
Wayne State University Wayne State University

Wayne State University Dissertations

January 2019

Automatic Resource Management And Performance Optimization Automatic Resource Management And Performance Optimization

In Clusters In Clusters

Yudi Wei
Wayne State University, jadeskywei@gmail.com

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Wei, Yudi, "Automatic Resource Management And Performance Optimization In Clusters" (2019). Wayne
State University Dissertations. 2231.
https://digitalcommons.wayne.edu/oa_dissertations/2231

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/2231?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2231&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTOMATIC RESOURCE MANAGEMENT AND PERFORMANCE
OPTIMIZATION IN CLUSTERS

by

YUDI WEI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2019

MAJOR: COMPUTER ENGINEERING

Approved By:

Advisor Date

c©COPYRIGHT BY

YUDI WEI

2019

All Rights Reserved

ACKNOWLEDGMENTS

The study for PhD in the past years is full of challenges and adventures. The way to

seek the truth is never easy. First of all, I can achieve nothing without the life-giving and

all-inclusive spirit. I am grateful to two spiritual teachers and authors, Eckhart Tolle and

Charles F. Haanel, for their spiritual books that show the way to recognize, understand and

apply the power of the creative principle of thought.

I am thankful to many people who are kind and helpful. I would like to thank

Dr. Feng Lin, Dr. Nathan Fisher, Dr. Cheng-Zhong Xu and Dr. Song Jiang for being my

committee members and their suggestions to improve this work. Thanks also go to my

friends, Xiangping Bu, Zhen Kong, Kun Wang, Yuehai Xu, Guoyao Xu and Xingbo Wu for

their friendship and help. I would also like to thank all people who care about and pray for

me, David Chang, Liang Wen, Chingshya Lee, Mike Chang, John Yan, etc..

Finally, I would like to thank my parents and every family member for their uncondi-

tional love and support for my study. I want to give special thanks to my brother, Bisheng

Wei, for his encouragement and support all the time as always.

ii

TABLE OF CONTENTS

Acknowledgements ii

List of Figures viii

List of Tables ix

Chapter 1 Introduction 1

1.1 Background and Motivation . 1

1.2 Challenges in Clusters . 3

1.2.1 Challenges in Management of A Single Virtualized Resource 3

1.2.2 Challenges in Management of Multiple Virtualized Resources 4

1.2.3 Challenges in Performance Optimization 5

1.3 Problem Statement and Objectives . 8

1.4 Our Contributions . 9

1.5 Dissertation Organization . 11

Chapter 2 Related work 13

2.1 Automatic Resource Management . 13

2.1.1 Control Objective and Theory . 13

2.2 Configuration of A Single Virtualized Resource 14

2.2.1 SISO Control-based Approaches . 14

2.2.2 Heuristic-based Approaches . 15

2.2.3 RL-based Approaches . 15

2.3 Configuration of Multiple Virtualized Resources 15

2.3.1 MIMO Control-based Approaches . 15

2.3.2 RL-based Approaches . 16

2.3.3 VM Migration . 16

2.4 Fairness and Performance Optimization in Physical Clusters 17

2.4.1 Fairness and Minimal Completion Time 17

iii

2.4.2 Fairness and Locality in Slot-based Clusters 17

2.4.3 Performance Optimization in Multi-Resource Clusters 18

Chapter 3 Adaptive Configuration of A Single Resource 19

3.1 Introduction . 19

3.2 Adaptive Fuzzy Control . 20

3.2.1 Design of the rule base . 21

3.2.2 Fuzzification, inference and defuzzification 23

3.2.3 Design of the adapter . 24

3.3 Testbed and Experimentation . 25

3.4 Evaluation Results . 26

3.4.1 ARMA Prediction Accuracy . 27

3.4.2 Stability . 28

3.4.3 Settling time and overshoot . 30

3.5 Summary . 32

Chapter 4 Dynamic Balanced Configuration of Multi-Resources 33

4.1 Introduction . 33

4.2 Motivation . 37

4.3 The BConf Framework . 39

4.4 The IMAP Controller . 40

4.4.1 Performance Model . 41

4.4.2 The Balancer . 44

4.4.3 The Scaler . 46

4.5 The Domain Arbitrator . 47

4.6 Experimentation Methodology . 48

4.6.1 Cloud applications . 48

4.6.2 Testbed configurations . 48

4.6.3 Experimental methodology . 49

iv

4.7 Evaluation Results . 50

4.7.1 Model accuracy . 50

4.7.2 Performance under enough resources 50

4.7.3 Results under resource contention . 54

4.8 Summary . 56

Chapter 5 CANAL: Credit shAring-oriented Network And Locality-aware

scheduling in multi-resource clusters 57

5.1 Introduction . 57

5.2 Motivation and Challenges . 61

5.2.1 Limitations of Current Cluster Schedulers 61

5.2.2 Data Locality and Effective Resource Utilization 62

5.2.3 Stage Barrier to Network Utilization 63

5.3 The Credit Sharing Policy . 64

5.3.1 Bounded-space Dynamic MVBP Model 64

5.3.2 Credit Sharing Theorem . 65

5.3.3 Calculation of Fair Sharing Completion Times 69

5.3.4 Multi-Objective Optimization in Online Scheduling 71

5.4 Locality-aware and Network-aware Packing 74

5.4.1 Locality-aware Packing . 74

5.4.2 Network-aware Scheduling . 75

5.4.3 Allocation of Product Compensation and Supplement 78

5.5 Evaluation . 78

5.5.1 Methodology . 79

5.5.2 Simulation Results . 80

5.5.3 Benefits of Locality and Network Aware Packing 85

5.5.4 Testbed Experiment . 87

5.6 Summary . 89

v

Chapter 6 Conclusions and Future Work 90

6.1 Conclusions . 90

6.2 Future Work . 92

References 105

Abstract 106

Autobiographical Statement 109

vi

LIST OF FIGURES

2.1 Standard feedback control loop . 14

3.1 The structure of the STFC. 22

3.2 Design of the fuzzy control rules. 22

3.3 Performance comparison of STFC, Kalman filter, adaptive-PI and ARMA

in static workload. 27

3.4 Performance comparison of STFC, Kalman filter, adaptive-PI and ARMA

in dynamic workload. 28

3.5 Internal workings of ARMA predictor 29

3.6 Relative deviation under static and dynamic workload. 29

3.7 Response time around 60th control intervals. 30

4.1 The impacts of resource allocations on response time. 37

4.2 Normalized performance vs. CPU. 38

4.3 System architecture of BConf. 39

4.4 TPC-W performance with the change of last-level cache miss rate. . . 41

4.5 Experimental setup. 51

4.6 Performance comparisons of BConf and AutoControl for tpcc1, tpcw

under static and dynamic workload. 51

4.7 tpcc1 resource allocations and utilizations comparisons of BConf and

AutoControl. 52

4.8 Resource share for tpcw-db under static workload. 52

4.9 Resource share for tpcw-db under dynamic workload. 52

4.10 Standard deviations. 53

4.11 Results under scenario(b). 54

5.1 Average JCT and makespan under different schedulers. 58

5.2 Comparison of schedules under Tetris and an alternative. 62

5.3 Non-local data access for map tasks and effective resource utilization. . 63

vii

5.4 Effective network utilization by Tetris. 63

5.5 Job dominant resource shares and completion times under DRF. 67

5.6 CDFs of JCTs in various bin ranges in simulation. 81

5.7 Normalized average JCT in each bin under different schedulers in simu-

lation. 81

5.8 Makespan under different schedulers in simulation. 82

5.9 Ineffective and effective network utilizations under different schedulers in

simulation. 83

5.10 Effective disk utilizations under different schedulers in simulation. . . . 83

5.11 CDFs of time beyond FJCT under different schedulers in simulation. . . 84

5.12 Benefits of locality-aware packing. 85

5.13 Normalized JCT of LAP and NAP . 86

5.14 Benefits of network-aware packing. 87

5.15 Average JCT under different schedulers in Testbed. 88

5.16 Makespan under different schedulers in Testbed. 88

viii

LIST OF TABLES

3.1 The description of linguistic values. 22

4.2 Scaling Setup . 46

4.3 MAPE and R2 values(%) of ARMA and LCMR-Gray models for TPC-W. 50

4.4 MAPE and R2 values(%) for TPC-C. 50

5.5 Comparison of JCTs . 62

5.6 Resource allocation and cumulative credit of job B 65

5.7 MapReduce benchmark summary. 79

5.8 Job type and size distribution in simulation 80

5.9 Job type and size distribution in testbed 87

ix

1

CHAPTER 1 INTRODUCTION

1.1 Background and Motivation

Cloud computing revolutionizes the way IT industry operates by moving to the cloud

without owning the infrastructure. For example, latest report states that over 5 million

organizations with 50 million users embrace Google Apps, which was launched in 2006.

Amazon Web Services (AWS) host more than 11.6 million websites on 158k computers by

EC2 and S3. It is still seeing unrelenting growth.

A fundamental technique of the cloud service model is consolidation of multiple appli-

cations on physical servers. A primary way for consolidation is multiplexing physical resource

over virtualized servers. It realizes economies of scale on both supply and demand sides. On

the supply side, the cloud reduces operation and maintenance cost and increases resource

utilization. On the demand side, cloud clients are freed from the burden of IT planning and

maintenance so as to be able to spend more time on critical tasks. Moreover, it eliminates

an up-front venture capital by cloud users due to pay-as-you-go pricing model.

Cloud computing is a model for enabling convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., network, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction [63]. In this model, on-demand self-service is a fundamental

attribute, and metering and management techniques are required to realize this “low-touch,

low-margin, low-commitment” self-service model.

Cloud resource usage has two ways of metering and tracking. The first is VM-level

usage metering, such as storage space, bandwidth consumption, computing cycles. The sec-

ond is performance-level metering, such as response time, throughput, availability (99.9%

or 99.99% uptime), user-experienced QoS, etc. Performance guarantee is desirable since the

capacity of certain amounts of resources may not satisfy the performance target considering

the fluctuation of workload, and the uncertainty of resource capacity due to resource inter-

ference. Moreover, pricing metric should also be performance so that customer is exempted

2

from paying the additional resource cost used to compensate for the interference effect [62].

Therefore, both of the guarantee metric and pricing metric should be performance. Perfor-

mance is measured normally in two main metrics: response time and throughput. In many

interactive benchmarks, such as TPC-W, dynamic arrival rate is often assumed to follow

a Poisson distribution [4]. The defining characteristic is that its mean and variance are

identical. Accordingly, throughput per time unit is similar with same resource allocations.

Compared with throughput, users are more concerned with response time because it reflects

the performance perceived by individual clients.

For the cloud providers, the profit comes from two factors: service level objectives

(SLOs) it has committed in service level agreements (SLAs) and resource expenditures it pays

for [62]. In order to maximize the profit, the cloud system should automatically minimize

resource usage without compromising SLOs.

Besides virtualization, container is another popular way for multiplexing resources.

The container is similar to the virtual machine because both encapsulate multi-resource

demands and provide performance isolation. The former is a lightweight mechanism, and

its resource demand cannot change, while the demand of the latter can change on the fly.

In modern cluster systems, such as Mesos [46] and Yarn [82], container is provided to sat-

isfy heterogenous demands of various tasks. It unlocks space for resource combination and

optimization between tasks and servers. Moreover, it supports diverse programming mod-

els, such as Map-Reduce and MPI, so that different users can share resources in a cluster.

Among these models, MapReduce [28] remains dominant parallel and distributed program-

ming paradigm for applications to process big data in clusters [64] [58] [85]. It is one of the

core technologies powering IT giants like Facebook. MapReduce jobs are transformed into a

set of tasks The cluster scheduler uses a two-level architecture that consists of job scheduling

and task scheduling, where tasks are basic objects of resource allocation.

In shared clusters, scheduling has three different objectives: system efficiency, fair-

ness, and minimal job completion times (JCT). However, each may be in conflict with the

3

other two under existing scheduling strategies or policies. While packing a set of tasks of

complementary resource demands optimizes system efficiency by maximizing resource uti-

lization of any resource type, fairness may be not preserved because these tasks are not

from the job with minimal dominant share according to dominant resource fairness (DRF)

policy, and JCT may be not minimal because they are not from the shortest job according

to shortest remaining job first (SRJF). In addition, the objectives of fairness and minimal

JCT may be not achieved together because the scheduling order under DRF is different from

the one under SRJF. Particularly, SRJF may cause starvation or extreme unfairness for long

jobs if short jobs keep coming.

In this dissertation, our work is to dynamically configure virtualized resources under

the constraint of SLOs in terms of response time in virtual clusters, and optimize both system

efficiency and JCTs while guaranteeing that no job finishes later than under DRF in physical

clusters.

1.2 Challenges in Clusters

Dynamic resource provisioning is not trivial. Over-provisioning increases resource

cost, hence resource waste and underutilization, or under-provisioning leads to SLA viola-

tions. As a result, data center administrators are faced with increasing challenges to meet

SLOs in the presence of workload dynamics and cloud dynamics of unpredictable interactions

across many applications.

