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CHAPTER 1: INTRODUCTION 

Conventional imaging modalities, such as radiography, ultrasound, computed 

tomography (CT), and magnetic resonance imaging (MRI) have been used for years to 

identify and characterize many diseases, including cancer, based on anatomic 

differences in tissue density, their shape, size, and water content(1). Recently, with the 

advent of functional imaging modalities, clinicians have been able to characterize 

diseases based on changes at the molecular level(1). Positron emission tomography 

(PET) imaging is used clinically and for translational research to study these molecular 

mechanisms. In the clinic, PET has shown utility in diagnosing and staging cancer, 

assisting in radiotherapy treatment planning, and monitoring chemotherapy(2). 

Preclinically, PET has been used in small animal research where new molecular probes 

are employed to target, detect, and visualize processes associated with cancer.  

1.1 Overview of Positron Emission Tomography (PET) 

PET is a non-invasive imaging modality where a small mass of radioactive tracer 

is injected into the patient, and through a series of reconstruction algorithms, an image 

portraying specific tissue uptake of the tracer is displayed. First, a probe (a small 

molecule, antibody, or peptide) with an affinity for the molecular target is labeled with a 

positron emitting radioisotope. A table of common isotopes and their half-lives can be 

found in Table 1. Matching the physical and biological half-lives of the PET nuclide and 

the target probe, respectively, ensures that the probe accumulates in the tumor before 

the radioactivity decays and allows clearance from normal tissues. In this regard, 

enhanced signal-to-noise ratio – one of the primary considerations in diagnostic imaging 
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– is achieved.  

Isotope Half-Life 

O-15 122.24 s 

N-13 9.97 m 

C-11 20.4 m 

F-18 110 m 

Cu-64 12.7 h 

Y-86 14.72 h 

Br-76 16.2 h 

Ga-68 68.1 h 

Zr-89 78.4 h 

I-124 4.18 d 

Table 1. Possible PET radioisotopes and their half-lives. 

A patient is injected with the probe, and as the radionuclide decays it emits 

positrons that annihilate with electrons within the tissues producing two coincident 

photons that emit energy at 511 keV. Ring detectors made of scintillation crystals 

positioned around the subject pick up on the coincident photons and process their spatial 

location, energy, and arrival time, and through a series of reconstruction algorithms a final 

image is produced (Fig. 1)(3).  
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Figure 1. Principles of PET imaging. Upon decay, the radionuclide emits positrons that 
meet with electrons within the tissue that produces two gamma photons of 511 keV. This 
research was originally published in Angewandte Chemie Internaltional Edition. Philip W. 
Miller, Nicholas J. Long, Ramon Vilar, et al. Synthesis of 11C, 18F, 15O, and 13N 
Radiolabels for Positron Emission Tomography. 2008;47(47):36. 
 

Several tracers are currently approved by the Food and Drug Administration (FDA) 

which target metabolism, proliferation, hypoxia, but the most common PET probe for 

cancer is 18F-fludeoxyglucose (FDG). FDG is chemically known as 2-deoxy-2-(18F)fluoro-

D-glucose, which is an analog of glucose consumed by tissues in the body. Uptake of the 

tracer marks tissues scavenging for glucose, which is abundant in proliferating tumors. 

Since 2000, there has been a nine-fold increase in the number of FDG-PET scans 

performed in the U.S., possibly driven by the enhanced sensitivity and specificity of PET 

as compared to other imaging modalities(4). In 2011 it was estimated that 1.8 million 

FDG-PET scans were performed, with 94% of the scans for cancer patients(1). It is 

increasingly being used to assess therapeutic response and tumor biology, although a 

disadvantage is its background uptake in normal, high glucose-consuming tissues (brain, 

muscle), in situations where tumors lack metabolic activity, and lack of avidity for the 
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tracer. Additionally, FDG-PET is a non-specific tracer, and is unable to stratify patients 

who would benefit from a particular molecular treatment. Therefore, efforts have been 

made to develop tracers that target intracellular and cell-surface receptors that are 

uniquely expressed or overexpressed in cancer. In order to target these PET nuclides to 

receptors present on tumors, carriers in the form of small molecules, peptides, or 

antibodies must be linked to the nuclide and are employed to enhance the signal-to-noise 

ratio of the target to background uptake. 

The research described throughout this dissertation solely focuses on the use of 

antibody-based tracers. The following section was adapted in full with permission from 

the Journal of Labelled Compounds and Radiopharmaceuticals “89Zr-ImmunoPET 

companion diagnostics and their impact in clinical drug development” by Brooke N. 

McKnight and Nerissa T. Viola-Villegas, volume 61, issue 9(5).  

1.1.1 ImmunoPET Tracer Development 

Therapeutic monoclonal antibodies (mAbs) gained clinical utility in 1985 with the 

first FDA approval of the biologic, muromonab-CD3 (Orthoclone OKT3), specific for 

cluster of differentiation 3 (CD3), a co-receptor present on all T-cells(5). Since then, 

applications in cancer have been exploited with the approval of rituximab (Rituxin®) in 

1997(6) followed by trastuzumab (Herceptin®) in 1998(7).  By 2016, there were 24 

monoclonal antibodies (mAbs) and antibody drug conjugates (ADC) approved by the FDA 

for cancer treatment. These mAbs are directed to a specific target ranging from tumor 

and cell-surface associated antigens to biomarker signatures within the tumor 

microenvironment. Despite their specificity and moderate safety profile, clinical efficacy 

of these mAbs remains limited due to perpetuating factors, including but not limited to i) 
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unpredictable tumor antigen density, ii) internalizing status of the mAb:antigen complex, 

iii) the success at which the antibody reaches the target, iv) vascular penetration, and, v) 

tissue distribution, which may impact adverse events (8–12). All of these factors 

underscore the need for precision medicine, borne out of the intent of tailoring the disease 

treatment and prevention by providing the right drug to the right patient at the appropriate 

time and dose.  

A logical approach to precision medicine explores non-invasive imaging tools that 

can be repeatedly utilized to profile tumors at the molecular level, and to augment flaws 

present in biopsies from tumor heterogeneity or poor sample quality. With this 

perspective, antibody or immune-based positron emission tomography (immunoPET) 

was developed to provide a direct readout of antigen density present within each lesion; 

moreover, the pharmacokinetic and dosimetric properties of the mAb, in the case of 

radioimmunotherapy, can be considered cognate when compared to the imaging tool(13). 

Taken together, immunoPET has a high potential to influence and direct informed 

decisions in drug design and development.  

The development of immunoPET tracers relies on the following principles: i) the 

biological and chemical properties of the mAb, ii) the radionuclide chosen iii) the chelate 

selected, and iv) the stability of the linker between mAb and chelate.  MAbs for patient 

use are either humanized or made fully human to prevent human anti-mouse antibody 

response (HAMA)(14). The size of full-length biologics (~150 kDa) prolongs their half-life 

in the blood, which affects the time it takes to deliver to the tumor target and clearance 

from healthy tissues.  Thus, pairing mAbs with long-lived radionuclides 64Cu (t1/2 ~ 12.7 

h), 86Y (t1/2 ~ 14.7 h), 89Zr (t1/2 ~ 78.4 h), and 124I (t1/2 ~ 100.3 h) is the most common 
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strategy(15).  

One limitation to using full mAbs specifically for imaging purposes is the long wait 

times between tracer administration and imaging acquisition, as well as higher radiation 

exposure of non-target organs. Tracer pharmacokinetics can be improved by decreasing 

its size, effectively reducing circulation time, and minimizing dose exposure to the 

patient(16). With this perspective, smaller fragment constructs are engineered offering 

shorter blood residencies and faster tumor target delivery. These fragments mostly retain 

the variable region where the antigen-binding site is primarily located. Suggested PET 

radionuclide tags to complement mAb fragments are provided in Table 2. Moderately-

sized fragments (i.e. F(ab)’2 (~100-110 kDa), minibody (~75 kDa), and diabody (~50 

kDa)) may be appropriately labeled with 18F (t1/2 ~ 109 min), 64Cu (t1/2 ~ 12.7 h) and 86Y 

(t1/2 ~ 14.7 h). Smaller-sized fragments like affibodies (~ 6 kDa), nanobodies or single 

domain antibodies (~12-15 kDa) can be radiolabeled with shorter-lived isotopes like 18F 

and 68Ga (t1/2 ~ 68 min), which consequently decreases the radiation exposure of the 

patient(17). The caveat herein lies in the overall rate of clearance and nuclide site delivery 

of the mAb fragments. 
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Table 2. Different antibody fragments and recommended PET radionuclide for 
companion diagnostic development 

1.1.2 Zirconium-89 immunoPET tracers 

Standardized production and commercial availability has made the development 

of Zr-89 radiolabeled mAbs relatively straightforward(17). As a radiometal, Zr-89 requires 

complexation to prevent random, non-specific binding to non-targeted tissue (usually the 

bone), which consequently lowers contrast. To date, only desferrioxamine (DFO), a 

known iron-sequestering siderophore with three hydroxamate groups is currently utilized 

as a chelate despite reports of metal:complex in vivo instability(30,31). DFO 

bioconjugation techniques were established either through non-specific attachment to 

terminal lysines(32,33) and cysteines(34) or through a more discriminate glycan selective 

labeling(35). A depiction of a mAb radiolabeled with 89Zr through a DFO linker can be 

found in Figure 2. 

Antibody Fragments Recommended  
PET Nuclide 

References 

Affibody (~7 kDa), 
Nanobody (~12-15 kDa) 

68Ga 
18F 

64Cu 
(18–23) 

Diabody (~55 kDa) 

18F 
64Cu 
89Zr 

(24–26) 

Minibody (~80 kDa) 
64Cu 

89Zr 
(27,28) 

Fab’2 (~100-110 kDa) 

64Cu 
89Zr 
124I 

(29) 
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Figure 2. 89Zr labeled monoclonal antibody. mAbs are conjugated to DFO at the 
terminal amine groups before undergoing radiolabeling with 89Zr. The figure only shows 
one DFO conjugated to the antibody for clarity, but in reality there are often more DFO 
molecules bound depending on the method of conjugation. 
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Consequently, preclinical research flourished with many imaging probes 

developed to target different oncogenic molecular signatures. A significant number of 

these tracers were developed to target surface-bound biomarkers, such as i) members of 

the epidermal growth factor receptor family (e.g. EGFR(36), HER2(37) and HER3(38)), 

ii) prostate-specific membrane antigen (PSMA)(39), iii) prostate stem cell antigen 

(PSCA)(28), iv) CD20(40), v) CD44(41), vi) programmed death receptor (PD1)(42) and 

vii) programmed death ligand 1 (PD-L1)(43), to name a few. Imaging probes targeting 

secreted signaling proteins (e.g. VEGF, granzyme B, interferon-γ)(44–46), 

antigen/receptors bound to T cells (e.g. CD3(47), CD8(48)) and shed antigens (e.g. 

