, and proportion of long RNA reads aligning to the 

autosomal and sex chromosomes. For concordance of small RNA methods with those of the 

long RNAs, multiple testing correction was applied using a bootstrapped P-value, generated 

using random resampling. The given model was run 1000 times, permuting the RE expression 

value each time, while maintaining the same sample order and covariate order. The empirical 

P-value was thus defined as the proportion of the 1000 random iterations that resulted in a P-

value less than the original P-value. Differential small RNAs were defined as those whose 

absolute value of the slope exceeded 5 RPM and empirical P-value was less than 0.05. 
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Repeat enrichment 

Repeat enrichment was measured using the following formula, where “R” indicates the 

REs associated with the repeat of interest, “A” indicates the REs associated with any repeat, 

and the required median expression threshold for a study visit is 25 RPKM. Repeat enrichment 

is the change in contribution of the given repeat to the repeat population, when a given 

expression threshold is applied to both the repeat of interest and the total repeat population.  

∆ 𝑟𝑎𝑡𝑖𝑜 =  
# 𝑅𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑

# 𝐴𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑
−

# 𝑅

# 𝐴
 

The statistical significance of an enrichment or depletion (indicated with a positive or negative 

∆ ratio, respectively) was tested using a hypergeometric test, implemented in stats R package. 

This method is similar to the one implemented in Estill et al [245]. The repeat enrichment 

analysis merely indicates if a repeat type is relatively under- or over-represented in the 

expressed REs, relative to the expected proportion when no expression threshold is applied. 

Small RNA-only Correlations 

Expression levels of genomic repeats and small RNA species were determined using 

the small RNA libraries. The total number of small RNA species and genomic repeats totaled 

12,779 individual sequences. In order to remove spurious results due to poorly expressed 

small RNAs, the compilation was subsetted to those small RNAs with expression exceeding 

5 RPM in a portion of each sample set. In the B1HB2 arm, with a total of 24 Samples, using a 

threshold of 5 RPM in at least 10 samples, this threshold allowed 602 small RNAs for 

correlation. In the H1BH2 arm, with a total of 62 Samples, this threshold allowed 939 small 

RNAs for correlation. Spearman correlation was applied to each individual study arm for 

correlational analysis of small RNAs. 

Correlation of long RNA genomic repeats and small RNAs 

To ensure that the conclusions drawn from the small RNA correlations were 

consistent, repeat expression estimated from long RNA libraries was generated. The 371,805 
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available REs overlapped a total of 4,449 repeat names. The expression of each repeat 

instance was averaged across a given sample, producing a resulting expression matrix of 

4,449 rows (representing 4,448 repeats and 1 dummy classification of no repeat overlap) and 

n sample columns (where n changes according to study arm size). This was merged with a 

series of small RNAs (generated previously from sncRNAbench), which were expressed 

(greater than 5 RPM) in at least 10 of the 67 small RNA libraries, producing a set of 1,829 

small RNAs. The 1,829 small RNAs were correlated with the 4,449 repeats in both the H1BH2 

arm (n=50 samples) and B1HB2 arm (n=16 samples), with one small RNA library omitted due 

to being a replicate sample. It is important to note that, in order to generate the expression 

values for repeats in the long RNAs, the repeats were summarized across all REs overlapping 

the given repeat. This approach has the disadvantage of negating locus-specific regulatory 

effects (such as cis-regulatory effects), due to the averaging of all individual repeat loci. 

Therefore, in the case that repeats do have a regulatory effect, the summarization across all 

genomic instances (in context of REs) may introduce inaccuracies. 

Ontological enrichment 

Gene Ontology (GO) enrichment was generated using the GeneRanker function of 

Genomatix (Eldorado version 12-2017), from the Genomatix software suite 

(https://www.genomatix.de/), version 3.10. The gene names associated with differential 

exonic, novel near-exon, or novel intronic REs were compiled and used as input to 

GeneRanker. Pathway enrichment was assessed using Ingenuity Pathway Analysis (version 

1-13, Content build 46901286). The expression changes occurring in differential exonic REs 

were compiled and used as input for IPA. The compilation method used was to average the 

expression changes of all differential exonic REs belonging to a given gene. This produced a 

single slope, p-value, and computed log2ratio for each gene name. 
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iv. Results  

Expression – RE discovery 

RE discovery was performed on MARS samples and external sperm samples [163], 

with REDa parameters allowing an RE to be detected if it was present in solely a single 

sample. Therefore, downstream analyses used REs that surpass a minimum expression value 

(in RPKM) in several samples, thus reducing the computational burden of the downstream 

analyses. RE expression was then calculated for all MARS samples and external sperm 

datasets described in GSE65683. Novel REs and exonic REs have largely similar length 

distributions (Figure 4.2). However, novel REs tend to have much more uneven length 

distributions, compared to the exonic REs, which is likely due to the lesser number of novel 

REs. Interestingly, each of the novel RE classes exhibited several REs exceeding 1 kb, 

suggesting that at least a small number of intergenic and intronic are expressed along a long 

stretch of the genome (Appendix G). There were 138 novel REs with a width exceeding 1 kb 

(78 near-exon, 50 intronic, and 10 orphan RE classes). Of the 138 novel REs, 103 were 

associated with a genomic repeat, with the most common repeat families being Simple 

repeats, Endogenous RetroViruses (ERVs), and L1 repeats (30, 16, and 16 REs, 

respectively). As expected, approximately 90% of the very long novel REs were within 5 kb of 

DNase site [245]. The very long novel REs were not associated with known Topologically 

Associating Domains (TADs). Approximately a third of the very long novel REs were within 5 

kb of a GM12878 CTCF binding site and/or a known sperm MNase hypersensitive site. The 

proportion of sperm MNase-localized very long novel REs was slightly higher than observed 

for the complete set of RE classes (ranging from 5% to 25%). However, the very long novel 

REs did not appear to be associated with a particular genomic structure, as the overlaps of 

very long novel REs with epigenetic marks and regulatory genomic sequences appear to 

reflect the expected proportions of the complete set of RE classes [245].  
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Figure 4.2. RE length distribution. (A) Histogram of RE lengths, segregated according to 
RE type (exonic, intronic, near-exon, and orphan). The X-axis indicates the RE length in log 
10 scale, and the Y-axis indicates the number of REs. (B) Smoothed density estimates of the 
RE lengths, segregated according to RE type. Exonic REs are noted in red, near-exon (<10 
kb from exon) are in green, intronic REs are noted in blue, orphan REs are noted in purple.  
 
Quality control of sequenced sperm RNAs 

Quality control of sperm RNA libraries, prior to sequencing, was assessed using the 

protocol described previously [252, 253]. Suspected low-quality sperm RNA libraries were 

excluded from sequencing. However, despite this precaution, a portion of each set of 

sequenced RNA samples often failed post-sequencing quality control. Within the MARs study, 

quality control determination of the MARs samples was necessary to remove samples with 

poor sequencing performance from subsequent modeling efforts. For QC of the MARS study’s 

long RNA samples, a quantitative approach was developed by first qualitatively assessing 

which samples appeared either deficient in read coverage or had excessive intergenic reads. 

The initial judgement of poor quality samples was based on read profiles and read coverages 

at several key loci, such as the human protamine locus (which is expected to have thousands 

of reads) and ACSBG2 (which is well-expressed and has few intronic reads). Subsequent 

examination of alignment statistics allowed for the quantitative classification of samples failing 
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QC into one of five categories (Category 1: Low genomic alignment, Category 2: High 

intergenic reads, Category 3: High bacterial and viral reads, Category 4: High spike-in reads; 

Category 5: High unmapped reads). The specific classification algorithm used in assigning 

the 5 categories is provided in Appendix H. The proportion of samples failing quality control 

for the MARS samples are shown in Table 4.1. It is important to note that small RNA libraries 

use different criteria for assessing sample quality.  

Notably, poorly performing samples tended to have overlapping alignment statistic 

ranges. Therefore, the five classifications are not mutually exclusive. In the case of a sample 

with potential to belong to multiple classifications, the classifications were assigned in a 

sequential order (from Category 1 to Category 5). A sample assigned to one of the five 

classifications may still exhibit an acceptable read distribution (e.g. high reads at expected 

loci, such as PRM1, and relatively few intergenic reads). This is particularly true for Categories 

3 and 5 (Category 3: High bacterial and viral reads; Category 5: High unmapped reads). 

However, such visually acceptable samples were still removed from consideration in order to 

eliminate the possibility that the samples had altered RNA profiles.  

Clinical characteristics were statistically indistinguishable between the study arms, 

with the exception of Total_score, a measure of IBD severity symptoms, which was on 

average higher in the B1HB2 arm. Both study arms were considered to have very low 

Total_scores, with a maximum score of 5 in the current study (observed for a single patient). 

By design, all recruited individuals in the MARS study were required to have a mild IBD score 

on the simple clinical colitis activity index (five or less for UC) or Harvey-Bradshaw index (four 

or less for CD) [69].  

Transcriptomic similarity of human sperm to Testis 

In addition to the previously described quality control measures, the Krawetz 

laboratory developed a method of assessing sample quality through correlational analysis of 

RE expression to GTEx expression values [163, 254]. The process first examines each GTEx 



80 
 

 
 

tissue to identify the most highly expressed genes. The top 5,000 most abundant genes were 

chosen as an optimal threshold for including both housekeeping genes (which are expected 

to be highly expressed) and genes unique to the tissue type. The exonic REs associated with 

each gene name were then averaged across a sample to produce a single value. A Spearman 

correlation was then implemented across the top 5,000 gene names to determine the relative 

similarity of a given sample to each of the 53 tissues. The Spearman rho was subsequently 

transformed into a rank, with a rank of 1 given to the tissue with the highest (positive) rho and 

53 given to the lowest rho value. A sperm sample would be expected to be most similar to 

testis, and therefore have a rank of 1. The resulting tissue similarity distribution for MARS 

samples is shown in Figure 4.3. Nearly all quality-controlled sperm samples, such as those 

used in the MARS study, were expected to be most similar to Testis. Accordingly, GTEx 

correlation of the MARS study samples (Figure 4.3) indicated that the gene expression in the 

samples (in the form of averaged exonic REs) was most similar to GTEx testis tissue. The 

only two samples without Testis ranking at 1 are ranked as most similar to “Cells - EBV-

transformed lymphocytes”, with 2nd and 3rd ratings at Stomach and Prostate tissue. However, 

sperm purification protocols make it extremely unlikely that lymphocytes, stomach cells, or 

prostate-derived cells would contaminate the purified sperm. Therefore, this Spearman 

correlation with non-testis tissue (for the two indicated samples) does not indicate a 

contamination of the sperm sample and subsequent failure to sufficiently purify spermatozoa. 

The two samples are in the H1BH2 arm, which is the most populous study arm, and are 

members of a crossover/crossback set and a trio (baseline, crossover, crossback). The 

samples in question are otherwise of acceptable quality, and the diagnostic value of the GTEx 

correlations has not been proven. Based on the overall sample quality and large size of the 

H1BH2 arm, the inclusion of the two samples in modeling was not expected to adversely 

influence or bias the outcome.  
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Figure 4.3. GTEx tissue distribution for quality controlled MARS samples. Ranking of 
Spearman correlation for the top 5000 genes of each tissue are shown for 152 quality 
controlled MARS sperm samples. The X-axis represents the individual GTEx tissues, while 
the Y-axis represents the relative ranking of Spearman rho.  
 

In addition to the previous GTEx correlations, the most abundant RNA elements in the 

pass-QC samples from the MARS dataset were examined, with the expectation that the RNA 

elements should reflect transcripts known to be highly expressed in testis [136]. Table 4.2 

presents the top 50 most expressed REs, ordered from highest RPKM to lowest. PRM1, 

PRM2, TNP1, SMCP, CRISP2 are expressed primarily in testis, while GIGYF2 is most highly 

expressed in testis. This basic analysis indicates that the RNA-seq datasets are indeed 

spermatozoal, and therefore, any differentially expressed REs reflect changes in the sperm 

transcriptome. As indicated in the methods used for processing the MARS samples, 

precautions were taken to ensure that somatic cells were excluded prior to RNA extraction. 

The previous GTEx analysis identified two sperm samples were not most similar to testis, but 

to EBV-transformed lymphocytes. However, based on purification protocols, this similarity was 

not expected to be due to contamination with lymphocyte cell lines. At this time, further 

optimization of the correlation approach to GTEx tissues may be needed.   
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Table 4.2. Highly expressed exonic REs across the MARS study. The top 50 most 
expressed exonic REs, ordered from highest RPKM to lowest, are listed. For REs that 
encompass more than one transcript, the gene names are separated by a comma. REs 
highlighted in bright yellow indicated a series of genes that are known to be primarily 
expressed in testis and sperm.  
 

Element 
Identifier 

Gene Symbol Median 
expression 

across MARS 
study 

Note Tissue expression Median 
testis 
GTEx 

expression 

chrM_577_3304 MT-TF 352637.5 Mitochondrial Low in all tissues 0.71 

chr6_52995620_5
2995950 

RF00100,RN7SK 
6053.6 

 
Present in all tissues 

50.03 

chr16_11280836_
11281035 

PRM1 
5693.2 

Protamine 1, Exon 1 Testis specific 
20530 

chrM_5904_7445 MT-CO1 5124.1 Mitochondrial Present in all tissues 20780 

chr14_49586579_
49586878 

AL139099.4,RN7SL
1 4284.3 

 
Present in all tissues 

70.93 

chr16_11275639_
11275981 

PRM2 
4272.6 

Protamine 2, Exon 1 Testis specific 
21190 

chr14_49862550_
49862849 

RN7SL2 
4121.2 

 
Present in all tissues 

58.13 

chrM_7518_8269 MT-TD 3233.5 Mitochondrial Low in all tissues 0 

chr5_7304232_73
04261 

AC091951.1 
3147.1 

 
Testis specific 

144.2 

chr16_11281127_
11281350 

PRM1 
3002.6 

Protamine 1, Exon 2 Testis specific 
20530 

chrM_8366_1414
8 

MT-ATP8,MT-
ATP6,MT-CO3 2886.1 

Mitochondrial Present in all tissues 16720;2798
0;34450 

chrM_3307_4331 MT-ND1 2672.1 Mitochondrial Present in all tissues 22760 

chrM_4402_5579 MT-TM 2381.4 Mitochondrial Brain specific 0.71 

chrM_14149_147
42 

MT-ND6 
1986.0 

Mitochondrial Present in all tissues 
1774 

chr1_152878317_
152878446 

SMCP 

1905.9 

Sperm Mitochondria 
Associated Cysteine 
Rich Protein, Exon 1 

Testis specific 

1606 

chr16_11276100_
11276480 

PRM2 
1887.2 

Protamine 2, Exon 2 Testis specific 
21190 

chr1_16740516_1
6740679 

RNU1-4 
1777.4 

 
Unknown 

0 

chr2_216859896_
216860064 

TNP1 
1764.3 

Transition Protein 1, 
Exon 2 

Testis specific 
8839 

chr9_9442060_94
42380 

RN7SL5P 
1737.4 

 
Low in all tissues 

0 

chr2_216859458_
216859695 

TNP1 
1601.2 

Transition Protein 1, 
Exon 1 

Testis specific 
8839 

chrM_14747_159
53 

MT-CYB 
1536.0 

Mitochondrial Present in all tissues 
15430 

chr12_112267077
_112267394 

RN7SKP71 
1458.7 

 
Low in all tissues 

0 

chr5_7303912_73
03962 

AC091951.1 
1425.8 

 
Testis specific 

144.2 

chr5_7302224_73
02282 

AC091951.1 
1372.1 

 
Testis specific 

144.2 

chr3_15738515_1
5738809 

RN7SL4P 
1368.6 

 
Low in all tissues 

0.27 

chr6_49712501_4
9712604 

CRISP2 

1326.8 

Cysteine Rich 
Secretory Protein 2, 

Exon 2 

Testis specific 

1194 

chr2_88788318_8
8788346 

ANKRD36BP2 

1279.4 

 
Present in multiple 
tissues, highest in 

testis 13.94 

chr15_22771692_
22771750 

AC011767.1 
1270.8 

 
Unknown 

 

chr1_16514122_1
6514285 

RNU1-1 
1241.7 

 
Low in all tissues 

0.51 
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chr14_66488987_
66489037 

CCDC196 
1199.3 

 
Testis specific 

181.4 

chr6_49697860_4
9697957 

CRISP2 

1193.9 

Cysteine Rich 
Secretory Protein 2, 

Exon 8 

Testis specific 

1194 

chr6_34697159_3
4697470 

AL451165.2 
1122.3 

 
Present in all tissues 

86.31 

chr14_49853616_
49853914 

RN7SL3 
1094.1 

 
Low in all tissues 

0.98 

chr2_216871456_
216871639 

LINC01921 

1085.3 

 
Low in all tissues, 

possible testis 
specificity 0 

chr22_20341524_
20341548 

AC007731.1 
1073.8 

 
Unknown 

0 

chr5_7305074_73
05203 

AC091951.1 
1049.6 

 
Testis specific 

144.2 

chr1_152884403_
152885047 

SMCP 

1045.0 

Sperm Mitochondria 
Associated Cysteine 
Rich Protein, Exon 2 

Testis specific 

1606 

chr15_28846220_
28846249 

GOLGA6L7 
1041.0 

 
Testis specific 

42.6 

chr22_18424977_
18425035 

FAM230A 
980.6 

 
Testis specific 

15.52 

chr2_88788442_8
8788514 

ANKRD36BP2 

919.6 

 
Present in multiple 
tissues, highest in 

testis 13.94 

chr22_18736559_
18736583 

LINC01662 
889.9 

 
Testis specific 

0.36 

chr5_7301753_73
01894 

AC091951.1 
867.6 

 
Testis specific 

144.2 

chr2_232816871_
232817032 

GIGYF2 

846.9 

GRB10 Interacting 
GYF Protein 2, Exon 

21 

Present in multiple 
tissues, highest in 

testis 45.91 

chr5_177729023_
177729053 

FAM153A 
833.9 

 
Present in all tissues 

18.94 

chr16_14997748_
14997826 

PDXDC1 

815.9 

 
Present in all 

tissues, highest in 
testis 116.9 

chr1_144560666_
144560829 

RF00003 
807.9 

 
Unknown 

0 

chr14_60245752_
60246046 

PPM1A 
754.7 

 
Present in all tissues 

30.22 

chrM_5761_5891 MT-TC,MT-TY 748.9 Mitochondrial Low in all tissues 1.79;3.41 

chrX_103712236_
103712360 

TMEM31 
746.6 

 
Testis specific 

147.7 

chr2_232790698_
232790915 

GIGYF2 

732.6 

GRB10 Interacting 
GYF Protein 2, Exon 

10 

Present in multiple 
tissues, highest in 

testis 45.91 

 
Influence of sample characteristics on sperm RNA expression 

Spermatozoa are considered transcriptionally and translationally inert. RNA profiles of 

mature sperm therefore do not reflect active transcriptional activity, but are considered to 

reflect transcriptional activity during spermiogenesis and/or transcripts acquired during 

epididymal transit. Therefore, the use of the term “expression” refers to the RNA profiles of 

the ejaculated spermatozoa. A primary purpose of generating expression values for REs was 

for performing differential expression. Therefore, it was essential to determine the sample 
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characteristics (patient phenotype and sequencing statistics) that exerted a major influence 

on RE expression, and subsequently account for these characteristics when modeling 

differential expression. Correct covariate selection is necessary for accurately modeling and 

interpreting an outcome (in this case RNA levels). For example, initial differential expression 

attempts of the MARS dataset used covariates chosen primarily for their assumed technical 

and biological importance. However, partly due to an overall increased variance within the 

H1BH2 arm, the outcome of the initial analyses showed a disparity between the two study 

arms, with the B1HB2 arm having a far higher amount of differential expression than the H1BH2 

arm. An unbiased assessment of the sample characteristics that exhibited the most influence 

on RE expression, using Single Value Decomposition, Pearson correlation, and statistical 

significance in linear modeling, identified influential covariates. The implementation and 

results of each of the steps are provided below. When influential covariates were included in 

the expression model, the B1HB2 arm and H1BH2 arm presented a similar number of 

differential REs. Therefore, correct covariate selection reduced the disparity in differential 

expression between the two study arms. 

Covariate selection for the MARS dataset proceeded as described in the following. 