In the physical clusters, there is also a lot of challenges in performance optimization

from guarantee of JCTs , data locality to network utilization.

1.2.1 Challenges in Management of A Single Virtualized Resource

Workload dynamics: The intensity and the mix of typical application workloads

vary over the lifetime of an application. As a result, the demands for individual resources

also change over time. This implies that static resource allocation can’t efficiently work.

4

Nonlinearity between SLOs and resource allocation: Nonlinearity makes it

nontrivial to convert SLOs to corresponding resource share in the shared virtualized platform.

Unpredictable interference across co-hosted applications. Due to lack of

perfect performance isolation, applications have unexpected impact on each other while

contending for shared resource. Interference itself doesn’t pose big challenge, instead the

uncertainty of interference causes big trouble. For example, given steady workloads for all

applications, the resource distribution satisfying SLOs currently may not meet them next

time due to interference from contention. It feels like the impact of uncertain network delay

on performance of distributed network system.

1.2.2 Challenges in Management of Multiple Virtualized Resources

Multiple-resource configuration provides more optimization space. In multi-resource

virtualized clusters, resource optimization lies in whether it is able to find out a balanced con-

figuration of multiple resources that meets application SLOs without over-supply or under-

supply of resources.

However, workload dynamics poses great challenges to balancing resources. First, it

is not easy to identify the over-provisioned or constrained resource type due to fluctuating

workload. Second, a balanced configuration may be imbalanced later because time-varying

workload results in time-varying resource requirements. The bottleneck may shift from one

resource type to another within a VM, or from one VM to another one in the extension of

multi-tier applications.

Moreover, capacity uncertainty caused by VMs interferences in the open shared en-

vironment [62] [65] [42] poses additional challenges to virtualized resources balancing. Even

if given the same workload intensity and mix over a period, a balanced configuration also

may be imbalanced at some point later within the period. The reason is that the capacity of

one resource changes (increases or decreases), or the capacities of several resources change

5

but with different extents. Even if with the same extent and configuration is still balanced,

performance level is not the same since capacities vary.

Performance in SLO is measured normally in two main metrics: response time and

throughput. In many interactive benchmarks, such as TPC-W, dynamic arrival rate is often

assumed to follow a Poisson distribution. Accordingly, throughput per time unit is similar

with same resource allocations. Compared with throughput, users are more concerned with

response time because it reflects the performance perceived by individual clients. Unlike

throughput, however, response time behaves nonlinearly with respect to resource allocations.

The nonlinear relationship between resources and performance in terms of response time adds

one more dimension to the task of balanced VM configuration [75].

Multi-tier applications further complicate the problem due to chain reaction during

resource contention. An imbalanced configuration for one application may lead to an imbal-

anced configuration for one tier of another application co-hosted on the same physical server

by over-provisioning one or several resources which are needed for the tier of that applica-

tion to achieve balanced configuration. This may lead to an imbalanced configuration of the

other tier(s) of that application residing in a different physical machine by over-provisioning

resources to achieve its QoS target. As a result, the error of an imbalanced configuration

on one physical machine spreads to another physical machine, and even to the whole vir-

tual cluster. However, no existing work coordinates tiers within an application to restrict

error propagation. This motivated us to consider an application as a configuration unit to

coordinate configuration among different resources and tiers during contention.

1.2.3 Challenges in Performance Optimization

The multi-resource version of max-min fairness, i.e., DRF, is based on instantaneous

share at any time point. On one hand, it causes resource fragments, which are resources

in a node that cannot be utilized by any task, thus degrading system performance. On the

other hand, the envy-free property of fairness, i.e., no user should prefer the resource allo-

6

cation of another user, may elongate JCT. The reason is that JCT are improved by trading

resource allocation of long jobs with that of short jobs. Since users cannot experience the

instantaneous share, they care more about whether a job or its last task finishes within its

fair sharing job completion time (FJCT), the one resulting from DRF policy. Our observa-

tion is that by keeping in mind the FJCT of each job, the constraints placed by DRF on

the optimization of both cluster efficiency and actual JCTs can be removed. Specifically by

dynamically sorting jobs in the increasing order of their FJCTs (instead of instantaneous

share), packing tasks of multiple short jobs by drawing credit from long jobs not only accel-

erates short jobs, but also guarantees that long jobs will not decelerate. Moreover, packing

optimizes system performance by maximizing resource utilization in each dimension.

To make tradeoff between the three conflicting objectives, a scheduler called Tetris [39]

was designed to employ dot product to pack tasks of jobs at a fixed-value (75th) percentile

of dominant share. Whenever resource is available, it computes the packing score and job

score (related to job length) for each task, and selects the one with the largest weighted

score. While Tetris improves system efficiency, there are two main disadvantages. First, the

percentile knob constrains improvement of JCT. When the dominant shares of short jobs

go beyond the fixed-value percentile, they are not allowed to run further even though they

will not decelerate long jobs. Therefore it wastes the opportunity to accelerate short jobs.

Second, the knob cannot guarantee the FJCTs. Packing heuristics favor certain tasks. For

example, dot product favors large resource demand. As a result, the jobs that have extremely

small task demands may be even starved (subsection 5.2.1), even if the percentile rank is

restricted to a small value.

The recent work [40] proposed altruistic scheduling (AS) in which long jobs yield

resource allocation to short jobs. While it improves the average JCT, the improvement

is achieved at the cost of long jobs, because it provides guarantee of FJCTs only in offline

scheduling, rather than in online scheduling. The AS results also show that a significant ratio

(16%) of jobs elongate with performance up to 0.62 times worse, or with slowdown up to 1.61

7

times. Moreover, AS serves as an outside layer or a plug-in of any cluster scheduler, such

as DRF and Tetris, focusing on job acceleration with no consideration of cluster efficiency.

Since AS depends on a scheduler, it is complementary to our independent scheduling work.

Our objective is to optimize both system efficiency and JCTs, while theoretically guarantee

FJCTs in online scheduling.

In multi-resource clusters, system efficiency depends on effective utilization of any

resource type. A MapReduce job is divided into Map and Reduce tasks. A Map task can

run on the same node as its input data (node locality), on the same rack (rack locality)

or on a different rack (off-rack). Compared with a node-local task, a non-local one needs

additional network resources and extra time for data transfer. Tradeoff should be made

when the resource demand of a non-local task is larger than a local task. There were studies

on achieving good data locality without impairing fairness in a slot-based cluster [49] [97].

A slot is a fixed amount of a single resource type, such as memory in Hadoop. In multi-

resource clusters, the heterogeneity of multi-resource requirements by tasks may render them

ineffective. To choose between a local and a non-local task, current work [39] imposed a

fixed-value penalty to discount the packing score of a non-local task. Though the fixed-

value improves the average performance, its fixity may cause sub-optimal performance due

to lack of flexibility. Moreover, the value is chosen offline from a large space of different

values, demanding reconfiguration and much time and effort whenever data workloads variate

largely. Therefore, data locality poses great challenges to cluster scheduling.

Network utilization is crucial to performance in large-scale data-intensive clusters

because network bisection bandwidth tends to become a bottleneck [29]. In Map-Reduce

jobs, network is mainly used by reduce tasks for intermediate data transfer. The reason

is that schedulers strive to avoid remote data transfer by placing map tasks as many as

possible on the nodes storing their data. There is stage barrier to network utilization because

reduce tasks cannot start if map tasks have not finished. Therefore, scheduling tasks of the

same stage in most or all jobs may cause imbalanced network utilization and elongation

8

of network-intensive jobs. Existing schedulers, including Tetris, is oblivious of this barrier.

Though Tetris scheduled the last few tasks when the map stage is closed to completion, the

effect is limited. The network can be idle when the running tasks are mainly map tasks,

and become a bottleneck when most are reduce tasks. Advancing some network-intensive

jobs to get network fully utilized not only improves system efficiency, but also decreases

JCTs. However, how to accelerate jobs without affecting completions of other jobs further

complicates the task of cluster scheduling.

1.3 Problem Statement and Objectives

In this dissertation, we strive to design, implement and evaluate an automatic man-

agement framework in virtual and physical clusters respectively. The framework should be

able to improve resource utilization, satisfy the SLO of each hosted application in the pres-

ence of workload and cloud dynamics, and optimize both system efficiency and JCTs while

guaranteeing that each job completes faster, or at least no worse than under DRF. The de-

sired framework needs to be self-adaptive, involving as few manual effort as possible, and the

management operations should be efficient in order to be applied in online production sys-

tems, and transparent to end users with lowest overhead. Specifically, the framework consists

of three parts, with two corresponding to virtual clusters and one to physical clusters.

For a single resource management in virtual clusters, the framework should be able

to adapt to workload dynamics and cloud dynamics. It should be able to handle nonlinear

relationship between resource allocation and response time with no knowledge of accurate

performance model. High scalability is an important requirement for dynamic resource

provisioning in large scale data centers.

For multi-resource management in virtual clusters, the framework should be able to

get a balanced configuration of multiple resources for each hosted application. Besides sat-

isfying SLOs in terms of response time in the presence of workload dynamics and cloud

dynamics, resource management methods need to deal with the interaction between virtual

9

machines on which multi-tier applications span. It requires coordinated management strat-

egy to automatically tune all tiers of one application for satisfying SLOs. During resource

contention, it should optimize performance and satisfy SLOs for as many applications as

possible.

For MapReduce in physical clusters, the framework should be able to optimize both

system efficiency and JCTs while guaranteeing that each job completes faster, or at least no

later than under DRF. The scheduling needs to be highly adaptive to workload dynamics.

It is able to achieve highly effective resource utilization to optimize system efficiency and

improve network utilization to optimize system performance and accelerate network-intensive

jobs without decelerating other jobs.

1.4 Our Contributions

In this dissertation work, we designed and implemented an automatic resource man-

agement system to improve resource utilization and optimize performance for hosted appli-

cations and jobs in clusters. This system is able to address the challenges in both virtual

clusters and physical clusters. We summarize the primary contributions of our works as

follows:

A single resource configuration

1. We develop adaptive fuzzy control to satisfy response time targets for cloud applications

by adjusting vCPU cap of virtual machines despite workload dynamics. It is model-free

and self-adaptive to applications.

2. We designed and implemented a self-tuning fuzzy controller to assure QoS dynamically.

It is a generic tool and easy to be deployed large scale data centers. Experimental

results with TPC-W benchmark applications in Xen Virtualized environment demon-

strated that performance of Adaptive Fuzzy control has the best stability with 14%

more stable than the second best controller, the shortest settling time with 4 intervals

less and minimum overshoot. This work was published in [75] [72].

10

Multi-resource configuration

1. We develop an integrated MPC and adaptive PI approach (IMAP) for balanced or

near balanced provisioning of multiple resources. MPC coordinates with adaptive PI

to balance resources. While MPC optimizes resource efficiency and utilization, adaptive

PI ensures stable and responsive QoS control.

2. For the performance prediction in the IMAP, both black-box and gray-box models are

developed for comparison. A black-box model is simpler to build and more general

for applications than the gray-box, whereas the gray-box model is more accurate in

performance prediction.

3. We employ a hierarchical way to resolve resource contention. Instead of being allocated

individually, the constrained resources are distributed as a whole for an application,

preventing the error with an imbalanced configuration from spreading to the whole

virtual cluster.

4. We design and implement BConf prototype in a Xen-based cloud testbed. Compared

with a representative resource partition approach, BConf reduces resource usages by

up to 50%, improves stability by more than 35.6%, and has a much shorter settling

time. BConf effectively coordinates resources during resource contention. The saved

resources can be used either to pack more workloads, or to promote performance levels.

This work was published in [88]

Performance optimization in multi-resource clusters

1. We propose a theorem-proof policy, called credit sharing (CS) policy, that guarantees

FJCTs. It recursively accounts for the credit that long jobs contribute to the short jobs,

and short jobs pay down or off their borrowed credit later in the process of execution

or upon completions.

11

2. We present a method called Dynamic-Level for calculating the number of head jobs

dynamically that optimizes both the effective resource utilization and JCTs according

to CS policy and the size of total fragment. The total fragment is estimated as the size

of all the normal and non-local fragments resulting from a packing, since a non-local

task introduces a “new" non-local fragment by wasting extra resources.

3. We monitor network and schedule additional tasks for some network-intensive jobs to

overcome the stage-barrier by borrowing credit from long jobs based on CS policy. The

packing scores of the additional tasks are dynamically adjusted and scheduled together

uniformly with all other tasks in Dynamic-Level.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows.

Chapter 2 presents an overview on existing approaches on automatic resource manage-

ment for cloud applications in virtual clusters, performance optimization in physical clusters.

In Chapter 3, we propose a novel adaptive fuzzy control approach to tune resource

allocation for applications in cloud. We have conducted extensive experiments to evaluate the

performance, and compared it against three other methods. Our experiments indicate that

Adaptive fuzzy control has the best stability, shortest settling time and minimum overshoot.