CA19.9(49), carcinoembryonic antigen or CEA(50)) were also investigated. With 

substantial preclinical data, a number of these tracers have progressed to clinical trials. 

The first study of a 89Zr-mAb probe (89Zr-cmAb U36) targeting CD44v6 in patients with 

head and neck cancer was reported in 2006(51).   The number of 89Zr-based immunoPET 

probes in the clinic tripled in 2013(30). As of this writing, to the best of our knowledge and 

after extensive search at clinicaltrials.gov, there are ~46 89Zr-mAbs that are currently 

undergoing or have completed patient trials, none of which are FDA approved. An 

overview of 89Zr-based immunoPET probes can be found in Table 3. 
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ANTIBODY TARGET INDICATIONS 
CLINICAL 
TRIALS 

IDENTIFIER 

PHASE AND 
STATUS 

Trastuzumab HER2 

Metastatic HER2+ Breast 
cancer 

NCT01420146 
Phase 1; 

Completed 
Metastatic HER2+ Breast 
cancer; to select patients 

for T-DM1 treatment 
NCT01565200 

Phase 2; 
Active, not 
recruiting 

Unsuspected HER2 Breast 
Metastases 

NCT02286843 Recruiting 

Trastuzumab-resistant 
Breast Cancer; measure 

HER2 post-treatment with 
HSP90 inhibitor AUY922 

NCT01081600 
Phase ½; 

Completed 

Esophagogastric cancer 
NCI-2016-

00986, 
NCT02023996 

Phase 1; 
Recruiting 

HER2+ primary 
malignancy 

NCT03109977 
Phase 1; 

Completed 

Breast Cancer NCT02065609 
Phase 1; 

Completed 

Bevacizumab VEGF 

Inflammatory Breast 
Cancer 

NCT01894451 
Phase 1;      

not recruiting 
Pulmonary arterial 

hypertension 
NCT03166306 

Phase 1/2; 
recruiting 

Multiple Myeloma NCT01859234 Unknown 
Breast Cancer NCT01081613 Completed 

Neuroendocrine Tumors NCT01338090 Completed 
Renal Cell Carcinoma NCT01028638 Completed 

Breast Cancer NCT00991978 
Phase 1; 

Completed 

huJ591 PSMA 

Prostate cancer 
NCT02693860 

 
Phase 1; active 
not recruiting 

Metastatic prostate cancer NCT01543659 
Phase 1/2; 
active not 
recruiting 

Glioblastoma NCT02410577 Completed 

Girentuximab 
Carbonic 
Anydrase 

IX 

Renal cell carcinoma NCT02883153 
Phase 2/3, 
Completed 

Clear cell renal carcinoma NCT03556046 
Phase 1; 
Recruiting 

Cetuximab EGFR 

Stage IV cancer NCT00691548 
Phase 1; 

Completed 
Colorectal cancer NCT01691391 Completed 

Metastatic Colorectal 
Cancer 

NCT02117466 
Phase 1/2; 
Recruiting 

Ipilimumab CTLA-4 Melanoma NCT03313323 
Phase 2; 
Recruiting 
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Fresolimumab 
(GC1008) 

TGF-β Primary brain tumor NCT01472731 
Phase 2; 

Completed 

Pertuzumab HER2 HER2 positive malignancy NCT03109977 
Phase 1; 

Completed 

IAb2M PSMA 

Metastatic prostate cancer NCT01923727 
Phase 1/2, 
Completed 

Prostate cancer, pre-
prostatectomy 

NCT02349022 
Phase 2, 

Completed 

Prostate Cancer NCT03675451 
Phase 2; 
Recruiting 

IAb22M2C CD8 

Non-Small Cell Lung 
Cancer, Small Cell Lung 
Cancer, Squamous Cell 
Carcinoma Head and 

Neck, Melanoma, Merkel 
Cell Tumor, Renal, 

Bladder, Hepatocellular, 
Triple Negative Breast, or 

Gastroesophageal Cancer, 
Hodgkin’s Lymphoma 

NCT03107663 
Phase 1; 

Completed 

Rituximab CD20 
Lung disease, interstitial 

pneumonitis 
NCT02251964 

Phase 2/3; 
Completed 

GSK3128349 
(Albumin 
domain 
binding 

antibody) 

Albumin 
Drug related side effects 
and adverse reactions 

NCT02829307 
Phase 1; 

completed 

MPDL3280 PD-L1 
Breast cancer, bladder 

cancer and non-small cell 
lung cancer 

NCT02453984 
Phase 1; 
recruiting 

Pembrolizuma
b 

PD-1 
Non-small cell lung cancer NCT03065764 

Phase 2; active 
not recruiting 

Melanoma NCT02760225 Recruiting 

GSK2849330 HER3 Solid tumors NCT02345174 
Phase 1; 

Completed 

AMG211 HER3 
Advanced gastrointestinal 

cancer 
NCT02760199 

Phase 1; 
Completed 

RO5479599 HER3 

Metastatic and/or Locally 
Advanced Malignant 
HER3-Positive Solid 

Tumors of Epithelial Cell 
Origin 

NCT01482377 
Phase 1; 

Completed 

MMOT0530A Mesothelin 
Unresectable pancreatic 

cancer, platinum-resistant 
ovarian cancer 

NCT01832116 
Phase 1; 

Completed 

MSTP2109A STEAP1 Prostate cancer NCT01774071 
Phase 1/2; On-
going but not 

recruiting 
HuMab-5B1 
(MVT-2163) 

CA19.9 
Pancreatic Cancer; tumors 

that express CA19.9 
NCT02687230 

Phase 1; 
Recruiting 
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Table 3. List of 89Zr-immunoPET tracers that advanced to clinical trials 

1.1.3 Clinical Impact of Companion Diagnostics 

Understanding the molecular profile of a malignancy is necessary to determine 

treatment indications. A standard clinical strategy obtains tumor specimens through 

surgical or core needle biopsies in solid tumors for histopathological analyses. One can 

also analyze blood, urine, sputum, or cerebrospinal fluid, for circulating biomarkers(52). 

Biopsy-driven molecular profiling is often fraught with problems and limitations since 

access to the tumor sites may be difficult, often requiring complicated invasive 

procedures(53). Additionally, biopsies only sample a small portion of the global tumor, 

and analysis could miss important tumor characterizations. Tumor heterogeneity renders 

biopsies inconsistent, which can inadequately portray the presence and level of 

expression of the molecular signature; thus, requiring more tests to accurately 

characterize the tumor. Consequently, proper histopathological analysis of the 

receptor/antigen density may not be reflected, potentially eliminating a patient from 

benefiting from molecular-based treatments. Repeat biopsies are performed on patients 

to pathologically confirm malignancy to direct treatment decisions, but secondary biopsy 

results may not match the original pathology report(54). Moreover, multiple sequential 

biopsies are deemed impractical, unethical, and unsafe(55). In this regard, using a PET 

KN035 PD-L1 Advanced solid tumors NCT03638804 
Not yet 

recruiting 
ABT806 EGFR VIII Glioma NCT03058198 Recruiting 

Certolizumab TNF-α Rheumatoid Arthritis NCT03546335 
Phase 1; 
Recruiting 

Avelumab PD-L1 NSCLC NCT03514719 
Phase 1; Not 
yet recruiting 

RO5429083 CD44 Neoplasms NCT01358903 
Phase 1; 

Completed 
DS-8895a EphA2 Solid Tumors NCT02252211 Phase 1 
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probe to profile tumors could reduce cases of biopsy mismatch by looking at the entire 

tumor in an unperturbed, non-invasive setting.  

ImmunoPET may potentially provide an image-guided molecular diagnostic tool 

where pathological results may not be able to confirm and identify true positive disease. 

It detects the target antigen and quantitatively measures its expression. The imaging 

agent 18F-FDG has long been the standard PET tracer for detecting lesions, but it is 

limited to visualizing tumor metabolism. Moreover, weak tumor avidity or probe 

accumulation, non-specific tissue binding, and low metabolic lesions can pose problems, 

hindering detection(56). Pandit-Taskar et al. conducted identification of metastatic bony 

lesions using the anti-PSMA PET tracer, 89Zr-J591 and analyzed against lesions detected 

by 18F-FDG, bone scans (99mTc-medronic acid (MDP)) and computed tomography (CT). 

89Zr-J591 was able to detect four occult lesions, which were undetected by FDG and other 

imaging assays(57).  Out of 21 lesions, 19 were PSMA-positive as identified by 89Zr-J591. 

Of these select osseous lesions, two were biopsy-proven negative, but further 

assessment using magnetic resonance imaging confirmed one of the lesions as 

metastatic with a repeat biopsy confirming the malignancy.  

 Dose escalation studies using 89Zr-IAB2M (anti-PSMA minibody) in patients were 

conducted with 10 mg, 20 mg, or 50 mg of IAB2M (Fig. 3)(58). Differences in 

biodistribution were minor across all doses. Decreased blood pool activity coupled with 

an increased liver and GI tract accumulation was observed over time. The highest lesion 

uptake was seen in the 10-mg cohort with optimal biodistribution for imaging, as well as 

improved delineation of bony metastatic sites. Of note, increased doses of the cold IAB2M 
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resulted in slower serum clearance due to mass effects, although a non-significant 

decrease in liver uptake was noted in the 50 mg cohort.  