The RE dataset was first reduced to the MARS samples that passed QC, and additionally 

reduced by removing REs that failed to surpass 25 RPKM in at least a third of the samples of 

interest (e.g. Quality-controlled H1BH2 MARS samples). Single Value Decomposition (SVD) 

analysis was performed, with the result visualized as shown in Figure 4.4. In the H1BH2 arm 

MARS samples, SVD analysis revealed that Principle Component (PC) 1, PC-2, and PC-3 

accounted for 93.0%, 5.4%, and 0.49% of the data variance, respectively. In the B1HB2 arm 

MARS samples, SVD analysis revealed that Principle Component (PC) 1, PC-2, and PC-3 

accounted for 91.1%, 7.6%, and 0.46% of the data variance, respectively. In a dataset 

combining both study arms (thus being composed of all quality-controlled MARS samples, 

SVD analysis revealed that Principle Component (PC) 1, PC-2, and PC-3 accounted for 
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92.2%, 6.3%, and 0.40% of the data variance, respectively. In all quality-controlled MARS 

samples, PC-1 was significantly correlated with library duplication rates (in both ribosomal and 

genomic reads), percentage of repeat sequence-associated reads, percentage of genomic 

(autosomal and sex chromosomes) alignments, percentage of autosomal alignments, 

percentage of ERCC spike-in reads, and percentage of ribosomal alignments. Potential co-

linearity of the sample characteristics, which would be suggested by the presence of highly 

positive or negative correlations, was tested using a Pearson correlation, shown in Figure 

4.5. The characteristics found to be potentially collinear were the following: library duplication 

rates and protamine_ct; percentage of ribosomal alignments and sigma_ct; percentage of 

ribosomal alignments and percentage of genomic (autosomal and sex chromosomes) 

alignments; percentage of repeat-associated reads and percentage of unmapped reads; 

percentage of repeat-associated reads and percentage of adaptor-derived reads.  

Figure 4.4. Singular Value 
Decomposition Analysis 
of quality-controlled 
MARS samples. (A) 
Association of sample 
characteristics for H1BH2 
arm. (B) Association of 
sample characteristics for 
B1HB2 arm (C) Association 
of sample characteristics for 
all quality-controlled MARS 
samples, regardless of study 
arm. The association of a 
sample characteristic with a 
Principle Component (PC) is 
measured using a standard 
linear model (lm) for numeric 
characteristics, while 
categorical or integer 
characteristics (eg. 
Medication, diagnosis, race, 
season, smoking status, 

R2single_autoXY_dupsremoved) used a Kruskal-Wallis rank sum test (kruskal.test). The P-
value for the linear model or Kruskal-Wallis test is color-coded for each pairwise test of 
Principle Component and sample characteristic, with the color legend provided in the left-
bottom corner of each graph. 
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Figure 4.5. Pearson correlation of numeric sample characteristics for all quality-
controlled MARS samples. The Pearson’s rho value is plotted as a color gradient on the 
right-hand side of the graph, with deep red representing a negative correlation and dark blue 
representing a positive correlation as indicated in the bar. 
 

In order to determine which characteristics would be influential in context of the 

research question of interest (expression change with phthalate levels), a basic linear model 

was applied to all quality-controlled MARS samples (formula: rpkm ~ visit_cat + lib + 

RNA_per_million + period_yr + bmi + season_warm + smokstat + age_bq + sigma_ct + 

percent_genomic_duplicated + percent_adaptor_badquality + percent_ercc + 

percent_genomic + percent_bactviral + percent_repbase). The RNA-seq library parameters 

sigma_ct, percent_genomic_duplicated, percent_ercc, and percent_genomic presented a 

significant P-value (P<0.05) for their concomitant beta estimate. sigma_ct, 

percent_genomic_duplicated, and percent_genomic were subsequently used as technical 

(RNA-seq library) covariates in linear mixed effects models and basic linear models of the 

MARS and pilot datasets. Although ERCC (spike-in) percentage did have a significant P-value 
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in the linear model (P=0.027), ERCC RNA spike-ins were previously noted to have extreme 

variability in the final sperm RNA-seq libraries. Additionally, ERCC spike-in proportions after 

sequencing may correspond to insert quality, as the ERCC mixture may provide a better 

template than the sperm RNA. However, ERCC mixtures were added at different 

concentrations to the different MARS sequencing batches (in an effort to reduce the amount 

of sequencing materials dedicated to the ERCC spike-in). Therefore, ERCC proportion was 

omitted from expression modeling. The final components of the formulas for Linear Mixed-

Effects Modeling (LMEM) and Linear Models (LM) accounted for a series of clinical 

parameters (Sequencing batch, Time on High-DBP drug, Body Mass Index (BMI), Season, 

cigarette smoking, and patient age) and technical parameters (sigma_ct, duplication rate of 

genomic (autosomal and sex chromosomes) reads, and percentage of alignments located on 

autosomal and sex chromosomes. In the case of datasets missing any of the above 

parameters (e.g. external dataset from Jodar et al.), the missing parameters were omitted 

from the given model [163].  

IBD-induced changes on RNA 

Several studies have applied RNA-seq to IBD (previously known as Irritable Bowel 

Syndrome (IBS)), with a primary focus on intestinal biopsies. While IBD is an inflammatory 

condition that is limited to gastrointestinal tissue, altered brain-gut interactions do occur [255], 

and additional direct or indirect effects on peripheral tissues are possible. This is underscored 

by work by Gupta et al, who identified 288 dysregulated genes in peripheral blood 

mononuclear cells (PBMCs) between IBD and healthy control groups, with 12 of the 

dysregulated genes being associated with the immune system (4 anti-inflammatory, 8 pro-

inflammatory). Iborra et al. [256] identified a series of serum miRNAs with altered expression 

in IBD. Machine learning approaches have also uncovered a peripheral blood miRNA 

signature indicative of IBD [257]. Plasma‐induced signature analyses performed using blood 

plasma from IBD patients [258] also suggest that the plasma of CD and UC patients contain 
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an immunoregulatory plasma milieu that can induce immune activation in a healthy leucocyte 

population, as measured using a high‐density microarray. Given the growing interest in the 

male germline as a mediator of intergenerational/transgenerational effects, I hypothesized 

that the IBD condition may alter the RNA profiles of the paternal human germline. Using the 

MARS B1HB2 study arm as an IBD cohort, the differences between sperm samples from 

control males and the B1HB2 study samples were determined. The control males used in the 

study were males from idiopathic infertile couples who produced a live birth after infertility 

treatment.  

Relatively few REs (40 REs) were altered in at least two study visit comparisons to 

healthy controls (Figure 4.6). Interestingly, the B2 visit of the B1HB2 study arm exhibits the 

highest number of differential REs, with the majority of those REs being unique to the B2 visit 

comparison to healthy controls. Within the B1HB2 study arm, the Crossback visit, B2 visit, 

represents the return to a low-phthalate condition after an acute exposure to high-DBP 

medication. Therefore, the large number of unique differential RES in the B2 visit comparison 

is likely due to biological processes initiated after the high-DBP exposure. Overall, the few 

differential REs suggest that the IBD condition alone does not substantially alter the 

transcriptome of ejaculated spermatozoa. However, small RNA libraries were not available for 

the Control cohort. Small RNA species, such as miRNAs, piRNAs, and fragmented tRNAs, 

were not compared between IBD and healthy controls. Therefore, I cannot exclude the 

possibility that the abundance of small RNAs, which often have regulatory roles, may still be 

altered in IBD.  
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Figure 4.6. REs that differ between Normal and IBD individuals. (A) Volcano plots of linear 
model results for all tested REs. X-axis indicates the log10 expression change (slope) in 
RPKM, while the Y-axis indicates the negative log10 Benjamini-Hochberg adjusted P-value. 
Red points represent REs that are not statistically significant, while blue points represent REs 
that have a Benjamini-Hochberg adjusted P-value less than 0.05 and an absolute slope of at 
least 10 RPKM. REs with a positive slope exhibit higher expression in Control individuals, 
while those with a negative slope have higher expression in IBD individuals. (B) Venn diagram 
of the REs enriched in the IBD individuals, across the three study visits. (C) Venn diagram of 
the REs enriched in the Control individuals, across the three study visits.  
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Table 4.3. REs consistently altered by IBD. Genes with multiple affected REs are indicated 
in bold.  
 

Expression change Element Identifier Gene Symbol RE class 

Enriched in IBD chr10_49703080_49703099 C10orf53 NOVEL_INTRONIC 

Enriched in IBD chr11_22674773_22675014 GAS2 EXON 

Enriched in IBD chr1_245677221_245677520 KIF26B NOVEL_INTRONIC 

Enriched in IBD chr15_33244895_33245438 TMCO5B EXON 

Enriched in IBD chr1_90497041_90497080 NA NOVEL_ORPHAN 

Enriched in IBD chr19_37551371_37551665 ZNF571-AS1,ZNF540 EXON 

Enriched in IBD chr2_178535732_178535828 TTN-AS1 EXON 

Enriched in IBD chr21_8259686_8259815 RNA5-8S5 NOVEL_10KB_EXON 

Enriched in IBD chr2_200797499_200797575 AC007163.1 EXON 

Enriched in IBD chr2_202346319_202346358 AC064836.2 NOVEL_10KB_EXON 

Enriched in IBD chr22_41174591_41174824 EP300-AS1 EXON 

Enriched in IBD chr2_30091379_30091408 AC016907.2 NOVEL_INTRONIC 

Enriched in IBD chr2_97149295_97149361 ANKRD36 EXON 

Enriched in IBD chr2_97151879_97151939 ANKRD36 EXON 

Enriched in IBD chr2_97183582_97183654 ANKRD36 EXON 

Enriched in IBD chr3_113805354_113805525 ATP6V1A EXON 

Enriched in IBD chr3_47772817_47772936 SMARCC1 EXON 

Enriched in IBD chr3_52800965_52801146 ITIH3 EXON 

Enriched in IBD chr4_141231439_141231485 ZNF330 EXON 

Enriched in IBD chr4_15007305_15007595 CPEB2 EXON 

Enriched in IBD chr5_176586651_176586842 CDHR2 EXON 

Enriched in IBD chr5_176589031_176589182 CDHR2 EXON 

Enriched in IBD chr6_147001441_147001543 STXBP5-AS1 EXON 

Enriched in IBD chr9_34839387_34839416 FAM205BP NOVEL_10KB_EXON 

Enriched in IBD chrX_126731815_126731844 MTCYBP38 NOVEL_10KB_EXON 

Enriched in IBD chrY_12915883_12916027 DDX3Y EXON 

Enriched in Control chr15_29716611_29716838 TJP1 EXON 

Enriched in Control chr15_29718266_29719138 TJP1 EXON 

Enriched in Control chr19_10118668_10118727 EIF3G EXON 

Enriched in Control chr19_11024331_11024438 SMARCA4 EXON 

Enriched in Control chr20_38517784_38518000 RALGAPB EXON 

Enriched in Control chr20_410412_410764 RBCK1 EXON 

Enriched in Control chr20_62256057_62256221 OSBPL2 EXON 

Enriched in Control chr3_57268398_57268487 APPL1 EXON 

Enriched in Control chr4_42070526_42070691 SLC30A9 EXON 

Enriched in Control chr7_35872666_35872766 SEPT7 EXON 

Enriched in Control chr7_99353909_99354121 ARPC1A,AC004922.1 EXON 

Enriched in Control chr7_99358340_99358415 ARPC1A,AC004922.1 EXON 

Enriched in Control chr7_99359534_99359738 ARPC1A,AC004922.1 EXON 

Enriched in Control chrM_14747_15953 MT-CYB EXON 

 

Only 14 REs showed higher levels in Controls and 26 REs were upregulated in IBD, 

the majority of which were exonic REs (Table 4.3). However, in the IBD-enriched category, 

ANKRD36 and CDHR2 had two or more differential exonic REs. In the Control-enriched 
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category, had two or more differential exonic REs. This suggests that select genes or isoforms 

are consistently up-regulated or down-regulated in sperm from DBP-naïve individuals. 

ANKRD36 is a predicted intracellular protein, with potential nuclear localization, whose 

function has not yet been characterized. CDHR2 is a non-classical cadherin, which mediates 

formation of intermicrovillar adhesion complexes, necessary for formation of the murine 

intestinal brush border [259]. CDHR2, through work on cancer cell lines, has been 

hypothesized to act as a molecular switch for contact inhibition of epithelial cells [260]. TJP1 

is a tight junction adaptor protein. ARPC1A is a subunit of the human Arp2/3 protein complex. 

AC004922.1 is an uncharacterized protein, formed from an ARPC1A and ARPC1B 

readthrough. Of the four genes (ANKRD36, CDHR2, ARPC1A, and TJP1), ANKRD36 exhibits 

the highest expression. However, all four genes are relatively lowly expressed in 

spermatozoa, with a median expression less than 25 RPKM, as ANKRD36, CDHR2, 

ARPC1A, and TJP1 have median expression values in sperm of 19.14, 7.32, 0.86, and 2.40 

RPKM, respectively. 

Of the 36 gene names up- or down-regulated in IBD, 23 of them were expressed in 

cultured human Sertoli cells [261], when requiring a threshold of at least 100 baseMean reads 

(assigned using DESeq). At this threshold, 14,843 gene names from the Ribeiro et al. dataset 

were considered expressed. Three of the 4 noted genes (ANKRD36, TJP1, and ARPC1A) in 

Table 4.3 were among the 23 Sertoli-expressed genes. This suggests that the effects of IBD 

on spermatozoa may work through Sertoli cells, rather than through absorption during 

epididymal transit. Both CDHR2 and TJP1 are associated with cell-cell interactions, further 

suggesting that IBD may alter the interactions of Sertoli cell during spermatogenesis and/or 

spermiogenesis.  

To determine if the 14 Control-enriched and 26 IBD-enriched REs were defined as 

differential in previous studies of other laboratories, the differential RE gene names and genes 

names identified as altered in previous microarray or RNA-seq studies were compared. The 
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exact gene names were compared, so it is important to note that if the published gene names 

presented in the literature were updated prior to this analysis, an overlap would not be 

identified. The 40 REs’ gene names did not overlap with several previous studies that used 

colon biopsies for microarray or RNA-seq, in either human or mouse [262-270]. This is likely 

due to the vastly different transcriptomes between intestinal tissue types and male 

reproductive tissues (Figure 4.3). The few studies describing changes in peripheral blood 

[255, 258] do not provide a comprehensive list of differential genes in the publication, and so 

could not be compared to the gene names identified in the current study. Regardless, 

spermatozoa are known to have a vastly different transcriptome (compared to somatic cell 

types), and so likely would not exhibit overlaps with the peripheral blood studies. 

Differential expression analyses of Long REs in MARS study arms 

The MARS study design (Figure 4.1) allows for the detection of longitudinal changes 

occurring as a result of shifting DBP exposure. A Linear Mixed-Effects Model, when applied 

to the repeated longitudinal samples from the MARS dataset, can define the DBP-induced 

expression changes, while also taking into account any repeated samples. The LMEM model 

formulas were developed for defining the expression changes across study periods (e.g. 

Baseline, Crossover or Crossback), while considering biological and technical covariates. 

LMEM modeling across the MARS study arms revealed considerable differential expression 

(defined as empirical P-value < 0.05 and minimum absolute threshold of 10 RPKM) in each 

study arm, as shown in Figure 4.7.  



93 
 

 
 

 

 
Figure 4.7. Volcano plots of REs altered across MARS study arms. (A) H1BH2 study arm. 
(B) B1HB2 study arm. Blue points represent REs with an empirical P-value < 0.05 and a 
minimum absolute threshold of 10 RPKM, while red points represent REs with empirical P-
value > 0.05 or a minimum absolute threshold less than 10 RPKM. 
 
The majority of all REs were exonic (321,207 REs), with intronic REs being the most 

numerous of the novel classes (near-exon: 9,730 REs; intronic: 30,853; orphan: 10,015). 

Correspondingly, the majority of REs altered by DBP were either exonic or intronic (Table 

4.4B). However, novel REs, highlighted by intronic REs, were major components of all 



94 
 

 
 

observed transcript patterns, indicating that DBP exposure(s) affects far more than known 

transcripts. Few REs were differentially expressed in both study arms (H1BH2 arm and B1HB2 

arm), suggesting that the alternating DBP exposures affects DBP-naïve males differently from 

males chronically exposed to a high-DBP mesalamine. This arm-specific effect was also 

observed in the sperm motility and hormonal responses of the MARS individuals [69, 70, 271].  

Table 4.4. Expression patterns of REs altered across MARS study arms. (A) Total RE 
count for the given expression pattern. Expression patterns are presented to the left of the 
table, with blue lines indicating significant slopes and grey lines indicating non-significant 
expression changes (slopes).  
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Differential REs were then classified into specific response patterns, defining REs 

which either changed explicitly with high-DBP exposure, i.e., acute response REs that 

changed from baseline to crossover, followed by an opposite recovery response in REs that 

changed from crossover to crossback, and REs that increased or decreased across all study 

visits. Both study arms had relatively few REs altered concomitantly with DBP exposure 

across both transitions (1.7% and 5% in the B1HB2 arm and H1BH2 arm, respectively). 

Unexpectedly, the majority of differential REs in either study arm were significantly altered in 

a single comparison (i.e., baseline to crossover - acute response or crossover to crossback - 

Recovery). Semen analysis of the MARS subjects described in Nassan et al [69], showed a 

continuous decline in sperm motility due to a carry-over effect of high-DBP exposure in the 

B1HB2 arm. In accord, as indicated in Table 4.5, several exons of sperm-motility associated 

genes (ATP1A4, WDR66, TEKT2, TEKT5, DRC7, CFAP44, DDX4, DNAJA1) were 

downregulated in the B1HB2 arm, during the initial high-DBP insult, consistent with the B1HB2 

arm’s observed decline in sperm motility [69]. In contrast, in the H1BH2 arm, semen 

parameters (including sperm motility) did not change across the study visits and few sperm-

motility associated genes were linked with differential exonic REs in the H1BH2 arm. Notably, 

a small number of B1HB2 arm REs that were not directly associated with motility continuously 

increased (6 REs) or decreased (8 REs) across the study visits. The H1BH2 arm REs did not 

follow a continuous pattern. All 6 continuously increasing REs were novel, with 5 intronic REs 

(AC012531.3, WDR20, AC007993.2, RAE1, GUSBP1) and one near-exon RE (NPIPB10P). 

In comparison, nearly all 8 continuously decreasing REs were also novel, with 5 intronic REs 

(TMEM104, AC068594.1, AC016590.1, XRN1, FER), one near-exon RE (AC107958.2), one 

orphan RE, and a single exonic RE (PRSS21). Interestingly, PRSS21 (Serine Protease 21) is 

a cell-surface anchored serine protease present within elongating spermatids that may also 

be involved in spermatocyte development [272, 273].  
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Table 4.5. DBP-altered exonic REs overlapping genes associated with sperm motility. 
All murine genes in MGI database with the associated Gene Ontology term “sperm motility” 
(GO:0097722, http://www.informatics.jax.org/go/term/GO:0097722) were downloaded and 
transformed into the HGNC (human) gene symbol using custom R code and the BiomaRt 
package. The gene symbols associated with the differential exonic REs, partitioned according 
to expression change, were then overlapped with the list of HGNC gene symbols. All displayed 
gene names represent the gene symbol overlaps. 
 

B1HB2 arm 

B1 to H transition; 
Increased levels 

B1 to H transition; 
Decreased levels  

H to B2 transition; 
Increased levels  

H to B2 transition; 
Decreased levels  

CATSPERD ATP1A4 WDR66 CATSPERD 

TTLL1 WDR66 GAPDHS DNAH1 

DNAH1 TEKT2 IQCF1 
 

 
TEKT5 

  

 
DRC7 

  

 
CFAP44 

  

 
DDX4 

  

 
DNAJA1 

  

H1BH2 arm 

H1 to B transition; 
Increased levels 

H1 to B transition; 
Decreased levels 

B to H2 transition; 
Increased levels 

B to H2 transition; 
Decreased levels 

CELF3 IFT88 IFT88 TEKT5 

ATP1A4  DNAI1 UBE2B 

 

Biological Response to DBP exposure 

The biological impact of DBP on REs was assessed through Gene Ontology (GO) 

enrichment. The gene names associated with differential exonic, novel near-exon, or novel 

intronic REs in the expression patterns of interest were compiled to resolve GO categories 

associated with both novel REs and exonic REs. Table 4.6 summarizes the primary affected 

signaling and literature-based pathways. Few of the top GO pathways were shared between 

the two study arms, suggesting that shifts in DBP levels differentially affect DBP-naïve males 

compared to chronically exposed males. Within the B1HB2 arm, acutely downregulated REs 

were associated with “RAN-GAP cycling”, “Focal adhesion kinase signaling”, and “Ras 

GTPase binding”. Focal adhesion kinase signaling facilitates integrin-mediated signal 

transduction, which has a clear role in maintaining the seminiferous tubule structure [274]. 

http://www.informatics.jax.org/go/term/GO:0097722
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RAN-GAP cycling, which is a critical component of nucleo-cytoplasmic transport, likely is 

involved in epigenetic regulation during spermatogenesis, via movement of regulatory RNAs 

[275]. During mammalian spermiogenesis, Ran GTPase may mediate kinesin localization, 

which is needed for producing the unusual spermatid form [276, 277]. Interestingly, REs 

upregulated and downregulated in recovery of the B1HB2 arm were enriched for NGF signaling 

and EGFR signaling. NGF protein is found throughout male reproductive tissues [272, 278-

280], including mammalian spermatozoa [281], and outside of the suspected regulatory roles 

in Sertoli cells [282], likely facilitates sperm motility [202, 283]. A disruption of the NGF 

signaling-mediated motility in the B1HB2 arm is thus in agreement with previously noted 

decreased motility [69] after administration of a high-DBP mesalamine to high-DBP-naïve 

participants. EGFR plays a regulatory role in mammalian spermatogenesis, mediating Sertoli-

germ cell crosstalk [284], non-classical testosterone signaling [285], and may  mediate the 

acrosome reaction in mature spermatozoa [203].  
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Table 4.6. Gene ontology enrichment summary of differential MARS REs. The gene 
names associated with differential exonic, novel near-exon, or novel intronic REs were 
compiled and used as input to Genomatix’s GeneRanker function. The signaling pathways 
and literature-based pathways were summarized and grouped into common ontological 
themes.  

