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New variants of entropy as measures of item-fit in item response theory are investigated. 

Monte Carlo simulation(s) examine aberrant conditions of item-level misfit to evaluate 

relative (compare EMRj, X2, G2, S-X2, and PV-Q1) and absolute (Type I error and empirical 

power) performance. EMRj has utility in discovering misfit. 

 

Keywords: Item response theory, IRT item-fit, IRT model fit, Monte Carlo simulation, 

entropy 

 

Introduction 

In social sciences, item response theory (IRT) is a modeling technique used in the 

measurement of continuous latent psychological constructs which assesses the 

latent constructs and the items used to measure the latent constructs. The multitude 

of benefits from using IRT are recognized when the proposed assumptions and 

model-data fit hold. Inevitably when assessing the fit of our model to the data we 

find patterns of items and persons that behave in ways inconsistent with the model 

we have under consideration. In the psychometric tool bag for evaluating 

assessments we use statistical instruments to help compare models, or flag aberrant 

items and persons. The ability to determine if a model and data are aligned, or if 

the individual items fit adequately, is limited by the accuracy and utility of these 

tools. 

Two reasonable measures of accuracy of a new item-fit statistic are empirical 

Type I error and power. A second consideration when evaluating a new fit statistic 
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for item-fit would be the utility of considering statistics that complement but are 

not grounded in the χ2 and likelihood ratio approaches (e.g. Ames & Penfield, 2015; 

Bock, 1960; McKinley & Mills, 1985; Orlando & Thissen, 2000; Wright & 

Panchapakesan, 1969; Yen, 1981) and can help parse out novel information 

regarding model-data fit. In this investigation as we introduce the entropy misfit 

ratio (EMR) as a new statistic for item-fit we keep in mind the principles of accuracy 

and utility. 

The aim of this study is to: 1) introduce new measures of Entropy, Entropy 

Misfit, and Entropy Misfit Ratio (Ej, EMj, and EMRj, respectively) that can be used 

to estimate item-fit for IRT models with a focus on EMRj; 2) establish empirically 

derived cut-off values for three test lengths and two models; 3) conduct a simulation 

study to examine empirical pseudo-Type I error rate and power for EMRj compared 

to commonly utilized goodness-of-fit measures; and 4) discuss the utility of EMRj 

along with S-X2 (Orlando & Thissen, 2000)  as a novel approach to item-fit. EMRj 

is not intended to replace currently utilized fit statistics, but instead, to demonstrate 

that it will be useful along with other measures. 

IRT and Fit 

IRT may be useful to: 1) estimate scores on a continuous latent construct (e.g., 

ability); 2) construct test instruments; 3) create an item bank; or 4) equate scores 

across alternate forms of a test. In IRT an item characteristic curve (ICC) provides 

the probability of a correct answer will be obtained for an item given a particular 

ability level. For example, in the 2-parameter logistic model (PLM, e.g. 2PLM) the 

probability the item will be answered correctly can be expressed as 
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where e is the exponential constant 2.718…, and θ is the latent trait of a given 

respondent’s ability. For a given item, j, there are two parameters in the model, a 

and b, where: a is the slope at the inflection point of the model or discrimination 

and b is the item difficulty, the abscissa value at the point of inflection, a. Typical 

models can further be obtained by: 1) setting the constant a to 1 (the Rasch model); 

2) estimating the constant a to be the same value across all items (1PLM); or 3) 

adding the lower asymptote and pseudochance parameter c to the model (3PLM). 

This unidimensional IRT model is just one amongst a set of extensions. For 

example, we could add additional parameters to unidimensional dichotomous 
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models, change to focus on nominal and ordinal polytomous models, nonparametric 

models, and unfolding models or consider more dimensions with mixed and 

multidimensional models. The current study utilizes the 2PLM for IRT to assess fit, 

focusing on the dichotomous, unidimensional, correct/incorrect models. 

IRT is based on the assumption that a model is able to reproduce the observed 

data. Although it is not expected for any model to reproduce the data perfectly, the 

beneficial properties of IRT only hold provided that a model is able to reproduce 

the data well. Models that do not fit the data will result in biased item parameter 

estimates, inaccurate ability estimates (Ames & Penfield, 2015; Wainer & Thissen, 

1987; Yen, 1981), and inaccurate standard error estimates, and often discarded 

during test development phases. 

The evaluation of model-data fit in IRT separates out model level fit, item-fit, 

and person-fit (Rupp, 2013). Measures of model-data fit examine fit at the model 

level by considering whether the model fits for all items and persons within the 

observed dataset. However, measures of item-fit (i.e. item-fit analysis), are also 

useful during the test development phase as they can be used for item selection or 

revision. Many articles/book chapters intermingle these types of fit together. This 

may partially be because if all items fit then you will have model-level fit. However, 

having model-level fit does not necessarily mean all items fit (De Ayala, 2019). For 

more discussions on model fit in IRT we refer readers to Ames and Penfield (2015), 

De Ayala (2019), Hambleton and Swaminathan, (1985), and Swaminathan et al. 

(2007). In the current study we focus on fit at the item level. 

Traditional methods of examining item-fit in IRT focus on quantifying how 

well observed item responses fit the predicted responses based on the ICCs. These 

measures utilize the residuals (i.e., the difference between a person’s observed 

response and their predicted response based on the ICC). Frequently utilized 

residual-based measures of data-model fit in IRT include: Bock’s (1960) χ2 square, 

Yen’s (1981) Q1 (also referred to as χ2 by many statistical software programs), and 

the G2 statistic (aka, the likelihood ratio; McKinley & Mills, 1985). These three 

measures are often criticized because ability estimates (which are model dependent) 

are binned (grouped) together and used to calculate the statistic (Ames & Penfield, 

2015). These bins are based on arbitrary cut points that are sample specific. The 

general issue with binning and averaging is an attempt to balance sampling error 

and bias (Fox, 2015). A small number of wide bins reduces sampling error but 

increase bias, while a large number of narrow bins increase sampling error and 

reduces bias. When we have extremely large sample sizes this issue can be 

mitigated. Additionally, ability estimates are model-dependent so true distributions 

of these statistics are unknown. 
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There have been advances in the use of chi-square-based item-fit statistics 

over the past few decades. Orlando and Thissen’s (2000) S-χ2 and S-G2 statistics 

use observed test scores (summated scores) instead of theta ability estimates, and 

both measures have performed well with short test lengths (Chon et al., 2010). 

Consequently, these measures require a theoretical dissonance, because it is 

required to fall back on observed-score ability estimates from classical test theory 

even though ability is a latent variable. Orlando and Thissen discussed issues when 

estimating the 2PLM when generated data are 3PLM. S-χ2 and S-G2 do not perform 

well in detecting this type of contamination. Stone’s (2000) χ2* and G2* statistics 

are pseudo-observed score methods that may improve on more traditional measures, 

however, past research has found these measures take excessively long time to 

compute for a single dataset (Chon et al., 2010). Chalmers and Ng’s (2017) 

“plausible-value (PV) imputations (Mislevy, 1991) and parametric bootstrap 

techniques (Hope, 1968)” (p. 373) PV-Q1 and PV-Q1* tended to have conservative 

to normal Type I error rates respectively. Empirical power was somewhat lower 

than χ2* but higher than S-χ2. As PV-Q1* is computationally, similar to χ2* 

Chalmers and Ng recommend PV-Q1.and S-χ2 for test lengths over 20 and reserve 

the use of χ2* PV-Q1*when parametric bootstrapping is computationally feasible 

and when a local minimum is unlikely to occur. Evaluation of power in Chalmers 

and Ng’s study was limited to three items generated to be aberrant conditions to the 

estimated 3PLM. We refer readers to Orlando and Thissen (2000), Stone and Zhang 

(2010), and Chalmers and Ng (2017) for a more in-depth discussion of some of 

these measures. 

There is not a single superior measure of item-fit. Instead, methodologists 

recommend using multiple types of fit statistics to evaluate fit (Ames & Penfield, 

2015; Sinharay, 2006; van der Linden & Hambleton, 1997). De Ayala (2019) 

recommends using both statistical and graphical analyses. One type of measure not 

yet explored in the item-fit IRT literature is entropy-based measures, which could 

be used to assess the amount of separation between groups. Previously, entropy was 

used as an approximate measure of data-model fit, when it falls within some 

recommended range, to quantify how well individuals are classified into latent 

classes (Celeux & Soromenho, 1996; Henson et al., 2007), to quantify quality of 

separation between groups in logistic regression models (Weiss & Dardick, 2016), 

and to detect person misfit in IRT models (Dardick & Weiss, 2017). Many measures 

of item-level fit focus on dichotomous hypothesis testing procedure (e.g., χ2 and 

G2). In contrast, approximate fit indices, are continuous measures used to 

supplement tests of statistical significance by indicating the degree of fit (Hu & 

Bentler, 1999). An entropy-based item-fit index may not discriminate between 
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items the same way as the residual-based measures (e.g., χ2, G2, S-X2, S-G2, χ2*, 

and G2*) and therefore provide alternative information to help make decisions on 

model fit. Finally, entropy-based measures do not rely on binning ability estimates 

based on model dependent arbitrary cut points as residual-based measures do. In 

summary, entropy-based measures of model fit may be useful in conjunction with 

existing residual-based analyses. 

Entropy in Latent Class Analysis 

Entropy is a classification-based approach assisting researchers in determining the 

number of latent classes within a dataset (Celeux & Soromenho, 1996; Clark & 

Muthén, 2009; Ramaswamy et al., 1993; Henson et al., 2007; Pastor & Gagné, 

2013). Entropy captures the separation amongst classes when K > 1 and in Latent 

Class Analysis (LCA) the entropy index is calculated as 
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where N is the total sample size, K is the number of latent classes, and kE  is defined 

as 
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where 0 ≤ Ek ≤ 1 and pik represents the conditional posterior probabilities 

calculated for each observation, i, and represents the probability of membership in 

each of the k classes. 

When posterior probabilities are equal across classes, Ek = 0. As posterior 

probabilities move further from a threshold used to differentiate between classes 

(In a two-class model this cut-point is often set to .50), the fuzziness of class 

membership decreases due to the increased separation of classes, and thus the value 

of entropy also increases to reflect this increased separation. As a clarification note, 

in other fields entropy can be thought of as disorder. Thus, the more entropy, the 

less separation between groups. 

Entropy in LCA, represented by Ek, however, is subtracted from 1 [equation 

(2)] so that values close to 0 indicate less separation (i.e., more disorder) and values 

close to 1 indicate more separation between classes (i.e., less disorder). In IRT, 

entropy also capitalizes on group separation, where larger values indicate order, or 
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more division of responses, clarifying group membership.  However, values close 

to 0 indicate poor separation between the centroids of the conditional parametric 

distributions for each class (Ramaswamy et al., 1993). In LCA, higher values of 

entropy are more desirable because they are indicative of good classification quality. 

Entropy Measures of Person-Fit 

Entropy for Person-Fit 

The standardized entropy index (bounded 0,1) from LCA was adapted for use in 

dichotomous IRT models to examine person-fit (Dardick & Weiss, 2017) where 

across J items and K response options (e.g., correct/incorrect, where previously K 

was the number of latent classes in LCA, now the equivalent concept is response 

option) Ei is defined by 
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where iE  represents the unstandardized entropy of the set of items j for person i 

and is defined by 
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where 0iE   and pijk is the model predicted probabilities across all items for each 

person and each categories k. Ei values are bound between 0 and 1 and higher values 

are indicative of more distinct separation among category responses. 

