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CHAPTER 1 INTRODUCTION

This dissertation is devoted to the study and applications of the second-order gener-

alized differentiation of piecewise linear-quadratic functions. Namely, we study the its

¯subclass that consists of functions θY,B(u) : Rm → R defined by

θY,B(u) := sup
y∈Y

{
〈y, u〉 − 1

2
〈y,By〉

}
, (1.1)

where Y := {x ∈ Rm|〈bi, x〉 ≤ αi, i = 1, 2, . . . , p} in Rm is a nonempty convex polyhedral

set and B is a symmetric, positive-semidefinite matrix in Rm×m.

The first goal of this thesis is to compute the second-order subdifferential of the func-

tions described above. The calculations in this part will be later applied in the study of the

stability of composite optimization problems known as extended nonlinear programming

associated with piecewise linear-quadratic functions.

The second goal of the dissertation is to study a remarkable class of optimization prob-

lems given in the following, formally unconstrained, composite format:

minimize ϕ(x) := ϕ0(x) + θ
(
Φ(x)

)
, x ∈ Rn, (1.2)

where ϕ0 : Rn → R is an original cost function and Φ: Rn → Rm is a constraint mapping,

both are twice differentiable at the reference points unless otherwise stated, and where

θ : Rm → R := (−∞,∞] is of the form (1.1) defined above.

Note that the unconstrained composite format (1.2) gives us a convenient representa-

tion of the constrained optimization problem to minimize the cost function ϕ0(x) subject

to the inclusion constraint Φ(x) ∈ Θ := {u ∈ Rm| θ(u) < ∞}. In particular, conventional

nonlinear programs (NLPs) with s inequality constraints and m − s equality constraints

described by C2-smooth functions can be written in the composite format (1.2), where

θ := δΘ is the indicator function of the polyhedron Θ := Rs
− × {0}m−s that is equal to 0 on

Θ and to∞ otherwise.

Problems of the ENLP type (1.2) with θ given by (1.1) were introduced by Rockafellar

[36] under the name of extended nonlinear programs (ENLPs). It has been realized over
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the years that ENLPs in this form provide a suitable framework for developing both theo-

retical and computational aspects of optimization in broad classes of constrained problems

that include stochastic programming, robust optimization, etc. The special expression

(1.1) for the extended-real-valued function θ, known as the dualizing representation or the

piecewise linear-quadratic penalty, is significant for the theory and applications of Lagrange

multipliers in the Karush-Kuhn-Tucker (KKT) systems associated with the ENLPs under

consideration.

It is not hard to check (see more details in Section 4.4) that KKT systems associated

with local optimal solutions to ENLPs are included in the following more general class of

variational systems of the subdifferential type

Ψ(x, λ) := f(x) +∇Φ(x)∗λ = 0, λ ∈ ∂θ
(
Φ(x)

)
with θ = θY,B, (1.3)

where f : Rn → Rn is a differentiable mapping while Φ: Rn → Rm is a twice differentiable

mapping in the classical sense [37, Definition 13.1(i)], where θY,B is taken from (1.1),

where ∗ indicates the matrix transposition/adjoint operator, and where ∂ stands for the

subdifferential of convex analysis.

In the second part of this thesis the multiplier criticality is studied systematically for

variational systems of type (1.3) with applications to KKT systems in ENLPs.

The notions of critical and noncritical multipliers were first introduced by Izmailov [9]

for the classical KKT systems corresponding to NLPs with equality constraints described by

C2-smooth functions. It has been realized from the very beginning that the presence of

critical multipliers plays a negative role in numerical optimization and is largely responsi-

ble for primal slow convergence in primal-dual algorithms of the Newtonian type. Further

strong developments in this direction for NLPs and related variational inequalities have

been done over the years, mainly by Izmailov, Solodov, and their collaborators; see, e.g.,

the book [10] and the survey paper [11], which is entirely devoted to critical multipli-

ers. The criticality definitions in the above publications are heavily based on the specific

structures of NLPs and related variational inequalities.
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In [32], Mordukhovich and Sarabi suggested new definitions of critical and noncritical

multipliers for a general class of subdifferential variational systems of type (1.3), where θ

may be even a nonconvex extended-real-valued function. The given definitions in [32] are

expressed via second-order generalized differential constructions of variational analysis

while reduced to those from [9, 10] for the classical KKT systems corresponding to NLPs.

Furthermore, for extended-real-valued convex piecewise linear (CPWL) functions θ in (1.3),

which include (1.1) when B = 0, the definitions of critical and noncritical multipliers are

expressed in [32] entirely in terms of the problem data with the subsequent characteriza-

tions of criticality and various applications to optimization and stability problems for such

systems.

The quite recent paper of the same authors [33] contains counterparts of some major

results from [32] with developing also novel issues on criticality for variational systems

described by

f(x) +∇Φ(x)∗λ = 0, λ ∈ NΘ

(
Φ(x)

)
, (1.4)

where f and Φ are the same as in (1.3), and where NΘ is the normal cone to a C2-cone

reducible set Θ ⊂ Rm. This framework covers, in particular, KKT systems associated with

general problems of (nonpolyhedral) conic programming; see, e.g., [1].

The main results in this dissertation extend those from [32], obtained for CPWL func-

tions θ, to the case of functions θY,B defined in (1.1), which form a major class of extended-

real-valued convex piecewise linear-quadratic functions in variational analysis; see [37] and

Section 2 below. At the same time, the new results obtained here are completely indepen-

dent from those derived for the variational system (1.4) in [32] in the case of nonpolyhe-

dral sets Θ therein.

The basic tools of first-order and second-order generalized differentiation employed in

this thesis are subdifferential developed by Mordukhovich and subgradient graphical deriva-

tive developed by Rockafellar; see [20, 37] and the references therein. Using these tools
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allows us to establish verifiable characterizations of noncritical multipliers in the general

setting of (1.3), to characterize the uniqueness of Lagrange multipliers in (1.3), to ensure

noncriticality for ENLPs via a new second-order optimality condition, which is employed in

turn to verify the important stability property of solutions to KKT systems that is known as

robust isolated calmness and is related to noncriticality. We also reveal a relationship be-

tween the isolated calmness and Lipschitz-like properties of solution maps for canonically

perturbed variational systems with the piecewise linear-quadratic term (1.1).

As mentioned above, the existence of critical multipliers is a negative factor in conver-

gence analysis, since it seems to prevent primal superlinear convergence of major primal-

dual algorithms. Thus it is crucial to find verifiable conditions, expressed entirely in terms

of the problem data in question, which ensure that critical multipliers corresponding to this

minimizer do not arise. It is conjectured in [21], based on preliminary results for NLPs,

that full stability of local minimizers in the sense of [15] rules out the appearance of critical

multiplies. This conjecture was verified in [32] for polyhedral problems of type (1.2) with

convex piecewise linear functions θ. Now we justify this conjecture in the general case of

ENLPs with piecewise linear-quadratic functions θY,B in form (1.1).

The dissertation is organized as follows. In Chapter 2 we present some definitions and

facts from variational analysis and generalized differentiation that are broadly employed

throughout the whole dissertation. Other variational constructions and results are recalled

in those places of the subsequent sections where they are actually used.

Chapter 3 presents calculations of the second-order subdifferential of piecewise linear-

quadratic functions (1.1). The main result in this chapter will be applied later in Sec-

tion 5.1.

Chapter 4 contains basic definitions of critical and noncritical multipliers for variational

systems (1.3) involving piecewise linear-quadratic functions of type (1.1) with providing

equivalent descriptions, examples, and discussions. In Section 4.2 we obtain new results

on the relationship between the well-recognized calmness and isolated calmness properties
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of multiplier maps associated with the variational systems (1.3) with the piecewise linear-

quadratic term (1.1) and the uniqueness of Lagrange multipliers in such systems. This

is certainly of its independent interest, while the developed approach and results can be

viewed as the preparation to the subsequent characterizations of noncritical multipliers in

the variational systems under consideration.

Section 4.3 establishes major characterizations of noncritical multipliers for systems

(1.3) with θY,B taken from (1.1) via a novel semi-isolated calmness property for solution

maps to canonical perturbations of (1.3) and also via two new error bounds that are spe-

cific for the variational systems (1.3) with the piecewise linear-quadratic term (1.1).

Section 4.4 is devoted to noncritical multipliers in KKT systems associated with ENLPs

for which the results of the previous sections are automatically applied with the specifica-

tion of Ψ in (1.3) as the x-partial gradient of the appropriate Lagrangian. The main new

result here, that is characteristic to the optimization framework, is a novel second-order suf-

ficient condition for strict local minimizers, which also ensures that all the corresponding

multipliers are noncritical.

In Section 5.1 we justify, for the case of ENLPs from (1.2) and (1.1), the aforementioned

conjecture on excluding critical multipliers corresponding to a fully stable local minimizer

for the given ENLP. The proof of this result is based on characterizations of noncriticality

via semi-isolated calmness obtained in Section 4.3.

The last Section 5.2 provides applications of the developed characterizations of noncrit-

ical multipliers for the variational systems under consideration to the study of an important

stability property of solution maps to KKT systems associated with ENLPs. This property of

set-valued mappings has been recently recognized as robust isolated calmness. The results

obtained above allow us to characterize robust isolated calmness via the noncriticality and

uniqueness of Lagrange multipliers on one side and via the new second-order optimality

condition for ENLPs on the other. Finally, we characterize the Lipschitz-like/Aubin prop-

erty of solution maps to perturbed variational systems and establish its relationship with
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isolated calmness.
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CHAPTER 2 PRELIMINARIES FROM VARIATIONAL ANALYSIS

In this chapter we review basic notions of generalized differentiation in variational

analysis (see [37]) and then recall important facts that will be used later. The notation we 

use are standard in variational analysis; see [22, 37].

Given a nonempty subset Ω ⊂ Rd and a point z̄ ∈ Ω, its prenormal cone (also called the

regular or Fréchet normal cone) at z̄ ∈ Ω is defined as

N̂(z̄; Ω) :=
{
v ∈ Rm

∣∣∣ lim sup

u
Ω−→z̄

〈v, u− z〉
‖u− z‖

≤ 0
}
, z ∈ Ω, (2.1)

where the symbol u Ω−→ z̄ indicates that u → z̄ with u ∈ Ω. The (Mordukhovich) limiting

normal cone (or just normal cone) to Ω at z is defined via prenormal cone by

N (z̄; Ω) = NΩ(z̄) := 
{
v ∈ Rm

∣∣∣there exist zk 
Ω−→ z̄ and vk ∈ N̂ (zk; Ω) with vk → v as k →∞

}
.

(2.2)

A prenormal cone is always a closed and convex cone while a normal cone is a closed cone

but is usually nonconvex. If the set Ω is convex, two sets in (2.1) and (2.2) are the same

and both reduce to the classical normal cone of convex analysis defined as follows:

NΩ(z̄) :=
{
v ∈ Rn

∣∣ 〈v, z − z̄〉 ≤ 0 for all z ∈ Ω
}
. (2.3)

The (Bouligand-Severi) tangent/contingent cone TΩ(z) to Ω at z̄ is defined by

TΩ(z̄) :=
{
w ∈ Rd

∣∣∣ ∃ zk Ω−→ z̄, ∃αk ≥ 0 with αk(zk − z)→ w as k →∞
}
, (2.4)

where the symbol z Ω→ z̄ indicates that z → z̄ with z ∈ Ω. The critical cone to Ω at z̄ for

v̄ ∈ NΩ(z̄) is expressed via the tangent cone (2.4) as

KΩ(z̄, v̄) := TΩ(z̄) ∩ {v̄}⊥ (2.5)

with the notation {v̄}⊥ :=
{
w ∈ Rn| 〈w, v〉 = 0}.

Let ϕ : Rm → R be an extended-real-valued function. The epigraph of ϕ , denoted by

epiϕ, is the set epiϕ := {(x, y) ∈ Rm × R‖x ∈ domϕ, y ≥ ϕ(x)}. For z̄ ∈ domϕ, the basic
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subdifferential and singular subdifferential of ϕ at z̄ are given, respectively, by

∂ϕ(z̄) :=
{
v ∈ Rm

∣∣(v,−1) ∈ N
(
(z̄, ϕ(z̄); epiϕ)

)}
, (2.6)

∂∞ϕ(z̄) :=
{
v ∈ Rm

∣∣(v, 0) ∈ N
(
(z̄, ϕ(z̄); epiϕ)

)}
. (2.7)

If the function ϕ is convex, the basic subdifferential defined in (2.6) agrees with the subd-

ifferential of convex analysis defined as follows:

∂ϕ(z̄) :=
{
v ∈ Rn

∣∣ 〈v, z − z̄〉 ≤ ϕ(z)− ϕ(z̄) for all z ∈ Rn
}
, (2.8)

and ∂∞ϕ(z̄) = N(z̄; domϕ). Besides, for any set Ω one has

N(z̄; Ω) = ∂δ(z̄; Ω) = ∂∞δ(z̄; Ω), z̄ ∈ Ω,

where δΩ is the indicator function defined by δΩ(z) = δ(z; Ω) := 0 for z ∈ Ω and δ(z; Ω) :=

∞ otherwise.

Next we consider the second subderivative of ϕ at (x̄, ȳ), ȳ ∈ Rn, in the direction w̄ is

defined by

d2ϕ(x̄, ȳ)(w̄) := lim inf
t↓0
w→w̄

ϕ(x̄+ tw)− ϕ(x̄)− t〈ȳ, w〉
1
2
t2

. (2.9)

For a set-valued mapping F : Rn ⇒ Rp, define its domain and graph by, respectively,

domF :=
{
x ∈ Rn

∣∣ F (x) 6= ∅
}

and gphF :=
{

(x, y) ∈ Rn × Rp
∣∣ y ∈ F (x)

}
.

The limiting coderivative of F at x̄, ȳ) ∈ gphF is given by

D∗F (x̄, ȳ)(v) :=
{
u ∈ Rn

∣∣(u,−v) ∈ N
(
(x̄, ȳ); gphF

)}
, v ∈ Rp, (2.10)

and the graphical derivative of F at (x̄, ȳ) ∈ gphF is given by

DF (x̄, ȳ)(u) :=
{
v ∈ Rp

∣∣ (u, v) ∈ TgphF (x̄, ȳ)
}
, u ∈ Rn. (2.11)

In this thesis we also use another second-order generalized derivative of an extended-real-

valued convex function ϕ : Rn → R at z̄ ∈ domϕ for v̄ ∈ ∂ϕ(z̄) that is defined via the

graphical derivative (2.11) of the subgradient mapping ∂ϕ : Rn ⇒ Rn under the name of
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the subgradient graphical derivative by

D∂ϕ(x̄, z̄)(u) := D
(
∂ϕ
)
(z̄, v̄)(u), u ∈ Rn. (2.12)

  We now formulate the basic facts about the functions θY,B taken from (1.1) that are 

systematically exploited in this work. The proofs of these facts can be found in [37, Ex- 

amples 11.18, 13.23 and Theorem 13.40]. Recall that the horizon cone of a nonempty set

Y ⊂ Rm used below is defined by

Y ∞ := 
{
y ∈ Rm

∣∣ ∃ yk ∈ Y, ∃ λk ↓ 0 with λkyk → y
}
.

Recall also [37, Definition 10.20] that a function ϕ : Rn → R is piecewise linear-quadratic if

its domain dom ϕ can be represented as the union of finitely many convex polyhedral sets, 

relative to each of which ϕ(x) is given by an expression of the form 1
2 〈x, Ax〉 + 〈a, x〉 + α

for some scalar α ∈ R, vector a ∈ Rn, and n × n symmetric matrix A.

Theorem 2.1. (properties of piecewise linear-quadratic penalties). Let θY,B be defined

by (1.1). Then the following properties hold:

(i) The function θY,B is a proper and convex piecewise linear-quadratic with the domain

dom θY,B = 
(
Y ∞ ∩ ker B

)∗
.