Figure 3. Confirmation of malignancy Differences in lesion detection in a metastatic 
prostate cancer patient using 99mTc‐MDP (bone scan) showed lesions in the ribs and 
vertebrae (A), 18F‐FDG PET scan displayed uptake in the femur and in the vertebrae 
(B), and 89Zr-IAB2M imaging identified more true‐positive lesions than 99mTc‐MDP and 
18F‐FDG (C). A comparison of serum clearance (D) and lesion uptake (E) between 
89Zr‐IAB2M (minibody) and 89Z-J591 (full length mAb cognate) over time. This research 
was originally published at JNM Pandit-Taskar N,Donoghue JA, Ruan S, et al. First-in-Human 
Imaging with 89Zr-Df- IAB2M Anti-PSMA Minibody in Patients with Metastatic Prostate 
Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake. J Nucl 
Med.2016;57(12):1858-1864. © by the Society of Nuclear Medicine and Molecular Imaging, 
Inc.  
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Perhaps the most impact immunoPET has contributed can be gleaned from the 

pioneering study investigating the biodistribution of 89Zr-trastuzumab in patients with 

metastatic BC (Fig. 4). Djikers et al. observed rapid hepatic excretion and low blood pool 

levels of the tracer in breast cancer (BC) patients who are naïve to trastuzumab with 

extensive HER2+ tumor mass in the liver; consequently, a false-negative readouts in 

distal metastatic sites was exhibited(59). The hepatic “sink” and poor uptake in metastatic 

lesions were attributed to slow extravasation of the drug through the vascular 

compartment compared to fast pharmacokinetic clearance of the mAb at low dose levels. 

In this study, a 10 mg and 50 mg loaded dose displayed terminal half-lives of 1.5 and 4.3 

days respectively; in contrast, tumor penetration and accumulation of 89Zr-trastuzumab 

occurred between 4-5 days. To gain perspective, administered therapeutic doses (4 

mg/kg loading plus 2 mg/kg maintenance dose) reached an average terminal half-life of 

~28.5 days when at steady state. Another important finding of this pivotal clinical trial was 

the importance of drug receptor occupancy. The fast pharmacokinetics of low 

trastuzumab doses led the authors to estimate drug/receptor occupancy by considering 

the amount of HER2 per tumor cell and the liver mass of the patient. The mass (1.2 kg) 

was obtained through image analysis of normalized PET/CT scans. The authors 

rationalized that a 50 mg dose of trastuzumab, equivalent to 2.0×1017 trastuzumab 

molecules (via conversion through Avogadro’s number) cannot fully saturate over a kg 

(1.2 kg) of tumor tissue based on the following approximations. A gram of tumor tissue is 

nearly comprised of ~1 × 109 cells. Each single cell, on average, possesses 2 million 

HER2 receptor sites. Thus, in the patient’s case, there are ~2.4 × 1018 HER2 receptor 

molecules present in the hepatic metastases, 10-fold higher than the 50 mg dose (1.2×103 



16 
 

 

g tumor tissue ×××× 1×109 cells/g ×××× 2×106 HER2 receptors/cell)(60,61). The majority of the 

dose (50 mg) accumulated in the extensive liver metastasis. This created the impetus to 

vary doses in patients who are naïve to trastuzumab versus those receiving this treatment 

with the former requiring more mAb administered (50 mg vs. 10 mg, respectively).  

 

Figure 4. Receptor Occupancy. 89Zr‐trastuzumab PET biodistribution in patients given 10 
mg of 89Zr‐trastuzumab (untreated) (A), 50‐mg 89Zr‐trastuzumab during concurrent 
trastuzumab treatment (B), and 10‐mg 89Zr‐trastuzumab during concurrent trastuzumab 
treatment (C) show different clearance rates in the blood pool (D), and should be considered 
when dosing patients in the clinic. This research was originally published at Clin Pharmacol 
Ther. Dijkers EC, Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zr-trastuzumab 
and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin 
Pharmacol Ther. 2010;87(5):586-592.  
 

Taken together, these pivotal biodistribution studies underscore the substantial 

dependence of mAb-based therapies (e.g. ado-trastuzumab emtansine (T-DM1)(62), 

pertuzumab(63), rituximab(64)) on pharmacokinetics for personalized dosing strategies. 

Current clinical protocol relies on body weight to determine drug doses administered. 

ImmunoPET CDx can potentially transform this practice by facilitating the assessment of 

effective patient-tailored doses based on the extent of tumor burden and mAb 

pharmacokinetics.  

A clinical study assessing 89Zr-rituximab as an imaging biomarker of CD20 in 

patients with relapsed or refractory diffuse large B cell lymphoma was correlated against 

pathologic findings (Fig. 5)(65). Biopsy-proven lesions (5/6 patients) showed 
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concordance with the tumor uptake of 89Zr-rituximab. A strong uniform staining of CD20 

was correlated with a high SUVpeak of 12.8 while a moderate, heterogeneous CD20 

expression corresponded to a tumor uptake of SUVpeak ~ 3.2-5.4. In certain cases, the 

pathology may lead to discordance with the immunoPET data. One patient demonstrated 

a biopsy-mismatch with CD20 PET displaying a positive tumor uptake (SUVpeak ~ 3.8) but 

negative pathology. The lesion was conclusively assessed as a true positive.   

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. ImmunoPET findings in relation to pathology. Concordance (A) and (B) 
discordance of 89Zr‐rituximab‐PET/CT (left) with CD20 pathology via IHC (right). Arrows point 
to lesions on the PET scan. This research was originally published at PLOS One Jauw YW, 
Zijlstra JM, de Jong D, et al. Performance of 89Zr-Labeled-Rituximab-PET as an Imaging 
Biomarker to Assess CD20 Targeting: A Pilot Study in Patients with Relapsed/Refractory 
Diffuse Large B Cell Lymphoma. PLoS One. 2017;12(1):e0169828 and modified for use 
under the creative commons license https://creativecommons.org/licenses/by/4.0/). 
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Another concrete example was presented by Ulaner et al. investigating HER2-PET 

in patients with HER2-negative primary BC (Fig. 6) (54). Of the 20 patients, 15% (3/20) 

were identified by 89Zr-trastuzumab as having unsuspected HER2-positive metastases 

with proven pathologies. In this study, a patient who was diagnosed with ER+/HER2- 

invasive ductal BC presented two years later with several bone lesions and was observed 

HER2-PET avid. Biopsy of the right ilium (SUV~ 5.9) confirmed metastases but with an 

ambiguous IHC score of 2+. Confirmation of the foci as true-positive was made using 

MSK-IMPACT assay. Of note, the authors emphasized that the intensity of the PET tracer 

on foci can indiscriminately assess true- from false-positive lesions. The study reported 

~30% (6/20) of the patient population was conservatively categorized as false-negative 

due to negative pathology even with foci avidity for the probe. The relatively high 

incidence of false-positive lesions was attributed to non-specific uptake of free Zr-89, 

particularly in osseous sites, which marginalizes the use of this nuclide for detecting bone 

metastases.   

Collectively, tumor heterogeneity can impact go/no-go treatment decisions with 

standard biopsy results rendering ambiguity to some extent. In these cases, immunoPET 

can reinforce and potentially resolve equivocal tumor pathology. However, confirmation 

of true-positive or -negative lesions as visualized by immunoPET needs to be 

meticulously validated.  
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Figure 6. PET readout gave true-positive results despite discordance with biopsy 
findings. PET readout gave true‐positive results despite discordance with biopsy findings. 
An ER+/HER2‐ invasive ductal BC patient with confirmed negative pathology in the primary 
lesion (A) but presented with HER2‐PET positive disease 2 years after primary diagnosis (B). 
Biopsy of the same site resulted in an ambiguous IHC score (2+) (C) Red arrow points to the 
lesion. MSK‐IMPACT assay confirmed the foci as true‐positive (D). This research was 
originally published in JNM. Ulaner GA, Hyman DM, Ross DS, et al. Detection of HER2-
Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using 89Zr-
Trastuzumab PET/CT. Journal of Nuclear Medicine : official publication, Society of Nuclear 
Medicine. 2016;57(10):1523-1528. ©by the Society of Nuclear Medicine and Molecular 
Imaging, Inc. 
 

A first-in-human study investigated by Lamberts et al. evaluated 89Zr-MMOT0530A 

in pancreatic tumors and metastases expressing mesothelin (MSLN)(66). Pre-treatment 

scans showed a mean SUVmax of 11.5 ± 5.6 lesions in the pancreas. Patients received 

the antibody-drug conjugate DMOT4039A (MMOT0530A bound to MMAE) followed by 

89Zr-MMOT0530A PET, 4 days post injection of the tracer. After treatment, 9 out of 11 

patients presented with stable disease, and two patients had progressive disease. Those 

with progressive disease showed an uptake in liver metastasis with the PET tracer. This 

suggests that 89Zr-MMOT0530A-PET can be used to visualize pancreatic cancer lesions, 
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as well as guide individualized antibody-based treatment with the ADC DMOT4039A.  

The landmark ZEPHIR study evaluated the predictive value of HER2 PET/CT in 

combination with FDG PET prior to T-DM1 treatment in patients with metastatic breast 

cancer (Fig. 7)(67). From the 55 patients enrolled, 16 (29%) were negative for HER2-PET 

while 39 patients were categorically classified as positive for HER2-PET/CT, depending 

on lesion heterogeneity. From the HER2-positive pool, 28 patients displayed an objective 

response (OR) after 3 cycles of T-DM1. In combination with post-treatment (after 1 cycle 

of T-DM1), a 100% positive predictive value (PPV) was achieved for HER2-PET imaging 

(72% PPV) in combination with early treatment FDG-PET imaging based on RECIST 1.1.  