Entropy Weighted for Misfits 

Knowing the observed scores for person i on item j, Dardick and Weiss (2017) 

modified the calculation of entropy to partition predicted probabilities of a response 

(0, 1) into those predicted probabilities that fit (correct classification), and those 

predicted probabilities that do not fit (incorrect classification). Following from 

equations (2) and (3), 
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where J is the number of items, K is the number of response categories (e.g., 2 for 

dichotomous correct/incorrect items), and EMi
*

 is defined by 
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where pijk again represents the predicted probabilities from the PLM calculated 

across all items for each person and denotes the probability the person i endorses 

an item with a correct response. xj is a weight and is defined as 

 

 
1 correct classification

0 incorrect classification
jx


= 


.  (8) 

 

EMi weights each item-person combination so that only an item’s predicted 

probabilities who are incorrectly classified contribute to EMi. Large values of EMi 

reflect poor classification, and thus small values of EMi are desirable because they 

indicate there is a small amount of misfit. 

Entropy Misfit Ratio 

The entropic misfit ratio, EMRi, is the ratio of EMi, to, Ei, representing the strength 

of fit that is attributed to misfit and calculated as 

 

 i
i

i

EM
EMR

E
= .  (9) 

 

This equation provides a relative understanding of entropy regardless of the 

initial magnitude of total entropy. EMRi ranges from 0 to 1, where a value of 0 

represents all predicted classifications were correct (i.e., no misfit), and a value of 

1 indicates all predicted classifications were incorrect and thus EMi and Ei are equal. 

Smaller values of EMRi are indicative of less misfit (i.e., fewer incorrect 

predictions) and are thus more desirable. 
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This ratio may enhance interpretation of entropy as misfit is comparable with 

different item-θ combinations on different tests. Simulation studies comparing 

these entropy measures (Ei, EMi,, and EMRi) to likelihood-based statistics, lz, 

(Drasgow et al., 1985) lz*  (Snijders, 2001) and residual based  measures, U, and W 

(Wright & Masters, 1982; Wright & Stone, 1979), indicated EMi, and EMRi were 

successfully able to detect aberrant response patterns as approximate person-fit 

measures for IRT models (Dardick & Weiss, 2017). 

Extending Entropy Measures to Item-Fit 

Entropy for Item-Fit 

The current study extends the entropic fit measures from person- to item-fit in IRT. 

Here we follow the same logic used to calculate the person-fit entropy measures 

but derive them across persons (instead of items) to acquire item level statistics. 

Item transformation for summing across persons instead of items impacts the 

denominator where across N persons and K response options (e.g., 

correct/incorrect) Ej is entropy for a given item and is defined by 

 

 1
ln

j

j

E
E

N K
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where jE
 represents the unstandardized entropy of the set of persons for item j: 
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where 0jE   and as defined previously pijk is the model predicted probabilities 

across all persons and k categories. Entropy, Ej, is calculated for each item and 

represents a standardized format of jE
 in which total entropy is bound between 0 

and 1, and higher values are indicative of more distinct separation among categories 

of response. 

Item-Level Entropy Weighted for Misfit 

The entropy misfit calculations can also be modified at the item level. Knowing the 

observed scores for person i on item j allows the entropy to partition predicted 

probabilities of a response (where the threshold .5 splits our prediction response 
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above .5 is 1, at or below is 0) into those that fit (correct classification), and those 

that do not fit (incorrect classification). Following from equations (8) and (9), 
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where N is the number of persons, K is the number of response categories (e.g., 2 

for dichotomous correct/incorrect items), and jEM 
 is defined by 

 

 ( )
1

ln
K

ij ijk ijk

k

EM p p

=

= −  ,  (13) 

 

where pijk again represents the predicted probabilities from the PLM calculated 

across all persons for each item and denotes the probability that person i endorses 

an item with a correct response. xij is a weight (i.e. based on the observed item 

response data) and is defined as 

 

 
1 correct classification

0 incorrect classification
ijx


= 


.  (14) 

 

EMj weights each person-item combination so that only person-items who are 

incorrectly classified contribute to EMj. Large values of EMj reflect poor 

classification, and thus small values of EMj are desirable because they indicate there 

is a small amount of misfit. 

Entropy Misfit Ratio at the Item Level 

The ratio of entropic misfit ratio, EMRj, represents the amount of misfit relative to 

the to the total amount of entropy and is calculated the same way it is for person-

level entropy 

 

 
j

j

j

EM
EMR

E
= .  (15) 

 

EMRj provides a relative understanding of entropy regardless of the initial 

magnitude of total entropy, ranges from 0 (all predicted classifications were correct; 
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i.e., no misfit) to 1 (all predicted classifications were incorrect and thus EMi and Ei 

are equal). Smaller values of EMRj are indicative of less misfit and are thus more 

desirable. Chi-square based measures focus on correct classification without regard 

to the degree of separation amongst group membership. Entropy, however, is telling 

the story of degree of separation amongst groups, although not considering correct 

classification. Therefore, correct classification and separation are incorporated into 

the EMRj measure. 

Cell-Level Entropy 

Dardick and Weiss (2017) showed how entropy can be calculated at the person 

level [equations (4) and (5)] whereas the current study shows how entropy can be 

calculated at the item level [equations (10) and (11)]. Although the focus of the 

current study is on item-fit, two important considerations are provided: 1) measures 

of person-fit, item-fit and model-fit entropy can be calculated simultaneously for 

the same data set, and 2) this reasoning carries to EM and EMR in that all entropy 

variants can be calculated at the person- [equations (6) to (8)] and item-level 

[equations (12) to (15)]. 

Many measures of fit (e.g., chi-square, OUTFIT, and INFIT) are based on 

person-by-item cell-level residuals. The cell-level residuals are combined either 

across persons (to create a person-level fit statistic) or down items (to create an 

item-level fit statistic). Entropy is calculated in a similar manner. Consider a data 

set that represents a matrix of correct/incorrect responses for n persons on j items. 

When calculating entropy, obtain a matrix of cell-level entropy values for every 

person-by-item combination. To calculate unstandardized entropy at the person 

level, values are summed across the item-level cells for each person; to calculate 

unstandardized entropy at the item level, values are summed down the person-level 

cells for each item. Entropy values are then standardized and averaged by the 

number of persons (or items) and response categories (e.g., correct/incorrect). 

The Current Study 

The entropy measures in item-fit in IRT are considered. There were two goals of 

this study. First, null conditions are explored for the distribution of EMRj and 

establish empirically derived cut points under various test lengths and models. 

Second, the aim is to determine how well EMRj could correctly identify misfitting 

items (empirical power) and control Type I error in comparison to other measures 

of item-fit (S-X2, χ2, and G2). We investigated Ej, EMj, and EMRj in comparison to 

S-X2, χ2, and G2. In determining which measures to investigate for item-fit in 
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comparison to entropy measures, some commonly used measures are considered, 

with examples for this study coming from PROC IRT (χ2 and G2; SAS Institute Inc., 

2017) from SAS and the R ‘mirt’ package (S-X2; Chalmers, 2019; Chalmers & Ng, 

2017). Contamination is defined as participant responses that were not generated to 

conform to the IRT model. 

Methods 

Monte-Carlo simulation was used to first determine empirical cut points for 

entropy-based measures, and second using those cut points to evaluate empirical 

power and Type I error rates across various conditions of models, test lengths, and 

misfit. 

Simulation Design Study 1 

In this stage of investigation, baseline models were examined in which all 

participants were generated to fit the appropriate IRT model. Two models (1PLM 

and 2PLM) and three test lengths representing short, medium, and long tests (10-, 

20-, and 40-items) were considered. There were 6 conditions for this study 

(2 models × 3 test lengths). Empirical one-tailed cut points were derived for 

entropy at the upper-bound 95th percentile of the distributions. 

Simulation Design Study 2 

Contamination is defined as participant responses that were generated to not 

conform to the IRT model. The assessment of item misfit could be evaluated in 

many ways, with or without contaminating persons specifically but as with any 

simulation design, the contamination conditions are limited to be able to add value 

to possible scenarios. More specifically, the contaminated persons within the 

contaminated items were modified to have probabilities of either .25 or .50 of 

endorsing a correct response, which might represent guessing 25% and modified 

guessing of 50% correct responses and were chosen to have two consistent but 

different levels of contamination. The subtest of contaminated items varied to 

contain different percentages of contaminated items (for the 10, 20 and 40 item 

tests): 10% (1-, 2-, or 4-items, respectively), 25% (2-, 5-, or 10-items), and 50% (5-, 

10-, or 20-items) contamination. The percent of simulated persons contaminated 

within the subtests were varied to be 10%, 25%, and 50%. For example, when 25% 

of items are contaminated, in the 20-item condition, with 25% of simulated persons 
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contaminated to have probabilities of .25 guessing; then there are 5 items 

contaminated with 25% of simulated persons guessing at a probability .25. 

The focus was on the 1PLM and 2PLM. Although there are numerous 

potential extensions of IRT models (e.g., 3PLM, 4PLM, polytomous, 

multidimensional, or unordered) this decision was made for four reasons. First, the 

primary interest is with discrimination and difficulty. Second, the 1PLM and 2PLM 

are popular IRT models. Third, the type of contamination may interact with the 

pseudo-guessing parameter in the 3PLM. Fourth, variables manipulated were more 

important than an extension to more complex IRT models. 

Overall test length was either 10-, 20-, or 40- items. These test lengths are 

similar to those used in other simulation studies (Chon et al., 2010; Dardick & 

Weiss, 2017; Haberman et al., 2013). Test lengths of 10 and 20 assist in 

considerations of sensitivity.  Although large scale testing organizations often have 

more items, other testing scenarios (e.g. educational, certification) and future trends 

(e.g. formative and summative assessment, teacher empowered assessment, 

Dardick & Choi, 2016) will consider much shorter testing experiences that require 

psychometric rigor of data-model fit. 

For the second simulation data were generated in a fully-crossed 

2 × 3 × 3 × 2 × 3 design: 2 types of contamination (25% and 50%), 3 percentages 

of items contaminated (10%, 25%, and 50%), 3 percentages of persons 

contaminated (10%, 25%, and 50%), 2 model types (1PLM and 2PLM), and 3 test 

lengths (10-, 20-, 40-). This resulted in 108 conditions evaluated across the cut 

points (95th percentiles). 

Evaluation Criteria 

The empirically derived cut points for Ej, EMj, and EMRj from the first simulation 

study were used in the second simulation study to evaluate the empirical power and 

Type I error rates for entropy measures. Rupp (2013) described four methods of 

investigating empirical power and Type I error, and recommended researchers 

“compute the empirical sampling distributions and always use the appropriate 

empirically-derived cut-off values that ensure nominal Type I error rates for 

computing power rates (best method with highest precision)” (p. 19). For 

clarification purposes, reference to Type I error means the empirically derived Type 

I error rate sometimes referred to as empirical pseudo-Type I error. 

Entropy measures Ej, EMj, and EMRj were compared with Orlando and 

Thissen’s (2000) S-X2, Yen’s (1981) χ2 statistic, McKinley and Mills (1985) 

likelihood ratio (i.e., G2), and PV-Q1 (Chalmer’s chi-square) for all conditions. A 

customary alpha level of .05 was used to evaluate performance of the S-X2, χ2, G2, 
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and PV-Q1 statistics. Although other measures of item-fit exist, these measures 

were selected because they are taught in IRT textbooks, frequently used measures 

of item-fit in practice, easy to compute, readily available in many IRT statistical 

software packages, or sometimes the only measures of item-fit in statistical 

software packages. Other measures such as Stone’s (2000) χ2* and G2* exist, 

however, previous research found inflated empirical pseudo-Type I error rates 

associated with these pseudo-observed score and noted that it took 40 minutes to 

calculate these measures for a single dataset for 40-items and 4,000 persons (Chon 

et al., 2010). Thus, they were not investigated in the current study. Chalmers and 

Ng’s (2017) bootstrap adaptation was computed for a few replications, but it also 

took substantial time for a single replication in one condition, and given 

recommendations mentioned previously of computational intensity and local 

minima it was not investigated further for this study. 

