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CHAPTER 1- INTRODUCTION 

1.1 One-Carbon Metabolism 

One-carbon (C1) metabolism encompasses a series of anabolic reactions that transfer 

species containing a single carbon atom (i.e. “C1” units). The enzymes catalyzing these reactions 

are mediated by folate cofactors (i.e. vitamin B9 family members) and serve multiple 

foundational cellular roles including generation of nucleotides for DNA and RNA synthesis, 

preservation of amino acid homeostasis, and maintenance of redox balance (Ducker and 

Rabinowitz, 2017). These reactions are compartmentalized primarily into the mitochondria and 

the cytosol (Tibbetts and Appling, 2010) (Figure 1.1) with a minor pool in the nucleus (Field et 

al., 2018). Ultimately, the grand majority of C1 units in most cancer cells is derived from serine 

catabolism in the mitochondria in the form of formate (Labuschagne et al., 2014). Formate then 

enters the cytosol and is attached to the reduced folate cofactor tetrahydrofolate (THF) to 

produce activated C1 units such as 10-formylTHF and 5,10-methyleneTHF (5,10-meTHF), 

which ultimately transfer the C1 unit to intermediates in de novo purine biosynthesis and 

thymidylate biosynthesis, respectively (Appling, 1991). While the reactions in each compartment 

are generally reversible, the directionality of each pathway is driven by the differing expression 

of the enzymes in different tissues (Girgis et al., 1998), the NAD(P)H/NAD(P)
+
 ratios in the 

cytosol (high) and mitochondria (low) which drive the methyleneTHF dehydrogenase (MTHFD) 

reaction in opposite directions (Ducker et al., 2016), and the availability of folate cofactors such 

as 10-formylTHF in the cytosol which can reverse the serine hydroxymethyltransferase(SHMT)1 

and MTHFD1 reactions to meet demand (Ducker et al., 2016).  

1.1.1 Cytosolic One-Carbon Metabolism 

Net outputs of cytosolic C1 metabolism primarily include thymidylate, purines, 
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Figure 1.1 Overview of One-Carbon Metabolism. One-carbon metabolism is compartmentalized 

primarily into the mitochondria and cytosol. Mitochondrial enzymes include serine 

hydroxymethyltransferase2 (SHMT2), methyleneTHF dehydrogenase 2/2-like (MTHFD2/L), 

MTHFD1L, aldehyde dehydrogenase 1 family member L2 (ALDH1L2), methionyl-tRNA-

formyltransferase (MTFMT), and thymidylate synthase (TYMS or TS). Cytosolic enzymes include 

MTHFD1, ALDH1L1, TYMS, the purine biosynthetis enzymes glycinamide ribonucleotide 

formyltransferase (GART or GARFTase) and 5-aminoimidazole-4-carboxamide ribonucleotide 

formyltransferase/inosine monophosphate cyclohydrolase (ATIC – AICARFTase/IMP 

cyclohydrolase), methyleneTHF reductase (MTHFR), TYMS, dihydrofolate reductase (DHFR), and 

methionine synthase (MTR). Adapted from (Ducker and Rabinowitz, 2017) 
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methionine, and serine (Figure 1.1). In the cytosol, thymidylate can be salvaged from thymidine 

via phosphorylation by thymidine kinase (Munch-Petersen et al., 1995), or can be formed de 

novo from dUMP by the direct action of the folate-dependent enzyme thymidylate synthase 

(TYMS or TS) (Newman and Maddocks, 2017). The specific folate cofactor, 5,10-meTHF, is 

generated in the cytosol from formate by MTHFD1 (Field et al., 2016) and is converted into 

dihydrofolate (DHF) in the TS reaction. Dihydrofolate reductase (DHFR) then regenerates the 

reduced active form THF from DHF by oxidizing NADPH into NADP
+ 

(Ducker and Rabinowitz, 

2017). Indeed, TS and DHFR are likely to “substrate channel” by binding together to essentially 

generate a bifunctional enzyme complex (Wang and McCammon, 2016). Thymidylate synthesis 

also takes place in the nuclear and mitochondrial compartments to prevent uracil 

misincorporation into DNA by generating sufficient dTMP for DNA replication (Anderson et al., 

2011; Field et al., 2018). 

De novo purine biosynthesis, however, is a 10-step process that takes place exclusively in 

the cytosol (Figure 1.2). To facilitate efficient metabolic flux, these enzymes assemble into a 

transient structure known as a purinosome (Pedley and Benkovic, 2017), which sequesters 

pathway intermediates and colocalizes with mitochondria to provide the 5 moles of ATP 

necessary to generate 1 mole of inosine monophosphate (IMP) de novo. Of these enzymes, two 

require folate cofactors, glycinamide ribonucleotide (GAR) formyltransferase (GARFTase) and 

5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) formyltransferase (AICARFTase) 

(Mitchell-Ryan et al., 2013). The latter enzyme is part of the bifunctional enzyme complex 

AICARFTase/IMP cyclohydrolase (ATIC) which also catalyzes the last step in de novo purine 

biosynthesis to generate IMP. Surprisingly, the presence of both AICARFTase and IMP 

cyclohydrolase (IC) activities on one ATIC protein does not enable substrate channeling as seen 
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Figure 1.2 De Novo Purine Biosynthesis. The 10-step de novo purine biosynthesis pathway from 

phosphoribosyl pyrophosphate (PRPP) to inosine monophosphate (IMP) is shown above. Folate-

dependent enzymes include glycinamide ribonucleotide formyltransferase (GARFTase) and 5-

aminoimidazole-4-carboxamide formyltransferase (AICARFTase). Intermediates include GAR, 

formyl-GAR (FGAR), N-formylglycinamide ribonucleotide (FGAM), aminoimidazole 

ribonucleotide (AIR), carboxy-AIR (CAIR), 5-aminoimidazole-4-(N-succinylcarboxamide) 

(SAICAR), AICAR, and formyl-AICAR (FAICAR). Adapted from (Matherly et al., 2014) 
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with TS and DHFR (Bulock et al., 2002). Rather, ATIC combines the energetically unfavorable 

formylation of AICAR with the highly favorable cyclization reaction to make the overall 

reaction favorable (Wall et al., 2000). Like GARFTase, AICARFTase requires 10-formyl THF as 

a cofactor (Ducker and Rabinowitz, 2017), which, like 5,10-meTHF, is also generated in the 

cytosol from formate by MTHFD1 (Field et al., 2016). Additionally, purine nucleotides can also 

be salvaged from purine bases by adenine phosphoribosyltransferase or hypoxanthine-guanine 

phosphoribosyltransferase (Bertino et al., 2011). 

In addition to nucleotide biosynthesis, cytosolic C1 metabolism also includes the 

methionine cycle, in which methionine is converted by methionine adenosyltransferase into S-

adenosylmethionine (SAMe) (Miller, 2003). SAMe is a critical methyl donor playing a vital role 

in stabilizing both proteins and DNA, as well as in hepatic phase II detoxification (Miller, 2003). 

However, after donating its methyl group, SAMe becomes S-adenosylhomocysteine, which is 

consequently hydrolyzed into adenosine and the toxic amino acid intermediate homocysteine 

(Hcy) (Miller, 2003). Hcy then accepts a methyl group from 5-methylTHF (derived from 5,10-

meTHF by methyleneTHF reductase (MTHFR) (Levin and Varga, 2016)) to generate methionine 

in a reaction catalyzed by the vitamin B12-dependent enzyme methionine synthetase (MTR) 

(Miller, 2003) (Figure 1.1). The flux of cytosolic 5,10-meTHF into either the methionine cycle 

or thymidylate synthesis is controlled by SHMT1, a pyridoxal 5’-phosphate- (PLP) dependent 

(Renwick et al., 1998) enzyme distinct from although 66% homologous to the mitochondrial 

isoform SHMT2. SHMT1 primarily catalyzes the glycine-to-serine reaction, regenerating THF 

from 5,10-meTHF. 

1.1.2 Nuclear One-Carbon Metabolism  

While the thymidylate biosynthetic enzyme TS is found in the cytosol during all stages of 
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the cell cycle, it is only active during S-phase when it translocates (Figure 1.3) into the nucleus 

(Prem veer Reddy, 1982). TS, in addition to SHMT1, MTHFD1, and DHFR, undergo 

posttranslational covalent small ubiquitin-like modifier (SUMO) modification and translate to 

the nucleus at the onset of S-phase where they, along with SHMT2α (an SHMT2 isoform lacking 

the mitochondrial targeting sequence), associate with DNA repair/replication machinery 

(including DNA polymerases) to form the replitase complex (Murthy and Reddy, 2006). The 

replitase functions to synthesize DNA for repair or replication while concurrently generating 

thymidylate to limit uracil misincorporation (Field et al., 2018). Interestingly, both SHMT1 and 

SHMT2α are thought to act predominantly as non-catalytic scaffold proteins that are essential for 

formation of the replitase complex, meaning the actual 5,10-meTHF required for thymidylate 

biosynthesis is likely provided by formate flux through MTHFD1 (Anderson et al., 2012). 

However, the importance of SHMT1 catalytic activity in the nucleus remains controversial 

(Giardina et al., 2018). 

1.1.3 Mitochondrial One-Carbon Metabolism 

The formylTHF and methylTHF cofactors used in cytosolic and nuclear C1 metabolism 

are generated primarily from mitochondrially-derived formate (Ducker and Rabinowitz, 2017). 

In the mitochondria, serine donates a methyl group to THF to generate glycine and 5,10-meTHF 

in a reaction catalyzed by SHMT2. 5,10-meTHF is then converted into 10-formylTHF by 

MTHFD2 or MTHFD2L with the former expressed only in transformed and embryonic or 

undifferentiated adult cells and the latter expressed in adult normal cells (Shin et al., 2017). 10-

formylTHF is then converted into formate by MTHFD1-like (MTHFD1L) and exported into the 

cytosol where it is the primary source of C1units for cytosolic C1 metabolism (Ducker et al., 

2016; Ducker and Rabinowitz, 2017). Moreover, formate is produced in excess of cytosolic C1 
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Figure 1.3 Nuclear One-Carbon Metabolism. Enzymes involved in thymidylate 

biosynthesis, including serine hydroxymethyltransferase1 (SHMT1), thymidylate 

synthase (TYMS or TS), dihydrofolate reductase (DHFR), and methyleneTHF 

dehydrogenase1 (MTHFD1) are modified by small ubiquitin-like modifier (SUMO) 

ligases and translocate into the nucleus at the onset of S-phase, where they provide 

dTMP locally to prevent uracil misincorporation into DNA. Adapted from (Field et 

al., 2018)  
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metabolism need by the mitochondria (Ducker et al., 2016) as formate depletion leads to 

accumulation and consequent degradation of cytosolic THF due to insufficient activity of the 

tetrahydrobiopterin metabolism enzyme quinoid dihydropteridine reductase (QDPR), which 

moonlights to repair oxidative damage to THF (Zheng et al., 2018). While the dehydrogenase 

(MTHFD2/MTHFD2L), cyclohydrolase (MTHFD2/MTHFD2L), and 10-formyl-synthetase 

(MTHFD1L) activities are performed by different enzymes in the mitochondria, all three are 

performed by the trifunctional MTHFD1 in the cytosol (Gustafsson et al., 2017).  

 Beyond their roles in C1 metabolism, these enzymes and intermediates also play critical 

roles in “non C1” pathways as well. For instance, MTHFD2, along with aldehyde dehydrogenase 

1 family member L2 (ALDH1L2), generates NAD(P)H, critical for resistance to oxidative stress 

(Fan et al., 2014; Shin et al., 2017). Perturbation of the cellular NADPH/NADP
+
 ratio due to loss 

of the mitochondrial C1 pathway, particularly under hypoxia, has been shown (Ye et al., 2014) to 

increase cell death and is rescuable by N-acetylcysteine, confirming the importance of this 

pathway to maintaining redox balance. In fact, NADPH production by cytosolic and 

mitochondrial MTHFD isoforms contributes to roughly 40% of total cellular NADPH production 

from glucose, with the remaining 60% primarily from the pentose phosphate pathway and malic 

acid enzyme (Fan et al., 2014). Moreover, high energy electrons from NADH drive 75% of 

oxidative phosphorylation and NADH production by MTHFD2 generates 7% of total 

mitochondrial NADH (Ducker et al., 2016) (with the remainder primarily generated by the Krebs 

cycle and cytosolic import (Fan et al., 2013)).  

 Additionally, the 10-formylTHF and 5,10-meTHF synthesized by MTHFD2 and SHMT2 

respectively (Figure 1.1), play critical roles in local translation of mitochondrial proteins 

(Minton et al., 2018; Morscher et al., 2018). 10-formylTHF is required for generating N-
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formylmethionine-tRNAs which are required for initiation of translation of mitochondrially-

translated proteins (Tucker et al., 2011) whereas 5,10-meTHF is necessary for producing the 

taurinomethyluridine base on certain tRNAs critical for translation of electron transport chain 

enzymes (Morscher et al., 2018). Thus, mitochondrial C1 metabolism plays several critical roles 

in cellular survival and propagation. 

1.1.4 Serine Biosynthesis 

As most cancer cells preferentially utilize C1 units generated by the mitochondrial C1 

pathway (Ducker et al., 2016), serine is the primary C1 unit donor in most cancer cells. Serine 

itself can be derived through glycolytic flux (Figure 1.4). The glycolytic intermediate 3-

phosphoglycerate (3PG) can be shunted toward serine biosynthesis via the enzyme 

phosphoglycerate dehydrogenase (PHGDH), which is the first committed step in this process and 

converts 3PG into 3-phosphohydroxypyruvate (3PHP) (Amelio et al., 2014). 3PHP is then 

transaminated by phosphoserine aminotransferase1 (PSAT1) into 3-phosphoserine (3PS), which 

is subsequently converted into serine by phosphate ester hydrolysis via phosphoserine 

phosphatase (PSPH) (Amelio et al., 2014). Direction of the glycolytic flux towards either 

pyruvate or serine biosynthesis is mediated through allosteric activation of PHGDH by 2PG 

(driving flux towards serine when pyruvate is plentiful). This, in turn, results in allosteric 

activation of pyruvate kinase isoform M2 (PKM2) by serine (driving the flux towards pyruvate 

in conditions with plentiful serine) (Amelio et al., 2014). PKM2, the characteristic pyruvate 

kinase isoenzyme in rapidly proliferating cells such as embryonic cells and tumor cells, drives 

Warburg metabolism (Mazurek, 2011), highlighting the central importance of serine in cancer 

beyond feeding C1 metabolism. Additionally, PHGDH is upregulated in triple-negative breast 

cancer and melanoma (Amelio et al., 2014; Possemato et al., 2011) and its genetic locus on  
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Figure 1.4 Serine Biosynthesis from Glycolysis. Glycolytic intermediates include 3-

phosphoglycerate (3PG), 2PG and phosphoenolpyruvate (PEP). Phosphoglycerate 

dehydrogenase (PHGDH) can convert 3PG into 3-phosphohydroxypyruvate (3PHP), which is 

subsequently converted to 3-phosphoserine (3PS) by phosphoserine aminotransferase1 (PSAT1) 

and ultimately into serine by phosphoserine phosphatase (PSPH). Serine can allosterically 

activate pyruvate kinase isoform M2 (PKM2), diverting glycolytic flux towards pyruvate. In the 

absence of serine, PKM2 is downregulated, diverting the glycolytic flux towards serine 

biosynthesis. Accumulation of 2PG, indicating sufficient glycolytic end-products, can 

allosterically activate PHGDH to divert glycolytic flux towards serine biosynthesis. Adapted 

from (Yang and Vousden, 2016). 
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chromosome 1p12 is often amplified in these cancers even though the locus contains no 

oncogenes (Beroukhim et al., 2010), suggesting serine biosynthesis may drive these tumors. 

Indeed, ectopic expression of PHGDH in MCF10A mammary epithelial cells induced proto-

oncogenic changes including loss of polarity, disrupted morphogenesis, and survival outside of 

the extracellular matrix (Locasale et al., 2011). Moreover, suppression of PHGDH in PHGDH-

amplified cell lines suppressed growth (Locasale et al., 2011), confirming the necessity of 

PHGDH upregulation in driving these cancers.  

1.1.5 Therapeutic Targeting of One-Carbon Metabolism 

The challenge in developing effective therapeutics against cancer is designing agents that 

will selectively kill cancer cells while sparing normal tissues (or as Siddhartha Mukherjee so 

elegantly stated in The Emperor of All Maladies, “dissolve away the left ear… and leave the 

right ear unharmed”) (Mukherjee, 2010). Naturally, rapidly proliferating cells such as cancer 

cells require far more nucleotides than mostly senescent normal tissue (Locasale, 2013). This 

dichotomy initially provided a rationale and therapeutic window for targeting of nucleotide 

biosynthesis within C1 metabolism as a cancer treatment modality. 

1.2 Folates and Antifolates 

C1 metabolism is driven by folates, which encompass a group of water-soluble 

compounds within the vitamin B9 family (Naderi and House, 2018) that consist of linked pterin,  

p-aminobenzoic acid, and L-glutamate moieties (Figure 1.5). Folate deficiency in adults and 

children results in pathologies secondary to perturbed C1 metabolism including insufficient 

nucleotide biosynthesis for faithful cellular replication (such as megaloblastic anemia or cancer) 

or secondary to Hcy accumulation (hyperhomocysteinemia leading to cardiovascular disease) 

(Bailey et al., 2015). In the developing fetus, folate deficiency can, by the same etiology, lead to 
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Figure 1.5 Structure of Folic Acid and Moieties. Folic acid is composed of three structural 

moieties, a pterin, p-aminobenzoic acid (PABA), and one or more glutamates. Adapted from 

(Gazzali et al., 2016) 
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a set of disorders known as “neural tube defects” wherein nervous tissue herniates through the 

cranial region (e.g. anencephaly) or spinal region (spina bifida) (Beaudin and Stover, 2009).  

While many species from bacteria to plants synthesize folate de novo, humans and 

animals cannot (Ducker and Rabinowitz, 2017) and therefore, folates must be taken in through 

the diet as reduced THF derivatives from leafy green vegetables and/or as folic acid in fortified 

foods (Martiniak et al., 2015). As biological folate cofactors are all THF derivatives, dietary folic 

acid must be sequentially reduced to DHF and then to THF (Figure 1.6). The most common 

THF derivative naturally found in food is 5-methylTHF (also the predominant form found in the 

circulation) followed by 5- and 10-formylTHF and their interconversion intermediates (Jägerstad 

and Jastrebova, 2013). As described previously, 5,10-meTHF, 5-methylTHF, and 10-formylTHF 

are critical cofactors in C1 metabolism with 5-formylTHF (i.e. leucovorin) acting as a C1 unit 

reserve (Ducker and Rabinowitz, 2017). 5,10-methenylTHF plays no cofactor role, but is an 

intermediate between the dehydrogenase and cyclohydrolase conversions of MTHFD1 in the 

cytosol and MTHFD2/MTHFD2L in mitochondria (Ducker and Rabinowitz, 2017). 

Since the discovery that folate supplementation could accelerate acute lymphoblastic 

leukemia (ALL) in children, folate-based inhibitors of C1 metabolism (“antifolates”) have played 

a critical role in chemotherapeutic regimens (Farber et al., 1947; Farber and Diamond, 1948). 

With these agents, aminopterin and amethopterin, Farber and his contemporaries achieved 

selective cytotoxicity of ALL cells, and remarkably, the latter, now known as methotrexate 

(MTX), continues to be a mainstay in regimens for treating ALL and solid tumors as well 

(Mager, 2015). Both MTX and aminopterin, as well as next-generation antifolates, are reviewed 

in detail in section 1.4 
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Figure 1.6 Forms of Folic Acid. Folic acid in its native form appears as a 

supplement in foods such as bread. The various folate forms below represent 

different biologically active cofactors which mediate one-carbon metabolism. 

DHF: Dihydrofolate, THF: Tetrahydrofolate, 5,10-meTHF: 5,10-

methyleneTHF, 5,10-me
+
THF: 5,10-methenylTHF. Adapted from (Ducker et 

al., 2017) 
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1.3 Folate Transport and Compartmentation 

 Due to their hydrophilic nature, circulating folates (and antifolates) have limited capacity 

to diffuse across cellular and mitochondrial membranes (Hou and Matherly, 2014). Therefore, 

mammalian cells have evolved three distinct uptake systems (Figure 1.7) to facilitate folate 

transport across the plasma membrane: the reduced folate carrier (RFC – SLC19A1), the proton-

coupled folate transporter (PCFT- SLC46A1), and folate receptors (FR) (Zhao, 2011). While the 

mechanism for folate uptake into the nucleus is poorly understood (Scotti et al., 2013), the 

mitochondrial folate transporter (MFT – SLC25A32) is the only known transporter of folates 

from the cytosol into the mitochondrial matrix (McCarthy et al., 2004). Notably, only 

monoglutamate folates are transported across membranes and accumulation of folates in either 

the cytosolic or mitochondrial compartments requires the successive addition of multiple 

glutamate moieties (i.e. polyglutamylation) to the γ-carboxylate group of glutmatate linked to the 

p-aminobenzoic acid moiety in a reaction catalyzed by compartment-specific isoforms of 

folylpoly-γ-glutamate synthetase (FPGS) (Lawrence et al., 2014; Shane, 1989). These 

polyglutamatyl folate forms are sequestered in their respective subcellular compartments and are 

not substrates for transmembrane transport, meaning the folate pools in the mitochondria and 

cytosol are essentially distinct and not in equilibrium (Lawrence et al., 2014). Moreover, 

polyglutamylation of folates also enhances their enzyme affinity (Raz et al., 2016). The reverse 

reaction (reversion of polyglutamatyl derivatives to the monoglutamate form) is catalyzed by 

conjugases which are located in the intestinal brush border (where they revert the predominantly 

polyglutamate dietary folates to monoglutamates for intestinal absorption) and in the lysosome 

(where they regulate intracellular levels of polyglutamyl folates) (Wang et al., 1986). 
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Figure 1.7 Plasma Membrane Folate Transporters. Folates are transported across the plasma 

membrane by three major transporters: the proton-coupled folate transporter (PCFT – a 

proton/folate symporter), the reduced folate carrier (RFC- an organic phosphate (OP
-
)/folate 

antiporter), and the folate receptors (FR).  
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1.3.1 Reduced Folate Carrier  

RFC is a member of the solute carrier (SLC) group within the Major Facilitator 

Superfamily (MFS) of transporters, the latter of which includes the mammalian glucose 

transporters, drug efflux pumps, as well as amino acid transporters (Hou and Matherly, 2014; 

Matherly et al., 2007). Containing 591 residues, RFC is a homo-oligomeric integral membrane 

protein with twelve membrane-spanning transmembrane domains and both carboxy- and amino-

termini oriented towards the cytoplasm (Matherly et al., 2007). RFC transports reduced folates 

by exchanging them with organic anions such as phosphates (Figure 1.7) and is the major 

transporter for reduced folates in mammalian cells, where its physiological substrate is 5-

methylTHF and knockout (KO) of RFC is embryonic lethal (Matherly et al., 2007; Matherly et 

al., 2014; Zhao et al., 2001). Due to the ubiquitous expression of RFC in both normal and tumor 

tissues, antifolates which are substrates for RFC carry significant dose-limiting toxicities in 

normal tissues, making RFC uptake of antifolates undesirable (Matherly et al., 2007; Matherly et 

al., 2014; Zhao et al., 2001). As influx of folates is coupled to efflux of anions, RFC activity is 

potentiated by relatively low concentrations of anions in the extracellular compartment 

(Henderson and Zevely, 1983). Of note, RFC transport maintains a neutral pH optimum with 

significantly diminished transport activity below pH 7 (Matherly et al., 2007; Sierra et al., 1997; 

Zhao, 2011). Transport is generally saturable at low micromolar concentrations of reduced 

folates (Km = 1-2 µM) with extremely low affinity for folic acid (Km = 50-200 µM) (Sirotnak 

and Tolner, 1999). The best known substrate for RFC is the δ-hemiphthaloylorinithine antifolate 

PT523 which has submicromolar Km (Rosowsky et al., 1994) and is discussed in further detail in 

section 1.4.1 . 
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1.3.2 Proton Coupled Folate Transporter  

PCFT is another SLC/MFS member discovered in 2006 (Qiu et al., 2006). Containing 

459 residues, PCFT also likely contains twelve transmembrane domains with both termini 

oriented towards the cytoplasm (Desmoulin et al., 2012a). A proton/folate symporter (Figure 

1.7), PCFT unsurprisingly functions optimally at an acidic pH (optimum ~ pH 5.5). PCFT is 

expressed physiologically primarily in the acidic apical brush-border of the proximal duodenum 

and jejunum (where its primary role is the uptake of folates from the diet), as well as in the 

kidney, liver, and choroid plexus (Desmoulin et al., 2012a). In the latter tissues, however, RFC is 

the predominant folate uptake mechanism as PCFT-mediated uptake is minimal at the 

physiological pH of 7.4 (Zhao et al., 2008). Loss-of-function of PCFT leads to hereditary folate 

malabsorption, which results in symptoms secondary to folate deficiency including 

megaloblastic anemia, immune deficiency, and neurological dysfunction (Zhao et al., 2007). 