(ii) The subdifferential (2.8) of θY,B is calculated by

∂θY,B(u) = arg max
y∈Y

{
〈y, u〉 − 1

2
〈y,By〉

}
= (NY +B)−1(u) u, ∈ Rm. (2.13)

(iii) Given any (z̄, λ̄) ∈ gph ∂θY,B, the second subderivative (2.9) is calculated by

d2θY,B(z̄, λ̄)(u) = 2θK,B(u) := sup
w∈K

{
2〈w, u〉 − 〈w,Bw〉

}
u, ∈ Rm, (2.14)

in the same form θK,B(u) as in (1.1) with the replacement of Y by critical cone K :=

KY (λ̄, z̄ − Bλ̄) defined via (2.5). Furthermore, the subgradient graphical derivative

(2.12) of θY,B at z̄ for λ̄ is represented as

D∂θY,B(z̄, λ̄)(u) = ∂θK,B(u), u ∈ Rm. (2.15)
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          CHAPTER 3 GENERALIZED DIFFERENTIATION OF PIECEWISE

LINEAR-QUADRATIC FUNCTIONS

This chapter consists of two sections. In the first section we compute the second-order

subdifferential of functions of the form (1.1). A calculation of its second-order subdiffer- 

ential can be found in [[37], Lemma 4.4], but the result is not formulated in terms of 

the problem initial data. In this chapter we will compute its second-order subdifferential 

completely in terms of the initial data, i.e. the polyhedral Y and the matrix B. The second

section of the chapter presents an application of the calculations in the first section.

3.1 Calculations of the Second-order Generalized Differentiation

For brevity in what follows we denote by θ the function θY,B. Assume that z̄ ∈ domθ.

We will compute the second-order subdifferential of θ of θ at z̄ relative to v̄ ∈ ∂θ(z̄) defined

by

∂2θ(z̄, v̄)(w) := D∗∂θ(z̄, v̄)(w). (3.1)

We will compute the cones N̂((z̄, v̄); gph∂θ) and N((z̄, v̄); gph∂θ) and then apply the def-

inition (2.10) to get the formula for the second-order subdifferential of θ at z̄ relative to

v̄.

Denote by K the set
{
J ⊂ I(v̄)|z̄ − Bv̄ ∈ cone{bi, i ∈ J}

}
, where I(v̄) is the set of

active constraints of the set Y given by I(v̄) :=
{
i ∈ {1, 2, . . . , p}

∣∣〈v̄, bi〉 = αi
}

. Since K is

a finite set, we may enumerate its elements and rewrite K as K = {J1, J2, . . . , Jl}, where

Jl := I(v̄). The following proposition gives a formula for the prenormal cone to the graph

gph∂θ at the point (z̄, v̄).

Proposition 3.1. The normal cone N̂
(
(z̄, v̄); gph∂θ

)
is calculated by the formula

N̂
(
(z̄, v̄); gph∂θ

)
=
{

(u,w) ∈ Rm × Rm|(u,Bu+ w) ∈ KY (v̄, z̄ −Bv̄)×A(z̄, v̄)
}
, (3.2)

where A(z̄, v̄) :=
l⋂

k=1

[
cone{bi, i ∈ I(v̄) \ Jk}+ span{bi, i ∈ Jk}

]
.

Proof. By the definition of active constraints, 〈v̄, bi〉 = αi if i ∈ I(v̄) and 〈v̄, bi〉 < αi if
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i /∈ I(v̄). Therefore there is a neighborhood U0 of v̄ such that 〈v, bi〉 < αi for all i /∈ I(v̄)

and for all v ∈ U0, which means i /∈ I(v). It follows from here that I(v) ⊂ I(v̄). Since

∂θ(z) = (NY + B)−1(z) by the formula (2.13), it is deduced from (z, v) ∈ gph∂θ that

z − Bv ∈ NY (v). If z̄ − Bv̄ /∈ NY (v) for some v close to v̄, we can choose a neighborhood

U(z̄, v̄) sufficiently small such that z − Bv /∈ NY (v) for all (z, v) ∈ U(z̄, v̄). Since there is a

finite number of normal cones NY (v) to Y at v, for all points (z, v) close to (z̄, v̄) it belongs

to gph∂θ if and only if z̄ − Bv̄ ∈ NY (v). Furthermore, for all vectors v sufficiently close

to v̄, we have that I(v) ⊂ I(v̄), and therefore NY (v) is one of the cones cone{bi, i ∈ J},

where J ⊂ I(v̄). It follows from the argument above that for (z, v) close enough to (z̄, v̄),

the inclusion (z, v) ∈ U(z̄, v̄) ∩ gph∂θ is equivalent to the system of inclusions I(v) ∈ K =

{J1, J2, . . . , Jl} and z −Bv ∈ NY (v). The definition of prenormal cone (2.1) yields

N̂
(
(z̄, v̄); gph∂θ

)
=

(u,w) ∈ Rm × Rm

∣∣∣∣∣∣ lim sup

(z,v)
gph∂θ−−−→(z̄,v̄)

〈(u,w), (z, v)− (z̄ − v̄)〉
‖z − z̄‖+ ‖v − v̄‖

≤ 0

 .

Denote by YJk the set {x ∈ Y |I(x) = Jk}, k = 1, 2, . . . , l. For any (u,w) ∈ N̂
(
(z̄, v̄); gph∂θ

)
one has

lim sup

(z,v)
gph∂θ−−−→(z̄,v̄)

〈u, z − z̄〉+ 〈w, v − v̄〉
‖z − z̄‖+ ‖v − v̄‖

≤ 0,

which is equivalent to

lim sup

v
YJ1

⋃
...

⋃
YJl−−−−−−−−−−→ v̄

z −Bv → z̄ −Bv̄

z −Bv ∈ NY (v)

〈u, z −Bv − z̄ +Bv̄〉+ 〈u,Bv −Bv̄〉+ 〈w, v − v̄〉
‖z −Bv − z̄ +Bv̄‖+‖Bv −Bv̄‖+‖v − v̄‖

≤ 0.

Denoting ȳ := z̄ − Bv̄, y := z − Bv and noticing that YJk
⋂
YJi = ∅, we deduce from the

above inequality that

lim sup

v
YJk−−−→ v̄

y → ȳ

y ∈ NY (v)

〈u, y − ȳ〉+ 〈Bu+ w, v − v̄〉
‖y − ȳ‖+‖Bv −Bv̄‖+‖v − v̄‖

≤ 0 for all k ∈ {1, 2, . . . , l}.
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Let NJk
Y := cone{bi, i ∈ Jk}. It is not hard to see that NY (v) = NJk

Y for all v ∈ YJk .

Furthermore, denoting by Y ′Jk the closure of the set Y Jk , the latter inequalities can be

rewritten as

lim sup

v
YJk−−−→ v̄

y
N

Jk
Y−−−→ ȳ

〈u, y − ȳ〉+ 〈Bu+ w, v − v̄〉
‖y − ȳ‖+‖Bv −Bv̄‖+‖v − v̄‖

≤ 0 for all k ∈ {1, 2, . . . , l}

or

(u,Bu+ w) ∈ N̂
(
(ȳ, v̄);NJk

Y × Y
′
Jk

)
for all k ∈ {1, 2, . . . , l}. (3.3)

Applying the Proposition 6.41 in [37] and noticing that all the sets under consideration

are convex, we have

N̂
(
(ȳ, v̄);NJk

Y × Y
′
Jk

)
= N̂

(
ȳ;NJk

Y

)
× N̂

(
v̄;Y ′Jk

)
= N

(
ȳ;NJk

Y

)
×N

(
v̄;Y ′Jk

)
It is deduced then that the inclusion (u,w) ∈ N̂((z̄, v̄); gph∂θ) is equivalent to the following

inclusion

(u,Bu+ w) ∈
l⋂

k=1

[
N(ȳ;NJk

Y )×N(v̄;Y ′Jk)
]
. (3.4)

Let us first find the normal cone N(ȳ;NJk
Y ). Since all sets NJk

Y are cones, one has

N(ȳ;NJk
Y ) = N(z̄ −Bv̄;NJk

Y )

= (NJk
Y )∗ ∩ {z̄ −Bv̄}⊥

= {〈bi, x〉 ≤ 0, i ∈ Jk} ∩ {z̄ −Bv̄}⊥

(3.5)

Now to findN(v̄;Y ′Jk), we first notice that Y ′Jk = clYJk , so the set Y ′Jk is locally closed around

v̄. Since YJk = {x ∈ Y |I(x) = Jk} = {x ∈ Y |〈bi, x〉 = αi if i ∈ Jk, 〈bi, x〉 < αi if i /∈ Jk}, it

follows that Y ′Jk = cl{x ∈ Y |I(x) = Jk} = {x ∈ Y |〈bi, x〉 = αi if i ∈ Jk, 〈bi, x〉 ≤ αi if i /∈ Jk}

and thus

N(v̄;Y ′Jk) = cone{bi, i ∈ I(v̄) \ Jk}+ span{bi, i ∈ Jk}. (3.6)
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Combining (3.5) and (3.6) yields the following calculations
l⋂

k=1

[
N(ȳ;NJk

Y )×N(v̄;Y ′Jk)
]

=
l⋂

k=1

[
N(z̄ −Bv̄;NJk

Y )

]
×
[ l⋂
k=1

N(v̄;Y ′Jk)

]

=

[ l⋂
k=1

{
〈bi, x〉 ≤ 0, i ∈ Jk

}
∩ {z̄ −Bv̄}⊥

]
×
[ l⋂
k=1

N(v̄;Y ′Jk)

]

=

[{
〈bi, x〉 ≤ 0, i ∈ I(v̄)

}
∩
{
z̄ −Bv̄

}⊥]× l⋂
k=1

N(v̄;Y ′Jk)

=
[
TY (v̄) ∩ {z̄ −Bv̄}⊥

]
×

l⋂
k=1

[
cone{bi, i ∈ I(v̄) \ Jk}+ span{bi, i ∈ Jk}

]
. (3.7)

Remembering that TY (v̄) ∩ {z̄ − Bv̄}⊥ is the critical cone to the set Y at v̄ for z̄ − Bv̄, the

formula (3.1) follows from (3.4) and (3.7) and the proposition is proved.

The next proposition establishes a formula for the tangent cone to the graph of the

subgradient mapping ∂ϕ at a point (z̄, v̄) in terms of the initial data, which are the set Y

and the matrix B.

Proposition 3.2. The tangent cone T
(
(z̄, v̄); gph∂θ

)
is given by

T
(
(z̄, v̄); gph∂θ

)
=
⋃l
k=1

{
(u,w)

∣∣ 〈bi, w〉 ≤ 0 ∀ i ∈ I(v̄)\Jk, 〈bi, w〉 = 0∀ i ∈ Jk,

u−Bw ∈ cone{bi, i ∈ Jk}+ span{z̄ −Bv̄}
}
.

(3.8)

Proof. By the definition of the tangent cone (2.4), we have

T
(
(z̄, v̄); gph∂θ

) 
= 
{

(u, w) ∈ Rm × Rm
∣∣there are (zj, vj) 

gp− h− ∂θ−→ (z̄, v̄) such that

αj ≥ 0 and αj
(
(zj, vj) − (z̄, v̄)

) 
→ (u, w) as j → ∞

}
It follows that a vector (u,w) ∈ Rm × Rm belongs to T

(
(z̄, v̄); gph∂θ

)
if and only if there
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exists a sequence {(zj, vj)} ∈ Rm × Rm that satisfies the system
(zj, v)

gph∂θ−−−→ (z̄, v̄)

αj(zj − z̄)→ u as j →∞

αj(vj − v̄)→ w as j →∞

Using the same notations as in the proof of the Propositon (3.1), it is not hard to see that

the above system can be rewritten as

vj
YJ1

⋃
...

⋃
YJl−−−−−−−→ v̄ as j →∞

zj −Bvj → z̄ −Bv̄ as j →∞

zj −Bvj ∈ NY (vj) for all j ∈ N

αj(zj − z̄)→ u as j →∞

αj(vj − v̄)→ w as j →∞

which is equivalent to the following assertion:

vj
YJk−−→ v̄

zj −Bvj
N
Jk
Y−−→ z̄ −Bv̄ as j →∞

αj(vj − v̄)→ w as j →∞

αj(zj − z̄)− αjB(vj − v̄)→ u−Bw as j →∞

for some k ∈ {1, . . . , l}.

It is followed from the above that for some k ∈ {1, . . . , l} we have
vj

YJk−−→ v̄

zj −Bvj
N
Jk
Y−−→ z̄ −Bv̄

αj
[
(zj −Bvj, vj)− (z̄ −Bv̄, v̄)

]
→ (u−Bw,w) as j →∞

This implies that (u,w) ∈ T
(
(z̄, v̄); gph∂θ

)
if and only if

(u−Bw,w) ∈
l⋃

k=1

T
(
(z̄ −Bv̄, v̄);NJk

Y × Y
′
Jk

)
. (3.9)

Since for all k ∈ {1, 2, . . . , l} both sets NJk
Y and Y ′Jk are convex, we may apply the formula

in [[37], Proposition 6.41] and obtain that (u,w) ∈ T
(
(z̄, v̄); gph∂θ

)
is equivalent to the
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inclusion

(u−Bw,w) ∈
l⋃

k=1

[
T (z̄ −Bv̄;NJk

Y )× T (v̄;Y ′Jk)
]
. (3.10)

Since T (v̄;Y ′Jk) = N(v̄;Y ′Jk)
∗, where N(v̄;Y ′Jk) = cone{bi, i ∈ I(v̄) \Jk}+ span{bi, i ∈ Jk} by

(3.6), one has

T (v̄;Y ′Jk) = N(v̄;Y ′Jk)
∗ =

{
y|〈bi, y〉 ≤ 0 if i ∈ I(v̄)\Jk, 〈bi, y〉 = 0 if i ∈ Jk

}
. (3.11)

Furthermore, it is deduced from NJk
Y = cone{bi, i ∈ Jk} that

T (z̄ −Bv̄;NJk
Y ) = N(z̄ −Bv̄;NJk

Y )∗

=
(
(NJk

Y )∗ ∩ {z̄ −Bv̄}⊥
)∗

=
(
{y|〈bi, y〉 ≤ 0, i ∈ Jk} ∩ {z̄ −Bv̄}⊥

)∗
=
(
{y|〈bi, y〉 ≤ 0, i ∈ Jk, 〈z̄ −Bv̄, y〉 = 0}

)∗
= cone{bi, i ∈ Jk}+ span{z̄ −Bv̄}

(3.12)

We can see from (3.10) that

T
(
(z̄, v̄); gph∂θ

)
=

l⋃
k=1

{
(u,w)|w ∈ T (v̄;Y ′Jk), u−Bw ∈ T (z̄ −Bv̄;NJk

Y )
}
,

which justifies (3.8) by taking into account (3.11) and (3.12). This completes the proof of

the propositon.

Now we prove the main result in this chapter, which is the formula for the normal cone

to the graph of the subgradient mapping. We will use all notations in the proofs of the

Propositions (3.1) and (3.8). Also, denote T JkY := {x ∈ Rm|〈bi, x〉 ≤ 0, i ∈ Jk}.

Theorem 3.3. The normal cone N
(
(z̄, v̄); gph∂θ

)
is calculated by the formula

N((z̄, v̄); gph∂θ) =
l⋃

k=1

{
(u,w) ∈ Rm×Rm|(u,Bu+w) ∈

[
T JkY ∩{z̄−Bv̄}

⊥]×span{bi, i ∈ Jk}}.
(3.13)

Proof. We will use the definition

N((z̄, v̄); gph∂θ) = Limsup

(z,v)
gph∂θ−−−→(z̄,v̄)

N̂((z, v); gph∂θ)
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to compute the normal cone to the graph of the subdifferential ∂θ at (z̄, v̄).