Data Generation 

For each of the 6 (baseline) and 108 (contaminated) conditions datasets were 

generated to contain responses for 1,000 persons. One thousand replications were 

simulated for each condition. Previous studies used fewer than 1000 replications 

(Chon et al., 2010; Haberman et al., 2013; Stone & Zhang, 2003; Feinberg & 

Rubright, 2016). Data were simulated using either the 1PLM or 2 PLM with 

randomly generated error around the measures and incorporated misfit using two 

levels of probabilities .25 and .5. More specifically, item difficulty parameters b 

were generated from a random normal distribution N(0, 1) with constrains of ± 2 

(e.g., Emons et al., 2002; Karabatsos, 2003; Zhang & Walker, 2008). The item 

discrimination parameter, slope a, was randomly generated from a realistic range 

of values, using a log normal distribution LN(0, 0.2) which also provides values 

similar to those recommended by Rupp (2013). In SAS (SAS Institute Inc., 2017), 

code used to simulate data to these distributions are RAND ("NORMAL", 0, 1) for 

the N(0, 1) and RAND("LOGNORMAL", 0, .2) for LN(0, .02). Data that were 

generated using a 1PLM were fit with a 1PLM, and data that were generated using 

a 2PLM and fit with a 2PLM. 

Calibration and Distribution 

The IRT parameters for the 1PLM and 2PLM were estimated using the Proc IRT 

procedure in SAS (SAS Institute Inc., 2017). The estimation method for item 

parameters in Proc IRT to obtain marginal maximum likelihood estimation is the 

gradient-based convergence criteria for the quasi-Newton algorithm. Statistics for 

χ2 and G2 were attained from the SAS IRT procedure, while EMRi was calculated 
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using SAS/IML. SAS/IML was used to interface with R language as S-X2 and 

PV-Q1 are not currently available in SAS. We used the ‘itemfit’ function within the 

R package ‘mirt’ (Chalmers, 2019) to study fit statistics including S-X2 and PV-Q1. 

The ‘mirt’ package uses full information maximum likelihood estimation with a 

default of expected a-posteriori estimation. 

Results 

Results are presented for the two Monte Carlo simulation studies. In the first study, 

baseline models were simulated to obtain empirically-derived cut points for the 

various test lengths and models. A second simulation was conducted in which 

different amounts and types of contamination were incorporated in order to evaluate 

the relative (EMRj , S-X2, χ2, G2, PV-Q1) and absolute (empirical pseudo-Type I 

error rate and empirical power) performance of entropy as an item-fit index. Results 

were evaluated in relation to the test length, percent of contaminated items, the 

percent of contaminated persons, the type of contamination, and the cut-point 

utilized. 

Both simulation studies were conducted using Ej, EMj, and EMRj. However, 

results for EMRj rather than Ej and EMj were the focus of our analysis because 

insufficient statistical power and high Type I error rates were found for Ej in all 

conditions; and low statistical power was found for EMj in all conditions. 

Furthermore, previous research emphasized the advantages of EMRj for successful 

detection of aberrant response patterns, potential usefulness for subtests with a 

small number of items, and ability to identify separation between contaminated and 

uncontaminated subgroups (Dardick & Weiss, 2017). 

Simulation Study 1 

Results for baseline models (i.e., no contamination) are presented for 6 conditions: 

3 test lengths × 2 models. Table 1 contains the descriptive statistics for the EMRj 

statistic. Average EMRj values increased as the number of test items increased. Also, 

average EMRj values and their standard deviations were slightly higher (≈ .02 

points) for the 2PLM in comparison to the 1PLM. 
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Table 1. Means, standard deviations, empirically derived 95 percentile cut-points for of 
baseline uncontaminated conditions of EMRj 

 

Model Test length EMR M(SD) EMR 95% 

1PLM 10 0.13(0.017) 0.156 
 20 0.148(0.025) 0.185 
 40 0.159(0.030) 0.203 
    

2PLM 10 0.133(0.042) 0.208 
 20 0.150(0.044) 0.226 
 40 0.161(0.045) 0.237 

 

Note: Means (M) and Standard Deviations for the Entropy Misfit Ration (EMR) for three test lengths, 10, 20, 
and 40 over two models the 1PLM and 2PLM 

 
 

Cut points were empirically derived for the 95th percentiles in the distribution 

for each of the 6 baseline conditions with no contamination based on Rupp’s (2013) 

recommendation. These cut points are shown in Table 1 and followed the same 

pattern as the descriptive statistics. That is, the 95th percentile for EMRj increased 

as the test length increased and as the model increased from a 1PLM to 2PLM. 

Figure 1 shows the distributions of EMRj collapsed across all items for each of the 

6 baseline conditions. In the general, the distributions for the 1PLM model were a 

little more negatively skewed in comparison to the distributions for the 2PLM 

which were slightly more positively skewed. 

True and estimated parameter estimates were compared for item difficulty 

and discrimination (slope) across test length. For the 1PLM, average biases for item 

difficulty were < 0.001 (SD < 0.09). For the 2PLM, average biases for item 

difficulty were < 0.005 (SD < 0.125) and item discrimination were less than 0.006 

(SD < 0.130) for all test lengths. Given the lack of bias in the baseline conditions, 

1000 replications are more than sufficient for obtaining empirically derived cut-

points for EMR. 

Simulation Study 2 

The goal of the second simulation study was to investigate Type I error and 

empirical statistical power for the EMRj, χ2, and G2 statistics, S-X2, and PV-Q1. 

Results for this study are presented for the 2 models (1PLM and the 2PLM), 3 test 

lengths (10-, 20-, 40-items), the percent of contaminated items (10%, 25%, and 

50%), the percent of contaminated persons (10%, 25%, and 50%), and the 2 types 

of contaminated responses (25% and 50%). 
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Figure 1. Distributions for the 6 baseline conditions in simulation one; left side is 1PLM, 
right side is 2PLM; from top to bottom 10, 20, 40 item test; summary statistics are 
included: N = number of items, Mean, Std Dev = standard deviation, Skewness 
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Means and SDs 

The means and standard deviations for all statistics in this study (Ej, EMj, EMRj, χ
2, 

G2, and S-X2, PV-Q1) are presented in Tables 2 and 3 for the 1PLM and 2PLM 

models, respectively. Ej, EMj, and EMRj increased as the number of items increased, 

and mean values were slightly higher for the 2PLM than in the 1PLM model. The 

average χ2 and G2 values decreased as the number of items increased. On the 

contrary, S-X2 increased as the number of items increased, while PV-Q1 values were 

similar across different numbers of items. In general, chi-square measures values 

were a little smaller in the 2PLM compared to the 1PLM, with the exception of χ2 

for 10-item test lengths which did not vary. In general, as the amount of 

contamination increased the chi-square-based statistics also increased. 

In order to examine which manipulated variables were related to Ej, EMj, 

EMRj, χ2, G2, S-X2, and PV-Q1: Factorial between-groups analysis of variance 

(ANOVA) was conducted for the 1PLM and 2PLM, separately. For each replication 

the outcomes were the values of the fit statistic (i.e., Ej, EMj, EMRj, χ
2, G2, S-X2, or 

PV-Q1), and the between-groups variables were: item contamination 

(uncontaminated vs contaminated), test length (10, 20, 40 items), percentage of 

persons contamination (10%, 25%, 40%), and type of misfit (0.25 or 0.50). Due to 

the large number of replications, partial eta-squared values were examined (see 

Table 4) and tests of statistical significance were ignored. In order for an effect to 

be considered practically meaningful it had to have a partial eta-squared value 

of .03 or greater. The 4- and 3-way interactions did not explain a meaningful 

amount of variance in the outcomes. Test length explains the most variance in all 

the chi-square-based measures, with the exception of PV-Q1, in which person 

contamination explained the most variance in values for the 1PLM. On the contrary, 

item contamination explains the most variance in EMRj. Thus, EMRj for item-fit is 

able to differentiate between contaminated and uncontaminated items more so than 

the chi-square measures. Item contamination is the only variable that explains a 

meaningful amount of variance in Ej. Partial-eta squared values are an indication 

that EMRj differentiates between items differently than the chi-square measures. 
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Table 2. Means and standard deviations of all conditions 1PLM 
 

Test Item Rep MF E M(SD) EM M(SD) EMR M (SD) χ2 (SD) G2 M(SD) S-χ2 (SD) PV-Q1 (SD) 

10 0 0 0.00 0.174(0.091) 0.021(0.008) 0.130(0.017) 52.196(16.209) 60.497(20.681) 7.745(3.932) 9.102(1.182) 

10 10% 10% 0.25 0.171(0.091) 0.021(0.008) 0.131(0.018) 52.864(16.506) 61.040(20.720) 8.005(4.256) 9.214(1.396) 

10 10% 10% 0.50 0.171(0.090) 0.021(0.008) 0.132(0.018) 52.959(16.611) 61.189(20.884) 8.044(4.213) 9.214(1.370) 

10 10% 25% 0.25 0.165(0.088) 0.021(0.008) 0.134(0.017) 53.243(17.121) 61.425(21.597) 8.046(4.170) 9.218(1.346) 

10 10% 25% 0.50 0.165(0.089) 0.021(0.009) 0.134(0.018) 53.197(16.608) 61.302(20.781) 8.125(4.267) 9.232(1.380) 

10 10% 50% 0.25 0.160(0.084) 0.021(0.009) 0.136(0.016) 53.444(16.258) 61.658(20.513) 8.210(4.260) 9.228(1.309) 

10 10% 50% 0.50 0.153(0.083) 0.020(0.009) 0.138(0.016) 54.045(16.383) 62.039(20.414) 8.119(4.184) 9.214(1.264) 

10 20% 10% 0.25 0.164(0.089) 0.021(0.009) 0.135(0.021) 54.151(17.832) 62.388(22.259) 8.995(6.304) 9.622(2.556) 

10 20% 10% 0.50 0.164(0.090) 0.021(0.009) 0.135(0.021) 54.349(17.808) 62.583(22.183) 8.981(6.122) 9.627(2.534) 

10 20% 25% 0.25 0.157(0.090) 0.021(0.009) 0.139(0.020) 55.717(18.535) 63.883(22.851) 9.030(5.492) 9.595(2.128) 

10 20% 25% 0.50 0.153(0.087) 0.020(0.009) 0.140(0.022) 56.182(18.862) 64.360(23.094) 9.500(6.037) 9.822(2.469) 

10 20% 50% 0.25 0.143(0.084) 0.020(0.010) 0.144(0.017) 56.909(18.180) 65.307(22.453) 9.357(4.994) 9.565(1.573) 

10 20% 50% 0.50 0.129(0.078) 0.019(0.009) 0.152(0.019) 58.383(18.592) 66.209(22.225) 9.153(4.921) 9.583(1.650) 

10 50% 10% 0.25 0.160(0.090) 0.021(0.009) 0.138(0.026) 57.227(19.744) 65.751(24.243) 11.275(12.273) 10.589(5.496) 

10 50% 10% 0.50 0.154(0.090) 0.020(0.009) 0.141(0.031) 58.020(20.424) 66.537(24.876) 12.131(14.282) 10.872(6.224) 

10 50% 25% 0.25 0.148(0.088) 0.020(0.010) 0.146(0.027) 60.915(22.415) 69.374(27.060) 11.941(9.863) 10.724(4.170) 

10 50% 25% 0.50 0.136(0.088) 0.019(0.009) 0.152(0.034) 62.365(24.707) 70.910(29.270) 13.598(11.998) 11.433(5.223) 

10 50% 50% 0.25 0.129(0.083) 0.020(0.011) 0.160(0.019) 66.541(24.775) 76.072(29.883) 11.723(6.595) 10.011(1.970) 

10 50% 50% 0.50 0.093(0.077) 0.015(0.010) 0.176(0.027) 68.379(26.745) 76.343(30.763) 11.732(6.628) 10.288(2.064) 
 

Note: Item = percent of item contamination, except for the 10 item 25% contamination was rounded to 20%, Rep = percent of replicants contaminated, 
MF = misfit proportion value, E = entropy, EM = entropy misfit, EMR = entropy misfit ratio, χ2 = Pearson chi-squared, G2 = likelihood ratio chi-squared, 
S-χ2 = Orlando and Thissen (2000) chi-squared, PV-Q1 = Chalmers and Ng’s (2017) adaptation of Q1 
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Table 2 (continued). 
 