Notably, PCFT is expressed in a variety of solid tumors including colorectal adenocarcinoma, 

ovarian cancer, hepatocellular carcinoma, and lung adenocarcinoma (Kugel Desmoulin et al., 

2011; Wilson et al., 2016). The extracellular pH of these tumors is often acidic (pH ~ 6.7-7.1) 

due to Warburg metabolism and poor perfusion (Webb et al., 2011), meaning PCFT is 

functionally active in these cells. Therefore, selective uptake of antifolates by PCFT over RFC 

would be desirable as PCFT has relatively minimal physiological activity in normal tissues. At 

pH 5.5, PCFT-mediated transport of both reduced folates and folic acid is generally saturable at 

low micromolar concentrations (Km = 1-5 µM) (Zhao, 2011). The best known substrates for 

PCFT are the 5-substituted pyrrolo[2,3-d]pyrimidine antifolate pemetrexed (PMX - Km = 30-90 

nM) (Desmoulin et al., 2012b; Zhao and Goldman, 2007) and the 6-substituted pyrrolo[2,3-
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d]pyrimidine antifolate AGF94 (Km = 20 nM) (Desmoulin et al., 2012b). These antifolates are 

discussed in further detail in sections 1.4.2 and 1.4.4 respectively. 

1.3.3 Folate Receptors 

 The last major plasma membrane folate transporters, the FRs, have homologous alpha 

(FRα), beta (FRβ), and gamma (FRγ) isoforms (Elnakat and Ratnam, 2004). The former two are 

cell surface glycosyl phosphatidylinositol (GPI)-anchored glycoproteins and effect folate uptake, 

whereas the latter has no GPI-anchor and is a secretory protein with unknown function (Elnakat 

and Ratnam, 2004). FRα, the more widely physiologically expressed isoform, is generally 

expressed on the apical surface of epithelial cells, including the choroid plexus, proximal kidney 

tubules (where it reabsorbs filtered folates), and placenta (Weitman et al., 1992) while FRβ is 

expressed in hematopoietic cells and in the placenta (Ratnam et al., 1989; Reddy et al., 1999). 

Folate uptake by FR is mediated by endocytosis followed by acidification of the endosome, 

which allows PCFT-mediated export into the cytosol (Figure 1.7) (Zhao et al., 2009). As with 

PCFT, FRs in general and FRα in particular have limited physiological expression with the latter 

predominantly expressed on the apical surfaces of epithelium and consequently out of contact of 

antifolates in the circulation (Elnakat and Ratnam, 2004). In addition, a subset of cancers 

including breast, ovarian, and lung have been shown to overexpress FRα and loss of cellular 

polarity in these cells means the receptor comes in contact with the circulation and may be used 

as a tumor-selective drug transporter (Cheung et al., 2016; Low and Antony, 2004). FRα is 

saturable at extremely low (1-10 nM) concentrations of both folic acid and reduced folates 

(Kamen and Smith, 2004). As folic acid itself is an extremely potent FRα substrate, small-

molecule drugs (such as Vinca alkaloids) conjugated to folic acid (e.g. Vintafolide) (Assaraf et 

al., 2014; Vergote and Leamon, 2015) and FRα-targeted antibodies (e.g. Farletuzumab) (Sato 



 

 

20 

and Itamochi, 2016) have been developed as drugs to selectively target tumors. In addition, 

development of FRα-selective antifolates began with the discovery of BGC945 (ONX0801) 

(Gibbs et al., 2005), which successfully demonstrated efficacy in a Phase I trial (Banerji et al., 

2017). Moreover, development of pyrrolopyrimidine FRα-selective antifolates remains ongoing 

as well (Hou et al., 2017; Ravindra et al., 2018; Wang et al., 2012; Wang et al., 2011; Wang et 

al., 2015; Wang et al., 2013). 

1.3.4 Mitochondrial Folate Transporter 

 While there are three separate plasma membrane folate transporters, MFT is the only 

known transporter of folates from the cytosol into the mitochondrial matrix (McCarthy et al., 

2004). Discovered in 2000 (Titus and Moran, 2000), MFT is a member of the mitochondrial 

carrier family (which includes mammalian ATP/ADP exchange carriers, phosphate carriers, and 

uncoupling carriers) (Kuan and Saier, 1993). MFT has six transmembrane domains consisting of 

three tandem repeats of 100 amino acids and transports THF from the cytosol into the 

mitochondrial matrix (Lawrence et al., 2011). Notably, MFT KO prevents mitochondrial 

accumulation of folates and consequently, induces glycine auxotrophy in cells secondary to 

insufficient mitochondrial THF as a cofactor for the SHMT2 reaction (Figure 1.1) (McCarthy et 

al., 2004). As no previously reported folate analogs target mitochondrial C1 metabolic enzymes, 

the importance of MFT in antifolate efficacy is unclear. 

1.4 Therapeutic Targeting of Cytosolic One-Carbon Metabolism 

 

All clinically used antifolates currently target nucleotide biosynthetic enzymes in 

cytosolic C1 metabolism. The earliest such enzyme targets included DHFR (by MTX) (Farber et 

al., 1947; Farber and Diamond, 1948) and TS (by the suicide inhibitor 5-fluorouracil (5-FU)) 

(Rich et al., 1958). While current clinically used antifolates continue to target DHFR and TS, 
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development of antifolates targeting alternate enzymes such as GARFTase and AICARFTase in 

de novo purine biosynthesis remains ongoing (Deis et al., 2016; Deng et al., 2008; Golani et al., 

2016; Mitchell-Ryan et al., 2013; Xing et al., 2017). 

1.4.1 Targeting DHFR 

 Since the discovery of aminopterin and amethopterin (i.e. MTX) (Figure 1.8) by Farber 

and colleagues in the late 1940s, DHFR inhibitors have played a key role in chemotherapeutic 

arsenals (Farber et al., 1947; Farber and Diamond, 1948). Despite their longstanding success, 

DHFR inhibitors face two major, intrinsic hurdles to efficacy: first, that inhibition of greater than 

95% of cellular DHFR is required to suppress cellular THF pools and second, that DHF 

accumulates behind a DHFR block and can compete with the inhibitor for binding the enzyme 

(Visentin et al., 2012). Despite these drawbacks, MTX remains incredibly successful for a 70 

year old agent, as it is widely used not only in treating solid and hematological tumors (including 

leukemias, lymphomas, and osteosarcomas) (Jaffe, 2009; Matloub et al., 2011), but also in 

nonmalignant diseases like Crohn’s disease and rheumatoid arthritis (Abolmaali et al., 2013). 

MTX overcomes these hurdles by achieving micromolar intracellular concentrations through 

polyglutamylation by FPGS, which simultaneously effects drug retention while enhancing 

affinity for DHFR (Fabre et al., 1984). However, the dependence of MTX on polyglutamylation 

is its Achilles’ heel as impaired MTX polyglutamylation due to decreased affinity for or 

expression of FPGS can drive MTX resistance (Longo et al., 1997; Pizzorno et al., 1988). To 

circumvent MTX resistance stemming from impaired polyglutamate formation, research drove 

towards two divergent schools of thought: either (1) generating DHFR inhiibtors which did not 

require polyglutamylation (which resulted in the development of PT523 (Rosowsky, 1999)); or 

(2) generating DHFR inhibitors with enhanced affinity for FPGS (leading to pralatrexate (PTX)) 
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Figure 1.8 Antifolate Inhibitors of DHFR. Aminopterin and methotrexate (MTX)  were among 

the first chemotherapeutic agents discovered by Sidney Farber and colleagues in the late 1940s. 

PT523 substituted a hemiphthaloylornithine moiety for the glutamate in MTX, preventing the 

need for polyglutamylation whereas pralatrexate (PTX) featured a C in place of the N at the 10-

position of MTX as well as a terminal alkyne group.  
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(O'Connor et al., 2017) (Figure 1.8). PT523 featured a hemiphthaloylornithine moiety in place 

of the glutamate moiety on MTX (and most folate analogs) that prohibited its polyglutamylation 

(Rosowsky, 1999). Consequently, in order to accumulate in sufficient amounts to therapeutically 

inhibit DHFR, PT523 had to be an excellent substrate for RFC and indeed, PT523 is the best 

known substrate for this transporter (Matherly et al., 2007). Similarly, PTX also featured much 

more rapid cellular uptake and polyglutamylation than MTX (Visentin et al., 2013). Further, due 

to efficient retention of PTX polyglutamyl derivatives in cancer cells, PTX could be dosed 

weekly (O'Connor et al., 2011) whereas MTX must be dosed daily (Mager, 2015). However, 

both PT523 and PTX, along with MTX, rely heavily on RFC-mediated uptake for efficacy and as 

RFC is ubiquitously expressed in normal tissues, dose-limiting toxicities are to be expected. 

Consequently, clinical use for PTX is limited to cutaneous T-cell lymphoma (Foss et al., 2018) 

and PT523 actually featured excessive hematological toxicity, prohibiting its clinical use 

(Rosowsky, 1999). 

1.4.2 Targeting TS 

 Along with DHFR, inhibitors of TS (Figure 1.9) make up a significant portion of the 

classical antifolates. The first TS inhibitors were not folate analogs, but pyrimidine analogs such 

as 5-FU (Rich et al., 1958). In the cell, 5-FU is converted into F-dUMP which binds the 

nucleotide binding site of TS and, with 5,10-meTHF, forms a ternary complex that prevents 

formation of thymidylate (Longley et al., 2003). Thymidylate depletion then leads to 

perturbations of the other dNTP pools (Aherne et al., 1996; Yoshioka et al., 1987) as well as 

misincorporation of dUMP into DNA, which are lethal (Longley et al., 2003). 5-FU and its 

prodrug capecitabine (Walko and Lindley, 2005) are used in treatment of colorectal and breast 

cancers, but response rates as a colon cancer monotherapy were dismal (11%) 
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Figure 1.9 Inhibitors of TS. 5-fluorouracil (5-FU) was the first synthesized inhibitor of 

thymidylate synthase (TYMS or TS). As inhibition of TS at the dUMP binding site was less 

advantageous compared to inhibition at the folate binding site, folate analog TS inhibitors 

were synthesized, including CB3717. Due to the nephrotoxicity of CB3717, raltitrexed 

(RTX) was designed to improve the solubilitiy of CB3717. Further optimization yielded 

pemetrexed (PMX), which is still used in clinic today. 
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(Thirion et al., 2004). Surprisingly, supplementation with leucovorin actually potentiates 5-FU 

activity (doubling response rate) (Thirion et al., 2004) by increasing 5,10-meTHF levels (Chu et 

al., 2003) whereas it generally eases side-effects of other antifolates such as MTX (Howard et 

al., 2016). The development of 5-FU validated TS as a bona fide chemotherapeutic target, but the 

clinical results were disappointing, leading to the development of novel, folate-based TS 

inhibitors as it was believed the folate binding site of TS offered better design opportunities than 

the nucleotide binding site (Jackman and Calvert, 1995). As with inhibition of DHFR by MTX, 

inhibition of TS by 5-FU leads to a buildup of the substrate (up to millimolar concentrations of 

dUMP) behind the enzyme block (Jackson et al., 1983; Mitrovski et al., 1994) which can 

competitively inhibit 5-FU binding to TS, self-limiting the effect of the drug (Myers et al., 1975). 

Folate-based inhibitors of TS, however, would bind at the folate-binding site of TS rather than 

the dUMP site and would be unaffected (Chattopadhyay et al., 2004).  

Although initial efforts resulted in the synthesis of a clinically efficacious quinazoline-

based antifolate in CB3717, it induced life-threatening nephrotoxicity in patients due to drug 

precipitation in the renal tubules (Calvert et al., 1986). To overcome this dose-limiting toxicity, 

the next-generation quinazoline compound ZD1694 (Raltitrexed or RTX) demonstrated 

increased water-solubility (Jackman and Calvert, 1995). Like MTX, RTX uptake into the cell 

was found to be mediated by RFC and it was an excellent substrate for polyglutamylation by 

FPGS (Touroutoglou and Pazdur, 1996), which allowed for dosing once every three weeks (Chu 

et al., 2003). Two phase III trials comparing RTX monotherapy to 5-FU/leucovorin combination 

therapy in untreated, advanced colorectal cancer were conducted. In the European study, 

response rates, time to progression, and median survival were similar between treatment arms 

although RTX featured significantly lower incidence and severity of toxicity (Cunningham et al., 
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1996), leading to approval of RTX as a first-line colorectal cancer agent in Europe, Japan, 

Canada, and Australia (Chu et al., 2003). In the North American trial, the RTX treatment arm 

also showed similar response rates to the 5-FU/leucovorin treatment arm. However, time to 

progression and overall survival were significantly increased in the latter arm (Pazdur, 1997) and 

RTX was not approved by the FDA (Chu et al., 2003). Interestingly, the difference in efficacy of 

RTX between Europe and the US could reflect the latter’s mandatory fortification of foods with 

folic acid (Mills and Dimopoulos, 2015), which would increase serum folate levels, leading to 

increased competition for antifolate uptake. 

Efforts to further improve the potency of RTX resulted in the development of PMX, 

which substituted the 6-5-fused pyrrolo[2,3-d]pyrimidine nucleus for the 6-6 fused quinazoline 

ring structure of RTX (Shih et al., 1997). Like RTX, PMX featured high affinity for RFC and 

was a very potent substrate for FPGS as well, resulting in rapid and long-lasting accumulation in 

cancer cells (Goldman and Zhao, 2002) and effecting an every three week dosing schedule (Chu 

et al., 2003). Unlike RTX, though, PMX also featured potent uptake by PCFT, leading to 

enhanced rather than muted efficacy in cells with loss-of-function of RFC (Desmoulin et al., 

2012b). Moreover, PMX was the first successful multitargeted folate agent, inhibiting primarily 

TS, but also DHFR and the purine biosynthetic enzymes GARFTase and AICARFTase (Adjei, 

2004). In fact, PMX’s inhibition of AICARFTase triggered an entirely different mechanism of 

efficacy by inducing accumulation of AICAR (ZMP), leading to activation of AMP-activated 

kinase (AMPK) and consequent downregulation of mammalian target of rapamycin (mTOR) 

(Racanelli et al., 2009; Rothbart et al., 2010). While secondary to its effects at TS, PMX’s 

inhibition of these secondary drug targets effected its potency in cell lines resistant to the single-

target TS inhibitors like 5-FU and RTX (Hanauske et al., 2001). However, TS expression still 
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remained the primary determinant of PMX resistance (Zhang et al., 2011) Ultimately, PMX was, 

and remains today, the most successful TS inhibitor discovered. It is currently approved to treat 

mesothelioma and non-small cell lung cancer in combination therapy with a platinum agent as 

first- and second-line therapy (Cohen et al., 2009; Esteban et al., 2009) and as a monotherapy for 

maintentance (Ciuleanu et al., 2009). 

1.4.3 Targeting De Novo Purine Biosynthesis 

 Since inhibition of DHFR by agents such as MTX was shown to be self-limiting (due to 

competitive inhibition of these drugs by the accumulated DHF as discussed in section 1.4.1), 

subsequent research approaches focused on generating inhibitors of alternate pathways, such as 

thymidylate synthesis. Another such alternate pathway was de novo purine biosynthesis, which 

contains two folate-dependent targetable enzymes, GARFTase and AICARFTase (Appling, 

1991). The first inhibitor of de novo purine biosynthesis was the purine antimetabolite, 6-

mercaptopurine (6-MP - Figure 1.10) (Hitchings and Elion, 1954) which is used in maintenance 

therapies for pediatric ALL (Stork et al., 2010) and inhibits phosphoribosyl pyrophosphate 

(PRPP) amidotransferase, the first enzyme in de novo purine biosynthesis (Nelson et al., 1975). 

The first folate-based inhibitor of de novo purine biosynthesis was the GARFTase inhibitor 

lometrexol (LMX – Figure 1.10), which was designed to be structurally identical to THF 

(Figure 1.6) except for the substitution of non- reactive carbon atoms for the nitrogen atoms at 

the 5 and 10 positions, preventing the acceptance of C1 units (Beardsley et al., 1989). Moreover, 

inhibition of GARFTase by LMX was found to be cytotoxic independent of p53 mutation status 

(Bronder and Moran, 2002) and as a whole, many cancer cells are overly reliant on the de novo 

purine biosynthesis pathway as they are methylthioadenosine phosphorylase (MTAP)-deficient 

and cannot salvage adenine (Bertino et al., 2011). Like many other classical antifolates discussed 
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Figure 1.10 Inhibitors of De Novo Purine Biosynthesis. 6-mercaptopurine (6-MP) was the first 

inhibitor of de novo purine biosynthesis, inhibiting the enzyme PRPP (phosphoribosyl-

pyrophosphate) amidotransferase, the first enzyme in the pathway. Lometrexol (LMX) was the first 

folate-based inhibitor of this pathway, targeting GARFTase, the first folate-dependent enzyme. 

AGF94 is a next-generation GARFTase inhibitor which carries much improved selectivity for PCFT 

versus RFC as compared to LMX. 
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previously, though, LMX featured RFC-mediated uptake and a strong dependence on FPGS-

mediated polyglutamylation, which ultimately allowed for development of resistance (Tse and 

Moran, 1998). Notably, mutations in RFC resulted in decreased affinity for LMX and increased 

affinity for folic acid and leucovorin (Tse et al., 1998). This, in turn, increased intracellular folate 

pools which competed against LMX for polyglutamylation by FPGS (Tse et al., 1998). 

Ultimately, while LMX was potent against leukemia cells in vitro and clinical activity was 

investigated in a phase I trial (Ray et al., 1993; Sessa et al., 1996), further development of this 

drug was abandoned, likely due to dose limiting toxicities. Interestingly, though, refinement of 

the structure-activity relationship of LMX directly led to the development of PMX 

(Chattopadhyay et al., 2007). 

1.4.4 Limitations of Classical Antifolates 

 While roughly 60 years of antifolate research led to the development of the classical 

antifolates described above, these agents (and indeed, chemotherapeutics in general) must 

overcome two main hurdles: tumor selectivity and the development of drug resistance. All 

classical antifolates discussed above are substrates for the ubiquitously expressed RFC, meaning 

these drugs are nonselectively transported into both normal tissues and cancer cells. The 

selectivity of these agents, then, is limited to their targeting of nucleotide biosynthesis, which is 

critical to cancer cells, but also to other rapidly proliferating tissues such as hematological cells. 

Indeed, the dose-limiting toxicities of both PMX (Cohen et al., 2009) and MTX (Hansen et al., 

1971) are neutropenia or thrombocytopenia. Moreover, loss-of-function of RFC is a common 

means of resistance to antifolates reliant solely on RFC-mediated uptake (Matherly et al., 2007). 

However, the efficacy of antifolates such as PMX, which have significant PCFT-mediated 
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uptake, is unaffected and, indeed, may actually increase (Chattopadhyay et al., 2006; Desmoulin 

et al., 2012b). 

 The other major hurdle antifolates must overcome is the development of drug resistance, 

which often results from alterations in the primary enzyme target (Zhao and Goldman, 2003). 

For MTX, amplification of (Schimke, 1988) or mutations in (Jackson et al., 1976) DHFR can 

lead to resistance whereas for PMX, resistance is usually secondary only to increased expression 

of TS (Shimizu et al., 2016). However, resistance to LMX, the GARFTase inhibitor, is due to 

mutations in FPGS or decreased RFC-mediated uptake (Zhao and Goldman, 2003). The lack of 

resistance due to mutations in GARFTase suggests a PCFT-selective GARFTase inhibitor 

(which would theoretically circumvent the RFC-mediated toxicity of LMX) would be a more 

robust drug than either MTX or PMX. Indeed, AGF94 (Figure 1.10), a 6-substituted pyrrolo[2,3-

d]pyrimidine with a thiophene heterocyclic group is an incredibly potent inhibitor of GARFTase 

(Ki = 68 nM relative to 10-formyl-dideazafolic acid, a 10-formylTHF analog) (Deis et al., 2016) 

with 30-fold selectivity for PCFT over RFC (Wang et al., 2015). Due to its potential selectivity 

and efficacy in targeting mesothelioma (Cherian et al., 2013), further clinical testing of AGF94 is 

ongoing (unpublished observations). 

 As for the classical antifolates, despite being nonselectively transported by RFC and 

primarily targeting only TS, PMX remains the most clinically successful of these agents 

discovered to date. Unlike the others, though, PMX has extremely potent PCFT-mediated uptake 

(which circumvents resistance due to loss-of-RFC) and it is, nominally, a multitargeted agent 

which enables its efficacy in RTX- and 5-FU-resistant tumors. Moreover, its high affinity for 

FPGS enhances its intracellular retention, allowing for an advantageous once-every-three-week 

dosing scheme as discussed previously in section 1.4.2. Therefore, it is likely that PCFT-
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selective multitargeted agents in the mold of PMX will be highly promising drugs. As PMX 

already inhibits multiple different cytosolic C1 metabolism enzymes, these novel drugs would 

have to target alternate C1 metabolism enzymes, such as those in the mitochondria. 

1.5 Therapeutic Targeting of Mitochondrial One-Carbon Metabolism 

 Beyond generating formate for downstream cytosolic nucleotide biosynthesis, 

mitochondrial C1 metabolism enzymes, particularly MTHFD2 and SHMT2 (Figure 1.1), play a 

multitude of additional critical roles in cancer cells as discussed previously in section 1.1.3. 

Moreover, a survey of nearly 1500 metabolic enzymes across ~2000 tumors of 19 different 

cancer types identified MTHFD2 and SHMT2 as, respectively, the first and fourth most 

differentially expressed metabolic enzymes in normal tissues versus cancer cells (Nilsson et al., 

2014). Indeed, the glycine biosynthetic pathway as a whole is strongly correlated with cancer cell 

proliferation rate (Jain et al., 2012). As these enzymes are significantly more expressed in cancer 

cells rather than normal tissues (even moreso than the classical antifolate enzyme targets TS (tied 

sixth) and DHFR (tied 32
nd

) (Nilsson et al., 2014)), targeting these enzymes would confer 

additional tumor selectivity independent of plasma membrane folate transporter specificity. 

1.5.1 Targeting MTHFD2 

 MTHFD2 is a Myc- and mTOR -regulated enzyme (Ben-Sahra et al., 2016; Pikman et al., 

2016) with dehydrogenase and cyclohydrolase activity (Allaire et al., 1998). As discussed 

previously in section 1.1.3, the NADPH generated by the MTHFD2 reaction is critical for 

maintaining cellular redox balance and the 10-formylTHF is used to generate formylmethionine-

tRNAs for translation of mitochondrial proteins (Minton et al., 2018). As both these functions of 

MTHFD2 are carried out by MTHFD2L in normal tissues, selective inhibition of MTHFD2 

would offer an unprecedented level of tumor selectivity (Tedeschi et al., 2016; Tedeschi et al., 
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2015) and research into MTHFD2 as a chemotherapeutic target is ongoing with early positive 

results in acute myeloid leukemia (AML) and breast cancer models. 

 In AML, the Stegmaier group demonstrated that downregulation of MTHFD2 is a 

common mechanism of several AML treatments (Pikman et al., 2016). Suppression of MTHFD2 

in AML cell lines yielded increased dependence on extracellular glycine along with G0/G1 cell 

cycle arrest with minimal effects on non-cancer cell lines. In vivo, MTHFD2-targeting small 

hairpin RNA (shRNA)-transduced U937 AML cells decreased leukemia burden and prolonged 

survival in nude mice as compared to non-targeted shRNA-transduced controls (NTC). 

Moreover, a doxycycline-inducible MTHFD2 knockdown (KD) model simulating the effects of 

inhibiting MTHFD2 after an established AML diagnosis yielded similar results, highlighting the 

therapeutic potential of MTHFD2 in AML. This effect was particularly pronounced in AML cell 

lines with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutations, which 

are associated with poorer prognosis than FLT3-ITD WT cancers (Badar et al., 2015). This 

suggests that inhibitors of MTHFD2 could fill a particularly important niche in the treatment of 

AML.  

MTHFD2 overexpression positively correlates with metastasis and invasion (Lehtinen et 

al., 2013), as well as poor prognosis (Liu et al., 2014) in breast cancer. As with the AML cell 

lines, KD of MTHFD2 in breast cancer cell lines (Koufaris et al., 2016) increased dependence on 

extracellular glycine and was not rescuable supplementation with formate, the end-product of 

mitochondrial C1 metabolism. Metabolomics analysis in the MTHFD2 KD cell lines also 

demonstrated decreased mitochondrial metabolism coupled with increased glycolytic and 

glutaminolytic flux, suggesting inhibition of mitochondrial oxidative phosphorylation potentially 

due to serine modulation of PKM2 (Figure 1.4). 
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Even though the early crystallization of the cytosolic isoform MTHFD1 in complex with 

inhibitors (Schmidt et al., 2000) identified critical catalytic residues such as Lys56, the 

development of small molecule inhibitors of MTHFD2 has remained challenging. Initial efforts 

to drug target MTHFD2 focused on the antibacterial benefits of inhibiting the bacterial ortholog 

FolD. A high-throughput screening enzyme assay with the intent of inhibiting FolD in 

Pseudomonas aeruginosa identified several lead compounds (Eadsforth et al., 2012), but these 

showed weak enzyme inhibition and were not used as scaffolds for further drug development. 