 Acute change Recovery 

Study 
arm Upregulated REs   Upregulated REs   

B1HB2 

Amino acid metabolism NGF signaling 

TNF-alpha EGFR signaling 

14-3-3 protein signaling RAN signaling 
  

Downregulated REs  Downregulated REs  

RAN cycling NGF signaling 

Focal adhesion kinase signaling EGFR signaling 

Ras GTPase binding Protein Kinase D and N 
  

  

H1BH2 

Upregulated REs      Upregulated REs      

Arf6 trafficking Lipid metabolism 

Chromatin organization Calmodulin 

Organelle organization 
Organelle biogenesis and 

maintenance 
  

Downregulated REs   Downregulated REs  

Cell cycle Cyclin D3 

Coregulation of Androgen receptor 
activity 

Chromatin organization 

Organelle organization 
Coregulation of Androgen receptor 

activity 

 

Within the H1BH2 arm, acute response REs were associated with organellar and 

chromatin organization, which are requisite for extreme cellular and nuclear remodeling during 

spermatogenesis. The corresponding downregulated acute and recovery REs were enriched 

for “Coregulation of Androgen receptor activity”, which is coherent with previous mammalian 

literature indicating the importance of testosterone in phthalate-induced testicular dysgenesis 

syndrome [61, 286]. However, while testicular dysgenesis syndrome reflects pre-natal 
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endocrine disruptor exposure, the MARS study suggests that responding to in vivo adult 

exposures also elicits androgen disruption, providing another inroad to this pathology. Adult 

rat models of high-DBP exposure also indicate a disruption of androgenic activity [287, 288]. 

Recovery in the H1BH2 arm suggests an involvement of “lipid metabolism” and “calmodulin”. 

In the male, Leydig cells take up lipids for testosterone production [289], perhaps indicating a 

shift in steroidogenesis. Calmodulin, a calcium-binding protein activated in the presence of 

calcium, was previously known to be involved in mammalian sperm motility [290-292]. 

The above GO analysis suggests that specific signaling pathways, such as NGF 

signaling, EGFR signaling, RAN cycling, and Androgen receptor signaling, may be altered 

due to DBP exposures. To complement the above, Ingenuity Pathway Analysis (IPA) was 

applied to the differential exonic REs to resolve the enrichment of signaling pathways, as well 

as suggesting the direction of pathway modulation (Figure 4.8).  
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Figure 4.8. IPA pathways of REs altered across MARS study arms. (A) Pathway 
enrichment for H1BH2 study comparisons. (B) Pathway enrichment for B1HB2 study 
comparisons. Enriched pathways are ordered according to the relative significance, with most 
significantly enriched pathways displayed on the left. Pathways highlighted in orange hues 
and blue hues indicate predicted pathway activation or repression, respectively, with darker 
colors indicating greater confidence in the activation/repression prediction. Briefly, pathway 
activation/repression prediction is based on the correlation of inputted gene expression 
changes with the pathway’s known activity patterns.  
 

IPA signaling pathway enrichment revealed several interesting associations. Notably, 

in the H1BH2 arm, the transition from crossover (B visit) to crossback (H2 visit), which 

represents the return to high-DBP mesalamine, displayed activation of oxidative stress and 
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DNA damage response pathways. This is consistent with previous reports of DBP-induced 

spermatozoal damage and oxidative stress [67, 68]. However, the B1HB2 arm’s enriched 

pathways do not strongly implicate oxidative stress and DNA damage response. The transition 

from baseline (B1 visit) to crossover (H visit) was associated with several spermatogenesis-

related pathways, including activation of EIF2 signaling and the PPAR-alpha/RXR-alpha 

signaling. These pathways were not strongly associated with either the H1BH2 arm or in the H 

visit vs B2 visit comparison of the B1HB2 arm, suggesting that a concerted shift in the PPAR-

alpha and EIF2 pathways only occurs upon the initial high-DBP exposure. The detrimental 

effects of peroxisome proliferators, i.e., DBP, on germ cells likely acts through Sertoli cells 

[58-60, 293]. The transition from crossover (H visit) to crossback (B2 visit) yielded a strong 

activation of GP6 signaling [294, 295]. Additionally, the retinoic acid receptor (RAR) pathway, 

which is a known mediator of germ cell differentiation [296], was also enriched, and although 

no concerted activity was observed, levels of several of the altered pathway members 

(CARM1, SWI/SNF, NCOR1, PKC) were  consistent with an activation of the Retinoic acid 

nuclear receptor (RAR) and Retinoid receptor (RXR) (via binding of retinoic acid). Notably, 

several of the RAR’s altered pathway members (CARM1, SWI/SNF, NCOR1) associated with 

changes in chromatin structure [43, 297-300] have the potential to mediate epigenetic effects 

of intergenerational inheritance. 

Upstream regulators of DBP-altered genes 

In addition to pathway enrichment, IPA provided the relative enrichment and 

associated activation/repression states for the upstream regulators of differential genes. The 

enriched upstream regulators are shown in Table 4.7. The upstream regulators are not 

present in the seminal plasma proteome, from Barrachina et al. [301]. In the spermatozoal 

proteome, only Myc and MAPK9 are present [43]. All upstream regulators indicated in Table 

4.7 were lowly expressed across the MARS samples, with a median expression value less 
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than 1 RPKM. Only two genes, EGLN2 and FOXM1, had a median expression value 

exceeding 1 RPKM, with values of 2.22 and 2.25, respectively (Table 4.8).  

Table 4.7. Upstream regulators from IPA. Positive Z-scores are indicated in shades of red, 
while Negative Z-scores are indicated in shades of blue. Deeper shades of the given color 
represent more extreme Z-scores. All presented Z-scores represent a statistically significant 
(p<0.05) enrichment of the regulator’s associated genes. A negative Z-score indicates that 
the actions of the upstream regulator are predicted to be repressed. 

Upstream regulators B1HB2_B1_to_H B1HB2_H_to_B2 H1BH2_H1_to_B H1BH2_B_to_H2 

MYC -3.65 N/A N/A N/A 

CST5 1.71 0.00 1.00 -0.50 

ERBB2 N/A N/A -1.00 -1.55 

EGLN 2.14 N/A N/A N/A 

REST N/A N/A -1.98 N/A 

HR N/A N/A N/A -1.41 

MAPK9 N/A N/A -1.07 N/A 

TP53 N/A N/A -1.00 N/A 

CCND1 N/A N/A N/A -1.00 

mir-10 N/A N/A N/A -0.97 
miR-122-5p (miRNAs 
w/seed GGAGUGU) N/A N/A N/A 0.45 

CDK4/6 N/A -0.45 N/A N/A 

FOXM1 N/A N/A -0.33 N/A 

 
Table 4.8. Summarized expression values of IPA’s upstream regulators. The column 
“Gene Symbol” indicates the gene name, while the columns “Median expression” and “Mean 
expression” indicates the median and mean expression value, respectively, across the MARS 
samples. 
 

Gene Symbol Median expression Mean expression 

MYC 0 0.32283 

CST5 0 0.018956 

ERBB2 0 0.001302 

EGLN1 0 0.111128 

EGLN2 0 1.423787 

EGLN3 0 0 

REST 0 0 

HR 0 0.00872 

MAPK9 0 0.041987 

TP53 0 0.083205 

CCND1 0 0.55502 

CDK6 0 0.003696 

CDK4 0 0.1018 

FOXM1 0 0.544666 
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In the current regulatory analysis, MYC, a well known transcription factor that acts as 

a proto-oncogene, has a negative Z-score (-3.65), suggesting that the actions of Myc are 

repressed by the transition to high DBP in the B1HB2 arm. This effect does not carry over to 

any of the remaining three comparisons. Higher Myc expression is associated with increased 

cell growth [302]. In mouse, spermatogonial stem cell renewal is regulated by Myc/Mycn-

mediated glycolysis [303].  

Interestingly, Cystatin D (CST5 gene) was found to be enriched in all four 

comparisons. In the B1HB2 arm, CST5 was moderately activated in the transition to high DBP, 

and having no predicted activation or repression during the return to low DBP. In the H1BH2 

arm, CST5 was lowly activated during the transition to low DBP, and lowly repressed during 

the return to high DBP. The role of Cystatin D in spermatogenesis is unknown, and is not 

highly expressed in testis. However, CST5, as a secreted cysteine proteinase inhibitor, may 

play a protective role against proteinases [304].  

Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2), commonly known as HER2, is a 

member of the epidermal growth factor (EGF) receptor family of receptor tyrosine kinases. It 

was predicted to be mildly repressed in the H1BH2 arm comparisons, suggesting a continual 

repression across the changing DBP levels.  

EGLN is a family of prolyl hydroxylase enzymes, with canonical HIFα targets, which 

act as an ancient oxygen-monitoring machinery [305]. In the B1HB2 arm, the transition to high 

DBP was concurrent with a predicted moderate activation of EGLN. REST (RE1 Silencing 

Transcription Factor), a transcriptional repressor, and HR (Lysine Demethylase And Nuclear 

Receptor Corepressor) were both predicted to be repressed in the H1BH2 arm, with REST 

enriched in the transition to low DBP and HR enriched in the return to high DBP. HR is a 

histone demethylase, which acts to demethylate mono- and dimethylated Lys-9 of histone H3. 

Although the B1HB2 arm’s enriched pathways do not strongly implicate oxidative stress and 
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DNA damage response, HIF is integral to sensing and responding to hypoxia. Uncontrolled 

hypoxia can result in oxidative stress. 

Interestingly, two microRNAs, mir-10 and mir-122-5p, were enriched upstream 

regulators during the return to high DBP in the H1BH2 arm. While neither microRNA was itself 

altered by DBP exposure, shown in the following section “Small RNAs altered by DBP 

exposure”, mir-10 was predicted to be repressed, while mir-122-5p was predicted to be mildly 

activated, as shown in Table 4.7 and Figure 4.9. The mir-10a-5p, mir-10b-5p, and mir-122-

5p were all well expressed in human sperm, with median expression values of 105.5, 191.7, 

170.6 RPM, respectively. The 3p sections of mir-10 and mir-122 were poorly expressed, being 

zero RPM in nearly all samples. Reference values from SpermBase (http://spermbase.org), 

which used a different sequencing platform (Ion Proton system), also indicate that mir-10a-

5p, mir-10b-5p, and mir-122-5p are well expressed in human sperm [306]. mir-10a-5p is 

expressed at 57 RPK and 91.3 RPK in whole sperm from human and mouse, respectively. 

mir-10b-5p is expressed at 31.5 and 65.8 RPK in whole sperm from human and mouse, 

respectively. mir-122-5p is expressed at 88.2 RPK in human whole sperm, but is poorly 

expressed in mouse sperm (0.7 RPK).  

 

Figure 4.9. Downstream effectors of mir-10 and mir-122. Differential downstream 
regulators of (A) mir-10 and (B) mir-122 are shown.  
 
DBP exposure promotes expression of simple repeats  

Several classes of repetitive element associated RNAs, including simple repeats, 

endogenous retroviruses, and centromeric RNAs, have been identified within the population 

http://spermbase.org/
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of human spermatozoal RNAs [156, 245]. The effect of high-DBP exposure in spermatozoa 

for each study arm and study visit was assessed as a function of relative enrichment/depletion 

of REs that overlapped a genomic repeat. As shown in Estill et al., centrometric repeats and 

MER1A were enriched in mature human spermatozoa [245]. As expected, the centromeric 

repeat, (AATGGAATGG)n, was enriched across all MARS study arms (see Figure 4.10A), 

with no distinct differences across the study arms. This centromeric enrichment was primarily 

due to novel orphan REs. Interestingly, the abundance of differential REs overlapping the 

(AATGGAATGG)n repeat decreased from the B1 visit to the H visit. As shown in Figure 4.10B, 

this suggests that in the B1HB2 arm, the transition to the high-DBP exposure reduces the levels 

of (AATGGAATGG)n-associated REs. Centromeric RNA has been shown to facilitate the 

localization of nucleoproteins and the chromosomal passenger complex (CPC) [307, 308]. 

Interestingly when nuclear structures are resolved, sperm centromeres are located towards 

the nuclear periphery [309]. This is consistent with the view that centromeric repeat RNA may 

represent residual transcripts that, in some manner, guide sperm differentiation and/or guide 

mitotic progression of the early human embryo.  

Simple repeats, such as GA-rich repeats and variations of TC-rich repeats (e.g. 

(TTTC)n) were highly enriched across many of the MARS sperm samples as shown in Figure 

4.10C. Interestingly, simple repeats were highly enriched in all study visits and arms, with the 

exception of the B1 visit of the B1HB2 study arm. Within the MARS study set, the B1 visit is the 

sole timepoint for which sperm samples have not been exposed to high-DBP mesalamine. All 

novel RE classes (near-exon, intronic and orphan), but not the exonic REs, exhibit this DBP-

specific pattern of repeat enrichment. Differential repeat analysis verified this DBP-specific 

pattern for several of the simple repeats (Appendix I), with the primary exceptions of GA-rich 

and A-rich repeat classes.  

These results suggest that high-DBP exposure elicits an immediate and acute 

response, represented by a dramatic increase in the expression of simple repeats in the male 
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gamete. This showed that, in addition to being enriched in spermatozoa, RE-associated 

genomic repeats are selectively modified by DBP exposure. As these repeats are 

compartmentalized in sperm [156], perhaps they also have a role in sperm chromatin 

organization. In this manner, their modification by DBP, that is known to increase DNA nicking 

[310], may specifically alter chromatin states [311].  

 

Figure 4.10. Enrichment of repetitive element expression. (A) Repeat enrichment (positive 
log10 fold change) or depletion (negative log10 fold change) of centromere-associated 
repeats. X-axis provides the repeat name, while the Y-axis indicates the relative enrichment 
(positive log10 fold change) or depletion (negative log10 fold change). (B) The number of 
differential REs that overlap centromeric repeats. X-axis provides the repeat name, while the 
Y-axis indicates the number of differential REs for each significant expression change. (C) 
Repeat enrichment (positive log10 fold change) or depletion (negative log10 fold change) of 
Simple repeats. High-DBP exposure within the past spermatogenic cycle enriches simple 
repeats in spermatozoa. 



107 
 

 
 

Small RNA composition of spermatozoa 

Several types of small RNAs, such as miRNAs and piRNAs, have known roles in 

regulating mRNA and transposable element-derived RNAs and levels of repetitive elements. 

piRNAs have been proposed to play a regulatory role in spermatogenesis and the mammalian 

embryo, perhaps as part of the confrontation-consolidation of the embryo. miRNAs are well-

known to regulate their target genes through mRNA degradation and translational repression. 

Therefore, miRNAs delivered to the embryo may play a regulatory role in regulating the early 

use of maternal RNAs before zygotic genome activation. Among the other small RNA species 

available in the mammalian genome (e.g. snoRNAs), tRNA fragments delivered by sperm 

have been suggested to regulate the endogenous retroelement MERVL in the murine embryo 

[71]. 

Common small RNA species of interest, such as miRNAs, piRNAs, tRNAs, tRNA 

fragments, and siRNA can be detected with small RNA libraries (miRNAs ~22 bp) [250], 

piRNA ~ 24-31 bp [251], and tRNA fragments ~28- to 34-nt [71]). Accordingly, small size-

selected RNA (sncRNA)-Seq libraries, were prepared and sequenced to assess the impact of 

DBP exposure. Figure 4.11 shows the expected lengths of several small RNA species, in 

context of an exemplar MARS small RNA sample. Several of the small RNA libraries show 

peaks around the expected miRNA, piRNA, and tRNA fragment (tRF) sizes. As an initial 

analysis to determine if small RNA species have different distributions between the two study 

arms, the read sizes were binned into approximately 5 bp segments, for a total of 6 bins. 

Figure 4.12 shows that the two study arms and their individual visits (Baseline, Crossover, 

Crossback) were not noticeably different. 
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Figure 4.11. Expected read lengths of small RNA species. The read length distribution of 
an example sample is used as background. The Y-axis provides the read counts for a given 
read length, while the X-axis indicates the read length. Expected miRNA, piRNA, and tRNA 
fragment lengths are shown in green, yellow, and blue, respectively.  
 

 
Figure 4.12. Small RNA read length comparisons. (A) Read count distributions. Y-axis 
indicates the read count for each sample, and the. (B) Read count proportions. The Y-axis 
indicates the proportion of a given sample belonging to the read length bin of interest. X-axis 
indicates the study arm and study visit. Points are colored according to the patient that the 
sample was sourced from. Panel headers indicate the read lengths included in the given 
panel. 
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Several previous studies have assessed the small RNA component of mammalian 

sperm. In order to compare the small RNAs in the human sperm from the MARS study, the 

highly expressed small RNAs were assessed, as shown in Table 4.9 and Figure 4.13. The 

top 50 small RNAs were primarily tRNAs (15/50, 30%), piRNAs (13/50, 26%), rRNA (8/50, 

16%) and miRNAs (7/50, 14%). When considering all small RNAs that were highly expressed 

(using an arbitrary threshold of median RPM exceeding 50 RPM), 153 small RNAs were 

identified as highly expressed. As with the more limited “Top 50” set shown in Table 4.9, the 

highly expressed set was dominated by piRNAs (42/153, 27%), miRNAs (37/153, 24%), 

tRNAs (25/153, 16%), small nuclear RNAs (16/153, 10%), and rRNA (8/153, 5%), as shown 

in Figure 4.13. 

 

Figure 4.13. Distribution of small RNA families in highly expressed small RNAs. Highly 
expressed small RNAs were defined as having a median RPM exceeding 50 across all MARS 
sperm samples.  
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Table 4.9. Top 50 small RNAs in MARS small RNA libraries. “small RNA ID” indicates the 
small RNA species, while the adjacent “Median RPM” column indicates the median expression 
value in RPM, across the MARS small RNA libraries.  
 

small RNA ID Median RPM small RNA ID Median RPM 

LSU-rRNA_Hsa 419782.8 ENSG00000283293| 
ENST00000636484 

1073.7 

SSU-rRNA_Hsa 109860.6 tRNA-Met 1012.6 

chrM 77858.1 tRNA-Met-i 1012.6 

hsa_piR_016735 20128.9 tRNA-Ser-AGY 933.3 

TRNA_GLY 16437.5 hsa_piR_019914 855.5 

5S 11970.6 hsa-let-7b-5p 755.5 

LSU-rRNA_Cel 11908.2 hsa_piR_008114 710.2 

SSU-rRNA_Dme 9280.0 hsa_piR_008113 677.8 

hsa_piR_000823 8419.9 tRNA-Leu-CTA_ 677.0 

LSU-rRNA_Dme 8214.1 hsa-miR-375 669.8 

hsa_piR_000765 6957.7 tRNA-SeC(e)-TGA 567.8 

Y4 6693.5 tRNA-Val-GTA 514.6 

hsa_piR_020326 5798.1 tRNA-Leu-CTA 507.5 

tRNA-Asp-GAY 5675.3 hsa_piR_019825 440.1 

TRNA_GLU 5505.7 hsa_piR_006046 431.5 

HY1 3908.0 hsa-miR-21-5p 428.2 

tRNA-Leu-CTY 3381.0 U4B 427.9 

7SL 3332.4 hsa-let-7a-5p 416.5 

SSU-rRNA_Cel 2705.0 tRNA-Pro-CCA 393.9 

RRNA45 2521.4 hsa-miR-26a-5p 352.8 

hsa_piR_004153 2288.6 hsa-miR-30a-5p 324.1 

LOR1I 1550.4 hsa_piR_015249 302.7 

TRNA_VAL 1411.4 tRNA-Leu-TTG 295.5 

tRNA-Lys-AAG 1279.6 hsa-miR-191-5p 288.2 

hsa_piR_017716 1090.8 hsa_piR_009294 288.0 

 

MARS small RNA populations were largely concordant with the small RNA proportions 

in human sperm indicated by Donkin et al., who found that when rRNAs were excluded, 

piRNAs, tRNAs, and miRNAs comprised a large proportion of the remaining small RNAs [46]. 