Test Item Rep MF E M(SD) EM M(SD) EMR M (SD) χ2 (SD) G2 M(SD) S-χ2 (SD) PV-Q1 (SD) 

20 0 0 0.00 0.187(0.087) 0.026(0.007) 0.148(0.025) 19.962(7.110) 21.859(8.186) 15.649(5.689) 9.122(1.510) 

20 10% 10% 0.25 0.183(0.086) 0.026(0.007) 0.150(0.025) 20.363(7.505) 22.270(8.628) 15.815(5.928) 9.265(1.827) 

20 10% 10% 0.50 0.181(0.084) 0.025(0.007) 0.150(0.025) 20.229(7.434) 22.142(8.571) 15.826(5.892) 9.256(1.824) 

20 10% 25% 0.25 0.177(0.084) 0.025(0.007) 0.152(0.025) 20.500(7.401) 22.427(8.509) 15.854(5.805) 9.244(1.658) 

20 10% 25% 0.50 0.175(0.083) 0.025(0.008) 0.153(0.025) 20.716(7.777) 22.647(8.940) 15.947(5.925) 9.360(1.855) 

20 10% 50% 0.25 0.173(0.081) 0.025(0.008) 0.154(0.024) 20.734(7.546) 22.704(8.719) 16.114(5.875) 9.366(1.735) 

20 10% 50% 0.50 0.166(0.079) 0.025(0.008) 0.157(0.023) 20.921(7.723) 22.894(8.869) 15.923(5.831) 9.315(1.734) 

20 20% 10% 0.25 0.178(0.084) 0.025(0.007) 0.153(0.028) 21.175(8.066) 23.167(9.302) 16.598(7.363) 9.785(3.411) 

20 20% 10% 0.50 0.176(0.085) 0.025(0.008) 0.154(0.029) 21.467(8.228) 23.489(9.506) 16.918(8.105) 10.012(3.979) 

20 20% 25% 0.25 0.166(0.083) 0.025(0.008) 0.159(0.027) 21.994(8.487) 24.014(9.715) 16.885(6.858) 9.835(2.658) 

20 20% 25% 0.50 0.161(0.081) 0.024(0.008) 0.162(0.030) 22.943(9.754) 25.039(11.193) 17.613(7.638) 10.440(3.625) 

20 20% 50% 0.25 0.156(0.080) 0.024(0.009) 0.162(0.023) 23.044(9.034) 25.299(10.503) 17.891(6.962) 10.252(2.645) 

20 20% 50% 0.50 0.140(0.075) 0.022(0.008) 0.170(0.026) 23.649(10.159) 25.812(11.508) 17.408(6.732) 10.169(2.602) 

20 50% 10% 0.25 0.172(0.086) 0.025(0.008) 0.157(0.035) 23.783(8.613) 25.98(10.011) 19.170(14.439) 11.502(8.521) 

20 50% 10% 0.50 0.167(0.086) 0.025(0.008) 0.161(0.042) 24.750(8.709) 27.016(10.119) 20.425(17.619) 12.254(10.44) 

20 50% 25% 0.25 0.156(0.083) 0.024(0.009) 0.168(0.035) 26.304(10.896) 28.649(12.538) 20.434(11.368) 11.846(5.707) 

20 50% 25% 0.50 0.140(0.083) 0.022(0.008) 0.177(0.047) 28.771(13.401) 31.400(15.417) 22.591(13.558) 13.576(7.668) 

20 50% 50% 0.25 0.141(0.079) 0.024(0.011) 0.179(0.024) 28.987(12.121) 31.87(14.023) 21.862(9.061) 11.842(4.094) 

20 50% 50% 0.50 0.102(0.073) 0.018(0.009) 0.197(0.037) 30.300(17.157) 32.898(19.199) 21.288(9.000) 12.136(3.739) 
 

Note: Item = percent of item contamination, except for the 10 item 25% contamination was rounded to 20%, Rep = percent of replicants contaminated, 
MF = misfit proportion value, E = entropy, EM = entropy misfit, EMR = entropy misfit ratio, χ2 = Pearson chi-squared, G2 = likelihood ratio chi-squared, 
S-χ2 = Orlando and Thissen (2000) chi-squared, PV-Q1 = Chalmers and Ng’s (2017) adaptation of Q1 
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Table 2 (continued). 
 

Test Item Rep MF E M(SD) EM M(SD) EMR M (SD) χ2 (SD) G2 M(SD) S-χ2 (SD) PV-Q1 (SD) 

40 0 0 0.00 0.195(0.084) 0.029(0.006) 0.159(0.030) 11.852(5.101) 12.627(5.682) 29.924(7.885) 9.102(1.845) 

40 10% 10% 0.25 0.191(0.083) 0.029(0.006) 0.161(0.030) 12.109(5.212) 12.897(5.823) 30.101(8.047) 9.284(2.208) 

40 10% 10% 0.50 0.190(0.082) 0.029(0.006) 0.161(0.030) 12.154(5.225) 12.935(5.829) 30.098(8.096) 9.328(2.261) 

40 10% 25% 0.25 0.186(0.081) 0.028(0.007) 0.163(0.029) 12.154(5.195) 12.936(5.794) 30.063(8.025) 9.282(2.057) 

40 10% 25% 0.50 0.184(0.080) 0.028(0.007) 0.164(0.030) 12.328(5.361) 13.114(5.979) 30.192(8.074) 9.418(2.263) 

40 10% 50% 0.25 0.181(0.078) 0.028(0.007) 0.165(0.028) 12.593(5.401) 13.408(6.030) 30.505(8.038) 9.538(2.234) 

40 10% 50% 0.50 0.175(0.077) 0.028(0.007) 0.168(0.028) 12.581(5.429) 13.403(6.050) 30.148(7.901) 9.430(2.147) 

40 20% 10% 0.25 0.186(0.082) 0.028(0.007) 0.164(0.034) 12.995(5.523) 13.816(6.125) 30.929(9.709) 10.031(4.358) 

40 20% 10% 0.50 0.184(0.081) 0.028(0.007) 0.165(0.034) 13.341(5.666) 14.174(6.241) 31.269(10.419) 10.339(5.126) 

40 20% 25% 0.25 0.175(0.080) 0.028(0.007) 0.170(0.031) 13.584(5.792) 14.434(6.432) 31.198(9.104) 10.240(3.523) 

40 20% 25% 0.50 0.170(0.079) 0.027(0.007) 0.173(0.035) 14.479(6.360) 15.380(7.120) 31.831(9.937) 11.012(4.643) 

40 20% 50% 0.25 0.165(0.077) 0.027(0.008) 0.174(0.028) 15.258(6.825) 16.289(7.719) 32.949(9.292) 11.245(3.882) 

40 20% 50% 0.50 0.148(0.072) 0.025(0.008) 0.182(0.030) 15.203(6.970) 16.158(7.716) 32.118(9.106) 11.009(3.751) 

40 50% 10% 0.25 0.181(0.082) 0.028(0.008) 0.168(0.040) 15.591(7.316) 16.407(7.315) 33.483(16.933) 12.281(10.897) 

40 50% 10% 0.50 0.174(0.082) 0.027(0.007) 0.173(0.049) 16.882(8.586) 17.728(8.274) 34.981(20.783) 13.417(13.916) 

40 50% 25% 0.25 0.165(0.081) 0.027(0.009) 0.179(0.040) 17.702(7.155) 18.645(7.741) 34.971(14.259) 13.309(8.000) 

40 50% 25% 0.50 0.148(0.080) 0.025(0.008) 0.190(0.055) 20.493(7.965) 21.692(8.793) 37.244(17.146) 15.722(10.715) 

40 50% 50% 0.25 0.150(0.078) 0.027(0.010) 0.190(0.028) 21.308(9.034) 22.845(10.406) 38.071(11.795) 14.604(6.514) 

40 50% 50% 0.50 0.111(0.071) 0.0210(0.008) 0.208(0.043) 21.487(11.529) 22.796(12.807) 36.773(11.516) 14.631(5.749) 
 

Note: Item = percent of item contamination, except for the 10 item 25% contamination was rounded to 20%, Rep = percent of replicants contaminated, 
MF = misfit proportion value, E = entropy, EM = entropy misfit, EMR = entropy misfit ratio, χ2 = Pearson chi-squared, G2 = likelihood ratio chi-squared, 
S-χ2 = Orlando and Thissen (2000) chi-squared, PV-Q1 = Chalmers and Ng’s (2017) adaptation of Q1 
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Table 3. Means and standard deviations of all conditions 2PLM 
 

Test Item Rep MF E M(SD) EM M(SD) EMR M (SD) χ2 (SD) G2 M(SD) S-χ2 (SD) PV-Q1 (SD) 

10 0 0 0.00 0.180(0.106) 0.021(0.008) 0.133(0.042) 46.877(16.297) 55.876(22.586) 6.736(3.620) 8.634(0.874) 

10 10% 10% 0.25 0.176(0.106) 0.021(0.008) 0.136(0.044) 47.229(16.177) 56.133(22.235) 6.911(3.831) 8.635(0.881) 

10 10% 10% 0.50 0.176(0.105) 0.021(0.008) 0.135(0.043) 47.183(16.231) 56.149(22.459) 6.745(3.654) 8.634(0.872) 

10 10% 25% 0.25 0.173(0.106) 0.021(0.008) 0.137(0.043) 47.858(16.550) 56.769(22.632) 6.830(3.706) 8.646(0.878) 

10 10% 25% 0.50 0.172(0.102) 0.021(0.008) 0.138(0.044) 47.705(16.600) 56.448(22.669) 6.835(3.718) 8.664(0.850) 

10 10% 50% 0.25 0.166(0.098) 0.020(0.009) 0.139(0.042) 48.051(16.607) 57.206(22.826) 6.971(3.734) 8.750(0.892) 

10 10% 50% 0.50 0.162(0.097) 0.020(0.009) 0.141(0.043) 48.601(17.197) 57.741(23.530) 6.883(3.736) 8.673(0.861) 

10 20% 10% 0.25 0.172(0.106) 0.020(0.008) 0.139(0.049) 47.342(16.492) 56.211(22.717) 6.813(3.749) 8.634(0.865) 

10 20% 10% 0.50 0.170(0.106) 0.020(0.008) 0.140(0.049) 47.194(16.143) 55.971(22.291) 6.805(3.703) 8.639(0.867) 

10 20% 25% 0.25 0.166(0.107) 0.020(0.009) 0.143(0.050) 48.068(17.216) 56.993(23.812) 6.963(3.790) 8.663(0.865) 

10 20% 25% 0.50 0.163(0.106) 0.020(0.009) 0.145(0.053) 47.701(16.853) 56.500(23.343) 6.813(3.729) 8.651(0.861) 

10 20% 50% 0.25 0.149(0.091) 0.020(0.010) 0.148(0.045) 51.070(18.681) 60.520(25.488) 7.955(4.335) 8.975(1.053) 

10 20% 50% 0.50 0.137(0.094) 0.018(0.009) 0.157(0.052) 50.883(19.318) 60.043(26.509) 7.099(3.849) 8.716(0.836) 

10 50% 10% 0.25 0.170(0.108) 0.020(0.009) 0.144(0.060) 47.959(17.289) 57.120(23.897) 6.757(3.652) 8.666(0.870) 

10 50% 10% 0.50 0.167(0.111) 0.019(0.009) 0.147(0.067) 48.110(17.210) 57.073(23.643) 6.752(3.636) 8.655(0.866) 

10 50% 25% 0.25 0.161(0.108) 0.020(0.010) 0.153(0.068) 49.145(19.268) 58.349(26.746) 7.092(3.873) 8.662(0.865) 

10 50% 25% 0.50 0.150(0.112) 0.018(0.009) 0.161(0.079) 48.699(19.907) 58.059(27.607) 6.806(3.764) 8.651(0.856) 

10 50% 50% 0.25 0.138(0.089) 0.020(0.011) 0.166(0.057) 56.828(24.514) 67.436(34.213) 10.260(6.290) 9.267(1.255) 

10 50% 50% 0.50 0.105(0.101) 0.014(0.009) 0.192(0.085) 54.665(29.851) 65.213(41.076) 7.445(3.937) 8.728(0.830) 
 

Note: Item = percent of item contamination, except for the 10 item 25% contamination was rounded to 20%, Rep = percent of replicants contaminated, 
MF = misfit proportion value, E = entropy, EM = entropy misfit, EMR = entropy misfit ratio, χ2 = Pearson chi-squared, G2 = likelihood ratio chi-squared, 
S-χ2 = Orlando and Thissen (2000) chi-squared, PV-Q1 = Chalmers and Ng’s (2017) adaptation of Q1 
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Table 3 (continued). 
 