The macrolide keto-carboxylic acid carolacton (Figure 1.11), produced by the myxobacterium 

Sorangium cellulosum, was initially shown to inhibit biofilm production in Streptococcus mutans 

and was studied as a potential inhibitor of dental caries (Kunze et al., 2010). Later efforts (Fu et 

al., 2017) revealed that carolacton inhibited FolD, as well as MTHFD2, in the low nM range, 

suggesting potential therapeutic efficacy. However, carolacton was a much less potent inhibitor 

of tumor growth as the half-maximal effective concentration (EC50) values against human tumor 

cell lines in vitro were in excess of 10 µM with cellular export by efflux pumps cited as the main 

hurdle. Later studies (Gustafsson et al., 2017) with an Eli Lilly compound (LY345899 - Figure 

1.11) yielded the first crystal structure of an inhibitor complexed with MTHFD2, but LY345899 

was unable to cross the plasma membrane, rendering it unsuitable for therapeutic use. Currently, 

there are no small molecule inhibitors of MTHFD2 with therapeutic potential. 

1.5.2 Targeting SHMT2 

Like MTHFD2, SHMT2 is also a Myc-regulated enzyme (Ye et al., 2014) and has been 

found to be critical to cell survival in hypoxic (Ye et al., 2014) or ischemic (Kim et al., 2015) 

conditions under which it is upregulated by HIF-1α in a Myc-dependent manner (Ye et al., 

2014). As only Myc-transformed (i.e. tumor) cells rely on SHMT2 to maintain a sufficient 
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Figure 1.11 Inhibitors of MTHFD2. Carolacton is a macrolide keto-carboxylic acid 

produced by the myxobacterium Sorangium cellulosum that inhibits Streptococcus mutans 

biofilm formation as well as MTHFD2 and the bacterial ortholog FoID, but is rapidly 

pumped out of human tumor cells. LY-345899 is an Eli Lilly compound that potently inhibits 

MTHFD2 in vitro, but is unable to cross the plasma membrane. 
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NADPH/NADP
+
 ratio to ensure cellular survival under hypoxia (Ye et al., 2014), therapeutic 

targeting of SHMT2 would be particularly tumor-selective against hypoxic Myc-transformed 

tumors which are resistant to other treatment modalities such as radiation (Horsman and 

Overgaard, 2016).  

Moreover, overexpression of SHMT2 in general is associated with poor prognosis in a 

variety of cancers including breast cancer (Yin, 2015; Zhang et al., 2016), pancreatic cancer 

(Noguchi et al., 2018), glioma (Wu et al., 2017), and cholangiocarcinoma (Ning et al., 2018). 

This suggests that SHMT2 is a highly promising drug target. 

Initial efforts to generate small-molecule inhibitors of SHMT focused on herbicidal 

pyrazolopyran compounds described as inhibitors of plant SHMT (Witschel et al., 2013) (Figure 

1.12). Optimization of these compounds first yielded molecules with antimalarial activity 

(Witschel et al., 2015) (Figure 1.12). Although potent inhibitors of Plasmodium falciparum 

SHMT in vitro (submicromolar IC50 values), these compounds suffered from extraordinarily 

poor pharmacokinetics and their lack of stability rendered them unsuitable for further evaluation 

(Witschel et al., 2015). Molecules of this series were initially tested against human lung cancer 

cells (Marani et al., 2016), which yielded poor potency (IC50 values in the double-digit 

micromolar range) with preferential inhibition of SHMT1 over SHMT2. As most cancer cells 

primarily derive the C1 units necessary for cytosolic purine and thymidylate biosynthesis from 

the mitochondrial pathway (i.e. from SHMT2) (Ducker et al., 2016) rather than from SHMT1, it 

is likely that the therapeutic inefficacy of these compounds stemmed at least partially from their 

preferential inhibition of the latter enzyme Although impractical for targeting human tumor cells 

in their then-current forms, the herbicidal pyrazolopyran compounds were later optimized for 

activity against human SHMT1 and SHMT2 (Rabinowitz et al., 2018) (Figure 1.12). The first 
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Figure 1.12 Pyrazolopyran Inhibitors of SHMT2. Pyrazolopyran inhibitors were initially 

described as herbicidal inhibitors of plant SHMT2 (left) and optimized for inhibition of Plasmodium 

falciparum and human SHMT2. 
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study using these optimized compounds (Ma et al., 2017) identified another pyrazolopyran (RZ-

2994) as an extremely potent inhibitor of both human SHMT1 and SHMT2 (IC50 values of 5 and 

13 nM against isolated SHMT1 and SHMT2, respectively). Moreover, RZ-2994 was 

significantly more potent against human cells (IC50 value in the low single-digit micromolar 

range against T effector cells) than the non-optimized pyrazolopyran compounds, suggesting 

potential therapeutic efficacy. Although not an analog of folic acid, a crystal structure of a 

prazolopyran compound in complex with SHMT2 (Ducker et al., 2017) revealed that these 

compounds bound at the folate binding site of SHMT2. 

The first studies directly assessing these optimized pyrazolopyran SHMT inhibitors 

against human tumor cell lines were performed by Ducker, Rabinowitz, and colleagues (Ducker 

et al., 2017). Against wild-type (WT) HCT116 colon cancer cells, RZ-2994 (i.e. serine 

hydroxymethyltransferase inhibitor 1 – SHIN1) featured sub-micromolar potency (IC50 value of 

870 nM) with complete rescue by formate and glycine, suggesting efficacy due to on-target 

inhibition of SHMT1 and SHMT2. Moreover, the IC50 value for SHIN1 with SHMT2 KO 

HCT116 cells decreased by nearly two orders of magnitude to 10 nM (due to potent inhibition of 

SHMT1), whereas the IC50 in SHMT1 KO cells was indistinguishable from that in WT cells. 

This confirms that the efficacy of the compound was limited by inhibition of SHMT2. Notably, 

the enhanced potency of SHIN1 in 8988T pancreatic cancer cells and diffuse large B-cell 

lymphoma revealed distinct metabolic vulnerabilities of these cancer types that could be 

exploited by SHMT1 and SHMT2 inhibition. The former cell line featured intrinsic defects in 

mitochondrial C1 metabolism, meaning cells were overly reliant on SHMT1 (the more robust 

target of SHIN1) for C1 units. In contrast, the latter cell lines were shown to have intrinsic 

defects in glycine uptake, meaning they were overly reliant on glycine synthesis from serine by 
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SHMT1 and SHMT2. Moreover, the addition of formate to these cells did not rescue the effects 

of SHIN1 as it had in HCT116 cells, but instead potentiated SHIN1 efficacy. Cytotoxicity in 

these cells, then, was due not to C1 unit depletion, but glycine deficiency exacerbated by excess 

formate, which drives the SHMT reaction in the glycine-consuming direction. Despite the 

promising effects in vitro of SHIN1, it featured poor in vivo pharmacokinetics with a lack of in 

vivo antitumor efficacy, likely due to microsomal inactivation. Pyrazolopyran inhibitors of 

SHMT1 and SHMT2 like SHIN1, while potent in vitro and useful as tools for interrogation of C1 

metabolism, are not currently candidates for further clinical development. 

1.5.3 Concurrent Targeting of Cytosolic One-Carbon Metabolism: Strategies for Optimal 

Drug Design 

While SHMT2 and MTHFD2 are unequivocally associated with the oncogenic phenotype 

in a variety of cancers, CRISPR/Cas9 KO of either enzyme results in viable and tumorigenic 

(albeit slower-growing) cells under nutrient-rich conditions due to compensation by the cytosolic 

isoform, SHMT1 which reverses flux (i.e. serine to glycine) when SHMT2 is lost (Ducker et al., 

2016). Therefore, an ideal drug would, in addition to inhibiting SHMT2/MTHFD2, also inhibit 

SHMT1 to prevent cellular compensation. Moreover, although the compensatory flux through 

SHMT1 provides sufficient 10-formylTHF to ensure a subsistence level of purine biosynthesis, 

formate-rescuable elevations in AICAR (Ducker et al., 2016) persist in SHMT2 KO cells and 

confirm that the cytosolic C1 pools remain depleted. As cytosolic depletion of 10-formylTHF in 

particular would diminish competition for antifolate binding at both GARFTase and 

AICARFTase, direct inhibition of these enzymes by an inhibitor of mitochondrial C1 

metabolism would likely be highly synergistic.Therefore, the ideal agent would dual-target both 

mitochondrial and cytosolic C1 metabolism, the former at SHMT2 and/or MTHFD2 and the 
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latter at SHMT1 and the purine biosynthetic enzymes GARFTase and AICARFTase. Moreover, 

due to the more tumor selective function and distribution of PCFT versus RFC (discussed 

previously in section 1.3.2), it would be advantageous to feature selective uptake by PCFT. 
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CHAPTER 2- DESIGN, SYNTHESIS, AND VALIDATION OF NOVEL 5-

SUBSTITUTED PYRROLO[3,2-d]PYRIMIDINES DUAL-TARGETING CYTOSOLIC 

AND MITOCHONDRIAL ONE-CARBON METABOLISM 

 

2.1 Introduction 

As existing inhibitors of MTHFD2 and SHMT2 proved insufficient for clinical use (as 

discussed in section 1.5.1 and 1.5.2), these structures could not be used as drug design scaffolds 

and the development of entirely novel drugs was necessary. Moreover, for optimal antitumor 

efficacy (as discussed in section 1.5.3), these agents would have to simultaneously target 

SHMT2/MTHFD2, SHMT1, and GARFTase/AICARFTase and ideally, they would also be 

selectively transported by PCFT versus RFC. 

 In this chapter, we describe the rational design and synthesis of a series of 5-substituted 

pyrrolo[3,2-d]pyrimidine analogs (Figure 2.1) with potent inhibition of SHMT2, SHMT1, and 

GARFTase/AICARFTase as demonstrated both through targeted metabolomics in several human 

tumor cell lines (H460 – large cell lung carcinoma, HCT116 – colon adenocarcinoma, and MIA 

PaCa-2 – pancreatic adenocarcinoma), as well as in cell-free enzyme assays with recombinant 

enzymes. Our unprecedented results establish the lead molecules of this series AGF291 and 

AGF347 as “first-in-class” multitargeted inhibitors of mitochondrial and cytosolic C1 

metabolism with bona fide in vivo efficacy established in a MIA PaCa-2 tumor xenograft model 

in severe combined immunodeficient (SCID) mice. The work described in this chapter has been 

submitted for publication.  

2.2 Materials and Methods 

2.2.1 Chemicals 

[2,3,3-
2
H, 98%]L-Serine was purchased from Cambridge Isotope Laboratories, Inc. 

(Andover, MA). Leucovorin [(6R,S) 5-formylTHF] was provided by the Drug Development  
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Figure 2.1 Rational design of novel 5-substituted pyrrolo[3,2-d]pyrimidine 

benzoyl and thienoyl analogs.  Key structural features of the 5-subsituted 

pyrrolo[2,3-d]pyrimidines AGF127 and AGF136 (28, 32) were merged with the 

SHMT2 product 5,10-methylene-THF and SHMT2 inhibitor 5-formylTHF 

(leucovorin) to generate the novel analogs. In the table are summarized key 

structural features for the various compounds including the bridge lengths (3 -5 

carbons), thienoyl or benzoyl side-chains, and for the latter, the 2’ ring substituent 

(F or H). N/A, not applicable.   
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Branch, National Cancer Institute (Bethesda, MD). PMX was purchased from LC Laboratories 

(Woburn, MA). Gemcitabine (Gemzar) was purchased from Pfizer (New York City, NY). 

Serine-, glycine- and folate-free RPMI 1640 media was custom-ordered from ThermoFisher 

(Waltham, MA) and supplemented with tissue-culture grade glycine (ThermoFisher) or serine 

(Sigma-Aldrich), as needed. AGF94 was synthesized as previously described (Wang et al., 

2011). Novel 5-substituted pyrrolo[3,2-d]pyrmidine compounds were synthesized by Dr. Aleem 

Gangjee (Duquesne University) and his students. 

2.2.2 Cell Culture and Proliferation/Protection Assays 

The HCT116 cell lines including the SHMT1, SHMT2, and MTHFD2 KO cells were a 

generous gift of Drs. Gregory Ducker (University of Utah) and Joshua Rabinowitz (Princeton 

University) and were previously described (Ducker et al., 2016; Ducker et al., 2017). The H460 

cell line was obtained from the American Type Culture Collection (Manassas, VA), whereas the 

MIA PaCa-2 cells were provided by Dr. Yubin Ge (Karmanos Cancer Institute). Cell lines were 

verified by short tandem repeat analysis by Genetica DNA Laboratories (Burlington, NC). 

MTXRIIOua
R
2-4 (i.e. R2) Chinese hamster ovary (CHO) cells were generously provided by Dr. 

Wayne Flintoff (University of Western Ontario) (Flintoff et al., 1976). From this parental R2 cell 

line, human RFC and PCFT were individually transfected to generate the isogenic CHO cell 

lines designated PC43-10 (RFC) and R2/PCFT4 (PCFT) (Deng et al., 2008; Deng et al., 2009; 

Wong et al., 1995). Human tumor cell lines were cultured in folate-free RPMI supplemented 

with 10% dialyzed fetal bovine serum (Sigma-Aldrich), 1% penicillin/streptomycin solution, 2 

mM L-glutamine, and 25 nM leucovorin (approximating human serum folate levels (Laposata, 

2019)) in a humidified atmosphere at 37°C in the presence of 5% CO2 and 95% air. The CHO 

cell lines were cultured in α-minimal essential medium (αMEM) supplemented with 10% bovine 
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calf serum, 1% penicillin/streptomycin solution, and 2 mM L-glutamine. The transfected CHO 

cell lines (i.e. R2/PCFT4 and PC43-10) were maintained under continuous selection with 1 

mg/ml of G418. 

For proliferation assays with the CHO cell lines, cells were treated with the inhibitors (0-

1 µM) in a 96-well plate (seeding density of 2000 cells/well) in glycine-free, nucleoside-free 

folate-free RPMI supplemented with 10% dialyzed fetal bovine serum, 1% 

penicillin/streptomycin, 2 mM L-glutamine, and 25 nM leucovorin (final volume 200 µL) over a 

96 hour incubation period at 37
o
C with 5% CO2. The inhibitors were dissolved in DMSO; an 

equivalent amount of DMSO was added to the control (no addition) samples. To quantify viable 

cells, the media was removed and plates were washed once with 100 µL Dulbecco’s phosphate-

buffered saline (PBS), after which 100 µL PBS and 20 µL Cell Titer-blue reagent (Promega) 

were added. Relative cell numbers were proportional to the fluorescence measured with a 

fluorescence plate reader (590 nm emission, 560 nm excitation). Background fluorescence (i.e. 

that from cell-free wells treated with Cell Titer-blue) was subtracted and these corrected values 

were normalized to results for cells treated in an identical manner without inhibitors. IC50 values, 

corresponding to the drug concentrations that inhibit growth by 50% relative to untreated 

controls, were generated by fitting a 4-parameter logistic regression in Excel. 

 For proliferation assays of the HCT116, H460, and MIA PaCa-2 tumor cell lines, the 

cells were plated in 96-well plates in an identical manner to that in the CHO experiments, except 

that the maximal drug concentration was increased to 10 µM. For the HCT116 SHMT2 KO cells, 

glycine (130 µM) was included as these cells are glycine auxotrophs (Ducker et al., 2016). 

Glycine/nucleoside protection experiments in CHO and human tumor cell lines were 

performed in folate- and glycine-free RPMI 1640 with 10% dialyzed fetal bovine serum and 
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supplemented with 25 nM leucovorin without additions, or in the presence of adenosine (60 

µM), thymidine (10 µM), glycine (130 µM) and/or 5-aminoimidazole-4-carboxamide (AICA) 

(320 µM). Growth of metabolite-treated cells was normalized to controls treated with 

metabolites and vehicle (i.e., DMSO) both singly and in combination. Treatments with all 

metabolites were performed in parallel on the same plate for a given drug. 

2.2.3 Generation of H460 SHMT2 knockdown (H460 SHMT2 KD) cell line 

H460 cells were seeded (2 x 10
5
 cells/well) in 24 well plates containing 1 ml of culture 

medium (i.e. folate-free RPMI 1640 supplemented with 10% dialyzed fetal bovine serum, 1% 

penicillin/streptomycin, 2 mM L-glutamine, and 25 nM leucovorin). Cells were treated with 4 

μg/ml polybrene and 10
5
 transducing units of MISSION Lentiviral particles (Sigma-Aldrich) 

containing shRNA targeting SHMT2 (TRCN0000034805). An additional well contained H460 

cells without shRNA particles. After 24 h, the media was replaced with fresh culture media 

including 2 μg/ml puromycin (Wilson et al., 2016) as a selection marker. Once cells were 

confluent (and non-transduced cells had died), cells were harvested, passaged 3-4 times, and 

assayed by reverse transcriptase – polymerase chain reaction (RT-PCR) for SHMT2 expression 

relative to that in NTC H460 cells (Golani et al., 2016). To isolate single clones, cells were 

plated in 100 mm dishes (200 cells/dish) in the presence of 2 μg/ml puromycin. Colonies were 

isolated, and expanded and clonal cultures were assayed for SHMT2 KD via RT-PCR. SHMT2 

KD was confirmed via Western blotting (Figure 2.2).  

2.2.4 RT-PCR 

Cells were harvested from either 60 mm dishes or T25 flasks at ~80% confluence and 

RNAs extracted using TRIzol reagent (Invitrogen, Carlsbad, CA). cDNAs were synthesized with  
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Figure 2.2 Western Blot confirming knockdown of SHMT2 in H460 cells  

Whole-cell lysates of wild-type (WT), non-targeted control shRNA-transduced 

(NTC), and clonal SHMT2 knockdown (SHMT2 KD) H460 cells, along with 

HCT116 WT and SHMT2 CRISPR/Cas9 knockout (KO) cells were resolved on 10% 

polyacrylamide gel with SDS and probed with monoclonal rabbit anti-SHMT2 

antibody (#12762; Cell Signaling Technology, Danvers, MA). The blot was stripped 

and reprobed with mouse anti-β-actin antibody (Sigma-Aldrich) as a loading control.  

Experimental details are described in section 2.2.3 and 2.2.5. The blots were scanned 

with an Odyssey infrared imaging system (LICOR Biosciences). Densitometry 

analysis (values given are SHMT2 band intensities normalized to β-actin band 

intensities) revealed SHMT2 protein expression of H460 SHMT2 KD to be 5.3% of 

that of H460 NTC, and HCT116 SHMT2 KO expression to be <1% of that of 

HCT116 WT. 
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random hexamers, MuLV reverse transcriptase, and RNase inhibitor (Applied Biosystems, 

Waltham, MA), and purified with a QIAquick PCR Purification Kit (QIAGEN, Valencia, 

CA).Quantitative RT-PCR was performed using a Roche LightCycler 480 (Roche Diagnostics, 

Indianapolis, IN) with gene-specific primers and Universal Probe Library probes (SHMT2-#83, 

RFC-#32, PCFT-#89, FRα-#65 (Roche Diagnostics)). Transcript levels were normalized to 

transcript levels of β-actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).  

2.2.5 Gel Electrophoresis and Western Blots  

H460 WT, H460 NTC, H460 SHMT2 KD, HCT116 WT, and HCT116 SHMT2 KO cell 

lines were plated (1 x 10
6 

cells/dish) in 60 mm dishes and harvested when the cells were ~80% 

confluent. Cells were disrupted by sonication with cell debris removed by centrifugation. The 

soluble cell fraction was assayed for protein concentration (Lowry et al., 1951) and equal 

amounts of protein (37 µg) from each sample were electrophoresed on 10% polyacrylamide gels 

with SDS (Laemmli, 1970) and transferred to polyvinylidene difluoride membranes 

(ThermoFisher) (Matsudaira, 1987). To detect SHMT2, membranes were incubated for 72 hours 

with rabbit anti-SHMT2 primary antibody (#12762 (Ducker et al., 2016); Cell Signaling 

Technology, Danvers, MA). The blots were developed by incubating in IRDye800CW-

conjugated goat anti-rabbit IgG secondary antibody (LICOR Biosciences, Omaha, NE) for 90 

min and scanning with an Odyssey infrared imaging system (LICOR Biosciences). Protein 

loading was normalized to β-actin using anti-β-actin mouse antibody (Sigma-Aldrich). 

2.2.6 Targeted Metabolomics  

Targeted metabolomics was performed essentially as previously described (Ducker et al., 

2016; Ducker et al., 2017). Briefly, cells (H460, HCT116, MIA PaCa-2) (1 x 10
6
 cells /dish for 
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vehicle-treated samples, 1.5 x 10
6
 cells/dish for drug-treated samples) were seeded in triplicate 

60 mm dishes in 5 ml of folate-free RPMI (contains glycine and unlabeled serine) supplemented 

with 10% dialyzed fetal bovine serum, 1% penicillin/streptomycin, 2 mM L-glutamine, and 25 

nM leucovorin. The cells were allowed to adhere for 24 h. The media were aspirated and 

replaced with culture media (contains 25 nM leucovorin, glycine, and unlabeled serine) and 10 

µM AGF291, AGF320 or AGF347, or a comparable volume of vehicle (DMSO) (with or 

without 1 mM formate (final concentration)). After 16 h, the cells were washed with PBS (3x), 

the media were replaced with folate- and serine-free culture media (containing glycine) 

supplemented with 10% dialyzed fetal bovine serine, 25 nM leucovorin, and [2,3,3-
2
H]-serine 

(250 µM), including 10 µM drug or DMSO vehicle. The cells were incubated for 24 h. All 

incubations were at 37
o
C with 5% CO2. The media were aspirated, and cells were washed (3x) 

rapidly (< 30 s) with 5 mL ice-cold PBS; metabolism was quickly quenched with methanol:water 

(80:20) at -80
o
C. Cells were allowed to rock on dry ice for 10 min to cover the entire dish with 

80:20 methanol:water (at -80
o
C), then harvested by scraping and pipetting into 1.5 mL 

Eppendorf tubes. The tubes were centrifuged to fully extract metabolites into the methanol:water 

supernatant. The protein pellet was used for normalization. The supernatants were collected and 

analyzed by reverse-phase ion-pairing chromatography coupled with negative-mode 

electrospray-ionization high-resolution mass spectrometry on a stand-alone Orbitrap 

(ThermoFisher Exactive) (Lu et al., 2010). The metabolites were identified and quantified from 

collected mass spectra using MAVEN software. Raw metabolite values were adjusted to correct 

for normal ion distributions and normalized to total proteins from the post-extraction pellet by 

solubilizing with 0.5 N NaOH and using the Folin-phenol protein method (Lowry et al., 1951). 

Values below the limit of detection were assigned a value of 100 for normalization. Results for 
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drug-treated and SHMT2 KD cells were normalized to vehicle-treated WT ± formate or NTC ± 

formate samples, as appropriate. Drug treatment and metabolite extraction were done in our lab 

while Drs. Gregory Ducker (Princeton University/University of Utah) and Drs. Jing Li and Xun 

Bao (Karmanos Cancer Institute) performed the liquid chromatography – mass spectrometry 

(LC-MS) analysis. 

2.2.7 Enzyme Expression and Purification 

His-GARFTase was expressed and purified as described previously (Deis et al., 2016). 

To express full-length human ATIC with an N-terminal, cleavable hexahistidine tag, ATIC 

cDNA was cloned into pHis-parallel via Gibson assembly with subsequent confirmation by DNA 

sequencing prior to enzymatic studies (Gibson et al., 2009). The resulting plasmid, pSD001, was 

transformed and expressed in Rosetta (DE3) pLysS cells. Cultures (1 L) were grown in LB 

media containing 100 μg/mL ampicillin and 34 μg/mL chloramphenicol at 37°C until OD600 

reached 0.6. Expression was induced with the addition of 500 µM isopropyl β-D-1-

thiogalactopyranoside (IPTG) and incubated at 20°C for 16-18 h. Cultures were pelleted and 

resuspended in 40 mL 25 mM Tris pH 7.5, 300 mM NaCl, 5 mM β-mercaptoethanol (β-Me), 10 

mM CaCl2, 10 mM MgCl2, 40 mg lysozyme, and 8 U DNAse I (Sigma) before cell lysis by 

emulsification. His-ATIC was purified from the lysate by immobilized metal affinity 

chromatography over a 4 mL nickel-nitrilo-triacetic acid column (Gold Biotechnology). The 

lysate was passed over the 4 mL column, washed with 5 column volumes (CV) of 25 mM Tris 

pH 7.5, 300 mM NaCl, 10 mM imidazole, and 5 mM β-Me (wash buffer) and 5 CV of wash 

buffer with 25 mM imidazole. Protein was eluted with 5 CV (1 CV fractions) of elution buffer 

containing components of wash buffer and 300 mM imidazole. Purity of samples was checked 

by SDS PAGE. Samples were further purified on ÄKTA FPLC (GE Healthcare) via Superdex 
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200 16/60 (GE Healthcare) column, equilibrated with 20 mM Tris pH 7.5, 150 mM NaCl, 50 

mM KCl, 5 mM EDTA, and 5 mM dithiothreitol. His-ATIC was stored at 150 μM at 4°C in this 

buffer for up to six months, or at 100 μM with 20% glycerol at -80°C for long-term storage. 

Plasmids to express human cytosolic SHMT1 (residues 7-478, Uniprot ID P34896) and 

mitochondrial SHMT2 (residues 42-504, Uniprot ID 34897), both with cleavable N-terminal 

His6-tags, were inserted into pHis-parallel and expressed in Rosetta
TM

 (DE3) pLysS cells. 