For each (z, v) denote by K(z, v) the set
{
J ⊂ I(v)|z −Bv ∈ cone{bi, i ∈ J}

}
. It follows

from the formula (3.1) that

N̂((z, v); gph∂θ) =
{

(u,w) ∈ Rm × Rm|(u,Bu+ w) ∈ KY (v, z −Bv)×A(z, v)
}
,

where KY (v, z −Bv) = TY (v) ∩ {z −Bv}⊥ and

A(z, v) =
⋂

J∈K(z,v)

(
cone{bi, i ∈ I(v) \ J}+ span{bi, i ∈ J}

)
.

Recall that in the proof of the Propositon (3.1) we deduce that (z, v) ∈ gph∂θ ∩ U(z̄, v̄) if

and only if I(v) ∈ K = {J1, J2, . . . , Jl} and z −Bv ∈ NY (v). Hence, the normal cone to the

graph of the subdifferential ∂θ at (z̄, v̄) can be rewritten as follows:

N((z̄, v̄); gph∂θ) =
l⋃

k=1

[
Limsup

(z, v)→ (z̄, v̄)

I(v) = Jk

z −Bv ∈ NY (v)

N̂((z, v); gph∂θ)
]

(3.14)

or

N((z̄, v̄); gph∂θ) =
l⋃

k=1

[
Limsup

(z, v)→ (z̄, v̄)

v ∈ YJk

z −Bv ∈ NJk
Y

N̂((z, v); gph∂θ)
]
. (3.15)

Since TY (v) = T JkY for all v ∈ YJk , applying the formula (3.1) gives us

N((z̄, v̄); gph∂θ) =
l⋃

k=1

(
Limsup

(z, v)→ (z̄, v̄)

v ∈ YJk

z −Bv ∈ NJk
Y

{
(u,w)|(u,Bu+w) ∈

[
T JkY ∩{z−Bv}

⊥]×A(z, v)
})
.

(3.16)
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We now prove that

Limsup

(z, v)→ (z̄, v̄)

v ∈ YJk

z −Bv ∈ NJk
Y

{
(u,w)|(u,Bu+ w) ∈

[
T JkY ∩ {z −Bv}

⊥]×A(z, v)
}

=
{

(u,w)
∣∣ (u,Bu+ w) ∈

[
T JkY ∩ {z̄ −Bv̄}

⊥]× span{bi, i ∈ Jk}}.
(3.17)

The "⊆" inclusion is obvious since for any (z, v) with I(v) = Jk and z − Bv ∈ NJk
Y the set

A(z, v) ⊂ span{bi, i ∈ Jk}. To prove the "⊇" inclusion, pick any (u0, w0) from the right

hand side of (3.17). For any set Jk ∈ K we can find a set of vectors {b1, b2, . . . , bq} ⊂

{bi, i ∈ Jk} such that cone{b1, b2, . . . , bq} = cone{bi, i ∈ Jk} = NJk
Y and cone{bi, i ∈ I} $

cone{b1, b2, . . . , bq} for any subset I $ {1, 2, . . . , q}. We may choose vectors zj and vj,

j ∈ N, so that vj ∈ YJk , zj−Bvj ∈ cone{b1, b2, . . . , bq} and zj−Bvj /∈ cone{bi, i ∈ I} for any

I $ {1, 2, . . . , q} and in addition zj − Bvj → z̄ − Bv̄ as j → ∞. It follows from the choice

of zj and vj that for any J ∈ K(zj, vj) one has

cone{bi, i ∈ J} = cone{b1, b2, . . . , bq} = cone{bi, i ∈ Jk},

and therefore

span{bi, i ∈ J} = span{b1, b2, . . . , bq} = span{bi, i ∈ Jk}.

Thus

A(zj, vj) =
⋂

J∈K(zj ,vj)

(
cone{bi, i ∈ Jk\J}+ span{bi, i ∈ J}

)
= span{bi, i ∈ Jk}

The latter equation yields{
(u,w)

∣∣ (u,Bu+ w) ∈
[
T JkY ∩ {zj −Bvj}

⊥]×A(zj, vj)
}

=
{

(u,w)
∣∣ (u,Bu+ w) ∈

[
T JkY ∩ {zj −Bvj}

⊥]× span{bi, i ∈ Jk}}. (3.18)

Since (u0, Bu0 +w0) ∈
[
T JkY ∩{z̄−Bv̄}⊥

]
× span{bi, i ∈ Jk} and (zj, vj)→ (z̄, v̄) as j →∞,

it is easy to find (uj, wj) with uj ∈ T JkY ∩ {zj − Bvj}⊥, Buj + wj ∈ span{bi, i ∈ Jk} and

(uj, wj) → (u0, w0) as j → ∞. By the definition of Limsup and the result in (3.18), we

deduce that (u0, w0) belongs to the left hand side of (3.17) and thus this formula is proved.
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Combining (3.17) with (3.16) justifies the formula (3.13) and thus completes the proof of

the theorem.

It is not hard to see that the result in the Theorem 3.3 together with the definition of

the second-order subdifferential gives us the following.

Theorem 3.4. The second-order subdifferential ∂2θ(z̄, v̄)(w) is calculated by

∂2θ(z̄, v̄)(w) =
l⋃

k=1

{
u ∈ Rm|(u,Bu− w) ∈

[
T JkY ∩ {z̄ −Bv̄}

⊥]× span{bi, i ∈ Jk}}. (3.19)

To end this chapter, we give two examples to illustrate the application of the formula

(3.19) in calculating the second-order subdifferential of functions θ of the form (1.1). All

results obtained are expressed in terms of the initial data, i.e. the set Y , the matrix B and

the given point (z̄, v̄).

Example 3.5. Consider the function θ from (1.1) where B := I is the 2× 2 identity matrix

and the set Y is the nonnegative orthant in R2, i.e.

Y = R2
+ :=

{
y = (y1, y2) ∈ R2

∣∣ y1 ≥ 0, y2 ≥ 0
}
.

It is easy to see that Y can be written in the form {y ∈ R2 |〈bi, y〉 ≤ 0, i = 1, 2}, where

b1 := (0,−1) and b2 := (−1, 0). The function θ now is as follows:

θ = θR2
+,I

(u) = sup
y∈R2

+

{
〈y, u〉 − 1

2
〈y, y〉

}
, u ∈ R2.

Let z̄ := 0 ∈ R2. By Theorem 2.1(ii) we have that v̄ ∈ ∂θ(z̄) if and only if z̄ − Bv̄ ∈

NR2
+

(v̄) = R2
− ∩ v̄⊥, which yields that v̄ = 0. It follows that the set of active constraints

I(v̄) = {1, 2} and K = {J1, J2, J3} with J1 := {1}, J2 = {2} and J3 = I(v̄) = {1, 2}. It is not

hard to check the following:

T J1
Y = {x ∈ R2 | 〈b1, x〉 ≤ 0} = R× R+, span{b1} = {0} × R,

T J2
Y = {x ∈ R2 | 〈b2, x〉 ≤ 0} = R+ × R, span{b1} = R× {0},

T J3
Y = {x ∈ R2 | 〈bi, x〉 ≤ 0, i = 1, 2} = R× R+, span{b1, b2} = Y × R2.
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Applying the formula (3.19) gives

∂2θ(0, 0)(w) =
{
u ∈ R2

∣∣ (u, u−w) ∈ (R×R+)× ({0}×R)∪ (R+×R)× (R×{0})∪Y ×R2},

which in the case w = 0 reduces to the set Y . Therefore, we have ∂2θ(0, 0)(0) = Y .

The next example considers a simple case where the matrix B is singular.

Example 3.6. Consider the initial data of (1.1) as follows:

Y := R2
+, B :=

1 0

0 0

 .

By Theorem 2.1(i), we obtain dom θY,B = R × R−. Since ∂θY,B(u) = (NY + B)−1(u) by

Theorem 2.1(iii), it is not hard to see ∂θ = ∂θY,B(0) = {0} × R+. Let v̄ := (0, 1) ∈ ∂θ(0). It

is clear that I(v̄) = {2}, therefore K = {J1}, where J1 = I(v̄) = {2}. It then yields that the

set T J1
Y = {x |〈b2, x〉 ≤ 0} and hence

∂2θ(z̄, v̄)(w) = ∂2θ(0, v̄)(w) =
{
u ∈ R2

∣∣ (u,Bu− w) ∈ (R+ × R)× (R× {0})
}
.

By the structure of the matrix B we see that for any w = (w1, w2) ∈ R2, the second-order

subdifferential ∂2θ(z̄, v̄)(w) =6 ∅ only if w2 = 0 and in this case ∂2θ(z̄, v̄)(w) = R+ × R.

3.2 Second-order Subdifferential and Full Stability in Constrained Optimization

This section concerns the two-parametric unconstrained optimization problems studied

¯in [[15]]. Namely, for a proper extended-real-valued function ϕ : Rm × Rd → R consider 

the following minimization problem

  minimize ϕ(x, w) − 〈p, x〉 over x ∈ Rm. (3.20)

Label the above problem as P (w, p). Recall that the point x ∈ Rm is a feasible solution to

P (w, p) if the value ϕ(x,w) is finite. Given (w̄, p̄), let x̄ be a feasible solution to the problem

P (w̄, p̄) and let γ > 0. Define the functions

mγ(w, p) := inf
‖x−x̄‖≤γ

{
ϕ(x,w)− 〈p, x〉

}
, (w, p) ∈ Rd × Rm (3.21)
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and

Mγ(w, p) := arg min
‖x−x̄‖≤γ

{
ϕ(x,w)− 〈p, x〉

}
, (w, p) ∈ Rd × Rm. (3.22)

We say that x̄ is a locally optimal soltion to P (w̄, p̄) if x̄ ∈ Mγ(w̄, p̄) for some small γ >

0. Furthermore, we say x̄ is a fully stable locally optimal solution to problem P (w̄, p̄) if

there is a number γ > 0 and neighborhoods W of w̄ and P of p̄ such that the mapping

(w, p) 7→ Mγ(w, p) is single-valued and Lipschitz continuous with Mγ(w̄, p̄) = {x̄} and the

function (w, p) 7→ mγ(w, p) is likewise Lipschitz continuous on W × P . This section of the

dissertation deals with the case the function ϕ(x,w) has the form

ϕ(x,w) := ϕ0(x,w) + θ(Φ(x,w)), (3.23)

where θ is of the form (1.1) and Φ(x,w) := (ϕ1(x,w), . . . , ϕm(x,w)). Assume that all the

functions ϕ0, ϕ1, . . . , ϕm are twice continuously differentiable around the point (x̄, w̄). We

also assume the LICQ condition at (x̄, w̄), i.e. the vectors ∇xϕ1(x̄, w̄), . . . ,∇xϕm(x̄, w̄) are

linearly independent. Let p̄ satisfy the stationarity condition

p̄ ∈ ∇xϕ0(x̄, w̄) +∇xΦ(x̄, w̄)∗∂θ(Φ(x̄, w̄)). (3.24)

Define the extended Lagrangian function for the problem P (w, p) when ϕ has the form

(3.23) as follows:

L(x,w, v) := ϕ0(x,w) + Φ(x,w)∗v − 1

2
〈v,Bv〉 with v ∈ Rm. (3.25)

The full stability of the problem P (w, p) defined in (3.20) has been studied in detail in

the paper [[31]]. The Theorem 7.3(ii) in this paper provides a sufficient condition for the

full stability of x̄ under the condition that the second-order derivative of the function ϑ is

0. This result can not be applied to our case when the function ϕ is of the form (3.23)

because of the structure (1.1) of the function θ. In what follows we deduce a necessary and

sufficient condition for the full stability of x̄ in the problem under consideration. Following

[[31], Theorem 7.3], determine the unique vector v̄ ∈ Rm from the equation

∇xΦ(x̄, w̄)∗v̄ = p̄−∇xϕ0(x̄, w̄). (3.26)
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Denote z̄ := Φ(x̄, w̄). It follows from the proof of this theorem that x̄ is a fully stable locally

optimal solution to P (w̄, p̄) if and only if the following holds

〈ξ,∇2
xxL(x̄, w̄, v̄)ξ〉+ 〈η,∇xΦ(x̄, w̄)ξ〉 > 0 if η ∈ ∂2θ(z̄, v̄)(∇xΦ(x̄, w̄)ξ), ξ 6= 0. (3.27)

Employing the formula for the second-order subdifferential in (3.19) the above condition

can be restated as follows:

〈ξ,∇2
xxL(x̄, w̄, v̄)ξ〉+ 〈η,∇xΦ(x̄, w̄)ξ〉 > 0 (3.28)

for all (η, ξ) satisfying the following:

(i) ξ 6= 0 and 〈η, z̄ −Bv̄〉 = 0,

(ii) there exists J ⊂ I(v̄) such that z̄ − Bv̄ ∈ cone{bi, i ∈ J}, 〈bi, η〉 ≤ 0 for all i ∈ J and

Bη −∇Φ(x̄, w̄)ξ ∈ span{bi, i ∈ J}.

The condition (3.28) obtained above is the necessary and sufficient condition for the

full stability of x̄. It is formulated in a form that can be checked using the initial data of

the problem, which makes the condition more applicable in practical.
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CHAPTER 4 MULTIPLIER CRITICALITY IN PIECEWISE

LINEAR-QUADRATIC SETTINGS

4.1 Equivalent Description of Criticality

  In this section we formulate the definitions of critical and noncritical multipliers cor- 

responding to stationary points of the variational system (1.3) with the piecewise linear- 

quadratic term (1.1), establish an equivalent description of criticality entirely via the given 

data of (1.3), and then present two examples illustrating the calculation of critical and 

noncritical multipliers for this setting.

Given a point x̄ ∈ Rn, define the set of Lagrange multipliers associated with x̄ by

Λ(x̄) :=
{
λ ∈ Rm

∣∣ Ψ(x̄, λ) = 0, λ ∈ ∂θY,B
(
Φ(x̄)

)}
. (4.1)

If (x̄, λ̄) is a solution to the variational system (1.3), we clearly get λ̄ ∈ Λ(x̄). Furthermore,

it is not hard to check that the inclusion λ̄ ∈ Λ(x̄) ensures that x̄ is a stationary point of

(1.3) in the sense that it satisfies the condition

  0 ∈ f (x̄) + ∂
(
θY,B ◦ Φ

)
(x̄). (4.2)

Suppose from now on that Λ(x̄) =6 ∅, which is ensured, e.g., by any constraint qualification

condition in problems of constrained optimization. The following definitions of critical and 

noncritical multipliers for (1.3), are just specifications of those from [32], given there for 

general variational systems with the subsequent implementation for the case of a convex 

piecewise linear function θ. It is worth noticing that the function θ from (1.1) with B = 0

is convex piecewise linear, namely its epigraph is a convex polyhedral set, and so can be 

covered by the results already established in [32]; however, when B =6 0, it is a convex

piecewise linear-quadratic function and requires different techniques to achieve similar 

results.

¯Definition 4.1. (critical and noncritical multiplies in variational systems). Let (x̄, λ)

¯be a solution to the variational system (1.3). We say that λ ∈ Λ(x̄) is a CRITICAL LAGRANGE
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MULTIPLIER for (1.3) corresponding to x̄ if there exists a nonzero vector ξ ∈ Rn such that

0 ∈ ∇xΨ(x̄, λ̄)ξ +∇Φ(x̄)∗D∂θY,B
(
Φ(x̄), λ̄

)(
∇Φ(x̄

)
ξ). (4.3)

A given multiplier λ̄ ∈ Λ(x̄) is NONCRITICAL for (1.3) corresponding to x̄ if the generalized

(1.1). Denotingfrom ¯ ¯z̄ := Φ(x̄) and K := KY (λ, z̄ − Bλ) via the critical cone (2.5), we 

equation (4.3) admits only the trivial solution ξ = 0.

  Applying the representations of Theorem 2.1 for the graphical derivative in (4.3) gives 

us an equivalent description of critical and noncritical multipliers from Definition 4.1, 

expressed entirely in terms of the initial data of (1.3).

