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INVITED ARTICLE 

Regression When There Are Two 
Covariates: Some Practical Reasons for 
Considering Quantile Grids 

Rand Wilcox 
University of Southern California 
Los Angeles, CA 
 
 
When dealing with the association between some random variable and two covariates, 
extensive experience with smoothers indicates that often a linear model poorly reflects the 
nature of the association. A simple approach via quantile grids that reflects the nature of 
the association is given. The two main goals are to illustrate this approach can make a 
practical difference, and to describe R functions for applying it. Included are comments on 
dealing with more than two covariates. 
 
Keywords: Robust methods, smoothers, interactions, trimmed means, binary data, 
regression trees 
 

Introduction 

A fundamental issue is determining whether two variables, (X1,X2), are associated 
with some dependent variable Y. And there is the related goal of gaining some 
insight into the nature of the association if one exists. Certainly, the best-known 
and most commonly used strategy is to assume  
 
  0 1 1 2 2 1 2,Y X X X X          (1) 

 
where λ(X1,X2) is some unknown function used to model heteroscedasticity and ϵ is 
some random variable with variance σ2 and E(ϵ) = 0. The null hypothesis to be 
tested is 
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 0 : 0jH     (2) 

 
for each j (j = 1,2) using the least squares regression estimator in conjunction with 
some method that allows heteroscedasticity. 

There are, however, concerns. First, the least squares regression estimator is 
not robust: outliers among the covariate values (leverage points) can result in 
estimates of the slopes that poorly reflect the nature of the association among the 
bulk of the participants. Moreover, outliers among the dependent variable Y can 
result in relatively poor power. Numerous methods have been derived aimed at 
dealing with these two concerns (e.g., Wilcox, 2017). 

Second, there is the issue of multicollinearity: a sufficiently strong association 
between the two explanatory variables can negatively impact power when testing 
(2). This remains the case even when using a robust regression estimator. There are 
inferential methods for dealing with this issue via a ridge estimator (e.g., Wilcox, 
2018, 2019) assuming that a linear model is reasonable. However, these methods 
are limited to making decisions about whether any of the independent variables are 
associated with the dependent variable. There is no known method, based on a ridge 
estimator, for making inferences about which slopes differ from zero. 

Third, the linear model given by (1) might provide a poor indication of where 
and how the two covariate variables are related to the dependent variable Y. One 
way of trying to justify a linear model is to test the hypothesis that a linear model 
is correct, which can be done using results stemming from Stute et al. (1998). The 
R function lintest in Wilcox (2017) applies this method. However, it is unclear 
when this approach will have enough power to detect a situation where a linear 
model is inadequate. Data from the Well Elderly 2 study (Clark et al., 2011) are 
used to illustrate this point. The basic goal was to assess the impact of an 
intervention program aimed at improving the physical and emotional wellbeing of 
older adults. The focus is on the association between a measure of meaningful 
activities (MAPA) and two covariates: a measure of life satisfaction (LSIZ) and the 
cortisol awakening response (CAR), which is the change in the cortisol level upon 
awakening and measured again 30-45 minutes later. Past studies (e.g., 
Bhattacharyya et al., 2008; Chida & Steptoe, 2009) indicate that measures of stress 
are associated with the CAR. The sample size is n = 246. Testing the hypothesis 
the linear model is correct, the p-value is 0.45. Least squares regression yields a 
significant association for LSIZ (p-value < 0.001) but not for the CAR (p-
value = 0.68). The HC4 method was used to deal with heteroscedasticity in 
conjunction with a projection-type method for dealing with leverage points (e.g., 
Wilcox, 2017, section 10.1.1). Switching to the Theil (1950) and Sen (1968) 
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estimator in conjunction with a percentile bootstrap method, again LSIZ is 
significant (p-value < 0.001) and CAR is not (p-value = 0.51).  

However, consider Figure 1, which shows an approximation of the regression 
surface using the smoother derived by Cleveland and Devlin (1988), which was 
applied via the R function lplot in Wilcox (2017). (Leverage points were 
removed.) Notice that for relatively high LSIZ scores, it appears that the CAR does 
indeed have little or no association with MAPA. But for relatively low LSIZ scores 
and CAR less than zero, CAR appears to play a role. Figure 1 raises the concern 
that an association might have been missed despite the fact that a test of the 
hypothesis that a linear model is correct failed to reject. Results reported later in 
this paper indicate that indeed this is the case. 
 