Test Item Rep MF E M(SD) EM M(SD) EMR M (SD) χ2 (SD) G2 M(SD) S-χ2 (SD) PV-Q1 (SD) 

20 0 0 0.00 0.193(0.104) 0.025(0.007) 0.150(0.044) 18.352(5.326) 20.359(6.540) 14.511(5.394) 8.410(1.039) 

20 10% 10% 0.25 0.189(0.103) 0.025(0.007) 0.152(0.044) 18.485(5.408) 20.480(6.648) 14.530(5.433) 8.439(1.035) 

20 10% 10% 0.50 0.187(0.102) 0.025(0.007) 0.153(0.044) 18.564(5.483) 20.561(6.730) 14.546(5.420) 8.436(1.032) 

20 10% 25% 0.25 0.183(0.100) 0.025(0.007) 0.155(0.044) 18.757(5.483) 20.758(6.705) 14.568(5.452) 8.461(1.045) 

20 10% 25% 0.50 0.181(0.100) 0.025(0.007) 0.156(0.044) 18.820(5.553) 20.826(6.803) 14.514(5.430) 8.441(1.022) 

20 10% 50% 0.25 0.177(0.094) 0.024(0.007) 0.156(0.042) 19.098(5.606) 21.174(6.876) 14.851(5.575) 8.617(1.170) 

20 10% 50% 0.50 0.173(0.095) 0.024(0.008) 0.159(0.043) 19.161(5.671) 21.270(6.957) 14.635(5.468) 8.478(1.008) 

20 20% 10% 0.25 0.184(0.105) 0.025(0.007) 0.156(0.048) 18.699(5.669) 20.712(6.977) 14.444(5.450) 8.425(1.038) 

20 20% 10% 0.50 0.182(0.104) 0.024(0.007) 0.158(0.050) 18.735(5.672) 20.749(6.979) 14.584(5.541) 8.435(1.050) 

20 20% 25% 0.25 0.173(0.100) 0.024(0.008) 0.162(0.047) 19.47(5.899) 21.518(7.238) 14.936(5.605) 8.550(1.098) 

20 20% 25% 0.50 0.169(0.101) 0.024(0.008) 0.165(0.052) 19.318(6.122) 21.360(7.545) 14.493(5.496) 8.453(1.011) 

20 20% 50% 0.25 0.161(0.088) 0.024(0.008) 0.165(0.042) 21.068(6.532) 23.365(8.045) 16.268(6.135) 9.246(1.723) 

20 20% 50% 0.50 0.146(0.090) 0.022(0.008) 0.175(0.048) 20.651(6.579) 22.879(8.047) 14.886(5.535) 8.601(1.041) 

20 50% 10% 0.25 0.182(0.105) 0.024(0.008) 0.160(0.058) 18.934(6.072) 21.002(7.481) 14.407(5.426) 8.447(1.041) 

20 50% 10% 0.50 0.176(0.107) 0.023(0.008) 0.165(0.065) 18.958(6.120) 21.054(7.576) 14.370(5.417) 8.442(1.025) 

20 50% 25% 0.25 0.166(0.103) 0.024(0.009) 0.173(0.063) 20.160(7.158) 22.290(8.856) 15.600(6.135) 8.559(1.087) 

20 50% 25% 0.50 0.153(0.110) 0.021(0.008) 0.184(0.079) 20.080(7.679) 22.293(9.509) 14.413(5.514) 8.469(0.988) 

20 50% 50% 0.25 0.147(0.085) 0.024(0.010) 0.183(0.047) 25.332(8.964) 28.057(11.073) 19.770(8.382) 10.417(2.700) 

20 50% 50% 0.50 0.114(0.101) 0.018(0.008) 0.209(0.078) 23.023(10.319) 25.46(12.674) 15.499(5.948) 8.648(1.004) 
 

Note: Item = percent of item contamination, except for the 10 item 25% contamination was rounded to 20%, Rep = percent of replicants contaminated, 
MF = misfit proportion value, E = entropy, EM = entropy misfit, EMR = entropy misfit ratio, χ2 = Pearson chi-squared, G2 = likelihood ratio chi-squared, 
S-χ2 = Orlando and Thissen (2000) chi-squared, PV-Q1 = Chalmers and Ng’s (2017) adaptation of Q1 
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Table 3 (continued). 
 

Test Item Rep MF E M(SD) EM M(SD) EMR M (SD) χ2 (SD) G2 M(SD) S-χ2 (SD) PV-Q1 (SD) 

40 0 0 0.00 0.199(0.101) 0.028(0.006) 0.161(0.045) 10.828(3.944) 11.575(4.353) 28.727(7.651) 8.281(1.340) 

40 10% 10% 0.25 0.196(0.100) 0.028(0.006) 0.163(0.045) 10.879(3.967) 11.619(4.365) 28.665(7.690) 8.300(1.359) 

40 10% 10% 0.50 0.196(0.100) 0.028(0.006) 0.163(0.046) 10.868(3.973) 11.607(4.378) 28.646(7.630) 8.291(1.347) 

40 10% 25% 0.25 0.192(0.098) 0.028(0.007) 0.165(0.044) 11.036(4.047) 11.789(4.453) 28.721(7.741) 8.356(1.378) 

40 10% 25% 0.50 0.189(0.097) 0.028(0.007) 0.166(0.045) 10.995(3.966) 11.733(4.367) 28.667(7.627) 8.305(1.323) 

40 10% 50% 0.25 0.185(0.091) 0.027(0.007) 0.167(0.043) 11.461(4.234) 12.254(4.679) 29.211(7.752) 8.632(1.603) 

40 10% 50% 0.50 0.180(0.092) 0.027(0.007) 0.170(0.043) 11.261(4.045) 12.060(4.480) 28.678(7.583) 8.398(1.348) 

40 20% 10% 0.25 0.193(0.101) 0.028(0.007) 0.166(0.049) 10.975(3.986) 11.718(4.391) 28.556(7.644) 8.306(1.354) 

40 20% 10% 0.50 0.190(0.101) 0.027(0.007) 0.168(0.049) 10.970(3.973) 11.716(4.389) 28.453(7.639) 8.311(1.357) 

40 20% 25% 0.25 0.181(0.098) 0.027(0.007) 0.172(0.048) 11.515(4.218) 12.287(4.652) 29.045(7.806) 8.551(1.559) 

40 20% 25% 0.50 0.177(0.100) 0.026(0.007) 0.176(0.052) 11.249(4.084) 11.986(4.512) 28.365(7.711) 8.332(1.318) 

40 20% 50% 0.25 0.170(0.085) 0.027(0.008) 0.176(0.042) 13.659(5.297) 14.612(5.916) 31.068(8.445) 9.882(2.709) 

40 20% 50% 0.50 0.155(0.089) 0.025(0.007) 0.185(0.047) 12.380(4.443) 13.270(4.963) 29.287(7.877) 8.780(1.571) 

40 50% 10% 0.25 0.189(0.104) 0.027(0.007) 0.171(0.057) 11.061(4.051) 11.815(4.484) 28.231(7.709) 8.317(1.340) 

40 50% 10% 0.50 0.185(0.107) 0.026(0.007) 0.175(0.064) 11.056(4.065) 11.818(4.513) 28.115(7.621) 8.311(1.338) 

40 50% 25% 0.25 0.174(0.102) 0.026(0.008) 0.183(0.061) 11.739(4.281) 12.491(4.728) 29.771(8.444) 8.575(1.561) 

40 50% 25% 0.50 0.161(0.111) 0.024(0.009) 0.195(0.077) 11.437(4.254) 12.196(4.761) 27.823(7.650) 8.315(1.277) 

40 50% 50% 0.25 0.155(0.082) 0.027(0.009) 0.193(0.043) 18.298(7.453) 19.673(8.540) 35.346(10.456) 12.482(4.595) 

40 50% 50% 0.50 0.122(0.101) 0.020(0.009) 0.219(0.073) 13.224(5.006) 14.041(5.595) 29.743(8.228) 8.830(1.481) 
 

Note: Item = percent of item contamination, except for the 10 item 25% contamination was rounded to 20%, Rep = percent of replicants contaminated, 
MF = misfit proportion value, E = entropy, EM = entropy misfit, EMR = entropy misfit ratio, χ2 = Pearson chi-squared, G2 = likelihood ratio chi-squared, 
S-χ2 = Orlando and Thissen (2000) chi-squared, PV-Q1 = Chalmers and Ng’s (2017) adaptation of Q1 
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Table 4. Proportions of partial variance accounted for by main and interaction effects (partial eta-squared) 
 

Source 
EMR 

1PLM 2PLM 
EM 

1PLM 2PLM 
E 

1PLM 2PLM 
χ2 

1PLM 2PLM 
G2 

1PLM 2PLM 
S-χ2 

1PLM 2PLM 
PV-Q1 
1PLM 2PLM 

Item Contamination (IC) 0.16 0.16 0.00 0.02 0.01 0.05 0.10 0.05 0.11 0.05 0.00 0.01 0.00 0.03 

Test Length (TL) 0.09 0.02 0.07 0.05 0.00 0.00 0.47 0.53 0.48 0.49 0.42 0.61 0.01 0.00 

Person Contamination (PC) 0.00 0.01 0.01 0.00 0.00 0.00 0.04 0.04 0.04 0.04 0.03 0.00 0.04 0.01 

Type of Misfit (TM) 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

IC*TL 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.03 0.06 0.03 0.00 0.00 0.00 0.01 

IC*PC 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

TL*PC 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.00 

IC*TM 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 

TL*TM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PC*TM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

IC*TL*PC 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

IC*TL*TM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

IC*PC*TM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 

TL*PC*TM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

IC*TL*PC*TM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 
 

Note: E = entropy, EM = entropy misfit, EMR = entropy misfit ratio, χ2 = Pearson chi-squared, G2 = likelihood ratio chi-squared, S-χ2 = Orlando and Thissen’s 
(2000) chi-squared, PV-Q1 = Chalmers and Ng’s (2017) adaptation of Q1; partial eta-squared values of .03 or greater are bolded 
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Empirical Power and Type I Error for χ2 and G2 Statistics 

Empirical power was calculated as the proportion of items that were correctly 

identified as misfit divided by the proportion of items that were generated to misfit 

in each condition. Proportion of items that were correctly identified as misfit are 

presented, which can be thought of as an unstandardized measure of empirical 

power (i.e., referred to as unstandardized in the tables). Most methodologists desire 

power values of .70 or higher. Type I error rates were calculated as the proportion 

of items that were flagged as misfit when the population-generating item-fit. Type 

I error values of .05 are desirable for the 95% cut points. 