In Chapter 4, we propose that IaaS should dynamically balance multiple virtualized

resources across all tiers based on application SLOs. The SLOs are defined in terms of re-

sponse time. We present BConf, a QoS-aware framework for balanced configuration of multi-

resources that integrates model predictive control (MPC) and adaptive proportional integral

control (adaptive PI). BConf takes advantage of MPC to actively balance resources for co-

hosted applications based on a novel resource metric. Both black-box and gray-box models

are developed to capture performance to resources relationship for comparison. Within the

framework, constrained resources are arbitrated in a coordinated way to effectively restrict

propagation of configuration errors.

12

In Chapter 5, we propose credit sharing (CS) policy that guarantees FJCTs. In

addition to accelerating short jobs, the cluster scheduler is enabled to pack tasks of short

jobs, getting system efficiency nearly optimized since task demands of short jobs are in the

same magnitude as those of long jobs. Experiments in both simulation and implementation

show that it is able to optimize system efficiency and accelerate JCTs while guaranteeing

that each job completes faster than, or at least no later than DRF.

Chapter 6 concludes this dissertation with summaries of our approaches and points

out future directions.

13

CHAPTER 2 RELATED WORK

2.1 Automatic Resource Management

With the proliferation of virtualization technologies, traditional resource manage-

ment has evolved into virtualized resource configuration. Note that current commercial IaaS

providers, such as EC2, only sells fix-sized VMs without fine-grained VMmanagement. Many

methods are applied to virtualized resource management. Among them, control theory has

widespread application.

2.1.1 Control Objective and Theory

Control objective can be reference input and optimization objective. They corre-

sponds to regulatory control and optimal control respectively. Regulatory control problem

can transform to optimal control problem, reverse is not true. In resource management, the

control objective is dynamically partitioning available virtualized resource across multiple

application workloads such that each workload meets its QoS objectives at minimal cost [44].

The objective includes four aspects:

QoS guarantee: Given enough resource, performance targets should be achieved.

Otherwise, performance differentiation should be allowed.

High utilization: Minimal cost implies high utilization.

Stability: Performance should be stable without large variations.

Short settling time: When transient workload appears, performance targets should

be achieved in a few control intervals.

Control means selecting right input to achieve desired behavior or reference value.

Figure 2.1 illustrates a standard feedback control loop. The control objective is the reference

input. We refer to the system being controlled as the target system, which has a set of

metrics of interest, referred to as measured output and a set of control knobs, referred to

as control input. The effectiveness of the control system is largely determined by having

a predictable relationship between control inputs and measured outputs. This relationship

14

Figure 2.1: Standard feedback control loop

can be impacted by disturbance and noise, something out of control. Controller periodically

adjusts the value of control input such that the measured output can match the reference

input. That is, it aims to maintain the difference between the two, referred to as control

error, at zero [44] [100]. The period is referred to as control interval.

In resource management, the reference input is 90th percentile response time. The

target system is the resource pool in the form of VMs in data center. The measured output

and control input are measured performance in terms of throughput or response time and

VM cap values respectively. The disturbance is the workload and interference of workloads.

Noise is distorted measurement.

2.2 Configuration of A Single Virtualized Resource

Most of recent autonomic virtual machine management have been designed to scale

a single type of resource, mainly CPU.

2.2.1 SISO Control-based Approaches

Early work [67] [53] centered on the tuning of CPU utilizations to maintain high

utilizations. Padala et al. [67] designed an adaptive PI controller to separately regulate CPU

utilization for each tier of an application. The work [94] partitioned CPU resources across

all tiers of an application based on queuing theory to satisfy the response time target. It is

used for applications with all tiers resident in the same machine. Our approach is different

from theirs because our work is not constrained from placement.

15

These methods use single-input and single-output (SISO) techniques. While SISO can

guarantee the SLO, it is limited to the regulation of single resource, and hardly applicable

to the configuration of multiple resources.

2.2.2 Heuristic-based Approaches

Kalyvianaki et al. [53] applied kalman filter theory to track CPU utilizations across

different tiers. The authors in [38] shared the same resource minimization objective as ours.

A combined signal processing and statistical learning algorithms [38] was used to predict the

requirements of a single resource type. The work [77] extended this method by translating

the resource savings to energy reduction. The translation technique is complementary to

ours because balancing of multi-resources aims to derive efficient solutions.

2.2.3 RL-based Approaches

The authors [74] configured CPU and memory resources separately by Reinforcement

Learning (RL) approaches. One advantage of this method is that it is application-agnostic

because it does not need to know the internals of the system. However, despite of no need

to setting parameters, it cannot assure SLO stably due to the limitation of RL that cannot

guarantee the convergence to performance target.

2.3 Configuration of Multiple Virtualized Resources

Compared with tuning of a single resource, multi-resource configuration provides more

space for optimizing resource combinations.

2.3.1 MIMO Control-based Approaches

There are multi-input and multi-output (MIMO) techniques, such as linear quadratic

regulation (LQR) [30] in regulatory control. However, LQR involves a lot of manual work,

and is not adaptive to cloud dynamics.

16

The work in [66] is one of the first to introduce MPC for the partitioning of multiple

resources. It applied a black-box ARMA model with success to automatically manipulate

CPU share and disk I/O bandwidth for multiple applications across multiple machines. Their

work is suitable to assure QoS with respect to throughput, but not applicable to response

time guarantee. Moreover, though it is able to respond to bottleneck shift, it cannot actively

maintain balanced configuration. In contrast, our work is different from their work because

we assure stable and responsive control of response time by integrating MPC with adaptive

PI. The control techniques used in our BConf framework specifically address the issue of

balancing of multi-resources for cloud environments.

The work [62] designed a MIMO controller based on a black-box model that char-

acterizes the interference effect. Efficiency control is invoked to promote QoS if more CPU

resource is available. Their work is complementary to ours because the resource savings

can also be used to promote QoS. MPC was also widely employed for the purpose of power

control [84] [37].

2.3.2 RL-based Approaches

The authors [73] [95] applied reinforcement learning (RL) for multiple resources con-

figuration by Though considering throughput and response time as a whole, it may not

guarantee performance target during trial-and-error process due to no theoretical guarantee

of stability. Moreover, the coarse-grained discrete configuration by RL may limit the opti-

mization extent of resource usage since response time is sensitive to fine-grained tuning. In

comparison, the control techniques have theoretical guarantee of performance target.

2.3.3 VM Migration

The work in [91] is closely related to our work in that it took black-box and gray-box

strategies to configure multiple resources. However, it is different from ours because it used

VM migration mechanisms.

17

Previous studies on virtual resource management did not consider the balancing be-

tween resources and tiers of multi-tier applications, neither is response time target guaran-

teed. To our best knowledge, BConf framework represents the first for balanced configuration

of multi-resources, guaranteeing response time in virtual clusters.

2.4 Fairness and Performance Optimization in Physical Clusters

The computing system has evolved from a single resource time sharing processor [34],

a slot-based sharing cluster [2] [47] to a multi-resource sharing cluster [46] [82] consists of

many commodity servers. Clusters are different from time sharing processors in light that

nodes are shared in both the temporal and spatial dimensions. The optimization of system

efficiency is not trivial in shared clusters because data is scattered over nodes. Multi-resource

sharing is different from a single resource sharing because of heterogeneous task demands.

It introduces one more dimension to achieve the conflicting objectives of fairness, minimal

completion times and system efficiency.

2.4.1 Fairness and Minimal Completion Time

Our work is closely related to Fair Sojourn Protocol (FS) [34], which addresses the

conflict between fairness and minimal completion times in a single resource time sharing

system. It guarantees that each job completes within FJCT, the one resulting from fair

processor sharing policy, such as round-robin. It sorts jobs in the increasing order of FJCTs,

and schedules the job with the shortest FJCT to minimize JCTs. We adopts the same phi-

losophy in guaranteeing FJCTS. However, our work is different from FS because we address

the challenges to optimize system efficiency that multi-resource sharing has introduced to

clusters.

2.4.2 Fairness and Locality in Slot-based Clusters

To resolve the conflict between fairness and data locality in shared clusters, widely

deployed techniques [49] [97] employ relaxed max-min fairness based on waiting and time-out.

18

While Quincy [49] and delay scheduling [97] achieve nearly optimal data locality, they are

specially designed for slot-based systems, with the heterogeneity of task demands ignored. As

a result, they may cause resource contention by assigning a task a slot with available resources

less than the task demand, or end up with low resource utilization if the aggregate demand of

tasks is lower than the total capacity of the allocated slots in some resource dimension(s). In

addition, it is inefficient and/or ineffective to extend them to multi-resource clusters. Since

Quincy [49] necessitates a global solver to get the optimal schedule, generalizing it to multi-

resource environment is computationally prohibitive. Delay scheduling [97] was designed

for head-of-queue job wait for a few seconds when it cannot launch a local task. However,

in a fine-grain multi-resource cluster, the head-of-queue job may end up with launching a

non-local task instead if during the waiting period, its resource demands is too large to fit

into any of its preferred nodes.

2.4.3 Performance Optimization in Multi-Resource Clusters

To satisfy heterogeneous task demands, modern clusters [46] [82] provides multi-

resource sharing by encapsulating task demands to containers. To extend max-min fairness

to multi-resource environment, DRF [35] was proposed to maximize the minimal dominant

share. DRF degrades performance because it cannot balance the resource utilization in each

dimension. Tetris was designed [39] to make tradeoff between the three objectives. Though it

enhances system efficiency and JCTs, its percentile knob limits the optimization of JCTs and

cannot guarantee FJCTs. By contrast, our theorem-proof credit sharing policy guarantees

FJCTs. The scheduler based on CS policy optimizes both system efficiency and minimal

JCTs.

19

CHAPTER 3 ADAPTIVE CONFIGURATION OF A SINGLE

RESOURCE

3.1 Introduction

The performance isolation feature and pay-as-you-go price model allows multiple ap-

plications to consolidate together in shared virtualized environment to increase utilization,

thus reducing infrastructure and operating cost. Moreover, elastic resource management is

provided to cope with unexpected resource demand due to transient workload.

Cloud provider may provide multiple classes of service, each with its own charac-

teristics and requirements. SLAs specify both performance targets, known as service level

objectives (SLOs), and financial consequences for meeting or failing to meet those targets.

It becomes a trend that cloud users are charged by performance due to the interference

effect of co-hosted applications in shared infrastructure [62]. Over-provisioning increases re-

source cost, hence resource waste and underutilization, or under-provisioning leads to SLA

violations.

As a result, data center administrators are faced with increasing challenges to meet

SLOs in the presence of workload dynamics and cloud dynamics of unpredictable interactions

across many applications. These challenges are:

Workload dynamics: The intensity and the mix of typical application workloads

vary over the lifetime of an application. As a result, the demands for individual resources

also change over time. This implies that static resource allocation can’t efficiently work.

Nonlinearity between SLOs and resource allocation: Nonlinearity makes it

nontrivial to convert SLOs to corresponding resource share in the shared virtualized platform.

Unpredictable interference across co-hosted applications. Due to lack of

perfect performance isolation, applications have unexpected impact on each other while

contending for shared resource. Interference itself doesn’t pose big challenge, instead the

uncertainty of interference causes big trouble. For example, given steady workloads for all

20

applications, the resource distribution satisfying SLOs currently may not meet them next

time due to interference from contention. It feels like the impact of uncertain network delay

on performance of distributed network system.

This paper proposes a novel adaptive fuzzy control approach to tune resource al-

location for applications in cloud. We have conducted extensive experiments to evaluate

the performance, and compared it against other three control methods in terms of stability,

overshoot, settling time. Our experiments indicate that Adaptive fuzzy control has the best

stability, shortest settling time and minimum overshoot.

The structure of rest paper is organized as follows. Section II presents control ob-

jectives and theory. Section III discusses the four control methods. Section IV introduces

experimental methodology. Section V evaluates and compares the performance in terms of

stability and responsiveness. Section VI concludes the paper.

3.2 Adaptive Fuzzy Control

Due to workload and cloud dynamics, relationship can often be linearized at small

operating points. It is well known that the linear approximation of a nonlinear system is

accurate only within the neighborhood of the operating point. Abrupt changes in workload

traffics and the nondeterminism in VM capacity can possibly make the simple linearizion

inappropriate. Instead of modeling the system in mathematical equations, fuzzy control

employs the control rules of conditional linguistic statements on the relationship of VM

capacity and the high-level objectives [52]. The fuzzy control rules are able to describe

human expert’s experiences and the rule base is easily updated by adding new knowledge.

There are works that applied fuzzy control to QoS guarantees in web server [87] and computer

networks [23] with success.

Figure 3.1 illustrates the structure of the adaptive Fuzzy Controller. It consists of

two layers, namely the fuzzy logic controller, and the output adapter. The capacity allocated

in control interval k + 1, denoted by u(k + 1), is adjusted according to its error e(k) (i.e.,

21

the normalized difference between the reference value and the achieved one) and change of

error ∆e(k) in previous control interval k using a set of control rules embedded in the fuzzy

logic controller. e(k) and ∆e(k) are calculated using the reference value r and the observed

value y(k). For the stability of the control system, we define the normalized error e(k) in a

range of [−1, 1]:

e(k) =

r − y(k)

r
0 ≤ y(k) ≤ 2r;

−1 y(k) > 2r.
(3.1)

Based on these, the controller calculates capacity adjustment ∆u(k) for next control

interval. The calculated resource adjustment is then fed into the next layer gain scheduler.