 

 
 
Figure 1. A smooth depicting the association between MAPA (a measure of meaningful 
activities) and two covariates, namely LSIZ (life satisfaction) and CAR (the cortisol 
awakening response). 
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The main goal is to deal with the third issue illustrated by Figure 1, but the 
approach discussed here is relevant to the first two issues as well. The basic strategy 
is very simple and has an obvious similarity to regression trees, which are described 
for example by Hastie et al. (2001). In particular, divide the data into groups based 
on quantile grids associated with the two explanatory variables and then apply some 
relevant method for comparing the resulting groups. Here, the choice of grids is 
based, in some situations, on a smooth as will be illustrated. This in contrast to 
regression trees where splits are made based on a variation of the least squares 
method. Another difference is that the goal is not to simply predict the typical value 
of the dependent variable for points within a given region of the dependent 
variables. Bagging and random forests (e.g., James et al., 2017) based on regression 
trees, as well as smoothers (e.g., Wilcox, 2017), are better suited for this purpose. 
Rather, in addition to establishing an association, the goal is to characterize how 
regions compare in a simple and readily interpretable manner. For instance, for the 
data used in Figure 1, imagine that CAR and LSIZ are split at their medians. For 
low LSIZ scores, let θ1 and θ2 denote the median MAPA score for the low and high 
regions of the CAR. In a similar fashion, for high LSIZ scores, let θ3 and θ4 denote 
the median MAPA score for the low and high regions of the CAR. The question 
arises whether there is an interaction, meaning whether the data provide reasonably 
strong evidence that θ1 – θ2 ≠ θ3 – θ4. 

The general strategy of using quantile grids will be called method QS 
henceforth. The simplest version is to split the data based on the median of a single 
covariate. Another approach is to split the values for the dependent variables into 
four groups based on the medians of X1 and X2 resulting in a 2-by-2 ANOVA 
design. Of course, other quantiles might be used and each independent variable 
could be split based on several quantiles as well. For example, the first independent 
variable might be split into three groups based on the tertiles. An advantage of 
splitting the data based on two covariates is that interactions can be studied that are 
missed by splitting the data using a single covariate only. Henceforth, the focus is 
on splitting the data using both covariates. 

Obviously, QS loses the fine detail rendered by a smoother or a linear model 
when the linear model is correct. Moreover, when the linear model is correct, QS 
will have less power in terms of establishing an association. But when the linear 
model is incorrect, QS has the potential of detecting an association that is otherwise 
missed, and it can provide at least some detail about the nature of the association. 

There is an extensive literature on comparing measures of location using 
robust methods that deal with situations where Y has a skewed or heavy-tailed 
distribution (e.g., Wilcox, 2017). Roughly, robust methods refer to techniques that 
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are not substantially altered by a small change in a distribution. For example, a 
slight departure from normality should not destroy power. Methods based on means 
are not robust in part because the population variance is not robust. A slight shift 
away from a normal distribution can inflate the population standard deviation 
tremendously (e.g., Staudte & Sheather, 1990). Non-normality does not necessarily 
imply that methods based on means will have poor control over the probability of 
a Type I error, or have relatively low power. But it is well established that non-
normality can be a serious concern when, for example, distributions have different 
amounts of skewness or when dealing with situations where outliers tend to occur 
(e.g., Wilcox, 2017). 

There are in fact several variations of QS that might be used some of which 
are summarized here. The primary issue is whether using QS ever makes a practical 
difference. Several illustrations are provided indicating that the answer is yes. 
Clearly this is not always the case. But the reality is that a linear model can be 
highly inadequate in which case switching to QS might yield useful information. 

A related issue is dealing with situations where Y is binary. A logistic 
regression model is one way to proceed but experience with a smoother reveals that 
this approach can be misleading (e.g., Wilcox, 2017). There is an extensive 
literature on comparing independent groups when Y is binary (e.g., Storer & Kim 
2006; Beal, 1987; Kulinskaya et al., 2010). That is, again method QS can have 
practical value as illustrated later in this paper. 