Theorem 4.2. (equivalent description of criticality via piecewise linear-quadratic pen-

¯alties). Let (x̄, λ) be a solution to the variational system (1.3) with the term θY,B taken

have

¯that the multiplier λ corresponding tox̄ is critical for (1.3) if and only if the system
∇xΨ(x̄, λ̄)ξ +∇Φ(x̄)∗η = 0, 〈∇Φ(x̄)ξ −Bη, η〉 = 0,

∇Φ(x̄)ξ −Bη ∈ K∗, and η ∈ K
(4.4)

admits a solution (ξ, η) ∈ Rn × Rm with ξ 6= 0. Accordingly, λ̄ is a noncritical multiplier in

this setting if and only if we have ξ = 0 for any solution (ξ, η) to (4.4).

Proof. To achieve the claimed equivalencies, we require to calculate the graphical deriva-

tive D∂θY,B in (4.3) for the function θY,B given in (1.1). First we use formula (2.15) from

Theorem 2.1(iii), which yields

D∂θY,B(z̄, λ̄)
(
∇Φ(x̄)ξ

)
= ∂θK,B

(
∇Φ(x̄)ξ

)
.

On the other hand, the second expression of ∂θK,B in (2.13) of Theorem 2.1(ii) shows that

∂θK,B
(
∇Φ(x̄)ξ

)
=
(
NK +B

)−1(∇Φ(x̄)ξ
)
.

Putting these representations together, we arrive at

D∂θY,B(z̄, λ̄)
(
∇Φ(x̄)ξ

)
=
(
NK +B

)−1(∇Φ(x̄)ξ
)
. (4.5)

Picking further any vector η from the set on the left-hand side of (4.5) gives us therefore
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that η ∈ (NK+B
)−1(∇Φ(x̄)ξ) and so ∇Φ(x̄)ξ−Bη ∈ NK(η). Since K is a convex cone, the

latter inclusion is equivalent to the conditions

〈∇Φ(x̄)ξ −Bη, η〉 = 0, ∇Φ(x̄)ξ −Bη ∈ K∗, η ∈ K.

Finally, we substitute the obtained descriptions of η ∈ D∂θY,B(z̄, λ̄)(∇Φ(x̄)ξ) into (4.3) and

thus clearly verify both assertions of the theorem.

Next we present two examples, which demonstrate how to use the descriptions of The-

orem 4.2 to explicitly determine critical and noncritical multipliers and illustrate in this

way some characteristic features of multiplier criticality.

Example 4.3. (calculating critical and noncritical multipliers). Consider the multidi-

mensional case of (1.3) with θY,B from (1.1), where B = Im =: I is the m × m identity

matrix, and where the convex polyhedral set Y is the nonnegative orthant in Rm, i.e.,

Y = Rm
+ :=

{
y = (y1, . . . , ym) ∈ Rm

∣∣ yi ≥ 0 for all i = 1, . . . ,m
}
.

Thus the function θY,B from (1.1) reduces in this case to

θRm+ ,I(u) = sup
y∈Rm+

{
〈y, u〉 − 1

2
〈y, y〉

}
, u ∈ Rm.

For any x̄ ∈ Rn and z̄ := Φ(x̄), by Theorem 2.1(ii) we have that λ ∈ ∂θRm+ ,I(z̄) if and only

if z̄ − Bλ ∈ NRm+ (λ) = Rm
− ∩ λ⊥. Denoting z̄ − λ by λ̂, the latter inclusion is equivalent to

the following system of equations and inclusions:

λ+ λ̂ = z̄

〈λ, λ̂〉 = 0

λ ∈ Rm
+

λ̂ ∈ Rm
−

(4.6)

It is not hard to see that for each fixed x̄ and z̄ = Φ(x̄) this system has only one solution,

which implies that the set of Lagrange multipliers has at most one element.

We now give two specific examples of mappings f and Φ, where one has a noncrit-
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ical multiplier and the other has a critical multiplier. First, let f(x) := x and Φ(x) :=

(x1, 0, . . . , 0) ∈ Rm for all x = (x1, . . . , xn) ∈ Rn, and let x̄ := 0 ∈ Rn. Combining (4.6) with

the fact that Ψ(x̄, λ) = (λ1, 0, . . . , 0) ∈ Rn implies that the unique Lagrange multiplier is

λ̄ = 0. Then we calculate the critical cone K = KY (0, z̄) in Theorem 4.2 with z̄ = Φ(x̄) = 0

and its dual cone K∗ by, respectively,

K = TRm+ (0) ∩ {z̄}⊥ = Rm
+ and K∗ = span{z̄}+NRm+ (0) = Rm

− .

It follows from Theorem 4.2 that the unique Lagrange multiplier λ̄ = 0 is noncritical if and

only if the system of equations and inclusions

∇xΨ(x̄, λ̄)ξ +∇Φ(x̄)∗η = 0

〈∇Φ(x̄)ξ − η, η〉 = 0

∇Φ(x̄)ξ − η ∈ Rm
−

η ∈ Rm
+

admits the only solution pairs (ξ, η) ∈ Rn ×Rm with ξ = 0. Denoting ζ := ∇Φ(x̄)ξ − η, the

above system can be equivalently rewritten as

∇xΨ(x̄, λ̄)ξ +∇Φ(x̄)∗η = 0

∇Φ(x̄)ξ − η − ζ = 0

〈ζ, η〉 = 0

ζ ∈ Rm
−

η ∈ Rm
+ .

(4.7)

Since ∇xΨ(x̄, λ̄)ξ = ξ, ∇Φ(x̄)ξ = (ξ1, 0, . . . , 0) ∈ Rm, and ∇Φ(x̄)∗η = (η1, 0, . . . , 0) ∈ Rn for

any η = (η1, . . . , ηm) ∈ Rm, it can be easily checked that the latter system has the unique

solution pair (ξ, η) = (0, 0). This tells us that λ̄ = 0 is a noncritical multiplier.

Next we consider the case where Φ(x) := (x1, 0, . . . , 0) ∈ Rm as before while f(x) :=

(x1, . . . , xn−1, 0) ∈ Rn for all x = (x1, . . . , xn) ∈ Rn. Proceeding similarly to the previous
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case shows that λ̄ = 0 is the unique Lagrange multiplier with the same critical cone K.

In this setting we have ∇xΨ(x̄, λ̄)ξ = (ξ1, . . . , ξn−1, 0) ∈ Rn, and therefore system (4.7)

reduces to 

(ξ1, . . . , ξn−1, 0) + (n1, 0, . . . , 0) = 0

∇Φ(x̄)ξ − η − ζ = 0

〈ζ, η〉 = 0

ζ ∈ Rm
−

η ∈ Rm
+ .

It shows that all the pairs (ξ, η) with η = 0 and ξ = (0, . . . , 0, ξn) for ξn ∈ R are solutions

to the above system. Thus the multiplier λ̄ = 0 is critical. In Section 4.4 we revisit this

example in the optimization framework; see Example 4.9.

The next two-dimensional example presents a simple linear-quadratic variational sys-

tem of type (1.3) with θY,B from (1.1) such that a stationary point therein is associated

with both critical and noncritical Lagrange multipliers.

Example 4.4. (variational systems with both critical and noncritical multipliers cor-

responding to a given stationary point). Specify the data of (1.1) and (1.3) as follows:

Y := R2
+, B :=

1 0

0 0

 , f(x) := −x, and Φ(x) := (0, x2) for x ∈ R. (4.8)

Thus we have in (1.3) that Ψ(x, λ) = f(x) + ∇Φ(x)∗λ = −x + 2xλ2 for any x ∈ R and

λ = (λ1, λ2) ∈ R2. It follows from the Example 3.6 that ∂θY,B(0) = {0} × R+, and so

Λ(x̄) = {0} × R+ with x̄ := 0. Then for any λ = (λ1, λ2) ∈ Λ(x̄) we get λ1 = 0 and λ2 ≥ 0.

On the other hand, conditions (4.1) from Theorem 4.2 read now as

(2λ2 − 1)ξ = 0, 〈−Bη, η〉 = 0, −Bη ∈ K∗, η ∈ K.

This tells us that if λ2 6= 1
2
, the latter system admits only the solution ξ = 0, and thus the

obtained Lagrange multiplier λ is noncritical. In the case where λ2 = 1
2
, this system admits
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nontrivial solutions ξ, and so the Lagrange multiplier λ = (0, 
2
1 ) is critical.

4.2 Uniqueness of Lagrange Multipliers and Isolated Calmness

  This section is devoted to the study of uniqueness of Lagrange multipliers correspond- 

ing to given stationary points of the variational systems (1.3) with piecewise linear-quadra- 

               tic penalties (1.1). This issue is definitely of its own interest while seems to be independe- 

             

             

          

             

             

nt of multiplier criticality. However, the methods we develop for the uniqueness study a- 

nd the obtained conditions for it occur to be closely related to the subsequent characte- 

rizations of noncritical multiplies as well as their deeper understanding and specification.

First we recall some “at-point" (vs. “around/neighborhood") stability properties of set- 

valued mappings that have been recognized in variational analysis; see, e.g., [34, 22, 37]

with the references and commentaries therein.

It is said that a mapping F : Rn ⇒ Rm is calm at (x̄, ȳ) ∈ gphF if there exist a constant

` ≥ 0 and neighborhoods U of x̄ and V of ȳ such that

F (x) ∩ V ⊂ F (x̄) + `‖x− x̄‖B for all x ∈ U, (4.9)

where B stands for the closed unit ball of the space in question. If (4.9) is replaced by

F (x) ∩ V ⊂
{
ȳ
}

+ ` ‖x− x̄‖B for all x ∈ U, (4.10)

then the corresponding property is known as isolated calmness of F at (x̄, ȳ). If the gphF is

locally closed at (x̄, ȳ), the latter property admits the graphical derivative characterization

DF (x̄, ȳ)(0) = {0} (4.11)

known as the Levy-Rockafellar criterion; see the commentaries to [34, Theorem 4E.1].

Finally, F enjoys the robust isolated calmness property at (x̄, ȳ) if in addition to (4.10)

we have F (x)∩V 6= ∅. This name is coined quite recently [2], while the property itself has

been actually used in optimization over the years; see the discussions in [2, 32].

In this section we employ the calmness and isolated calmness properties for character-

izations of uniqueness of Lagrange multipliers in (1.3) with the piecewise linear-quadratic
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term (1.1). Robust isolated calmness is used in the last section of this dissertation.

Using the data of (1.3), consider the set-valued mapping G : Rn×Rm ⇒ Rn×Rm given

by

G(x, λ) :=

Ψ(x, λ)

−Φ(x)

+

 0

(∂θY,B)−1(λ)

 for all (x, λ) ∈ Rn × Rm. (4.12)

Then fix a point x̄ ∈ Rn and define the parameterized multiplier map Mx̄ : Rn × Rm ⇒ Rm

associated with x̄ by

Mx̄(p1, p2) :=
{
λ ∈ Rm

∣∣ (p2, p2) ∈ G(x̄, λ)
}
, (p1, p2) ∈ Rn × Rm. (4.13)

We have Mx̄(0, 0) = Λ(x̄) for the Lagrange multiplier set (4.1) of the unperturbed system

(1.3).

The next theorem characterizes uniqueness of Lagrange multipliers in variational sys-

tems (1.3) with the term θY,B from (1.1) via both calmness and isolated calmness proper-

ties of the multiplier map (4.13), which are equivalent to each other in this case and are

characterized in turn by a novel dual qualification condition.

Theorem 4.5. (characterizations of uniqueness of Lagrange multipliers in variational

systems). Let (x̄, λ̄) be a solution to the variational system (1.3) with θY,B taken from (1.1).

Then the following properties are equivalent:

(i) Λ(x̄) = {λ̄}.

(ii) Mx̄ is calm at
(
(0, 0), λ̄

)
and Λ(x̄) = {λ̄}.

(iii) Mx̄ is isolatedly calm at
(
(0, 0), λ̄

)
.

(iv) We have the dual qualification condition

D∂θY,B(z̄, λ̄)(0) ∩ ker∇Φ(x̄)∗ = {0}, (4.14)

where D∂θY,B(z̄, λ̄) is calculated by (4.5).

Proof. Denoting z̄ := Φ(x̄) as above, we begin with proving the equivalence (iii)⇐⇒(iv).

To proceed, observe that the graph of Mx̄ is closed and deduce from (4.11) that Mx̄ is
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isolatedly calm at ((0, 0), λ̄) if and only if DMx̄

(
(0, 0), λ̄

)
(0, 0) = {0}. It is not hard to check

that η ∈ DMx̄

(
(0, 0), λ̄

)
(0, 0) amounts to saying that η is a solution to the system 0

0

 ∈
 ∇Φ(x̄)∗η

0

+

 0

D(θY,B)−1(λ̄, z̄)(η)

 .
This tells us that η is a solution to the above system if and only if

η ∈ D∂θY,B(z̄, λ̄)(0) ∩ ker∇Φ(x̄)∗.

Combining these facts verifies the equivalence between conditions (iii) and (iv).

Next we show that (i)=⇒(iv). Assume on the contrary that the dual qualification con-

dition (4.14) fails while (i) holds, and so find an element

η ∈ D∂θY,B(z̄, λ̄)(0) ∩ ker∇Φ(x̄)∗ such that η 6= 0.

Since Ψ(x̄, λ̄ + tη) = 0 for any t > 0, we get from η ∈ D∂θY,B(z̄, λ̄)(0) and (2.15) that

η ∈ ∂θK,B(0), and hence −Bη ∈ NK(η) by Theorem 2.1(ii). Choosing t to be sufficiently

small and employing the Reduction Lemma from [34, Lemma 2E.4] ensure the existence

of a neighbored U of (0, 0) ∈ Rm × Rm such that

t(η,−Bη) ∈ [gphNK] ∩ U =
[
gphNY − (λ̄, z̄ −Bλ̄)

]
∩ U.

This in turn results in z̄ − Bλ̄ − tBη ∈ NY (λ̄ + tη), which yields by (2.13) the inclusion

λ̄ + tη ∈ ∂θY,B(z̄). Combining the latter with Ψ(x̄, λ̄ + tη) = 0 results in λ̄ + tη ∈ Λ(x̄).

However, we have η 6= 0 thus λ̄+ tη 6= λ̄ for any t > 0, which contradicts (i) and so verifies

the claimed implication (i)=⇒(iv).

To show further that the isolated calmness of Mx̄ at
(
(0, 0), λ̄

)
imposed in (iii) yields

(ii), it suffices to check that Λ(x̄) = {λ̄}. Indeed, the assumed isolated calmness allows us

to find a neighborhood O of λ̄ such that Mx̄(0, 0) ∩ O = {λ̄}, which tells us by the convex-

valuedness of Mx̄ that Mx̄(0, 0) = {λ̄}. Combining the latter with Mx̄(0, 0) = Λ(x̄) verifies

(ii). Since (ii) obviously implies (i), we complete the proof of the theorem.

The next example reveals that the dual qualification condition (4.14) is essential for
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the uniqueness of Lagrange multipliers in Theorem 4.5.

Example 4.6. (nonuniqueness of Lagrange multipliers under failure of the dual quali-

fication condition). Consider the variational system (1.3) with term (1.1), where Y andB

are taken from (4.8), while Φ: R2 → R2 is defined by Φ(x1, x2) := (x1, 0) and f : R2 → R2

is defined by f(x) = 0 for all x ∈ R2. It is shown in Example 4.4 that dom θY,B = R × R−.

Letting x̄ := (0, 0), we get by the direct calculation that

∂θY,B(x̄) = {0} × R+ and Ψ(x̄, λ) = ∇Φ(x)∗λ = (λ1, 0),

and so Λ(x̄) = {0} × R+, which is not a singleton.