Tables 5 and 6 contain empirical power and Type I error rates for the χ2 and 

G2 statistics, respectively. For both the χ2 and G2 statistics, test length was the major 

variable resulting in variation of empirical power and Type I error rates. As the 

number of items on the test increased, both empirical power and Type I error 

decreased. Empirical power was very high for all of the 10-item test conditions and 

very low for the 20- and 40-item test conditions. Type I error rates were very high 

in all conditions. Similar results were found for the 1PLM and 2PLM models, 

although Type I error rates were a little lower (albeit still largely inflated) for the 

2PLM. 
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Table 5. 1 and 2PLM χ2 power to detect and Type I error 
 

    % contaminated persons 

 Test 
length 

 Contam.  
type 

Type I error  Power 

Model % items 10% 25% 50%  10% 25% 50% 

1PLM 10 items 10% Misfit .25 99.99 99.99 99.99  99.30 93.90 77.80 

1PLM 10 items 10% Misfit .50 99.98 99.97 99.99  99.30 95.60 70.30 

1PLM 10 items 20% Misfit .25 99.96 100.00 100.00  99.75 98.20 91.95 

1PLM 10 items 20% Misfit .50 100.00 100.00 100.00  99.70 97.90 83.00 

1PLM 10 items 50% Misfit .25 99.96 99.96 99.98  99.98 99.92 99.74 

1PLM 10 items 50% Misfit .50 99.98 100.00 100.00  99.94 99.92 99.78 

           

1PLM 20 items 10% Misfit .25 76.03 81.17 88.56  39.70 19.15 35.55 

1PLM 20 items 10% Misfit .50 75.84 82.40 90.33  37.35 18.15 46.80 

1PLM 20 items 25% Misfit .25 78.16 86.67 95.93  58.70 45.70 40.98 

1PLM 20 items 25% Misfit .50 81.14 91.83 98.77  48.08 26.26 20.38 

1PLM 20 items 50% Misfit .25 71.95 78.39 93.93  75.81 79.77 78.89 

1PLM 20 items 50% Misfit .50 84.88 96.04 99.87  63.52 56.93 48.09 

           

1PLM 40 items 10% Misfit .25 24.52 30.02 39.21  11.48 20.75 78.40 

1PLM 40 items 10% Misfit .50 25.00 31.71 43.79  9.85 27.63 92.08 

1PLM 40 items 25% Misfit .25 26.06 36.98 60.06  15.68 20.88 51.33 

1PLM 40 items 25% Misfit .50 29.35 46.79 76.82  11.40 17.05 55.43 

1PLM 40 items 50% Misfit .25 23.14 36.79 75.87  29.49 49.17 66.82 

1PLM 40 items 50% Misfit .50 34.45 63.65 95.05  18.34 22.00 29.97 

           

2PLM 10 items 10% Misfit .25 99.83 99.83 99.96  99.60 98.30 88.30 

2PLM 10 items 10% Misfit .50 99.86 99.88 99.92  99.40 97.20 86.10 

2PLM 10 items 20% Misfit .25 99.83 99.88 99.93  99.55 98.45 88.45 

2PLM 10 items 20% Misfit .50 99.88 99.90 99.95  99.80 98.00 82.20 

2PLM 10 items 50% Misfit .25 99.80 99.66 99.30  99.88 99.62 98.60 

2PLM 10 items 50% Misfit .50 99.88 99.98 100.00  99.72 99.10 92.68 

           

2PLM 20 items 10% Misfit .25 70.02 72.82 76.78  56.30 37.50 17.70 

2PLM 20 items 10% Misfit .50 70.84 73.23 76.41  53.60 36.40 15.15 

2PLM 20 items 25% Misfit .25 71.61 78.65 86.83  65.66 58.04 32.48 

2PLM 20 items 25% Misfit .50 73.39 80.13 88.10  61.28 45.92 19.48 

2PLM 20 items 50% Misfit .25 70.51 77.92 90.25  74.17 81.42 84.07 

2PLM 20 items 50% Misfit .50 76.49 87.09 97.44  67.66 67.96 49.06 

           

2PLM 40 items 10% Misfit .25 12.27 13.06 13.94  12.05 11.25 8.53 

2PLM 40 items 10% Misfit .50 12.42 12.93 14.19  12.20 11.75 8.00 

2PLM 40 items 25% Misfit .25 12.84 15.32 18.01  14.35 19.01 15.33 

2PLM 40 items 25% Misfit .50 13.11 15.44 18.89  12.62 11.51 7.86 

2PLM 40 items 50% Misfit .25 15.94 30.24 60.28  16.13 33.19 59.78 

2PLM 40 items 50% Misfit .50 14.26 21.09 39.93  14.51 22.22 19.77 
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Table 6. 1 and 2PLM G2 power to detect and Type I error 
 

    % contaminated persons 

 Test 
length 

 Contam.  
type 

Type I error  Power 

Model % items 10% 25% 50%  10% 25% 50% 

1PLM 10 items 10% Misfit .25 99.99 100.00 100.00  99.60 94.80 79.90 

1PLM 10 items 10% Misfit .50 99.99 99.98 100.00  99.60 96.80 71.40 

1PLM 10 items 20% Misfit .25 99.98 100.00 100.00  99.85 98.45 93.00 

1PLM 10 items 20% Misfit .50 100.00 100.00 100.00  99.75 98.70 85.30 

1PLM 10 items 50% Misfit .25 99.98 99.98 99.98  100.00 99.92 99.76 

1PLM 10 items 50% Misfit .50 99.98 100.00 100.00  99.98 99.96 99.84 

           

1PLM 20 items 10% Misfit .25 80.82 85.28 91.23  45.05 21.15 32.55 

1PLM 20 items 10% Misfit .50 80.82 86.26 92.72  43.05 18.55 43.15 

1PLM 20 items 25% Misfit .25 82.45 89.87 97.01  64.52 50.78 43.04 

1PLM 20 items 25% Misfit .50 85.09 93.77 99.09  54.22 29.16 20.40 

1PLM 20 items 50% Misfit .25 77.22 82.17 95.47  80.20 82.55 80.49 

1PLM 20 items 50% Misfit .50 88.27 97.02 99.88  69.71 63.08 53.11 

           

1PLM 40 items 10% Misfit .25 30.39 36.24 46.11  13.03 18.50 74.48 

1PLM 40 items 10% Misfit .50 30.89 38.32 51.02  10.75 23.93 90.05 

1PLM 40 items 25% Misfit .25 32.07 43.47 65.99  19.28 23.03 49.12 

1PLM 40 items 25% Misfit .50 35.76 53.36 81.10  13.38 16.09 52.70 

1PLM 40 items 50% Misfit .25 28.34 42.37 79.63  34.86 53.03 68.03 

1PLM 40 items 50% Misfit .50 41.03 68.81 96.17  22.74 25.36 31.63 

           

2PLM 10 items 10% Misfit .25 99.87 99.90 99.98  99.60 98.40 88.90 

2PLM 10 items 10% Misfit .50 99.89 99.90 99.93  99.50 97.40 86.90 

2PLM 10 items 20% Misfit .25 99.85 99.93 99.95  99.70 98.65 89.75 

2PLM 10 items 20% Misfit .50 99.90 99.91 99.98  99.85 98.20 83.70 

2PLM 10 items 50% Misfit .25 99.82 99.72 99.40  99.94 99.64 98.80 

2PLM 10 items 50% Misfit .50 99.90 100.00 100.00  99.80 99.16 93.68 

           

2PLM 20 items 10% Misfit .25 77.39 79.75 82.93  63.10 43.85 19.60 

2PLM 20 items 10% Misfit .50 78.20 80.22 83.05  61.40 42.30 17.00 

2PLM 20 items 25% Misfit .25 79.02 84.20 90.30  73.28 64.92 35.50 

2PLM 20 items 25% Misfit .50 80.30 85.26 91.71  69.04 52.44 22.14 

2PLM 20 items 50% Misfit .25 77.36 82.94 92.44  80.46 85.23 85.72 

2PLM 20 items 50% Misfit .50 82.75 90.33 97.99  75.67 74.65 53.91 

           

2PLM 40 items 10% Misfit .25 17.54 18.51 19.81  15.53 13.10 9.28 

2PLM 40 items 10% Misfit .50 17.56 18.61 20.08  15.03 13.43 8.50 

2PLM 40 items 25% Misfit .25 18.10 21.30 25.51  18.81 23.56 17.07 

2PLM 40 items 25% Misfit .50 18.54 21.85 26.45  16.59 13.83 8.58 

2PLM 40 items 50% Misfit .25 21.49 36.95 66.13  21.72 39.36 63.40 

2PLM 40 items 50% Misfit .50 19.85 27.85 49.54   20.51 28.72 22.41 
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Empirical Power for EMRj and S-X2 and PV-Q1 

Tables 7, 8, and 9 contain the empirical power and Type I error rates for S-X2, 

PV-Q1, and EMRj, respectively. For ease of interpretation we present empirical 

power as percentages rather than proportions. Figure 2 graphically displays the 

empirical statistical power for S-X2, PV-Q1, and EMRj, for the 1PLM (top panel) 

and 2PLM (bottom panel), and corresponds with values in Tables 7, 8, and 9. In 

general, for the 1PLM the pattern of empirical power estimates was similar between 

S-X2, PV-Q1, and EMRj within a condition, however, values for S-X2 were better 

than PV-Q1, and values for EMRj were better than both S-X2 and PV-Q1. In general, 

S-X2 and PV-Q1 did not yield adequate power for any conditions in the 2PLM, 

whereas EMRj values were noticeably higher than both S-X2 and PV-Q1 values in 

most conditions. 

For all three measures, empirical power for the 1PLM was highest for all 

conditions in which 50% of persons were misfit, and lowest when only 10% of 

persons misfit. In general, empirical power increased as the percentage of 

contaminated persons increased, and as the type of contamination increased from 

25% to 50%. Interestingly, as the percentage of contaminated items increased, 

empirical power decreased, but this finding should be considered in conjunction 

with changes in Type I error (discussed in the next section). Similar trends were 

observed for the 2PLM as for the 1PLM for EMR, with empirical power being lower 

for similar conditions in the 2PLM. 

Type I Error for EMRj 

Figure 3 graphically displays Type I error rates for S-X2, PV-Q1, and EMRj for the 

1PLM (top panel) and the 2PLM (bottom panel). Type I error for PV-Q1 was 

extremely low in nearly all conditions. In general, Type I error values were near the 

desirable values of .05 in many conditions and similar between S-X2 and EMRj 

across conditions. For the EMRj and S-X2 measures, Type I error was higher than 

anticipated in the many of the conditions in which 50% of the items and 25-50% of 

persons were contaminated. For EMRj in most conditions, Type I error for the 

2PLM was underestimated as the percent of contaminated items and persons 

increased. This finding is unsurprising given that the empirical power was greater 

for the 1PLM than for the 2PLM. The exception was for the conditions in which 

50% items and 25-50% persons were contaminated, particularly when type of misfit 

was 25%; in these conditions Type I error was overestimated for some conditions. 