Using A Trimmed Mean 

There are concerns about the robustness of both the population mean and the sample 
mean (e.g., Wilcox, 2017). The median deals with these issues, there are situations 
where the sample median provides substantially higher power than the mean, but 
there are situations where it trims too many values. The focus here is on a 
compromised amount of trimming: 20%. This is not to suggest that 20% trimming 
is always optimal. No measure of location is always optimal. In the event there is 
some reason for choosing some other measure of location, this is easily done for 
the situation at hand. 

Let Z1, …, Zn be any n observations. The γ-trimmed mean is 
 1 ( ) / 2n g

i g iZ n g
   , where Z(1) ≤ ⋯	≤ Z(n) are the Z values written in ascending 

order and g is the greatest integer less than or equal to γn, 0 ≤ γ < 0.5. The 20% 
trimmed mean corresponds to γ = 0.2. 
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One approach to comparing two independent groups is to use a method 
derived by Yuen (1974). It is based in part on the Winsorized values. The γ 
Winsorized values W1, …, Wn corresponding to Z1, …, Zn are computed as follows: 
 
 Wi = Z(g+1)  if Zi ≤ Z(g+1) 

 Wi = Zi  if Z(g+1) < Zi < Z(ng) 
 Wi = Z(ng) if Zi  Z(ng) 
 
The Winsorized variance is just the usual sample variance based on the Winsorized 
values. 

For two independent groups, let nj denote the sample size and let gj indicate 
the value of g (the number of observations trimmed from each tail) for the jth group 
(j = 1,2). Let jY  denote the trimmed mean and let 2

js  denote the Winsorized 

variance. The squared standard error of jY  is estimated with 
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is approximated with a Student’s t distribution with degrees of freedom 

 2
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Yuen’s test has been studied extensively (e.g., Wilcox, 2017, section 5.3). 

With 20% trimming, power is nearly the same as no trimming (using means) under 
normality. But of course, no single method dominates in terms of power. Theory 
and simulations indicate that under general conditions, the ability to control the 
probability of a Type I error increases as the amount of trimming increases. But 
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situations can be found where control over the Type I error probability is 
unsatisfactory when using Yuen’s method. This can occur when dealing with 
skewed distributions, there is heteroscedasticity, the minimum sample size is small, 
and the difference between the sample sizes is sufficiently large (e.g., Wilcox, 2017, 
section 5.3.2). This issue can be addressed by switching to a percentile bootstrap 
method. Even when the sample sizes are equal, but small, a percentile bootstrap 
method might perform better than Yuen’s method. 

A percentile bootstrap method is applied as follows. First, generate a 
bootstrap sample from each group. That is, sample with replacement nj observations 
from group j. Based on these bootstrap samples, compute the difference between 
the trimmed means and label the result D. Repeat this process B times yielding 
D1, …, DB. Let A denote the number of D values less than zero and let p* = A/B. 
From Liu and Singh (1997), a (generalized) p-value is given by 2min{p*,1  p*}. 
Let D(1) ≤ … ≤ D(B) denote the D values written in ascending order. Then a 1  α 

confidence interval is     1 , uD D , where   = αB/2 rounded to the nearest integer 

and u = B   . When dealing with the median, a percentile bootstrap method 
performs very well and is currently the best method for dealing with tied values 
(Wilcox, 2006). Now p* = (A + 0.5C)/B, where C is the number of times a bootstrap 
sample from each group yielded the same value for the median. 

Consider where the data are split into four groups based on the medians 
associated with the two independent variables. Focus on whether there is an 
association between Y and the first covariate. For low values of the second 
covariate, the typical Y value corresponding to the two regions associated with the 
first covariate should be the same if there is no association. This can be described 
more formally as follows. For the random sample (YiXi,1, Xi,2) let K = {i:Xi,2 < M2} 
(i = 1, …, n), where Mj is the median based on the jth independent variable. Let 
K1 = {i:i  K & Xi,1 < M1} and K2 = {i:i  K & Xi,1  M1}. Let 11Y  and 21Y  denote 

the sample trimmed means based on Yi values, i  K1 and i  K2, respectively, and 
let μ11 and μ21 denote the corresponding population trimmed means. Then if the first 
independent variable has no association with Y, the null hypothesis 
 
 0 11 21:H     (3) 

 
is true. In a similar manner, let L = {i:Xi,2  M2}, L1 = {i:i  L & Xi,1 < M1} and 
L2 = {i:i  L & Xi,1  M1}. Let 12Y  and 22Y  denote the sample trimmed means 

based on Yi values, i  L1 and i  L2, respectively. Denote the corresponding 
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population trimmed means with μ12 and μ22. If the first independent variable has no 
association with Y, then 
 
 0 12 22:H     (4) 

 
is true. So rejecting either (3) or (4) indicates an association with the first 
independent variable and estimates of the trimmed means provide some sense about 
the nature of the association. A similar approach can be used to test the hypothesis 
that the second independent variable has no association. An interaction can be 
tested as well. That is, one can test 
 
 0 11 21 12 22:H         (5) 

 
using a simple extension of Yuen’s method or the percentile bootstrap method (e.g., 
Wilcox, 2017, sections 7.4.1 and 7.4.9). 