Expression was induced with 1 mM IPTG when the OD600 = 0.6, and induction continued at 20° 

C for 18-20 hours before cell harvesting. Cells were lysed by emulsification and nickel-nitrilo-

triacetic acid chromatography (Gold Biotechnology) was used for initial purification, as 

described for His-ATIC. PLP was added in 3-fold molar excess to SHMT samples and allowed 

to incubate for 24 h. Size exclusion chromatography was employed using on a Superdex 200 

16/60 column (GE Healthcare) while monitoring absorbance at 435 nm for final purification of 

proteins with PLP bound. SHMT enzymes were stored in 20 mM sodium phosphate buffer pH 

7.5, 100 mM potassium chloride, 0.2 mM EDTA, and 5 mM -Me. For MTHFD2 expression, 

cDNA encoding the bifunctional human mitochondrial MTHFD2 (residues 36-333, Uniprot ID 

P13995) was inserted into a pHis-parallel vector for expression in Rosetta
TM

 (DE3)pLysS cells 

as a fusion protein with a cleavable N-terminal His6-tag. After cell lysis by emulsification, nickel 

nitrilo-triacetic acid chromatography and size exclusion chromatography (Superdex 200 16/60 

column) were used for purification, as described for His-ATIC. Purified His-MTHFD2 was 

stored in 50 mM Tris buffer pH 7.5, 250 mM sodium chloride, 5% glycerol, and 0.5 mM TCEP. 

Expression and purification of these recombinant human enzymes were carried out by Dr. 

Charles Dann III (Indiana University) and his graduate students (Jennifer Wong and Jade 

Katinas). 
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2.2.8 In Vitro Enzymatic Assays and Ki Determinations 

For in vitro enzymatic assays of AICARFTase with 5-substituted pyrrolo[3,2-

d]pyrimidine inhibitors, His-ATIC, containing an N-terminal cleavable hexahistidine tag, was 

purified. AICARFTase catalytic activity was measured by monitoring the formation of THF 

spectrophotometrically from 10-formylTHF in the presence of various concentrations of inhibitor 

(Shih et al., 1997). Assays included a final concentration of 50 μM 10-formylTHF, 100 nM 

ATIC, and a range of inhibitors in 32.6 mM Tris-HCl pH 7.4, 25 mM KCl, and 5 mM β-Me. 

Reactions were pre-incubated at 25°C in a UV-transparent 96-well plate (Costar 3635) for 90 

seconds, with measurements at 298 nm every 6 seconds. Reactions were then initiated by adding 

10 μL 500 μM AICAR or buffer (control wells) for a final reaction volume of 100 μL. 

Measurements were recorded in triplicate at 298 nm every 6 seconds over 10 min using a BioTek 

Synergy Neo2 Plate Reader. To determine the initial rate for each inhibitor concentration, 

absorbances of the preincubation period were averaged and subtracted from all measurements in 

that well. Initial rate changes in absorbance at 298 nm were determined for regions of linear 

absorbance increases in all replicates. Initial slopes were graphed against inhibitor concentrations 

and fit to a hyperbolic curve [y = (−a*x/(IC50 + x)) + b, where “a” is the amplitude and “b” is the 

y-intercept] to calculate the IC50 value for each compound (GraphPad Prism 7.0). The Ki was 

then calculated from the IC50 value [Ki
 
= IC50/([S]/KM+1)], using Km and substrate values for 10-

formylTHF. The calculated Km for 10-formylTHF with His-ATIC, determined as a function of 

initial velocity versus 10-formylTHF concentration, was 100 μM. 

In vitro enzymatic assays of GARFTase with 5-substituted pyrrolo[3,2-d]pyrimidine 

inhibitors were carried out with His-GARFTase containing an N-terminal cleavable 
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hexahistidine tag. GARFTase catalytic activity was measured by monitoring the formation of 

THF spectrophotometrically from 10-formylTHF in the presence of a range of inhibitor 

concentrations. Assays included final concentrations of 40 μM 10-formylTHF, 50 nM 

GARFTase, and a range of inhibitors in 0.1 M HEPES ((4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid)-buffered saline) at pH 7.5 (Wang et al., 2015). Reactions were 

pre-incubated at 37°C in a UV-transparent 96-well plate (Costar) for 90 seconds, with 

measurements at 298 nm every 5 seconds. Reactions were then initiated by adding 10 μL 150 

μM α,β-GAR or buffer (control wells) for a final reaction volume of 100 μL. Measurements were 

recorded at 298 nm every 5 seconds for 15 min using a BioTek Synergy Neo2 Plate Reader in 

triplicate. Procedures for data fitting and determination of Ki values for His-GARFTase were as 

described for His-ATIC. The calculated Km for 10-formylTHF with His-GARFTase, determined 

as a function of initial velocity versus 10-formylTHF concentration, was 84.8 μM. 

In vitro activities of His-SHMT1 and His-SHMT2 were assayed by a coupled reaction 

with His-MTHFD2 in 200-fold molar excess, and NADH production was monitored by 

fluorescence at 470 nm with excitation at 360 nm (Synergy Neo2 Biotek plate reader) using a 

black well, black bottom 96-well plate (Corning #3916) in triplicate. The reaction volume was 

100 L with final concentrations of 50 nM SHMT enzyme, 10 M MTHFD2, 50 M THF, 2.5 

mM NAD
+
, and 20 mM serine. Serine was added to initiate the reaction and data were acquired 

every 19 seconds over 15 min. Linear initial velocities were determined and data fitting, IC50 

and Ki calculations were performed as described for His-ATIC. The calculated Km for THF with 

His-SMHT1 and His-SHMT2, determined as a function of initial velocity versus THF 

concentration, are 62.8 μM and 108 μM, respectively. 
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To confirm that MTHFD2 was not inhibited by the AGF molecules, MTHFD2 activity 

was evaluated with an NAD(P)H-Glo
TM

 Detection System Kit (Promega, Ref G9061). Final 

concentrations for the reactions were 100 nM MTHFD2, 100 M NAD
+
, 100 M 

methyleneTHF, with reaction initiation with NAD
+
. Reactions were performed for 10 min at 

room temperature. To stop the reaction, the temperature was increased to 100 ºC for 30 min and 

1 L of 1 M hydrochloric acid was added. Thereafter, 1 L of 1 M sodium hydroxide was added 

to neutralize the acid. From this reaction, 12.5 L was transferred to each of 3 wells of a white 

96-well plate (Corning #3917) containing 12.5 L luciferase reagents (as specified by the kit). 

Luminescence was allowed to develop in the dark for 55 min, and samples were read with a 

Synergy Neo2 Biotek plate reader using the Biotek Lum 1536 filter cube for 10 min. 

Luminescence data for the last 5 min were averaged for final endpoint measurements. These 

experiments were performed by Dr. Charles Dann III (Indiana University) and his graduate 

students, Jennifer Wong and Jade Katinas. 

2.2.9 In Vivo Efficacy Trial with MIA PaCa-2 Tumor Xenografts  

Methods for in vivo maintenance of MIA PaCa-2 tumor xenografts and drug efficacy 

evaluations are analogous to those previously described (Cherian et al., 2013; Golani et al., 2016; 

Ravindra et al., 2018; Wang et al., 2010; Wang et al., 2011). MIA PaCa-2 human pancreatic 

cancer cells (5 x 10
6
 cells/flank) were bilaterally implanted subcutaneously with tumor fragments 

(30-60 mg) with a 12-gauge trocar in female NCR SCID mice (NCI Animal Production 

Program). The mice were 9 and 11 weeks old on day 0 (tumor implant) with an average body 

weight of 19.8 g and  20.2 g for the AGF291 and AGF347 trials, respectively. One cohort of 

mice was maintained on a folate-deficient diet from Harlan-Teklad (TD.00434) starting 14 days 

before subcutaneous tumor implant to ensure serum folate levels would approximate those of 
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humans. A separate cohort of mice was fed a folate-replete control diet from Lab Diet (5021). 

Mice were supplied with food and water ad libitum. Serum folate concentrations were monitored 

prior to tumor implant and post study by Lactobacillus casei bioassay (Varela-Moreiras and 

Selhub, 1992). The mice within each group (folate-deficient and standard diet) were pooled 

before non-selective distribution to each group’s respective treatment and control arms. 

Chemotherapy was begun 1 or 3 days (for AGF347 and AGF291, respectively) post-tumor 

implantation with AGF291 (7.75 mg/kg/injection every 6 days; total dose of 23.25 mg/kg), 

AGF347 (15 mg/kg/injection every 2 days; total dose of 120 mg/kg), or gemcitabine (120 

mg/kg/injection every 4 days; total dose of 480 mg/kg). The inhibitors were dissolved in 5% 

ethanol (v/v), 1% Tween-80 (v/v), and 0.5% NaHCO3 and were administered intravenously (IV - 

0.2 ml/injection). The mice were weighed and tumors were measured with a caliper two-to-three 

times weekly; mice were euthanized when the cumulative tumor burden reached 1500 mg. 

Tumor weights were estimated from two-dimensional measurements, where tumor mass (in mg) 

= (a x b
2
)/2, and a and b are the tumor length and width in mm, respectively. The tumor masses 

from both tumors on each mouse were added together, and the total mass per mouse was used for 

calculations of anti-tumor activity. Quantitative end-points include: (i) tumor growth delay [T-C, 

where T is the median time in days required for the treatment group tumors to reach a 

predetermined size (e.g., 1000 mg), and C is the median time in days for the control group 

tumors to reach the same size; tumor-free survivors are excluded from these calculations]; and 

(ii) T/C (in percent) when treatment (T) and control (C) groups for the control groups reached 

700 mg in size (exponential growth phase). As appropriate, the median value of each group was 

determined (including zeros). Mouse weights were monitored as a gauge of drug toxicity. 

2.2.10 Statistics 
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All data shown reflect at least three biological replicates unless noted otherwise (e.g. 

targeted metabolomics data, which reflect three technical triplicates measured in single 

experiments). All statistical analyses were performed by Dr. Seongho Kim at the Karmanos 

Cancer Institute Biostatistics Core. The expression levels were assessed for the normality 

assumption. The log2 transformation was used as all values were positive. The statistical tests 

were carried out using an unpaired t-test. P-values were not adjusted for multiple comparisons. 

2.3 Results 

2.3.1 Design of Novel 5-substituted Pyrrolo[3,2-d]pyrimidines 

The lack of any suitable drug design scaffolds for SHMT2 inhibitors led us to design our 

own molecules. As a design platform, we merged structural features of our previous 5-

substituted pyrrolo[2,3-d]pyrimidine benzoyl and thienoyl compounds (inhibitors of GARFTase 

and/or AICARFTase with in vivo efficacy) (Mitchell-Ryan et al., 2013; Wang et al., 2015) with 

those of 5,10-meTHF (SHMT2 product) and 5-formylTHF (leucovorin, an SHMT inhibitor) (Fu 

et al., 2003) (Figure 2.1). We hypothesized that combining the structural characteristics of these 

different agents would combine their enzyme targets, yielding molecules that would bind and 

inhibit both SHMT1 and SHMT2, as well as GARFTase and/or AICARFTase. The resulting 5-

substituted pyrrolo[3,2-d]pyrimidine analogs included 3-5 bridge carbons linked to benzoyl (i.e., 

AGF291, AGF300, and AGF299) or thienoyl (i.e., AGF331, AGF318, and AGF320) moieties. 

Based on the reported impact of 2’-fluorine substitutions in increasing the inhibitory potencies of 

pyrrolo[2,3-d]pyrimidine compounds (Ravindra et al., 2018), we designed and synthesized 2’-

fluorinated analogs of AGF300 and AGF299, as well (AGF347 and AGF355, respectively) 

(Figure 2.1). The 2’-fluorinated analog of AGF291, AGF359, was synthesized after these 
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studies were completed and so, is not presented in this work. Ultimately, we generated 8 analogs 

(Figure 2.1) which advanced to the screening stage. 

 

2.3.2 Screening of Novel 5-Substituted Pyrrolo[3,2-d]pyrimidines Yields Three Lead 

Compounds: AGF291, AGF320, and AGF347 

As we reasoned that PCFT-selective uptake would be ideal for any novel antifolates (see 

section 1.3.2), we initially assessed inhibition by these compounds (from 0 to 1000 nM) toward 

PCFT-expressing R2/PCFT4 CHO cells and an isogenic CHO subline engineered to express 

human RFC (PC43-10) (Deng et al., 2008; Deng et al., 2009). Results were compared to those 

for folate transporter-null R2 CHO cells as a negative control. IC50 values are shown in Table 

2.1 for each of the analogs, along with those for AGF94 (Wang et al., 2011) and PMX. Active 

compounds (denoting an IC50 < 1000 nM) toward R2/PCFT4 and/or PC43-10 cells included 

AGF291, AGF320, AGF331 and AGF347, with AGF291 showing mild preference (~1.6-fold) 

toward PCFT over RFC. However, this difference was minor compared to PMX, which showed 

a 5-fold preference for PCFT over RFC and AGF94, a 6-substituted pyrrolo[2,3-d]pyrimidine 

inhibitor (Wang et al., 2011) which showed ~30-fold selectivity. To confirm the activity of these 

compounds in human tumor cells, these analogs were further tested in the H460 large cell lung 

carcinoma, HCT116 colon adenocarcinoma, and MIA PaCa-2 pancreatic adenocarcinoma cell 

lines, characterized by expression of PCFT and RFC, but not FRα (Figure 2.3). IC50 values for 

growth inhibition are in Table 2.1. Although there were notable differences in drug sensitivities 

among the assorted tumor models, AGF291, AGF320 and AGF347 were consistently the most 

active of the series and so, were advanced to determinations of the enzyme target(s). We used 

glycine/nucleoside protection studies (Figure 2.4 - see section 2.2.2 for methods) in H460, 

HCT116, and MIA PaCa-2 cells treated with AGF291, AGF320, or AGF347 to identify likely 
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targeted pathways. The results were compared to those for AGF94, an established GARFTase 

inhibitor (Wang et al., 2011). Adenosine (60 μM) was fully protective up to 10 μM  

 Table 2.1 IC50 values (nM) for antifolate inhibition of CHO and human tumor cell lines.  

Compound Series 

n 

(bridge 

length) 

R 

IC50 (nM)  

R2  

 

PC43-

10 

(RFC) 

R2/PCFT4 

(PCFT) 

HCT116 

WT 

HCT116 

SHMT2

KO 

H460 

 

MIA 

PaCa-

2 

AGF94 NA NA NA 
136.1 

(3.6) 

110.5 

(15.6) 

3.0 

(0.6) 

191.0 

(62.1) 

294.7 

(59.1)^ 

166.5 

(59.4) 

1924.8 

(539.4) 

PMX NA NA NA 
395.8 

(83.6) 

124.5 

(39.5) 

24.1 

(5.3) 

293.2 

(81.5) 

333.3 

(39.7) 

165.2 

(59.1) 

281.7 

(23.9) 

AGF291 Benzoyl 3 H >1000 
454.5 

(87.2) 

282.0 

(22.6) 

2266.5 

(450.4) 

108.1 

(66.2)VVV 
461.1 

(163.5) 

3664.0 

(721.3) 

AGF300 Benzoyl 4 H >1000 >1000 >1000 NA N/A NA NA 

AGF299 Benzoyl 5 H >1000 >1000 >1000 NA N/A NA NA 

AGF347 Benzoyl 4 F >1000 
224.0 

(17.3) 

479.2 

(63.7) 

437.1 

(180.3) 

42.0 

(18.9)VVV 
214.5 

(88.1) 

1381.0 

(182.4) 

AGF355 Benzoyl 5 F >1000 >1000 >1000 NA N/A NA NA 

AGF331 Thienoyl 3 NA >1000 >1000 
661.5 

(62.6) 

2199.5 

(817.9) 

969.3 

(254.4)VV 
2367.7 

(711.6) 

6681.0 

(604.6) 

AGF318 Thienoyl 4 NA >1000 >1000 >1000 NA N/A NA NA 

AGF320 Thienoyl 5 NA >1000 >1000 
694.0 

(56.7) 

737.5 

(195.7) 

116.6 

(60.1)VV 
573.3 

(144.7) 

2703.5 

(400.3) 

Proliferation inhibition assays were performed over 96 hours (as described in section 2.2.2) using 

the engineered CHO cell lines R2 (folate transporter-null), PC43-10 (expresses RFC only), and 

R2/PCFT4 (expresses PCFT only), and human tumor cell lines including HCT116 (colon), H460 

(lung), and MIA PaCa-2 (pancreatic).Results are shown as mean IC50 values (± standard deviation) 

from at least four biological replicates. IC50 values represent the interpolated concentrations of drug 

at which growth of 50% of cells was inhibited relative to vehicle-treated cells. Series refers to the 

side chain benzoyl or thienoyl group, whereas the bridge lengths refer to the 3-5 carbons in the side 

chain. R designates the 2’H or F moiety (see Figure 2.1). For HCT116 SHMT2 KO cells, 

significant differences in IC50 relative to HCT116 WT cells are denoted by ^ (indicating a 

significant increase) or 
V
 (indicating a significant decrease) with the number of symbols indicating 

the degree of significance (^ or 
V
 denotes p<0.05, ^^ or 

VV
 denotes p<0.01, ^^^ or 

VVV
 denotes 

p<0.001). 
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  Figure 2.3 Plasma Membrane Transporter Expression of Human Tumor 

Cell Lines Folate transporter transcript expression of human tumor cell lines 

by RT-PCR (see section 2.2.4). Transcript levels for RFC, PCFT, and FRα in 

H460, HCT116 and MIA PaCa-2, and IGROV1 epithelial ovarian carcinoma 

cells were measured by RT-PCR with results normalized to those of β-actin 

and GAPDH. All gene expressions are shown relative to those in IGROV-1 

cells. The results show represent mean values +/- standard deviations. 
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Figure 2.4 Protection Studies in Human Tumor Cell Lines In vitro proliferation studies 

over 96 hours with AGF291, AGF320, AGF347, and AGF94 (see section 2.2.2) were 

performed without additions, or in the presence of adenosine (60 µM), 5-aminoimidazole-4-

carboxamide (AICA) (320 µM), thymidine (10 µM) and/or glycine (130 µM). The results are 

presented as mean values ± standard deviations for at least three biological replicates, with 

growth of cells treated with inhibitor ± metabolite normalized to the growth of cells treated 

with vehicle (i.e., DMSO) ± metabolite. 
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AGF94, whereas glycine (130 μM) had no effect (Figure 2.4). We also tested the protective 

effects of AICA (320 μM) which is metabolized to AICAR (AICARFTase substrate), thus 

circumventing the GARFTase step (Figure 1.2) in de novo purine biosynthesis (Wang et al., 

2011). As AICA was completely protective, GARFTase must be the intracellular target for 

AGF94 (Wang et al., 2011). For AGF291, AGF347, and AGF320, however, adenosine alone 

was NOT fully protective. However, combined adenosine and glycine was substantially 

protective for all compounds (Figure 2.4). These results strongly suggest that these compounds 

target both mitochondrial C1 metabolism (as KO of either SHMT2 or MTHFD2 induces glycine 

auxotrophy) (Ducker et al., 2016) and cytosolic de novo purine biosynthesis. Thymidine 

provided no protection from any of the compounds and did not increase the extent of protection 

by glycine and adenosine, suggesting that TS was not targeted. For some of the analogs, notably 

AGF320, growth inhibition was modestly (and incompletely) reversed by AICA (with glycine) 

(Figure 2.4), suggesting a secondary intracellular target, most likely GARFTase (analogous to 

AGF94). Moreover, the IC50 values for AGF291, AGF320, and AGF347 were significantly 

decreased in the HCT116 SHMT2 KO cells relative to the corresponding IC50 values in the 

HCT116 WT cells (Table 2.1). These results recapitulated the enhanced potency of the SHIN-1 

(Figure 1.12) dual SHMT1/2 inhibitor in the HCT116 SHMT2 KO cell line relative to the 

HCT116 WT cell line (Ducker et al., 2017) and suggested that AGF291, AGF320, and AGF347 

were inhibiting SHMT1, in addition to SHMT2 and/or MTHFD2. Notably, the IC50 value for 

AGF94 and PMX did NOT decrease in the HCT116 SHMT2 KO cell line relative to the WT, 

suggesting that the decrease in IC50 seen with the novel agents was not due to inhibition of a 

cytosolic enzyme target. Collectively, these results establish that AGF291, AGF320, and 

AGF347 likely target both mitochondrial and cytosolic C1 metabolism, the former at SHMT2 
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and/or MTHFD2, and the latter at SHMT1 as well as GARFTase and/or AICARFTase. To 

further resolve the enzyme targets of AGF291, AGF320, and AGF347, we performed targeted 

metabolomics in the human tumor cell lines. 

2.3.3 Identification of the Mitochondrial Enzyme Target(s) of AGF291, AGF320, and 

AGF347 

 As both SHMT2 KO and MTHFD2 KO induce glycine auxotrophy (Ducker et al., 2016), 

the necessity of glycine to fully abrogate the effects of AGF291, AGF320, and AGF347 

suggested that we were targeting one of these two mitochondrial C1 metabolism enzymes. To 

resolve the mitochondrial target, we performed targeted metabolomics (as described in section 

2.2.6) on drug-treated cells grown in media containing [2,3,3-
2
H]-serine. First, we assessed total 

cellular serine pools and serine isotope distribution (Figure 2.5). Consistent with the majority of 

cancer cells preferentially metabolizing serine through the mitochondrial C1 pathway (versus 

SHMT1 in the cytosol) (Ducker et al., 2016), SHMT2 KO and MTHFD2 KO (but not SHMT1 

KO) induced a ~10-fold increase in serine accumulation in HCT116 cells (Figure 2.5 – A). 

Essentially identical results were noted in H460 cells transduced with SHMT2-targeted shRNA 

(SHMT2 KD) as compared to NTC H460 cells (Figure 2.5 – B). Notably, drug treatment in both 

HCT116 and H460 cell lines recapitulated the respective SHMT2 KO or KD (as well as 

MTHFD2 KO) phenotype. In the MIA PaCa-2 cells (Figure 2.5 – C), drug treatment induced a 

smaller, yet still significant accumulation of serine (~3-fold), perhaps reflecting reduced serine 

flux overall in this cell line relative to H460 and HCT116 cells. To resolve targeting of SHMT2 

or MTHFD2, we analyzed the serine isotope distribution in each cell line. M+3 serine reflects 

unmetabolized serine (i.e. [2,3,3-
2
H]-serine - Figure 2.6). Catalysis of M+3 serine by SHMT2  
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  Figure 2.5 Serine Metabolomics Metabolomics analyses of total cellular serine 

(A-C) and serine isotope distribution (D-F) in HCT116, H460, and MIA PaCa-2 

cell lines. Cells were treated with 10 µM drug or equivalent volume of DMSO for 

48 hours and then processed for metabolomics analysis. The results are presented 

as mean values ± standard deviations for three technical replicates normalized to 

WT or NTC cells as appropriate (see section 2.2.6). Significant differences are 

denoted by # or *  with  ^ indicating a significant increase or 
V
 indicating a 

significant decrease and the number of symbols indicating the degree of 

significance (#^ or #
V
 denotes p <0.1, ^ or 

V
 denotes p<0.05, ^^ or 

VV
 denotes 

p<0.01, ^^^ or 
VVV

 denotes p<0.001). 
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Figure 2.6 [2,3,3-
2
H]-serine tracing [2,3,3-

2
H]-serine (i.e. M+3 serine) is preferentially 

metabolized through the mitochondria by SHMT2 which generates M+2 5,10-meTHF. M+2 

5,10-meTHF is metabolized to M+1 10-formylTHF by MTHFD2 and subsequently, to M+1 

formate by MTHFD1L. M+1 formate is then exported to the cytosol and converted to M+1 

5,10-meTHF by MTHFD1. Cytosolic M+1 5,10-meTHF is then incorporated into M+1 dTMP 

by TS. Alternatively, with KO of SHMT2 or MTHFD2, [2,3,3-
2
H]-serine is catabolized in the 

cytosol by SHMT1, generating M+2 5,10-meTHF, which consequently forms M+2 dTMP. The 

deuterium flux through mitochondria (blue) or cytosol (red) is denoted by filled circles. 
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generates M+1 glycine (containing one deuteron) and M+2 5,10-meTHF (containing the 

remaining two deuterons). Catalysis of M+2 5,10-meTHF by MTHFD2 then generates M+110-

formylTHF and the reversability of SHMT2 and MTHFD2 allows the levels of serine, 5,10-

meTHF, and 10-formylTHF to equilibrate. Notably, reverse flux of M+2 5,10-meTHF through 

SHMT2 generates M+2 (rather than M+3) serine and the reverse flux of M+1 10-formylTHF 

through MTHFD2 and SHMT2 generates M+1 serine. Therefore, the isotope distribution of 

serine reflects the cellular levels of unmetabolized serine (M+3), 5,10-meTHF (M+2 serine), and 

10-formylTHF (M+1 serine). Moreover, we expect inhibition of SHMT2 to induce an 

accumulation of unmetabolized (M+3) serine upstream and a depletion of 5,10-meTHF and 10-

formylTHF (reflected in M+2 serine and M+1 serine, respectively) downstream. Conversely, 

inhibition of MTHFD2 will induce an accumulation of unmetabolized (M+3) serine AND 5,10-

meTHF (reflected in M+2 serine) upstream, with depletion of 10-formylTHF (reflected in M+1 

serine) downstream. Consequently, drug targeting of SHMT2 or MTHFD2 can be resolved by 

analysis of the M+2 serine fraction with a decrease indicating inhibition of the former and an 

increase indicating inhibition of the latter. 