This was particularly true for the conditions in which 50% of persons and 50% of 

items were contaminated and subtests were only 10-20 items. 
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Table 7. 1 and 2PLM S-X2 Power to detect and Type I error 
 

    % contaminated persons 

 Test 
length 

 Contam.  
type 

Type I error  Power 

Model % items 10% 25% 50%  10% 25% 50% 

1PLM 10 items 10% Misfit .25 7.83 7.92 7.56  23.90 65.30 98.60 

1PLM 10 items 10% Misfit .50 7.90 8.02 8.14  23.90 71.50 99.50 

1PLM 10 items 20% Misfit .25 7.68 8.55 9.63  15.05 40.35 84.80 

1PLM 10 items 20% Misfit .50 7.74 8.23 11.78  17.25 52.00 95.15 

1PLM 10 items 50% Misfit .25 9.60 13.02 22.76  9.96 19.16 36.16 

1PLM 10 items 50% Misfit .50 8.52 10.58 23.02  10.68 18.80 34.94 

           

1PLM 20 items 10% Misfit .25 6.84 6.34 6.28  20.25 55.90 97.15 

1PLM 20 items 10% Misfit .50 6.66 6.10 6.21  20.40 68.15 99.65 

1PLM 20 items 25% Misfit .25 6.97 7.07 9.13  11.36 28.80 74.28 

1PLM 20 items 25% Misfit .50 6.55 6.55 10.31  14.86 41.60 89.46 

1PLM 20 items 50% Misfit .25 7.96 11.40 24.36  9.71 19.53 42.95 

1PLM 20 items 50% Misfit .50 6.85 8.41 23.45  9.76 19.72 39.88 

           

1PLM 40 items 10% Misfit .25 6.09 5.73 5.24  17.45 52.28 96.23 

1PLM 40 items 10% Misfit .50 5.99 5.53 4.82  20.00 64.70 99.53 

1PLM 40 items 25% Misfit .25 6.08 5.97 6.69  11.18 26.70 73.64 

1PLM 40 items 25% Misfit .50 5.82 5.38 6.92  14.19 38.90 88.33 

1PLM 40 items 50% Misfit .25 7.18 10.51 23.41  8.73 19.61 44.12 

1PLM 40 items 50% Misfit .50 5.55 7.12 19.65  9.07 19.76 42.78 

           

2PLM 10 items 10% Misfit .25 5.57 5.43 5.02  7.40 6.30 5.30 

2PLM 10 items 10% Misfit .50 4.67 5.03 4.64  5.20 5.20 4.80 

2PLM 10 items 20% Misfit .25 5.31 5.54 6.45  4.75 6.95 7.65 

2PLM 10 items 20% Misfit .50 5.11 5.13 5.68  4.85 6.05 5.40 

2PLM 10 items 50% Misfit .25 5.02 8.10 21.18  5.74 11.46 23.66 

2PLM 10 items 50% Misfit .50 6.00 6.42 8.46  4.62 5.40 6.52 

           

2PLM 20 items 10% Misfit .25 5.03 5.11 5.39  6.40 5.15 5.75 

2PLM 20 items 10% Misfit .50 4.91 5.38 5.22  5.70 6.00 5.40 

2PLM 20 items 25% Misfit .25 5.22 5.81 8.82  4.80 7.32 12.20 

2PLM 20 items 25% Misfit .50 5.01 5.47 6.21  5.02 5.12 4.86 

2PLM 20 items 50% Misfit .25 5.25 7.96 23.69  6.61 12.13 27.52 

2PLM 20 items 50% Misfit .50 5.68 6.29 11.94  4.88 5.54 7.59 

           

2PLM 40 items 10% Misfit .25 5.03 4.90 5.14  5.10 5.18 5.68 

2PLM 40 items 10% Misfit .50 4.83 4.85 4.91  4.60 5.43 5.03 

2PLM 40 items 25% Misfit .25 5.33 5.63 8.89  5.18 7.04 11.23 

2PLM 40 items 25% Misfit .50 5.03 5.61 6.28  4.55 4.69 4.39 

2PLM 40 items 50% Misfit .25 5.44 8.49 26.34  6.28 12.41 27.84 

2PLM 40 items 50% Misfit .50 5.30 8.03 15.46  4.41 5.76 7.72 
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Table 8. 1 and 2PLM PV-Q1 Power to detect and Type I error 
 

    % contaminated persons 

 Test 
length 

 Contam.  
type 

Type I error  Power 

Model % items 10% 25% 50%  10% 25% 50% 

1PLM 10 items 10% Misfit .25 0.02 0.00 0.00  2.90 28.00 90.20 

1PLM 10 items 10% Misfit .50 0.00 0.01 0.00  1.30 29.50 95.00 

1PLM 10 items 20% Misfit .25 0.00 0.00 0.00  1.00 8.20 47.50 

1PLM 10 items 20% Misfit .50 0.00 0.00 0.01  1.05 13.65 69.50 

1PLM 10 items 50% Misfit .25 0.10 0.10 0.10  0.18 0.82 2.26 

1PLM 10 items 50% Misfit .50 0.00 0.00 0.02  0.16 1.04 2.68 

           

1PLM 20 items 10% Misfit .25 0.11 0.07 0.06  6.55 40.55 96.70 

1PLM 20 items 10% Misfit .50 0.13 0.04 0.04  5.95 58.25 99.65 

1PLM 20 items 25% Misfit .25 0.10 0.05 0.15  1.22 10.96 56.50 

1PLM 20 items 25% Misfit .50 0.06 0.05 0.53  2.84 24.56 83.54 

1PLM 20 items 50% Misfit .25 0.16 0.36 0.32  0.79 4.91 18.31 

1PLM 20 items 50% Misfit .50 0.07 0.10 1.93  0.99 5.52 16.65 

           

1PLM 40 items 10% Misfit .25 0.32 0.19 0.20  8.58 54.13 98.65 

1PLM 40 items 10% Misfit .50 0.28 0.17 0.27  10.88 70.30 99.98 

1PLM 40 items 25% Misfit .25 0.25 0.24 0.77  2.96 20.39 77.09 

1PLM 40 items 25% Misfit .50 0.16 0.42 2.58  4.73 37.10 94.20 

1PLM 40 items 50% Misfit .25 0.54 1.25 3.02  1.79 14.14 50.30 

1PLM 40 items 50% Misfit .50 0.20 0.82 10.69  1.83 12.65 37.45 

           

2PLM 10 items 10% Misfit .25 0.00 0.00 0.00  0.00 0.00 0.00 

2PLM 10 items 10% Misfit .50 0.00 0.00 0.00  0.00 0.00 0.00 

2PLM 10 items 20% Misfit .25 0.00 0.00 0.00  0.00 0.00 0.00 

2PLM 10 items 20% Misfit .50 0.00 0.00 0.00  0.00 0.00 0.00 

2PLM 10 items 50% Misfit .25 0.00 0.00 0.00  0.00 0.02 0.16 

2PLM 10 items 50% Misfit .50 0.00 0.00 0.00  0.00 0.00 0.00 

           

2PLM 20 items 10% Misfit .25 0.00 0.00 0.01  0.00 0.15 0.10 

2PLM 20 items 10% Misfit .50 0.00 0.01 0.01  0.05 0.15 0.00 

2PLM 20 items 25% Misfit .25 0.01 0.01 .  0.04 0.10 0.24 

2PLM 20 items 25% Misfit .50 0.01 0.01 0.01  0.02 0.02 0.00 

2PLM 20 items 50% Misfit .25 0.00 0.02 0.08  0.11 1.63 11.43 

2PLM 20 items 50% Misfit .50 0.00 0.00 0.00  0.00 0.00 0.02 

           

2PLM 40 items 10% Misfit .25 0.09 0.07 0.07  0.38 0.50 0.43 

2PLM 40 items 10% Misfit .50 0.07 0.08 0.06  0.23 0.58 0.35 

2PLM 40 items 25% Misfit .25 0.11 0.11 0.10  0.22 1.23 1.41 

2PLM 40 items 25% Misfit .50 0.07 0.06 0.05  0.10 0.18 0.15 

2PLM 40 items 50% Misfit .25 0.13 0.49 3.99  0.67 8.24 36.56 

2PLM 40 items 50% Misfit .50 0.14 0.14 0.04  0.07 0.56 0.46 
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Table 9. 1 and 2PLM EMR: empirical power and Type I error 
 

    % contaminated persons 

 Test 
length 

 Contam.  
type 

Type I error  Power 

Model % items 10% 25% 50%  10% 25% 50% 

1PLM 10 items 10% Misfit .25 5.22 5.93 6.39  32.50 71.50 88.40 

1PLM 10 items 10% Misfit .50 5.57 6.06 6.80  29.00 88.00 100.00 

1PLM 10 items 20% Misfit .25 6.34 7.56 9.04  22.20 63.10 90.00 

1PLM 10 items 20% Misfit .50 6.01 7.15 9.73  25.55 81.35 100.00 

1PLM 10 items 50% Misfit .25 11.32 22.84 46.74  8.62 23.92 75.50 

1PLM 10 items 50% Misfit .50 7.80 16.00 50.66  18.92 67.50 99.46 

           

1PLM 20 items 10% Misfit .25 5.14 4.72 5.14  26.45 63.25 80.65 

1PLM 20 items 10% Misfit .50 4.82 5.02 4.91  25.75 78.05 100.00 

1PLM 20 items 25% Misfit .25 5.79 6.57 7.91  13.76 43.60 77.86 

1PLM 20 items 25% Misfit .50 4.94 5.50 6.13  21.02 67.22 100.00 

1PLM 20 items 50% Misfit .25 9.12 15.86 26.38  7.02 15.11 56.91 

1PLM 20 items 50% Misfit .50 5.97 7.82 16.17  14.19 50.28 99.17 

           

1PLM 40 items 10% Misfit .25 5.05 4.81 4.67  24.98 63.68 76.73 

1PLM 40 items 10% Misfit .50 5.01 4.80 4.57  25.58 74.38 100.00 

1PLM 40 items 25% Misfit .25 5.29 6.27 6.78  13.03 38.44 72.92 

1PLM 40 items 25% Misfit .50 5.07 4.61 5.07  19.97 64.58 99.96 

1PLM 40 items 50% Misfit .25 8.19 14.38 21.42  6.83 14.38 49.79 

1PLM 40 items 50% Misfit .50 5.56 6.53 8.84  12.85 43.34 98.78 

           

2PLM 10 items 10% Misfit .25 4.87 4.81 4.39  13.10 47.10 84.20 

2PLM 10 items 10% Misfit .50 4.60 4.92 4.52  14.70 50.70 99.80 

2PLM 10 items 20% Misfit .25 4.89 4.44 3.90  11.50 36.15 80.55 

2PLM 10 items 20% Misfit .50 4.41 4.46 4.03  13.55 48.15 98.95 

2PLM 10 items 50% Misfit .25 7.10 11.50 16.80  5.40 6.92 27.28 

2PLM 10 items 50% Misfit .50 4.98 4.54 3.28  8.86 27.88 87.38 

           

2PLM 20 items 10% Misfit .25 4.91 5.11 4.39  12.10 41.35 74.60 

2PLM 20 items 10% Misfit .50 4.86 4.97 4.50  14.30 50.80 99.75 

2PLM 20 items 25% Misfit .25 5.05 4.91 4.59  8.42 23.78 67.40 

2PLM 20 items 25% Misfit .50 4.86 4.67 3.76  11.18 38.58 98.98 

2PLM 20 items 50% Misfit .25 6.38 9.89 15.09  5.06 6.34 18.79 

2PLM 20 items 50% Misfit .50 4.96 4.67 3.68  8.81 24.91 90.48 

           

2PLM 40 items 10% Misfit .25 5.14 4.98 4.73  11.05 40.20 71.58 

2PLM 40 items 10% Misfit .50 5.13 4.81 4.61  13.68 46.08 99.75 

2PLM 40 items 25% Misfit .25 4.95 5.37 4.78  7.64 21.45 62.03 

2PLM 40 items 25% Misfit .50 4.93 4.63 4.54  10.84 36.58 99.24 

2PLM 40 items 50% Misfit .25 6.38 8.89 11.70  5.33 6.29 16.93 

2PLM 40 items 50% Misfit .50 5.07 4.95 4.15  8.32 21.29 91.36 
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Figure 2. Power for S-X2, PV-Q1, and EMR; note: within each panel there are nine sets of six bars; the legend represents what 
each bar represents; the x-axis in each panel represents person contamination 
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Figure 3. Type 1 error for S-X2, PV-Q1, and EMR; note: within each panel there are nine sets of six bars; the legend represents 
what each bar represents; the x-axis in each panel represents person contamination 
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Discussion 

Three measures of entropy (Ej, EMj, and EMRj) were introduced as measures of 

item-fit for IRT. EMj incorporates misfit for an item, but that misfit is not relative 

to the total amount of departure of a predicted probability from a threshold. EMRj 

incorporates both pieces of information in a ratio. Two simulation studies were 

conducted to investigate the distribution, empirical power, and Type I error rate of 

these entropy measures, and compared these statistics with traditionally used 

measures of χ2, G2, S-X2, and PV-Q1. Data were simulated to mirror issues with 

unidimensional misfit. However, the nature of many simulations, as was the case 

here, is to generate a mixture or multivariate data and estimate using a 

unidimensional model to determine impact. 