The fuzzy logic controller contains four building blocks. The actual fuzzy logic is

implemented as a set of If-Then rules about quantified control knowledge about how to adjust

the capacity according to e(k) and ∆e(k). The fuzzification interface converts controller

inputs into certainties in numeric values of the input membership functions. The inference

mechanism activates the rule-base and applies fuzzy rules according to the fuzzified inputs

and generates the fuzzy conclusions for the defuzzification interface. The defuzzification

interface converts fuzzy conclusions into the change of capacity in numeric value.

The STFC is built on the static fuzzy logic controller by adding output adaptor.

Thus, the capacity allocated to the VM during management interval k + 1 is

u(k + 1) = u(k) + |K∆u|∆u(k) =

∫
K∆u∆u(k)dk. (3.2)

3.2.1 Design of the rule base

The design objective is to translate human expert’s knowledge into a set of control

rules to control the VM capacity without a model of the dynamic cloud environment. In

the fuzzy logic controller, the control rules are defined using linguistic variables. For brevity,

22

Inference
machanism

Rule-base

Fuzzy logic controller

D
ef

uz
zi

fic
at

io
n

Fu
zz

ifi
ca

tio
n

Output
adaptor

∫

to next layer
gain schedule

∑
u(k)

KΔu

Δu(k)

From QoS
monitor

y(k)

r(k)

From QoS
profile

e(k)

Δe(k)

Figure 3.1: The structure of the STFC.

R
es
p
on

se
ti
m
e

Sampling period

reference response time

5

2 3

41

Reference value

O
bs

er
ve

d
va

lu
e

Sampling period

(a) The control effect

PS

PMPL

ZE

NS

NM

NL

“∆e(k)”“∆u(k)”

“e(k)”
PL

PL

PL

PL

PL

PL

PL

PL
PL

PL

PM

PM

PM

PM

PM
PM

PL

NL

NM

NS

ZEPS

PS

PS

PS

PS

PS
PS

ZE

ZE

ZE

ZE

ZE

ZE
ZE

NS

NS

NS

NS

NS

NS

NM

NM

NM

NM

NM

NL

NL

NL NL

NL

NL

NL

NL

NL

NL
1

3

4

2

5

(b) The rule table

Figure 3.2: Design of the fuzzy control rules.

linguistic variables “e(k)”, “∆e(k)”, and “∆u(k)” are used to describe e(k), ∆e(k), and ∆u(k),

respectively. The linguistic variables assume linguistic values NL,NM,NS,ZE, PS, PM,

and PL. Their meanings are shown in Table 3.1. They indicate the sign and the size in

relation to the other linguistic values.

Figure 3.2(a) gives an simple illustration of typical control effect. In this figure, we

identify five zones with different characteristics. Zone 1 and 3 are characterized with opposite

signs of e(k) and ∆e(k). That is, in Zone 1, e(k) is positive and ∆e(k) is negative; in Zone

Table 3.1: The description of linguistic values.

Linguistic value Description
NL negative large
NM negative medium
NS negative small
ZE zero
PS positive small
PM positive medium
PL positive large

23

3, e(k) is negative and ∆e(k) is positive. In these two zones, it can be observed that the

error is self-correcting and the achieved value is moving toward the reference value. Thus,

∆u(k) needs to be set either to speed up or to slow down current trend.

Zone 2 and 4 are characterized with the same signs of e(k) and ∆e(k). That is,

in Zone 2, e(k) is negative and ∆e(k) is negative; in Zone 4, e(k) is positive and ∆e(k) is

positive. Different from Zone 1 and Zone 3, in these two zones, the error is not self-correcting

and the achieved value is moving away from the reference value. Therefore, ∆u(k) should

be set to reverse current trend.

Zone 5 is characterized with rather small magnitudes of e(k) and ∆e(k). Therefore,

the system is at a steady state and ∆u(k) should be set to maintain current state and

correct small deviations from the reference value.The resulted control rules are summarized

in Figure 3.2(b). For example, when “e(k)” and “∆e(k)” are NL and PS, “∆u(k)” is set to

PM .

3.2.2 Fuzzification, inference and defuzzification

At the heart of a fuzzy controller are the membership functions that quantify the

certainty (between 0 and 1) that an input fall in the corresponding ranges. We select the

“triangle” membership function, which is the most widely used in practice. We set the width

and height of the “triangle” membership function to be 2/3 and 1 respectively. See our

previous work [87] for design details of the membership function. The fuzzification compo-

nent translates the inputs into corresponding certainty in numeric values of the membership

functions. Let µm(e(k)) denote the certainty of e(k) of the mth membership function, and

µn(∆e(k)) the certainty of ∆e(k) of the nth membership function.

The inference mechanism is to determine which rules should be activated and what

are conclusions. Let µ(m,n) denote the certainty of rule(m,n). The and operation in the

premise is calculated via minimum:

24

µ(m,n) = min{µm(e(k)), µn(∆e(k))}. (3.3)

Based on the outputs of the inference mechanism, the defuzzification component

calculates the fuzzy controller output, which is a combination of multiple control rules,

using “center average” method. Let b(m,n) denote the center of membership function of the

consequent of rule(m,n). In this case, it is where the membership function reaches its peak.

The fuzzy control output is

∆u(k) =

∑
m,n b(m,n) · µ(m,n)∑

m,n µ(m,n)
. (3.4)

3.2.3 Design of the adapter

The fuzzy logic controller only defines the basic control rules according to the inputs

of e(k) and ∆e(k). It outputs the sign and magnitude of the capacity adjustment ∆u(k).

With cloud dynamics, there could be a lot of fluctuations in the control effect. To achieve

accurate, responsive and stable control, the following practical issues should be addressed.

When there are fluctuations in control effect due to abrupt workload or capacity

changes, the control should be responsive enough to correct the capacity discrepancy within

a small number of steps.

To address the above issues, we design the adaptive controller to have adaptive output

magnitude. The adaptive features are realized by dynamically changing output adapter. The

adapter implements heuristic control knowledge as follows:

K∆u(k) = | c
λ
· e(k)|, (3.5)

25

where c is the capacity allocation for a specific resource. For example, c can be the cap

value of the CPU allocation in a Xen platform. The adaptor follows a heuristic rule that the

maximum capacity adjustment should not exceed half of current capacity for stability and

should be proportional to the control error for adaptability. Note that the direction of the

capacity adjustment is still determined by the fuzzy logic.

3.3 Testbed and Experimentation

In this section, we present the testbed and experimental configuration. We compared

fuzzy control with adaptive PI, ARMA and kalman-filter from the perspective of stability

and responsiveness of control performance.

We selected TPC-W [4] as the host application. TPC-W is an E-Commerce bench-

mark that models after an online bookstore. It consists of three tiers, Apache web server

(version 1.3.11), Tomcat (version 5.5.20) [81] application and MySQL(version 5.0.45) [3]

database servers. Apache and Tomcat server are encapsulated into one VM forming a uni-

fied front-end, MySQL server into one DB VM. TPC-W defines three different traffic mixes:

shopping, browsing and ordering mix, which require different amount of resource. It is em-

pirically determined that the DB tier is the bottleneck under the browsing workload. The

CPU resource is changed by CAP value.

Our testbed consists of two virtualized servers, client and NFS servers. The physical

machines for virtual hosting were two DELL servers each with two Intel Xeon X5650 CPUs

and 32 GB memory. Each CPU has 6 cores with hyper-threading enabled resulting a total

capacity of 24 logical CPUs. The front-end VM and back-end DB VM were hosted on

separate machines. We configured the front-end VM with 8 core and 4 GB memory. The

DB VM, with 8 core and 2 GB memory, resided on the other machine. We used a number of

client machines each with 8 cores and 8 GB memory to generate workload for the TPC-W.

The NFS server used a RAID5 partition to serve the VM disk images. We used Xen version

26

4.0 as our virtualization environment. dom0 and guest VMs were running Linux kernel 2.6.32

and 2.6.18, respectively. All the severs were connected by Gigabit Ethernet network.

We evaluated these methods on the DB tier since it tends to be a bottleneck of this

application. We used browsing mix as the workload, since it is more CPU intensive than the

other two mixes. The CPU resource allocators were implemented as a user-level daemon in

the virtual host (i.e. dom0 in a Xen environment). It takes the measured application-level

performance and the performance objective as input and calculates the capacity adjust-

ment to Xen’s management interface. The control interval is set to 30 seconds for all the

experiments.

We conducted two experiments on the platform. All these experiments are specifically

designed to test the abilities of these controllers.

1, we investigated the accuracy, overshoot and stability of these methods while en-

forcing performance targets in terms of average response time.

2, we evaluated responsiveness of these controllers while adapting resource allocations

to time-varying workloads.

3.4 Evaluation Results

Response times behave nonlinearly with respect to resource allocations especially

when the system is in a heavy workload state. We selected the target of all the controllers to

be 1 second except that we followed the controller in [53] and set the Kalman filter’s target

c to be 96% CPU utilization, which translates to approximately the 1-second response time.

The moving window of the ARMA controller was set to 20 samples.

Experiments are designed to study the efficacy of these methods in the determination

of proper CPU capacity settings under both static and dynamic workloads.

27

 0
 500

 1000
 1500
 2000
 2500

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

re
sp

on
se

 ti
m

e
(m

s)

Time interval (30s)

STFC
target

 0
 500

 1000
 1500
 2000
 2500

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

re
sp

on
se

 ti
m

e
(m

s)

ARMA
target

 0
 500

 1000
 1500
 2000
 2500

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

re
sp

on
se

 ti
m

e
(m

s)

Adaptive PI
target

 0
 500

 1000
 1500
 2000
 2500

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

re
sp

on
se

 ti
m

e
(m

s)

Kalman filter
target

(a) Static workload

Figure 3.3: Performance comparison of STFC, Kalman filter, adaptive-PI and ARMA in
static workload.

3.4.1 ARMA Prediction Accuracy

The online performance predictor can adapt the ARMA model parameters to the

change of the system states to some extent. We should first study the accuracy of the

predictor before applying this model.

We conducted 4 experiments to show the adaptivity of the predictor by running a

static workload with client number as 200. In all the experiments, we allocated the VCPU

cap to the VM from 500 to 1600, the difference of these experiments lies in the step length.

The step length in the first experiment is a fixed value 32(2% of the total cap), second is

64(4% of the total cap), third and fourth are random variable range from [−160, 160](10%

amplitude), [−220, 420](20% amplitude) respectively, conforming to uniform distribution.

To assess overall prediction accuracy of the model, we used mean relative error

(MRA), defined as
1

K

K∑
k=1

|y(k)− ỹ(k)|
ỹ(k)

, where K is the total number of samples, y(k) and

ỹ(k) denote predicted and measured value at kth interval, respectively. Figure 3.5(b) shows

28

 0
 500

 1000
 1500
 2000
 2500
 3000

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

re
sp

on
se

 ti
m

e
(m

s)

Time interval (30s)

STFC
target

 0
 500

 1000
 1500
 2000
 2500
 3000

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

re
sp

on
se

 ti
m

e
(m

s)

ARMA
target

 0
 500

 1000
 1500
 2000
 2500
 3000

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

re
sp

on
se

 ti
m

e
(m

s)

Adaptive PI
target

 0
 500

 1000
 1500
 2000
 2500
 3000

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

re
sp

on
se

 ti
m

e
(m

s)

Kalman filter
target

(a) Dynamic workload

 0

 400

 800

 1200

 1600

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

cp
u

al
lo

ca
tio

n

Time interval (30s)

STFC

 0

 400

 800

 1200

 1600

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

cp
u

al
lo

ca
tio

n

ARMA

 0

 400

 800

 1200

 1600

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

cp
u

al
lo

ca
tio

n

Adaptive PI

 0

 400

 800

 1200

 1600

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

cp
u

al
lo

ca
tio

n

Kalman filter

(b) Resource allocation

Figure 3.4: Performance comparison of STFC, Kalman filter, adaptive-PI and ARMA in
dynamic workload.

the values of the measure for all the 4 experiments. As an example, we also show in fig-

ure 3.5(a) the measured and model-predicted response time for experiment 4. From both

figures, we can see that, the model can’t always predict the response time accurately, with

MRA above 10% and increasing with change of CPU cap to as high as 19%. This is because

response times behave nonlinearly with the resource allocation. We are also interested to

know how the resource affects the performance. As an example, figure 3.5(c) shows how re-

sponse time is influenced by the change of resource in experiment 4. Whatever the range of

resource change is, they embodies the nonlinear property. Generally speaking, when resource

varies largely, relative error will also increase drastically.