When testing (3) and (4), there is the issue of controlling the probability of 
one or more Type I errors. Here this issue is addressed using the method in 
Hochberg (1988). When testing at the α level, reject both hypotheses if the 
maximum of the corresponding p-values is less than or equal to α. If the maximum 
is greater than α, but the minimum is less than or equal to α/2, reject the 
corresponding hypothesis. When testing more than two hypotheses, p-values can 
be adjusted via Hochberg’s method with the R function p.adjust. 

This method is readily generalized to situations where data are split into 
groups based on other quantiles as well as multiple quantiles. Using multiple 
quantiles provides a more detailed understanding of the nature of any association 
at the expense of possibly less power due to smaller samples in each group. 
Controlling the familywise error rate via Hochberg’s method reduces power as 
well. But situations are encountered where this approach has practical value as will 
be illustrated. 

Dealing with Binary Data 

When Y is binary, method QS is readily adapted to this situation. Now the goal is 
to compare the probability of success corresponding to two independent binomial 
distributions. Many methods have been proposed for dealing with this goal (e.g., 
Wilcox, 2017, section 5.8). Here the focus is on the Storer and Kim (1990) method, 
which appears to perform relatively well in terms of both Type I errors and power. 
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Let r1 and r2 denote the number of successes, ˆ / ,j j jp r n  and let 

   1 2 1 2ˆ /p r r n n    be the estimate of the common probability of success 

assuming the null hypothesis H0 : p1 = p2 is true. For any integer uj, 0 ≤ uj ≤ nj, let 
vj = uj / nj and ajk = 1 if 1 2ˆ ˆj kv v p p   ; otherwise ajk = 0. The p-value is 

 
 ajkb(uj, n1, p̂ )b(uk, n2, p̂ ) 

 
where b is the binomial probability function. A negative feature of the Storer–Kim 
method is that a confidence interval is not readily computed. A method derived by 
Kulinskaya et al. (2008) performs relatively well in terms of computing a 
confidence interval at the possible expense of less power compared to the Storer–
Kim method. Interactions and other linear contrasts can be addressed using results 
in Zou et al. (2009). 

Based on prior simulation evidence, if the linear model is correct it performs 
better than QS in terms of power. As for a binary dependent variable, if the logistic 
regression model is correct, it performs better than QS as well. Situations exist 
where QS has more power than these parametric regression models. What is 
seemingly more important is determining whether QS ever makes a practical 
difference when dealing with data from a study. Also, there is the issue of 
developing software that makes method QS easy to use. 

Illustrations 

The first illustration is based on the data from Well Elderly 2 study shown in Figure 
1 and previously described. No association with the CAR was found using OLS 
with a linear model, p-value = 0.68. And the same was true using a robust 
regression estimator, p-value = 0.51. However, QS paints a different picture when 
both independent variables are split at their medians. In particular, testing at the 
0.05 level based on 20% trimmed means, the CAR has a signficant association with 
MAPA when LSIZ is less than its median value. The p-value is 0.014 and adjusting 
it via Hochberg’s method with the goal of controlling FWE for the two hypotheses 
being tested, now the p-value is 0.028. Moreover, an interaction is indicated, the p-
value is 0.012. Using instead the median of the MAPA scores, now the p-value is 
0.008. Roughly, if the CAR is negative (cortisol increases after awakening), there 
appears to be an association when LSIZ is relatively low. For LISZ greater than its 
median, again no association is found. 
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There is a method for testing for an interaction based on the generalized 
additive model (e.g., Wilcox, 2017, section 11.6.3). That is, a parametric model for 
an interaction is not used. Using the Kolmogorov version of this method, p-
value = 0.47. If the interaction is modeled using OLS and a linear model that 
includes the product of the independent variables, now the p-value is 0.26. One 
basic concern with this last approach is that in general it does not provide a 
sufficiently flexible way of modeling an interaction. Using QS, there is a significant 
interaction. 