Let us now show that the dual qualification condition fails in this setting. Having

ker∇Φ(x̄)∗ = {0} × R and choosing λ̄ := (0, 0) give us the critical cone

K = TY (λ̄) ∩
{

Φ(x̄)−Bλ̄
}⊥

= Y,

and so ∂θK,B(0, 0) = {0} × R+. Combining it with (2.15), we arrive at

¯∂θK,B(0, 0) ∩ ker ∇Φ(x̄)∗ = D∂θY,B(z̄, λ)(0, 0) ∩ ker ∇Φ(x̄)∗ = {0} × R+ =6 {(0, 0)},

which demonstrates the failure of the dual qualification condition (4.14).

4.3 Characterizations of Noncritical Multipliers

  In this section we derive major characterizations of noncritical multipliers for the piece- 

wise linear-quadratic variational systems (1.3) in terms of semi-isolated calmness and error 

bounds.

  Using the mapping G from (4.12), define the solution map S : Rn × Rm ⇒ Rn × Rm for 

the canonical perturbation of system (1.3) by

S(p1, p2) := 
{

(x, λ) ∈ Rn × Rm
∣∣ (p1, p2) ∈ G(x, λ)

}
.                         (4.15)

The property of semi-isolated calmness used in (4.17) was introduced in [32] for solu-

tion maps to general variational systems with a product structure of values as in (4.15).

The reader can see that for such mappings the semi-isolated calmness of the variational
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systems of type (1.3) occupies an intermediate position between the calmness and isolated

calmness.

In what follows we use the notation dist(x; Ω) for the distance between a point x ∈ Rn

and a set Ω ⊂ Rn, Bε(x) for the closed ball centered at x ∈ Rn with radius ε > 0, and

Pϕ(x) := argmin
{
ϕ(u) +

1

2
‖x− u‖2

∣∣∣ u ∈ Rn
}
, x ∈ Rn, (4.16)

for the proximal mapping Pϕ : Rn ⇒ Rn associated with a function ϕ : Rn → R.

Theorem 4.7. (major characterizations of noncritical multipliers in variational sys-

tems). Let (x̄, λ̄) be a solution to the variational system (1.3) with the piecewise linear-

quadratic term (1.1). Then the following conditions are equivalent:

(i) The Lagrange multiplier λ̄ is noncritical for (1.3) corresponding to x̄.

(ii) There exist numbers ε > 0, ` ≥ 0 and neighborhoods U of 0 ∈ Rn and W of 0 ∈ Rm

such that for any (p1, p2) ∈ U ×W the following inclusion holds:

S(p1, p2) ∩ Bε(x̄, λ̄) ⊂
[
{x̄} × Λ(x̄)

]
+ `
(
‖p1‖+ ‖p2‖

)
B. (4.17)

(iii) There exist numbers ε > 0 and ` ≥ 0 such that the error bound estimate

‖x− x̄‖+ dist
(
λ; Λ(x̄)

)
≤ `
(
‖Ψ(x, λ)‖+ dist

(
Φ(x); (∂θY,B)−1(λ)

))
holds for any (x, λ) ∈ Bε(x̄, λ̄) in terms of the inverse subdifferential of θY,B.

(iv) There are numbers ε > 0 and ` ≥ 0 such that the error bound estimate

‖x− x̄‖+ dist
(
λ; Λ(x̄)

)
≤ `
(
‖Ψ(x, λ)‖+ ‖Φ(x)− (PθY,B)(λ+ Φ(x))‖

)
(4.18)

holds for any (x, λ) ∈ Bε(x̄, λ̄) in terms of the proximal mapping PθY,B from (4.16).

Proof. Let us first verify that (ii) implies (i). Theorem 4.2 reduces it to proving that the

semi-isolated calmness property in (ii) ensures that for any solution (ξ, η) ∈ Rn × Rm to

the system (4.4) we have ξ = 0. Define (xt, λt) := (x̄+ tξ, λ̄+ tη) for all t > 0 and observe
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that

Ψ(xt, λt)−Ψ(x̄, λ̄) =
(
f(xt)− f(x̄)

)
+
(
∇Φ(xt)−∇Φ(x̄)

)∗
λ̄+ t∇Φ(xt)

∗η

= t∇f(x̄)ξ + o(t) + t
(
∇2Φ(x̄)ξ

)∗
λ̄+ t∇Φ(x̄)∗η + o(t)

= t
(
∇xΨ(x̄, λ̄)ξ +∇Φ(x̄)∗η

)
+ o(t) = o(t)

whenever t is sufficiently small. Letting p1t := Ψ(xt, λt) and using Ψ(x̄, λ̄) = 0, we deduce

from the last equality above that p1t = o(t). It follows in the similar way that

Φ(xt) = Φ(x̄) + t∇Φ(x̄)ξ + o(t) for all small t > 0.

Denoting further zt := Φ(x̄) + t∇Φ(x̄)ξ implies that

zt − Φ(xt) = o(t) as t > 0,

and therefore we get p2t = o(t) for p2t := zt − Φ(xt).

Let us now prove that (xt, λt) ∈ S(p1t, p2t) for t > 0 sufficiently small. Since p1t =

Ψ(xt, λt), we only need to verify by Theorem 2.1(ii) that

λt ∈ ∂θY,B(zt) = (NY +B)−1(zt), or equivalently zt −Bλt ∈ NY (λt). (4.19)

To proceed with checking (4.19), deduce from (4.4) that

η ∈ K = KY (λ̄, z̄ −Bλ̄) = TY (v̄) ∩ {z̄ −Bλ̄}⊥.

Denoting λt := λ̄ + tη and remembering that Y is a convex polyhedral set, we conclude

that λt ∈ Y for all t > 0 sufficiently small. Furthermore, it follows from (4.4) that

∇Φ(x̄)ξ −Bη ∈ K∗ = NY (λ̄) + R(z̄ −Bλ̄).

Thus there exist α ∈ R and w ∈ NY (λ̄) such that ∇Φ(x̄)ξ−Bη = α(z̄−Bλ̄) +w. Using this

together with (4.4) gives us the equalities

0 = 〈∇Φ(x̄)ξ −Bη, η〉 = α〈z̄ −Bλ̄, η〉+ 〈w, η〉 = 〈w, η〉.

Recall that NY (λ̄) = {
∑

i∈I(λ̄) βibi| βi ≥ 0}, where I(λ̄) stands for the set of active con-

straints in Y at λ̄. It allows us to deduce from the inclusion w ∈ NY (λ̄) that there are
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numbers βi ≥ 0 as i ∈ I(λ̄) such that w =
∑

i∈I(λ̄) βibi, and therefore∑
i∈I(λ̄)

βi〈bi, η〉 = 〈w, η〉 = 0.

Observe furthermore the relationships

zt−Bλt = Φ(x̄)+ t∇Φ(x̄)ξ−Bλ̄− tBη = z̄−Bλ̄+ t(∇Φ(x̄)ξ−Bη) = (1+ tα)(z̄−Bλ̄)+ tw,

where 1 + tα > 0 for small t > 0. Since both z̄ − Bλ̄ and w belong to NY (λ̄), it follows

that (1 + tα)(z̄ − Bλ̄) + tw ∈ NY (λ̄), and thus there is τit ≥ 0 for i ∈ I(λ̄) such that

zt − Bλt =
∑

i∈I(λ̄) τitbi. Noting that 〈zt − Bλt, η〉 = 0 and 〈bi, η〉 ≤ 0 for all i ∈ I(λ̄), we

deduce that

〈bi, η〉 = 0 for all i ∈ I(λ̄) with τit > 0. (4.20)

Let us now show that

τit = 0 if i ∈ I(λ̄) \ I(λt).

Suppose on the contrary that there is an index i0 ∈ I(λ̄) \ I(λt) for which τi0t > 0. This

means that 〈bi0 , λ̄〉 = αi0 and 〈bi0 , λt〉 < αi0. Therefore

〈bi0 , λ̄〉+ t〈bi0 , η〉 = 〈bi0 , λt〉 < αi0 ,

which in turn yields 〈bi0 , η〉 < 0, a contradiction with (4.20). Thus for all i ∈ I(λ̄) \ I(λt)

we get τit = 0 and hence arrive at

zt −Bλt =
∑
i∈I(λt)

τitbi ∈ NY (λt).

This verifies (4.19) and thus implies that (xt, λt) ∈ S(p1t, p2t). It now follows from the

assumed semi-isolated calmness (4.17) in (ii) that

‖ξ‖ =
‖xt − x̄‖

t
≤
`
(
‖p1t‖+ ‖p2t‖

)
t

,

which results in ξ = 0 by letting t ↓ 0. It tells us λ̄ is noncritical and hence justify the

implication (ii) =⇒ (i) of the theorem.

Next we prove the opposite implication (i)=⇒(ii). Assuming that the multiplier non-
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criticality in (i) holds, let us first verify the following statement.

Claim: There exist numbers ε > 0 and ` ≥ 0 and neighborhoods U of 0 ∈ Rn and W of

0 ∈ Rm such that for any (p1, p2) ∈ U ×W and (xp1p2 , λp1p2) ∈ S(p1, p2) ∩ Bε(x̄, λ̄) we have

‖xp1p2 − x̄‖ ≤ `
(
‖p1‖+ ‖p2‖

)
. (4.21)

To justify this claim, suppose on the contrary that (4.21) fails and thus for any k ∈ N

find (p1k, p2k) ∈ B1/k(0)× B1/k(0), k ∈ N, and (xk, λk) ∈ S(p1k, p2k) ∩ B1/k(x̄, λ̄) such that

‖p1k‖+ ‖p2k‖
‖xk − x̄‖

→ 0 as k →∞.

Denote tk := ‖xk − x̄‖ and deduce from the convergence above that p1k = o(tk) and p2k =

o(tk). Since θY,B is a convex piecewise linear-quadratic function, it follows from the proof

of [37, Theorem 11.14(b)] that gph ∂θY,B is a union of finitely many convex polyhedral

sets. This together with [34, Theorem 3D.1] and z̄ := Φ(x̄) ∈ dom ∂θY,B ensures the

existence of a number `′ ≥ 0 and a neighborhood O of z̄ such that for all z ∈ O∩dom ∂θY,B

we have

∂θY,B(z) ⊂ ∂θY,B(z̄) + `′ ‖z − z̄‖B. (4.22)

Suppose without loss of generality that zk := p2k + Φ(xk) ∈ O for all k ∈ N. Since

λk ∈ ∂θY,B(zk), there exist λ ∈ ∂θY,B(z̄) and b ∈ B such that λk = λ + `′ ‖zk − z̄‖ b. Using

this along with the classical Hoffman lemma, we find a number M ≥ 0 such that

dist
(
λk; Λ(x̄)

)
≤M

(
‖Ψ(x̄, λk)‖+ dist

(
λk; ∂θY,B(z̄)

))
≤M ‖Ψ(x̄, λk)−Ψ(xk, λk)‖+M ‖Ψ(xk, λk)‖+ `′ ‖zk − z̄‖

≤Mρ(1 + ‖λk‖) ‖xk − x̄‖+M ‖p1k‖+ `′ρ ‖xk − x̄‖+ `′‖p2k‖,

(4.23)

where ρ is a common calmness constant for the mappings f , Φ, and ∇Φ at x̄. Since Λ(x̄)

is closed and convex, for each k ∈ N there exists a vector µk ∈ Λ(x̄) for which

‖λk − µk‖
tk

≤Mρ(1 + ‖λk‖) +M
‖p1k‖
tk

+ `′ρ+ `′
‖p2k‖
tk

, k ∈ N.
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Thus we can assume without loss of generality that

λk − µk
tk

→ η̃ for some η̃ ∈ Rm.

By passing to a subsequence if necessary, it follows that

xk − x̄
tk

→ ξ as k →∞ with some 0 6= ξ ∈ Rn.

Due to µk ∈ Λ(x̄) and the discussions above we get the equalities

o(tk) = p1k = Ψ(xk, µk) = Ψ(xk, µk)−Ψ(x̄, µk) +∇Φ(xk)
∗(λk − µk)

= ∇xΨ(x̄, µk)(xk − x̄) +∇Φ(xk)
∗(λk − µk) + o(tk),

which lead us as k →∞ to the limiting condition

∇xΨ(x̄, λ̄)ξ +∇Φ(x̄)∗η̃ = 0, (4.24)

It further follows from (xk, λk) ∈ S(p1k, p2k) that λk ∈ ∂θY,B(zk), which is equivalent to

the inclusion zk − Bλk ∈ NY (λk) for each k ∈ N by Theorem 2.1(ii). Since Y is a convex

polyhedral set, the Reduction Lemma from [34, Lemma 2E.4]) tells us that

zk −Bλk − (z̄ −Bλ̄) ∈ NK(λk − λ̄)

for all k ∈ N sufficiently large, where K is the critical cone to Y at z̄ for z̄−Bλ̄ taken from

Theorem 2.1(iii). This along with Theorem 2.1(iii) brings us to the conclusions

λk − λ̄ ∈ ∂θK,B(zk − z̄) = D∂θY,B(z̄, λ̄)(zk − z̄), and so

λk − λ̄
tk

∈ D∂θY,B(z̄, λ̄)
(zk − z̄

tk

)
= ∂θK,B

(zk − z̄
tk

)
, (4.25)

which imply in turn that
zk − z̄
tk

∈ dom ∂θK,B. Since K is a convex polyhedral set, it follows

from Theorem 2.1(i) that θK,B is a convex piecewise linear-quadratic function. Thus [37,

Proposition 10.21] tells us that dom ∂θK,B = dom θK,B. Employing Theorem 2.1(i) ensures

that dom θK,B is a closed set. Combining it with the convergence
zk − z̄
tk

→ ∇Φ(x̄)ξ as

k →∞ yields

∇Φ(x̄)ξ ∈ dom ∂θK,B. (4.26)
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Since µk ∈ Λ(x̄), we get µk ∈ ∂θY,B(z̄) and, proceeding similarly to the proof of (4.25),

arrive at
µk − λ̄
tk

∈ ∂θK,B(0).

Furthermore, it follows from λ̄ ∈ Λ(x̄) and µk ∈ Λ(x̄) that λ̄ − µk ∈ ker∇Φ(x̄)∗. Using

(4.26) and arguing as in the proof of (4.22), we find `′ ≥ 0 and a neighborhood O of

∇Φ(x̄)ξ such that

∂θK,B(u) ⊂ ∂θK,B
(
∇Φ(x̄)ξ

)
+ `′ ‖u−∇Φ(x̄)ξ‖B

for all u ∈ O ∩ dom ∂θK,B. Employing the latter together with (4.25) leads us to the

relationships

λk − µk
tk

=
λk − λ̄
tk

+
λ̄− µk
tk

∈ ∂θK,B

(zk − z̄
tk

)
−
[
ker∇Φ(x̄)∗ ∩ ∂θK,B(0)

]
⊂ ∂θK,B(∇Φ(x̄)ξ) + `′

∥∥zk − z̄
tk

−∇Φ(x̄)ξ
∥∥B− [ ker∇Φ(x̄)∗ ∩ ∂θK,B(0)

]
.

This allows us to find, for all k ∈ N sufficiently large, a bk ∈ B such that

λk − µk
tk

− `′
∥∥zk − z̄

tk
−∇Φ(x̄)ξ

∥∥bk ∈ ∂θK,B(∇Φ(x̄)ξ)−
[

ker∇Φ(x̄)∗ ∩ ∂θK,B(0)
]
. (4.27)

We can see that the left-hand side of inclusion (4.27) converges as k →∞ to the vector η̃.