While Donkin et al. identified 37 piRNAs with a false discovery rate (FDR) below 0.1, those 

37 piRNAs do not overlap with the piRNAs identified above as being highly abundant. This 

likely reflects the different experimental paradigms (i.e phthalate exposure and bariatric 

surgery for weight management). 

Work in mice has previously shown an abundance of tRNA fragments in mature sperm 

[312], with an excess of fragments generated from tRNA-GLY and tRNA-GLU (Glycine and 
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Glutamic Acid). In human sperm, I find tRNA-GLY and tRNA-GLU to be the 1st and 3rd most 

highly abundant tRNAs, respectively, as shown in Table 4.9. As noted in Chen et al., sperm 

transfer RNA–derived small RNAs (tsRNAs) and miRNAs exhibit expression changes after 

High-Fat Diet (HFD) in a paternal mouse model, and parallel inherited metabolic disorders in 

offspring. The noted highly expressed tsRNAs in sperm (which accounted for ~70% of sperm 

tsRNAs) were derived from tRNA-GLU, tRNA-GLY, and tRNA-VAL (Glutamic Acid, Glycine, 

and Valine) [72], which correspond to the 3rd, 1st, and 5th most abundant tRNAs in the current 

study. Additional murine sperm analysis [71] indicates that tRNA fragments are accumulated 

by maturing sperm during epidydmal transit. Paternal protein restriction affects caudal sperm’s 

tRNA fragment levels and miRNA levels. Notably, tRNA-GLY, which is highly expressed in 

sperm, is more abundant in protein restricted mice. tRNA-GLY fragments delivered by sperm 

have been proposed to regulate the target genes of the MERVL endogenous retroelement in 

the murine embryo.  

Previous work on spermatozoal small RNAs (18–30 nucleotides) by the Krawetz 

laboratory, using ejaculates of three fertile individuals [313], suggested that between 20 and 

60% of the sequenced reads were donor specific, indicated extensive sample heterogeneity 

in sperm’s small RNAs. The MARS small RNAs were analyzed for expression specificity, and 

revealed that of the 12,779 small RNAs, 48% were expressed at a level exceeding 5 RPM in 

only a single sample, as shown in Figure 4.14. Overall, this suggests that a majority of the 

small RNAs measured in the MARS study will exhibit extensive sample specificity, regardless 

of the expression threshold used. 
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Figure 4.14. Heterogeneity of small RNAs. For 12779 small RNAs, the Y-axis indicates the 
count (in log10) of the small RNAs, and the X-axis indicates the count of small RNA libraries 
with an expression value exceeding 5 RPM.  
 
piRNA cluster expression 

Small RNAs have a known role in genomic imprinting and establishment of the embryo 

in plant species [314]. Given this suspected importance of piRNAs in gene regulation and 

confrontation/consolidation within the embryo, the expressed piRNAs were examined to 

determine if any particular piRNA clusters were transcribed. piRNA alignments were obtained 

from https://www.pirnadb.org/ for hg38. piRNA cluster information was obtained from the 

piRNA cluster database (http://www.smallrnagroup.uni-mainz.de/piRNAclusterDB.html), 

using the pooled generic testis dataset from Homo sapiens [183, 315]. Most piRNAs have 

alignments in relatively few parts of the genome, with a few piRNAs occurring many times 

(>100 times) in the human genome. A total of 14 piRNA clusters had two or more piRNAs 

present (median RPM > 1 RPM) in the sperm small RNAs, as shown in Appendix J. 

Interestingly, two clusters (on different chromosomes) had 6 expressed piRNAs, suggesting 

that the two clusters may be active in late  human spermatogenesis.  

Small RNAs altered by DBP exposure 

A LMEM was applied to the individual study arms to assess the impact of DBP 

exposure on small spermatozoal RNAs under high-DBP and background-DBP conditions 

https://www.pirnadb.org/download/archive
http://www.smallrnagroup.uni-mainz.de/piRNAclusterDB.html
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across the entire arm. This approach, did not differentiate between study visits (e.g. baseline, 

crossover, and crossback), but instead treated samples as replicates of the associated high-

DBP or background-DBP conditions. This use of this approach was necessary due to small 

sample sizes of the individual study visits. Both the use of an empirical P-value and Benjamini-

Hochberg correction produced similar numbers of significant small RNAs. For concordance 

with adjustment strategy employed in the long RNAs, an empirical P-value was used for the 

small RNAs. As shown in Figure 4.15 and detailed in Appendix K, in comparison to non-DBP 

medication, the B1HB2 arm showed upregulation of 3 small RNAs in response to high-DBP 

mesalamine and downregulation of 12 small RNAs. In the H1BH2 arm, exposure to high-DBP 

mesalamine upregulated 9 small RNAs and downregulated 77 small RNAs. The difference in 

detection of differential small RNAs between study arms was likely due to the smaller sample 

size of the B1HB2 arm. CHARLIE3, a hAT-Charlie DNA transposon, and hsa_piR_019675 

were differentially regulated in both study arms. Of note, CHARLIE3 was upregulated in the 

B1HB2 arm, yet down regulated in the H1BH2 arm upon high-DBP exposure. In contrast, 

hsa_piR_019675 was down regulated in both study arms upon high-DBP exposure. Although 

the biological significance of hsa_piR_01967 is not yet known, its genomic loci overlap several 

SSU-rRNA loci, suggesting that this piRNA may serve a regulatory role for rRNA [316]. 
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Figure 4.15. Volcano plots of differential small RNAs. The left and right panels show the 
volcano plots for the H1BH2 arm and the B1HB2 arm, respectively. The X-axis indicates the 
log10 expression change (slope) in RPM, while the Y-axis indicates the negative log10 
empirical P-value. 
 
Regulatory roles of small RNAs  

Small RNAs, e.g., miRNAs and piRNAs, are known to be regulators of transposable 

elements and mRNA expression [317-321]. Relatively few small RNAs were modified by DBP 

exposure (Figure 4.15 and Appendix K), and do not appear to underly gene expression 

changes observed in the long RNAs. However, given the presence of both complex and 

simple genomic repeats that are compartmentalized within the sperm [156], their association 

with sncRNAs was considered. The association of sncRNAs with genomic repeats were 

assessed by correlation in each individual study arm. The use of a series of expressed small 

RNAs that are physically linked to repeat sequences within the small RNA libraries enabled 

their exact positioning. Independent of the study arm, greater than 90% of the small RNA 

Spearman correlations were positive. In comparison, within the H1BH2 arm, 6.8% (37,098 of 

548,628) and the B1HB2 arm 8.4% (18,880 of 224,115) of small RNA correlations were 

negative, potentially reflecting inhibition. 
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The majority of the negative small RNA pairs were concordant between both study 

arms, suggesting that their effect remains constant across exposures (Figure 4.16). For 

example, RNA pairs shared between the B1HB2 arm and H1BH2 arm include piRNA:rRNA, 

miRNA:rRNA, rRNA:snRNA, rRNA:SINE1/7SL, rRNA:tRNA, ERV1;rRNA, while the B1HB2 

arm also included ERV3:rRNA, L1:rRNA, rRNA:snoRNA, Endogenous Retrovirus:rRNA, and 

ERV2:rRNA. Interestingly, the small rRNA fragments were negatively correlated with many of 

the other small RNAs (piRNA, miRNA, snRNA, tRNA, snoRNA) and genomic repeats 

(SINE1/7SL, ERV1, ERV2, ERV3, L1, Endogenous Retrovirus). piRNAs exhibited a series of 

strongly negative correlations with Endogenous Retrovirus, L1, ERV1, and Simple repeats, 

likely reflective of a suppressive role, while miRNAs were negatively correlated with 

Endogenous Retrovirus. This is consistent with the view that piRNAs and miRNAs, either 

directly or indirectly, act to suppress RNAs generated from Endogenous Retroviruses.  
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Figure 4.16. Top 40 positive and negative small RNA pairs. (A) The RNA pairs with the 
highest count, among the RNA pairs with a Spearman rho less than -0.2, are shown in order 
of most counts to least counts, from left to right. The proportion of each RNA pair belonging 
to given correlation range (e.g. a bin of 0.8;0.9 contains correlations with a rho greater than 
or equal to 0.8 and less than 0.9.) are stacked along the Y-axis and colored according to the 
correlation range. The RNA pairs in the top 40 negative pairs for both study arms (B1HB2 arm 
and H1BH2 arm) are indicated in red text along the X-axis. For example, piRNA;rRNA contains 
the greatest number of negative correlations in both study arms and is thus shown on the 
leftmost side of each of the figures in panel A. The dominance of negative correlations is 
displayed as a series of stacked bars in red shading. (B) The RNA pairs with the highest count, 
among the RNA pairs with a Spearman rho greater than 0.5, are shown in order of most counts 
to least counts, from left to right. The proportion of each RNA pair belonging to given 
correlation range (e.g. a bin of 0.8;0.9 contains correlations with a rho greater than or equal 
to 0.8 and less than 0.9.) are stacked along the Y-axis and colored according to the correlation 
range. The RNA pairs in the top 40 positive pairs for both study arms (B1HB2 arm and H1BH2 
arm) are indicated in red text along the X-axis. 
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The interaction of long RNA repetitive elements with small RNAs 

To assess the veracity of the above, genomic repeat associations were extended to 

the long RNA libraries, thus excluding the possibility that the interactions were merely 

observed in fragmented RNAs. As shown in Table 4.10, the majority of repetitive elements in 

human sperm were simple repeats, followed by ERV1, tRNA, and ERVL. This is in accord 

with both the repetitive elements observed in small RNA libraries (Figure 4.13C) and previous 

repeat enrichment analyses through spermatogenesis to zygotic genome activation  [156, 

245]. 

Table 4.10. Overall repeat expression in long RNA libraries. “Repeat Family” column 
indicates the repeat class. “Total” column indicates the total number of REs that overlap 
genomic repeats from the given repeat class. “Median >1 RPM” and “Median >5 RPM” 
indicate the number of REs overlapping the given genomic repeat that have a median 
expression value greater than 1 RPM or 5 RPM, respectively.  
   

B1HB2 ARM H1BH2 ARM 

REPEAT FAMILY Total Median>1 
RPM 

Median>5 
RPM 

Median>1 
RPM 

Median>5 
RPM 

SIMPLE_REPEAT 3292 578 315 582 322 

ERV1 285 27 19 26 14 

TRNA 46 15 9 16 11 

ERVL 118 6 4 6 4 

UNKNOWN 39 5 2 4 1 

ERVL-MALR 78 5 3 4 2 

ERVK 38 4 2 4 2 

DNA? 18 3 2 3 2 

HAT-CHARLIE 73 3 1 3 0 

SATELLITE 10 2 2 2 2 

RRNA 3 2 2 2 2 

HAT? 6 2 2 2 2 

SCRNA 5 2 1 2 1 

L1 129 1 1 1 1 

LTR 5 1 1 1 0 

GYPSY 17 1 0 1 0 

HAT-TIP100? 3 1 0 1 0 

MERLIN 1 1 0 1 0 

DNA 11 1 0 0 0 

L2 9 1 0 0 0 
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The combined small RNA:long RNA correlations primarily yielded positive correlations 

(71.2% and 73.1% in the B1HB2 arm and H1BH2 arm, respectively), concordant with the small 

RNA-only correlations (small RNAs:small RNAs). As previously observed for the small RNA-

only analysis, the RNA pairs with the greatest number of negative correlations or positive 

correlations were largely shared between the two study arms. However, unlike the small RNA-

only analysis (Figure 4.16), nearly all of the top 40 negative pairs exhibited a high background 

of positive correlations, among comparatively fewer negative correlations. 

piRNAs can act as direct regulators of transposable elements [317] and miRNAs also 

have indirect roles in modulating transposons and direct roles in modulating mRNA [318-321]. 

Both miRNA and piRNA were primarily correlated to long RNA repetitive elements in a positive 

manner (Figure 4.17). However, a small portion of the miRNA pairing to Simple repeats, 

ERV1, ERVL, and tRNA were highly negative. Similarly, a small portion of the piRNA pairings 

to Simple repeats, ERV1, ERVL, ERVL-MaLR, and tRNA were highly negative. Interestingly, 

despite a similar read coverage of the rRNA locus by long and short RNA libraries, rRNA 

fragments in the long >200 bp RNA libraries were largely positively correlated with piRNA, 

miRNA, and scaRNAs (Figure 4.18). 
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Figure 4.17. miRNA, piRNA and tRNA correlations to genomic repeats in long RNA 
libraries. (A) Pairs for which a miRNA was correlated with a repeat in the long RNA samples. 
(B) Pairs for which an piRNA was correlated with a repeat in the long RNA samples. (C) Pairs 
for which an tRNA in the small RNA libraries was correlated with a repeat in the long RNA 
samples. The top 20 most numerous pairs and their given Spearman correlations are shown, 
with the pairs identically graphed in the same order for both study arms. The proportion of 
each RNA pair belonging to given correlation range (e.g. a bin of 0.8;0.9 contains correlations 
with a rho greater than or equal to 0.8 and less than 0.9.) are stacked along the Y-axis and 
colored according to the correlation range. 
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Figure 4.18. rRNA correlations to repeats and small RNAs. (A) Pairs for which an rRNA 
repeat (derived from the long RNA) was correlated with an expressed small RNA are shown. 
(B) Pairs for which an rRNA repeat (derived from the small RNAs) was correlated with a repeat 
from the long RNAs are shown. The top 20 most numerous pairs and their given Spearman 
correlations are shown, with the pairs identically graphed in the same order for both study 
arms. The proportion of each RNA pair belonging to given correlation range (e.g. a bin of 
0.8;0.9 contains correlations with a rho greater than or equal to 0.8 and less than 0.9.) are 
stacked along the Y-axis and colored according to the correlation range. 
 

Concordant with piRNA and miRNA pairings, the majority of tRNA (from small RNA 

libraries) - long RNA genomic repeat pairs were positive, with a small number of each pair 
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exhibiting negative correlations (Figure 4.17). Additionally, piRNA, miRNA, tRNA, and 

scaRNA, while largely positively correlated with three main ERV family members (ERV1, 

ERV2, and ERV3) [322], also exhibit a series of strong negative correlations (Figure 4.19). 

Interestingly, all ERVs have strong negative correlations with short rRNA fragments and short 

RNA simple repeats. Together, this data supports that view that tRNAs, miRNAs, and piRNAs 

are negative regulators of the observed repeat partners, and they likely act in a target-specific 

manner, rather than targeting an entire class. 
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Figure 4.19. ERV correlations to small RNAs. (A-C) Pairs for which an ERV repeat (derived 
from the long RNA) was correlated with an expressed small RNA are shown. The top 20 most 
numerous pairs and their given Spearman correlations are shown, with the pairs identically 
graphed in the same order for both study arms. The proportion of each RNA pair belonging to 
given correlation range (e.g. a bin of 0.8;0.9 contains correlations with a rho greater than or 
equal to 0.8 and less than 0.9.) are stacked along the Y-axis and colored according to the 
correlation range. 
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Dynamic changes in sperm RNAs occur during spermiogenesis  

Detection of consistent associations between small RNAs and long RNA with sperm 

repetitive elements suggests a dynamic relationship. As shown in Figure 4.20, small rRNA 

fragments and large rRNA fragments exhibit opposite correlations with piRNA, miRNA, tRNAs 

and scaRNA (Figure 4.20, center). In addition, these small RNAs were primarily positively 

correlated (Figure 4.20, solid line) with simple repeats and ERVs. However, select ERV1 

repeats (HERV17-int and HERVIP10FH-int) and ERV3 repeats (MER68C, LTR47A2, 

LTR86B2, and LTR86A2) were negatively correlated (Figure 4.20, dotted line) with small 

RNAs. This suggested an opposite relationship between the select ERVs and piRNA, miRNA, 

tRNAs and scaRNAs. Similarly, simple repeats, while positively correlated with most small 

RNAs, had a series of strong negative correlations to small RNAs (Figure 4.20, dotted line 

with blue star). Specific miRNAs, highlighted by hsa-miR-4516 and hsa-miR-30a-3p and 

scaRNAs, such as scaRNA15, scaRNA 13, and scaRNA8, comprised a large proportion of 

the negative correlations to simple repeats (Figure 4.20, dotted line with blue star). Among 

the tRNAs, which are assumed to be tRNA fragments, tRNA-GLY, tRNA-VAL, tRNA-ILE, and 

tRNA-MET accounted for the greatest number of negative correlations. 

 

Figure 4.20. Relationships of sperm RNA repeats 
and small RNAs. Negative and positive correlations 
are represented as dashed lines and solid lines, 
respectively. Negative correlations that only occur in 
a specific manner are marked with a star. tRF=tRNA 
fragment; scaRNA=Small Cajal body-specific RNA; 
ERV=Endogenous RetroVirus 
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The presented interactions in Figure 4.20 are not known to be causal (either indirectly 

or directly) but are intended to illuminate the possible dynamic processes during 

spermiogenesis. Creation of a functional spermatozoa capable of fertilization requires a 

complex re-arrangement of organelles during the post-meiotic phase of spermatogenesis, 

accompanied by removal of the cytoplasmic droplet. Additionally, the spermatid nucleus 

undergoes extensive chromatin compaction of the haploid genome, replacing the majority of 

histones with protamine toroids. Due to these changes and extensive degradation of RNAs, 

including ribosomal RNAs, the ejaculated spermatid is transcriptionally and translationally 

inert. The rRNA locus exhibited a similar read coverage of the by long and short RNA libraries. 

However, given the opposite associations of long and short rRNA fragments to small RNA 

species, it is tempting to speculate that the two rRNA populations represent decreasing and 

increasing rRNA fragmentation, respectively. The paradigm in mammalian spermatozoa is 

that sperm do not contain intact rRNA, having undergone extensive fragmentation during the 

post-meiotic phase of spermatogenesis. The current analysis suggests that there is a 

spectrum of rRNA fragmentation, ranging from long (>200 bp) fragments to short (<50 bp) 

fragments. These long and short rRNA fragments were not strongly correlated (either 

negatively or positively), and so are not connected in Figure 4.20. The biological phenotype 

associated with the network is unknown. However, the dynamics are suggestive of a choice 

between destructive and non-destructive pathways during spermatogenesis, and possibly the 

quality of the ejaculated spermatozoa. This dynamic spermatozoal network may also play a 

role in the considerable transcriptomic intra- and inter-individual heterogeneity of human 

sperm. 

v. Discussion 

In both rural and urban environments, humans are exposed to cocktails of endocrine 

disruptors [323]. While environmental regulations designate maximum allowable levels of only 

a subset of the numerous xenobiotics, this level is primarily determined through animal 
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models, which may not accurately reflect the human condition. The human male is known to 

mediate some intergenerational effects in offspring [17], yet the intergenerational effect of 

adult paternal exposures to common xenobiotics and endocrine disruptors, particularly in 

humans, is poorly characterized. The MARS study showed that exposure of human males to 

high levels of a single endocrine disruptor, di-butyl phthalate (DBP), was capable of reducing 

sperm motility in DBP-naïve subjects [69].  

Applying RNA-seq to the MARS samples (Figure 4.1) showed that DBP-induced 

alterations in spermatozoal RNAs were largely unique to a single study arm (either the acute 

B1HB2 or chronic H1BH2 study arm). Each biological response to increasing or decreasing 

DBP levels yielded a different altered RNA profile (Table 4.4). Interestingly, novel RE’s 

comprise a significant portion of altered REs, indicating that DBP exposure(s) affects far more 

than the previously known transcripts. The RNA profiles observed in the ejaculated 

spermatozoa reflect the final outcome of spermatogenesis, which includes both RNAs 

generated in preparation for differentiation and those acquired during epididymal maturation 

for transmission to the future embryo. Within the immunoprivileged state of the testis 

(reviewed in [324]), the spermatogenic effect of high-DBP mesalamine is likely communicated 

through Sertoli cells that support the germline during differentiation, or through the epididymis 

during transit, when the sperm first become exposed to other fluids.  