Next, the same two independent variables are used again, and the dependent 
variable is taken to be a measure of perceived health. Again, both OLS and the 
Theil–Sen estimator find no association with the CAR, p-value = 0.46 and 0.25, 
respectively. However, using QS with median splits, again a significant association 
with the CAR is found when LSIZ is less than its median. 

The next illustration is based on a study dealing with kyphosis, a 
postoperative spinal deformity. The data are stored in the R variable 
rpart::kyphosis, which reports the presence or absence of kyphosis versus the age 
of the patient, in months, the number of vertebrae involved in the spinal operation, 
and a variable called start, which is the beginning of the range of vertebrae 
involved. The sample size is n = 81. Here the focus is on age and start. Using a 
logistic regression model, start is significant, (p-value < 0.001) but age is not (p-
value = 0.17). However, examination of a smooth (using the R function logSM in 
Wilcox, 2017) suggests that the association with age is not monotonic for low start 
values. Splitting start at its median, the p-value for age using QS is 0.039 for the 
lower values of start and 0.97 for the higher values. Splitting start based on an 
estimate of the 0.25 quantile, now for the lower start values the p-value for age is 
0.019. 

Efron et al. (2004) analyzed data dealing with diabetes, which are available 
via the R package lars. There were ten baseline variables: age, sex, body mass 
index, average blood pressure, and six blood serum measurements. The sample size 
is n = 442. The dependent variable was a measure of disease progression after one 
year. The focus is on using two independent variables, where the first is age and 
the second is any of the remaining independent variables. Using OLS, generally 
age is found to be significant at the 0.05 level when any other independent variable 
is included in the model with two exceptions: BMI and the fifth serum 
measurement. Using QS, for BMI scores above the median, the p-value for age is 
0.015, and it is 0.167 for BMI scores below the median. As for the fifth serum 
measurement it remains non-significant at the 0.05 level. The lowest p-value was 
0.078, which occurred for serum measures above the median. 
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Figure 2. Estimate of the probability of mild or worse depressive symptoms as a function 
of LSIZ and the CAR. 
 
 
 

Consider another example where splitting an independent variable at the 
median might miss an association. Returning to the Well Elderly study, one of the 
variables (CESD) measured depressive symptoms. A CESD score greater than 15 
is taken to be in indication of mild depression or worse. The goal here is to 
understand the association between LSIZ and the CAR in terms of P, the probability 
that CESD is greater than 15. Splitting both independent variables at their median, 
no association with the CAR is found. However, consider Figure 2, which shows a 
smooth of the regression surface based on the R function logSM previously 
mentioned. This plot suggests that for low LSIZ scores, P tends to be relatively low 
when the CAR is near zero, which is close to the median CAR value, 0.03. 
Moreover, P tends to increase as CAR moves away from its median. Based on this 
plot, it is not surprising that no association with the CAR is found when splitting 
the data based on the median CAR value. However, splitting data based on 
estimates of the 0.6 and 0.8 quantiles of the CAR, two significant results are 
obtained, both of which correspond to LSIZ scores between 6 and 19. The first 
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occurs where the first group corresponds to CAR values between 0.675 and 0.001 
versus the group where the CAR is between 0.11 and 0.41, p-value = 0.009. The 
second occurs where for the first group, the CAR values that are between 0.012 and 
0.107, and for the second group where CAR is between 0.11 and 0.40, p-
value = 0.003. 

Software 

R functions have seen written that perform method QS. The R function 
 
smtest(x,y,IV=1,Qsplit=.5,nboot=1000,est=tmean,tr=.2,PB=FALSE, 

xout=FALSE, outfun=outpro,SEED=TRUE,...) 

 
splits the data based on a single covariate and compares the measures of location 
indicated by the argument est. The argument x is a matrix with p columns, where p 
is the number of independent variables. The argument IV=1 indicates that a split 
will be made based on the first independent variable. Setting xout=TRUE, leverage 
points are removed via the function indicated by the argument outfun. PB=TRUE 
means that a percentile bootstrap method will be used. The number of bootstrap 
samples is controlled by the argument nboot. With PB = FALSE, Yuen’s method is 
used. Using est=median, or hd (for the Harrell-Davis estimator), a percentile 
bootstrap method is used automatically. For relatively light-tailed distributions, 
estimating the median with Harrell and Davis (1982) estimator might provide more 
power compared to using the usual sample median. The argument est indicates the 
measure of location, which defaults to a 20% trimmed mean. The amount of 
trimming is controlled by the argument tr. For binary data, use the R function 

 
smbin.test(x,y,IV=1,Qsplit=.5,method='SK',nboot=1000,xout=FALSE, 

outfun=outpro,SEED=TRUE,...) 