On the other hand, the right-hand side of this inclusion is the sum of two convex polyhedral

sets, and so is closed. This shows that η̃ satisfies to

η̃ ∈ ∂θK,B(∇Φ(x̄)ξ)−
[

ker∇Φ(x̄)∗ ∩ ∂θK,B(0)
]
. (4.28)

Thus we get vectors η ∈ ∂θK,B(∇Φ(x̄)ξ) and η′ ∈ ker∇Φ(x̄)∗ ∩ ∂θK,B(0), which provide the

representation η̃ = η − η′. It follows from the relationship (2.15) in Theorem 2.1(iii) that

η ∈ D∂θY,B(z̄, λ̄)(∇Φ(x̄)ξ). Furthermore, employing (4.24) tells us that

0 = ∇xΨ(x̄, λ̄)ξ +∇Φ(x̄)∗η̃ = ∇xΨ(x̄, v̄)ξ +∇Φ(x̄)∗η,

which contradicts the noncriticality of λ̄ due to ξ 6= 0 and thus completes the proof of the



37

claim.

To finalize verifying implication (i)=⇒(ii) in the theorem, take the neighborhoods U

and W from the above claim and shrink them if necessary for the subsequent procedure.

Using the claim and arguing similarly to the proof of the conditions in (4.23) give us a

constant `′ ≥ 0 such that for any (p1, p2) ∈ U×W and any (xp1p2 , λp1p2) ∈ S(p1, p2)∩Bε(x̄, λ̄)

we have

dist
(
λp1p2 ; Λ(x̄)

)
≤ `′

(
‖xp1p2 − x̄‖+ ‖p1‖+ ‖p2‖

)
. (4.29)

Combining it with (4.21) allows us to find ` ≥ 0 for which (p1, p2) ∈ U ×W and

‖xp1p2 − x̄‖+ dist
(
λp1p2 ; Λ(x̄)

)
≤ `
(
‖p1‖+ ‖p2‖

)
whenever (xp1p2 , λp1p2) ∈ S(p1, p2) ∩ Bε(x̄, λ̄). This clearly justifies the semi-isolated calm-

ness property (4.17) and thus finishes the proof of implication (i) =⇒ (ii).

The equivalence between (ii) and (iii) can be verified similarly to the corresponding

arguments in the proof of [32, Theorem 4.1], and so we omit them here. Thus it remains

to establish the equivalence between assertions (ii) and (iv) of the theorem to complete its

proof.

Let us start with checking implication (iv)=⇒(ii). Picking (p1, p2) ∈ Bε(0, 0) and (x, λ) ∈

S(p1, p2) ∩ Bε(x̄, λ̄) with ε and ` taken from (iv), we get from the definition of S that

Ψ(x, λ) = p1 and λ ∈ ∂θY,B(Φ(x) + p2). (4.30)

It follows from [37, Proposition 12.19] due to the convexity of θY,B that PθY,B = (I +

∂θY,B)−1, and hence the second inclusion in (4.30) is equivalent to the equality PθY,B(λ+

Φ(x) + p2) = Φ(x) + p2. Appealing now to (4.18) brings us to the estimates

‖x− x̄‖+ dist
(
λ,Λ(x̄)

)
≤ `

(
‖Ψ(x, λ)‖+ ‖Φ(x)− PθY,B(λ+ Φ(x)‖

)
≤ `

(
‖p1‖+ ‖PθY,B(λ+ Φ(x) + p2)− PθY,B(λ+ Φ(x))‖+ ‖p2‖

)
≤ `

(
‖p1‖+ ‖p2‖+ ‖p2‖

)
,
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which readily justify the assertion in (ii).

Finally, we verify the converse implication (ii)=⇒(iv). To proceed, pick (x, λ) ∈
¯Bε/2(x̄, λ), where ε is taken from (ii). Define the vectors

p2 := P θY,B
(
λ + Φ(x)

) 
− Φ(x) and p1 := Ψ(x, λ − p2). (4.31)

Since Φ and ∇Φ are continuous at x̄ and since PθY,B is Lipschitz continuous, we assume

without loss of generality that (p1, p2) ∈ Bε/2(0, 0) and Bε/2(0, 0) ⊂ U ×W , where U and

W come from (ii). It follows from (4.31) that (x, λ − p2) ∈ S(p1, p2) ∩ Bε(x̄, λ̄). Since ∇Φ

is continuous at x̄, we can assume without loss generality that for some ρ > 0 we have

‖∇Φ(x)‖ ≤ ρ for all x ∈ Bε(x̄). So we deduce from (4.17) that

‖x− x̄‖+ dist
(
λ− p2,Λ(x̄)

)
≤ `

(
‖p1‖+ ‖p2‖

)
≤ `

(
‖Ψ(x, λ− p2)‖+ ‖Φ(x)− PθY,B(λ+ Φ(x))‖

)
≤ `

(
‖Ψ(x, λ)‖+ ρ‖p2‖+ ‖Φ(x)− PθY,B(λ+ Φ(x))‖

)
≤ `

(
‖Ψ(x, λ)‖+ (ρ+ 1)‖Φ(x)− PθY,B(λ+ Φ(x))‖

)
.

Recall that the distance function dist
(
·; Λ(x̄)

)
is Lipschitz continuous; so we have

dist
(
λ; Λ(x̄)

)
− dist

(
λ− p2; Λ(x̄)

)
≤ ‖p2‖ = ‖Φ(x)− PθY,B(λ+ Φ(x))‖, (4.32)

which in combination with the obtained inequalities leads us to

‖x− x̄‖+ dist
(
λ; Λ(x̄)

)
≤ `‖Ψ(x, λ)‖+

(
`(ρ+ 1) + 1

)
‖Φ(x)− PθY,B(λ+ Φ(x))‖.

This verifies (iv) and completes the proof of the theorem.

To conclude this section, let us mention some connection of the obtained characteri-

zations of noncritical multipliers for variational systems (1.3) with the uniqueness of La-

grange multipliers therein, which is not assumed in Theorem 4.7. Indeed, looking more

closely at the proof of theorem reveals that the second term in (4.28) is actually undesired,

since it provides complications for the proof. But, as follows from Theorem 4.5, this terms

disappears (reduces to {0}) if the set of Lagrange multipliers Λ(x̄) is a singleton. This
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phenomenon has been recently observed in [33] for the case of constrained optimization 

problems.

4.4 Noncriticality in Extended Nonlinear Programming

Here we concentrate on problems of composite optimization given by (1.2), where

θ = θY,B is taken from (1.1). It means that we are dealing with the class of ENLPs dis- 

cussed in Section 1. Starting with this section we assume that ϕ0 and Φ are not just twice 

differentiable, but belongs to the class of C2-smooth mappings around the points in ques-

tion.

Define the Lagrangian of (1.2) by

L(x, λ) := ϕ0(x) + 〈Φ(x), λ〉 − 1

2
〈λ,Bλ〉 for (x, λ) ∈ Rn × Rm (4.33)

and observe that the KKT system for (1.2) is written as

∇xL(x, λ) = 0, λ ∈ ∂θY,B(Φ(x)). (4.34)

Thus (4.34) is a particular case of (1.3) with Ψ := ∇xL. Denoting

Λcom(x̄) :=
{
λ ∈ Rm

∣∣ ∇xL(x̄, λ) = 0, λ ∈ ∂θY,B(Φ(x̄))
}
, (4.35)

the corresponding set of Lagrange multipliers, we have Definition 4.1 of multiplier criti-

cality as well as all the above results being specified for the KKT system (4.34).

On the other hand, there are some phenomena concerning critical and noncritical La-

grange multipliers that distinguish KKT systems in optimization from general variational

systems of type (1.3). We consider them in this and two subsequent sections.

The following theorem provides a certain second-order sufficient condition ensuring si-

multaneously the strict minimality of a feasible solution to ENLP (1.2) and the noncriticality

of the corresponding Lagrange multiplier. In its formulation we use the critical cone K de-

fined in Theorem 2.1(iii) as well as the notation rgeA for the range of a linear operator

A. Note that the existence of Lagrange multipliers corresponding to x̄ in (1.2), which is

assumed below, is ensured by the first-order qualification condition (5.3) from Lemma 5.1.
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Theorem 4.8. (second-order sufficient condition for strict local minimizers and non-

critical multipliers in ENLPs). Let (x̄, λ̄) be a solution to KKT system (4.34). Assume further

that the second-order sufficient condition〈
∇2
xxL(x̄, λ̄)w,w

〉
+2θK,B

(
∇Φ(x̄)w

)
> 0 if w ∈ Rn\{0} with ∇Φ(x̄)w ∈ K∗+rgeB (4.36)

holds. Then if the following second-order condition

〈∇2
xxL(x̄, λ̄)ξ, ξ〉+ 2θK,B(∇Φ(x̄)ξ) > 0 for all ξ 6= 0 and ξ ∈ {w|∇Φ(x̄)w ∈ K∗ + ImB}

(4.37)

is satisfied, then x̄ is a strict local minimizer for (1.2). Furthermore, the Lagrange multiplier

λ̄ satisfying (4.37) is noncritical for the KKT system (4.34) corresponding to x̄.

Proof. We shall prove the first part of the theorem by contradiction. Suppose that x̄ is not

a strict local minimizer of the problem (1.2). Then there exists a sequence xk with xk → x̄

and Φ(xk) ∈ domθ such that

φ0(xk) + θ(Φ(xk)) ≤ φ0(x̄) + θ(Φ(x̄)),

which is equivalent to

θ(Φ(xk))− θ(Φ(x̄)) ≤ φ0(x̄)− φ0(xk). (4.38)

Without loss of generality we can assume that
xk − x̄
‖xk − x̄‖

→ ξ, where ξ 6= 0.

Denote tk := ‖xk − x̄‖ and zk := Φ(xk). For any λ ∈ ∂θ(z̄) we have

〈λ, zk − z̄〉 ≤ θ(zk)− θ(z̄). (4.39)

Combining the above with (4.38) we get that

〈λ,Φ(xk)− Φ(x̄)〉 ≤ θ(Φ(xk))− θ(Φ(x̄)) ≤ −[φ0(xk)− φ0(x̄)]

for any λ ∈ ∂θ(z̄). Dividing both sides by tk and passing to limit give us

〈λ,∇Φ(x̄)ξ〉 ≤ −∇φ0(x̄)ξ for all λ ∈ ∂θ(z̄). (4.40)

Notice that it follows from λ̄ ∈ Λcom(x̄) that ∇xL(x̄, λ̄) = 0, and therefore ∇Φ(x̄)∗λ̄ =
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−∇φ0(x̄). Thus

〈λ̄,∇Φ(x̄)ξ〉 = 〈∇Φ(x̄)∗λ̄, λ̄〉 = −∇φ0(x̄)ξ, (4.41)

and so by Proposition 2.1(iv) we have

dθ(z̄)(∇Φ(x̄)ξ) = −∇φ0(x̄)ξ = 〈λ̄,∇Φ(x̄)ξ〉, (4.42)

which by [37, Proposition 13.9] shows that d2θ(z̄, λ̄)(∇Φ(x̄)ξ) is finite. Since d2θ(z̄, λ̄) =

2θK,B, it follows that θK,B(∇Φ(x̄)ξ) < ∞, or ∇Φ(x̄)ξ ∈ domθK,B = K∗ + ImB. We know

that dom∂θK,B = domθK,B, therefore ∇Φ(x̄)ξ ∈ dom∂θK,B. Let η ∈ ∂θK,B(∇Φ(x̄)ξ) =

(NK +B)−1(∇Φ(x̄)ξ). This is equivalent to the following
η ∈ K = KY (λ̄, z̄ −Bλ̄) = TY (λ̄) ∩ {z̄ −Bλ̄}⊥,

∇Φ(x̄)ξ −Bη ∈ K∗,

〈∇Φ(x̄)ξ −Bη, η〉 = 0.

(4.43)

Since η ∈ ∂θK,B(∇Φ(x̄)ξ) = arg max
y∈K

{〈∇Φ(x̄)ξ, y〉 − 1

2
〈y,By〉}, we have

θK,B(∇Φ(x̄)ξ) = 〈∇Φ(x̄)ξ, η〉 − 1
2
〈η,Bη〉

= 〈∇Φ(x̄)∗η, ξ〉 − 1
2
〈η,Bη〉.

(4.44)

Now set λk := λ̄ + tkη. Since Y is a closed polyhedral and η ∈ TY (λ̄), for sufficiently large

k vectors λk ∈ Y . By the definition of function θ we obtain

〈Φ(xk), λk〉 −
1

2
〈λk, Bλk〉 ≤ θ(Φ(xk)).

Furthermore, since λ̄ ∈ ∂θ(z̄) = ∂θ(Φ(x̄)) we have

〈Φ(x̄), λ̄〉 − 1

2
〈λ̄, Bλ̄〉 = θ(Φ(x̄)).

Combining the two above inequalities with (4.38) gives us

〈Φ(xk), λk〉 −
1

2
〈λk, Bλk〉 −

(
〈Φ(x̄), λ̄〉 − 1

2
〈λ̄, Bλ̄〉

)
≤ φ0(x̄)− φ0(xk),

or equivalently

L(xk, λk)− L(x̄, λ̄) ≤ 0 for all large k. (4.45)
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The Taylor series of L(x, λ) at (x̄, λ̄) gives us

L(xk, λk)− L(x̄, λ̄) = ∇xL(x̄, λ̄)(xk − x̄) +∇λL(x̄, λ̄)(λk − λ̄) +

1
2
〈∇2

xxL(x̄, λ̄)(xk − x̄), xk − x̄〉+ 1
2
〈∇2

λλL(x̄, λ̄)(λk − λ̄), λk − λ̄〉+

〈∇2
xλL(x̄, λ̄)(λk − λ̄), xk − x̄〉+ o

( 
‖xk − x̄‖2 +

∥∥λk − λ̄∥∥2 )
.

(4.46)

Proceeding with the calculations we get the following:

• ∇xL(x̄, λ̄) = 0

• ∇λL(x̄, λ̄)(λk − λ̄) = 〈Φ(x̄)−Bλ̄, λk − λ̄〉 = 〈z̄ −Bλ̄, λk − λ̄〉

• 〈∇2
λλL(x̄, λ̄)(λk − λ̄), λk − λ̄〉 = −〈B(λk − λ̄), λk − λ̄〉

• 〈∇2
xλL(x̄, λ̄)(λk − λ̄), xk − x̄〉 = 〈∇Φ(x̄)∗(λk − λ̄), xk − x̄〉.

Therefore

L(xk, λk)− L(x̄, λ̄) = 〈z̄ −Bλ̄, λk − λ̄〉+ 1
2
〈∇2

xxL(x̄, λ̄)(xk − x̄), xk − x̄〉

−1
2
〈B(λk − λ̄), λk − λ̄〉+ 〈∇Φ(x̄)∗(λk − λ̄), xk − x̄〉+ o(t2k + ‖η‖ t2k)

= 〈z̄ −Bλ̄, tkη〉+ 1
2
〈∇2

xxL(x̄, λ̄)(xk − x̄), xk − x̄〉 −
1
2
〈B(λk − λ̄), λk − λ̄〉 + 〈∇Φ(x̄)∗(λk − λ̄), xk − x̄〉+ o(t2k).

Since η ∈ K = TY (λ̄) ∩ {z̄ −Bλ̄}⊥, we get that 〈z̄ −Bλ̄, η〉 = 0, and hence

L(xk, λk)−L(x̄, λ̄) =
1

2
〈∇2

xxL(x̄, λ̄)(xk−x̄), xk−x̄〉−
1

2
t2k〈Bη, η〉+tk〈∇Φ(x̄)∗η, xk−x̄〉+o(t2k).

Dividing both sides by t2k and passing to limit and also combining with (4.44) we get

lim
k→∞

L(xk,λk)−L(x̄,λ̄)

t2k
= 1

2
〈∇2

xxL(x̄, λ̄)ξ, ξ〉 − 1
2
〈Bη, η〉+ 〈∇Φ(x̄)∗η, ξ〉

= 1
2
〈∇2

xxL(x̄, λ̄)ξ, ξ〉+ θK,B(∇Φ(x̄)ξ)

By the assumption of the theorem, the right hand side of the above equality is always

positive. However, by (4.45) the left hand side is nonpositive, which is a contradiction.