3.4.2 Stability

The workload was set to 200 browsing clients, each with a mean think time of 1

second. The DB VM has 4 VCPUs and its initial capacity was set to 6 cores (a cap of

600). Figure 3.3(a) plots the response time of different control methods with static TPC-W

29

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e(
m

s)

Time interval(30s)

predicted response time
response time

(a) Predicted and Measured re-
sponse time

 0

 5

 10

 15

 20

 25

 30

R
el

at
iv

e
er

ro
r(

%
)

experiment 1
experiment 2
experiment 3
experiment 4

(b) Accuracy measure of ARMA
model

 0

 20

 40

 60

 80

 100

 120

 140

 160

-200 -150 -100 -50 0 50 100 150 200 250 300 350 400

R
el

at
iv

e
er

ro
r(

%
)

Cpu cap

(c) Deviation with change of CPU
cap

Figure 3.5: Internal workings of ARMA predictor

 0

 20

 40

 60

 80

S
ta

nd
ar

d
D

ev
ia

tio
n

(%
)

STFC
ARMA

Adaptive PI
Kalman filter

(a) Static workload
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

S
ta

nd
ar

d
D

ev
ia

tio
n

(%
)

STFC
ARMA

Adaptive PI
Kalman filter

(b) Dynamic workload

Figure 3.6: Relative deviation under static and dynamic workload.

workload. We can see that all the control methods can bring the response time close to the

1 second target but with different variety.

To quantify stability of the performance metric in terms of response time, we defined

standard deviation from a reference as the metric.

R(e) =

√∑n
k=1 e(k)2/n

r
, (3.6)

where r is the control objective and e(k) is the error. The smaller the R(e), the more

the achieved response time concentrates near the target value and better the controller’s

performance.

Figure 3.6(a) draws the corresponding standard deviations of the controllers. STFC

performed best with the standard deviation as 7.4%, Arma’s is 48%, Kalman and Adaptive

PI are 8.63%, 37.23%respectively. Due to the prediction inaccuracy of ARMA model, it

30

 0

 500

 1000

 1500

 2000

 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

re
sp

on
se

 ti
m

e
(m

s)

Time interval (30s)

STFC
target

 0

 500

 1000

 1500

 2000

 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

re
sp

on
se

 ti
m

e
(m

s)

ARMA
target

 0

 500

 1000

 1500

 2000

 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

re
sp

on
se

 ti
m

e
(m

s)

Adaptive PI
target

 0

 500

 1000

 1500

 2000

 60 70

re
sp

on
se

 ti
m

e
(m

s)

Kalman filter
target

Figure 3.7: Response time around 60th control intervals.

oscillates around the target largely. Kalman filter is also not stable due to the utilization

tracking method and coarse estimation of variance of noise. Adaptive PI is somewhat worse

than fuzzy control because it doesn’t take the trend of error into consideration. The STFC

is actually a PI-like controller with nonlinear operating functions while the adaptive-PI only

tracks the control error.

3.4.3 Settling time and overshoot

Settling time indicates how quickly the system converges to its steady state value.

Short settling times are particularly important for disturbance rejection in the presence of

time-varying workloads so that convergence is obtained [43]. We instrumented the workload

generators of TPC-W to change client traffic levels at run-time. Figure 3.4(a) plots the

response times in a 90-minute period in which the number of clients was changed every 30

intervals. We started with 100 clients and set the client numbers at the 60th, 90th, 120th

and 150th interval to be 200, 300, 200 and 100, respectively.

Obviously, result of ARMA and Kalman filter didn’t converge to target, as indicated

by the heavy dashed line. Result of ARMA always oscillates around the target, because it

31

may take up to M intervals (data collected in past M intervals would be used for regression)

for the model to adapt to a new situation. In addition, the maximum overshoot is the

largest among all of the methods. Kalman filter didn’t converge either. Output deviates

largely during large work load change, resulting rise of variance of process noise Q. However,

kalman gain didn’t increase correspondingly, which approximates to 1/c due to ignorable

small value of variance of measurement noise R. Therefore, the responsiveness is restricted

due to small kalman gain.

By contrast, adaptive PI and fuzzy control can converge to target but with different

settling time, even though dynamics is nonlinear and time-varying. The settling time of

the system is the time from the change in input to when the measured response time is

sufficiently close to its steady-state value(as indicated by the light dashed lines). Figure 3.7

shows the settling time when workload changes at 60th intervals. Around 60th, adaptive PI

was disturbed from 58 to 65 experiencing 7 intervals to stabilize. By contrast, STFC only

spent 4 intervals. Situation is similar in other workload change period. On average, it takes

about 8 intervals for Adaptive PI to adapt to the change; on the contrary, it takes only 4

intervals for our STFC to cope with workload dynamics. The overshoot in fuzzy control is

smaller than adaptive PI. The advantages of STFC lies in the rule table, which explored

the nonlinearity of performance to resource allocation and considered the trend of error to

predict the right resource allocation.

The settling time can be reflected and accounted in the resource allocation. As shown

in figure 3.4(b), we can see that at change points of workload level, i.e. 60, 90, 120,150, these

methods allocated or reclaimed CPU resource to respond to such change. At the start of

each period of new workload, STFC can calculate appropriate resource required by the new

workload level after 1 to 3 intervals to converge the response time to desired value. On the

contrary, the resource was change by Adaptive PI slower than STFC, about after 6 to 10

intervals, resulting in slow response to workload dynamics.

32

Figure 3.6(b) draws the corresponding standard deviations of the controllers, which

can embody the settling time and overshoot to some extent. STFC performed best with

standard deviation of 27%, while ARMA still behaved worst with standard deviation as high

as 166%.

In conclusion, STFC outperforms other methods, which has the best stability, shortest

settling time, and minimum overshoot.

3.5 Summary

We have conducted extensive experiments to compare the performance of Adaptive

Fuzzy control against other three in terms of accuracy, stability and settling time. Our

experiments indicate that Adaptive fuzzy control has the best stability, shortest settling

time and minimum overshoot. The power is that not only does it explore the nonlinearity

of resource allocation to performance, but also it takes into consideration the trend of error

to estimate right resource allocation.

33

CHAPTER 4 DYNAMIC BALANCED CONFIGURATION OF

MULTI-RESOURCES

4.1 Introduction

One of the greatest advantages of IaaS is dynamic resource scaling. This feature

increases resource utilization by consolidation, while eliminates customers’ up-front venture

capital due to pay-as-you-go pricing model. Dynamic resource configuration is required to

deal with workload dynamics produced by transient workload change, such as flash crowd

effects, and cloud dynamics because of the presence of interference among resident appli-

cations. From an IaaS provider’s point of view, the profit comes from two factors: service

level objectives (SLOs) it has committed in service level agreements (SLAs) and resource

expenditures it pays for [62]. In order to maximize the profit, the service provider must

minimize resource usages without compromising SLOs.

Resource optimization lies in whether it is able to find out a balanced configuration

that meets application SLOs without over-supply or under-supply of resources. For a physical

machine to work optimally, the capacities of all major components must be in balance by

manual configuration [22] [55] [27]. A balanced machine has the same computing time as the

I/O time [55]. The ideal state of balance is no less desirable for a virtual machine (VM) that

runs an application or an application tier than for a physical machine. A VM is balanced

when the incremental performance increase due to an incremental increase in the capacity of

each resource allocation is equal. A balanced VM will experience a bottleneck in the resource

that is reduced and bottlenecks across all other resources when one resource is increased. For

example, suppose a VM needs 100 VCPU cap, 1G memory, and 5M disk I/O to be balanced.

If memory is decreased to 0.5G, then it becomes the bottleneck. If VCPU cap is increased to

200, then memory and disk I/O may become the bottlenecks. The reason is that increasing

VCPU cap for a VM may cause augment of the working set, and vice versa. If the resulting

additional requirements for other types, such as memory or disk I/O bandwidth, are not met,

34

then QoS may be not improved particularly when they become bottlenecks. When a VM

experiences a bottleneck, it becomes imbalanced. In an imbalanced VM, the bottlenecked

resource limits application’s performance, while other resources are over-provisioned thus

wasted. A balanced configuration avoids bottlenecks that limit performance and makes

resource allocations well utilized. Therefore, a balanced configuration maximizes resource

utilization and efficiency.

Our objective is to balance multiple resources for VMs under the constraint of SLOs.

However, workload dynamics poses great challenges to balancing resources. First, it is not

easy to identify the over-provisioned or constrained resource type due to fluctuating workload.

Second, a balanced configuration may be imbalanced later because time-varying workload

results in time-varying resource requirements. The bottleneck may shift from one resource

type to another within a VM, or from one VM to another one in the extension of multi-tier

applications.

Moreover, capacity uncertainty caused by VMs interferences in the open shared en-

vironment [62] [65] [42] poses additional challenges to virtualized resources balancing. Even

if given the same workload intensity and mix over a period, a balanced configuration also

may be imbalanced at some point later within the period. The reason is that the capacity of

one resource changes (increases or decreases), or the capacities of several resources change

but with different extents. Even if with the same extent and configuration is still balanced,

performance level is not the same since capacities vary.

Performance in SLO is measured normally in two main metrics: response time and

throughput. In many interactive benchmarks, such as TPC-W, dynamic arrival rate is often

assumed to follow a Poisson distribution. Accordingly, throughput per time unit is similar

with same resource allocations. Compared with throughput, users are more concerned with

response time because it reflects the performance perceived by individual clients. Unlike

throughput, however, response time behaves nonlinearly with respect to resource allocations.

83

of network-intensive jobs either. NAO is a little worse than CANAL, attributing to the fact

that it only considers network contention.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

E
ffe

ct
iv

e
U

til
 (

%
)

Epoch (20s)

Delay
Tetris
SRJF
LAO
NAO

CANAL

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140
In

ef
fe

ct
iv

e
U

til
 (

%
)

Delay
Tetris
SRJF
LAO
NAO

CANAL

Figure 5.9: Ineffective and effective network utilizations under different schedulers in simu-
lation.

Figure 5.10: Effective disk utilizations under different schedulers in simulation.

To investigate the reasons, we first have plotted both ineffective utilizations due to

off-rack input data and effective utilizations of network under all schedulers in Figure 5.9.

We can see that credit-sharing schedulers are able to enhance effective network utilization at

the first half of cluster scheduling because they schedule relatively short network-intensive

jobs. Moreover, they greatly reduce ineffective utilization. On one hand, the locality-aware

strategy in both CANAL and LAO avoids scheduling off-rack tasks because off-rack data

transfer degrades performance; on the other hand, the network-boosting strategy in CANAL

and NAO makes use of cluster switch effectively so that off-rack input data does not have

enough bandwidth. By contrast, non-credit-sharing schedulers have low effective utilizations

due to no such preference. Moreover, they result in high ineffective utilizations because

84

SRJF and Tetris cannot avoid off-rack data transfer, and Delay cannot optimize data locality

in a multi-resource cluster. At the second half, there is severe network contention due to

TeraSort jobs in bin 9 so the network utilization in credit-sharing schedulers is close to 100%.

However, non-credit-sharing schedulers cannot reach full network utilization due to off-rack

data transfer in Tetris and SRJF, and Delay schedule the job with least dominant share.

In the disk dimension, the effective utilizations are shown in Figure 5.10. Compared

with SRJF and Tetris, CANAL dynamically improves effective disk utilizations in the first

half of scheduling by up to 20% with no need of parameters. Delay scheduling cannot

maintain high effective disk utilizations in multi-resource environment by greedy data locality

policy. Two main factors are attributed to its worse performance compared with CANAL.

First, it cannot make use of the complementary disk demands of tasks. Second, the head-

of-queue job launches more non-local tasks because any of its preferred nodes does not have

enough available resources to accommodate any of its tasks. The disk utilizations of LAO

is close to CANAL since both use the same strategy. NAO can also have high utilizations

because the network-intensive jobs it accelerates are also disk-intensive.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900

C
D

F

Time beyond FJCT (s)

Tetris
SRJF
LAO
NAO

CANAL

Figure 5.11: CDFs of time beyond FJCT under different schedulers in simulation.

JCT vs. FairnessJCT vs. FairnessJCT vs. Fairness Figure 5.11 shows the CDFs of the amount of time that goes beyond

FJCT under different schedulers. We can see that Tetris and SRTF have 8% (16) and 3.5%

(7) jobs that surpasses over FJCT under DRF by more than 40s (twice of the average task

length), with the largest amount as 640s and 870s respectively. By contrast, credit-sharing

schedulers, including CANAL, LAO and NAO, greatly reduces both the number of jobs

85

 0.8

 0.9

 1

 1.1

 1.2

N
or

m
al

iz
ed

 M
ak

es
pa

n CANAL
DRF

Tetris
SRJF
LAO
NAO

(a) Makespan

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

Ef
fe

ct
iv

e
D

is
k

U
til

 (%
)

Epoch (20s)

Delay
Tetris
SRJF
LAO
NAO

CANAL

(b) Disk Util

Figure 5.12: Benefits of locality-aware packing.

that violate FJCT and the amount of time that exceeds beyond FJCT. Among the three,

CANAL has the minimal number of jobs, 2.5% (5) jobs, that exceeds FJCT, with the largest

amount as only 50s because it considers both network and locality. Credit-sharing schedulers

outperform the other two because they are guided by a theory that guarantees FJCT. In

practice, there is still a chance of missing FJCT because there is no node-local nodes or

lack of sufficient network bandwidth for transferring remote data for jobs that pass FJCT.