 In the HCT116 cells (Figure 2.5 – D), KO of SHMT1, SHMT2, or MTHFD2 induced a 

significant increase in M+3 (unmetabolized) serine with a more profound accumulation (~7-fold) 

with SHMT2 KO than with either SHMT1 KO or MTHFD2 KO (~5-fold each). This confirms 

that SHMT2 is the primary serine catalysis enzyme in these cells. As expected, the M+2 serine 

fraction was increased with MTHFD2 KO (~2-fold), decreased with SHMT2 KO (~75% of WT), 

and was unchanged with SHMT1 KO. Notably, treatment with each of the drugs recapitulated 

the SHMT2 KO phenotype completely, significantly increasing the M+3 serine (5- to 7-fold) 

fraction and, most importantly, decreasing the M+2 serine fraction (~33% to 50% of WT). 



 

 

64 

Similar results were noted in the H460 cells (Figure 2.5 – E) where drug treatment (like SHMT2 

KD) increased the M+3 serine fraction (~5-fold). However, the M+2 fraction in the drug treated 

samples was paradoxically increased (2- to 3-fold), perhaps because of the relatively smaller 

labeled serine pools (~25% of total serine) as compared to the HCT116 or MIA PaCa-2 cell lines. 

The M+2 serine fraction from the drug-treated H460 cells did, however, phenocopy the M+2 

serine fraction from the SHMT2 KD H460 cells, suggesting SHMT2 was still the likely drug 

target. In the MIA PaCa-2 cells, as in the HCT116 cells, we noted a decreased M+2 serine 

fraction (~30% to 50% of WT) and increased M+3 serine fraction (1.5- to 2-fold) (Figure 2.5 – 

F). These results identified the mitochondrial enzyme target of AGF291, AGF320, and AGF347 

as SHMT2 (rather than MTHFD2). 

2.3.4 Identification of the Cytosolic Enzyme Target(s) of AGF291, AGF320, and AGF347 

 Next, we sought to confirm the cytosolic targets of AGF291, AGF320, and AGF347, 

which the nucleoside/glycine protection studies (discussed in section 2.3.2) suggested were 

GARFTase and/or AICARFTase in de novo purine biosynthesis, as well as SHMT1. As 

inhibition of GARFTase and AICARFTase would result in accumulation of GAR and AICAR, 

respectively, we measured GAR and AICAR and found the drug treatments induced significant 

accumulations of both in all three human tumor cell lines (Figure 2.7). The magnitude of GAR 

accumulation (reflecting the potency of GARFTase inhibition) in all three cell lines was 

AGF320 > AGF347 > AGF291, suggesting AGF320 was the most potent inhibitor of 

GARFTase (also reflected in partial protection by AICA + glycine treatment in section 2.3.2). 

Conversely, the magnitude of AICAR accumulation (reflecting the potency of AICARFTase 

inhibition) in all three cell lines was AGF291 > AGF347 > AGF320 (the opposite order of GAR 

accumulation), suggesting AGF291 was the most potent inhibitor of AICARFTase. However, as  
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Figure 2.7 GAR/AICAR Metabolomics Metabolomics analyses of total cellular GAR 

(A-C) and AICAR (D-F) in HCT116, H460, and MIA PaCa-2 cell lines. Cells were 

treated with 10 µM drug or equivalent volume of DMSO for 48 hours and then processed 

for metabolomics analysis. The results are presented as mean values ± standard deviations 

for three technical replicates normalized to WT or NTC cells as appropriate (see section 

2.2.6). Significant differences are denoted by # or *  the number of symbols indicating the 

degree of significance (# denotes p <0.1, *  denotes p<0.05, **  denotes p<0.01, ***  

denotes p<0.001). 
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all three compounds were confirmed inhibitors of SHMT2, they would all deplete cytosolic 10-

formylTHF and consequently, indirectly inhibit GARFTase and AICARFTase which use 10-

formylTHF as a cofactor (Figure 1.2). Indeed, this phenotype was noted with the SHMT2 KO 

HCT116 cells which induced a ~5-fold and ~40-fold increase in GAR (Figure 2.7 – A) and 

AICAR (Figure 2.7 – E) respectively. To determine if the accumulation of GAR/AICAR was 

primary (due to direct inhibition of GARFTase/AICARFTase) or secondary (due to depletion of 

cytosolic 10-formylTHF by inhibition of SHMT2), we performed the experiments in the H460 

cells (Figure 2.7 – B and E) with and without 1 mM added formate, which had been shown to 

replenish cytosolic 10-formylTHF and rescue accumulation of GAR/AICAR due to SHMT2 

inhibition (Ducker et al., 2016). As expected, in the SHMT2 KD H460 cells, we noted a ~20-fold 

and ~70-fold increase in GAR (Figure 2.7 – B) and AICAR (Figure 2.7 – E) respectively, both 

of which were fully reversed by addition of exogenous formate. However, the accumulations of 

GAR and AICAR with drug treatment in H460 cells were only partially reversed with formate 

supplementation, suggesting these drugs featured direct inhibition of either GARFTase (AGF320 

> AGF347 > AGF291) or AICARFTase (AGF291 > AGF347 > AGF320). 

 To assess possible SHMT1 inhibition, we traced [2,3,3-
2
H]-serine incorporation into 

dTTP as the flux of deuterated serine through SHMT2 in the mitochondria forms M+1 dTTP, 

whereas flux of serine through SHMT1 in the cytosol forms M+2 dTTP (Figure 2.6). As we had 

established these cells preferentially catabolized serine through the mitochondria, it was 

unsurprising that untreated cells of each cell line generated predominantly M+1 dTTP (Figure 

2.8). As expected, the SHMT2 KO HCT116 cells (Figure 2.8 – A) and the SHMT2 KD H460 

cells (Figure 2.8 – B) generated a significant portion of M+2 dTTP, indicating compensatory 

reverse flux of serine through SHMT1. However, treatment with the SHMT2-inhibiting drugs 
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Figure 2.8 dTTP Metabolomics Metabolomics analyses of total cellular dTTP 

pools with isotope distributions in HCT116 (A), H460 (B), and MIA PaCa-2 (C) 

cell lines. Cells were treated with 10 µM drug or equivalent volume of DMSO for 

48 hours and then processed for metabolomics analysis. The results are presented 

as mean values ± standard deviations for three technical replicates normalized to 

WT or NTC cells as appropriate (see section 2.2.6). Significant differences are 

denoted by # or *  with the number of symbols indicating the degree of 

significance (# denotes p <0.1, *  denotes p<0.05, **  denotes p<0.01, ***  denotes 

p<0.001). 
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did not induce accumulation of M+2 dTTP in HCT116 or H460 cells. Only the MIA PaCa-2 

cells demonstrated increased M+2 dTTP, albeit with suppressed overall dTTP pools. Taken 

together, these results suggested either sufficient residual flux through SHMT2 to maintain the 

M+1 labeling or inhibition of the compensatory pathway through SHMT1 (as reflected in 

decreased overall dTTP pools). As thymidine was not shown to be a protective metabolite in 

section 2.3.2 (in contrast with results seen with primary TS inhibitors such as PMX 

(Chattopadhyay et al., 2007)), these results were most consistent with direct inhibition of 

SHMT1 rather than inhibition of TS. 

2.3.5 In Vitro Confirmation of Enzyme Targets 

 Taken together, our metabolomics results indicated that AGF291, AGF320, and 

AGF347 targeted SHMT2 (and not MTHFD2) in the mitochondria and GARFTase and/or 

AICARFTase, as well as SHMT1, in the cytosol. To confirm these results, we directly assayed 

each of these enzymes (as described in section 2.2.8) with in vitro cell-free assays (Table 2.2). 

The values in Table 2.2 reflect inhibition potencies of the monoglutamyl (i.e., non-polyglutamyl) 

form of the drug, which are usually far less potent than those of the polyglutamyl forms of 

antifolate compounds (as discussed in section 1.3). Consequently, the enzyme inhibition 

potencies are imperfect measures of actual enzyme inhibition (as the distribution of polyglutamyl 

forms in the cell may differ between drugs). For AGF94, an established inhibitor of GARFTase 

alone, we note 100-fold (Ki 0.88 µM versus Ki >100 µM) increased potency for GARFTase 

relative to SHMT1 or SHMT2, suggesting the inhibition at SHMT1/2 does not play any 

significant role in drug activity. . Conversely, AGF291, AGF320, and AGF347 all potently 

inhibited both SHMT1 (Kis ~0.1 to 2.9 µM) and SHMT2 (Kis ~0.5 to 2.2 µM). Importantly, none  
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Table 2.2 In vitro cell-free enzyme assays [Ki (µM)] 

Compound GARFTase AICARFTase SHMT2 MTHFD2 SHMT1 

AGF94 0.88 (0.71) NI 
188.0 

(91.8) 
NI 112 (57) 

PMX 5.19 (1.63) 281(23) NI NI NI 

AGF291 ND 13.67 (3.16) 0.63 (0.29) NI 0.090 (0.56) 

AGF347 3.13 (0.66) 3.72 (1.61) 2.19 (0.23) NI 2.91 (0.59) 

AGF331 ND ND ND ND ND 

AGF320 0.33 (0.22) 2.36 (1.99) 0.56 (0.20) NI 
0.126 

(0.030) 

In vitro cell free enzyme assays are described in the section 2.2.8. NI denotes “no 

inhibition” was observed up to 200 µM inhibitor and ND denotes “not 

determined”. Results reflect mean ± standard deviation of at least three 

experimental replicates. 



 

 

70 

of the compounds inhibited MTHFD2 up to 200 μM. For the de novo purine biosynthesis 

enzymes, AGF291 inhibited AICARFTase (Ki = 13.67 µM), but not GARFTase, AGF320 

inhibited GARFTase (Ki = 0.33 µM) ~7-fold more potently than AICARFTase (Ki = 2.36 µM), 

and AGF347 inhibited GARFTase (Ki = 3.13 µM) and AICARFTase (Ki = 3.72 µM) roughly 

equally. Pleasingly, these results perfectly matched the metabolomics results discussed in section 

2.3.4 which indicated that AGF291 was likely primarily an AICARFTase-targeting drug, 

AGF320 was likely primarily a GARFTase-targeting drug, and AGF347 likely targeted both 

enzymes equally. 

2.3.6 In vivo Antitumor Efficacy of AGF291 and AGF347 against MIA PaCa-2 Tumor 

Xenografts: Early Stage Disease 

 Having established that AGF291, AGF320, and AGF347 were inhibitors of SHMT1 and 

SHMT2 as well as of GARFTase and/or AICARFTase, we then sought to demonstrate in vivo 

antitumor efficacy for this series which, notably, was not noted in the earlier-generation 

pyrazolopyran compounds due to their microsomal degradation (Ducker et al., 2017). We carried 

out toxicity trials to determine maximum tolerated dose (MTD) of each of the drugs in mice 

bearing tumor xenografts of H460, HCT116, and MIA PaCa-2 cells. Through these trials, we 

determined the MIA PaCa-2 tumor xenografts were most sensitive in vivo to the effects of the 

drugs, and that AGF291 and AGF347 appeared more potent in these small (n = 2) preliminary 

trials than AGF320. Therefore, these two drugs were advanced into full early-stage trials against 

MIA PaCa-2 tumor xenografts in SCID mice. As a control, we compared AGF291- and 

AGF347-treated mice to mice treated with gemcitabine, the longstanding standard-of-care for 

pancreatic cancer (Rossi et al., 2014). In both trials, NCR SCID mice were fed a folate-deficient 

diet ad libitum for 14 days to deplete serum folate to levels comparable to those found in humans 
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(Alati et al., 1996; Golani et al., 2016; Wang et al., 2010; Wang et al., 2011), then 

subcutaneously and bilaterally implanted with MIA PaCa-2 pancreatic adenocarcinoma 

xenografts, and non-selectively randomized into control and treatment groups (5 mice/group).  

AGF291 and gemcitabine were administered IV beginning on day 3 following 

engraftment at doses slightly less than their respective MTDs (see section 2.2.9) Both AGF291 

and gemcitabine were efficacious (Figure 2.9 - A), with median tumor burdens on day 14 of 256 

mg (range 75-851 mg) and 255 mg (range 63-322 mg), respectively, compared to 1321 mg 

(range 685-1465 mg) for the control cohort. Median T/C values were 19% for both compounds. 

Tumor growth delays (median T-C to reach 1000 mg) of 10 days for AGF291 and 7 days for 

gemcitabine were recorded. AGF291 and gemcitabine were well tolerated with modest weight 

losses (9% median nadir on day 17 and 12% median nadir on day 6, respectively) that were 

completely reversible after cessation of therapy. Thus, at equitoxic dose levels, AGF291 showed 

comparable anti-tumor efficacy to gemcitabine, with a 20-fold decreased dose requirement and 

no acute or long-term toxicities other than reversible weight loss. 

However, the results with AGF347 were far more remarkable. The median tumor burden 

on day 16 was 420 mg (range 284-552 mg) compared to 1189 mg (range 601-1711 mg) for the 

control cohort (T/C=35%). AGF347 was far more efficacious than gemcitabine, with a median 

tumor burden on day 16 of 0 mg (range 0-276 mg) (T/C=0%). Gemcitabine showed a slight 

growth delay (19-24 days to reach 1000 mg) compared to the untreated controls (12.5-20 days). 

For AGF347 arm, 5 of 5 mice showed significant growth delay with 4 mice ranging from 21 to 

77 days and one mouse showing undetectable tumor up to 136 days (Figure 2.9 - B). When this 

mouse was rechallenged with tumor, the tumor readily engrafted, establishing this as a “cure”. 

Thus, at equitoxic doses, AGF347 showed exceptionally more potent antitumor efficacy than   
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Figure 2.9 In vivo efficacy of AGF291 and AGF347 against MIA PaCa-2 tumor xenograft 

models in SCID mice. (A) AGF291 (7.5 mg/kg q6dx3) vs gemcitabine (120 mg/kg q4dx4). Plot 

reflects individual tumor burdens for each mouse. (B) AGF347 (15 mg/kg q2dx8) vs 

gemcitabine (120 mg/kg q4dx4). Plot reflects individual tumor burdens for each mouse. One 

mouse in the AGF347-treated group was tumor-free after 136 days and was rechallenged with 

tumor. The tumor readily engrafted, establishing this mouse as a “cure”. 
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gemcitabine, with a 4-fold decreased dose requirement, no acute or long-term toxicities otherthan 

reversible weight loss, and 1 of 5 mice cured.  

2.4 Discussion 

 In this chapter, we designed, synthesized, and characterized enzyme targets of novel 

inhibitors of C1 metabolism in mitochondria, the primary catabolic pathway for serine and for 

synthesis of glycine (Ducker and Rabinowitz, 2017; Newman and Maddocks, 2017; Tibbetts and 

Appling, 2010; Yang and Vousden, 2016). Serine catabolism in mitochondria by SHMT2, the 

first enzyme in the mitochondrial C1 pathway, is the principal source of C1 units for cytosolic de 

novo purine and thymidylate biosynthesis, and of reducing equivalents and ATP (Ducker and 

Rabinowitz, 2017; Morscher et al., 2018; Newman and Maddocks, 2017; Tibbetts and Appling, 

2010; Yang and Vousden, 2016). We targeted SHMT2 with novel 5-substituted pyrrolo[3,2-

d]pyrimidine analogs, rationally designed based on structural similarities to previously reported 

5-subsituted pyrrolo[2,3-d]pyrimidine compounds (Mitchell-Ryan et al., 2013; Wang et al., 

2015) and N-substituted THF metabolites, including 5,10-meTHF and 5-formylTHF (leucovorin). 

We identified lead compounds AGF291, AGF320 and AGF347 that inhibited proliferation of a 

broad spectrum of tumor subtypes including lung (H460), colon (HCT116), and pancreas (MIA 

PaCa-2).  

We identified critical enzyme targets for our compounds through glycine/nucleoside 

protection experiments and targeted metabolomics with a [2,3,3-
2
H]-serine tracer, and identified 

SHMT2 in mitochondria as the principal intracellular target, along with SHMT1, GARFTase 

and/or AICARFTase in the cytosol. Inhibition of all these intracellular targets was confirmed by 

in vitro assays with purified recombinant enzymes using the monoglutamyl inhibitors. Our 

finding that SHMT1 was a direct target of our inhibitors resembles results for a dual-
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SHMT1/SHMT2 pyrazolopyran inhibitor SHIN1 (Ducker et al., 2017) and is of particular 

interest as this prevents metabolic “compensation” by reversal of SHMT1 catalysis in response 

to loss of SHMT2 activity (Ducker et al., 2016; Ducker et al., 2017). As AGF291 and AGF347 

showed the most potent in vivo activity in preliminary toxicity trials, these compounds were 

tested in vivo with a MIA PaCa-2 xenograft model in SCID mice. While AGF291 was 

efficacious, AGF347 exhibited extraordinarily potent in vivo efficacy, far exceeding that of 

gemcitabine (standard-of-care) even at a 20-fold lower dose, resulting in sustained tumor growth 

delay and a cure in one mouse. 

The active 5-substituted pyrrolo[3,2-d]pyrimidine compounds described in this chapter 

expanded upon earlier results with non-folate pyrazolopyran inhibitors of human SHMT2 

(Ducker et al., 2017) and, to our knowledge, represented the first bona fide inhibitors of this 

intracellular target with demonstrated in vivo antitumor efficacy. However, a number of 

pharmacodynamic factors may have contributed to the in vitro antitumor effects of the novel 

analogs described in this chapter and these warranted further study. These pharmacodynamic 

characteristics include transport across the plasma membrane by PCFT and/or RFC and into 

mitochondria (potentially by MFT) (Lawrence et al., 2011; McCarthy et al., 2004)), as well as 

metabolism to drug polyglutamates (analogous to PMX and other classic antifolates – see section 

1.3 (Chattopadhyay et al., 2007; Visentin et al., 2012)), which would impact binding to 

intracellular targets in both the mitochondria and the cytosol. Moreover, glycine and 5,10-

meTHF derived from SHMT2 play a critical role in glutathione biosynthesis/reactive oxygen 

species (ROS)-scavenging and mitochondrial protein translation, respectively (as discussed in 

section 1.1.3), so these drugs may have impacted these cellular functions as well. Variations in 

these parameters likely account for differences in relative antiproliferative activities of these 
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analogs toward the assorted tumor models in this report, and are the focus of the experiments 

conducted in section 3. 
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CHAPTER 3- CELLULAR PHARMACODYNAMICS OF LEAD NOVEL 5-

SUBSTITUTED PYRROLO[3,2-d]PYRIMIDINE COMPOUNDS AGF291, AGF320, AND 

AGF347 

 

3.1 Introduction 

  The work in chapter 2 established the 5-substituted pyrrolo[3,2-d]pyrimidine compounds 

AGF291, AGF320, and AGF347 as potent inhibitors of SHMT1 and SHMT2, as well as 

GARFTase and/or AICARFTase. However, the transport kinetics of these compounds as well as 

the downstream cellular effects stemming from inhibition of these enzymes were not assessed. In 

this chapter, we sought to elucidate the cellular pharmacodynamics of AGF291, AGF320, and 

AGF347.  

First, we sought to characterize PCFT- and RFC-mediated transport of these compounds. 

Enzyme kinetics were studied in the isogenic CHO cell lines R2/PCFT4 and PC43-10 expressing 

PCFT and RFC individually (Deng et al., 2008; Deng et al., 2009), as well as in the RFC-

expressing HeLa subline R1-11 RFC2 (Wang et al., 2015). Uptake into HCT116, MIA PaCa-2, 

and H460 cells was characterized via competitive inhibition of [
3
H]-MTX and [

3
H]-AGF347 

uptake with AGF94 (a PCFT-selective substrate) and PT523 (an RFC-selective substrate) (as 

discussed previously in sections 1.3.1 and 1.3.2). To assess mitochondrial uptake and the 

potential role of MFT (section 1.3.4) in drug transport, we transfected human MFT into GlyB 

CHO cells, which restored the MFT function of these MFT-null cells (McCarthy et al., 2004; 

Titus and Moran, 2000), creating the GlyBTII model. As a human tumor cell line model, we 

generated MFT KD and NTC MIA PaCa-2 cell lines with lentiviral shRNA. We incubated both 

CHO and human tumor models with [
3
H]-folic acid, [

3
H]-MTX, and [

3
H]-AGF347 and isolated 

mitochondrial and cytosolic fractions through differential centrifugation to determine subcellular 

drug compartmentation and the impact of MFT KD or KO. Using the MIA PaCa-2 NTC cells, 
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we assessed formation of polyglutamyl forms of [
3
H]-AGF347 by high performance liquid 

chromatography (HPLC). 

Next, we sought to assess downstream effects on cellular function resulting from 

inhibition of cytosolic and mitochondrial C1 metabolism, respectively. As all drugs targeted de 

novo purine biosynthesis at either GARFTase and/or AICARFTase, we sought to quantify their 

effects on adenine nucleotide pools. Moreover, as all drugs featured either primary or secondary 

inhibition of AICARFTase (as discussed in section 2.3.4), they also induced accumulation of 

AICAR (Figure 2.6) in all cell lines. Accumulation of AICAR (an AMP-mimetic) induced by 

PMX had previously been shown (Racanelli et al., 2009; Rothbart et al., 2010) to activate AMPK, 

consequently downregulating the pro-survival mTOR pathway, so we sought to assess the 

activation of AMPK and inhibition of mTOR with these compounds. 

For cellular effects resulting from inhibition of mitochondrial C1 metabolism at SHMT2, 

we primarily focused on mitochondrial respiration (as SHMT2 had been proven critical to 

correct translation of mitochondrial electron transport chain proteins – see section 1.1.3) and 

ROS scavenging (as glycine and NAD(P)H produced from mitochondrial C1 metabolism had 

been shown to be critical for glutathione biosynthesis and regeneration (Fan et al., 2014; Ye et al., 

2014). 

Finally, given the unprecedented antitumor efficacy of AGF347 against MIA PaCa-2 

tumor xenografts in an early-stage tumor model (as discussed in section 2.3.6), we sought to 

assess the efficacy of AGF347 in late-stage disease by allowing the MIA PaCa-2 tumor 

xenografts to grow to 100-150 mg before treatment (see section 3.2.10). In addition, we 

performed metabolomics analyses on several tumors harvested from both AGF347-treated and 
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control mice to confirm in vivo enzyme targets. The work discussed in this chapter was partially 

published and is included in a manuscript under preparation. 

3.2 Materials and Methods 

3.2.1 Chemicals 

[
3
H]-AGF347 (9 Ci/mmol) and [

3
H]-MTX (10-30 Ci/mmol) were purchased from 

Moravek Biochemicals (Brea, CA). Leucovorin [(6R,S) 5-formyl THF] and MTX were provided 

by the Drug Development Branch, National Cancer Institute (Bethesda, MD). PMX was 

purchased from LC Laboratories (Woburn, MA). Gemcitabine (Gemzar) was purchased from 

Pfizer (New York City, NY). PT523 (N
α
-(4-amino-4-deoxypteroyl)-N

δ
-hemiphthaloyl-l-

ornithine) was a gift of Dr. Andre Rosowsky (Dana-Farber cancer Institute, Boston, MA). 

AGF291, AGF320, and AGF347 were synthesized by Dr. Gangjee and his graduate students. 

3.2.2 Cell Culture 

The HCT116 cell lines including the SHMT1, SHMT2, and MTHFD2 KO cells (Ducker 

et al., 2016; Ducker et al., 2017) were generously provided by Drs. Gregory Ducker (University 

of Utah) and Joshua Rabinowitz (Princeton University). The MIA PaCa-2 cells were provided by 

Dr. Yubin Ge (Karmanos Cancer Institute); both were verified by short tandem repeat analysis 

by Genetica DNA Laboratories (Burlington, NC). The R1–11 RFC- and PCFT-null HeLa subline 

was a gift from Dr. I. David Goldman (Albert Einstein School of Medicine, Bronx, NY) (Zhao, 

2009). The R1–11-RFC2 cell line was developed in our laboratory by transfection of R1–11 cells 

with the pZeoSV2-RFC vector and clonal selection, as previously described (Wang et al., 

2015). For non-transport experiments, all the above cell lines were all maintained in folate-free 

RPMI supplemented with 10% dialyzed fetal bovine serum (Sigma-Aldrich), 1% 

penicillin/streptomycin solution, 2 mM L-glutamine, and 25 nM leucovorin. For transport 
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experiments (see section 3.2.6), these cells were maintained in RPMI supplemented with 10% 

fetal bovine serum, 1% penicillin/streptomycin solution, and 2 mM glutamine instead. R1-11 

cells were kept under continuous selection with 500 nM MTX and 1 mg/ml G418. R1-11 RFC2 

cells were kept under continuous selection with 100 µg/mL Zeocin. MTXRIIOua
R
2-4 (i.e. R2) 

CHO cells were generously provided by Dr. Wayne Flintoff (University of Western Ontario) 

(Flintoff et al., 1976). From this parental R2 cell line, human RFC and PCFT were individually 

transfected to generate the isogenic CHO cell lines designated PC43-10 (RFC) and R2/PCFT4 

(PCFT) (Deng et al., 2008; Deng et al., 2009; Wong et al., 1995). GlyB cells were a generous 

gift of Dr. Larry Chasin (Columbia University). GlyBTII cells were derived from GlyB cells by 

Yijun Deng, a former graduate student in the lab. Briefly, GlyB cells underwent electroporation 

with human MFT cDNAs in a pcDNA3.1 (-)/myc-His A-tagged vector and monoclonal cultures 

were then isolated and expanded for screening. The monoclonal culture with the highest MFT-

expression by RT-PCR was denoted GlyBTII. Successful transfection of the GlyB cells to 

generate GlyBTII was subsequently confirmed by Western Blot in this section (Figure 3.1 – A). 