 
The argument method indicates which method will be used. The default is SK, which 
is the Storer—Kim method. To get confidence intervals, use method = 'KMS'. 

When splitting based on two independent variables, use the R function 
 

smgridRC (x, y, IV = c(1, 2), Qsplit1 = 0.5, Qsplit2 = 0.5, tr = 0.2, 

alpha = 0.05, PB = FALSE, est = tmean, nboot = 1000, pr = TRUE, 

method = "hoch", xout = FALSE, outfun = outpro, SEED = TRUE, ...). 
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The argument IV indicates which two covariates will be used. Qsplit1 (Qsplit2) 
indicates the quantile used to split the first (second) covariate. By default, the 
median is used. Qsplit1=c(0.33,0.67) for example would use the tertiles 
associated with the first independent variable. Again the amount of trimming is 
controlled by the argument tr. 

A portion of the output for the data used in Figure 1 looks like this: 
 
$Res.4.IV1      
 psihat  ci.lower  ci.upper  p.value  p.adjust  Est.1  Est.2 

[1,] ‐1.281377 ‐3.220148  0.6573951  1.917055e‐01 1.917055e‐01 33.02632 34.30769

[2,] ‐5.101832 ‐7.199571  ‐3.0040920 6.971174e‐06 1.394235e‐05 30.64103 35.74286

      
$Res.4.IV2      
 psihat  ci.lower  ci.upper  p.value  p.adjust  Est.1  Est.2 

[1,] 2.385290  0.4991086  4.2714717  0.01393357  0.02786714  33.02632 30.64103

[2,] ‐1.435165 ‐3.5796385 0.7093088  0.18637437  0.18637437  34.30769 35.74286

 
Consider the results labeled $Res.4.IV2. These are the results for the second 

covariate, which here corresponds to the CAR. The first line summarizes the results 
when the first covariate (LSIZ) has a value less than its median and the goal is to 
compare the two regions associated with the CAR. The estimate of the trimmed 
mean when the CAR is below its median is 33.03, and it is 30.64 when it is above 
its median. The difference between these to values is listed under psihat. The 
difference is significant at the 0.05 level, the p-value is 0.014. That is, the data 
indicate that for low LSIZ scores, typical MAPA scores are higher when the CAR 
is negative (cortisol increases after awakening). The value under p.adjust is the p-
value adjusted by Hochberg’s method. The values under ci.low and ci.upper 
indicate the lower and upper ends of the confidence for the difference between the 
population trimmed means. The second line reports results when LSIZ has a value 
greater than its median. Now the estimates of the trimmed means corresponding to 
low and high values for the CAR are 34.3 and 35.74, respectively; the difference is 
not significant at the 0.05 level. 

Now consider the results under $Res.4.IV1. The roles of LSIZ and CAR are 
reversed. The first line deals with comparing the two LSIZ regions given that CAR 
is below its median. The corresponding estimates of the trimmed means are 
33.02632 and 34.30769. The next line deals with the two LSIZ regions when the 
CAR values are greater than its median. This second line reports that the p-value is 
less than 0.001 indicating an association between LSIZ and MAPA when CAR is 
above its median. 
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The function also returns a summary of the regions of the covariate values 
that were used, including the largest and smallest value, the mean and the quartiles. 
Portions of the results look like this: 
 

$Independent.variables.summary[[1]] 