Moreover, a time-to-treatment failure of ~ 11.2 months in the HER2-positive group and 

~3.5 months for the HER2-negative group were identified. A negative predictive value of 

88% in patients with low HER2-PET was deemed clinically significant.  To date, this is the 

first trial that used a three-prong strategy that employed imaging biomarkers for go/no go 

treatment decisions in the clinic. In conclusion, these clinical trials highlighted the potential 

of immunoPET to measure functional effects of targeted treatment, making this imaging 

technique a conceivable predictive and prognostic biomarker.  
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Figure 7. Predictive markers of treatment. Time‐to‐treatment failures were evaluated 
based on HER2‐PET/CT (A), early FDGPET/CT (B) and combination of both HER2‐ and 
FDG‐PET/CT (C). This research was originally published in Ann Oncol. Gebhart G, Lamberts 
LE, Wimana Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced 
HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine 
(T-DM1): the ZEPHIR trial. Ann Oncol. 2016;27(4):619-624. 
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1.1.4 Practical Considerations 

While immunoPET CDx may seem straightforward, several aspects of using this 

imaging technique need to be deliberated. The amount of dose administered and the 

interval between tracer administration and imaging acquisition warrant investigation to 

obtain an optimized contrast between lesions and background. In the case of 89Zr-

trastuzumab, the optimal imaging time for a ~37 MBq (50 mg) intravenous injection was 

observed between 4-5 days after injection(59). At this period, low blood pool activity and 

high tumor avidity was established. Imaging at longer periods >6 days can compromise 

the spatial resolution and image quality(59). At higher activities (~185 MBq/50 mg) 

administered, 89Zr-trastuzumab still generated high quality spatial resolution in images 

acquired between 5-6 days post-injection(68). The scan periods of 4-6 days depending 

on the dose are typical for other full-length mAb tracers in clinical trials(54,65,68,69). For 

smaller biologics-based tracers, 89Zr-IAB2M, for example, demonstrated shorter interval 

wait times with the best lesion to background ratio identified at 48 h p.i.(58) Safety profiles 

of 89Zr-labeled mAbs require careful assessment to limit radiation-related toxicities. Whole 

body effective doses reported in a number of early phase studies ranged from 0.41 

mSv/MBq for 89Zr-IAB2M(58), 0.87 ± 0.14 mSv/MBq for 89Zr-ibritumomab tiuxetan(70), 

0.47 mSv/MBq for 89Zr-trastuzumab(71) and 0.264 mSv/MBq for 89Zr-panitumumab(18) 

whereas FDG-PET(72) had a reported mean effective dose of 0.0199 ± 0.0032 mSv/MBq.  

 Engagement of immunoPET CDx as predictive imaging biomarkers in the clinic 

should continue to be explored in the clinical translational efforts toward precision 

medicine. It has already shown success in accurately profiling lesions at the molecular 

level when pathology is incorrect, discovering the density of targets available, and 
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determining the biodistribution of therapy before treating the patient. Sequential imaging 

in test-retest studies can provide a viable tool to appropriately dose patients, but should 

be used with caution during treatment regimens.  In a nutshell, immunoPET is still at its 

early stages of clinical development and will most likely require further standardization 

(i.e. streamlined SUV readout analysis, chemistry optimization) and validation through 

other molecular profiling tools. Once harnessed, its benefits can provide a powerful 

impact in patient management.  

1.2 Overview of Breast Cancer and Selected Subtypes 

Breast cancer (BC) is the most commonly diagnosed cancer in women, as well as 

the leading cause of cancer-related deaths(73). BC is typically referred to as a single 

disease, but it is clinically and molecularly heterogeneous, with many ways to categorize 

tumors. Still, clinical decisions rely on the assessment of three markers: the expression 

of the estrogen receptor (ER), progesterone receptor (PR) and the overexpression of the 

human epidermal growth factor receptor 2 (HER2)(73). The accurate assessment of 

these biomarkers assists in tumor classification and aids in appropriate treatment 

decisions. This section will mainly discuss HER2 and EGFR, molecular therapeutic 

strategies, and current diagnostic techniques. 

1.2.1 HER family  

The HER family is a group of transmembrane receptor tyrosine kinases (RTK) with 

four members: EGFR, HER2, HER3, and HER4 (Fig. 8). They are deregulated in many 

cancer subtypes, but are most commonly recognized in BC, lung cancers, and 

glioblastoma. In breast cancer, the EGFR gene is amplified in up to 5% of cancer cases, 

and the HER2 gene is amplified by up to 30%. They all share a common structure 
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comprising of an extracellular domain, a single transmembrane domain, and an 

intracellular domain with a conserved carboxyl terminal tail and catalytic kinase 

domain(74). A key function of their activity is within the dimerization portion of the 

extracellular domain(74). When a ligand binds the dimerization domain, it changes the 

conformation of the receptor allowing for dimerization and inter-receptor interactions, 

although HER2 is the exception, since it has no known ligand(74). Table 4 describes the 

HER receptor binding combinations. 

After dimerization, the receptors will phosphorylate their tails and activate 

downstream signaling cascades, such as the phosphatidylinositol-3-kinase (PI3K)/Akt 

pathway, the Janus kinase, and phospholipase C pathway; all which affect and promote 

cell proliferation, survival, and adhesion(75). Additionally, the Src pathway responds to 

upstream HER family signaling(75). The signaling potency of receptors is governed by 

the particular dimer pair. For example, heterodimers are more active than homodimers, 

with the heterodimer HER2-HER3 possessing the most signaling activity(76). 

Figure 8. HER family members and ligands. EGFR, HER2, HER3, and HER4 are all 
capable of dimerizing upon ligand binding and activation, except for HER2 which does not have 
a known ligand. 
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Dimers Ligands 

EGFR-EGFR EGF, EPG, TGFα, AR, BTC, HB-EGF, EPR 

EGFR-HER2 EGF, EPG, TGFα, AR, BTC, HB-EGF, EPR 

EGFR-HER3 EGF, EPG, TGFα, AR, BTC, HB-EGF, EPR, Nrg-1, Nrg-2 

EGFR-HER4 
EGF, EPG, TGFα, AR, BTC, HB-EGF, EPR, Nrg-1, Nrg-2, Nrg-

3, Nrg-4 

HER2-HER2 None 
HER2-HER3 Nrg-1, Nrg-2 
HER3-HER3 Nrg-1, Nrg-2 

HER3–HER4 BTC, HB-EGF, EPR, Nrg-1, Nrg-2, Nrg-3, Nrg-4 

HER4-HER4 BTC, HB-EGF, EPR, Nrg-1, Nrg-2, Nrg-3, Nrg-4 

Table 4. HER family member dimer pairs and activating ligands. 

1.2.2 EGFR 

The human epidermal growth factor receptor 1 (EGFR) or HER1 is a 

transmembrane protein comprised of an extracellular ligand binding domain, a 

transmembrane domain, and a cytoplasmic domain with kinase activity (Figure 9). When 

its ligands, such as EGF, transforming growth factor α (TGFα), or amphiregulin (AR) binds 

to the extracellular region, a conformational change on the EGF receptor is triggered that 

allows dimerization with another EGFR molecule, or a heterodimer with another RTK(77). 

Upon dimerization, EGFR kinase is activated, allowing for autophosphorylation and 

transphosphorylation of the intercellular tails that serve as docking sites for downstream 

proteins containing the Src Homology 2 (SH2) domain(77). The primary activated 

pathways include the RAS/RAF/MEK/ERK, PI3K/AKT, and PLCγ/PKC pathways, but 
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activation of Src tyrosine kinases have been documented(77). Additionally, EGFR can 

signal from different compartments of the cell including the nucleus. 

 The nuclear EGFR (nEGFR) signaling network has recently been implicated in 

cancer progression and response to EGFR-targeted therapies. nEGFR has been 

detected in cancer cells of primary tumor specimens, as well as other highly proliferating 

tissues(78–81). Additionally, high expression of nEGFR has been correlated with poor 

clinical outcome in patients with breast cancer, in particular(82), as well as in many other 

cancers(82,83).  Due to the many pathways that EGFR functions within, EGFR as a 

treatment target has been strongly pursued over the last 30 years(77). 

1.2.3 EGFR expression in TNBC 

Approximately 10-20% of global BC patients will be diagnosed with a tumor lacking the 

three targetable biomarkers, ER, HER2, and PR, and are considered “triple negative” 

(84). TNBC is a more aggressive BC subtype, disproportionately affecting premenopausal 

African or Hispanic women, and accounts for 25% of BC deaths(85). TNBC patients have 

a poorer outcome compared to other BC subtypes presenting with known molecular 

targets, and many of these tumors must be treated with chemotherapy as the mainstay 

in the neoadjuvant, adjuvant, and metastatic setting(85). Yet despite promising results, 

there have been cases of increased toxicity without improvements to survival(86). This 

may be in part due to the fact that BC is a heterogeneous disease with complex variances 

in genes, epigenetics, and protein expression within each individual’s tumor(87). Due to 

this complexity, efforts have been made to classify tumors into subgroups based on 

homogeneous patterns of sensitivity to other therapies(88). 
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Figure 9. EGFR trafficking to the nucleus. Upon ligand binding and activation, EGFR 
homodimerizes and induces transautophosphoylation. This causes internalization to 
endocytic vesicles. EGFR then undergoes translocation through the Golgi apparatus and 
into the endoplasmic reticulum outside of the nucleus. EGFR then moves through the 
outer and inner nuclear membranes through the nuclear pore complex. Finally, EGFR 
interacts with Sec61 and is released from the ER into the nucleus. 
 

Lehmann and colleagues have defined six new TNBC subtypes based on gene 

expression profiles: basal-like 1, basal-like 2, mesenchymal, mesenchymal stem-like, 

immunomodulatory, and luminal androgen receptor(89). Within these subtypes, there is 

further stratification based on gene mutations, which lead to possible actionable 
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pathways, such as PARP inhibitors, anti-angiogenic antibodies and inhibitors, PI3K and 

mTOR inhibitors, AKT inhibitors, and immunotherapy, to name a few(90). One of these 

actionable pathways has been shown to be EGFR. In one study, EGFR was 

overexpressed in 89.47% of cases of invasive BC(91). Similar results were also observed 

in a study among 151 TNBCs where 27% of cases were scored as 3+ for EGFR and 37% 

were scored as 2+ by IHC, confirming high EGFR expression(92). Therefore, targeting 

EGFR in TNBC is a critical need. 

1.2.4 EGFR targeted therapies in BC  

To date, two successful approaches towards targeting EGFR in cancer therapies 

have been explored. The first approach involves targeting the kinase activity of the 

receptor through the use of tyrosine kinase inhibitors (TKIs) that bind to the ATP-binding 

sites of the receptor. There are currently three FDA approved TKIs – erlotinib (Tarceva®), 

gefitinib (Iressa®), and lapatinib(Tykerb®)(93). A second approach uses mAbs to target 

the extracellular domain of EGFR and block natural ligand signaling and dimerization, 

which are outlined in Table 5.  