CHO cell lines were maintained in αMEM supplemented with 10% bovine calf serum, 1% 

penicillin/streptomycin solution, and 2 mM L-glutamine (and 1 mg/ml G418 for the GlyBTII 

cells) in a humidified atmosphere at 37 °C in the presence of 5% CO2 and 95% air. Additionally, 

the transfected CHO cell lines (i.e. R2/PCFT4, PC43-10, and GlyBTII) were maintained under 

continuous selection with 1 mg/ml of G418.  

3.2.3 Generation of MIA PaCa-2 MFT Knockdown (MIA PaCa-2 MFT KD) Cell Line 

MIA PaCa-2 cells were seeded (2 x 10
5
 cells/well) in 24 well plates containing 1 ml of 

routine culture media (i.e. folate-free RPMI 1640 supplemented with 10% dialyzed fetal bovine 

serum, 1% penicillin/streptomycin, 2 mM L-glutamine, and 25 nM leucovorin). Cells were  
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Figure 3.1 Confirmation of GlyBTII and MIA PaCa-2 MFT KD cell lines. GlyBTII 

cells were derived from GlyB cells by electroporation with human MFT cDNAs in a 

pcDNA3.1 (-)/myc-His A-tagged vector. Human MFT expression was confirmed by 

Western blot (A) for myc with Coomassie Blue staining used as a loading control (see 

section 3.2.4). MFT knockdown in MIA PaCa-2 MFT-shRNA transduced cells was 

confirmed by RT-PCR (see section 3.2.5) on a monoclonal culture. (B) Significant 

differences are denoted by # or *  with the number of symbols indicating the degree of 

significance (# denotes p <0.1, *  denotes p<0.05, **  denotes p<0.01, ***  denotes 

p<0.001). 
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treated with 4 μg/ml polybrene and 10
5
 transducing units of MISSION Lentiviral particles 

(Sigma-Aldrich) containing shRNA targeting MFT (TRCN0000043091). An additional well 

contained MIA PaCa-2 cells without shRNA particles. After 24 hours, the media was replaced 

with fresh routine culture media including 2 μg/ml puromycin as a selection marker. Once cells 

were confluent (and non-transduced cells had died), cells were harvested, passaged 3-4 times, 

then assayed by RT-PCR for MFT KD relative to NTC MIA PaCa-2 cells (Wilson et al., 2016). 

To isolate single clones, these cells were then plated in 100 mm dishes (200 cells/dish) in the 

presence of 2 μg/ml puromycin. Colonies were isolated, expanded (in RPMI 1640 supplemented 

with 10% fetal bovine serum, 1% penicillin/streptomycin, and 2 mM L-glutamine) and clonal 

cultures were assayed for MFT KD via RT-PCR (Figure 3.1 - B). KD was further confirmed via 

a [
3
H]-folic acid uptake experiment. A clonal MIA PaCa-2 MFT KD culture was used as a 

control for the metabolism experiments.  

3.2.4 Gel Electrophoresis and Western Blots 

GlyB and GlyBTII cells were cultured as described in section 3.2.2. Cells were plated in 

2 T150 flasks each and harvested when cells were ~90% confluent. Mitochondrial fractions were 

isolated as described in section 3.2.7 and assayed for protein concentrations (Lowry et al., 1951). 

Equal amounts of protein (36 µg) from each sample were electrophoresed on 10% 

polyacrylamide gels with SDS (Laemmli, 1970) and transferred to polyvinylidene difluoride 

membranes (ThermoFisher) (Matsudaira, 1987). To detect MFT expression, membranes were 

incubated for 24 hours with rabbit anti-myc primary antibody (Covance Inc., Princeton, NJ - 

MMS-150P). Subsequently, membranes were incubated in IRDye800CW-conjugated goat anti-

rabbit IgG secondary antibody (LICOR Biosciences, Omaha, NE) for 90 min and scanned with 
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an Odyssey infrared imaging system (LICOR Biosciences). A Coomassie Blue stain of the blot 

was used as a loading control (Figure 3.1 - B). 

For AMPK activation, total and phospho-AMPK, regulatory associated protein of mTOR 

(Raptor), and S6K1 were probed by Western Blot (Mitchell-Ryan et al., 2013). Briefly, HCT116 

WT and SHMT2 KO cells (1 million cells/dish for vehicle-treated samples, 1.5 million cells/dish 

for drug-treated samples) were seeded in 60 mm dishes in 5 ml of folate-free RPMI 

supplemented with 10% dialyzed fetal bovine serum, 1% penicillin/streptomycin, 2 mM L-

glutamine, and 25 nM leucovorin. Cells were allowed to adhere for 24 hours after which 10 µM 

AGF291, 10 µM AGF320, 10 µM AGF347, or 1 mM AICAR, or a comparable volume of 

vehicle (DMSO) was added. Incubations were performed at 37
o
C with 5% CO2. After 48 hours, 

cells were harvested and disrupted by sonication, with cell debris removed by centrifugation. The 

soluble cell fractions were assayed for protein concentrations (Lowry et al., 1951) and equal 

amounts of protein (50 µg for AMPK/S6K1 in both cell lines, 50 µg for Raptor in MIA PaCa-2 

cells, 100 µg for Raptor in HCT116 cells) from each sample were electrophoresed on 10% 

polyacrylamide gels with SDS (Laemmli, 1970) and transferred to polyvinylidene difluoride 

membranes (ThermoFisher) (Matsudaira, 1987). To detect phospho- or total AMPK, Raptor, or 

p70-/p85-S6K1, membranes were incubated for 72 hours with rabbit primary antibody (Cell 

Signaling Technology, Danvers, MA [Catalog Number] – total AMPK [5831S], P-AMPK 

(T172) [2535S], Total Raptor [2280S], P-Raptor (S792) [2083S], Total p70-/p85-S6K1 [2708S], 

P-p70/P-p80-S6K1 (T389/T412) [9234S]). The blots were developed by incubating in 

IRDye800CW-conjugated goat anti-rabbit IgG secondary antibody (LICOR Biosciences, Omaha, 

NE) for 90 min and scanning with an Odyssey infrared imaging system (LICOR Biosciences). 
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Protein loading was normalized to β-actin using anti-β-actin mouse antibody (Sigma-Aldrich 

[A2228]). Densitometry was conducted in Image Studio Software (LICOR Biosciences). 

3.2.5 RT-PCR  

Cells were harvested from either 60 mm dishes or T25 flasks at ~80% confluence and 

RNAs extracted using TRIzol reagent (Invitrogen, Carlsbad, CA). cDNAs were synthesized with 

random hexamers, MuLV reverse transcriptase, and RNase inhibitor (Applied Biosystems, 

Waltham, MA) and purified with a QIAquick PCR Purification Kit (QIAGEN, Valencia, CA). 

Quantitative RT-PCR was performed using a Roche LightCycler 480 (Roche Diagnostics, 

Indianapolis, IN) with gene-specific primers and SYBR Green I dye) and transcript levels were 

normalized to transcript levels of β-actin and GAPDH.  

3.2.6 Plasma Membrane Transport  

General inhibition studies with R2, R2/PCFT4, and PC43-10 cells were performed as 

previously described (Ravindra et al., 2018). Buffers used include MES (2-(N-

morpholino)ethanesulfonic acid)-buffered saline at pH 5.5 (20 mM MES, 140 mM NaCl, 5 mM 

KCl, 2 mM MgCl2, and 5 mM glucose), HEPES at pH 6.8 (20 mM HEPES, 140 mM NaCl, 5 

mM KCl, 2 mM MgCl2, and 5 mM glucose), and anion-free buffer at pH 7.2 (20 mM HEPES 

and 235 mM sucrose). Calculations of Km and Vmax were performed with concentrations of [
3
H]-

AGF347 or [
3
H]-MTX from 20 nM to 500 nM (R2/PCFT4 at pH 5.5) or 250 nM to 5 µM (R1-

11 RFC2 at pH 7.2). Analysis of the data used Lineweaver-Burk plots. Using the average Km and 

Vmax values from these experiments, Ki values for each of the drugs relative to 0.5 µM [
3
H]-

MTX were calculated by Dixon plots using concentrations of cold competitor (i.e. drug) from 0 

to 500 nM (R2/PCFT4 at pH 5.5) or 0 to 1 µM (R1-11 RFC2 at pH 7.2). General inhibition 

studies with human tumor cell lines (HCT116 WT and MIA PaCa-2 WT) were performed as 
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follows: cells were seeded in 60 mm dishes at a density of 1 million cells per dish. After 48 

hours, cellular uptakes of [
3
H]-MTX and [

3
H]-AGF347 (both 500 nM) were measured over 5 

minutes at pH 5.5, 6.8, and 7.2, using the previously mentioned buffers. Uptake experiments 

were also performed in the presence of an excess (10 µM) of unlabeled AGF94 (Wang et al., 

2011) (blocks PCFT uptake) and/or PT523 (Rosowsky, 1999) (blocks RFC uptake). The dishes 

were then washed three times with ice-cold PBS and cells solubilized with 0.5 N NaOH with 

aliquots counted for radioactivity and assayed for protein concentrations (Lowry et al., 1951). 

Final values were expressed in pmol[
3
H]-substrate per mg of protein. 

3.2.7 Subcellular Fractionation of Folates.  

GlyB, GlyBTII, MIA PaCa-2 NTC, and MIA PaCa-2 MFT KD cells were cultured in 

complete αMEM supplemented with bovine calf serum, 1% penicillin/streptomycin, and 2 mM 

L-glutamine (CHO cell lines) or complete RPMI 1640 supplemented with fetal bovine serum, 

1% penicillin/streptomycin, and 2 mM L-glutamine (MIA PaCa-2 cell lines) respectively. Prior 

to incubating with radiolabel, each cell line was depleted of intracellular folates by culturing in 

complete folate-free RPMI 1640 supplemented with dialyzed fetal bovine serum, 1% 

penicillin/streptomycin, and 2 mM L-glutamine (i.e. depletion media) for 48 hours. Two T150 

flasks per treatment condition were then seeded with 6 million (CHO) or 8 million (MIA PaCa-

2) cells in depletion media supplemented with 60 µM adenosine and 10 µM thymidine to a total 

volume of 30 mL per T150 flask to which 2 µM unlabeled drug and 9 µCi of either [
3
H]-MTX 

or [
3
H]-AGF347 (specific activity of 133.20 cpm/pmol) were added. To measure [

3
H]-folic acid 

fractionation, folate-depleted cells were instead seeded in complete αMEM or complete RPMI 

1640 medium (containing 2.26 µM folic acid) to which 9 µCi of [
3
H]-folic acid (specific activity 

of 117.88 cpm/pmol) was added. Cells were allowed to incubate with radiolabel for 48 hours. 
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After incubation, mitochondrial, cellular, and total fractions were separated by differential 

centrifugation, essentially as previously described (Clayton and Shadel, 2014). Briefly, cells 

were harvested by trypsinizing, washed once with PBS, and resuspended in hypotonic 

resuspension buffer (RSB – 10mM NaCl, 1.5 mg MgCl2, 10mM Tris (pH 7.5)) for 15 minutes. 

Cells were then lysed with 15 strokes of the B (i.e. “tight-fitting”) pestle in a 7 mL Dounce 

homogenizer. 2.5x mannitol-sucrose buffer (MS – 5.5 mM mannitol, 175 mM sucrose, 12. 5mM 

Tris (pH 7.5), and 2.5 mM EDTA (pH 8.0)) was then added to a final concentration of 1x MS 

and an aliquot (i.e. “Total” fraction containing both cytosol and mitochondria) was sampled for 

radioactivity via scintillation counter and protein via Folin-phenol reagent (Lowry et al., 1951). 

The homogenized cell suspension was then spun at 3100 rpm for 5 minutes at 4
o
C in a Jouan 

CR4i centrifuge to pellet nuclei and unbroken cells. After collecting the supernatant (containing 

mitochondria), the nuclei and unbroken cell pellet were resuspended in 1x MS, homogenized 

with 5 additional strokes, and respun at 3100 rpm. The supernatant was pooled with the 

supernatant collected earlier and spun at 11,900 rpm at 4
o
C for 15 minutes in a Sorvall SS34 

rotor to pellet mitochondria. The supernatant (i.e., the cytosol fraction) was collected and 

aliquots were assayed for protein and radioactivity. The mitochondrial pellet was washed once 

with 1x MS, repelleted at 11,900 rpm for 15 minutes, and then solubilized in 0.5 M NaOH, after 

which aliquots were assayed for proteins and radioactivity (i.e. mitochondrial fraction). To assess 

purities and yields of the cytosolic and mitochondrial fractions, parallel incubations were 

performed with no drug or radiolabel added, cells were harvested in RSB and MS buffers 

containing cOmplete Protease Inhibitor Cocktail (Sigma), and each fraction was assayed for 

lactate dehydrogenase (LDH-cytosolic marker) and succinate dehydrogenase (SDH-

mitochondrial marker). LDH was assayed in sodium phosphate buffer (0.03 M, pH 7.4) with 
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excess of sodium pyruvate (300 µM) and NADH (70 µM) by measuring rate of decrease in 

absorbance at 340nm (i.e. depletion of NADH). SDH was assayed in potassium phosphate buffer 

(10 mM, pH 7.5 with 1mM potassium cyanide) with an excess of sodium succinate (20mM) and 

2,6-dichlorophenolindophenol (DCPIP) by measuring rate of decrease in absorbance at 600 nm 

(i.e. reduction of DCPIP). While the mitochondrial fractions were relatively pure (<5% cytosolic 

contamination – see section 3.3.2), cytosolic fractions were heavily contaminated with lysed 

mitochondria. As both positive ([
3
H]-folic acid) and negative ([

3
H]-MTX) controls demonstrated 

the expected phenotypes (see section 3.3.2), data were not corrected. 

3.2.8 Polyglutamylation of [
3
H]-AGF347 

Polyglutamates of AGF347 were studied in cytosolic and mitochondrial fractions of MIA 

PaCa-2 NTC cells, as previously described with some modifications (Kugel Desmoulin et al., 

2011). Briefly, the protocol for subcellular fractionation of folates in section 3.2.7 was modified 

by addition of 18 µCi (rather than 9 µCi) of [
3
H]-AGF347 to each T150 flask (specific activity 

of 266.40 cpm/pmol). The cytosolic and mitochondrial fractions were then boiled for 10 minutes 

to denature lysosomal conjugases, spun at 14,000 rpm in a tabletop centrifuge at 0
o
C for 15 

minutes, and the supernatant was analyzed via HPLC (Agilent Infinity 1260 II, Agilent 

Technologies Inc, Santa Clara, CA) essentially as previously described (Kugel Desmoulin et al., 

2011) with minor modifications. Supernatants were injected (200 µL) into a Waters 4 µm Nova-

Pak C-18 column (3.9 x 150 mm) with a Nova-Pak 4 µM C-18 guard column. The gradient of 

100 mM sodium acetate pH 5.5 (mobile phase A) and acetonitrile (mobile phase B) was initiated 

with 100% A from 0 to 5 minutes, followed by a linear gradient from 100% A at 5 minutes to 

75% A/25% B at 35 minutes. Fractions were automatically collected every minute for the first 5 

minutes, every 30 seconds for the next 5 minutes, and every 10 seconds thereafter. Radioactivity 
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was measured via scintillation counter and total picomoles of each polyglutamate were 

calculated from the percentage of total radioactivity in each peak and total picomoles of AGF347 

in each compartment, as calculated in subcellular fractionation of folates. To confirm the 

identities peaks as polyglutamate metabolites of AGF347, samples were treated overnight 

treatment with a preparation of partially purified chicken pancreas conjugase in 0.5 ml of 0.1 M 

sodium borate, pH 7.8, containing 10 mM β-Me at 32°C to hydrolyze all polyglutamates to the 

monoglutamyl form (i.e. AGF347) (Matherly et al., 1985). Samples were deproteinized by 

boiling (5 min), then analyzed by HPLC. 

3.2.9 Determination of Oxygen Consumption Rate 

Oxygen consumption rates (OCR) were determined using a Seahorse XF24 extracellular 

flux analyzer (Agilent Technologies). HCT116 WT and SHMT2 KO cells were grown in 

complete folate-free, glycine-replete RPMI 1640 supplemented with 10% dialyzed fetal bovine 

serum, 1% penicillin/streptomycin, 25 nM leucovorin, 2 mM L-glutamine, and adenosine (60 

µM – to abrogate cytotoxicity of drug) and treated with AGF347 (10 µM) or DMSO for 48 

hours. Cells were then seeded into gelatin-coated XF24 cell culture microplates in the same 

media (containing drug) at a density of 130,000 cells per well with 5 replicate wells per 

condition and allowed to adhere for 24 hours. OCR was then monitored at baseline and 

throughout sequential injections of oligomycin (1 μM), carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP - 1 μM) and rotenone/antimycin A (1 μM each) 

(Mean Son et al., 2017; Minton et al., 2018; Morscher et al., 2018). Baseline OCR consists of the 

sum of mitochondrial respiration (i.e. oxygen consumed by the electron transport chain) and non-

mitochondrial respiration (e.g. oxygen consumed through non-mitochondrial NADPH oxidases, 

which represents up to 10% of total OCR in most cells (Brand and Nicholls, 2011)). 
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Mitochondrial respiration functions by pumping protons from the mitochondrial matrix into the 

intermembrane space through oxidation of NADH, ubiquinone, and cytochrome c at complexes 

I, III, and IV of the electron transport chain, respectively (Jastroch et al., 2010). The electrons 

from these oxidation reactions eventually flow to oxygen, which is reduced into water (i.e. 

consumed, hence allowing measurement of OCR as a proxy for mitochondrial respiration) 

(Jastroch et al., 2010). Most protons then flow down their concentration gradient into the 

mitochondrial matrix and this energetically favorable reaction is coupled to production of ATP 

from ADP at the enzyme ATP synthase (Jastroch et al., 2010). However, some protons “leak” 

back into the mitochondrial matrix through non-ATP synthase mechanisms, as well (Jastroch et 

al., 2010). As oligomycin blocks ATP synthase (Masaya et al., 1995), treatment with oligomycin 

resolves mitochondrial respiration into ATP production (which is blocked) and proton leak 

(which persists). Subsequent treatment with FCCP effectively permeabilizes the inner 

mitochondrial membrane to protons, dissipating the proton gradient and thus, “uncoupling” ATP 

production from the electron transport chain altogether (Heytler and Prichard, 1962). The 

mitochondria, then, achieve maximum OCR as abrogation of the proton gradient removes any 

energetic resistance to the pumping of protons into the intermembrane space by Complexes I, III, 

and IV. Finally, treatment with rotenone (which inhibits Complex I) and antimycin A (which 

inhibits Complex III directly and therefore, Complex IV indirectly) (Kim et al., 1999; Krieger, 

2010) terminates all remaining electron transport chain activity, leaving just non-mitochondrial 

respiration. After completion of this “mitochondrial stress test” (see section 3.3.4), the OCR 

measured in each section was normalized to the protein concentration in each well calculated 

after stress test by solubilizing with 0.5 N NaOH and using the Folin-phenol method (Lowry et 

al., 1951). 



 

 

89 

3.2.10 Glutathione and ROS 

HCT116 WT, SHMT1 KO, and SHMT2 KO cells were seeded (25,000 cells per 96-well 

plate well for glutathione assay, 1.5 million cells per 60 mm dish for ROS assay) in complete 

folate-free, RPMI 1640 supplemented with 10% dialyzed fetal bovine serum, 1% 

penicillin/streptomycin, 25 nM leucovorin, and 2 mM L-glutamine. The cells were allowed to 

adhere overnight under normoxia (21% O2, 5% CO2). Media was then replaced with complete 

folate-free, glycine-free RPMI 1640 supplemented with 10% dialyzed fetal bovine serum, 1% 

penicillin/streptomycin, 25 nM leucovorin, 2 mM L-glutamine, and adenosine (60 µM – to 

isolate effects of SHMT2 inhibition vis-a-vis de novo purine biosynthesis inhibition). Cells were 

then treated with 10 µM AGF291, AGF320, or AGF347 for 24 hours in parallel incubations 

under normoxia (21% O2, 5% CO2) or hypoxia (0.5% O2, 5% CO2) (Ye et al., 2014). Cells were 

then processed for glutathione pools by an o-phthalaldehyde assay (Senft et al., 2000) (Biovision, 

San Francisco, CA – Catalog #: K264) or ROS levels by 2’,7’-dichlorofluorescin diacetate 

(H2DCFDA) fluorophore assay (Eruslanov and Kusmartsev, 2010) (Biovision, Catalog #: K936) 

by kit following the manufacturer’s protocols. In the glutathione assay, o-phthaldehyde reacts 

with the sulfhydryl group of glutathione (reduced-GSH), but not glutathione disulfide (oxidized) 

(GSSG), to produce fluorescence that can be measured by plate-reader via excitation/emission at 

340 nm/420 nm, allowing for quantification of GSH against a standard curve. GSSG may also be 

quantified by quenching all cellular GSH (but not GSSG) with the kit’s proprietary GSH 

quencher, and subsequently reducing all GSSG into GSH by the kit’s proprietary reducing agent 

mix. In the ROS assay, H2DCFDA enters the cell and is deacetylated into non-fluorescent 

H2DCF, which interacts with intracellular ROS to yield a fluorescent product detectable by 

plate-reader via excitation/emission at 495 nm/529 nm. The proprietary ROS inducer provides a 
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positive experimental control and was included in the ROS assay kit. After assaying ROS, results 

were normalized to protein concentrations in each well by solubilizing with 0.5 N NaOH and 

using the Folin-phenol method (Lowry et al., 1951). 

3.2.11 Targeted Metabolomics  

Targeted metabolomics was performed essentially as previously described in section 

2.2.6 (Ducker et al., 2016; Ducker et al., 2017). Briefly, cells (HCT116 MIA PaCa-2) (1 million 

cells/dish for vehicle-treated samples, 1.5 million cells/dish for drug-treated samples) were 

seeded in triplicate 60 mm dishes in 5 mL of folate-free RPMI supplemented with 10% dialyzed 

fetal bovine serum, 1% penicillin/streptomycin, 2 mM L-glutamine, and 25 nM leucovorin. The 

cells were allowed to adhere for 24 hours, after which 10 µM AGF291, AGF320 or AGF347, or 

a comparable volume of vehicle (DMSO), was added. After drug incubation for 16 hours, the 

media were aspirated, the cells were washed once with PBS, and serine-free folate-free RPMI 

supplemented with 250 µM [2,3,3-
2
H]-serine, 10% dialyzed fetal bovine serum, 1% 

penicillin/streptomycin, 2 mM L-glutamine, and 25 nM leucovorin was added. Vehicle or drugs 

(10 µM) were also added back in for an additional 24 hours. Incubations were performed at 37
o
C 

with 5% CO2. After 24 hours, the media were aspirated, and cells were washed (3x) rapidly (< 30 

s) with 5 mL ice-cold PBS; metabolism was quickly quenched with methanol:water (80:20) at -

80
o
C. Cells were allowed to rock on dry ice for 10 min to cover the entire dish with 80:20 

methanol:water (at -80
o
C), then  harvested by scraping and pipetting into 1.5 mL Eppendorf 

tubes. The tubes were centrifuged to fully extract metabolites into the supernatant with the pellet 

used for normalization. The supernatants were collected and analyzed by reversed-phase ion-

pairing chromatography coupled with negative-mode electrospray-ionization high-resolution 

mass spectrometry on an AB SCIEX (Foster City, CA) QTRAP 6500 LC-MS/MS system, which 
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consists of a SHIMADZU (Kyoto, Japan) Nexera ultra-high performance liquid chromatograph 

(UHPLC) coupled with a hybrid triple quadrupole/linear ion trap mass spectrometer. Raw 

metabolite values were normalized to total proteins from the post-extraction pellet by 

solubilizing with 0.5 N NaOH and using the Folin-phenol protein method (Lowry et al., 1951). 