Unlike rigid demand for memory, network bandwidth is elastic. Scheduling the few jobs that

is about to pass FJCT even if the network is not sufficient, the number of jobs that violate

FJCT can be reduced to zero.

5.5.3 Benefits of Locality and Network Aware Packing

In this section, we demonstrate effectiveness of LAP and NAP in the particularly

designed experiments.

Benefit from LAPBenefit from LAPBenefit from LAP. LAP is the component in CANAL conducting the locality-aware

packing. To isolate the effect from network-aware scheduling, we selected the TeraGen, Pi

and RForest applications in the evaluation because none of them are network-intensive. Each

TeraGen job consisted of 400 map tasks, each Pi and RForest contained 100 map tasks. We

submitted 50 TeraGen, 50 Pi and 100 RForest jobs.

Figure 5.12(a) shows the makespan under different schedulers. The results are nor-

malized to the one under CANAL. Since there is no network effect, CANAL and LAO are

86

 0

 0.5

 1

 1.5

 2

 2.5

TeraGen Pi RForest

N
or

m
al

iz
ed

 a
ve

ra
ge

 J
C

T CANAL
Delay
Tetris
SRJF
LAO
NAO

(a) LAP

 0

 0.5

 1

 1.5

 2

 2.5

RWrite TeraSort

N
or

m
al

iz
ed

 a
ve

ra
ge

 J
C

T

CANAL
Delay
Tetris
SRJF
LAO
NAO

(b) NAP

Figure 5.13: Normalized JCT of LAP and NAP

reduced to the same scheduler. We can see that CANAL improves makespan by about 16%

over locality-oblivious schedulers except for NAO. Both NAO and Delay are only 1% worse

because the former applies the same Dynamic-Level to optimize effective disk utilization

as CANAL, the latter optimizes data locality. The performance of different schedulers are

reflected in the corresponding disk utilizations as shown in Figure 5.12(b). Figure 5.13(a)

shows the normalized JCT of each type of jobs under different schedulers. CANAL speeds

up TeraGen and RForest by 1.28-1.83 times compared with non-credit-sharing schedulers.

The speedup for Pi jobs is limited because Pi jobs are short due to small task demands.

Benefit from NAPBenefit from NAPBenefit from NAP. NAP module is responsible for network-aware packing. Accelerat-

ing NI jobs to have more available reduce tasks not only makes full use of network bandwidth

in highly over-subscribed clusters, but also improves network utilization in clusters with full-

bisection bandwidth network, such as fat-trees [11]. To demonstrate its effectiveness, we

limited the influence from data locality by running 80 RWrite and 20 TeraSort jobs. RWrite

does not require input data. Each RWrite contained 150 map tasks and each TeraSort

contained 600 map tasks.

Figure 5.14(a) shows the normalized makespan under different schedulers. We can

see that CANAL reduces makespan by 9%-25% over network-oblivious schedulers except for

LAO. LAO is only 5% worse because it also accelerates short network-intensive jobs based

on credit sharing. NAO is 6% worse because it does not consider data locality. The reason is

demonstrated as high effective network utilizations of credit sharing schedulers as shown in

Figure 5.14(b). Figure 5.13(b) shows the normalized JCT of each type of jobs under different

87

 0.8

 0.9

 1

 1.1

 1.2

 1.3

N
or

m
al

iz
ed

 M
ak

es
pa

n CANAL
DRF

Tetris
SRJF
LAO
NAO

(a) Makespan

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

Ef
fe

ct
iv

e
U

til
 (%

)

Epoch (20s)

Delay
Tetris
SRJF
LAO
NAO

CANAL

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

In
ef

fe
ct

iv
e

U
til

 (%
)

Delay
Tetris
SRJF
LAO
NAO

CANAL

(b) Network Util

Figure 5.14: Benefits of network-aware packing.

Table 5.9: Job type and size distribution in testbed

JobSize % # # of I/O(size) # of CPU(size)
1-2 55% 22 11 RForest(1) 11 Matrix(1)
3-20 14% 6 Kmean(15)
21-150 15% 4 TeraSort(120)
151-300 6% 2 RWrite(250)
301-500 4% 2 WCount(320)
> 500 8% 4 2 TeraSort(600) 2 TeraGen(600)

schedulers. CANAL speeds up jobs by up to 2.06 times compared with non-credit-sharing

schedulers. Compared with CANAL, SRJF improves RWrite jobs by 3% and slows down

TeraSort jobs by 5%.

5.5.4 Testbed Experiment

The job order was generated as before in the simulation. The number of jobs and

the mean inter-arrival time between jobs were adjusted to 40 and 14 seconds respectively. It

makes our submission schedule 560 seconds long. The number of running jobs, the number

of I/O-bound and CPU-bound jobs are listed in the fourth to sixth columns respectively in

Table 5.9.

Figure 5.15 shows the average JCT under different schedulers. The results are nor-

malized with respect to the performance under CANAL. Compared with Delay and Tetris,

CANAL accelerates jobs by up to 2.66 and 1.25 times respectively because it schedules

shorter jobs based on credit-sharing and network-intensive jobs (TeraSort) to avoid network

88

 0

 0.5

 1

 1.5

 2

 2.5

 3

RForest(1) Matrix(1) Kmean(15) TeraSort(120) RWrite(250) WCount(320) TeraSort(600) TeraGen(600)

N
or

m
al

iz
ed

 a
ve

ra
ge

 J
C

T
CANAL

Delay
Tetris
SRJF
LAO
NAO

Figure 5.15: Average JCT under different schedulers in Testbed.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

N
or

m
al

iz
ed

 M
ak

es
pa

n

CANAL
Delay
Tetris
SRJF
LAO
NAO

Figure 5.16: Makespan under different schedulers in Testbed.

contention. Compared with LAO, it improves jobs by up to 1.47 and 1.08 times respectively

at a little cost of slowing down jobs by up to 0.9 times because LAO does not avoid network

contention. The performance of NAO is very close to CANAL. Nevertheless, it leads to im-

provement of 1.04-1.10 times over NAO. Though SRJF speeds up NNI jobs, the NI jobs are

decelerated because it is not aware of network contention. Be contrast, CANAL improves

NI jobs by up to 1.09 times over SRJF.

Figure 5.16 shows the makespans by different schedulers. They are normalized to the

one under CANAL. We can see that CANAL reduces makespan by 5-21.5% over network-

oblivious schedulers and 9.7% over NAO. Tetris significantly degrades system efficiency be-

cause it is unaware of network contention that long jobs experience later and schedules short

jobs instead. Delay and SRJF are 12% and 7.7% worse than CANAL due to the same

problem. LAO performs similarly as Delay due to no acceleration of network-intensive jobs

either. NAO is 9% worse than CANAL because it only considers network contention.

89

5.6 Summary

In this paper, we present credit sharing policy for resolving conflicts among three dif-

ferent objectives: system efficiency, minimal JCTs and fairness. According to this policy, we

optimize both effective resource utilizations and JCTs while guaranteeing FJCTs. Network-

intensive jobs are further accelerated to improve JCTs and system efficiency in accordance

with CS policy. We designed CANAL and evaluated it in both trace-driven large-scal sim-

ulation and testbed implementation using representative benchmarks and compared it with

several schedulers. Experimental results show the advantages of CANAL in optimizing both

system efficiency and JCTs over other schedulers, particularly for network-intensive jobs.

CANAL also guarantees FJCTs resulting from DRF while other cannot. In the future, we

have following directions to work on: (1) extend CANAL to multi-stage jobs, such as DAG

jobs; (2) further improve the performance of DRF while satisfying the fairness requirement.

90

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

This dissertation aims to build an automatic resource management and performance

optimization system in clusters in order to guarantee application performance, improve sys-

tem efficiency and optimize completion times of individual jobs. In this chapter, we summa-

rize the approaches presented in this dissertation and point out directions for future work.

6.1 Conclusions

Cloud and cluster computing are two important computing paradigms. Although

they have gained adequate popularity today, there are still some key obstacles to large

scale adoption and deployment. Dynamic resource sharing and allocation is one of the top

challenges. The success of cloud and cluster computing severely depends on the effectiveness

and efficiency of automatic resource management and cluster scheduling strategies.

Automatic resource configuration is pivotal to the quality and availability of cloud

service. To satisfy SLOs for applications in cloud, we propose a novel adaptive fuzzy control

approach to allocate adequate CPU resources (no surplus). It is able to adapt resource alloca-

tions not only to the workload and cloud dynamics, but also provide response time guarantee

for applications. We have conducted extensive experiments to compare the performance of

Adaptive Fuzzy control against other three methods. Our results show that Adaptive fuzzy

control has the best stability, shortest settling time and minimum overshoot. The power is

that not only does it explore the nonlinearity of resource allocation to performance, but also

it takes into consideration the trend of error to estimate right resource allocation.

For the multi-resource configuration, we propose that IaaS should dynamically bal-

ance multiple virtualized resources across all tiers based on application SLOs. The SLOs are

defined in terms of response time. We present BConf, a QoS-aware framework for balanced

configuration of multi-resources that integrates model predictive control (MPC) and adap-

tive proportional integral control (adaptive PI). BConf takes advantage of MPC to actively

balance resources for co-hosted applications based on a novel resource metric. Both black-

91

box and gray-box models are developed to capture performance to resources relationship for

comparison. The gray-box model is built on generic OS-level metrics and hardware events

in addition to resource actuators and performance. The resource penalty is introduced to

measure the imbalanced degree of a configuration based on the model. It effectively punishes

decisions using an imbalanced configuration. Using the model and the metric, BConf dy-

namically balances resources by minimizing the resource penalty for each resident application

under the constraint of SLOs. Within the framework, constrained resources are arbitrated

in a coordinated way to effectively restrict propagation of configuration errors. Compared

with a representative resource partition approach, BConf reduces resource usages by up to

50%, improves stability by more than 35.6%, and has a much shorter settling time. BConf

effectively coordinates resources during resource contention. The saved resources can be used

either to pack more workloads, or to promote performance levels.

Modern cluster systems, such as Mesos and Yarn, provides fine-grain resource allo-

cation mechanism to satisfy heterogenous demands of various tasks. MapReduce remains

dominant parallel and distributed programming paradigm for applications to process big

data in clusters. It is one of the core technologies powering IT giants like Facebook. In

shared clusters, scheduling has three different objectives−system efficiency, fairness, and

minimal job completion times (JCT). In each pair of two objectives, one may conflict with

the other under state-of-the-art policies or strategies. To resolve the conflicts, we propose a

theorem-proof policy called credit sharing (CS) policy, that guarantees JCTs under DRF. It

recursively accounts for the credit that long jobs contribute to the short jobs, and short jobs

pay down or off their borrowed credit later in the process of execution or upon completions.

In addition to accelerating short jobs, the cluster scheduler is enabled to pack tasks of short

jobs, getting system efficiency nearly optimized since task demands of short jobs are in the

same magnitude as those of long jobs. Since a non-local task introduces a “new" non-local

fragment by wasting extra resources, we estimate the size of all the normal and non-local

fragments resulting from a packing. According to CS policy and the size of total fragment,

92

we present a method called Dynamic-Level for calculating the number of head jobs dynam-

ically that optimizes both the effective resource utilization and JCTs. To overcome the

stage-barrier, we monitor network and schedule additional tasks for some network-intensive

jobs by borrowing credit from long jobs based on CS policy. The packing scores of the addi-

tional tasks are dynamically adjusted and scheduled together uniformly with all other tasks

in Dynamic-Level. We conduct a detailed evaluation in both trace-driven simulation and

prototype implementation. Compared with the most competitive scheduler, we find that

CANAL significantly speed up jobs by up to 2.36 time, particularly for network-intensive

jobs, and reduce makespan by 7%. Moreover, each job under CANAL does not decelerate

compared with DRF.

6.2 Future Work

There are several directions and challenges along the line of this dissertation.

For a single-resource configuration, we currently tune CPU resource by adaptive fuzzy

control. It should be able to tune any other resource for any application. In the future, we

would like to apply it to data-intensive applications, such as MapReduce job.

For the multi-resource configuration, we consider resources as the only cost. Different

configurations may cause different energy consumptions. In the future, we would like to

extend the cost to the energy so as to save the cost of both resources and energy.

For the cluster scheduling, the credit sharing policy has big potential. It not only

unleashes the power of packing, but also guarantees the JCT under DRF. Current multi-

resource fairness−DRF, is instantaneous fairness. It not only degrades system efficiency by

resulting in large resource fragments, but also increases JCTs. Other policies are interval-

based fairness [79], or tradeoff between fairness and efficiency [51]. None of them assures

fairness. Based CS policy, we can realize result-oriented fairness that improves JCTs by

controlling the completion time of the last task of each job after their advanced execution.

The final completion of each job is thus the same as the packing version of DRF. We can

93

expect that the JCTs of network-intensive jobs can largely be reduced compared with DRF

while satisfying the essential envy-free feature of fairness.

94

REFERENCES

[1] https://en.wikipedia.org/wiki/Binomial_distribution.

[2] “Apache hadoop,” http://hadoop.apache.org.