This shows that x̄ must be a strict local minimizer of the problem (1.2).
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It is easy to see that if a vector v ∈ Λcom(x̄) satisfies the condition (4.37), the sys-

tem (4.4) associated with v can only have a solution (ξ, η) with ξ = 0, which implies by

Theorem 4.2 that v is noncritical. This completes the proof of the theorem.

The next example, which revisits Example 4.3 in the ENLP framework, illustrates the

possibility to use the second-order sufficient condition (4.37) to justify the strict optimal-

ity of a feasible solution to (1.2) and the noncriticality of the corresponding Lagrange

multiplier.

Example 4.9. (multiplier noncriticality via the second-order sufficient condition). Con-

sider the ENLP from (1.2), where m = n, ϕ0(x) := x2
1 + . . .+ x2

n and Φ(x) := x, and where

Y and B are taken from Example 4.3. Then we have

θY,B
(
Φ(x)

)
= sup

y∈Rn+

{
〈y,Φ(x)〉 − 1

2
〈y, y〉

}
= sup

(y1,...,yn)∈Rn+

{ n∑
i=1

(
xiyi −

1

2
y2
i

)}
=

1

2

n∑
i=1

(
max{xi, 0}

)2
.

(4.47)

Let us check that condition (4.37) holds when x̄ = 0 and λ̄ = 0, which confirms by

Theorem 4.8 that x̄ is a strict minimizer for this ENLP and λ̄ is the corresponding noncritical

multiplier. Indeed, it follows from Example 4.3 that λ̄ ∈ ∂θ(z̄), where z̄ := Φ(x̄) = 0. By

the structure of L(x, λ) we have the expressions

∇xL(x, λ) = (2x1 + λ1, . . . , 2xn + λn) and ∇2
xxL(x, λ) = 2I.

Then∇xL(x̄, λ̄) = 0 and hence λ̄ ∈ Λcom(x̄). Since rgeB = Rn, it follows that {w| ∇Φ(x̄)w ∈

K∗ + rgeB} = Rn, and therefore the sufficient condition in Theorem 4.8 reads as

〈∇2
xxL(x̄, λ̄)ξ, ξ〉+ 2θK,B

(
∇Φ(x̄)ξ

)
> 0 for all ξ 6= 0,

which is equivalently presented by

2〈ξ, ξ〉+ 2θK,B
(
∇Φ(x̄)ξ

)
> 0 for all ξ 6= 0. (4.48)

Furthermore, Example 4.3 tells us that K = Rn
+ ∩ {z̄}⊥ and so K = Rn

+ = Y . Combining
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this with (4.47), the sufficient condition (4.37) now becomes

2〈ξ, ξ〉+ 2θY,B
(
∇Φ(x̄)ξ

)
> 0 for all ξ 6= 0. (4.49)

Since θY,B from (4.47) is always nonnegative, condition (4.49) holds, and thus it confirms

the strict minimality of x̄ and the noncriticality of λ̄.

         CHAPTER 5 NONCRITICALITY AND ITS APPLICATIONS IN STABILITY

5.1 Critical Multipliers and Full Stability of Minimizers in ENLPs

  This section also deals with constrained minimization problems of the ENLP type and 

delivers as important message for both theoretical and numerical aspects of optimization. 

As discussed in Section 1, critical multipliers are particularly responsible for slow conver- 

gence of major primal-dual algorithms of optimization and are desired to be excluded for 

a given local minimizer. It is natural to suppose that seeking not arbitrary while just “nice"

and stable in some sense local minimizers allows us to rule out the appearance of critical 

multipliers associated with such local optimal solutions. It is conjectured in [21] that fully 

stable local minimizers in the sense of [15] are appropriate candidate for excluding crit- 

ical multipliers. This conjecture is affirmatively verified in [31] for problems (1.2) with

θ = θY,B where B = 0. Now we are able to extend this result to the general case of (1.1)

with an arbitrary symmetric positive-semidefinite matrix B.

To proceed, we first specify the definition of fully stable local minimizers from [15] for

problems (1.2) with term (1.1). Consider their canonically perturbed version described by

minimize ϕ0(x) + θ
(
Φ(x) + p2

) 
− 〈p1, x〉 subject x ∈ Rn (5.1)

with parameter pairs (p1, p2) ∈ Rn × Rm. Fix γ > 0 and (x̄, p̄1, p̄2) with Φ(x̄) + p̄2 ∈ dom θ

and then define the parameter-depended optimal value function for (5.1) by

mγ(p1, p2 inf) :=
‖x−x̄‖≤γ

{
ϕ0(x) + θ

(
Φ(x) + p2

)
− 〈p1, x〉

}
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together with the parameterized set of optimal solutions to (5.1) given by

Mγ(p1, p2) := arg min
‖x−x̄‖≤γ

{
ϕ0(x) + θ

(
Φ(x) + p2)− 〈p1, x〉

}
(5.2)

with the convention that arg min := ∅ when the expression under minimization in (5.2) is

∞. We say that x̄ is a fully stable local optimal solution to problem (1.2) if there exist a

number γ > 0 and neighborhoods U of p̄1 and W of p̄2 such that the mapping (p1, p2) 7→

Mγ(p1, p2) is single-valued and Lipschitz continuous with Mγ(p̄1, p̄2) = {x̄} and that the

function (p1, p2) 7→ mγ(p1, p2) is likewise Lipschitz continuous on U ×W .

Note that [15, Proposition 3.5] deduces the local Lipschitz continuity of mγ from the

basic constraint qualification (5.3) formulated in the following lemma, which is obtained

in [37, Exercise 13.26]. The second-order necessary condition presented below can be

viewed as a “no-gap" version of the second-order sufficient one used in Theorem 4.8 with

the notation therein.

Lemma 5.1. (second-order necessary optimality condition for composite optimiza-

tion problems). Let x̄ be a local optimal solution to problem (1.2) with θ = θY,B taken

from (1.1), and let the basic constraint qualification

Ndom θY,B(Φ(x̄)) ∩ ker∇Φ(x̄)∗ = {0} (5.3)

be satisfied, and so Λcom(x̄) 6= ∅. Then we have second-order necessary optimality condi-

tion

max
λ∈Λcom(x̄)

〈
∇2
xxL(x̄, λ)w,w

〉
+ 2θK,B

(
∇Φ(x̄)w

)
≥ 0 (5.4)

valid for all w ∈ Rn with ∇Φ(x̄)w ∈ K∗ + rgeB.

Now we are ready to establish the aforementioned result in the general ENLP setting.

Theorem 5.2. (excluding critical multipliers by full stability of local minimizers). Let

x̄ be a fully stable local optimal solution to problem (1.2), and let θ be taken from (1.1).

Then the Lagrange multiplier set Λcom(x̄) in (4.35) is nonempty and does not include critical

multipliers.
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Proof. First we show that the full stability of x̄ ensures the validity of the qualification

condition (5.3). Indeed, pick any η ∈ Ndom θY,B(Φ(x̄))∩ ker∇Φ(x̄)∗. Select p1 = p̄1 := 0 and

p2 := tη as t ↓ 0. It follows from the full stability of x̄ that there exist a Lipschitz constant

` ≥ 0 and the unique solution xp1p2 to problem (5.1) such that

‖xp1p2 − x̄‖ ≤ `t ‖η‖ . (5.5)

Since Φ(xp1p2)+p2 ∈ dom θY,B and η ∈ Ndom θY,B(Φ(x̄)), we get 〈η,Φ(xp1p2)+p2−Φ(x̄)〉 ≤ 0.

This gives us the relationships

0 ≥
〈
η,∇Φ(x̄)(xp1p2 − x̄) + o(‖xp1p2 − x̄‖) + p2

〉
=
〈
∇Φ(x̄)∗η, xp1p2 − x̄

〉
+
〈
η, o(‖xp1p2 − x̄‖) + p2

〉
=
〈
η, o(‖xp1p2 − x̄‖)

〉
+ t‖η2‖.

Using estimate (5.5) and letting t ↓ 0 lead to η = 0. Thus the basic constraint qualification

(5.3) is satisfied, which ensures that Λcom(x̄) 6= ∅.

Next we pick any λ̄ ∈ Λcom(x̄) and show that it is noncritical for the unperturbed KKT

system (4.34) corresponding to x̄. Consider the KKT system for the perturbed problem

(5.1) that can be written asp1

p2

 ∈
∇xL(x, λ)

−Φ(x)

+

 0

(∂θY,B)−1(λ)

 . (5.6)

Let SKKT : Rn × Rm ⇒ Rn × Rm be the solution map to (5.6) given by

SKKT (p1, p2) :=
{

(x, λ) ∈ Rn × Rm
∣∣ p1 = ∇xL(x, λ), λ ∈ ∂θY,B

(
p2 + Φ(x)

)}
. (5.7)

Employing Theorem 4.7, we only need to prove that there exist numbers ε > 0 and ` ≥ 0

as well as neighborhoods U of 0 ∈ Rn and W of 0 ∈ Rm such that for any (p1, p2) ∈ U × V

and any (xp1p2 , λp1p2) ∈ SKKT (p1, p2)∩(Bε(x̄)×Bε(λ̄)), estimate (4.17) holds with replacing

Λ(x̄) by the set of Lagrange multipliers Λcom(x̄) taken from (4.35).

To this end we deduce from the full stability of x̄ in (5.1) with (p̄1, p̄2) = (0, 0) due to

the result of [31, Proposition 6.1] that there exist neighborhoods Ũ × W̃ of (0, 0) and Ṽ of
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x̄ for which the set-valued mapping

(p1, p2) 7→ Q(p1, p2) :=
{
x ∈ Rn

∣∣ p1 ∈ ∇ϕ0(x) +∇Φ(x)∗∂θY,B(Φ(x) + p2)
}

admits a Lipschitzian single-valued graphical localization on Ũ × W̃ × Ṽ . This means that

there exists a Lipschitzian single-valued mapping g : Ũ × W̃ 7→ Ṽ such that (gphQ)∩ (Ũ ×

W̃ × Ṽ ) = gph g. Denote U := Ũ , W := W̃ and take ε > 0 so small that Bε(x̄) ⊂ Ṽ . The

Lipschitzian single-valued graphical localization property of Q allows us to find a constant

` ≥ 0 such that for any (p1, p2) ∈ U ×W and any (xp1p2 , λp1p2) ∈ SKKT (p1, p2) ∩
(
Bε(x̄) ×

Bε(λ̄)
)

we have the inclusion xp1p2 ∈ Q(p1, p2), and hence

‖xp1p2 − x̄‖ = ‖xp1p2 − xp̄1p̄2‖ ≤ `
(
‖p1‖+ ‖p2‖

)
.

Using now the error bound estimate (4.29) from the proof of Theorem 4.7 with replacing

Λ(x̄) by Λcom(x̄) and adjusting ε if necessary give us the semi-isolated calmness property

¯(4.17), which is equivalent to the noncriticality of λ that was chosen arbitrary from the 

Lagrange multiplier set Λcom(x̄). This therefore completes the proof of theorem.

  The result of Theorem 5.2 calls for the deriving verifiable conditions for full stability of 

local minimizers to (1.2) expressed entirely via the problem data and the given minimizer. 

Such conditions allow us to efficiently exclude slow convergence of primal-dual algorithms 

to seek fully stable minimizers based on the initial data. Some characterizations of full 

stability of local minimizers for ENLPs of type (1.2) are obtained in [31, Theorem 7.3]

under rather strong assumptions. Relaxing these assumptions is a challenging goal of our 

future research.

5.2 Noncriticality and Lipschitzian Stability of Solutions to ENLPs

  In this section we use the machinery developed above to investigate other notions of 

Lipschitzian stability, which occur to be related to noncriticality of multipliers for ENLPs. 

The following theorem provides characterizations of both isolated calmness and robust 

isolated calmness properties of the KKT solution map (5.7) associated with ENLP (1.2) in 

terms of the second-order sufficient condition (4.37) as well as noncriticality and unique-
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ness of Lagrange multipliers.

Theorem 5.3. (characterizations of robust isolated calmness of solution maps). Let

x̄ be a feasible solution to ENLP (1.2) with θ taken from (1.1), and let λ̄ ∈ Λcom(x̄) be a

corresponding Lagrange multiplier from (4.35). The following assertions are equivalent:

(i) The solution map SKKT from (5.7) is robustly isolatedly calm at the point
(
(0, 0), (x̄, λ̄)

)
∈ Rn+m × Rn+m and,      x̄  is a local optimal solution to (1.2).

(ii) The second-order sufficient condition (4.37) holds, and Λcom(x̄) = {λ̄}.

(iii) Λcom(x̄) = {λ̄}, x̄ is a local optimal solution to (1.2), and λ̄ is a noncritical multiplier

for (1.3) with Ψ = ∇xL that is associated with the optimal solution x̄.

(iv) SKKT is isolatedly calm at
(
(0, 0), (x̄, λ̄)

)
, and x̄ is a local optimal solution to (1.2).

Proof. The outline of the proof is as follows. We sequentially verify implications (ii)=⇒(iii),

(iii)=⇒(iv), (iv)=⇒(iii), (iii)=⇒(ii), and (i)⇐⇒ (iv).

To prove (ii)=⇒(iii), assume the validity of (4.37) and that Λcom(x̄) = {λ̄}. Then

Theorem 4.8 tells us that x̄ is a strict local minimizer of (1.2) and that λ̄ is a noncritical

multiplier of (1.3) with Ψ = ∇xL corresponding to x̄, and thus (iii) is satisfied.

Suppose next that all the conditions in (iii) hold. Since λ̄ is noncritical, we derive the

semi-isolated calmness of SKKT at
(
(0, 0), (x̄, λ̄)

)
. This together with Λcom(x̄) = {λ̄} results

in the existence of a number ` ≥ 0 as well as neighborhoods U of (0, 0) and V of (x̄, λ̄)

such that

SKKT (p1, p2) ∩ V ⊂
{

(x̄, λ̄)
}

+ ` ‖(p1, p2)‖B for all (p1, p2) ∈ U. (5.8)

Thus SKKT enjoys the isolated calmness property at
(
(0, 0, (x̄, λ̄))

)
, and we arrive at (iv).

To verify the opposite implication (iv)=⇒(iii), let us show that the isolated calmness

of SKKT at
(
(0, 0), (x̄, λ̄)

)
in (iv) yields Λcom(x̄) = {λ̄}. Indeed, suppose on the contrary

that Λcom(x̄) is not a singleton. Then there exists λ̂ ∈ Λcom(x̄) with λ̂ 6= λ̄. Since the set

Λcom(x̄) is convex, every point of the line segment connecting λ̄ and λ̂ belongs to Λcom(x̄).

The isolated calmness of SKKT at
(
(0, 0), (x̄, λ̄)

)
amounts to (5.8), and hence we can find
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λ′ 6= λ̄ with λ′ ∈ Λcom(x̄) and such that λ′ is sufficiently close to λ̄, i.e., (x̄, λ′) ∈ V . Then it

follows from (5.8) that ∥∥λ′ − λ̄∥∥ ≤ ` · 0 = 0,

which yields λ′ = λ̄, a contradiction ensuring that Λcom(x̄) is a singleton. Theorem 4.7 tells

us that λ̄ is a noncritical multiplier of (1.3) corresponding to x̄, and thus (iii) holds.

Next we verify implication (iii)=⇒(ii). Let us first deduce from Λcom(x̄) = {λ̄} in (iii)

that the qualification condition (5.3) in (ii) is satisfied. Supposing the contrary, find a

normal v ∈ Ndom θY,B(Φ(x̄)) with v 6= 0 such that ∇Φ(x̄)∗v = 0. Letting λ′ := λ̄ + v, we get

λ′ 6= λ̄ and ∇xL(x̄, λ′) = 0 for the Lagrangian function (4.33). By the choice of v and the

normal cone definition (2.3) we get from the above that

〈λ′, z − Φ(x̄)〉 ≤ θY,B(z)− θY,B(Φ(x̄)) for all z ∈ dom θY,B,

which shows that λ′ ∈ ∂θY,B(Φ(x̄)) and hence λ′ ∈ Λcom(x̄) due to ∇xL(x̄, λ′) = 0. Since

λ′ 6= v̄, it gives us a contradiction with the assumption of Λcom(x̄) = {λ̄} in (iii) and thus

justifies the validity of the qualification condition (5.3). Employing now Lemma 5.1 tells

us that the second-order necessary optimality condition (5.4) is satisfied.