3.2.12 In Vivo Efficacy Trial with MIA PaCa-2 Tumor Xenografts   

Methods for in vivo maintenance of MIA PaCa-2 tumor xenografts and drug efficacy 

evaluations are analogous to those previously described in section 2.2.9. MIA PaCa-2 human 

pancreatic cancer tumor fragments (30-50 mg) were bilaterally implanted subcutaneously with a 

12-gauge trocar in female NCr SCID mice (NCI Animal Production Program stock strain; 

Charles River Labs #561). The mice were 10 (late-stage) weeks old on day 0 (tumor implant) 

with average body weights of 19 g. For the efficacy trials, the mice were maintained on a folate-

deficient diet from Envigo (TD.00434) or a folate–replete control diet from Lab Diet (#5021) 

starting 16 days before subcutaneous tumor implant.  Mice were supplied with food and water ad 

libitum.  Serum folate concentrations were monitored prior to tumor implant and post study by 

Lactobacillus casei bioassay (Varela-Moreiras and Selhub, 1992). The mice in each group 

(folate-deficient and standard diet) were pooled before non-selective distribution to each group’s 

respective treatment and control arms. Chemotherapy was initiated seven days post-tumor 

implantation (when tumors had grown to 100-150 mg) with AGF347. For both designs, dosing 

for AGF347 was 15 mg/kg/injection every 2 days x 8 (total dose of 120 mg/kg); for gemcitabine, 

dosing was 120 mg/kg/injection every 4 days x 4 (total dose of 480 mg/kg). The AGF compound 

was dissolved in 5% ethanol (v/v), 1% Tween-80 (v/v), and 0.06% NaHCO3 and sterile H2O; the 

GEM clinical stock was prepared per insert instructions with sterile 0.9% NaCl. Both drugs were 

administered IV (0.2 ml/injection).  
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3.2.13 In Vivo Metabolomics.   

Of 8 mice each in the treatment and control arms of the in vivo study, 3 were randomly 

designated for metabolomics studies with the remaining 5 mice used to determine efficacy. Six 

hours after the 6
th

 dose of AGF347 (when control mice tumors reached 2000 mg, mandating 

euthanasia), both treated and control groups of metabolomics mice were euthanized and tumors 

were removed and immediately frozen in liquid nitrogen for LC-MS analysis. Frozen isolated 

tumors were weighed, then 50 mg tissue was disrupted using a cryomill (Retsch) and lysed in 1 

mL ice-cold 40:40:20 acetonitrile:methanol:water. Solids were precipitated, spun down, and re-

extracted with 1 mL lysis buffer. Combined supernatants were dried down and resuspended in 

water to a concentration of 50 mg/mL (original tissue mass) before analysis by LC-MS. Samples 

were run on a ThermoElectron Corporation Exactive mass spectrometer operating in negative ion 

mode as previously described (Lu et al., 2010). Separation was accomplished by reverse phase 

ion-pairing chromotagraphy using a 100 mm/ 2.5 m Synergi Hydro-RP C18 column 

(Phenomenex).  Individual metabolites were identified from spectral data using the MAVEN 

software suite coupled with retention time information from standards (Clasquin et al., 2012).   

3.2.14 Statistics.  

All data shown reflect at least three biological replicates unless noted otherwise (e.g. 

targeted metabolomics data, which reflect three technical triplicates measured in single 

experiments). All statistical analyses were performed by the Karmanos Cancer Institute 

Biostatistics Core. The expression levels were assessed for the normality assumption. When the 

expression levels were positive, the log2 transformation was used, while the square root 

transformation was instead applied when the expression levels included zero values. P-values 

were not adjusted for multiple comparisons. 
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3.3 Results 

3.3.1 Determination of Plasma Membrane Folate Transporters and Kinetics 

Our initial characterization of AGF291, AGF320, and AGF347 (Table 2.1) revealed 

inhibition of proliferation of both PCFT-expressing R2/PCFT4 and RFC-expressing PC43-10 

CHO cells, suggesting uptake by both PCFT and RFC. To confirm PCFT- and RFC-mediated 

uptake, we measured the impact of unlabeled AGF291, AGF320, and AGF347 on uptake of 

[
3
H]-MTX by both CHO cell lines (Figure 3.2 – A,B). PMX, AGF94 (blocks PCFT mediated 

uptake (Hou et al., 2017; Wilson et al., 2016) – see section 1.3.2) and  PT523 (blocks RFC 

mediated uptake (Wang et al., 2010) – see section 1.3.1) were used as controls. Under ideal 

transport conditions (Desmoulin et al., 2012a) for PCFT (pH 5.5) and RFC (pH 7.2, anion-free 

buffer), adding 10 µM competitor reduced [
3
H]-MTX uptake in the CHO cell lines to 

background (i.e. R2) levels, confirming uptake of AGF291, AGF320, and AGF347 by both 

transporters. To extend these studies into our human tumor cell line models, we performed 

analogous experiments with both [
3
H]-MTX and [

3
H]-AGF347 in the presence or absence of 

excess unlabeled AGF94 and/or PT523 to gauge the relative contribution of each transporter to 

total uptake. As expected, experiments at pH 5.5 and 7.2 revealed predominant uptake of both 

substrates by PCFT and RFC, respectively (Figure 3.3 - A, C, D, F, G, I). At pH 6.8, 

representative of the tumor microenvironment (Stubbs et al., 2000), uptake of [
3
H]-MTX and 

[
3
H]-AGF347 was significantly inhibited by both PT523 and AGF94, confirming transport by 

both RFC and PCFT (Figure 3.3 – B, E, H). RFC in particular was especially critical for uptake 

in MIA PaCa-2 cells (Figure 3.3 – B), as evidenced by a significant decrease in uptake from  

samples treated with AGF94 to samples treated with PT523. 

Next, we assessed RFC and PCFT transport kinetics of AGF291, AGF320, and AGF347 
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Figure 3.2 RFC- and PCFT-mediated uptake in R2/PCFT4, PC43-10, and R1-11 RFC2 

Cells. (A,B) Uptake over five minutes of 0.5 µM [
3
H]-MTX in R2/PCFT4 (expressing PCFT – 

A) and PC43-10  (expressing RFC – B) CHO cells measured in the presence of vehicle (i.e. 

DMSO) or unlabeled inhibitor, as compared to uptake in plasma membrane folate transporter-

null R2 cells. (C,D) Uptake over five minutes of 0.5 µM [
3
H]-MTX and 0.5 µM [

3
H]-AGF347 

in R2/PCFT4 cells (C) and R1-11 RFC2 cells (D) as compared to the corresponding plasma 

membrane folate transporter-null parental cell lines R2 and R1-11 respectively. Significant 

differences are denoted by # or *  with the number of symbols indicating the degree of 

significance (# denotes p <0.1, *  denotes p<0.05, **  denotes p<0.01, ***  denotes p<0.001). 
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Figure 3.3 RFC- and PCFT-mediated uptake in HCT116, H460, and MIA PaCa-2 Cells. 

Uptake over five minutes of 0.5 µM [
3
H]-MTX and 0.5 µM [

3
H]-AGF347 in the presence of 

excess (10 µM) unlabeled AGF94 (blocks PCFT-mediated uptake) and/or PT523 (blocks RFC-

mediated uptake) in MIA PaCa-2 (A-C), H460 (D-F), and HCT116 (G-I) cells at pH 5.5 (PCFT-

optimum), pH 6.8 (tumor microenvironment), and pH 7.2 (anion-free buffer, RFC-optimum). 

Significant differences are denoted by # or *  with the number of symbols indicating the degree of 

significance (# denotes p <0.1, *  denotes p<0.05, **  denotes p<0.01, ***  denotes p<0.001). 
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in cell lines expressing each transporter individually. For PCFT, we used R2/PCFT4 CHO cells, 

as AGF94 potently inhibited (decreased by 85-95%) uptake of both radiolabels (Figure 3.2 – C), 

confirming robust PCFT transport. However, the analogous experiment with PT523 and PC43-

10 CHO cells revealed more modest inhibition (decreased by 60%), suggesting less-than-ideal 

RFC activity for kinetics measurements (Figure 3.2 - B). Therefore, we instead used the R1-11 

(transporter-null) and R1-11-RFC2 (RFC-expressing) engineered isogenic HeLa sublines 

(Ravindra et al., 2018). In the latter, PT523 potently inhibited (decreased by 87-97%) uptake of 

both radiolabels (Figure 3.2 - D), confirming robust RFC transport.  Km and Vmax values for 

[
3
H]-MTX  and [

3
H]-AGF347 are given in Table 3.1. As expected from the greater uptake of 

[
3
H]-AGF347 than [

3
H]-MTX in both human tumor cell lines at all pH values (Figure 3.3), 

[
3
H]-AGF347 had an 1.5-fold increased affinity for RFC (Km  - 0.399 µM vs 0.609 µM 

respectively) and a 5.5-fold increased affinity for PCFT (Km - 0.060 µM vs 0.336 µM 

respectively) compared to [
3
H]-MTX (Table 1). Using the Km and Vmax values derived from 

these studies, we calculated Ki values against MTX for all novel compounds, as well as AGF94 

and PMX. AGF291, AGF320, and AGF347 are roughly equivalent substrates for RFC based on 

their Ki values (Ki range- 0.205 µM to 0.278 µM) and 2- to 3-fold better than PMX (Ki = 0.585 

µM). For PCFT, AGF347 (Ki = 0.140 µM) was a 2- to 2.5-fold better substrate than AGF291 (Ki 

= 0.350 µM) and AGF320 (Ki = 0.296 µM) and on par with AGF94 (Ki = 0.148 µM) and PMX 

(Ki = 0.112 µM). 

3.3.2 Subcellular Compartmentation of [
3
H]-AGF347  

Having established the plasma membrane transport profiles of AGF291, AGF320, and 

AGF347, we next sought to assess their mitochondrial uptake using [
3
H]-AGF347 as a model. In 

particular, as MFT was established as the only known transporter of folates into the 
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Table 3.1: Transport Kinetics  

Transporter RFC PCFT 

Constant 
Km (µM) Vmax 

(µMol/min) 

Ki 

(MTX) 

Km 

(µM) 

Vmax 

(µMol/min) 

Ki (MTX) 

MTX 

 

0.609 

(0.011) 

71.7 

(3.15) 

ND 0.336 

(0.092) 

467.3 

(277.6) 

ND 

PMX 

 

ND ND 0.585 

(0.067) 

ND ND 0.056 

(0.002) 

AGF94 ND ND 1.620 

(0.182) 

ND ND 0.074 

(0.029) 

AGF291 ND ND 0.278 

(0.048) 

ND ND 0.175 

(0.081) 

AGF320 ND ND 0.205 

(0.052) 

ND ND 0.148 

(0.050) 

AGF347 0.399 

(0.122) 

87.9 

(50.3) 

0.252 

(0.058) 

0.06 

(0.02) 

190.1 

(55.6) 

0.070 

(0.002) 

Transport assays were performed over five minutes using the engineered CHO cell line 

R2/PCFT4 (expresses PCFT only) and the engineered HeLa-derivative cell line R1-11 RFC2 

(expresses RFC only). Calculations of Km and Vmax were performed with concentrations of [
3
H]-

AGF347 or [
3
H]-MTX from 20 nM to 500 nM (R2/PCFT4 at pH 5.5) or 250 nM to 5 µM (R1-11 

RFC2 at pH 7.2). Analysis was carried out by Lineweaver-Burk plots. Using the average Km and 

Vmax values obtained from these experiments, Ki values for each of the drugs relative to 0.5 µM 

[
3
H]-MTX were calculated by Dixon plot using concentrations of cold competitor (i.e. drug) from 

0 to 500 nM (R2/PCFT4 at pH 5.5) or 0 to 1 µM (R1-11 RFC2 at pH 7.2).  
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mitochondrial matrix (as previously discussed in section 1.3.4) , we sought to assess whether 

MFT played a role in mitochondrial uptake of [
3
H]-AGF347. To that end, we transfected human 

MFT into the MFT-inactive GlyB CHO cells (McCarthy et al., 2004) to generate the GlyBTII 

cell line (Figure 3.1 - A). In addition, we also generated NTC and MFT KD MIA PaCa-2 cell 

lines (Figure 3.1 - B) as human tumor models. [
3
H]-Folic acid was used as a positive control as 

inactivation of MFT reduces mitochondrial folate accumulation by 99% (McCarthy et al., 2004). 

[
3
H]-MTX was used as a negative control as MTX does not enter the mitochondria (Lin et al., 

1993). All cell lines were cultured in glycine-replete, folate-free media for 48 hours to deplete 

intracellular folate pools (as discussed in section 3.2.7). 2.26 µM [
3
H]-folic acid, 2 µM [

3
H]-

MTX, or 2 µM [
3
H]-AGF347 were then added for an additional 48 hours, with [

3
H]-MTX and 

[
3
H]-AGF347 incubations also containing 60 µM adenosine and 10 µM thymidine to abrogate 

any cytotoxic drug effects (see Figure 2.4 and (Deng et al., 2008)). Cytosolic and mitochondrial 

fractions were subsequently resolved by differential centrifugation (Clayton and Shadel, 2014) 

with radiolabel in each fraction quantified (Figure 3.4 – A-C) and normalized to fraction protein 

(Table 3.2, Figure 3.4 – D-F). As expected, all radiolabels showed no biologically relevant 

difference in total (Figure 3.4 - D) or cytosolic (Figure 3.4 - E) accumulations between the 

MFT-functional cell lines (MIA PaCa-2 NTC and GlyBTII) and their corresponding MFT 

KD/KO counterparts (MIA PaCa-2 MFT KD and GlyB respectively). In the mitochondrial 

fraction (Figure 3.4 – F), [
3
H]-folic acid accumulation was significantly diminished in the MFT 

KD/KO cell lines compared to their MFT-functional counterparts, consistent with MFT-

mediated uptake of [
3
H]-folic acid-derived [

3
H]-THF. Also as expected, no significant difference 

was seen with mitochondrial [
3
H]-MTX accumulation as all cell lines accumulated minimal 

amounts of mitochondrial [
3
H]-MTX. This is consistent with a level of cytosolic contamination 
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Figure 3.4 – Subcellular Fractionation of [
3
H]-Folic Acid, [

3
H]-MTX, and [

3
H]-AGF347 in 

MIA PaCa-2 NTC, MIA PaCa-2 MFT KD, glyB, and glyBTII Cell Lines. Cells were treated 

for 48 hours with radiolabel (2.26 µM [
3
H]-folic acid, 2.0 µM [

3
H]-MTX, or 2.0 µM-AGF347) 

and fractionated per protocol in section 3.2.7. Distribution of radiolabel in cytosol and 

mitochondria was quantified (A-C). Total cellular uptake of radiolabel (D) and compartment-

specific uptake (E-F) was normalized to cellular and compartment-specific protein level. Results 

represent mean ± standard deviation of at least three biological replicates. Significant differences 

are denoted by # or *  with the number of symbols indicating the degree of significance (# denotes 

p <0.1, *  denotes p<0.05, **  denotes p<0.01, ***  denotes p<0.001). 
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Table 3.2: Subcellular Distribution of Folates  

Cell Line MIA PaCa-2 NTC MIA PaCa-2 MFT KD 

Compartment Total Cytosol Mito. Total Cytosol Mito. 

[
3
H]-Folic Acid 

129.57 

(7.3) 

63.50 

(3.25) 

214.25 

(29.35) 

92.33 

(14.06) 

53.03 

(2.49) 

111.56 

(3.92) 

[
3
H]-MTX 

52.02 

(4.46) 

40.63 

(12.87) 

13.91 

(4.54) 

64.16 

(14.76) 

46.78 

(18.32) 

12.09 

(2.91) 

[
3
H]-AGF347 

336.28 

(68.28) 

205.02 

(75.29) 

254.18 

(50.14) 

502.80 

(160.04) 

306.09 

(111.73) 

271.17 

(63.01) 

Cell Line GlyB GlyBTII 

Compartment Total Cytosol Mito. Total Cytosol Mito. 

[
3
H]-Folic Acid 

193.43 

(81.58) 

175.96 

(89.56) 

38.99 

(14.33) 

245.56 

(59.08) 

196.68 

(78.45) 

294.59 

(87.97) 

[
3
H]-MTX 

33.81 

(22.20) 

26.35 

(15.83) 

10.65 

(12.37) 

35.44 

(12.05) 

27.19 

(13.06) 

9.95 

(9.25) 

[
3
H]-AGF347 

129.99 

(43.42) 

89.62 

(37.32) 

96.53 

(23.00) 

152.01 

(58.27) 

91.28 

(42.05) 

161.15 

(40.65) 

Cells were treated for 48 hours with radiolabel (2.26 µM [
3
H]-folic acid, 2.0 µM 

[
3
H]-MTX, or 2.0 µM-AGF347) and fractionated per protocol in section 3.2.7. 

Total cellular (“Total”), cytosolic (“Cytosol”), and mitochondrial (“Mito.”) 

radiolabel was quantified and normalized to compartment-specific protein level. 

Results represent mean ± standard deviation of at least three biological replicates. 
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of the mitochondrial fraction (Table 3.3). [
3
H]-AGF347, however, yielded an intermediate 

phenotype as compared to [
3
H]-MTX and [

3
H]-folic acid. While the mitochondrial accumulation 

of [
3
H]-AGF347 was significantly decreased in MFT-null GlyB cells as compared to GlyBTII 

cells, consistent with MFT-mediated uptake, this difference was not recapitulated in the MIA 

PaCa-2 sublines in spite of MFT KD approximating 20% of wild-type levels. Moreover, the 

concentration of [
3
H]-AGF347 exceeded the concentration of [

3
H]-folic acid in the 

mitochondrial fraction of GlyB cells, suggesting an alternate transport mechanism for the former 

in addition to MFT. These results establish that AGF347 uptake into the mitochondria is 

mediated partially, but not completely, by MFT.  

As it had previously been reported that accumulation of folates in the mitochondria and 

cytosol was dependent upon polyglutamylation by the respective compartment-specific isoforms 

of FPGS (Lawrence et al., 2014), we next sought to assess whether[
3
H]-AGF347 was similarly 

polyglutamylated in each compartment. Using MIA PaCa-2 NTC mitochondrial and cytosolic 

fractions, we resolved polyglutamates via HPLC. In addition to the monoglutamate (PG1) parent 

compound (i.e., [
3
H]-AGF347), six polyglutamyl metabolites (PG2-7) were resolved in the 

cytosolic fraction (Figure 3.5 - A) and three predominant polyglutamyl metabolites (PG5-7) were 

resolved in the mitochondrial fraction (Figure 3.5 - B). This reveals near-complete (98%) 

polyglutamylation of [
3
H]-AGF347 in both compartments with distinct polyglutamyl 

populations in each (Table 3.4). To confirm identity of the peaks as polyglutamyl metabolites of 

[
3
H]-AGF347, aliquots of the cytosolic fraction were treated with chicken pancreas conjugase 

(Kugel Desmoulin et al., 2011), which reverted the polyglutamyl metabolites back to the 

monoglutamate [
3
H]-AGF347 (Figure 3.5 - C). Collectively, these results establish that 

AGF347 is an excellent polyglutamylation substrate in both the mitochondria and cytosol. 
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Table 3.3: Purity of Subcellular Fractions 

MIA PaCa-2 NTC Cytosol Mitochondria 

LDH Activity 96.92 (1.69) 3.08 (1.69) 

SDH Activity 77.53 (6.06) 22.47 (6.06) 

MIA PaCa-2 MFT KD Cytosol Mitochondria 

LDH Activity 97.22 (0.49) 2.78 (0.49) 

SDH Activity 83.78 (3.63) 16.22 (3.63) 

GlyB Cytosol Mitochondria 

LDH Activity 99.62 (0.06) 0.38 (0.06) 

SDH Activity 76.94 (10.93) 23.07 (10.93) 

GlyBTII Cytosol Mitochondria 

LDH Activity 98.48 (2.15) 1.52 (2.15) 

SDH Activity 78.04 (2.64) 21.96 (2.64) 

Subcellular fractions were generated per section 3.2.7. Lactate 

dehydrogenase (LDH) and succinate dehydrogenase (SDH) were assayed 

spectrophotometrically as markers for cytosol and mitochondria, 

respectively. Results reflect three biological replicates and the percentage 

of total enzyme activity in each fraction (mean ± standard deviation) is 

given above. 
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Figure 3.5 Polyglutamylation of [
3
H]-AGF347 in MIA PaCa-2 NTC Cell Line. MIA 

PaCa-2 NTC cells were treated with 2.0 µM [
3
H]-AGF347 for 48 hours with cytosolic 

and mitochondrial fractions resolved per section 3.2.8. Polyglutamyl derivatives (PGn) of 

[
3
H]-AGF347 were resolved in the cytosolic (A) and mitochondrial (B) fractions by 

HPLC. To confirm identities of peaks as polyglutamyl derivatives of [
3
H]-AGF347, 

aliquots of the cytosolic fraction were treated with conjugase, restoring the polyglutamyl 

forms to the parent monoglutamate form  (i.e., PG1 or [
3
H]-AGF347).  
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Table 3.4: Subcellular [
3
H]-AGF347 Polyglutamate Distribution 

in MIA PaCa-2 NTC Cells 

 Percentage Total (pmol/mg 

protein) 

 Cytosol Mitochondria Cytosol Mitochondria 

PG7 8% 16% 16.40 40.67 

PG6 33% 48% 67.66 122.01 

PG5 42% 26% 86.11 66.09 

PG4 8% 4% 16.40 10.17 

PG3 4% 3% 8.20 7.63 

PG2 2% 1% 4.10 2.54 

PG1  

([
3
H]-AGF347) 

2% 2% 4.10 5.08 

MIA PaCa-2 NTC cells were treated with 2.0 µM [
3
H]-AGF347 for 

48 hours with cytosolic and mitochondrial fractions resolved and 

polyglutamyl derivatives quantified per protocol in section 3.2.8. 

Percentage (left) and total radiolabel normalized to compartment-

specific protein (right) are given above. 
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3.3.3 Effects Secondary to Inhibition of Cytosolic De Novo Purine Biosynthesis 

Having established plasma membrane and mitochondrial transporter profiles, we then 

interrogated cellular pharmacodynamics of AGF291, AGF320, and AGF347. As we had 

previously established in section 2.3.5 that these drugs all inhibited SHMT2 in the mitochondria 

and GARFTase and/or AICARFTase in cytosolic purine biosynthesis, we sought to assess the 

potential downstream effects of targeting these enzymes, starting with purine biosynthesis via 

targeted metabolomics. HCT116, H460, and MIA PaCa-2 cells were treated with 10 µM 

AGF291, AGF320, AGF347, or an equivalent volume of DMSO for 48 hours and processed for 

LC-MS analyses of adenine nucleotide species per protocol in section 3.2.11. Results for drug-

treated WT cells were compared to vehicle (i.e. DMSO) treated WT and, for HCT116, SHMT2 

KO cells. H460 SHMT2 KD cells were compared to H460 NTC cells. 

After 48 hours of drug treatment, adenine nucleotides were suppressed in both HCT116 and MIA 

PaCa-2 cell lines with greater decreases in AMP (~50%) and ADP (~50%) than ATP (~25%) in 

HCT116 (Figure 3.6 - A) and roughly equal (~50%) suppression in MIA PaCa-2 (Figure 3.6 - 

C). However, adenine nucleotide pools in H460 cells (Figure 3.6 – B) were only nominally 

affected with drug treatment, as AMP pools actually increased (~60%), ADP pools decreased 

(10-50%), and ATP pools remained generally unchanged. Interestingly, SHMT2 KD alone in 

these cells effected a significant decrease (25-50%) in all three adenine nucleotide pools. Taken 

together with the protection data (see section 2.3.2) which confirmed that adenosine was 

essential to rescue drug effects in all three cell lines, these data suggest that the drugs may be 

selectively depleting subcellular adenine nucleotide pools that are not captured in the total 

cellular metabolomics data captured above, particularly in the H460 cell line.  

As PMX, which inhibits AICARFTase in addition to TS,  had previously been shown to 
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Figure 3.6 Adenine Nucleotide Pools in HCT116, H460, and MIA PaCa-2 Cells. AMP, ADP, and 

ATP in WT, SHMT2 KO/KD (HCT116/H460, respectively), and AGF291-, AGF320-, and AGF347-

treated HCT116 (A), H460 (B), and MIA PaCa-2 (C) were quantified per protocol in section 3.2.11. 

Cells were treated with 10 µM drug or equivalent volume of DMSO for 48 hours and then processed for 

metabolomics analysis. Results represent mean ± standard deviation of three technical replicates. 

Significant differences are denoted by # or *  with the number of symbols indicating the degree of 

significance (# denotes p <0.1, *  denotes p<0.05, **  denotes p<0.01, ***  denotes p<0.001). 
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induce accumulation of AICAR  (ZMP), subsequently activating AMPK and consequently 

downregulating the pro-survival mTOR pathway (as discussed previously in section 1.4.2), we 

sought to assess whether our drugs might have the same effect as AGF291, AGF320, and 

AGF347 all induced striking accumulations of AICAR (Figure 2.6 – D-F). HCT116 and MIA 

PaCa-2 WT cells were treated with drug for 48 hours and compared to vehicle- and AICAR-

treated WT cells and, for HCT116, vehicle-treated SHMT2 KO cells as controls. Cells were then 

harvested and probed for activation of AMPK, Raptor, and both p70 and p85 isoforms of S6K1 

(mTOR effector protein) by Western blots, as described in section 3.2.4. 

In HCT116 cells (Figure 3.7 - A), SHMT2 KO and treatment with AICAR both induced 

activation (i.e. hyperphosphorylation – 12% and 40% respectively) of AMPK with the latter 

accompanying suppression of S6K1 (i.e., hypophosphorylation – 78% at p70-S6K1 and 83% at 

p85-S6K1). No effect on AMPK was seen in cells treated with AGF291, AGF320, or AGF347. 