[3] “Mysql.” [Online]. Available: http://www.mysql.com

[4] “The transaction processing council (tpc).” [Online]. Available: http://www.tpc.org/

tpcw

[5] “The transaction processing council (tpc).” [Online]. Available: http://www.tpc.org

[6] “Yarn capacity scheduler.” [Online]. Available: https://hadoop.apache.org/docs/

current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

[7] “Traces of google workloads,” http://code.google.com/p/googleclusterdata/, 2011.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,

B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,

“Tensorflow: A system for large-scale machine learning,” in Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’16.

Berkeley, CA, USA: USENIX Association, 2016, pp. 265–283. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3026877.3026899

[9] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,

“Re-optimizing data-parallel computing,” in Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation, ser. NSDI’12.

Berkeley, CA, USA: USENIX Association, 2012, pp. 21–21. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2228298.2228327

[10] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica, “Blinkdb:

Queries with bounded errors and bounded response times on very large data,”

in Proceedings of the 8th ACM European Conference on Computer Systems, ser.

EuroSys ’13. New York, NY, USA: ACM, 2013, pp. 29–42. [Online]. Available:

http://doi.acm.org/10.1145/2465351.2465355

http://www.mysql.com
http://www.tpc.org/tpcw
http://www.tpc.org/tpcw
http://www.tpc.org
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=2228298.2228327
http://doi.acm.org/10.1145/2465351.2465355

95

[11] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center

network architecture,” in Proceedings of the ACM SIGCOMM 2008 Conference on

Data Communication, ser. SIGCOMM ’08. New York, NY, USA: ACM, 2008, pp.

63–74. [Online]. Available: http://doi.acm.org/10.1145/1402958.1402967

[12] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. G. Greenberg, I. Stoica, D. Harlan,

and E. Harris, “Scarlett: coping with skewed content popularity in mapreduce clusters,”

in EuroSys, 2011, pp. 287–300.

[13] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker,

and I. Stoica, “Pacman: Coordinated memory caching for parallel jobs,” in Proceedings

of the 9th USENIX Conference on Networked Systems Design and Implementation,

ser. NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 20–20. [Online].

Available: http://dl.acm.org/citation.cfm?id=2228298.2228326

[14] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and

E. Harris, “Reining in the outliers in map-reduce clusters using mantri,” in Proceedings

of the 9th USENIX Conference on Operating Systems Design and Implementation, ser.

OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 265–278. [Online].

Available: http://dl.acm.org/citation.cfm?id=1924943.1924962

[15] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha, and

E. Harris, “Reining in the outliers in map-reduce clusters using mantri,” in OSDI, 2010.

[16] S. Babu, “Towards automatic optimization of mapreduce programs,” in SoCC, 2010,

pp. 137–142.

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in SOSP, 2003.

[18] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and I. Stoica,

“Hierarchical scheduling for diverse datacenter workloads,” in Proceedings of the 4th

Annual Symposium on Cloud Computing, ser. SOCC ’13. New York, NY, USA: ACM,

2013, pp. 4:1–4:15. [Online]. Available: http://doi.acm.org/10.1145/2523616.2523637

http://doi.acm.org/10.1145/1402958.1402967
http://dl.acm.org/citation.cfm?id=2228298.2228326
http://dl.acm.org/citation.cfm?id=1924943.1924962
http://doi.acm.org/10.1145/2523616.2523637

96

[19] T. Bonald and J. Roberts, “Multi-Resource Fairness: Objectives, Algorithms and

Performance,” in ACM Sigmetrics, ser. ACM Sigmetrics, Portland, United States,

2015. [Online]. Available: https://hal.inria.fr/hal-01243985

[20] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and

L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale computing,”

in Proceedings of the 11th USENIX Conference on Operating Systems Design and

Implementation, ser. OSDI’14. Berkeley, CA, USA: USENIX Association, 2014, pp.

285–300. [Online]. Available: http://dl.acm.org/citation.cfm?id=2685048.2685071

[21] E. F. Camacho and C. B. Alba, “Model predictive control,” in New York:Springer-

Verlag, 2004.

[22] C. Charles E., “Supercomputing-balancing resources,” in Spectrum, 1992.

[23] C.-L. Chen, “Ieee 802.11e edca qos provisioning with dynamic fuzzy control and cross-

layer interface,” in ICCCN, 2007.

[24] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “Hug: Multi-resource

fairness for correlated and elastic demands,” in Proceedings of the 13th Usenix

Conference on Networked Systems Design and Implementation, ser. NSDI’16.

Berkeley, CA, USA: USENIX Association, 2016, pp. 407–424. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2930611.2930638

[25] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior knowledge,”

in Proceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication, ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 393–406.

[Online]. Available: http://doi.acm.org/10.1145/2785956.2787480

[26] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing

data transfers in computer clusters with orchestra,” SIGCOMM Comput.

Commun. Rev., vol. 41, no. 4, pp. 98–109, Aug. 2011. [Online]. Available:

http://doi.acm.org/10.1145/2043164.2018448

https://hal.inria.fr/hal-01243985
http://dl.acm.org/citation.cfm?id=2685048.2685071
http://dl.acm.org/citation.cfm?id=2930611.2930638
http://doi.acm.org/10.1145/2785956.2787480
http://doi.acm.org/10.1145/2043164.2018448

97

[27] W. J. Dally, “A universal parallel computer architecture,” in New Generation Comput-

ing, 1993.

[28] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”

in OSDI’04: Sixth Symposium on Operating System Design and Implementation, San

Francisco, CA, 2004, pp. 137–150.

[29] ——, “Mapreduce: Simplified data processing on large clusters,” Commun.

ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online]. Available: http:

//doi.acm.org/10.1145/1327452.1327492

[30] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury, “Using mimo

feedback control to enforce policies for interrelated metrics with application to the

apache web server,” in In Proceedings of the Network Operations and Management

Symposium, Florence, Italy, 2002.

[31] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for spatial

data,” in in ICDE, 2015.

[32] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey: Guaranteed

job latency in data parallel clusters,” in Proceedings of the 7th ACM European

Conference on Computer Systems, ser. EuroSys ’12. New York, NY, USA: ACM,

2012, pp. 99–112. [Online]. Available: http://doi.acm.org/10.1145/2168836.2168847

[33] W. D. Frazer and A. C. McKellar, “Samplesort: A sampling approach to minimal

storage tree sorting,” J. ACM, vol. 17, no. 3, pp. 496–507, Jul. 1970. [Online].

Available: http://doi.acm.org/10.1145/321592.321600

[34] E. J. Friedman and S. G. Henderson, “Fairness and efficiency in processor sharing

protocols to minimize sojourn times,” 2002.

[35] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica,

“Dominant resource fairness: Fair allocation of multiple resource types,” in Proceedings

of the 8th USENIX Conference on Networked Systems Design and Implementation,

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/2168836.2168847
http://doi.acm.org/10.1145/321592.321600

98

ser. NSDI’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 323–336. [Online].

Available: http://dl.acm.org/citation.cfm?id=1972457.1972490

[36] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-min fair sharing for

datacenter jobs with constraints,” in Proceedings of the 8th ACM European Conference

on Computer Systems, ser. EuroSys ’13. New York, NY, USA: ACM, 2013, pp.

365–378. [Online]. Available: http://doi.acm.org/10.1145/2465351.2465387

[37] J. Gong and C.-Z. Xu, “vpnp: Automated coordination of power and performance in

virtualized datacenters,” in IWQoS, 2010.

[38] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for cloud

systems,” in CNSM, 2010.

[39] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-resource

packing for cluster schedulers,” in Proceedings of the 2014 ACM Conference on

SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 455–466.

[Online]. Available: http://doi.acm.org/10.1145/2619239.2626334

[40] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan, “Altruistic

scheduling in multi-resource clusters,” in Proceedings of the 12th USENIX

Conference on Operating Systems Design and Implementation, ser. OSDI’16.

Berkeley, CA, USA: USENIX Association, 2016, pp. 65–80. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3026877.3026884

[41] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “Graphene: Packing and

dependency-aware scheduling for data-parallel clusters,” in Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’16.

Berkeley, CA, USA: USENIX Association, 2016, pp. 81–97. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3026877.3026885

[42] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing performance isolation

across virtual machines in xen,” in Middleware, 2006.

http://dl.acm.org/citation.cfm?id=1972457.1972490
http://doi.acm.org/10.1145/2465351.2465387
http://doi.acm.org/10.1145/2619239.2626334
http://dl.acm.org/citation.cfm?id=3026877.3026884
http://dl.acm.org/citation.cfm?id=3026877.3026885

99

[43] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, “Feedback control of comput-

ing systems,” in IEEE Press/Wiley Interscience, 2004.

[44] J. L. Hellerstein, S. Singhal, and Q. Wang, “Research challenges in control engineering

of computing systems,” in Transactions on Network and Service Management, 6(4),

2009.

[45] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu, “Starfish:

A self-tuning system for big data analytics,” in CIDR, 2011, pp. 261–272.

[46] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker,

and I. Stoica, “Mesos: A platform for fine-grained resource sharing in the data

center,” in Proceedings of the 8th USENIX Conference on Networked Systems Design

and Implementation, ser. NSDI’11. Berkeley, CA, USA: USENIX Association, 2011,

pp. 295–308. [Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972488

[47] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed

data-parallel programs from sequential building blocks,” SIGOPS Oper. Syst.

Rev., vol. 41, no. 3, pp. 59–72, Mar. 2007. [Online]. Available: http:

//doi.acm.org/10.1145/1272998.1273005

[48] ——, “Dryad: Distributed data-parallel programs from sequential building blocks,”

SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72, Mar. 2007. [Online]. Available:

http://doi.acm.org/10.1145/1272998.1273005

[49] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg,

“Quincy: Fair scheduling for distributed computing clusters,” in Proceedings

of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, ser.

SOSP ’09. New York, NY, USA: ACM, 2009, pp. 261–276. [Online]. Available:

http://doi.acm.org/10.1145/1629575.1629601

[50] H. Jin, X. Yang, X.-H. Sun, and I. Raicu, “Adapt: Availability-aware mapreduce data

placement for non-dedicated distributed computing,” in ICDCS, 2012, pp. 516–525.

http://dl.acm.org/citation.cfm?id=1972457.1972488
http://doi.acm.org/10.1145/1272998.1273005
http://doi.acm.org/10.1145/1272998.1273005
http://doi.acm.org/10.1145/1272998.1273005
http://doi.acm.org/10.1145/1629575.1629601

100

[51] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource allocation: Fairness-

efficiency tradeoffs in a unifying framework,” IEEE/ACM Trans. Netw., vol. 21, no. 6,

pp. 1785–1798, Dec. 2013. [Online]. Available: http://dx.doi.org/10.1109/TNET.2012.

2233213

[52] C.-H. Jung, C.-S. Ham, and K.-I. Lee, “A real-time self-tuning fuzzy controller through

scaling factor adjustment for the steam generator of npp,” Fuzzy Sets Syst., vol. 74,

1995.

[53] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and self-configured cpu

resource provisioning for virtualized servers using kalman filters,” in ICAC, 2009.

[54] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, A. Choi, J. Erickson, M. Grund,

D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, H. Robinson,

D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-milne, and M. Yoder,

“Impala: A modern, open-source sql engine for hadoop,” in In Proc. CIDRâĂŹ15,

2015.

[55] H. Kung, “Memory requirements for balanced computer architectures,” in ACM

SIGARCH Computer Architecture News, 1986.

[56] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up

distributed machine learning using codes,” IEEE Transactions on Information Theory,

vol. 64, no. 3, pp. 1514–1529, March 2018.

[57] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff be-

tween computation and communication in distributed computing,” IEEE Transactions

on Information Theory, vol. 64, no. 1, pp. 109–128, Jan 2018.

[58] S. Li, S. Hu, S. Wang, L. Su, T. F. Abdelzaher, I. Gupta, and R. Pace, “WOHA:

deadline-aware map-reduce workflow scheduling framework over hadoop clusters,” in

ICDCS. IEEE Computer Society, 2014, pp. 93–103.

[59] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. Hellerstein, “Graphlab:

A new framework for parallel machine learning,” in In UAI, 2010.

http://dx.doi.org/10.1109/TNET.2012.2233213
http://dx.doi.org/10.1109/TNET.2012.2233213

101

[60] K. Morton, M. Balazinska, and D. Grossman, “Paratimer: A progress indicator for

mapreduce dags,” in Proceedings of the 2010 ACM SIGMOD International Conference

on Management of Data, ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp.

507–518. [Online]. Available: http://doi.acm.org/10.1145/1807167.1807223

[61] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad:

A timely dataflow system,” in Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, ser. SOSP ’13. New York, NY, USA: ACM, 2013, pp.

439–455. [Online]. Available: http://doi.acm.org/10.1145/2517349.2522738

[62] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing performance inter-

ference effects for qos-aware clouds,” in EuroSys, 2010.

[63] NIST, http://www.nist.gov/itl/iad/cloud-050212.cfm.

[64] S. Niu, J. Zhai, X. Ma, X. Tang, and W. Chen, “Cost-effective cloud hpc

resource provisioning by building semi-elastic virtual clusters,” in Proceedings of the

International Conference on High Performance Computing, Networking, Storage and

Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 56:1–56:12. [Online].