Mammalian models have previously indicated that phthalate exposure may be acting 

on reproductive tissues through processes that include PPAR-dependent mechanisms [58-

60], inducing oxidative damage [67, 68]. In the current study, several spermatogenesis-related 

pathways, including activation of EIF2 signaling and the PPAR-alpha/RXR-alpha signaling, 

were strongly associated with the transition from baseline (B1 visit) to crossover (H visit) 

(Figure 4.8B). This suggests that a concerted shift in the Peroxisome Proliferator-Activated 

Receptor alpha (PPAR-alpha) and Eukaryotic Initiation Factor 2 (EIF2) pathways occurs at 

the initial high-DBP exposure in DBP naïve males. Conversely, within the H1BH2 arm, after a 
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temporary respite of a single spermatogenic cycle on non-DBP medication, the return to high-

DBP mesalamine activated oxidative stress and DNA damage response pathways, perhaps 

signaling the beginning of the repair process (Figure 4.8A). The ontological association of 

androgen receptor coregulation in the H1BH2 arm of the MARS study also suggests that 

responses to in vivo adult exposures elicits androgen disruption, which has previously been 

implicated in phthalate-induced testicular dysgenesis syndrome. Notably, subjects in the 

H1BH2 arm have been chronically exposed to high-DBP mesalamine, some for several years, 

prior to the MARS study and are assumed to have reached a phthalate-induced expression 

plateau in response to the high-DBP levels. The temporary (1 spermatogenic cycle) 

withdrawal from high-DBP mesalamine then precedes the additional and significant stress 

imparted onto the germline upon re-introduction of high-DBP mesalamine. 

Among the genomic repetitive elements shown to be enriched in spermatozoa, TC-

rich tetramers form a larger contribution to the sperm RNA when an individual has experienced 

a high-DBP exposure in the previous spermatogenic cycle (Figure 4.10). The time required 

to fully recover is not known and may well be far longer than the single crossback cycle 

observed in the B1HB2 arm of the current study. Nevertheless, the study indicates that any 

recent high-DBP exposure increases the abundance of simple repeats in human 

spermatozoa. The biological function of these recurring simple repeats in spermatogenesis, 

fertilization and early embryo development has yet to be defined [245]. However, they are 

compartmentalized in sperm [156], perhaps reflective of a role in sperm chromatin 

organization. Phthalate’s noted ability to increase DNA nicking [310] and thus spermatozoal 

DNA fragmentation [67, 68] in a specific manner [311] may alter the specialized compact 

chromatin environment in spermatozoa. The physiological effect(s) of the cocktail of 

background exposure to endocrine disruptors in humans, particularly in somatic tissue, is 

unknown. However, given the potential intergenerational effects of the paternal germline 
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(mediated by sperm RNA content and sperm epigenome), ubiquitous human exposure to 

phthalates and other known endocrine disruptors remains a concern. 

The MARS study also provided the opportunity to assess the spermatozoal impact of 

mild Inflammatory Bowel Disease (IBD). IBD, defined as Ulcerative colitis and Crohn’s 

disease, is a common condition, with a prevalence of approximately 1 per 500 people [325]. 

The current study compared males with non-flaring, mild IBD treated daily with mesalamine 

to a control cohort of fertile males from idiopathic infertile couples. As expected, mild IBD, or 

chronic mesalamine use, had minimal impact on spermatozoal contents (Figure 4.6). 

The transcriptomic dynamics across human spermatogenesis is complex [175, 245, 

326]. Mechanisms driving transitions across sperm differentiation have been largely inferred 

from mammalian model systems [327, 328]. The final stages of sperm differentiation, 

spermiogenesis, is noted for extensive modification of chromatin structure, organelle 

distribution, and changes in RNA composition [35, 36, 245]. However, the role of RNAs in 

promoting these modifications has only recently begun to be addressed [156, 329]. Previous 

studies on chromatin structure have suggested a role for genomic repeats in establishing and 

maintaining chromatin. The MARS dataset demonstrated an spermatozoal enrichment of 

transcribed repetitive elements, including simple repeats, ERV1, tRNA, and ERVL, which may 

play a role in establishing the human spermatid. The relationship between transcribed repeats 

(such as simple repeats and endogenous retroviruses), ribosomal RNAs, and small non-

coding RNAs in ejaculated sperm was also uncovered. The identification of small cajal body-

specific RNAs (scaRNAs), involved in small nuclear ribonucleoprotein (snRNP) biogenesis, 

highlights the importance of RNA processing and localization in spermatogenesis. 

The high-level network presented in Figure 4.20 provides a snapshot of the networks 

involved in successful spermiogenesis, selective spermatid apoptosis [154, 330, 331], or 

maturation during epididymal transit [71, 332-334]. The morphological and transcriptomic 

intra- and inter-individual heterogeneity of human sperm [335-337] is likely, at least in part, 
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due to choices along this network. This was exemplified by the RNA dynamics in 

spermiogenesis of DBP-naïve subjects, adjusting their response in accord with position along 

the network, i.e., spermatozoa recently exposed to high-DBP are enriched in simple repeats.  

At present, the MARS study shows that exposure of human males to high levels of a 

single endocrine disruptor, di-butyl phthalate (DBP), can alter spermatozoal RNAs and 

expression of genomic repeats in sperm. Furthermore, an individual’s history of high-DBP 

exposure influences their reproductive response to changes in DBP levels. The time period 

required to fully recover from a high-DBP exposure, while currently undetermined, was 

suggested in this study to be longer than a single spermatogenic cycle (approximately 90 

days). Future in vitro and in vivo experiments relevant to adult phthalate exposures are 

required to identify the mechanisms and pinpoint the biological processes at work in the 

reproductive and endocrine systems of phthalate-exposed adults. Observational studies of 

offspring from DBP-exposed fathers will provide a path to determine the extent of the impact 

that paternal DBP exposure presents as health risk to their subsequent children.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

Developmental Origins of Health and Disease (DOHaD) proposes that 

preconceptional, prenatal and childhood exposures affect health outcomes later in life. The 

use of animal models has shone light on the importance of maternal health and gestational 

influence on offspring health. Notably, environmental exposures, such as exogenous 

endocrine disruptors, can be influential during key periods of susceptibility in fetal 

development [338-341]. However, the male influence in DOHaD has only begun to be 

appreciated. In this final chapter, I review the discoveries made regarding the pre-

conceptional environment of human embryos, and contents of the male germline.  

i. Assisted Reproductive Technologies 

The circumstances surrounding a successful human birth are complex. The initial 

events involve the fertilization of a matured oocyte by a presumably high-quality spermatozoa, 

followed by embryonic cell division and finally implantation [342]. Advanced Assisted 

Reproductive Technologies, such as IVF, ICSI, cryopreservation, controversial nuclear 

transfer and Mitochondrial transfer techniques, manipulate the pre-implantation embryo [343-

345]. While such infertility treatments offer hope to individuals struggling to conceive, the 

treatments may also have unintended consequences for the offspring due to an altered pre-

conceptional and pre-implantation environment. With the exception of intentional embryonic 

gene editing [346], the effect(s) of ART on offspring are expected to be primarily epigenetic in 

nature. A variety of epigenetic mechanisms, such as DNA methylation, histone modifications, 

and chromatin structure, are potentially altered by ART [82, 89, 91, 97].  

DNA methylation, the addition of a methyl group to DNA, is typically examined in 

context of 5-methylcytosine (5-mC). In Chapter 2, I examined the influence of several ART 

processes, including embryo cryopreservation, on the 5-mC profiles of the child soon after 

birth. As shown in Figure 2.1, the DNA methylation profiles of human newborns conceived 
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naturally, or through the use of intrauterine insemination (IUI), or in vitro fertilization (IVF) 

using Fresh or Cryopreserved (Frozen) embryo transfer, were compared. Except for the 

naturally conceived infants, all newborns used in the study were born to parents experiencing 

some degree of infertility, which required IUI or IVF/ICSI to resolve. Naturally conceived 

infants were shown to have a dramatically different methylation profile compared to those born 

through IUI or ICSI. Therefore, this research suggests that the underlying infertility of the 

parents influences the child’s methylation. However, outside of ensuring that the samples 

were from full-term newborns, this work did not consider maternal characteristics, such as 

race, age, and socio-economic status, due to a lack of maternal and demographic information. 

In particular, the natural conception group was drawn from an urban, primarily African-

American population, while the assisted conception group was drawn from patients 

undergoing fertility treatment in a suburban clinic. Such maternal characteristics can bias 

results and should be considered when modeling datasets from in future newborn cohorts. 

However, if the current interpretation is accurate, this would lead to the striking conclusion 

that successful treatment of infertile individuals, even by relatively non-invasive measures, 

produces a cohort of children with an epigenome different from those born to fertile individuals. 

Human infertility is a common condition, affecting approximately 12% of couples of 

childbearing age in the United States [30], which has a variety of causes. Therefore, 

examination of the newborn’s epigenome in context of the infertility diagnosis (e.g. male factor, 

specific female factor) will be essential for characterizing this future population of children. 

A second interesting observation was the striking similarity of IUI and IVF-Frozen 

embryo transfer infants (Figure 2.2). This suggested that epigenetic aberrations in the IVF 

conceptions may be abrogated using embryo cryopreservation. Notably, these results are in 

accord with the observed reduction in birth defects using ART protocols that employ 

cryopreserved embryos [89]. Taken together, these studies implicate a resetting mechanism 

in cryopreserved embryos. However, women undergoing implantation of cryopreserved 
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embryos are likely to be naturally cycling, whereas patients undergoing fresh embryo transfer 

(excluding the use of gestational surrogates) recently experienced unusual hormonal and 

physical stresses in preparation for oocyte extraction. Due to a number of social and economic 

factors, embryo and oocyte cryopreservation are increasingly being utilized by infertility clinics 

[347]. The above research indicates that this trend towards cryopreservation may be 

beneficial to the offspring and help ameliorate any epigenetic aberrations introduced by the 

use of IVF/ICSI.  

Periconceptual nutrition, in the context of unassisted conception, is known to alter 

epigenomes of offspring at specific loci termed metastable epialleles (MEs). With the current 

cohorts, I tested the hypothesis that ME loci were sensitive to early nutritional exposure in the 

context of IVF culture conditions. IVF culture conditions and parental infertility showed 

consistently altered methylation at certain MEs. This was the first study to reveal an impact of 

ART or fertility status on MEs and suggests a lasting epigenetic effect of IVF nutrition on the 

developing embryo. However, it is important to note that the current study was limited to loci 

targeted by the 450K array, and further limited by the ChAMP approach, which did not assess 

methylation changes of loci with fewer than two probes. The implementation of the larger EPIC 

array MethylationEPIC BeadChip array, which covers over 850,000 CpG sites and provides 

greater coverage of distal regulatory elements, or bisulphite sequencing, which can provide 

whole genome coverage, would be more informative in future cohorts. Additionally, while the 

current cohort had limited patient data, a large matched cohort with detailed records of 

maternal and gestational variables, employing more expansive DNA methylation detection 

methods, would serve well to verify the observed sites and identify additional epimutations 

that may be caused by ART. 

ii. Sperm RNA 

The RNA profiles of human sperm, as well as how RNA profiles change after endocrine 

disruptor exposure, was explored in Chapters 3 and 4. The male germline is a highly 
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specialized cell type, with a unique cell structure [35] and transcriptome [154]. Mature 

spermatozoa are transcriptionally and translationally inactive, with a high degree of RNA 

fragmentation to ensure silence and expunge the majority of the cytoplasm [35]. For the 

majority of the known transcriptome, the considerable heterogeneity and transcriptome 

fragmentation in spermatozoa renders common gene expression approaches inaccurate. 

Additionally, recent studies have observed a series of RNAs arising from intronic and 

intergenic loci, which are not enumerated in the annotated human transcriptome [154, 163].  

To fully address these intronic and intergenic RNAs, the RNA Element (RE) discovery 

algorithm (REDa) was developed [245]. REDa is a tool for the discovery of transcribed, 

unannotated sequence elements from RNA-seq libraries, and was applied to a spectrum of 

tissues and cells representing germline, embryonic, and somatic tissues, shown in Figure 3.3. 

In all examined tissues, previously unannotated RNAs were identified, with transcription of 

such RNAs throughout the autosomes and sex chromosomes. Interestingly, the post-meiotic 

stages of spermatogenesis (Round spermatids and ejaculated sperm) contain large numbers 

of novel (intergenic and intronic) REs (Figure 3.7). While the function of these novel RNAs in 

spermatogenesis is not known, murine spermatozoa have shown preferential localization of 

RNAs [156]. Identification of the cellular location of the human sperm RNAs, both from known 

transcripts and novel REs, across the post-meiotic stage of spermatogenesis, would be a first 

step towards understanding the potential function of sperm RNAs. 

It has been proposed and shown in vitro that human sperm deliver a collection of RNAs 

upon fertilization [154, 160, 211, 212]. The series of human RNA-seq profiles from sperm, 

oocyte, and embryo allowed for the identification of REs that were transmitted to the human 

oocyte solely by sperm. As expected, the majority of zygotic RNAs were shown to be derived 

from the oocyte. However, up to 289 sperm REs were identified as a majority contributed by 

paternal transmittance, with an FDR of ~3.4%, and 75 REs essentially provided by the sperm, 

at an FDR of ~2.7% (Figure 3.10 A,B). While the role of these paternally transmitted RNAs 
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in the embryo was not examined in the current work, such RNAs may play a regulatory role 

in the embryo. Of particular interest are any full length RNAs, as these are potentially 

translated in the embryo [154]. Micro-injection of known paternally delivered RNAs, in the 

context of murine or human embryos, would serve to determine if such RNAs can tune embryo 

development. 

Novel REs (intronic, near-exon, and orphan REs) often correspond to the same 

regions as genomic repeats. Given this association, the population of REs was used to 

determine the enrichment of genomic repeats in various cell types. This approach has the 

advantage of knowing the exact location and proxy expression (via RE expression) of the 

genomic repeat. Certain retrotransposons are of known interest in the early human embryo, 

such as ERVL [188, 348], SINE-VNTR-Alu (SVA) elements, and LTR12 (LTRs of HERV9) 

[349]. The current study also demonstrated transcriptional enrichment of ERVL (MLT2A1 and 

MER73) and SVA (SVA-D) during human embryogenesis. Repeat transcription during 

spermatogenesis was also observed, with an enrichment of simple centromeric repeats, 

MER1A (DNA transposon), HERVE, HSAT1 (Satellite) [350], and LTR71B (member of the 

ERV1 family) [322] during spermatogenesis. The classes of enriched repeats appears to be 

vastly different between spermatogenesis and embryogenesis, with an additional switch 

during embryonic genome activation, when REs associated with MLT2A1 and SVA-D are 

transcribed. It is important to note that the observed repeat enrichment in round spermatids 

and spermatozoa may be indicative of a targeted retention of certain RNAs during the RNA 

degradation and cytoplasmic expulsion of spermatozoa, rather than active transcription of the 

given repeat. This distinction cannot be determined with the current data structure, but 

requires measurement of the spermatozoal RNAs in context of a consistent exogenous control 

RNA. An alternative approach would be to perform target counts with an array platform that 

does not require sample amplification, such as nanoString [351]. It is currently unknown if 

repeat transcription contributes solely to spermatogenesis, or if such RNAs also play a role in 
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the early embryo. Microinjection of these RNAs into the mammalian embryo, followed by 

examination of the embryonic epigenome and growth characteristics, would improve 

understanding of these RNAs. 

Humans are ubiquitously exposed to endocrine disruptors (EDs), such as phthalates. 

However, the influence and underlying mechanisms of the cocktail of commonplace ED 

exposures on reproduction in humans, particularly in adult males, is poorly understood. While 

such exposures can easily be examined in animal models, there are practical issues to 

observing the causative mechanisms of reproductive effects in humans. However, as 

ejaculated sperm is an accessible cell type, examination of sperm RNAs may assist in 

addressing the reproductive effects of EDs in human males. In addition to being potential 

mediators of transgenerational inheritance, sperm RNAs may act as markers of environmental 

perturbations or disease [163, 254]. Using the MARS study [69], changes in sperm RNAs 

across longitudinal DBP exposure can be assessed to identify DBP-induced reproductive 

changes. Additionally, the availability of MARS samples, which originate from individuals 

suffering from mild IBD, provided the opportunity to identify IBD-induced changes in 

spermatozoa. IBD-induced spermatozoal alterations were thus identified by comparing control 

sperm samples to the B1HB2 arm samples, which represent men initiating the MARS study on 

a DBP-naïve condition. This work showed few sperm RNA changes due to mild IBD. Future 

cohorts should also include individuals with moderate to severe IBD, while controlling for 

medication use. Overall, these results are reassuring for IBD-afflicted males.  

By applying a LMEM to the MARS long RNA samples, the patterns of REs across 

shifting DBP levels (High or Background) were generated. Surprisingly, few REs were altered 

strictly with DBP levels (top two patterns of Table 4.4A). Instead the majority of differential 

REs were altered in solely the Acute phase (Baseline to Crossover) or the Recovery phase 

(Crossover to Crossback). This occurred regardless of the study arm, suggestive of an 

phenotypic shift lasting long after the initial stimulus. The gene associations of differential REs 
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provided the opportunity to identify ontological terms and signaling pathways altered by DBP. 

The DBP-naïve cohort (B1HB2 arm) was associated with translation, PPAR/ RXR-alpha 

signaling, and a strong activation of GP6 signaling. PPARs are known to act as xenobiotic 

sensors, and can interact with phthalates, resulting in PPAR activation [58-60]. The other 

enriched pathways, notably GP6 signaling, have not previously been directly implicated with 

DBP in literature. GP6 is a classical receptor for collagen, involved in platelet aggregation and 

thrombus formation, but also is known to be enriched in human testis [352]. As a gradual 

reduction in collagen binding by sperm during uterine transit has previously been suggested 

to enable sperm capacitation [294, 295], GP6 signaling may play a role in sperm capacitation. 

In contrast, the H1BH2 arm, implicates several pathways classically associated with 

experimental phthalate exposures and phthalate-induced testicular dysgenesis syndrome, 

such as oxidative stress, DNA damage response pathways, and androgen receptor 

regulation. This suggested that re-introduction of DBP-containing medication after a single 

spermatogenic cycle at background DBP level may harm the germline. The use of normalized 

RNA expression to predict DBP-induced activation or repression of signaling pathways 

provides a starting point for targeted proteomic analyses. However, verification of protein 

expression and the presence of known protein modifications involved in signaling pathway 

modulation is needed.  

In addition to the gene ontologies and signaling pathways associated with the 

differential REs, examination of repeat-associated REs suggested that high-DBP exposure 

influenced repeat transcription. TC-rich simple repeats are upregulated by recent (1 

spermatogenic cycle) high DBP exposure, and centromere-associated repeats appear to be 

downregulated by high DBP in DBP-naïve individuals. The current approach has the 

advantages of precisely placing expression of genomic repeats, by using RE expression as a 

proxy for repeat expression. However, this assumes that the overlapping RE is an accurate 

measure of the individual genomic loci. Therefore, the association of repeat transcription with 
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DBP exposure(s) should be replicated using the read coverage of the individual repeat loci. 

Simple repeats have previously been implicated in spermatozoal nuclear matrix-associated 

regions [230], while centromeric RNAs may play a role in establishing stage specific 

chromosomal structure and position throughout spermatogenesis [229, 230]. Altogether, this 

data suggests that DBP likely alters germline chromatin structure during spermatogenesis. 

While testing this hypothesis is outside the scope of this thesis, re-examination of the MARS 

cohort or future cohorts for chromatin accessibility and histone marks (e.g. ChIP-seq) would 

provide a further understanding of DBP-induced chromatin modifications. 

Small RNAs have been implicated as likely mediators of paternal transmission. Using 

a subset of the MARS samples, small RNA-seq libraries were generated to identify the 

changes induced by human in vivo DBP exposure. Compared to the numerous DBP-regulated 

REs in the long RNAs, relatively few small RNAs were identified as being altered by DBP 

(Figure 4.15), in either study arm. However, a single piRNA, hsa_piR_01967, was 

downregulated in both study arms upon high-DBP exposure. Despite the limited power of the 

present small RNA analysis, this work suggests that DBP does impact small RNAs. The 

physiological importance of the altered small RNAs in testis and the spermatogenic cycle is 

not yet known. However, taken together, the long RNA and short RNA fractions of the MARS 

samples suggest that DBP may alter various cellular mechanisms and signaling pathways 

during post-meiotic spermatogenesis. 