In the first simulation study, the thresholds (Table 1) were useful to make 

decisions regarding type I error. Baseline models were examined in which all 

participants were generated to fit the appropriate IRT model and cut points assumed 

model-data fit. In applied settings researchers may find it useful to think of EMRj 

values as a type of item-level outlier detection.  That is, examining the most 

egregious entropy values may help researchers determine whether or not an item 

fits the data. For example, consider a 1 PLM with twenty-five items and 1200 

participants, and EMRj values ranging from .10 to .24, Mean = .15(.03), with the 

three largest values being .240, .184, and .176. Recall, larger values of EMRj are 

reflective of more misfit and are thus less desirable. Using Table 1, one would 

interpolate a threshold value to be between .185 and .203. Instead of using a 

threshold value and attempting to interpolate (perhaps coming up with a value 

marginally over .185), or running a mini-simulation using 25 items and 1200 

participants, it would be useful to consider the most extreme values and use entropy 

measures as one element of the investigation of the item(s). In this example, a 

researcher might either select a predetermined number of extreme items to 

investigate, say 2 or 3 rounding up for values of 5 and 10 percent of the number of 

items, or alternatively examine items that are more clearly outliers.  In the first case 

we could select a rule for the number of items to investigate, perhaps the largest 3 

values, or we may flag an item with EMRj value of .240 as a potentially misfitting 

outlier. The value added by using EMRj is that low misfit values have clearer 

separation between than those with a larger misfit ratio. More specifically, persons 

predicted to have an EMRj value of 1 or 0 are likely to be classified correctly 

whereas misclassified persons are typically near the threshold for classification (e.g. 

threshold of .185 for classification correct and predicted value is .190). Considering 
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significance testing has fallen out of favor amongst many in the statistical and 

measurement fields (Trafimow & Marks, 2015; Wasserstein et al., 2019), we might 

suggest a similar form of outlier detection for other measures of the item-fit. 

In the second simulation study empirical power and empirical pseudo-Type I 

error rate were compared for S-X2, PV-Q1, and EMRj across several types of 

contamination (2 model types, 3 test lengths, 3 percentages of items contaminated, 

3 percentages of persons contaminated, and 2 types of contamination). Previous 

research presents conflicting recommendations for the use of χ2 and G2 as measures 

of item-fit. Thissen and Steinberg (1997) state χ2 and G2 should only be used when 

there are fewer than five or six items whereas Cochran (1952) found χ2 and G2 yield 

incorrect p-values with short test lengths. Other researchers suggested χ2 and G2 are 

only useful for small test lengths (i.e., 10-20 items; Chon et al., 2010; Maydeu-

Olivares et al., 2011; Zimowski et al., 2003). In the current study, χ2 and G2 resulted 

in extreme empirical power values (high for small number of items; low for large 

number of items) and highly inflated Type I error rates, especially in the 10-item 

conditions. Based on findings in the current study, we do not recommend χ2 and G2 

for use for 10-item test lengths. 

Although EMRj may be useful for tests with a smaller number of items, it is 

important to note values were not completely invariant across test length. This is 

likely because longer tests have slightly more accurate parameter estimates, thus 

predicted response probabilities also become more accurate, therefore test length 

has an indirect impact on the thresholds through IRT model parameter estimates. 

While entropy may be useful for a small number of items, researchers should note 

that the accuracy of parameter estimates improve as test length increases. This 

finding is similar to trends observed with sample size and is expected with all fit 

statistics and all models. 

For the 2PLM, S-X2 and PV-Q1 had low empirical power in all conditions. 

Orlando and Thissen (2000) had similar low empirical power in estimating the 

2PLM on 3PLM generated data. PV-Q1 had lower than desired Type I error in most 

conditions consistent with previous literature (Chalmers & Ng, 2017). In contrast, 

EMRj resulted in adequate empirical power rates in many of the conditions, 

although most notably when 50% of people are contaminated, and Type I error rates 

across most conditions were accurate, and in some conditions performed well 

across all test lengths. When extreme amount of contamination was present (i.e., 

50% of items) high rejection rates were found for EMR for the uncontaminated 

items. In these conditions, EMRj had more statistical power than S-X2 and G2. Thus, 

this finding brings us to two conclusions. First, perhaps a more conservative cut-

point should be selected to find a better balance between Type I error and statistical 
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power. Second, in additional to item-level fit, these measures can help determine if 

questionable model-level fit is present. More specifically, researchers should be 

cautioned when many warnings of misfitting items are present, they should revisit 

model-level fit and not just assume they have rogue items. 

Future Research and Limitations 

The focus was on the dichotomous, unidimensional, correct/incorrect 1PLM and 

2PLM models. A next step is to investigate EMRj for other types of models (e.g., 

polytomous, multidimensional, ordered, or partial-credit). Furthermore, sample 

size was not varied, although it was quite large (108+6 conditions) given the 

manipulated factors. Varying sample size to even 2 values would have resulted in 

a fully-crossed design with twice the number of conditions. Given that sample size 

was not varied, it is not recommended to use the thresholds derived in study 1 as a 

hard cut-point.  Given the bias analysis of the study (i.e., bias was < .006 for item 

difficulty and discrimination, on average), larger sample sizes are not likely to be 

impacted. Similarly, these results cannot be readily generalized to data conditions 

not explored in the current study (e.g., theta distributions and item parameter 

distributions). 

The χ2, G2, S-X2, and PV-Q1 statistics were used as comparison measures for 

reasons described earlier in this paper. The χ2 and G2 measures rely on binning 

ability estimates that are based on model dependent arbitrary cut-points, whereas 

Orlando and Thissen’s (2000) S-X2 and S-G2 statistics use observed test scores 

(summated scores) instead of theta ability estimates creating a theoretical 

dissonance in that a researcher believes in a latent variable ability estimate and falls 

back on a classical test theory observed-score ability estimate. Future research may 

aim to compare EMRj to other measures of item-fit in IRT such as Stone’s (2000) 

χ2* and G2* statistics, and the posterior predictive model checking (Swaminathan 

et al., 2007). Although previous research found Stone’s χ2* and G2* to have inflated 

Type I error rates associated with these pseudo-observed scores and noted that it 

took 40 minutes to calculate these measures for a single dataset for 40-items and 

4,000 persons (Chon et al., 2010). OUTFIT and INFIT are also residual-based 

measures sometimes used for item-fit. These measures follow an approximate χ2 

distribution and only assign one individual per bin, but each individual/bin is 

weighted differently. The goal of the current study was to introduce the entropy 

variants as measures of item-fit in IRT; the goal was not to compare all measures 

of item-fit. Similarly, it may be of interest to focus on identifying a one-size-fits-

all threshold for EMRj. 
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Similarly, it may be beneficial to consider test length. Although a test length 

of 10 seems extreme for the current practitioner, advanced technology, new 

psychometric methods, shorter tests, embedded in systems (such as schools) which 

act as both summative and formative assessment (Dardick & Choi, 2016) are on 

our horizon and it is valuable to include such test lengths in current simulation 

studies. 

An advantage to calculating entropy-based measures is the capability of 

adapting entropy misfit for measures of person-, item- and model-fit in IRT models. 

Future research should investigate model-level fit of EMR and consider how levels 

of person-, item- and model-fit collective interact toward the understanding of a 

model.  There are numerous methods to incorporate misfit and calculate power in 

simulation studies. Misfit was incorporated by varying the percent of contaminated 

items, percent of contaminated persons, and the type of contamination via response 

patterns (25% versus 50%). The focus was to create aberrant conditions at the item 

level of misfit. This had the added benefit that it permitted us to calculate both 

power for aberrant items and Type I error rates for correctly generated items within 

each condition. There are other methods of incorporating misfit, however. For 

example, some researchers use a population-generating model but analyze the data 

using a different model. Future research may examine different methods to 

incorporate misfit. 

Conclusion 

There are advantages when using EMRj as a measure of item-fit. First, it doesn’t 

rely on binning ability estimates that are based on model dependent arbitrary cut-

points as the residual-based measures do. Second, it may discriminate between 

items differently than the frequently utilized residual-based measures. Third, it 

takes minimal computing time in comparison to other proposed measures (e.g., χ2* 

and G2*). Fourth, item- and person-fit can simultaneously be evaluated within a 

dataset. Fifth, it has adequate empirical power and accurate empirical pseudo-Type 

I error rate across many conditions when used with empirically derived cut-points 

presented for the purpose of this study, and these values are equivalent or superior 

to those found with χ2, G2, S-X2, and PV-Q1 in the same condition. Of caution, EMR 

was evaluated using a threshold whereas the chi-square-based measures utilized 

significance testing. Sixth, it may be useful for short tests, unlike χ2 and G2, which 

were found to have highly inflated Type I error rates for 10-item tests in the current 

study. Finally, it can also be used as an approximate measure of fit that exists on a 
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continuum and doesn’t rely on dichotomous hypothesis testing procedures like 

other traditional measures of item-fit (e.g., χ2, G2, S-X2, S-G2, χ2*, and G2*). 

Even though the current study presents cut points, EMRj is still a continuous 

measure of approximate item-fit and should not be thought of as dichotomous 

hypothesis tests. Also consider the recommendation of Dardick and Weiss (2017) 

that EMRj is also useful on a relative scale (i.e., not solely in relation to a cut-point) 

for model comparison. 

There is not a single superior measure of item-fit for all data scenarios, thus 

methodologists rely on a variety of fit statistics to evaluate fit and misfit. As with 

all item-fit statistics, these measures to flag items to be further investigated. Thus, 

EMRj may be particularly useful when used during test development phases for 

exploratory item revision. In considering EMRj as a measure of item-fit, note its 

potential given the reasonable measures of empirical power and empirical pseudo-

Type I error rate, and further emphasize the utility it brings to model fit. Methods 

of fit are often based on χ2 statistics, however, EMRj is derived differently than 

these measures providing additional information that may work well along side of 

other measures whose mathematical origin are based on χ2 statistic. EMRj, was 

introduced as a measure of item-fit in IRT, which captures the amount of 

uncertainty associated with predicted response options (e.g., correct vs incorrect). 

Similar to a forensic investigation, poorly fitting items give us cause for 

suspicion to investigate using additional empirical methods to discover the 

reason(s) why. One philosophy for flagging items for misfit is to use multiple 

measures that target different types of information about the model and use them in 

conjunction with one another to make determinations regarding the quality of an 

item, thus providing nonoverlapping information. For example, it would be useful 

to use a chi-squared (S-X2 or PV-Q1) or other residual measure in conjunction with 

EMRj to confirm misfit, as different measures may detect different types of 

contamination and help tell a story of the conspicuous behavior of the item under 

investigation. Researchers may find EMRj useful for item-fit or item 

selection/revision in IRT when used in conjunction with already existing residual-

based analyses. 
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