Available: http://doi.acm.org/10.1145/2503210.2503236

[65] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling i/o in virtual machine monitors,” in

VEE, 2008.

[66] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A. Mer-

chant, “Automated control of multiple virtualized resources,” in EuroSys, 2009.

[67] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and

K. Salem, “Adaptive control of virtualized resources in utility computing environ-

ments,” in EuroSys, 2007.

[68] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin, “Performance evaluation

of virtualization technologies for server consolidation,” in HP Labs, Tech. Rep. HPL-

2007-59, 2007.

http://doi.acm.org/10.1145/1807167.1807223
http://doi.acm.org/10.1145/2517349.2522738
http://doi.acm.org/10.1145/2503210.2503236

102

[69] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: locality-aware resource allo-

cation for mapreduce in a cloud,” in SC, 2011, p. 58.

[70] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond dominant resource fairness:

Extensions, limitations, and indivisibilities,” ACM Trans. Econ. Comput., vol. 3, no. 1,

pp. 3:1–3:22, Mar. 2015. [Online]. Available: http://doi.acm.org/10.1145/2739040

[71] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,

and I. Stoica, “Faircloud: Sharing the network in cloud computing,” in

Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, ser. SIGCOMM

’12. New York, NY, USA: ACM, 2012, pp. 187–198. [Online]. Available:

http://doi.acm.org/10.1145/2342356.2342396

[72] J. Rao, Y. Wei, J. Gong, and C. Xu, “Qos guarantees and service differentiation for

dynamic cloud applications,” IEEE Transactions on Network and Service Management,

vol. 10, no. 1, pp. 43–55, March 2013.

[73] J. Rao, X. Bu, and C.-Z. Xu, “A distributed self-learning approach for elastic provi-

sioning of virtualized cloud resources,” in MASCOTS, 2011.

[74] J. Rao, X. Bu, C.-Z. Xu, and L. Wang, “Vconf: A reinforcement learning approach to

virtual machines auto-configuration,” in ICAC, 2009.

[75] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “Dynaqos: Model-free self-tuning fuzzy control

of virtualized resources for qos provisioning,” in IWQoS, 2011.

[76] L. U. Rina Panigraphy, Kunal Talwar and U. Wieder, “Heuristics for vector bin pack-

ing,” in MSR Technical Report, 2011.

[77] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource scaling for

multi-tenant cloud systems,” in SOCC, 2011.

[78] I. Stoica, H. Zhang, and T. S. E. Ng, “A hierarchical fair service curve algorithm for

link-sharing, real-time and priority services,” in Proceedings of the ACM SIGCOMM

’97 Conference on Applications, Technologies, Architectures, and Protocols for

http://doi.acm.org/10.1145/2739040
http://doi.acm.org/10.1145/2342356.2342396

103

Computer Communication, ser. SIGCOMM ’97. New York, NY, USA: ACM, 1997,

pp. 249–262. [Online]. Available: http://doi.acm.org/10.1145/263105.263175

[79] J. Tan, L. Zhang, M. Li, and Y. Wang, “Multi-resource fair sharing for multiclass

workflows,” SIGMETRICS Perform. Eval. Rev., vol. 42, no. 4, pp. 31–37, Jun. 2015.

[Online]. Available: http://doi.acm.org/10.1145/2788402.2788408

[80] The dm-ioband bandwidth controller., http://sourceforge.net/apps/trac/ioband/wiki/dm-

ioband.

[81] Tomcat, http://tomcat.apache.org/.

[82] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,

T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,

B. Reed, and E. Baldeschwieler, “Apache hadoop yarn: Yet another resource

negotiator,” in Proceedings of the 4th Annual Symposium on Cloud Computing, ser.

SOCC ’13. New York, NY, USA: ACM, 2013, pp. 5:1–5:16. [Online]. Available:

http://doi.acm.org/10.1145/2523616.2523633

[83] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-

scale cluster management at google with borg,” in Proceedings of the Tenth European

Conference on Computer Systems, ser. EuroSys ’15. New York, NY, USA: ACM, 2015,

pp. 18:1–18:17. [Online]. Available: http://doi.acm.org/10.1145/2741948.2741964

[84] R. Wang, D. M. Kusic, and N. Kandasamy, “A distributed control framework for

performance management of virtualized computing environments,” in ICAC, 2010.

[85] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Maptask scheduling in

mapreduce with data locality: Throughput and heavy-traffic optimality,” IEEE/ACM

Trans. Netw., vol. 24, no. 1, pp. 190–203, Feb. 2016. [Online]. Available:

http://dx.doi.org/10.1109/TNET.2014.2362745

[86] Z. X. Wang W. and S. S., “Utilization and slo-based control for dynamic sizing of

resource partitions,” in Proc. of the 16th IFIP/IEEE Distributed Systems: Operations

and Management, 2005.

http://doi.acm.org/10.1145/263105.263175
http://doi.acm.org/10.1145/2788402.2788408
http://doi.acm.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2741948.2741964
http://dx.doi.org/10.1109/TNET.2014.2362745

104

[87] J. Wei and C.-Z. Xu, “eqos: Provisioning of client-perceived end-to-end qos guarantees

in web servers,” IEEE Transaction on Computer, vol. 55, 2006.

[88] Y. Wei and C. Xu, “Dynamic balanced configuration of multi-resources in virtualized

clusters,” in 2013 IEEE 21st International Symposium on Modelling, Analysis and

Simulation of Computer and Telecommunication Systems(MASCOTS), vol. 00, Aug.

2013, pp. 60–69. [Online]. Available: doi.ieeecomputersociety.org/10.1109/MASCOTS.

2013.14

[89] G. J. Woeginger, “There is no asymptotic ptas for two-dimensional vector packing,” in

Information Processing Letters, vol. 64:6, 1997, pp. 293âĂŞ–297.

[90] J. Wolf, Z. Nabi, V. Nagarajan, R. Saccone, R. Wagle, K. Hildrum, E. Pring,

and K. Sarpatwar, “The x-flex cross-platform scheduler: Who’s the fairest of

them all?” in Proceedings of the Middleware Industry Track, ser. Industry

papers. New York, NY, USA: ACM, 2014, pp. 1:1–1:7. [Online]. Available:

http://doi.acm.org/10.1145/2676727.2676728

[91] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S, “Yousif: Black-box and gray-box

strategies for virtual machine migration,” in NSDI, 2007.

[92] Xen, http://www.xen.org/.

[93] Xenoprof, http://xenoprof.sourceforge.net.

[94] P. Xiong, Z. Wang, S. Malkowski, Q. Wang, D. Jayasinghe, and C. Pu, “Economical

and robust provisioning of n-tier cloud workloads: A multi-level control approach,” in

ICDCS, 2011.

[95] C.-Z. Xu, J. Rao, and X. Bu, “Url: A unified reinforcement learning approach for auto-

nomic cloud management,” in Journal of Parallel and Distributed Computing (JPDC),

2012.

[96] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Delay

scheduling: a simple technique for achieving locality and fairness in cluster scheduling,”

in EuroSys, 2010, pp. 265–278.

doi.ieeecomputersociety.org/10.1109/MASCOTS.2013.14
doi.ieeecomputersociety.org/10.1109/MASCOTS.2013.14
http://doi.acm.org/10.1145/2676727.2676728

105

[97] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica,

“Delay scheduling: A simple technique for achieving locality and fairness in cluster

scheduling,” in Proceedings of the 5th European Conference on Computer Systems, ser.

EuroSys ’10. New York, NY, USA: ACM, 2010, pp. 265–278. [Online]. Available:

http://doi.acm.org/10.1145/1755913.1755940

[98] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing,” in Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation, ser. NSDI’12.

Berkeley, CA, USA: USENIX Association, 2012, pp. 2–2. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2228298.2228301

[99] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, “Improving mapre-

duce performance in heterogeneous environments,” in OSDI, 2008.

[100] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, and K. Shin., “What

does control theory bring to systems research,” in SIGOPS Operating Systems Review,

2009.

http://doi.acm.org/10.1145/1755913.1755940
http://dl.acm.org/citation.cfm?id=2228298.2228301

106

ABSTRACT

AUTOMATIC RESOURCE MANAGEMENT AND PERFORMANCE
OPTIMIZATION IN CLUSTERS

by

YUDI WEI

August 2019

Advisor: Dr. Cheng-Zhong Xu

Major: Computer Engineering

Degree: Doctor of Philosophy

Virtual machine is a primary way to increase resource utilizations in data centers by

encapsulating multi-resource demands for applications and providing performance isolation.

Moreover, the resource configuration can change on the fly to satisfy performance target.

Container is another popular way for fine-grained multi-resource allocation. In this disser-

tation work, we aim to design and implement an automatic resource management system

to improve application performance, optimize system efficiency and job completion times in

virtual and physical clusters respectively.

For large-scale applications hosted in data center, automatic resource configuration

is crucial to service availability and quality. The workload dynamics, cloud dynamics and

nonlinear relationship between resource allocation and response time requires an automatic

and effective resource allocation strategy. To improve the quality of application services

experienced by clients, we propose a novel adaptive fuzzy control approach to tune CPU

resource allocation for applications in cloud. It is able to adapt resource allocations not

only to the workload variations, but also provide response time guarantee for applications.

We have conducted extensive experiments to evaluate the performance, and compared it

against other three control methods in terms of stability, overshoot, settling time. Our

experiments indicate that Adaptive fuzzy control has the best stability, shortest settling

time and minimum overshoot.

107

Multi-resource configuration provides more space for optimizing resource combina-

tions. The optimization of resource efficiency and utilization has great significance to IaaS

providers. To this end, we propose a framework, BConf, for dynamic balanced configura-

tion of multi-resources for the provisioning of response time guarantee in virtualized clusters.

BConf employs an integrated MPC (model predictive control) and adaptive PI (proportional

integral) control approach (IMAP). MPC is applied to actively balance multiple resources

using a novel resource metric. For the performance prediction, a gray-box model is built on

generic OS and hardware metrics in addition to resource actuators and performance. We

find out that resource penalty is an effective metric to measure the imbalanced degree of a

configuration. Using this metric and the model, BConf tunes resources in a balanced way

by minimizing the resource penalty while satisfying the response time target. Adaptive PI

is used to coordinate with MPC by narrowing the optimization space to a promising region.

Within BConf framework, resources are coordinated during contention. Experimental results

with mixed TPC-W and TPC-C benchmarks show that BConf reduces resource usages by

about 50% and 30% for TPC-W and TPC-C respectively, improves stability by more than

35.6%, and has a much shorter settling time, in comparison with a representative partition

approach. The advantages of BConf in resource coordination are also demonstrated.

Modern cluster systems, such as Mesos [46] and Yarn [82], provides fine-grain resource

allocation mechanism to satisfy heterogenous demands of various tasks. Moreover, it sup-

ports diverse programming models, such as Map-Reduce and MPI. Jobs are transformed into

a set of tasks. In shared clusters, scheduling has three different objectives−system efficiency,

fairness, and minimal job completion times (JCT). In each pair of two objectives, one may

conflict with the other under state-of-the-art policies or strategies. To address the conflicts

among the three, we propose a simple theorem-proof policy, called credit sharing (CS) policy,

in online scheduling that guarantees the JCTs resulting from DRF. The policy allows short

jobs to borrow resource credit from long jobs as long as the long jobs later have enough

resource demand to consume the credit that short jobs pay down or off in the process of

108

execution or upon accelerated completions. In addition to accelerating short jobs, the power

of packing is unleashed for maximizing system efficiency by packing tasks of short jobs. In

multi-resource environment, preservation of data locality has evolved into optimization of

effective resource utilizations. Moreover, stage barrier of multi-stage jobs, such MapReduce,

may cause imbalanced utilization of network bandwidth in clusters. According to CS pol-

icy, we present CANAL (Credit sharing-oriented Network And Locality-aware scheduling)

in multi-resource clusters. We conduct a detailed evaluation in both trace-driven simulation

and prototype implementation. Compared with the most competitive scheduler, we find that

CANAL significantly speed up jobs by up to 2.36 time, particularly for network-intensive

jobs, and reduce makespan by 25%. Moreover, each job under CANAL does not decelerate

compared with DRF.

109

AUTOBIOGRAPHICAL STATEMENT

Yudi Wei is a Ph.D. candidate of Department of Electrical and Computer Engineering

at Wayne State University. She received the M.E. degree in Computer Science from Beihang

University, Beijing, China, in 2008.

She is a member of the Cloud and Internet Computing group. Her research interests

include cloud computing, distributed systems and cluster scheduling. She has published

several papers in conferences in these areas. She has also served as a peer reviewer for a few

conferences and journals. She is also a receiver of Travel Award for Excellence in Graduate

Student Research.

Besides the academic research, she served as a lab instructor for the undergraduate

courses Introducing Microcomputers and Digital Logic for six consecutive semesters and four

semesters respectively. She also worked as a teaching assistant for grading course Computer

Networking and the Internet in 2010 and 2012, and tutoring course Scalable Internet Services

and Architecture in 2011. She has been receiving excellent evaluations each semester from

her students.