  



29 
 

 

Drug Treatment 
Type 

Clinical 
Trial 

Phase/ 
clinicaltrials.gov 

identifier 

Notes 
(M/ = approved) 

Panitumumab 
(Vectibix®) 

Human 
mAb 

Breast 
II/NCT02593175 
II/NCT01036087 
II/NCT01009983 

M/2006 – 
colorectal 

Malignant 
neoplasm 
of Breast 

II/NCT02876107 

Metastatic 
Breast 

II/NCT00894504 

Cetuximab 
(Erbitux®) 

Chimeric 
mAb 

Breast 

II/NCT00232505 
II/NCT00275041 
II/NCT00463788 
II/NCT00633464 
II/NCT00600249 
I/NCT03319459 
I/NCT02627274 
I/NCT02124148 

M/2004 - 
colorectal 

Laprituximab 
emtansine 

(IMGN-289) 

Chimeric 
mAb 

Solid 
Tumors 

I/NCT01963715 
(terminated) 

Conjugated to 
drug DM1 

Necitumumab 
(Portrazza®) 

Humanized 
mAb 

Solid 
Tumors 

II/NCT01606748 M/2015 - NSCLC 

SCT-200 
Humanized 

mAb 
Breast II/NCT03692689  

Anti-EGFR-
immunoliposome-

dox 

EGFR-
targeted 
liopsome 

Breast II/NCT02833766  

Gefitinib 
(Iressa®) 

 

Small 
molecule 
inhibitor 

Breast 
II/NCT01732276 
II/NCT00739063 

M/2015 - NSCLC 

Poziotinib 
Small 

molecule 
inhibitor 

Metastatic 
Breast 

II/NCT02544997  

Lapatinib 
(Tykerb®) 

Small 
molecule 
inhibitor 

Breast II/NCT00820924 
M/2007 – HER2+ 

Breast 

Erlotinib 
(Tarceva®) 

Small 
molecule 
inhibitor 

Breast II/NCT00503841 M/2004 - NSCLC 

 

Table 5. EGFR targeted treatments for BC. 
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Cetuximab was FDA approved in 2006 for the treatment of colorectal cancers in 

the metastatic setting(94). It is a chimeric monoclonal antibody that targets domain II of 

EGFR with a higher binding affinity than natural ligands transforming growth factor (TGF) 

and EGF, effectively blocking the ligand-binding domain and preventing dimerization(77). 

Similarly to trastuzumab, cetuximab is capable of antibody-dependent cell-mediated 

cytotoxicity (ADCC) and complement-dependent cytotoxicity(95,96).  Cetuximab can also 

block EGFR phosphorylation and promotes internalization of the receptor which reduces 

proliferation(97). Upon cetuximab binding to EGFR, phosphorylation will be induced 

which can trigger downstream responses such as aberrant growth signals or 

apoptosis(98,99). Due to its efficacy, it has been combined with many other treatments 

such as chemotherapy and radiotherapy, resulting in tumor depletion in mice, and 

improved chemotherapy efficacy in humans(100). It has limited dose toxicities, with only 

about 10% of patients reporting a severe toxicity(101). 

Surprisingly, clinical trials focusing on EGFR-TKIs and mAbs in TNBC have been 

disappointing, potentially due to resistance mechanisms(77). These pathways of 

resistance include the angiogenesis pathway, increased EGFR degradation, 

dysregulation of EGFR internalization, oncogenic shift (increased expression of other 

HER family members), constitutive activation, and increased expression of ligand growth 

factors(77).  

 Cetuximab as a monotherapy has shown dismal response rates in TNBC(102). In 

a phase II clinical trial, patients who received one or fewer chemotherapy regimens were 

randomly assigned to cisplatin plus cetuximab, or cisplatin alone. While cetuximab alone 

did not result in an increased overall response rate, its combination with cisplatin doubled 
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objective response rate, suggesting there is hope for cetuximab in TNBC(102).  

In another phase II clinical trial on metastatic TNBC patients, Carey et al. had 

patients receive cetuximab alone or with carboplatin after progression. Overall response 

rates were 6% with cetuximab alone, or 17% with combination therapy, and EGFR 

expression as a single marker did not provide a significant correlation with clinical 

response(103). Due to its failure to yield improved response rates using EGFR-targeting 

mAbs without prior EGFR profiling, it has been suggested to stratify patients first by their 

expression of target biomarkers before they undergo treatment, and has been explored 

in colorectal cancer with some success. 

Due to its success in other cancers, investigations have been made to find 

biomarkers to better stratify patients and predict responses. Most obvious, EGFR 

expression levels were hypothesized to correlate with cetuximab response. 

Unfortunately, early clinical trials failed to find a correlation between EGFR expression 

and clinical response to EGFR therapy in BC(104). This finding led to the belief that IHC-

based EGFR measurements are not robust predictors for cetuximab therapy, and they 

moved onto other methods, such as EGFR copy number and mutation status. So far, only 

KRAS mutations(105), BRAF mutations(106), and IGF1R expression(107) status have 

correlated with response to cetuximab therapy, which none of these biomarkers have 

been implemented in TNBC, highlighting a need for an approved method to monitor 

EGFR-therapy response rates. One notable resistance pathway to cetuximab treatment 

in TNBC was highlighted as the subcellular localization of EGFR (108). 

1.2.5 HER2-positive BC 

The HER2 receptor is amplified or overexpressed in about 20% of all diagnosed 
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BCs(109). Albeit significant efforts to develop anti-HER2 agents, there is still a significant 

number of patients with HER2+ BC that progress within 5-10 years of treatment(109). 

The value of HER2 as a prognostic factor is controversial. In 88% of early studies looking 

at over 40,000 cancer patients, harboring the HER2 amplified gene or HER2 protein 

overexpression was a negative prognostic factor for traditional chemotherapy, 

independent of other prognostic variables(109). However, the advent of HER2 specific 

treatments, such as the monoclonal antibody trastuzumab (Herceptin®), has improved 

treatment outcomes for patients in the adjuvant and metastatic setting(102). Trastuzumab 

has been tested in many major clinical trials for patients with HER2+ breast cancer, with 

the median overall response rates ranging from 15.6-25.1 months(109). 

1.2.6 Current companion diagnostics for HER2-positive BC 

Due to the prognostic value of HER2-receptor presence and response to HER2-

targeted treatment, it is now recommended that all primary, metastatic, and recurrent BC 

be tested for HER2(110,111). Currently, there are many FDA-approved in vitro 

companion diagnostics for HER2 overexpression, including five immunohistochemistry 

assays (IHC), three tests to quantify HER2 gene copy numbers through fluorescence in 

situ hybridization (FISH), one chromogenic in situ hybridization (CISH), and a dual in situ 

hybridization (ISH) assay(109). These in vitro diagnostic techniques require an invasive 

procedure of collecting sample tissue from a patient. Due to tumor heterogeneity, the 

sample collected may not fully represent the entire tumor microenvironment, potentially 

yielding inconclusive results. Additionally, tissue can only be collected from a patient with 

accessible tumors, limiting the utility for hard to access cancers.  
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IHC staining is a semi-quantitative, but subjective, method for determining HER2 

status, since HER2 is expressed in all breast epithelial cells. Results are scored from 0 

to 3+, which measures the amount of HER2 protein present in the cell, with a score of 3+ 

called “HER2 positive”(112). Although IHC is an available, low cost, and easy method to 

determine HER2 status, its interpretation is subject to reader bias(112). For example, 

comparing HER2 overexpression measured by IHC on-site and HER2 amplification 

measured by FISH at a reference lab revealed low concordance rates (66-87%)(112). 

FISH, on the other hand, is more reliable and sensitive, but it requires special equipment 

and training to appropriately perform the test(113). Additionally, HER2 expression can 

vary between primary and metastatic sites, making it difficult to characterize each 

individual lesion(114,115).  

On the other hand, fluorescence in situ hybridization (FISH) testing is an 

automated slide-based DNA-hybridization using fluorescent probes. It is a more objective 

scoring system, although it is an expensive test and requires specialized microscopes. 

Chromogenic in situ hybridization (CISH) is a similar test where instead of a fluorescent 

probe, a chromogenic probe is used. These tests are binary, providing a “positive” or 

“negative” HER2 score, and not a numeric value.  

Since the advent of immunoPET, efforts have been made to use imaging as a 

means to characterize breast lesions with trastuzumab as a tracer. In a study by 

Dehdashti et al., women with HER2+ and HER2- BC underwent a PET/CT scan after 

administration of a 89Zr-labeled HER2-specific antibody (trastuzumab)(116). The PET/CT 

uptake was correlated to HER2 status determined by IHC or FISH of a primary or 

metastatic lesion. They found that 88.2% of HER2+ patients had a positive PET/CT scan, 
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and 93.7% of HER2- patients had a negative PET/CT scan. This translated to a positive-

predictive value of 83.3% and a negative predictive value of 50% in differentiating HER2 

positive from negative tumors. They conclude that 89Zr-trastuzumab has the potential to 

characterize the complete tumor burden in BC patients for HER2 status, obviating the 

need for multiple invasive tissue samples. Additionally, it addresses the issue of 

interpatient heterogeneity of HER2, and can further aide in treatment decisions. 

1.2.7 HER2-targeted treatment strategies  

At time of writing, there are five FDA-approved targeted therapies for HER2+ 

disease, including monoclonal antibodies (mAb), antibody-drug conjugates (ADC), and 

small molecule inhibitors (Table 6).  

Drug Type Target Mechanism 

trastuzumab 
(Herceptin®)(117) 

mAb 
Juxtamembrane 

domain IV Cell intrinsic effects 
Antibody dependent cell-

mediated cytotoxicity 
pertuzumab 

(Perjeta®)(118) 
mAb 

Dimerization 
domain II 

ado-trastuzumab 
emtansine 

(Kadcyla®)(119) 

Antibody-Drug 
conjugate 

Juxtamembrane 
domain IV 

Binds to HER2 like 
trastuzumab and delivers 

emtansine 
lapatinib 

(Tykerb®)(120) 
Small molecule 

inhibitor 
EGFR/HER2 Bind to the ATP binding 

cleft in tyrosine kinase 
domain to block catalytic 

activity 
neratinib 

(Nerlynx®)(121) 
Small molecule 

inhibitor 
EGFR, HER2, 

HER4 
 

Table 6. FDA approved HER2-targeted treatments for HER2+ BC 

Trastuzumab (Herceptin®) is a humanized monoclonal antibody targeted against 

HER2. It was approved in 1998 for the treatment of metastatic HER2+ disease, and was 

the first anti-HER2 agent on the market. In 1998, the “pivot trial”, a randomized phase III 

trial testing chemotherapy alone versus chemotherapy and trastuzumab, showed a 

median overall survival of 25.1 months in patients who received trastuzumab, and 

impacted the FDA approval of trastuzumab for metastatic breast cancer that same 
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year(109).  It has radically improved outcomes in HER2+ breast cancer patients, with a 

study in 2014 of 4,000 patients showed that adding trastuzumab to chemotherapy 

improved overall survival from 75.2% to 84%, and is listed as an essential medicine by 

the world health organization(122,123). Its mechanism of action is not fully understood, 

but it is thought to evoke antibody-dependent cellular cytotoxicity (ADCC), disrupt 

downstream signaling pathways, inhibit cell cycle progression, and act as an 

antiangiogenic agent upon binding to HER2(124). Early clinical response rates ranged 

from 12-68% response, with the best responders observed in patients with an IHC or 

FISH score of 3+. The addition of trastuzumab to other therapies increased progression 

free survival by 2-3 months(124). The success from these trials and the many others has 

resulted in a 1 year-long cycle of adjuvant trastuzumab as standard of care for HER2+ 

tumors, as well as provided proof-of-concept that targeting HER2 would improve patient 

outcomes. 