The male and female germline are known to have abundant expression of small 

regulatory RNAs, such as piRNAs. Concordantly, abundant piRNAs were observed in the 

MARS dataset. However, the regulatory relationships of RNAs during spermatogenesis is not 

well known. Previous studies imply a role of small RNAs in repeat suppression, with piRNAs 

acting as direct regulators of transposable elements [317] and miRNAs having an indirect role 

[318-321]. However, the relationship of the small RNAs to the larger coding RNAs and RNAs 

generated from genomic repeats during spermatogenesis is poorly defined. Using the MARS 
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datasets, the availability of small RNAs and proxy genomic repeat expression permitted the 

construction of the relationship between the two RNA categories. As shown in Figure 4.20, 

consistent associations between small RNAs and long RNA with sperm repetitive elements 

suggests a dynamic relationship. In particular, small rRNA fragments and large rRNA 

fragments exhibit opposite correlations with piRNA, miRNA, tRNAs and scaRNA. Select ERV1 

and ERV3 elements were also negatively correlated (Figure 4.20, dotted line) with small 

RNAs, suggesting a contrary relationship. Similarly, simple repeats, while positively correlated 

with most small RNAs, had a series of strong negative correlations to select small RNAs. 

Notably, the network suggests opposite relationships of long and short rRNA fragments to 

small regulatory RNAs. Spermatozoa are known to have extensively degraded ribosomal 

RNA, and both long and short rRNA fragments have similar coverage of the consensus rRNA 

loci. It is tempting to thus hypothesize that the small regulatory RNAs may be acting to cause 

rRNA fragmentation. This hypothesis will require extensive work to prove (1) binding of the 

small RNAs to the target rRNA locus and (2) causative fragmentation of rRNA. Regardless, 

the network dynamic is suggestive of a choice between destructive and non-destructive 

pathways during spermatogenesis, and possibly the quality of the ejaculated spermatozoa. 

iii. Conclusion 

The conception and uterine establishment of a human embryo is influenced by a 

variety of factors, including the quality of the male and female germline. In Chapter 2, I outlined 

the importance of the peri-conceptional environment in the context of assisted reproductive 

technologies, namely, IVF/ICSI and cryopreservation. The sub-fertility of the parents and the 

use of embryo cryopreservation alters methylation in the newborn’s blood cells. Additionally, 

while metastable epialleles (MEs) have been previously associated with methyl donor 

supplementation (in mouse) and seasonal diet changes (in human), this is the first work to 

associate ART/infertility with MEs in humans. 
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The involvement of the male germline in DoHAD has mostly been shown in mouse 

and rat models. The tools to identify sperm RNAs, which likely are mediators of generational 

transmission were developed and human spermatozoa were examined in the context of a 

common endocrine disruptor. Using ejaculates from men longitudinally exposed to DBP, both 

long and small RNAs were found to be altered by phthalate. Many of the differential long 

RNAs, examined in context of RNA elements, were novel, non-exonic RNAs. These 

exploratory works provide a set of RNAs and repeat classes to examine in future studies of 

human spermatogenesis, embryogenesis, and endrocrine disruptor exposure. 
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Appendix A : DNA quality scores for Newborn bloodspots. A260/A230 and A260/A280 

quality scores for IUI, FH, and FZ samples are listed.  

Sample 
name 

A260/A230 A260/A280 
Sample 
name 

A260/A230 A260/A280 

10006_B 0.08 2.5 10798_B 0.08 2.74 

10010_A 0.13 2.58 10821_C 0.09 2.03 

10046_B 0.09 2.61 10829_C 0.1 2.52 

10055_C 0.1 2.65 10831_C 0.11 2.21 

10058_A 0.1 3.18 10843_B 0.11 2.21 

10101_B 0.15 2.07 10846_B 0.12 2.28 

10117_B 0.1 2.64 10863_A 0.15 2.97 

10133_B 0.08 2.84 10869_B 0.14 1.77 

10136_C 0.1 2.49 10882_B 0.09 2.58 

10141_C 0.09 2.83 10890_C 0.1 2.32 

10156_B 0.09 1.92 10894_C 0.08 2.42 

10208_C 0.07 2.53 10932_B 0.07 2.75 

10225_A 0.14 2.52 10947_C 0.09 2.79 

10231_B 0.11 1.85 11002_B 0.07 2.77 

10255_A 0.1 2.84 11016_B 0.09 2.44 

10291_A 0.14 2.55 11029_B 0.08 2.68 

10292_C 0.09 2.6 11034_B 0.07 2.77 

10344_B 0.1 2.33 11048_C 0.09 2.99 

10346_B 0.08 2.32 11066_A 0.13 2.41 

10347_C 0.17 2.32 11067_A 0.11 2.1 

10350_B 0.11 2 11127_C 0.11 2.67 

10359_C 0.12 2.27 11165_C 0.16 2.35 

10374_A 0.09 2.92 11177_C 0.06 2.62 

10389_C 0.11 2.43 11283_B 0.11 2.62 

10402_B 0.13 1.91 11340_C 0.09 2.68 

10432_B 0.12 2.03 11359_B 0.11 2.1 

10434_B 0.11 2.09 11368_C 0.18 1.77 

10443_C 0.13 2.27 11378_B 0.1 4.99 

10447_C 0.08 2.9 11381_C 0.08 2.5 

10453_C 0.11 2.79 11387_B 0.08 3.66 

10460_C 0.07 2.94 11414_A 0.08 1.99 

10511_C 0.12 2.52 11420_B 0.09 2.82 

10512_A 0.11 2.79 11452_C 0.09 1.82 

10555_C 0.1 2.94 11458_B 0.12 2.19 

10558_B 0.12 2.49 11465_C 0.12 1.97 

10587_C 0.09 2.76 11508_A 0.14 2.21 

10601_B 0.13 2.32 11523_A 0.13 2.37 
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10612_C 0.07 3.61 11541_B 0.06 3.44 

10649_C 0.12 2.61 11580_C 0.1 2.59 

10653_A 0.1 2.43 11598_B 0.1 2.82 

10667_C 0.09 2.93 11600_C 0.14 2.19 

10695_C 0.1 2.36 11624_B 0.12 2.37 

10697_B 0.09 3.39 11629_B 0.15 3.4 

10706_B 0.11 2.05 11651_B 0.12 2.22 

10716_A 0.13 2.35 11691_A 0.1 2.72 

10729_C 0.1 2.42 11981_A 0.11 2.25 

10743_C 0.1 2.44 11998_A 0.07 4.51 
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Appendix B: Enhancers overlapping differentially methylated regions. Chromosomal 

locations of enhancers are provided.  

FH vs IUI FZ 
vs 
IUI 

FZ vs FH IUI vs NAT FH vs NAT FZ vs NAT 

chr10:80998898-
81000011 

 
chr17:75883563-
75884329 

chr11:2919958-
2920393 

chr10:14051386-
14052060 

chr10:14051386-
14052060 

chr10:8373481-
8373809 

 
chr10:134361912-
134362323 

chr1:201619383-
201619798 

chr10:21798958-
21799135 

chr10:21798958-
21799135 

chr12:117483062-
117483484 

 
chr10:29228763-
29229094 

chr1:247511365-
247511433 

chr11:2919958-
2920393 

chr10:72973788-
72974249 

chr12:14413561-
14413925 

 
chr10:2951238-2951396 chr12:95840387-

95840581 
chr1:201619383-
201619798 

chr1:12600525-
12600853 

chr1:42385609-
42385954 

 
chr10:49879628-
49879846 

chr16:57701111-
57701632 

chr1:247511365-
247511433 

chr11:2919958-
2920393 

chr16:86012146-
86012389 

 
chr10:80998898-
81000011 

chr16:87978906-
87979489 

chr15:75018665-
75019349 

chr1:201619383-
201619798 

chr17:75096190-
75096538 

 
chr10:8373481-8373809 chr16:89893816-

89894170 
chr17:79068878-
79069252 

chr12:53359181-
53359363 

chr17:79128807-
79129119 

 
chr11:32109882-
32110285 

chr17:76801462-
76801678 

chr18:11849903-
11850727 

chr12:7781011-
7781133 

chr17:80829054-
80829460 

 
chr11:78131805-
78132171 

chr17:79068878-
79069252 

chr19:2332363-
2332647 

chr15:75018665-
75019349 

chr18:74114511-
74114735 

 
chr12:53612468-
53612778 

chr19:2332363-
2332647 

chr19:42440101-
42440390 

chr1:59280364-
59280505 

chr21:44573696-
44574026 

 
chr13:110521819-
110522258 

chr2:200468498-
200468920 

chr19:57351144-
57351414 

chr16:85785568-
85785942 

chr2:200468498-
200468920 

 
chr13:28554929-
28555135 

chr2:8597253-8597584 chr21:44104688-
44105340 

chr17:38170793-
38171091 

chr2:240362327-
240362618 

 
chr14:107252931-
107253417 

chr7:101361034-
101362207 

chr21:44573696-
44574026 

chr17:56744054-
56744558 

chr2:242954051-
242954322 

 
chr1:43250353-
43250859 

chr7:2150639-2150902 chr2:1608919-1609202 chr17:79068878-
79069252 

chr22:43165805-
43166293 

 
chr14:95239496-
95239653 

chr7:4848839-4849223 chr2:1609558-1609866 chr18:11849903-
11850727 

chr5:1103805-1104368 
 

chr15:31372759-
31373034 

 
chr2:200468498-
200468920 

chr18:72916177-
72916455 

chr5:1107341-1108073 
 

chr16:1585533-1585949 
 

chr2:241585712-
241586190 

chr19:2332363-
2332647 

chr5:669501-669935 
 

chr16:86016233-
86016516 

 
chr2:3583560-3583858 chr20:22567524-

22567732 

chr7:2124507-2124641 
 

chr16:86795224-
86795595 

 
chr2:8597253-8597584 chr21:44573696-

44574026 

chr8:142237099-
142237665 

 
chr16:88700249-
88701257 

 
chr4:3374732-3375130 chr2:1609558-1609866 

chr8:49426952-
49427328 

 
chr16:89184955-
89185230 

 
chr5:669501-669935 chr2:240362327-

240362618 

chr8:49427546-
49427722 

 
chr17:14206970-
14207459 

 
chr7:2548054-2548433 chr2:241585712-

241586190   
chr17:19627830-
19628049 

 
chr7:4764796-4765177 chr22:43165805-

43166293   
chr17:32253-32376 

 
chr8:144948428-
144948782 

chr2:8597253-8597584 

  
chr17:76875667-
76876103 

  
chr2:87036674-
87037618   

chr17:78793273-
78793673 

  
chr4:3374732-3375130 

  
chr18:11849903-
11850727 

  
chr5:1103805-1104368 

  
chr18:77552344-
77552827 

  
chr5:669501-669935 

  
chr18:77723013-
77723575 

  
chr7:4848839-4849223 

  
chr19:3369394-3369884 

  
chr7:73157180-
73157738   

chr19:58715620-
58715769 

  
chr8:11560575-
11560973   

chr2:121624920-
121625080 

  
chr8:144948428-
144948782   

chr21:38630405-
38630786 

   



142 
 

 
 

  
chr2:240868441-
240868868 

   

  
chr2:394418-394640 

   

  
chr4:3374732-3375130 

   

  
chr4:640356-640557 

   

  
chr5:1103805-1104368 

   

  
chr5:1107341-1108073 

   

  
chr5:157001390-
157002014 

   

  
chr5:178692524-
178692976 

   

  
chr5:669501-669935 

   

  
chr5:71852712-
71853181 

   

  
chr6:170589556-
170589600 

   

  
chr6:28885422-
28885544 

   

  
chr6:30720004-
30720713 

   

  
chr7:25992296-
25992472 

   

  
chr7:47579966-
47580265 

   

  
chr7:98990795-
98991133 

   

  
chr8:142237099-
142237665 

   

  
chr8:1847894-1848163 

   

  
chr8:49426952-
49427328 

   

  
chr8:49427546-
49427722 

   

  
chr8:49835974-
49836286 

   

  
chr9:140023271-
140023604 
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Appendix C. Regulators with consistent methylation changes between genders of 

multiple conception groups. Regulators with consistent methylation changes between 

genders of two or more conception groups are shown. Methylation changes for each regulator 

in the supporting conception groups are indicated as beta-value changes. Genes associated 

with the given regulator are named and described in the columns titled “Associated Gene” and 

“Protein function”. 

  

 Regulator 
Methylation 

changes 

Count of 
supporting 
conception 

groups 

Associated Gene Protein function 

Hyper-
methylated 

chr15:75018
665-

75019349 

0.06;0.07;0.0

7;0.05 4 CYP1A1 

A member of the cytochrome P450 
superfamily, monooxygenases which 

catalyze many reactions involved in drug 
metabolism and synthesis of cholesterol, 

steroids and other lipids [353]. 

Hyper-
methylated 

chr1:395479
03-39548129 

0.05;0.05;0.0

4 3 

Homo sapiens 
microtubule-actin 
crosslinking factor 

1 (MACF1) 

A protein that forms bridges between 
cytoskeletal elements, MACF1 impacts 
microtubule dynamics and associated 

cellular processes [354]. 

Hyper-
methylated 

chr12:95840
387-

95840581 

0.05;0.06;0.0

4 3 
Novel lincRNA 

(RP11-167N24.3) 
and RNU6-735P 

RNU6-735P is a pseudogene of unknown 
function. 

Hyper-
methylated 

chr1:755907
85-75591155 

0.15;0.12;0.1

1 3 IHX8 

A LIM homeobox transcription factor that 
plays a role in tooth morphogenesis, 

oogenesis and in neuronal differentiation 
[355]. 

Hyper-
methylated 

chr5:718527
12-71853181 

0.03;0.04;0.0

7 3 LOC102503427 ncRNA, validated in RefSeq [356]. 

Hyper-
methylated 

chr16:84869
763-

84870234 

0.05;0.03 
2 

Cysteine-rich 
secretory protein 

LCCL domain 
containing 2 
(CRISPLD2) 

A secretory protein which promotes matrix 
assembly and may play a role in non-

syndromic cleft palate [357, 358]. 

Hyper-
methylated 

chr7:106258
8-1063089 

0.03;0.03 
2 

Chromosome 7 
open reading frame 

50 (C7orf50) 
A predicted intracellular protein with 

unknown function [359]. 

Hyper-
methylated 

chr8:494269
52-49427328 

0.09;0.08 
2 

Novel lincRNA 
(RP11-567J20.3) 

and 
uncharacterized 
LOC101929268 

Non-coding RNAs with unknown function. 

Hyper-
methylated 

chr8:494275
46-49427722 

0.09;0.08 
2 

Novel lincRNA 
(RP11-567J20.3) 

and 
uncharacterized 
LOC101929268 

Non-coding RNAs with unknown function. 

Hyper-
methylated 

chr10:77165
098-

77165501 

0.05;0.07 
2 

ZNF503 antisense 
RNA 2 (ZNF503-

AS2) A noncoding antisense RNA [360] 

Hyper-
methylated 

chr17:37896
808-

37897181 

0.03;0.05 
2 

Growth factor 
receptor-bound 

protein 7 (GRB7) 

A growth factor receptor-binding protein 
with roles in integrin signaling and cell 

migration  [361]. 

Hyper-
methylated 

chr17:56744
054-

56744558 

0.05;0.09 
2 Testis expressed 

14 (TEX14) 

A protein highly expressed in testis and 
required for the formation of intercellular 
bridges during spermatogenesis [362]. 

Hyper-
methylated 

chr19:13113
447-

13113871 

0.03;0.05 
2 

Nuclear factor I/X 
(CCAAT-binding 

transcription factor) 
(NFIX) 

A transcription factor that binds viral and 
cellular promoters [363] 

Hyper-
methylated 

chr7:128094
514-

128094949 

0.04;0.07 
2 Hypoxia inducible 

lipid droplet-
Protein involved in intracellular lipid 

accumulation [364] 
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associated 
(HILPDA) 

Hyper-
methylated 

chr10:29228
763-

29229094 

0.09;0.07 
2 

  

Hyper-
methylated 

chr19:38436
9-384669 

0.04; 0.06 
2 Theg spermatid 

protein (THEG) 

A protein  expressed in the haploid germ 
cell nucleus with potential roles in protein 

assembly [365]. 

Hyper-
methylated 

chr2:240362
327-

240362618 

0.08;0.05 
2 

Histone 
deacetylase 4 

(HDAC4) 

A histone deacetylase involved in 
transcriptional regulation through MEF2C 

and MEF2D binding [366] 

Hypo-
methylated 

chr21:44573
696-

44574026 

-0.07; -0.10; 

-0.07 3 

Novel lincRNA 
(AP001631.10) and 

Homo sapiens 
crystallin, alpha A 

(CRYAA) 

CRYAA is a (HSP20) family  molecular 
chaperone with autokinase activity, which 

may be involved in intracellular 
architecture. This protein is preferentially 

expressed in the lens. [367] 

Hypo-
methylated 

chr7:157405
982-

157406183 

-0.06; -0.10; 

-0.07 3 PTPRN2 

Protein tyrosine phosphatase (PTP), of 
the receptor-type PTPs. PTPRN is a 

major autoantigen associated with insulin-
dependent diabetes mellitus [368]. 

Hypo-
methylated 

chr12:13302
1534-

133022956 

-0.12; -0.07 
2 

Novel lincRNA 
(RP11-503G7.1) 

and Novel lincRNA 
(RP11-503G7.2) 

and mucin 8 
(MUC8) 

MUC8 is expressed in epithelial cells of 
the human airway, although the function 
of this gene is still being elucidated [369]. 

Hypo-
methylated 

chr12:13290
3795-

132904258 

-0.03; -0.05 
2 

Novel antisense 
gene (RP13-
895J2.7) and 

Homo sapiens 
UDP-N-acetyl-

alpha-D-
galactosamine:poly

peptide N-
acetylgalactosamin

yltransferase 9 
(GalNAc-T9) 
(GALNT9) 

GALNT9 and related enzymes initiate O-
linked oligosaccharide biosynthesis 

through transfer of N-acetyl-D-
galactosamine residues [370]. 
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Appendix D. Enhancers with consistent bloodspot methylation changes. Enhancers 

highlighted in blue are consistently altered between all three assisted conditions and natural 

conception. Statistically significant methylation changes observed in conception comparisons 

between NAT and IUI, FH, or FZ, are given in units of beta-values, with changes in male and 

female comparisons shown in blue and red, respectively. Genes associated with the given 

regulator are named and described in the columns titled “Associated Gene(s)” and “Protein 

function”. 

Observed 
methylation 

change 
Enhancer 

Methylation 
Change 

Associated 
Gene(s) 

Protein function Notes 

Hypo-
methylated 

chr10:14051
386-
14052060 

-0.06;-0.08/-

0.10;-0.07;-

0.07 

FERM domain 
containing 4A 
(FRMD4A) 

May play roles in 
cytoskeleton structure 
and cell polarity through 
protein binding [371].  

Evolutionarily conserved region is 
located in the intron of FRMD4A 
and promoter region of an 
alternative FRMD4A isoform. 
Region contains many transcription 
factor binding sites. Site exhibits 
high degree of chromatin 
accessibility, as determined by 
DNase Hypersensitivity. 

Hypo-
methylated 

chr10:21798
958-
21799135 

-0.04;-0.04/-

0.09;-0.06;-

0.09 

Cancer 
Susceptibility 
Candidate 10 
(CASC10) and 
SKI/DACH domain 
containing 1 
(SKIDA1) 

SKIDA1 exhibits 
nucleotide binding and 
may play a role in cancer 
risk [372]. 

Site is located approximately 13 kb 
and 3 kb from start site of 
C10orf114 and stop site of 
SKIDA1, respectively. Site exhibits 
high degree of chromatin 
accessibility, as determined by 
DNase Hypersensitivity. 

Hypo-
methylated 

chr11:29199
58-2920393 

-0.06;-0.05;-

0.09/-0.06;-

0.05;-0.06 

Cyclin-dependent 
kinase inhibitor 1C 
(p57, Kip2) 
(CDKN1C), Solute 
carrier family 22, 
member 18 
(SLC22A18), and 
Solute carrier family 
22 (organic cation 
transporter), 
member 18 
antisense 
(SLC22A18AS) 

CDKN1C inhibits several 
G1 cyclin/Cdk complexes 
and may be a tumor 
suppressor. SLC22A18 
acts as an organic cation 
transporter and plays a 
role in drug transport 
[373, 374].  

Site is located in the intron of 
SLC22A18AS, is directly upstream 
of the promoter  for SLC22A18, 
and is approximately 13 kb 
upstream of the transcriptional start 
site for CDKN1C. Site exhibits high 
degree of chromatin accessibility, 
as determined by DNase 
Hypersensitivity. 

Hypo-
methylated 

chr17:79068
878-
79069252 

-0.07;-0.06;-

0.10/-0.10;-

0.08;-0.06 

BAI1-associated 
protein 2 (BAIAP2) 

An adaptor protein which 
aids in the conduction of 
signals from membrane 
bound G-proteins to 
cytoplasmic effector 
proteins. BAIAP2 may 
play a role in 
axonigenesis and insulin 
signaling in the nervous 
system [375].  

Enhancer is located in the intron of 
BAIAP2, adjacent to many 
transcription factor binding sites. 
Site exhibits high degree of 
chromatin accessibility, as 
determined by DNase 
Hypersensitivity. 