However, inhibition of S6K1 (45% at p70-S6K1 and 17.5% at p85-S6K1) was noted with 

AGF291 treatment, perhaps signifying that a combination of purine depletion (Hoxhaj et al., 

2017) and AICAR/ZMP-induced AMPK activation may be primarily regulating mTOR in these 

cells.Interestingly, this S6K1 inhibition by AGF291 was not recapitulated by AGF320 or 

AGF347, which induce similar perturbations in cellular purine pools (Figure 3.6 - A), 

suggesting potential crosstalk from other cell signaling pathways (see below). mTOR inhibition 

by AGF291 (i.e. hyperphosphorylation) in HCT116 cells was better resolved by loading twice 

the protein (see section 3.2.4) in a second blot (Figure 3.7 - B), which confirmed modest 

inhibition (i.e. hyperphosphorylation - 65%). In the MIA PaCa-2 cells (Figure 3.7 - C), only 

AICAR treatment activated AMPK (40%) and inhibited S6K1 (66% at p70-S6K1 and 83% at 

p85-S6K1). As there was no drug effect at either AMPK or S6K1 in MIA PaCa-2 cells, we did 
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Figure 3.7 Activation of AMPK and Inhibition of mTOR in HCT116 and MIA 

PaCa-2 Cells. HCT116 and MIA PaCa-2 cells were analyzed for AMPK, mTOR (via 

Raptor), and S6K1 (mTOR effector) activation by Western Blot per protocol in section 

3.2.4. HCT116 cell lysates were probed with 50 µg loaded (A) for AMPK and S6K1 and 

100 µg loaded (B) for mTOR (via Raptor). MIA PaCa-2 cell lysates were probed with 50 

µg loaded (C) for all proteins. 
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not further interrogate mTOR inhibition as we did with HCT116 cells. However, both HCT116 

and MIA PaCa-2 are K-Ras driven, and K-Ras mutant cancers have been shown to crosstalk with 

mTOR signaling (Liang et al., 2018; Mann et al., 2016) independent of drug treatment. Taken 

together with the modest inhibition of mTOR and S6K1 only by AGF291 in HCT116 cells, it is 

likely that mTOR suppression secondary to treatment with AGF291, AGF320, and AGF347 

plays at most only a minor role in the efficacy of these compounds. 

 3.3.4 Effects Secondary to Inhibition of Mitochondrial One-Carbon Metabolism 

Next, we assessed potential cellular effects secondary to inhibition of SHMT2. As 

SHMT2 had been established to play a critical role in complex I assembly via methylation of 

select mitochondrial tRNAs with SHMT2 KO cells displaying respiratory deficiency (Lucas et 

al., 2018; Morscher et al., 2018), we sought to assess whether the ATP suppression in HCT116 

cells (Figure 3.6 - A) seen with all three compounds could at least in part stem from impairment 

of mitochondrial respiration secondary to SHMT2 inhibition. To assess mitochondrial 

respiration, we measured OCR via the Seahorse XF-24 Extracellular Flux analyzer (per the 

protocol in section 3.2.9). HCT116 cells were pre-treated with either DMSO (WT and SHMT2 

KO) or AGF347 (WT) for 48 hours in glycine-replete media with 60 µM adenosine to abrogate 

cytotoxicity. Cells were then seeded into Seahorse Assay plates, allowed to adhere overnight, 

and subjected to a mitochondrial stress test the following day (Figure 3.8 – A,B). Consistent 

with their previously reported phenotype (Morscher et al., 2018), the SHMT2 KO cells exhibited 

decreased respiratory capacity relative to WT. AGF347-treated cells, however, did not 

recapitulate the phenotype of the SHMT2 KO cells, suggesting lack of respiration impairment. 

These results establish that AGF347 does not inhibit sufficient SHMT2 in vitro to inhibit 

mitochondrial respiration and are consistent with an earlier report demonstrating even minimal, 
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Figure 3.8 Mitochondrial Stress Test in HCT116 Cells. HCT116 WT and SHMT2 KO 

cells were treated with vehicle or AGF347 (10 μM) per protocol in section 3.2.9 and 

oxygen consumption rate (OCR) was monitored throughout a mitochondrial stress test (A 

– adapted from Agilent Technologies, Inc.) (i.e. at baseline and throughout sequential 

injections of oligomycin (1 μM), carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone 

(FCCP- 1 μM) and rotenone/antimycin A (0.5 μM each)). The results (B) reflect mean ± 

standard error of at least 10 technical replicates measured over two independent 

experiments. Significant differences are denoted by # or *  with the number of symbols 

indicating the degree of significance (# denotes p <0.1, *  denotes p<0.05, **  denotes 

p<0.01, ***  denotes p<0.001). 
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leaky expression of SHMT2 through an uninduced tet-inducible vector was sufficient to translate 

mitochondrial proteins (Minton et al., 2018). ATP suppression in AGF347-treated cells is, then, 

likely secondary to inhibition of upstream purine biosynthesis.While inhibition of mitochondrial 

respiration required functional KO of SHMT2, another report indicated mere KD of SHMT2 was 

sufficient to impact cellular antioxidant capacity (Ye et al., 2014). SHMT2 is critical for 

synthesis of glycine required for generation of GSH as well as synthesis of NADPH required to 

regenerate GSH from GSSG (Ducker and Rabinowitz, 2017). Indeed, previous work had shown 

that de novo GSH biosynthesis was more sensitive to glycine depletion than either purine or 

protein biosynthesis (Ducker et al., 2017). GSH functions to scavenge the ROS that are 

byproducts of oxidative phosphorylation, particularly under hypoxic conditions (such as those 

found in tumors) which induce an electron leak from the electron transport chain (Chandel et al., 

2000; Guzy et al., 2005). We first measured the effects of SHMT2 inhibition by our compounds 

on ROS levels using the SHMT1 KO, SHMT2 KO, and WT HCT116 cells. WT cells were 

treated with drugs (10 μM) in glycine-free media (24 hours) supplemented with adenosine (60 

µM – to isolate effects of SHMT2 inhibition vis a vis de novo purine biosynthesis inhibition) 

under hypoxia (0.5% oxygen (Ye et al., 2014)) and normoxia (21% oxygen) with measurements 

of carbonic anhydrase IX as a functional readout of hypoxia (Figure 3.9 - A) (Wykoff et al., 

2000). Under hypoxia, but not normoxia (Figures 3.9 C and B, respectively), ROS levels were 

3-fold increased for the SHMT2 KO cells relative to WT. Notably, SHMT2 KO induced a 6-fold 

larger increase in ROS relative to WT than did SHMT1 KO, establishing SHMT2 as the critical 

enzyme target for drug-induced ROS production. A similar pattern was seen with drug treatment 

as only AGF320 induced a minor increase in ROS under normoxia while all three drugs induced 
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Figure 3.9 Glutathione Pools and ROS in HCT116 Cells. (A). Parallel incubations were 

conducted under normoxia (21% O2) and hypoxia (0.5% O2) with carbonic anhydrase IX (CA9) 

measured by RT-PCR as a hypoxia marker (Wykoff et al., 2000) (B,C). ROS were quantified 

under normoxia (B) and hypoxia (C) per protocol in section 3.2.10. (D,E). Reduced (GSH) and 

oxidized glutathione(GSSG)  ((D) – ratio, (E) – individual measurements) were calculated per 

protocol in section 3.2.10 (F). [2,3,3-
2
H]-serine flux into GSH was quantified by targeted 

metabolomics per protocol in section 3.2.11. Significant differences are denoted by # or *  with  

^ indicating a significant increase or 
V
 indicating a significant decrease and the number of 

symbols indicating the degree of significance (#^ or #
V
 denotes p <0.1, ^ or 

V
 denotes p<0.05, ^^ 

or 
VV

 denotes p<0.01, ^^^ or 
VVV

 denotes p<0.001). 
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a 2-fold increase in ROS under hypoxia, confirming ROS production as a potential mechanism 

of cytotoxicity in hypoxic tumors.  

To assess if suppression of GSH synthesis was the primary cause of the increase in ROS, 

we assayed GSH and GSSG in the HCT116 cells using a fluorescence assay (o-phthalaldehyde 

(Senft et al., 2000)). Consistent with the relative changes in ROS, the GSH/GSSG ratio was 

significantly diminished (~30%) in both SHMT2 KO and drug-treated HCT116 cells, but not in 

SHMT1 KO cells (Figure 3.9 - D). Importantly, SHMT2 KO effected accumulation of GSSG 

along with depletion of GSH (Figure 3.9 - E), suggesting perturbation of GSH/GSSG ratio by 

both inhibition of GSSG reduction to GSH and suppression of de novo GSH biosynthesis, 

consistent with previous literature (Ducker et al., 2017; Ye et al., 2014). Conversely, the change 

in GSH/GSSG ratio caused by drug treatment was entirely due to depletion of GSH pools 

without accumulation of GSSG, suggesting inhibition of de novo GSH biosynthesis alone as 

causal. 

To confirm GSH biosynthesis inhibition as the underlying drug-induced mechanism 

perturbing the GSH/GSSG ratio, we performed targeted metabolomics per protocol in section 

2.2.6 (Figure 3.9 - F) using a [2,3,3-
2
H]-serine tracer in cells treated with 10 µM drug for 48 

hours to trace the conversion of serine to glycine (by SHMT2) and the subsequent incorporation 

of glycine into GSH (by GSH synthetase) (Lu, 2013). As expected, SHMT2 KO decreased 

[2,3,3-
2
H]-serine flux into GSH by ~40%, decreasing the GSH M+1 (i.e. labeled) fraction from 

44% in the WT to 26% and reflecting partial compensation by reversal of SHMT1 (Ducker et al., 

2016). SHMT1 KO, however, actually increased the M+1 fraction to 53%, consistent with a 

compensatory increase in SHMT2 activity in these cells. Notably, treatment with AGF291, 

AGF320, and AGF347 (which inhibit both SHMT1 and SHMT2), had an equal or larger effect 
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on the M+1 fraction as compared to SHMT2 KO alone, decreasing M+1 labeling to 30%, 0%, 

and 27%, respectively. These results are consistent with our earlier enzymology studies, which 

confirmed AGF320 to be the most potent inhibitor of both SHMT1 and SHMT2 in vitro, and 

establish inhibition of de novo GSH biosynthesis as another potential mechanism of in vivo 

cytotoxic activity by these compounds. 

3.3.5 In vivo Antitumor Efficacy and Pharmacodynamics of AGF347 against MIA PaCa-2 

Tumor Xenografts: Late Stage Disease 

Because of the unprecedented efficacy of AGF347 in the early-stage trial against a MIA 

PaCa-2 xenograft model (as discussed in section 2.2.9), we progressed to a late-stage trial of 

AGF347 in the same model where tumors were allowed to grow untreated for 7 days to 100-150 

mg before treatment to simulate late-stage disease. As before, starting 14 days before tumor 

implantation, the mice were maintained on either a folate-deficient diet to ensure that serum 

folate levels would approximate those of humans, or on a standard folate-replete diet which 

results in normal mouse serum folates that are ~10-fold higher than those in humans (Golani et 

al., 2016; Varela-Moreiras and Selhub, 1992; Wang et al., 2010; Wang et al., 2011). The mice 

were then non-selectively distributed to each group’s treatment and control arms (5 mice per 

group for the folate-deficient diet, 3-4 mice per group for the standard folate-replete diet). 

AGF347 (15 mg/kg q2dx8) and gemcitabine (120 mg/kg q4dx4) were, as a whole, comparably 

efficacious, with a median tumor burden- on day 21 of 733 mg (range 373-1835 mg) and 524 mg 

(range 247-1045 mg), respectively, compared to 1736 mg (range 1117-2046 mg) for the control 

cohort. The resulting median T/C values on day 21 were also comparable, 30% for gemcitabine 

and 42% for AGF347 (Figure 3.10 - A). However, AGF347, but not gemcitabine, induced two 

partial responses (treatment-induced tumor burden nadir < 50% of peak tumor burden after 
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tumor engraftment (i.e. tumor burden >150 mg)), including one complete response (treatment-

induced tumor burden nadir = 0 mg after tumor engraftment). For AGF347, the partial responses 

were strikingly large changes in tumor burden (688 mg to 220 mg and 400 mg to 0 mg) and 

occurred on day 31 (10 days post last dose), consistent with long-term cellular accumulation of 

polyglutamyl drug forms (see section 3.3.2). Overall tumor growth delays (median T-C to reach 

1000 mg) of 11 days (gemcitabine) compared to 7 days (AGF347) were recorded. However, for 

the partial responses, AGF347 induced superior tumor growth delay of 26 and 52 days as 

compared to 16 and 25 days for the best gemcitabine responders. In this test, both drugs were 

well tolerated, with modest weight loss as the only symptom observed during treatment 

(AGF347: 1% (-0.2 g) median nadir on day 21; full recovery on day 24; and GEM: 5.1%(-1.0 g) 

median nadir on day 20 with full recovery on day 24). Collectively, these results establish that 

AGF347, even in the setting of late-stage disease, offers significant potential therapeutic benefit 

over the standard-of-care gemcitabine.  

In addition to an efficacy arm, we also included a metabolomics arm to assess the in vivo 

pharmacodynamics of AGF347. Tumor samples from a separate cohort of AGF347-treated and 

control mice were harvested six hours after the 6
th

 injection of AGF347, when the control mice 

had achieved a tumor burden that required their euthanasia (i.e. 2000 mg). These tumors were 

then flash-frozen and analyzed via targeted metabolomics (Figure 3.10 – B-C). Consistent with 

its in vitro effects (Figure 2.7 – C,F), AGF347 effected increases in GAR (200- fold), AICAR 

(500-fold), and serine (1.5-fold), consistent with inhibition of GARFTase, AICARFTase, and 

SHMT2 respectively. Moreover, AGF347 effected a 5-fold increase in AMP coupled with a 10-

fold decrease in ATP, indicating cytotoxicity and severe perturbation of energy charge and 

purine biosynthesis (Figure 3.10 – C). These results confirm the in vivo mechanism of action of 
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Figure 3.10 In vivo Efficacy and Metabolomics Against Late-Stage MIA PaCa-2 Tumor 

xenografts in SCID Mice. AGF347 was tested head-to-head against gemcitabine against late-

stage MIA PaCa-2 tumor xenograft models (A – per protocol in section 3.2.12). Tumor samples 

from separate treatment and control arms were harvested after 6 doses of AGF347 and assessed 

by targeted metabolomics (section 3.2.13) for total GAR, AICAR, serine (B) and adenine 

nucleotide pools (C). Significant differences are denoted by # or *  with the number of symbols 

indicating the degree of significance (# denotes p <0.1, *  denotes p<0.05, **  denotes p<0.01, 

***  denotes p<0.001). 
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AGF347 to be inhibition of cytosolic purine biosynthesis at GARFTase and AICARFTase as 

well as inhibition of mitochondrial C1 metabolism. 

3.4 Discussion 

 In this chapter, we characterized the cellular pharmacodynamics of the 5-substituted 

pyrrolo[3,2-d]pyrimidine compounds, AGF291, AGF320, and AGF347, which we established 

in Chapter 2 to inhibit mitochondrial C1 metabolism at SHMT2 and cytosolic C1 metabolism at 

SHMT1 and the purine biosynthetic enzymes GARFTase and AICARFTase. 

We established plasma membrane transport profiles in HCT116, H460, and MIA PaCa-2 

cells and determined RFC and PCFT transporter kinetics. Although the lead compound AGF347 

had a PCFT affinity comparable to the best known PCFT substrates AGF94 and PMX 

(Desmoulin et al., 2012a), it along with AGF291 and AGF320 maintained a stronger affinity for 

RFC than PMX (Table 1). Combined with pH 6.8 uptake of [
3
H]-AGF347 predominantly by 

RFC over PCFT (Figure 3.3 – B,E,H),  these results suggest substantial room for improvement 

in PCFT selectivity, which would increase tumor selectivity overall (Desmoulin et al., 2012a). 

 We also resolved the cytosolic and mitochondrial compartmentation of AGF347, noting 

near-complete polyglutamylation in both compartments (Figure 3.5 – A,B), which likely enables 

in vivo cellular accumulation and delayed, yet potent antitumor activity (Figure 3.10 - A). As a 

significant decrease in mitochondrial accumulation of [
3
H]-AGF347 occurs in MFT KO (GlyB 

vs GlyBTII), but not MFT KD (MIA PaCa-2 MFT KD vs NTC) (Figure 3.4 - F), we deduce that 

even a small amount of MFT is sufficient to fully transport AGF347 into the mitochondria. 

Moreover, MFT-inactive cells (GlyB) accumulated more mitochondrial [
3
H]-AGF347 than [

3
H]-

folic acid (for which MFT is the only known mitochondrial transporter (Lawrence et al., 2011; 

McCarthy et al., 2004)) while the opposite was true for the MFT-restored cells (GlyBTII) 
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(Figure 3.4 - F). AGF347, then, must be transported into mitochondria by an additional 

transporter besides MFT.  

 Finally, we investigated several mechanisms of cytotoxicity, including depletion of 

purines, inhibition of mTOR, impairment of mitochondrial respiration, and inhibition of ROS 

scavenging. Interestingly, while purine depletion by AGF347 in MIA PaCa-2 cells in vitro was 

in the order AMP >ADP > ATP (Figure 3.6 - C), purine depletion by AGF347 in MIA PaCa-2 

xenografts in-vivo was reversed in the order ATP > ADP with AMP actually increased (Figure 

3.10 - B). These differences likely stem from the difference in treatment course as the in vitro 

data reflect a single acute drug treatment for 48 hours whereas the in vivo data reflect chronic 

treatment with drug over 6 q2d doses. The long-course treatment of AGF347 in vivo leads to 

increased tumor cell death, thus leading to energy depletion as reflected in an increase of the 

AMP/ATP ratio. As accumulation of GAR, AICAR, and serine remain qualitatively identical in 

vitro (Figure 2.7 – C,F, Figure 2.5 - C) and in vivo (Figure 3.10 - A), we deduce enzyme 

targets of AGF347 are identical in both settings.  

 The pharmacodynamics of AGF291, AGF320, and AGF347 described in this chapter 

expand upon the biological uniqueness and unequivocal antitumor potential of these compounds. 

While these prototype agents leave significant room for improvement for PCFT-selectivity, their 

potent efficacy in vivo sets an exciting benchmark for further clinical development. 
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CHAPTER 4- CONCLUSIONS AND FUTURE DIRECTIONS 

 The goal of this dissertation work was to design and characterize inhibitors of 

mitochondrial C1 metabolism at SHMT2. In Chapter 2, we designed, synthesized, and confirmed 

enzyme targets of novel 5-substituted pyrrolo[3,2-d]pyrimidine compounds AGF291, AGF320, 

and AGF347. These multitargeted agents were shown to inhibit SHMT2 in the mitochondria as 

well as SHMT1, GARFTase, and AICARFTase in the cytosol. In Chapter 3, we assessed the 

downstream cellular effects of targeting these enzymes on “non-C1” pathways such as ROS 

scavenging, mitochondrial oxidative phosphorylation, and mTOR signaling. Moreover, we also 

determined the plasma membrane and mitochondrial membrane transport profiles. Importantly, 

AGF291 and AGF347 were, to our knowledge, the first inhibitors of SHMT2 with bona fide in 

vivo activity as demonstrated against early-stage MIA PaCa-2 tumor xenografts with AGF347 

demonstrating similar efficacy in the late-stage disease setting as well. 

 These studies provide proof-of-concept that targeting mitochondrial C1 metabolism 

offers tremendous therapeutic potential against cancer. Moreover, the structure-activity-

relationship profile derived from this initial series of drugs establishes the pyrrolo[3,2-

d]pyrimidine scaffold as superior to the previously described pyrazolopyran SHMT inhibitors 

that were inactive in vivo. In particular, the lead compound of this series, AGF347, is a 

promising candidate for future clinical development and optimization.  

Despite the exceptionally positive early returns, further work on these compounds 

remains to be done. One major area for improvement for these compounds remains selectivity 

for non-RFC transporters (i.e. PCFT or FR). Although AGF347 is the most potent of this series 

in vivo, its activity is mediated primarily by RFC (as previously discussed in section 3.3.1) and, 

perhaps, this RFC-mediated uptake limits the MTD of this drug to merely one-fourth that of 
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gemcitabine. A next-generation analog of AGF347 carrying increased selectivity for PCFT or 

FR would, in theory, allow for increased drug dosing and consequently, improved efficacy. 

Further basic science work may be conducted on identifying the specific mitochondrial 

transporter for AGF347, which we established in section 3.3.2 is partially, but not completely, 

transported into mitochondria by MFT. Perhaps this unidentified transporter is another member 

of the mitochondrial carrier family. 

Another area for further study is the characterization of the in vivo response to AGF291 

and AGF347. In both the early-stage (Figure 2.9) and late-stage (Figure 3.10) trials of these 

drugs against MIA PaCa-2 tumor xenografts, individual mouse responses ranged from 

indistinguishable from those of the vehicle-treated controls to complete response/cure. In 

contrast, the responses to gemcitabine were largely more uniform. This difference between 

AGF347 treatment and gemcitabine treatment was most evident in the late-stage trial where both 

the most-responsive and least-responsive mice to treatment were AGF347-treated. If we could 

identify a biomarker that would predict response to AGF347, we would be able to focus 

treatment on those 20% of tumors more likely to exhibit complete response.  

 Beyond this particular series of molecules, which target SHMT2, we may, in the future, 

generate molecules which inhibit MTHFD2, another mitochondrial C1 metabolism enzyme with 

substantial promise as a drug target (as previously discussed in section 1.5.1). Notably, the 

function of MTHFD2 (which is only expressed in tumor and embryonic tissues) in normal tissues 

is performed by MTHFD2L, which maintains 60-65% sequence identity with MTHFD2 (Shin et 

al., 2014). Therefore, selective inhibition of MTHFD2 without concomitant inhibition of 

MTHFD2L would likely confer additional tumor selectivity relative to targeting SHMT2. 
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 While inhibition of C1 metabolism has largely played a central role in the arsenal against 

cancer since the beginning of chemotherapy, classical inhibitors of C1 metabolism have been 

pushed to the periphery of the modern day chemotherapeutic toolbox by more targeted therapies 

such as inhibitors of HER-2, BRAF, and tyrosine kinases. Through targeting of non-classical 

enzymes such as SHMT2, as well as targeting of non-RFC transporters such as PCFT, we have 

generated compounds with broad-spectrum antitumor efficacy both in vitro and in vivo. 

Although first generation compounds, these agents already offer significant therapeutic promise 

in the battle against cancer and, with next generation compounds continuously being refined and 

synthesized, the future for C1 metabolism inhibitors remains bright. 
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One-carbon metabolism (1CM) is compartmentalized in the mitochondria and cytosol 

and generates a host of metabolites critical to tumor propagation. Although drug-targeting of 

cytosolic 1CM remains a clinically-relevant mainstay, development of clinically-useful agents 

targeting mitochondrial 1CM remains elusive. Of particular pharmacological interest is the 

mitochondrial 1CM enzyme, serine hydroxymethyltransferase2 (SHMT2).  SHMT2 expression 

correlates with the oncogenic phenotype in lung, colon, breast, glioma, and liver cancer and, 

overall, is the fifth-most differentially expressed metabolic enzyme in cancer cell versus normal 

tissue. Despite the unequivocal oncogenic importance and therapeutic potential of SHMT2, there 

are no clinically relevant (i.e. active in vivo) inhibitors of this enzyme.  

In this dissertation work, we sought to design, synthesize, and characterize 

pharmacodynamics of our 5-substituted pyrrolo[3,2-d]pyrimidine antifolates synergistically dual-

targeting mitochondrial SHMT2 and cytosolic 1CM, the latter specifically at the purine 

nucleotide biosynthesis enzymes glycinamide ribonucleotide formyltransferase (GARFTase) 

and/or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase). By 

depleting SHMT2-derived formate, these compounds potentiated their own inhibition of the 
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downstream formate-dependent GARFTase and AICARFTase. We generated these compounds 

(AGF291, AGF320, and AGF347) by melding structures of SHMT2 cofactor 5,10-methylene 

tetrahydrofolate with our previously reported purine inhibitors and confirmed enzyme targets 

with in vitro targeted metabolomics in H460 (large cell lung carcinoma), HCT-116 (colorectal 

carcinoma), and MIA PaCa-2 (pancreatic ductal adenocarcinoma) human tumor cell lines as well 

as in vitro cell-free assays. Transport assays revealed significant uptake by both the proton-

coupled folate transporter (narrow physiological niche, but commonly expressed in many solid 

tumors) and the reduced folate carrier (major tissue folate transporter). Subcellular fractionation 

of MIA PaCa-2 and GlyB Chinese hamster ovary cells revealed AGF347 to be heavily (>98%) 

polyglutamylated in both cytosol and mitochondria with mitochondrial uptake partially mediated 

by the mitochondrial folate transporter. Intracellular glycine depletion secondary to SHMT2 

inhibition by all compounds also depleted cellular ROS scavenging capacity as reflected in 

decreased GSH/GSSG ratio. In vivo, AGF347 demonstrated potent antitumor efficacy against 

MIA PaCa-2 xenografts in SCID mice with tumor growth delay (T-C) of 61 days and one out of 

five treated mice tumor-free 120+ days after treatment. In vivo metabolomics on these 

xenografts confirmed inhibition of purine biosynthesis. Collectively, the work in this dissertation 

establishes the exceptional therapeutic potential of dual-targeting mitochondrial and cytosolic 

1CM.  
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