The phase III study comparing lapatinib (Tykerb®), an oral TKI of HER2 and 

EGFR, to capecitabine in patients with HER2+ metastatic breast cancer improved 

progression free survival(125), and, therefore led to its FDA approval in 2007. Recently, 

two antibody-based therapies and a small molecule TKI were FDA approved: 

pertuzumab, TDM-1 and neratinib. Pertuzumab (Perjeta®) prevents the pairing of HER2 

and HER3; the results from the phase III CLEOPATRA study demonstrated a synergistic 

effect achieved when pertuzumab was combined with trastuzumab and docetaxel with 

patients showing improved progression free survival(126). TDM-1 (Kadcyla®), approved 

in 2013, links a cytotoxic agent to trastuzumab, specifically delivering emtansine to 

HER2+ tumors. A randomized phase III EMILIA study demonstrated improved overall and 
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progression free survival of TDM-1 compared to capecitabine plus lapatinib(127). Finally, 

neratinib (Nerlynx®) is an oral TKI that inhibits EGFR, HER2, and HER4, approved in 

HER2+ patients based on the exteNET phase III clinical trial(128). A phase III trial of 

women with stage 1-3 HER2+ BC who previously completed trastuzumab therapy, 

patients were randomized to neratinib (Nerlynx®) or placebo. Those who received 

neratinib had significantly improved 2-year disease free survival. 

More new HER2 agents or potential combination therapies either under preclinical 

development or FDA-approved for other HER2+ cancers can be potential treatments in 

BC in the future(129). HER2 antibodies MGAH22, MCLA-123, and ZW-25, and ADCs 

SYD 985 and DS-8201 are all past phase I clinical trials. New TKIs tucatinib, poziotinib, 

and pyrotinib (Nerlyxn®), are all through phase II trials.  

Even with the diverse availability of treatments, because of HER2 mutations 

(intrinsic and acquired) causing drug resistance, there are differences in sensitivity 

between patients and therapies. Changes in downstream pathways or activation of 

parallel oncogenic pathways can potentially contribute to resistance. Particular attention 

should be given to identifying acquired resistance mechanisms to help optimize HER2 

directed therapies(130). 

1.3 Mechanisms of resistance to treatment in BC 

In hormone receptor positive BC (ER+ and PR+), endocrine therapy is the 

mainstay(131). Endocrine therapy includes the use of selective ER modulators (SERMS) 

which act as tissue specific estrogen receptor agonists and antagonists. Selective ER 

down regulators (SERDs) competitively bind ER with a greater affinity than SERMs, and 

reduce transcription of ER regulated genes. Aromatase inhibitors block estrogen 
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synthesis and prevent their growth-stimulating effects. Development of resistance is 

thought to be due to genetic factors (ESR1, CCDC170 mutations, for example), loss of 

ER expression, crosstalk between compensatory receptors (HER2, EGFR)  and 

epigenetic factors(132). For TNBC, first line neoadjuvant platinum-based or taxane 

chemotherapy is the mainstay, and comes with its own set of challenges. Most often, 

resistance stems from an increase in the cell’s ability to efflux the drug, which results in 

decrease net intracellular accumulation(133). In HER2+ BCs, resistance pathways can 

develop after trastuzumab (Herceptin®) therapy from upregulation and compensation 

from other HER family members, epitope masking, and enzymatic cleavage of the 

trastuzumab binding site(134). Additionally, cells can develop adaptive responses by 

down-regulating tumor suppressors PTEN and PI3K/Akt(135,136), or through alteration 

of downstream pathway signaling, through the PTEN/PI3K/AKT/mTOR pathway, and 

even the Src pathway(137).  

1.3.1 Overview of Src 

Src is expressed in all normal, mammalian cells and is classified as a proto-

oncogene(138). The Src gene produces a protein produced called Src that is a member 

of the Src family kinase (SFK) group, which is a group of non-receptor tyrosine 

kinases(138). SFKs are involved in many cellular processes and their aberrant signaling 

has been associated with tumor promoting events, such as cell proliferation and 

survival(138). The most studied mechanism of Src function is its interaction with RTKs, 

such as EGFR and HER2 through its SH2 and SH3 domains(139). Src also plays a role 

in tumor metastasis, with roles in regulating the cytoskeleton, cell migration, cell-cell 
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adhesions, and invasion (Fig. 10)(140).  

Pre-clinically, Src appeared as a promising therapeutic for cancer, although 

efficacy of single agent Src inhibitors in solid tumors has not shown promise in Phase II 

clinical trials(139). This is in part due to its activation in many resistance pathways. In 

particular, SFKs are an important component in chronic myelogenous leukemia (CML) 

due to their direct interaction with BCR-ABL(141). Src is shown to be involved in steroid 

receptor signaling and endocrine resistance(142). Src activation is observed in 40% of 

ER-positive (143) and in up to 70% of primary human BC with concomitant HER2 or 

EGFR expression(144). The synergism between EGFR, ER, and Src facilitates hormone 

signaling and confers resistance to targeted therapies(145).  The mechanism of 

resistance most important to this body of work is the interaction between Src and the 

RTKs EGFR and HER2. It has been previously reported that in many cancers, targeting 

SFK dramatically enhances the efficacy of anti-RTK therapies(146). 
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Figure 10. Src signaling and downstream pathways. Src interacts with many RTKs 
and facilitates their downstream signaling to promote cell survival. Major Src downstream 
activation includes: (i) AKT activation and cell proliferation, (ii) stat3 activation and 
transcription upregulation, (iii) disruption of cell-cell junctions through p120-catenin, and 
(iv) stabilization of adhesion through FAK phosphorylation. This figure was reprinted with 
permission from Trends in Pharmacological Sciences. Targeting Src family kinases in 
anti-cancer therapies: turning promise into triumph, Siyuan Zhang and Dihua Yu. 
2012;33(3):7. 
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1.3.2 Src inhibitors  

Due to its role in promoting tumorigenesis, there has been extensive developments 

of small molecule inhibitors targeting Src dysregulation(138). Dasatinib (Sprycel™, 

Bristol-Meyers Squibb) was the first FDA-approved Src/ABL inhibitor for the treatment of 

CML(147). Other inhibitors include saracatinib (AZD0530, AstraZeneca) and bosutinib 

(SKI-606, Wyeth)(148). Src inhibitors typically have low toxicity, but as a monotherapy 

they have dismal response rates in solid tumors(139). Dasatinib in particular has shown 

< 25% clinical benefit in phase II trials in BC, prostate cancer, and melanoma(149). 

Additionally, targeting Src though dasatinib failed to show a significant clinical benefit in 

metastatic colorectal(147) and small cell lung cancer(150). Saracatinib additionally failed 

to show benefit in prostate(151), pancreatic, and metastatic head and neck cancer(95), 

gastric adenocarcinoma(152), and ER/PR negative metastatic BC(153). Not surprisingly, 

no Src inhibitors have been FDA-approved for treating solid tumors as a 

monotherapy(139). 

For the past 30 years, Src monotherapy has lacked efficacy, but recently, new 

studies have provided a foundation for future clinical trials(139). One of the challenges in 

developing Src inhibitors is the lack of biomarkers available for Src-targeted therapy, 

making patient selection and stratification difficult. Previous clinical trials were performed 

on patients unselected for Src activation. This led to poor treatment outcomes, warranting 

re-examination of the Src activation pathway in the hopes of a target for subsequent 

clinical trials. In a recent study of 23 colorectal cancer cell lines, Src pathways activation 

was observed and correlated with enhanced sensitivity to Src inhibitor saracatinib, 

supporting the hypothesis that looking into Src pathway activation is beneficial for 
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improved treatment outcomes(154). In a trial of pancreatic cancer patients, Src activation 

was observed and noted. They found that patients with Src activation were more sensitive 

to dasatinib, as compared to their non-activated counterparts, and furthermore, those 

patients with Src localized to the cytoplasm had increased survival(155). These results 

highlight Src activation as a molecular target and are looked into more thoroughly in the 

next sections. 

1.3.3 Src hyperactivation and its role in trastuzumab-resistance in HER2+ BC 

Despite its success in HER2+ BC, some patients who receive trastuzumab will 

relapse. Some proposed mechanisms of resistance have included HER2 forming 

heterodimers with other family members and effectively blocking trastuzumab binding, an 

increase in expression of HER2, and shedding of the extracellular domain leaving the 

form of the receptor (p95) which does not bind to trastuzumab but retains kinase 

activity(156).  

HER2 directly associates with Src as it activates its downstream signaling and 

stability(157). It has been shown that Src signaling is up-regulated in trastuzumab 

resistant tumors(157), as well as de novo trastuzumab-resistant cells(158). A particular 

oncogenic variant, HER2Delta16, induces Src function and activates Src to confer 

trastuzumab resistance(159). Src inhibition has been shown to sensitize trastuzumab-

resistant BC to trastuzumab(158). One study has shown that combination treatment with 

saracatinib and an anti-HER2 antibody (clone H2-18) produces a greater antitumor effect 

on trastuzumab-resistant (PTEN wt) breast cancer(160). An additional study has shown 

that cells overexpressing wild-type Src were resistant to trastuzumab(158). Clinically, 

there is a correlation between phosphorylation of Src at tyrosine reside 416 (Y416) and 
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total Src abundance (p = 0.025), and patients with higher levels of phospho-Src in tumors 

had a lower clinical response rate and progressive disease after trastuzumab(158).  