To finish the verification of (iii)=⇒(ii), we need to prove that the second-order sufficient

optimality condition (4.37) holds under the assumptions in (iii). Supposing the contrary

gives us a nonzero element ξ0 ∈ {w| ∇Φ(x̄)w ∈ K∗ + rgeB} such that〈
∇2
xxL(x̄, λ̄)ξ0, ξ0

〉
+ 2θK,B

(
∇Φ(x̄)ξ0

)
≤ 0.

Since Λcom(x̄) = {λ̄}, it is easy to see that the second-order necessary condition (5.4) can

be equivalently written as〈
∇2
xxL(x̄, λ̄)w,w

〉
+ 2θK,B

(
∇Φ(x̄)w

)
≥ 0 for all w ∈ Rn with ∇Φ(x̄)w ∈ dom θK,B.

Furthermore, employing the equalities

∇Φ(x̄)ξ0 ∈ K∗ + rgeB =
(
K ∩ kerB

)∗
= dom θK,B
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allows us to deduce from the equivalent form of the second-order necessary condition that〈
∇2
xxL(x̄, λ̄)ξ0, ξ0

〉
+ 2θK,B

(
∇Φ(x̄)ξ0

)
= 0.

This in turn implies that the vector ξ0 is an optimal solution to the problem

min
ξ∈Rn

1

2

〈
∇2
xxL(x̄, λ̄)ξ, ξ

〉
+ θK,B

(
∇Φ(x̄)ξ

)
.

Applying the subdifferential Fermat rule to the latter problem and then using the elemen-

tary sum rule for convex subgradients together with the chain rule from [37, Exercise

10.22(b)] yield

0 ∈ ∇2
xxL(x̄, λ̄)ξ0 +∇Φ(x̄)∗∂θK,B(∇Φ(x̄)ξ0)

= ∇2
xxL(x̄, λ̄)ξ0 +∇Φ(x̄)∗D∂θY,B(Φ(x̄), λ̄)(∇Φ(x̄)ξ0),

where the last equality comes from (2.15). Since ξ0 6= 0, it shows by Definition 4.1 that λ̄ is

a critical multiplier. This contradicts the assumption in (iii) that λ̄ is a noncritical multiplier

and therefore verifies the validity of (4.37) and the entire implication (iii)=⇒(ii).

Our next step is to prove implication (i)=⇒(iv), which clearly holds. To complete the

proof of the theorem, it remains to verify implication (iv)=⇒(i). To achieve this implica-

tion, we only need to show that there are neighborhoods U of (0, 0) and V of (x̄, λ̄) such

that SKKT (p1, p2) ∩ V 6= ∅ for all (p1, p2) ∈ U . To this end, define the set-valued mapping

Q : Rm ⇒ Rn by

Q(p) :=
{
x ∈ Rn

∣∣ Φ(x) + p ∈ dom θY,B
}
, p ∈ Rn.

Having already proved (iv) and (iii) are equivalent, we have the qualification condition

(5.3) because of the assumptions in (iii). As proved above, (iii) and (ii) are equivalent.

Thus the second-order sufficient condition (4.37) is satisfied and implies by Theorem 4.8

that x̄ is a strict local minimizer for (1.2). This gives a neighborhood O of x̄ for which we

have

ϕ0(x̄) + θY,B
(
Φ(x̄)

)
< ϕ0(x) + θY,B

(
Φ(x)

)
for all x ∈ O. (5.9)
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Applying [20, Theorem 4.37(ii)] to the mapping Q with the initial point (0, x̄) gives us

numbers r > 0 and ` ≥ 0 such that

Q(p) ∩ Br(x̄) ⊂ Q(p′) + ` ‖p− p′‖B for all p, p′ ∈ Br(0), (5.10)

where r can be chosen such that Br(x̄) ⊂ O. Consider now the optimization problem

minimize ϕ0(x) + θY,B
(
Φ(x) + p2

)
− 〈p1, x〉 subject to x ∈ Br(x̄) ∩Q(p2). (5.11)

It is clear that this problem admits an optimal solution xp1p2 for any pair (p1, p2) ∈ Rn ×

Br(0) since the cost function therein is lower semicontinuous while the constraint set is

obviously compact. Let us now show that there is a number ε > 0 with Bε(0, 0) such that

xp1p2 ∈ intBr(x̄) for any (p1, p2) ∈ Bε(0, 0). (5.12)

Suppose the contrary and then find sequences (p1k, p2k) → (0, 0) and xp1kp2k
for which

‖xp1kp2k
− x̄‖ = r. We get without loss of generality that xp1kp2k

→ x0 as k → ∞ and so

‖x0 − x̄‖ = r. This yields x0 6= x̄. Since xp1kp2k
is an optimal solution to (5.11), it follows

that

ϕ0(xp1kp2k
)+θY,B

(
Φ(xp1kp2k

)+p2k

)
−〈p1k, xp1kp2k

〉 ≤ ϕ0(x)+θY,B
(
Φ(x)+p2k

)
−〈p1k, x〉 (5.13)

for all x ∈ Br(x̄)∩Q(p2k). Pick any x ∈ B r
2
(x̄)∩Q(0) and k ∈ N so large that p2k ∈ αB with

α < min{ r
2`
, r}. It follows from (5.10) that there exist x′ ∈ Q(p2k) and b ∈ B satisfying

‖x′ − x̄‖ ≤ ‖x− x̄‖+ ` ‖p2k‖ ≤
r

2
+ `

r

2`
= r, where x := x′ + ` ‖p2k‖ b.

Thus x′ ∈ Br(x̄) ∩Q(p2k), and it follows from (5.13) that

ϕ0(xp1kp2k
) +θY,B

(
Φ(xp1kp2k

) + p2k

)
− 〈p1k, xp1kp2k

〉 ≤ ϕ0

(
x− ` ‖p2k‖ b

)
+θY,B

(
Φ(x− ` ‖p2k‖ b) + p2k

)
− 〈p1k, x− ` ‖p2k‖ b〉.

Passing to the limit at the latter inequality as k →∞ gives us the estimate

ϕ0(x0) + θY,B
(
Φ(x0)

)
≤ ϕ0(x) + θY,B

(
Φ(x)

)
,
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which holds for all x ∈ B r
2
(x̄) ∩Q(0). In particular, we have

ϕ0(x0) + θY,B
(
Φ(x0)

)
≤ ϕ0(x̄) + θY,B

(
Φ(x̄)

)
, (5.14)

which contradicts (5.9) since x0 6= x̄ and x0 ∈ Br(x̄) ⊂ O, and thus we arrive at (5.12).

At the last step of the proof, denote by Λcom(xp1p2) be the set of Lagrange multipliers

associated with the optimal solution xp1p2 to problem (5.11). It follows from the validity

of the qualification condition (5.3) and its robustness with respect to perturbations of the

initial point that this qualification condition is also satisfied for the perturbed problem

(5.11). This implies in turn that Λcom(xp1p2) 6= ∅ for all (p1, p2) sufficiently close to (0, 0) ∈

Rn × Rm. Assume without loss of generality that Λcom(xp1p2) 6= ∅ for all (p1, p2) ∈ Bε(0, 0),

where ε is taken from (5.12). Using a similar argument as (4.23) and (4.29) via the

Hoffman lemma gives us a constant `′ ≥ 0 such that for any (p1, p2) ∈ Bε(0, 0) and any

λp1p2 ∈ Λcom(xp1p2) we have

‖λp1p2 − λ̄‖ = dist
(
λp1p2 ; Λcom(x̄)

)
≤ `′

(
‖xp1p2 − x̄‖+ ‖p1‖+ ‖p2‖

)
.

This clearly proves the existence of a neighborhood V of (x̄, λ̄) such that SKKT (p1, p2)∩V 6=

∅ for all (p1, p2) ∈ Bε(0, 0) and so finishes the proof of implication (iv)=⇒(i).

The final piece of this thesis concerns yet another well-recognized Lipschitzian type

property, which seems to be the most natural extension of robust Lipschitzian behavior

to set-valued mapping. For this reason we label it as the Lipschitz-like property [20]

while it is also known as the pseudo-Lipschitz or Aubin one. It is said that a set-valued

mapping/multifunction F : Rn ⇒ Rm is Lipschitz-like around (x̄, ȳ) ∈ gphF if there exists

a constant ` ≥ 0 together with neighborhoods U of x̄ and V of ȳ such that we have the

inclusion

F (x′) ∩ V ⊂ F (x) + `‖x− x′‖B for all x, x′ ∈ U. (5.15)

To formulate a convenient characterization of property (5.15), we recall first the notion of
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the normal cone to a set Ω ⊂ Rn at a point x̄ ∈ Ω defined by

NΩ(x̄) :=
{
v ∈ Rn

∣∣∣ there exist xk
Ω−→ x̄, vk → v with lim sup

x→xk

〈vk, x− xk〉
‖xk − x‖

≤ 0
}
.

The coderivative of a set-valued mapping F : Rn ⇒ Rm at (x̄, ȳ) ∈ gphF is given by

D∗F (x̄, ȳ)(v) :=
{
u ∈ Rn

∣∣ (u,−v) ∈ NgphF (x̄, ȳ)
}
, v ∈ Rm.

The following characterization of the Lipschitz-like property for any closed-graph mapping

F : Rn ⇒ Rm around (x̄, ȳ) ∈ gphF is known as the Mordukhovich criterion from [37,

Theorem 9.40], where the proof is different from the original one; see [18, Theorem 5.7]

as well as its infinite-dimensional extension given in [20, Theorem 4.10]:

D∗F (x̄, ȳ)(0) = {0}. (5.16)

Note the results obtained therein provide also a precise computation of the exact bound/in-

fimum of Lipschitzian moduli {`} in (5.15) via the coderivative norm at (x̄, ȳ).

  Full coderivative calculus developed for coderivatives,  which is based on  variational / ex- 

tremal principles of variational analysis and can be  found in [22, 20],  allows us  apply the 

general characterization (5.16) to specific multifunctions given in some structural forms. 

The next theorem employs (5.16) and coderivative calculus to characterize the Lipschi- 

tz-like property of the solution map (5.7) to the canonically perturbed KKT system (5.6).

¯Theorem 5.4. (Lipschitz-like property of solution maps). Let (x̄, λ) ∈ SKKT (0, 0) for the

solution map SKKT defined in (5.7) with θ taken from (1.1). Then SKKT is Lipschitz-like 

around 
(
(0, 0), (x̄, λ̄)

) 
if and only if we have the implication

∇2
xxL(x̄, λ̄)ξ +∇Φ(x̄)∗η = 0

η ∈
(
D∗∂θY,B

)
(Φ(x̄), λ̄)

(
∇Φ(x̄)ξ

) =⇒ (ξ, η) = (0, 0). (5.17)

Proof. Consider the mapping G from (4.12) with Ψ = ∇xL. We easily deduce from the

coderivative definition and the form of S that

(ξ, η) ∈ D∗SKKT
(
(0, 0), (x̄, λ̄)

)
(w1, w2)⇐⇒ −(w1, w2) ∈ D∗G

(
(x̄, λ̄), (0, 0)

)
(−ξ,−η)

(5.18)
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for all (ξ, η) ∈ Rn × Rm and (w1, w2) ∈ Rn × Rm. Using the structure of G and employing

the coderivative sum rule in the equality form from [22, Theorem 3.9] yield

D∗G
(
(x̄, λ̄), (0, 0)

)
(ξ, η) =

∇2
xxL(x̄, λ̄) −∇Φ(x̄)∗

∇Φ(x) 0


 ξ

η

+

 0

D∗(∂θY,B)−1(λ̄,Φ(x̄))(η)



=

 ∇2
xxL(x̄, λ̄)ξ −∇Φ(x̄)∗η

∇Φ(x)ξ +D∗(∂θY,B)−1(λ̄,Φ(x̄))(η)

 .
(5.19)

It follows from (5.18) and the coderivative criterion (5.15) that SKKT is Lipschitz-like

around
(
(0, 0), (x̄, λ̄)

)
if and only if we have the implication

(0, 0) ∈ D∗G
(
(x̄, λ̄), (0, 0)

)
(ξ, η) =⇒ (ξ, η) = (0, 0),

which leads us together the coderivative representation for G in (5.19) to characterization

(5.17) of the Lipschitz-like property of the solution map SKKT .

Combining finally the obtained characterization of the Lipschitz-like property in The-

orem 5.4 with some known facts of variational analysis allows us to reveal a relationship

between the latter property of the solution map SKKT and its isolated calmness at the same

point.

Theorem 5.5. (Lipschitz-like property of solution maps implies their isolated calm-

ness). Let SKKT be the solution map (5.7) of the canonically perturbed KKT system (5.6) with

the piecewise linear-quadratic term (1.1), and let (x̄, λ̄) ∈ SKKT (0, 0). If SKKT is Lipschitz-

like around
(
(0, 0), (x̄, λ̄)

)
, then it enjoys the isolated calmness property at this point.

Proof. Assuming that SKKT has the Lipschitz-like property around
(
(0, 0), (x̄, λ̄)

)
, we get

implication (5.17) by Theorem 5.4. On the other hand, we proceed similarly to the proof of

Theorem 5.4 and get counterparts of the equalities in (5.18) and (5.19) with replacing the

coderivative by the graphical derivative therein. The latter one is due to the easily check-

able sum rule for graphical derivatives of summations with one smooth term as in (4.12).
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Having this, we apply the Levy-Rockafellar criterion of isolated calmness (4.11) to the so-

lution map (5.7) and thus conclude that the isolated calmness of SKKT at
(
(0, 0), (x̄, λ̄)

)
is

equivalent to 
∇2
xxL(x̄, λ̄)ξ +∇Φ(x̄)∗η = 0

η ∈
(
D∂θY,B

)
(Φ(x̄), λ̄)

(
∇Φ(x̄)ξ

) =⇒ (ξ, η) = (0, 0). (5.20)

Comparing  (5.17)  and  (5.20),   we   see  that   the   only  difference  is  in  terms   involving

¯ ¯(D∗∂θY,B)(Φ(x̄), λ) and (D∂θY,B)(Φ(x̄), λ). To this end we use the derivative-coderivative 

relationship from [37,Theorem 13.57], which tells us that the inclusion

¯ ¯(D∂θY,B)(Φ(x̄), λ)(u) ⊂ (D∗∂θY,B)(Φ(x̄), λ)(u) for all u ∈ Rm

holds under the assumptions that are automatically satisfied for the piecewise linear- 

quadratic function θY,B from (1.1). This therefore completes the proof of the theorem.
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ABSTRACT

SECOND-ORDER GENERALIZED DIFFERENTIATION OF PIECEWISE
LINEAR-QUADRATIC FUNCTIONS AND ITS APPLICATIONS

by

HONG DO

May 2019

Advisor: Boris Mordukhovich

Major: Mathematics

Degree: Doctor of Philosophy

The area of second-order variational analysis has been rapidly developing during the

recent years with many important applications in optimization. This dissertation is de-

voted to the study and applications of the second-order generalized differentiation of a re-

markable class of convex extended-real-valued functions that is highly important in many

aspects of nonlinear and variational analysis, specifically those related to optimization and

stability.

The first goal of this dissertation is to compute the second-order subdifferential of the

functions described above, which will be applied in the study of the stability of compos-

ite optimization problems associated with piecewise linear-quadratic functions, known as

extended nonlinear programming (ENLPs). In the second part of the dissertation, the mul-

tiplier criticality is studied systematically for variational systems of composite optimization

problems with applications to KKT systems in ENLPs.
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