 
V1    V2 

Min.  : 6.0  Min.  : ‐0.67500

1st Qu. : 14.0 1st Qu.: ‐0.32941

Median : 16.0 Median : ‐0.19495

Mean  : 15.5 Mean  : ‐0.24584

3rd Qu. : 18.0 3rd Qu.: ‐0.08362

Max.  : 19.0 Max.  : ‐0.03673

 
The [[1]] at the end of the first line indicates that this is the first region where 

the values for both LSIZ and CAR are below their respective medians . Results 
under V1 are for the first covariate, LSIZ. As indicated, the scores range between 
6 and 19 and the CAR ranges between 0.675 and 0.03673. Results under 
$Independent.variables.summary[[2]], not shown here, summarize the LSIZ 
values below its median and CAR values above its median. If CAR were split based 
on its tertiles, $Independent.variables.summary[[2]], would summarize the 
values between of LSIZ less than its median and CAR values between the 0.33 and 
0.67 quantiles. Results under $Independent.variables.summary[[3]] would be for 
LSIZ less than its median and CAR values greater than the 0.67quantile. 

The plot in Figure 1 was created using default settings for the orientation. 
Note that based on Figure 1, it is difficult to tell that MAPA scores are higher for 
low CAR values, versus high CAR values, when the LSIZ scores are low. This is 
made clearer by rotating the plot resulting in Figure 3. This was done by setting the 
argument theta in the R function lplot to 120. (This function is contained in the R 
package WRS as well as the file Rallfun‐v35 described below.) 

The function sm.inter can be used to test for an interaction. For binary data, 
use smbin.inter. To perform all pairwise comparisons among the groups, use 
smgrid. The R function smbinRC is like the function smgridRC, only it is designed 
for situations where Y is binary. The functions described here are stored in the file 
Rallfun‐v35 and can be downloaded from https://dornsife.usc.edu/cf/labs/wilcox/ 
wilcox-faculty-display.cfm. 
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Figure 3. A rotated version of Figure 1 that better reveals how the typical MAPA score 
changes as the CAR increases. 
 
 

Conclusion 

A fundamental concern is that a linear model can be highly unsatisfactory. This is 
not always the case, but there is considerable evidence that a linear model can be 
misleading. One could test the hypothesis that a linear model is correct. But it is 
unclear when this approach will have enough power to detect a situation where the 
use of a linear model should be abandoned. Which method best reveals and 
describes an association depends in part on the nature of the association, which is 
unknown. It is not being suggested that method QS should be used to the exclusion 
of all other techniques. Rather, the suggestion is that QS is an option that can play 
a useful role when the more obvious parametric regression models are inadequate. 
The most basic version of QS is to split the independent variables at their median. 
But as previously indicated, this might not suffice; other quantiles might be more 
effective. 

As was illustrated, a smooth can be useful when determining where the 
independent variables might be split. Here the Cleveland and Devlin method was 
used in Figures 1 and 3, but another option is the running interval smoother in 
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Wilcox (2017), which can be used with any robust measure of location. Moreover, 
it provides a flexible way of capturing any interactions. The running interval 
smoother can be applied with the R function rplot, which is contained in the file 
Rallfun‐v35 previously mentioned. Here, rplot and lplot give similar results for 
the data used in Figures 1 and 3. But there are situations where lplot  can be 
misleading due to outliers associated with the dependent variable. Another 
suggestion is to always check on the impact of removing leverage points, outliers 
associated with the independent variables. This can be done by setting the argument 
xout=TRUE in the functions lplot and rplot. 

There remains the issue of how QS might be extended to p > 2 independent 
variables. One strategy is to simply use QS with a split on two of the independent 
variables, which can be done with the R function smgridRC. If there is an association 
among the independent variables, the splits on the two chosen independent 
variables will impact the values among the remaining independent variables that 
are included in the four groups. Another possibility is to use regions stemming from 
regression trees, but typically this results in a complex collection of regions that are 
difficult to characterize in a simple manner. This is not an argument against 
regression trees. Random forests, for example, have practical value given the goal 
of making predictions. 

A simpler method is to split the data based on some hyperplane associated 
with the independent variables. For example, a quantile regression estimator could 
be used where the first p  1 independent variables are used to predict the typical 
value for the pth independent variable. The resulting hyperplane could then be used 
to determine two regions among the points associated with the independent 
variables, namely points above or below the resulting hyperplane. These two groups 
could be split again using the same technique and then groups could be compared 
as previously described.  The R function reg.hyp.split performs this method. One 
concern is that it is unknown how to judge the extent a reasonably optimal split has 
been used. Moreover, a simple characterization of the association might be difficult. 
In summary, there are crude methods for dealing with p > 2 independent variables, 
but there is considerable room for improvement. 
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