1.3.4 Src and its role in EGFR-overexpressing cancers 

Src activation has been shown to promote resistance in anti-EGFR therapies. 

Particularly, Src is responsible for the full activation of EGFR(161), and it physically 

associates with activated EGFR(162). Once Src binds to EGFR, EGFR undergoes a 

conformational change. This leads to autophosphorylation at the tyrosine residue 416 

(Y416) and subsequent transient activity, which leads to phosphorylation of downstream 

targets, such as EGFR on tyrosine 845 (Y845)(144). Y845 is situated in a conserved 

position within the activation loop of EGFR, and is necessary for full activity of the 

receptor(163). It has been discovered that Src can directly phosphorylate EGFR on Y845, 

strengthening the communication between the two proteins(164). This residue also acts 

in concert with the redistribution of EGFR from the membrane to intracellular vesicles, 

and has been suggested as a marker of drug response in NSCLC, breast, and colorectal 

cancers(164). 

EGFR and Src are shown to be upregulated in a majority of lung, colorectal, and 

pancreatic cancers(165).  Additionally, Src is commonly activated in EGFR-

overexpressing cells and its activation enhances EGFR signaling of downstream PI3K-

Akt pathway(158). In one study, it was reported that cells with acquired cetuximab 

resistance have increased Src activity, potentially due to its cooperation with EGFR and 

resultant signaling to HER3 and PI3K/Akt. A decrease in HER3 phosphorylation and 

PI3K/Akt signaling is observed when cetuximab-resistant cells are treated with dasatinib, 

which was coupled with a decrease in proliferation and survival(166). In a different study 
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of breast cancers expressing EGFR, HER2, and HER3, dasatinib treatment resulted in 

apoptosis and growth inhibition in a dose dependent manner(167). This was 

accompanied by decreased EGFR and Src phosphorylation, suggesting that these two 

RTKs are prime targets for BC therapy. In non-small cell lung cancer (NSCLC) in 

particular, Src is highly active and associated with cetuximab resistance(166). Most 

notably, it has been shown in a non-small cell lung cancer cell line H226, that cetuximab-

resistance leads to overexpression of EGF, and concomitant nuclear translocation of 

EGFR mediated by Src. Treatment of these resistant cells with dasatinib resulted in loss 

of nuclear EGFR, increased membrane EGFR expression and cetuximab re-

sensitization, further supporting the hypothesis that EGFR nuclear compartmentalization 

impacts cetuximab efficacy(168). Additionally in colorectal cancer, dasatinib re-sensitized 

cetuximab-resistant tumors to cetuximab(169).  

EGFR localization, in particular, has been investigated as a potential resistance 

mechanism in breast cancer. Extensive reports have shown EGFR family members being 

shuttled from the plasma membrane to the nucleus, with nEGFR expression 

demonstrating poor clinical outcomes in breast cancer(80,81,137,170). nEGFR acts as a 

transcription factor, interacting with STAT3 and E2F1. When in the nucleus, EGFR is 

associated with gene transcription, DNA repair, and radioresistance. 

1.4 Immune oncology 

Despite significant advances in BC chemo- and molecular therapies, a proportion 

of patients with localized disease still remain refractory to treatment, or suffer relapse. 

Furthermore, those with metastatic disease are rarely cured. In BC, it is believed that 

immunosuppression and inflammation become induced and contribute to 
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progression(171). Particularly in TNBC, BC gene profiling has demonstrated patterns of 

immune gene activation(172). In approximately 50% of HER2+ BCs inflammatory 

signatures are observed which correlate with improved outcomes(173). Additionally, high 

levels of tumor infiltrating lymphocytes (TILs) have been associated with improved 

response to neoadjuvant chemotherapy(174). Due to these observations, recent 

advances in immunotherapy highlight the potential to harness the immune system for 

improved tumor responses in the adjuvant and monotherapeutic space (175). 

The immune system can impact tumor growth and prevention through the 

immunoediting process. This is comprised of three stages called elimination, equilibrium, 

and escape. In the elimination phase, the tumor is destroyed by inflammation, infiltration 

of effector cells, and production of tumor-inhibiting cytokines(176). The escape phase is 

characterized by sustained inflammation comprised of immunosuppressive cells and 

soluble molecules(177). In equilibrium, the tumor is neither proliferating nor dying off, and 

can turn into the other two stages based on the immune response. 

1.4.1 The immune pathway 

The primary cells responsible for killing breast tumor cells are CD8+ CTLs and 

natural killer (NK) cells. Induced CTLs target specific antigens expressed on BC cells, 

and their infiltration into the tumor microenvironment has been associated with improved 

outcomes, particularly in the TNBC or basal subtype(178). Combining immunotherapy 

and chemotherapy has also been shown to enhance the activity of CTLs and is coupled 

with enhanced antitumor effects(179), and the positive effect of vaccines has been shown 

to be achieved through CTL-mediated recognition and destruction of breast cancer(180). 

NK cells, on the other hand, are cells of the innate immune system that kill tumors cells 
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unrestricted by major histocompatibility complex (MHC) class(69). Decreased NK activity 

has been observed in patients with familial breast cancer, stage IV breast cancer, and 

during breast cancer progression. When profiling gene expression in breast cancer-

associated stroma, it has been found that CTL and NK associated genes were enriched 

and predictive of better outcomes. Overall, it has been suggested that CD8+ T cells and 

NK have strong antitumor activity against BC(181).  

It is now accepted that BCs have an infiltration of leukocytes, and this can either 

promote tumorigenesis or elimination(182) (Fig. 11), and in BC these TILs have been 

established as a putative biomarker of treatment prognosis(183). There have been many 

retrospective studies published that suggest an association between pathologic complete 

response to neoadjuvant treatment and the presence of TILs in solid tumors, potentially 

representing a robust and reproducible predictive factor(184).  Particularly, a decrease in 

regulatory T cells confers response to treatment, and restores anticancer responses in 

non-responders(184). This hypothesis has been supported by studies reporting that  

some patients treated with high-dose interleukin-2 (IL-2) show durable responses and an 

increase in response to TIL therapy, where others do not(185). More recently, the 

inhibition of PD-1 alone results in response rates of 20-30% of patients, but upon 

combination with CTLA-4 blockade, this response rate increases to 57%(186). The 

varying response rates between patients has been hypothesized to be due to TILs 

presence, with higher PD-1 responding patients having more CD8+ T cells in their tumor 

bed(187). Therefore, ways to monitor presence of TILs before selecting a treatment type 

is of upmost importance. 
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Figure 11. TIL infiltration and its mechanism for eliminating tumors. Tumors in the 
elimination phase (left) have an influx of active dendritic cells, NK cells, and T cells which 
produce cytokines and signals to stop tumor proliferation. In the escape phase, these 
infiltrates are now engaged with the tumor environment, and the tumor is able to 
proliferate. This figure was reproduced with permission under the creative commons 
license from: http://www.frontiersin.org/files/Articles/51138/fonc-03-00197-
HTML/image_m/fonc-03-00197-g001.jpg 
 
1.4.2 FDA-approved and emerging immunotherapies 

Cancer immunotherapy is defined as the utilization of naturally derived or 

synthetically generated compounds to enhance or stimulate the immune system. The 

main types of immunotherapy include adoptive T-cell transfer, viruses, monoclonal 

antibodies, and cancer vaccines(175). During adoptive T-cell transfer, a patient’s own T-

cells are genetically engineered to recognize cancer cells. Oncolytic viruses are 

specifically modified viruses that avoid normal tissue and recognize a tumor associated 

antigen. Once inside the cancer cell, the virus will replicate and then rupture the tumor 

cell. As of writing, talimogene laherparepvec (T-VEC) is the only approved treatment of 

this kind, for melanoma(188). Monoclonal antibodies are immune cell manufactured 
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proteins that specifically recognize an antigen on a target cell. These antibodies will 

suppress the activity of a cancer-associated protein, or kill the cancer cell entirely(189). 

Finally, vaccines will expose the immune system to a specific antigen for prevention 

(prophylactic) or treatment(190). Once the immune system recognizes the vaccinated 

antigen on the cancer cell, they will facilitate its elimination. In this work, monoclonal 

antibodies and vaccines with respect to BC treatment will be discussed in further depth. 

 Targeted monoclonal antibodies are a mainstay in BC immunotherapy since the 

late 1990s with the advent of trastuzumab for HER2+ BC; there are a total of 32 FDA 

approved antibodies as of 2017(191). The goal of monoclonal antibodies is to target 

tumors and (a) directly kill the tumor, (b) switch the immune system to attack the tumor, 

(c), attract immune cells to the tumor microenvironment, (d) decrease tumor 

vascularization, and (e) inhibit migration(191). Currently, antibodies used in treatment are 

either used alone or in combination with cytotoxic chemotherapy, radiotherapy, inhibitor 

molecules, other antibodies, or vaccines.  

The most common use of mAbs is in the context of immune checkpoint inhibitor 

blockade, targeting CTLA-4, PD-1, or PD-L1(192). When the antibody binds to each of 

these molecules, it inhibits receptor binding; thus, blocking the immune checkpoint 

pathways from getting activated. In the case of CTLA-4 blockade, it prevents activation 

of T cells, whereas the PD-1 and PD-L1 blockade affects tumor and T-cell interactions. 

The FDA-approved immune checkpoint inhibitors are: ipilimumab (Yervoy®, anti-CTLA-

4), pembrolizumab (Keytruda®, anti-PD-1), nivolumab (Opdivo®, anti-PD-1), 

atezolizumab (Tecentriq®, anti-PD-1), avelumab (Bavencio®, anti-PD-L1), durvalumab 

(Imfinzi®, anti-PD-L1). These immunotherapies are approved for many disease types, 
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including melanoma, NSCLC, and metastatic RCC(192). In 2017, the FDA approved 

pembrolizumab (Keytruda®) for adult and pediatric patients with unresectable or 

metastatic, microsatellite instability high or mismatch repair deficient solid tumors that 

have progressed following prior treatment, making it the first FDA-approved tissue 

agnostic drug, meaning that the drug is prescribed based on the presence of target 

biomarker, and not due to tumor type(193). Due to the success achieved in other tumors 

targeting checkpoint inhibitors with monoclonal antibodies, it is being tested in breast 

cancer as well through many clinical trials (Table 7). 

Table 7. List of checkpoint inhibitor antibodies currently in clinical trials and their 
BC subtype. 