Hypo-
methylated 

chr18:11849
903-
11850727 

-0.08;-0.06;-

0.06/-0.05;-

0.04 

Guanine nucleotide 
binding protein (G 
protein), alpha 
activating activity 
polypeptide, 
olfactory type 
(GNAL), Charged 
multivesicular body 
protein 1B 
(CHMP1B) 

GNAL, a stimulatory G 
protein alpha subunit, 
modulates signal 
transduction within the 
olfactory neuroepithelium 
and basal ganglia. 
CHMP1B , a component 
of the ESCRT-III 
complex, is likely 
involved in multivesicular 
bodies (MVBs) formation 
[376, 377]. 

Site is located in the intron of 
GNAL and is in the promoter 
region of CHMP1B. Site exhibits 
high degree of chromatin 
accessibility, as determined by 
DNase Hypersensitivity. 

Hypo-
methylated 

chr19:23323
63-2332647 

-0.11;-0.09;-

0.10/-0.07;-

0.07;-0.05 

Signal peptide 
peptidase like 2B 
(SPPL2B), LSM7 
homolog, U6 small 
nuclear RNA 
associated (S. 
cerevisiae) (LSM7) 

SPPL2B encodes an 
intramembrane-cleaving 
aspartic protease (I-
CLiP) involved in ITM2B 
and TNF processing. 
LSM7 is an Sm-like 
protein which likely  
participates in splicing 
through interaction with 
U6 snRNA [378, 379].  

Site is located in the intron of 
SPPL2B and is approximately 4 kb  
upstream of the LSM7 
transcriptional start site. Site 
exhibits high degree of chromatin 
accessibility, as determined by 
DNase Hypersensitivity. 
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Hypo-
methylated 

chr2:160955
8-1609866 

-0.09;-0.10/-

0.07;-0.08;-

0.07 

LincRNAs 
(AC144450.2, 
AC141930.2), 
putative antisense 
gene AC144450.1, 
Peroxidasin 
homolog (PXDN) 

Secreted heme-
containing peroxidase is 
involved in extracellular 
matrix formation. 
Involved in ocular 
development and may 
have a systemic role in 
peroxidase metabolism. 
[380, 381] 

Site is located in the intron of 
AC144450.1, and is approximately 
25 kb, 15 kb, and 26 kb away from 
AC141930.2, AC144450.2, and 
PXDN, respectively. Site exhibits 
high degree of chromatin 
accessibility, as determined by 
DNase Hypersensitivity. 

Hypo-
methylated 

chr2:241585
712-
241586190 

-0.10;-0.07/-

0.10;-0.06;-

0.11 

G protein-coupled 
receptor 35 
(GPR35) and 
Aquaporin 12B 
(AQP12B) 

A receptor for kynurenic 
acid, GPR35 is involved 
in intracellular signaling. 
AQP12B, as a member 
of the aquaporin family, 
forms a pore to facilitate 
transport of water and 
solutes across cell 
membranes [382, 383].  

Site is located approximately 15 kb 
and 30 kb from GPR35 and 
AQP12B, respectively. Site exhibits 
moderate chromatin accessibility, 
as determined by DNase 
Hypersensitivity. 

Hypo-
methylated 

chr2:859725
3-8597584 

-0.07;-0.09;-

0.08/-0.08;-

0.06;-0.08 
    

Site is located at least 85 kb away 
from any annotated gene. Site 
exhibits moderate chromatin 
accessibility, as determined by 
DNase Hypersensitivity. 

Hypo-
methylated 

chr21:44573
696-
44574026 

-0.06;-0.08/-

0.10;-0.11;-

0.10 

Novel lincRNA 
(AP001631.10) and 
Crystallin, alpha A 
(CRYAA) 

CRYAA is a (HSP20) 
family  molecular 
chaperone with 
autokinase activity, which 
may be involved in 
intracellular architecture. 
This protein is 
preferentially expressed 
in the lens. [367] 

Site is located ~ 5kb and 15 kb 
away from AP001631.10 and 
CRYAA, respectively. Site exhibits 
high degree of chromatin 
accessibility, as determined by 
DNase Hypersensitivity. 

Hypo-
methylated 

chr4:337473
2-3375130 

-0.07;-0.08/-

0.06;-0.05;-

0.08 

Regulator of G-
protein signaling 12 
(RGS12) 

Involved in signal 
transduction, RGS12 
acts inhibits signal 
transduction and thus 
acts as a transcriptional 
repressor [384]. 

Site is located in intron of RGS12. 
Site exhibits a high degree of 
chromatin accessibility, as 
determined by DNase 
Hypersensitivity. 

Hypo-
methylated 

chr8:144948
428-
144948782 

-0.04;-0.04;-

0.07/-0.08;-

0.11 

Epiplakin 1 
(EPPK1) 

A member of the plakin 
family, EPPK1 may 
regulate and maintain 
keratin intermediate 
filament networks [385].  

Site is located in the unspliced 5' 
UTR of EPPK1. Site exhibits a high 
degree of chromatin accessibility, 
as determined by DNase 
Hypersensitivity. 

Hypo-
methylated 

chr1:201619
383-
201619798 

-0.05;-0.05;-

0.06/-0.06;-

0.05;-0.07 
Neuron navigator 1 
(NAV1) 

A member of the neuron 
navigator family which 
may play a role in axon 
guidance [386] 

Site is located in the first intron of 
NAV1. Site exhibits a high degree 
of chromatin accessibility, as 
determined by DNase 
Hypersensitivity. 

Hypo-
methylated 

chr15:75018
665-
75019349 

-0.05;-0.05/-

0.04;-0.05 CYP1A1 

 A member of the 
cytochrome P450 
superfamily, 
monooxygenases which 
catalyze many reactions 
involved in drug 
metabolism and 
synthesis of cholesterol, 
steroids and other lipids 
[353]. 

Site is located in the promoter of 
CYP1A1. Site exhibits a high 
degree of chromatin accessibility, 
as determined by DNase 
Hypersensitivity. 

Hypo-
methylated 

chr5:669501
-669935 

-0.05;-0.05/-

0.05;-0.04;-

0.06 

Tubulin 
polymerization 
promoting protein 
(TPPP) 

Protein involved in 
polymerization of tubulin 
and maintainence of the 
microtubule network 
[387]. 

Site is located in the first intron of 
TPPP. Site exhibits a moderate 
degree of chromatin accessibility, 
as determined by DNase 
Hypersensitivity. 
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Appendix E: RE discovery computational methods (REDa) 

Processing bam files 

The RE discovery algorithm is designed to be run entirely in R, with the user providing aligned 

reads in BAM file format. To conserve memory, the BAM files are first converted to bigWig 

format. The user is expected to use the helper function “generatebw” to generate both the 

required bigWigs as well as the text file containing the number of aligned reads per sample. 

However, the required bigWigs can also be generated by converting BAM files to bedgraph 

format, using the bedtools tool genomeCoverageBed, with the parameters “-split –bg”, and 

subsequently bigwig format, using the bedGraphToBigWig program (available from the UCSC 

Genome Browser utilities).  

Collapsing redundant exons  

Gene isoforms and transcripts often share overlapping exons and UTRs. In the RE discovery 

tool, overlapping annotated regions (here described as exons, regardless of the coding 

potential) on the same strand are collapsed into a single loci, designated as “exonic”. This 

singular representation of multi-exonic transcripts is not conducive to isoform discovery, but 

works well for fragmented RNAs, as is seen in spermatozoa or formalin-fixed paraffin 

embedded (FFPE) tissues. The “prepareExons” function collapses exons using the “bedR” 

package. 

Discovering expressed regions 

The initial step in discovering expressed regions of the genome is performed in the “findRE” 

function. The user needs to provide their genome of interest in BSgenome format, and a gene 

annotation file in GTF format. Although the current study performed RE discovery on the hg38 

build of the human genome, the algorithm is adaptable for different species and genome 

builds. There is no restriction on the format of chromosome names used in the genome. 

However, later annotation steps are coded to be used with ensembl gene annotations 

available through the R package ‘biomaRt’, and thus it is recommended that the GTF file uses 

ensembl gene IDs (please see https://www.gencodegenes.org/releases/current.html for 

examples). The genome is first processed by binning into 10 bp regions. Coverage across 

each 10 bp bin is calculated and bins overlapping an annotated region in the GTF file (here 

described as exons, regardless of the coding potential) are removed from consideration. The 

remaining genomic bins are compared to the designated library size-normalized threshold mu 

(µ), with those bins equal to or exceeding the coverage required in µ retained as a novel RNA 

element (RE). This threshold µ, for a theoretical RNA-seq library with 3 million reads, would 

require a mean coverage of 7.5 reads for a given 10 bp bin in order to label the bin as 

expressed. REs within 100 bp of one another are merged into a single new RE. It is important 

to note that the default parameters used by the “findRE” function retain expressed regions if 

they are present in at least one sample. REs defined across each sample are subsequently 

merged with the “combineRE” function, in which the REs from each iteration are concatenated 

into a single GRanges object. The concatenated object is then reduced, merging overlapping 

and adjacent (within 50 bp) REs.  

Annotating REs 

https://www.gencodegenes.org/releases/current.html
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Once the newly discovered REs are generated, they need to be annotated according to their 

genomic position, which is achieved in the “annotateRE” function. Intronic regions are defined 

according to the user-supplied GTF file, followed by identifying novel REs that overlap an 

intron. The distance between any non-intronic novel REs  and exons is then calculated and 

used to define non-intronic novel REs as near-exon (less than 10kb from an exon) or orphan 

(greater than or equal to 10 kb from an exon).  

In the human genome, poorly annotated genes have occasionally been observed to have 

transcription beyond their designated borders. In an optional step, performed with the 

“extendExon” function, near-exon REs within a default 20 bp of an exon are examined. The 

read coverage across near-exon REs, in 10 bp increments, are compared to the average read 

coverage of the adjacent exon. If the read coverage in the near-exon RE is increased or 

decreased by less than 50% of the average read coverage of the adjacent exon, the novel RE 

is merged with the adjacent exon. This process is repeated until no more 10 bp bins of the 

near-exon RE remain, or the near-exon RE coverage changes by more than 50% of the 

average read coverage of the adjacent exon. 

In order to provide the user with the common gene symbol of each ensembl gene ID, the 

function “annotateFinal” is provided. The “biomaRt” package is used to transform the ensembl 

gene ID into the common gene symbol. The output is a complete bed file of exonic and novel 

REs, along with the common gene symbol(s) and ensembl gene id(s) of the REs. This bed 

file can subsequently be used in expression analysis.  
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Appendix F: RNA-seq samples applied to REDa (RE discovery). This table provides the 

unique sample name (Sample.name) for each RNA-seq library, as well as the corresponding 

tissue type and RNA-preparation type (Tissue, Tissue.simple, RNA.type and Pool). The 

publication or GEO dataset from which the sample was drawn is provided in "Publication" 

column. 

Sample.name Group Tissue Tissue.simple RNA.ty
pe 

Dat
e 

Pool Publication 

Test.Ambion Krawetz Testis Testis Aplus 20
09 

pool doi: 10.1007/s00441-015-2237-
1 

Test.Clone Krawetz Testis Testis Aplus 20
09 

pool doi: 10.1007/s00441-015-2237-
1 

testes1 Krawetz Testis Testis Total 
RNA 

20
13 

pool doi: 10.1007/s00441-015-2237-
1 

testes2 Krawetz Testis Testis Total 
RNA 

20
13 

pool doi: 10.1007/s00441-015-2237-
1 

SRR893048 Xue oocyte Oocyte Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893049 Xue pronucleus Embryo_pronu
cleus 

Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893050 Xue pronucleus Embryo_pronu
cleus 

Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893051 Xue pronucleus Embryo_pronu
cleus 

Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893052 Xue zygote Embryo_zygot
e 

Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893053 Xue zygote Embryo_zygot
e 

Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893054 Xue 2-cell_blastomere Embryo_2cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893055 Xue 2-cell_blastomere Embryo_2cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893056 Xue 2-cell_blastomere Embryo_2cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893057 Xue 4-cell_blastomere Embryo_4cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893058 Xue 4-cell_blastomere Embryo_4cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893059 Xue 4-cell_blastomere Embryo_4cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893060 Xue 4-cell_blastomere Embryo_4cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893061 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893062 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893063 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893064 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893065 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893066 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893067 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893068 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893069 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893070 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893071 Xue 8-cell_blastomere Embryo_8cell Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893072 Xue morula Embryo_morul
a 

Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893073 Xue morula Embryo_morul
a 

Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893074 Xue morula Embryo_morul
a 

Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893046 Xue oocyte Oocyte Aplus 20
13 

single
cell 

doi:10.1038/nature12364 

SRR893047 Xue oocyte Oocyte Aplus 20
13 

single
cell 

doi:10.1038/nature12364 
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SRR2130093 Dang zygote Embryo_zygot
e 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130125 Dang TE Embryo_troph
oblast 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130124 Dang TE Embryo_troph
oblast 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130123 Dang TE Embryo_troph
oblast 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130122 Dang ICM Embryo_ICM Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130121 Dang ICM Embryo_ICM Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130120 Dang ICM Embryo_ICM Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130119 Dang late_blastocyst Embryo_blast
ocyst 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130118 Dang late_blastoycst Embryo_blast
ocyst 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130117 Dang late_blastoycst Embryo_blast
ocyst 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130116 Dang middle_blastocyst Embryo_blast
ocyst 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130115 Dang middle_blastocyst Embryo_blast
ocyst 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130114 Dang middle_blastocyst Embryo_blast
ocyst 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130113 Dang early_blastocsyt Embryo_blast
ocyst 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130112 Dang early_blastocsyt Embryo_blast
ocyst 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130111 Dang early_blastocsyt Embryo_blast
ocyst 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130110 Dang morula Embryo_morul
a 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130109 Dang morula Embryo_morul
a 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130108 Dang morula Embryo_morul
a 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130107 Dang morula Embryo_morul
a 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130106 Dang 8_cell Embryo_8cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130105 Dang 8_cell Embryo_8cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130104 Dang 8_cell Embryo_8cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130103 Dang 8_cell Embryo_8cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130102 Dang 8_cell Embryo_8cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130101 Dang 4_cell Embryo_4cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130100 Dang 4_cell Embryo_4cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130099 Dang 4_cell Embryo_4cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130098 Dang 4_cell Embryo_4cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130097 Dang 2_cell Embryo_2cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130096 Dang 2_cell Embryo_2cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130095 Dang 2_cell Embryo_2cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130094 Dang 2_cell Embryo_2cell Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130092 Dang zygote Embryo_zygot
e 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130091 Dang zygote Embryo_zygot
e 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130090 Dang zygote Embryo_zygot
e 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130089 Dang zygote Embryo_zygot
e 

Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130088 Dang MII_oocyte Oocyte Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130087 Dang MII_oocyte Oocyte Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 
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SRR2130086 Dang MII_oocyte Oocyte Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR2130085 Dang MII_oocyte Oocyte Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR3062174 Dang human_stem_cells ESC Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR3062173 Dang human_stem_cells ESC Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR3062172 Dang human_stem_cells ESC Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR3062171 Dang human_stem_cells ESC Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR3501436 Dang human_stem_cells ESC Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR3501437 Dang human_stem_cells ESC Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

SRR3501438 Dang human_stem_cells ESC Total 
RNA 

20
16 

single
cell 

https://doi.org/10.1186/s13059-
016-0991-3 

sperm_A Gisselm
ann 

Sperm Sperm Aplus 20
16 

pool doi:10.1038/srep32255 

sperm_B Gisselm
ann 

Sperm Sperm Aplus 20
16 

pool doi:10.1038/srep32255 

sperm_C Gisselm
ann 

Sperm Sperm Aplus 20
16 

pool doi:10.1038/srep32255 

sperm_stranded_
pooled 

Gisselm
ann 

Sperm Sperm Total 
RNA 

20
16 

pool doi:10.1038/srep32255 

SRR3192419 Gingera
s 

liver.female.6yo Liver Aplus 20
16 

pool GEO Accession: GSM2072373 

SRR3192418 Gingera
s 

liver.male.32yo Liver Aplus 20
16 

pool GEO Accession: GSM2072372 

SRR3192440 Gingera
s 

liver.fetal Liver Aplus 20
16 

pool GEO Accession: GSM2072387 

SRR4422587 Gingera
s 

Testis Testis Aplus 20
16 

pool GEO Accession: GSM2343115 

SRR4422588 Gingera
s 

Testis Testis Aplus 20
16 

pool GEO Accession: GSM2343115 

SRR4421667 Gingera
s 

Testis Testis Aplus 20
16 

pool GEO Accession: GSM2343589 

SRR4421668 Gingera
s 

Testis Testis Aplus 20
16 

pool GEO Accession: GSM2343589 

SRR3192439 Gingera
s 

liver.fetal Liver Aplus 20
16 

pool GEO Accession: GSM2072386 

SRR1791304 Jodar Sperm Sperm Total 
RNA 

20
13 

pool DOI: 
10.1126/scitranslmed.aab1287 

SRR1791305 Jodar Sperm Sperm Total 
RNA 

20
13 

pool DOI: 
10.1126/scitranslmed.aab1287 

SRR1791306 Jodar Sperm Sperm Total 
RNA 

20
13 

pool DOI: 
10.1126/scitranslmed.aab1287 

SRR1791307 Jodar Sperm Sperm Total 
RNA 

20
13 

pool DOI: 
10.1126/scitranslmed.aab1287 

SRR1791308 Jodar Sperm Sperm Total 
RNA 

20
13 

pool DOI: 
10.1126/scitranslmed.aab1287 

SRR1791309 Jodar Sperm Sperm Total 
RNA 

20
13 

pool DOI: 
10.1126/scitranslmed.aab1287 

SRR1791310 Jodar Sperm Sperm Total 
RNA 

20
13 

pool DOI: 
10.1126/scitranslmed.aab1287 

SRR3146452 Jan A.dark.spermatogonia Adark_sperm Total 
RNA 

20
16 

pool doi: 10.1242/dev.152413  

SRR3146494 Jan A.pale.spermatogonia Apale_sperm Total 
RNA 

20
16 

pool doi: 10.1242/dev.152413  

SRR3146497 Jan early.pachytene.spermat
ocytes 

Earlypach_sp
erm 

Total 
RNA 

20
16 

pool doi: 10.1242/dev.152413  

SRR3146504 Jan leptotene.zygotene.sper
matocytes 

Lept.zygo_spe
rm 

Total 
RNA 

20
16 

pool doi: 10.1242/dev.152413  

SRR3146507 Jan late.pachytene.spermato
cytes 

Latepach_spe
rm 

Total 
RNA 

20
16 

pool doi: 10.1242/dev.152413  

SRR3146508 Jan round.spermatids Round_sperm Total 
RNA 

20
16 

pool doi: 10.1242/dev.152413  

 

  



152 
 

 
 

Appendix G: Location of novel REs exceeding 1 kb in length. A total of 138 novel REs 
exceed one kilobase in length. The chromosomal location (in hg38 coordinates) of the RE is 
provided in the first three columns, “Chromosome”, “Start position”, and “End position”. The 
length of the RE, in base pairs, is provided in column “RE length”. For intronic and near-exon 
REs, the associated gene names are provided in column “Gene symbol”. The designation of 
an RE as near-exon, intronic, or novel is given in column “RE class”. 
 

Chromosome Start position End position RE length Gene symbol RE class 

chr9 133019427 133021126 1700 EEF1A1P5 NOVEL_10KB_EXON 

chr5 4867045 4868064 1020 AC026415.1 NOVEL_INTRONIC 

chr1 1595371 1596770 1400 FNDC10 NOVEL_10KB_EXON 

chr1 25907041 25908250 1210 STMN1 NOVEL_10KB_EXON 

chr1 37859741 37862430 2690 INPP5B NOVEL_10KB_EXON 

chr1 40860961 40862366 1406 CITED4 NOVEL_10KB_EXON 

chr1 180190981 180192010 1030 QSOX1 NOVEL_INTRONIC 

chr2 19351349 19352410 1062 OSR1 NOVEL_10KB_EXON 

chr2 44167539 44168859 1321 AC019129.2 NOVEL_10KB_EXON 

chr2 132270379 132271658 1280 CDC27P1 NOVEL_10KB_EXON 

chr3 50258368 50259819 1452 GNAI2 NOVEL_10KB_EXON 

chr4 15002500 15004335 1836 CPEB2 NOVEL_10KB_EXON 

chr4 118630440 118634189 3750 AC110079.1 NOVEL_10KB_EXON 

chr5 177456545 177458707 2163 DBN1 NOVEL_10KB_EXON 

chr6 2966400 2972205 5806 SERPINB6 NOVEL_10KB_EXON 

chr7 905617 906626 1010 ADAP1 NOVEL_INTRONIC 

chr7 65838216 65839335 1120 AC093582.1 NOVEL_10KB_EXON 

chr7 65840796 65842065 1270 AC093582.1 NOVEL_10KB_EXON 

chr9 136107687 136109081 1395 AL138781.1 NOVEL_10KB_EXON 

chr10 26645650 26646779 1130 AL390961.1 NOVEL_10KB_EXON 

chr14 70230224 70232587 2364 AL160191.3 NOVEL_10KB_EXON 

chr14 106286318 106287657 1340 HOMER2P2 NOVEL_10KB_EXON 

chr17 7881186 7882765 1580 NAA38 NOVEL_INTRONIC 

chr19 4227969 4229118 1150 EBI3 NOVEL_10KB_EXON 

chr22 23892523 23893922 1400 AP000350.4 NOVEL_INTRONIC 

chr22 30967066 30968552 1487 MORC2 NOVEL_10KB_EXON 

chr22 41994621 41998652 4032 SEPT3 NOVEL_10KB_EXON 

chr1 38129381 38130522 1142 AL139158.3 NOVEL_10KB_EXON 

chr1 149924351 149925820 1470 SF3B4 NOVEL_INTRONIC 

chr1 154952201 154953600 1400 PBXIP1 NOVEL_INTRONIC 

chr2 112062629 112063728 1100 TMEM87B NOVEL_INTRONIC 

chr3 168845049 168846468 1420 NA NOVEL_ORPHAN 

chr6 36863796 36865095 1300 PPIL1 NOVEL_INTRONIC 

chr7 30157438 30162876 5439 MTURN,AC007036.3 NOVEL_10KB_EXON 

chr8 99944163 99946062 1900 NA NOVEL_ORPHAN 

chr9 34667387 34668426 1040 AL162231.2 NOVEL_INTRONIC 

chr9 35103667 35105374 1708 FAM214B NOVEL_10KB_EXON 

chr11 70121258 70122757 1500 ANO1 NOVEL_INTRONIC 

chr12 2855495 2856944 1450 ITFG2 NOVEL_INTRONIC 

chr15 22767380 22770269 2890 AC138649.1 NOVEL_INTRONIC 

chr16 22115491 22116500 1010 VWA3A NOVEL_INTRONIC 

chr19 4618609 4619678 1070 AC011498.5 NOVEL_10KB_EXON 

chr19 50497439 50500158 2720 EMC10 NOVEL_10KB_EXON 

chr20 48501613 48516852 15240 RNU7-144P NOVEL_10KB_EXON 

chr1 2604371 2605540 1170 MMEL1 NOVEL_INTRONIC 

chr1 178514771 178515820 1050 TEX35 NOVEL_INTRONIC 
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chr1 222471921 222473380 1460 CICP13 NOVEL_10KB_EXON 

chr1 222473491 222475320 1830 AL513314.2 NOVEL_10KB_EXON 

chr1 222476031 222477304 1274 AL513314.2 NOVEL_10KB_EXON 

chr6 23854156 23855645 1490 AL139093.1 NOVEL_10KB_EXON 

chr7 149587 152547 2961 AC093627.4 NOVEL_10KB_EXON 

chr7 942327 943466 1140 ADAP1 NOVEL_INTRONIC 

chr7 51390017 51391366 1350 AC012441.1 NOVEL_10KB_EXON 

chr7 51391797 51393186 1390 AC012441.1 NOVEL_10KB_EXON 

chr7 63930996 63932015 1020 SLC25A1P3 NOVEL_10KB_EXON 

chr7 112618816 112620645 1830 AC002463.1 NOVEL_10KB_EXON 

chr10 132887000 132888069 1070 CFAP46 NOVEL_INTRONIC 

chr16 1672491 1673510 1020 CRAMP1 NOVEL_INTRONIC 

chr16 2528236 2531510 3275 AMDHD2 NOVEL_10KB_EXON 

chr17 3385930 3386955 1026 AC087498.1 NOVEL_10KB_EXON 

chr20 50958623 50963931 5309 MOCS3 NOVEL_10KB_EXON 

chr1 24086831 24087900 1070 MYOM3 NOVEL_INTRONIC 

chr1 154206511 154207648 1138 C1orf43 NOVEL_10KB_EXON 

chr2 45309399 45311588 2190 LINC01121 NOVEL_INTRONIC 

chr2 165665809 165667138 1330 CSRNP3 NOVEL_INTRONIC 

chr2 216857249 216858478 1230 AC007563.2 NOVEL_INTRONIC 

chr3 169821889 169822941 1053 LRRIQ4 NOVEL_10KB_EXON 

chr3 195941779 195945588 3810 AC124944.3 NOVEL_INTRONIC 

chr3 196001229 196005068 3840 AC024937.2 NOVEL_10KB_EXON 

chr3 197640019 197642188 2170 AC024560.3 NOVEL_10KB_EXON 

chr4 10083250 10084379 1130 WDR1 NOVEL_INTRONIC 

chr4 119405650 119407129 1480 GTF2IP12 NOVEL_10KB_EXON 

chr4 119407310 119409332 2023 GTF2IP12 NOVEL_10KB_EXON 

chr4 183850820 183852569 1750 STOX2 NOVEL_INTRONIC 

chr4 189846080 189847239 1160 FRG1-DT NOVEL_INTRONIC 

chr5 1620305 1624854 4550 AC026412.1 NOVEL_INTRONIC 

chr5 7299375 7301459 2085 AC091951.1 NOVEL_10KB_EXON 

chr5 70487825 70491084 3260 AC146944.3 NOVEL_10KB_EXON 

chr5 70509795 70511814 2020 AC146944.1 NOVEL_10KB_EXON 

chr5 70774825 70778714 3890 AC139272.1 NOVEL_INTRONIC 

chr6 166899956 166902745 2790 RPS6KA2 NOVEL_INTRONIC 

chr7 32591137 32592176 1040 DPY19L1P1 NOVEL_INTRONIC 

chr7 37847147 37848366 1220 EPDR1 NOVEL_INTRONIC 

chr7 57216146 57218355 2210 AC099654.1 NOVEL_INTRONIC 

chr7 57219716 57221165 1450 AC099654.1 NOVEL_INTRONIC 

chr7 132561286 132564405 3120 PLXNA4 NOVEL_INTRONIC 

chr7 143579446 143580725 1280 AC073264.2 NOVEL_10KB_EXON 

chr7 143748736 143750055 1320 RNU6-267P NOVEL_10KB_EXON 

chr8 27011147 27012422 1276 AC067904.1 NOVEL_10KB_EXON 

chr8 42451183 42452682 1500 SLC20A2 NOVEL_INTRONIC 

chr8 54049383 54050712 1330 LYPLA1 NOVEL_INTRONIC 

chr9 68971447 68972466 1020 PIP5K1B NOVEL_INTRONIC 

chr9 88129307 88132710 3404 SPATA31C2 NOVEL_10KB_EXON 

chr10 671190 672949 1760 DIP2C NOVEL_INTRONIC 

chr10 46129883 46131429 1547 AGAP7P NOVEL_10KB_EXON 

chr10 46357239 46358769 1531 AGAP14P NOVEL_10KB_EXON 

chr10 131385470 131386809 1340 NA NOVEL_ORPHAN 

chr11 119397667 119398776 1110 USP2-AS1 NOVEL_INTRONIC 

chr12 97988365 97989664 1300 MIR4303 NOVEL_10KB_EXON 

chr13 40481146 40483205 2060 LINC00598 NOVEL_INTRONIC 

chr13 111317126 111318245 1120 TEX29 NOVEL_INTRONIC 

chr15 23439460 23441682 2223 GOLGA6L2 NOVEL_10KB_EXON 
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chr16 90166011 90167060 1050 FAM157C NOVEL_INTRONIC 

chr17 68148996 68150055 1060 LRRC37A16P NOVEL_10KB_EXON 

chr17 81580005 81581034 1030 NPLOC4 NOVEL_INTRONIC 

chr18 73325334 73326733 1400 LINC02582 NOVEL_INTRONIC 

chr19 23322559 23323958 1400 ZNF91 NOVEL_INTRONIC 

chr19 23465429 23469978 4550 AC074140.1 NOVEL_10KB_EXON 

chr19 23878309 23882468 4160 AC139769.2 NOVEL_10KB_EXON 

chr19 24179389 24181548 2160 NA NOVEL_ORPHAN 

chr19 29015399 29016728 1330 LINC01532 NOVEL_10KB_EXON 

chr19 46918489 46922356 3868 ARHGAP35 NOVEL_10KB_EXON 

chr19 50039299 50040528 1230 ZNF473 NOVEL_INTRONIC 

chr20 1817803 1819042 1240 AL121760.1 NOVEL_10KB_EXON 

chr20 5483953 5485022 1070 AL121757.1 NOVEL_10KB_EXON 

chr20 47833573 47834972 1400 RNU7-173P NOVEL_10KB_EXON 

chr20 47894373 47897142 2770 RNU7-92P NOVEL_10KB_EXON 

chr20 47897423 47898942 1520 RNU7-92P NOVEL_10KB_EXON 

chr20 48122623 48126802 4180 NA NOVEL_ORPHAN 

chr20 48473243 48475192 1950 AL049541.1 NOVEL_10KB_EXON 

chr20 48499743 48501212 1470 RNU7-144P NOVEL_10KB_EXON 

chr21 28993116 28994175 1060 LTN1 NOVEL_10KB_EXON 

chrX 527285 528594 1310 FABP5P13 NOVEL_10KB_EXON 

chrX 622205 623384 1180 SHOX NOVEL_10KB_EXON 

chrX 625535 627004 1470 SHOX NOVEL_INTRONIC 

chrX 942355 943544 1190 NA NOVEL_ORPHAN 

chrX 1910245 1911684 1440 NA NOVEL_ORPHAN 

chr2 241808169 241809368 1200 AC131097.3 NOVEL_10KB_EXON 

chr15 64951720 64952949 1230 ANKDD1A NOVEL_INTRONIC 

chr3 195644509 195646888 2380 AC233280.2 NOVEL_10KB_EXON 

chr21 8228686 8230745 2060 FP671120.1 NOVEL_10KB_EXON 

chr21 8455846 8457845 2000 NA NOVEL_ORPHAN 

chrY 527180 528589 1410 FABP5P13 NOVEL_10KB_EXON 

chrY 622200 623389 1190 SHOX NOVEL_10KB_EXON 

chrY 625540 627009 1470 SHOX NOVEL_INTRONIC 

chrY 942350 943549 1200 NA NOVEL_ORPHAN 

chrY 1910130 1911589 1460 NA NOVEL_ORPHAN 

chrY 2213400 2214439 1040 DHRSX NOVEL_10KB_EXON 
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Appendix H: Specifications for quantitative quality control of MARS samples. 
 
Step 1: If the sample has less than 20% of the aligned reads belonging to the human genome 
and less than 2 million autosomal reads (duplicates included), then the sample is assigned as 
“Category 1: Low Genomic”. Otherwise, the sample continues to step 2. 
Step 2: If the sample has greater than 75% of the aligned reads belonging to the human 
genome and one of the two following conditions: Read duplication rate less than 10% or less 
than 5% of aligned reads belonging to ribosomal RNA, then the sample is assigned as 
“Category 2: High intergenic reads”. Otherwise, the sample continues to step 3. 
Step 3: If the sample has a % of aligned reads belonging to the human genome between 20% 
and 40%, and greater than 4% of the aligned reads belonging to the bacteria or viruses, then 
the sample is assigned as “Category 3: High bacterial and viral reads”. Otherwise, the sample 
continues to step 4.  
Step 4: If the sample has a % of aligned reads belonging to the human genome between 20% 
and 40%, and greater than 50% of the aligned reads belonging to the ERCC spike-in, then 
the sample is assigned as “Category 4: High spike-in reads”. Otherwise, the sample continues 
to step 5. 
Step 5: If the sample has a % of aligned reads belonging to the human genome between 20% 
and 40%, and greater than 40% of the reads remaining unmapped, then the sample is 
assigned as “Category 5: High unmapped reads”. Otherwise, the sample has passed quality 
control and is determined to be of satisfactory quality. 
 
The R function for the above process is shown below:  
 
makelab <- function(x){ ##where x is a row number, corresponding to a particular sample 
  a <- ar{ar$sample==x,} 
  if(a$genomic_prop<0.2 & a$autosome<2000000){ 
    b <- "Cond1_lowgenomic"} 
  else if(a$genomic_prop>0.75 & (a$duplicates_prop < 0.1 | a$rRNA_prop < 0.05)){ 
    b <- "Cond2_grassy"}  
  else if(a$genomic_prop>=0.2 & a$genomic_prop<=0.4 & a$bactviral_prop>0.04){ 
    b <- "Cond3_highbactviral"}  
  else if(a$genomic_prop>=0.2 & a$genomic_prop<=0.4 & a$ercc_prop>0.5){ 
    b <- "Cond4_highercc"} 
  else if(a$genomic_prop>=0.2 & a$genomic_prop<=0.4 & a$unmapped_prop>0.4){ 
    b <- "Cond5_highunmapped"}  
  else { 
    b <- "OK" 
    } 
    return(b) 
} 
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Appendix I: Differential expression of sperm-enriched genomic repeats. The number of 

differential REs that overlap a given repeat are indicated for (A) Simple repeats, (B) Complex 

repeats, and (C) Centromeric repeats. X-axis provides the repeat name, while the Y-axis 

indicates the number of differential REs for each significant expression change. 
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Appendix J. piRNA clusters with multiple piRNAs expressed in human sperm. The 

cluster location and name are indicated in the columns “Chromosome”, “Start”, “End”, “Cluster 

width”, and “Cluster_name”. “Cluster expression in Testis” provides the expression details 

from the pooled generic testis dataset, from which the clusters were generated. The column 

“Count of expressed piRNAs” indicates the number of piRNAs present in human sperm 

(median RPM > 1 RPM) belonging to the given cluster. 

 

Chromosome Start End Cluster 
Width 

Cluster name Cluster expression in Testis Count of 
expressed 
piRNAs 

chr19 16011114 16044967 33854 cluster_168 normal_testis_generic|10711.0258613575|mono:plus|168 6 

chr3 12848046 12879013 30968 cluster_234 normal_testis_generic|1513.99429755676|mono:minus|234 6 

chr1 179582014 179593814 11801 cluster_21 normal_testis_generic|1903.72089572736|mono:minus|21 3 

chr10 28786000 28797031 11032 cluster_27 normal_testis_generic|7153.61881881805|mono:minus|27 3 

chr15 51246002 51308028 62027 cluster_99 normal_testis_generic|14407.8869660576|mono:minus|99 3 

chr15 96761025 96790009 28985 cluster_111 normal_testis_generic|3644.61909348552|mono:minus|111 3 

chr4 119403036 119414007 10972 cluster_248 normal_testis_generic|218.559754300489|mono:minus|248 3 

chr9 81910020 81933023 23004 cluster_330 normal_testis_generic|1269.70452451239|mono:minus|330 3 

chr10 79680067 79719007 38941 cluster_40 normal_testis_generic|535.912720047788|mono:minus|40 2 

chr11 45666000 45730027 64028 cluster_51 normal_testis_generic|23143.2207101714|mono:minus|51 2 

chr11 75003029 75014999 11971 cluster_56 normal_testis_generic|1048.76550357495|mono:plus|56 2 

chr6 33863011 33925970 62960 cluster_271 normal_testis_generic|34453.9318019432|bi:minus-plus (split 
between 33892867 and 33892867)|271 

2 

chr9 113101011 113122392 21382 cluster_340 normal_testis_generic|11059.4403415613|bi:minus-plus (split 
between 113112111 and 113112118)|340 

2 

chrX 9400016 9419006 18991 cluster_351 normal_testis_generic|1353.62783508312|mono:minus|351 2 
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Appendix K. Small RNAs altered by DBP. Cells highlighted in lime green exhibit the same 

expression trend in both study arms, while those highlighted in light orange exhibit opposite 

expression trends. 

B1HB2 arm H1BH2 arm 

High-DBP > 
Non-DBP 

High-DBP < Non-
DBP 

High-DBP > Non-
DBP 

High-DBP < Non-DBP 

L1M2_5 hsa_piR_016677 7SL ALRb hsa_piR_008397 
AluYg6 hsa_piR_016742 GOLEM AluSq hsa_piR_009228 

CHARLIE3 hsa-miR-192-5p hsa-miR-339-5p AluSq10 hsa_piR_013247 

  hsa_piR_019675 hsa_piR_005076 AluYf1 hsa_piR_016582 

  hsa-miR-200a-3p hsa_piR_010010 AluYk12 hsa_piR_016584 

  tRNA-Gln-CAA hsa_piR_011482 CHARLIE3 hsa_piR_016804 

  hsa-miR-186-5p hsa_piR_017724 
ENSG00000199313|ENST000
00362443 hsa_piR_017550 

  hsa-miR-27b-3p MER28 
ENSG00000222094|ENST000
00410162 hsa_piR_017591 

  CHARLIE10 TRNA_GLU 
ENSG00000252461|ENST000
00516652 hsa_piR_017781 

  MER54A   
ENSG00000252677|ENST000
00516868 hsa_piR_017990 

  hsa-miR-499a-5p   HERV16 hsa_piR_017996 
  hsa_piR_016735   HERV-Fc1 hsa_piR_018717 
      HERVK3I hsa_piR_018790 

      hsa-let-7d-3p hsa_piR_019675 

      hsa-miR-142-5p hsa_piR_020497 
      hsa-miR-151b hsa_piR_021041 
      hsa-miR-28-3p hsa_piR_021722 
      hsa-miR-320a hsa_piR_022107 
      hsa-miR-3656 hsa_piR_023221 
      hsa-miR-423-5p hsa_piR_023224 
      hsa-miR-486-5p hsa_piR_023415 
      hsa-miR-508-5p L1M3C_5 
      hsa-miR-574-5p L1MB7 
      hsa-miR-891a-5p L1MC3 
      hsa_piR_000753 L1P4d_5end 
      hsa_piR_001809 LTR10C 
      hsa_piR_003116 LTR16A 
      hsa_piR_003180 LTR1F1 
      hsa_piR_003220 LTR30 
      hsa_piR_003257 LTR66 
      hsa_piR_004427 MER54 
      hsa_piR_004880 MER66_I 
      hsa_piR_005278 MER72 
      hsa_piR_005371 MLT1D 
      hsa_piR_005675 MST_I 
      hsa_piR_005767 SVA_A 
      hsa_piR_006426 THE1D 
      hsa_piR_006434 tRNA-Ala-GCA 
      hsa_piR_008114   
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Periconceptional environment, according to the Developmental Origins of Health and 

Disease (DOHaD) theory, influences offspring phenotype, primarily via epigenetic 

mechanisms. Although the paternal component in humans is poorly understood, both 

maternal and paternal peri-conceptional environment are now believed to contribute to this 

phenomenon. Manipulation of the early embryo for treating human infertility, is suspected of 

contributing to offspring abnormalities through epigenetic mechanisms. To directly address 

the effects of common assisted reproductive technology procedures on the offspring 

epigenome, the DNA methylation profiles of newborns conceived naturally, or through the use 

of intrauterine insemination (IUI), or in vitro fertilization (IVF) using Fresh or Cryopreserved 

(Frozen) embryo transfer, were compared. In addition to a reduction of epigenetic aberrations 

in the IVF conceptions using cryopreservation, metastable epialleles also exhibited altered 

methylation with fertility status. ART, embryo nutrition, and fertility status are thus suggested 

to have a lasting epigenetic effect of on the developing embryo. While the paternal contribution 

to the human embryo is uncertain, sperm deliver a collection of proteins and RNA to the 

zygote. To identify the entire cadre of intergenic spermatozoal RNAs, RNA Element (RE) 

discovery algorithm (REDa) was developed and applied to a spectrum of germline, embryonic, 

and somatic tissues. This highlighted extensive transcription throughout the human genome 
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and yielded previously unidentified human RNAs. Human spermatogenesis was found to 

exhibit extensive intergenic transcription and pervasive repetitive sequence expression. By 

analyzing the collection of novel and annotated spermatozoal RNAs in sperm samples from 

the Mesalamine and Reproductive Health Study (MARS), the effect of endocrine disruptor 

exposure on human sperm RNA profiles was determined. Sperm RNA profiles among men 

and their relationship to di-butyl phthalate (DBP) was longitudinally assessed across binary 

(high or background) DBP crossover exposures. Numerous changes in the composition of 

sperm RNA elements were detected during the acute and recovery phases, which suggest 

that exposure to, or removal from high DBP, produces effects that require longer than one 

spermatogenic cycle to resolve, if at all. Overall, chronic phthalate exposure influences the 

male germline, and acts on the dynamic RNA expression during human spermiogenesis. 
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