Historically, vaccines have been developed for disease prevention, and have 

focused on targeting B cell immunity and producing a lasting innate immune 

response(175). Cancer vaccines, in contrast, have been developed to stimulate T cell 

Target Tumor Type Clinical Trials Identifier 

CTLA-4 
 

HER2- 
TNBC 

NCT02536794 
NCT02381314 

PD-1 

Advanced TNBC 
HER2- 
HER2+ 

BC 
TNBC 
TNBC 

NCT02661100 
NCT02661100 
NCT02129556 
NCT02309177 
NCT02404441 
NCT02555657 

PD-L1 

BC 
TNBC 
TNBC 
TNBC 

Metastatic BC 
TNBC 

HER2+ Metastatic 
Advanced TNBC 

NCT02643303 
NCT02628132 
NCT02685059 
NCT02725489 
NCT02425891 
NCT02478099 
NCT02649686 
NCT02708680 
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responses for the treatment of a pre-existing cancer. These vaccines target antigens 

specifically expressed or altered in the tumor, either due to mutations, splice variations, 

or overexpression(175). Early cancer vaccines targeted CD8+ T cells with short peptides 

that bound to MHC class I molecules (EMENS), but these responses were short-lived and 

ineffective. This inspired a new wave of delivery methods which would target both CD8+ 

effector T cells and CD4+ helper T cells(194). These antigens are delivered as peptides, 

proteins, named DNA, vectors, or dendritic cells(175). To enhance the response, antigen 

delivery is typically combined with adjuvants such as granulocyte-macrophage colony-

stimulating factor (GM-CSF) or water in oil emulsions(175). A list of current cancer 

vaccines can be found in table 8. 

Table 8. Current cancer vaccine clinical trials. 
 

The most advanced vaccines have targeted BC patients overexpressing HER2. 

 Study NCI Identifier 

DNA/ 
Viral 

AVX901 
Plasma mammaglobin-A 

adHER2-/neu dendritic cell 
HER2/neu peptide 

Human MUC1 in adenovirus 
CEA/TRICOM 

NCT01526473 
NCT00807781 
NCT01730118 
NCT01376505 
NCT02140996 
NCT00048893 

Peptide/Protein Folate receptor binding peptide 
Sialyl Lewis-KLH 
Multiple Peptide 

DEC-205/NY-ESO-1 Fusion Protein CDX-1401 
GP2 

NY-ESO-1 
MUC-1 peptide 
Multi-peptide 
E75 peptide 

Globo H-KLH 
NeuVax 

HER2 intraceullular protein 

NCT02019524 
NCT00470574 
NCT01259505 
NCT00304096 
NCT00524277 
NCT01522820 
NCT00986609 
NCT01660529 
NCT01570036 
NCT01516307 
NCT01479244 
NCT01922921 

Cellular HER-2 peptide/adoptive HER2-specific T cells 
Allogeneic whole-cell vaccine 

GSK2302024A 
PANVAC 

Allo-stim breast cancer vaccine 

NCT00791037 
NCT00722228 
NCT01220128 
NCT00179309 
NCT01741038 
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These patients have been shown to have low levels of antibodies and T cell immunity for 

HER2, and these vaccines were therefore designed to amplify this low-level 

response(191). The NeuVax (nelipepimut-S) with adjuvant GM-CSF has demonstrated 

an improved 5-year disease-free survival of 89.7% compared to control (80.2%)(195). 

There is currently a phase III study looking into the prevention of recurrence 

(NCT01479244) and a phase II study evaluating efficacy in combination with trastuzumab 

(NCT01570036). A list of ongoing vaccine clinical trials in BC can be found in table 9. 

Table 9. Current BC vaccine clinical trials. 
 

Since vaccines created by short peptides can be costly, a variety of viral vectors 

have been developed to deliver antigens. Common vectors include the poxvirus family, 

measles, and adenovirus(175). Viral vectors generate more robust immunity than naked 

DNA or peptide delivery, but after repeated load delivery they can induce antibodies 

against the viral antigens that limit immunogenicity(175). To circumvent this, viral 

vaccines use a series of vectors for immune priming. For example, the PROSTVAC 

vaccine is a recombinant viral vaccine that contains genes encoding PSA and three co-

stimulatory molecules for T cells(196). Its cousin, the PANVAC vaccine, is a recombinant 

poxviral vaccine encoding the MUC1 and CEA genes, with one T cell co-stimulatory 

Clinical Trial Identifier BC Subtype Vaccine Type 

I - NCT02427581  
(Suspended) 

TNBC Poly ICLC 

I - NCT01730118 HER2+ HER2 dendritic cell vaccine 

I/II - NCT02018458 
TNBC 

ER+/HER2- 
Dendritic Cell Vaccine 

II - NCT01570036 HER2+ E75 
I/II - NCT02061332 BC, DCIS HER2 pulsed dendritic cell vaccine 
I - NCT01376505 BC HER2 vaccine 

I - NCT02140996 BC 
Ad-sig-hMUC-1/ecdCD40L vector 

vaccine 
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molecule. 

Dendritic cells have also been used as vaccines, since they can be generated from 

the peripheral blood of patients and are loaded with antigen peptides. These vaccines are 

typically potent, but they are technically challenging and require expertise and specialized 

laboratories for processing(175).  

 Cellular vaccines are derived from patient whole tumor cells or dendritic cells fused 

with tumor cells and injected back into the patient. Monitoring these immunotherapies, 

though, can be complex, especially since determining which of the tumor antigens are 

immunogenic, and production of this treatment is labor-intensive. The first FDA approved 

cellular vaccine was sipuleucel-T (ProvengeTM) and approved in 2010 for the treatment 

of advanced prostate cancer(197). It works by re-infusing patients with their own APCs 

that have been pulsed with prostatic acid phosphatase and GM-CSF. In the phase III 

IMPACT trial, it demonstrated improved median overall survival by 4.1 months prostate 

cancer(196). An investigational agent named lapuleucel-T (APC8024, Neuvenge) is the 

HER2 cognate of sipuleucel-T and contains peripheral blood mononuclear cells cultured 

with recombinant HER2 linked to GM-CSF, and has been studied in BC. In a phase I 

clinical trial with 18 patients, it was well tolerated, with 5.5% patients achieving a partial 

response, and 16.6% of patients achieving stable disease for up to 1 year(198). 

1.4.3 Evading immunotherapy in BC 

Regulating T cell response is necessary to minimize autoimmunity, and therefore 

the immune system has developed a series of checkpoint blockades to aid in this process. 

Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a homologue of cluster of 

differentiation 28 (CD28), a T cell co-stimulatory molecule, that binds to B7 on APCs. B7 
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has a higher affinity for CTLA-4 than it does for CD28, allowing for CTLA-4 to outcompete 

this activation and pause immune activation. CTLA-4 is constitutively expressed on 

regulatory T cells (Treg), and will become upregulated in T cells after their activation. In 

response, CTLA-4 expression will inhibit T cell activation and the efficacy of an anti-tumor 

response. 

Programmed death protein-1 (PD-1), on the other hand, is a CD28 and CTLA-4 

homologue that is induced on normal, activated T cells. PD-1 promotes apoptosis in 

activated T cells within the periphery, and it reduces apoptosis of Treg cells(194).  When 

these checkpoints fail, an armory of specialized cells will eliminate tumor-promoting 

cells(199).  

Along with dysfunctional antigen presenting cells, the tumor itself actively modifies 

the tumor microenvironment to suppress effector T cells and induce inflammation. As a 

result, the tumor microenvironment contains a robust population of regulatory T cells and 

myeloid-derived suppressor cells (MDSC), which suppress innate and adaptive 

responses(200).  

With the overexpression of a number of checkpoint molecules, the tumor evades 

T cell recognition. Chronic exposure of the cancer cells to antigen leads to PD-1 

upregulation and lead to T cell exhaustion(194). Additionally, programmed death ligand-

1 (PD-L1) is the ligand of PD-1 and is found upregulated in tumors. When PD-L1 is 

expressed, T cells are prevented from recognizing tumor-specific antigens. In cancer, 

high levels of PD-L1 in the tumor have been correlated with poor prognosis and 

progression(201). Dysregulation of immune checkpoint blockade pathways can lead to 

tumorigenesis, and efforts to target these pathways have been made. Recently, many 
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immunotherapies have been developed to target checkpoint signaling axes.  

1.4.4 Current challenges in monitoring vaccine immunotherapy 

 Immunotherapy has dramatically increased cancer survival and response rates for 

the past few decades. This is possibly due to its potential to achieve long-term disease 

control in a significant population of patients as compared to targeted therapies. 

Additionally, tumor progression while on immunotherapy peaks later combined with a 

median duration of response spanning up to years. Unfortunately, the mechanism behind 

this long-term response is unclear, and a strict definition of clinical endpoints is lacking.  

 The most commonly used clinical guidelines defining tumor response to 

immunotherapy come from the immune-modified response evaluation criteria in solid 

tumors (imRECIST). This criteria was adapted from response criteria in solid tumors 

(RECIST), since immunotherapy can produce unconventional responses and overall 

survival benefits that were not captured by RECIST(202). Criteria for imRECIST define 

tumor burden as unidimensional with up to five target lesions and two per organ. New 

lesions do not categorically represent progressive disease (PD), and measurable new 

lesions are then incorporated into the total tumor burden. Non-target lesions do not define 

PD, and contribute to definition complete response. PD can be negated by subsequent 

non-PD after 4 weeks from the first documented tumor. Additionally, best response may 

occur after any number of PD assessments(202).  

 For vaccines response monitoring, in particular, a few immunodynamic endpoints 

have been defined, depending on the vaccine type(203). For dendritic cell vaccines, T 

cell response post vaccination in the tumor via IHC is a standard measurement. 

Additionally, multicolor immunofluorescence of Treg cells, CD1a, CD8, CD94, CD207, 
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and HLA-DR calculated as a ratio of pre/post scores are also encouraged. For non-cell 

based vaccines, peripheral blood mononuclear cells (PMBCs) are characterized. T cell 

receptor repertoire analysis Flow cytometry is used to quantify and phenotype the T cell 

response, and is a highly quantitative, reproducible, and standardized test(204). T cell 

functions are calculated through flow cytometry of perforin, granzyme, and intracellular 

cytokine expression. Additionally, ELISPOT can be used to assess functionality after 

antigen-specific stimulation, but is limited by lack of reproducibility and requires a 

knowledge of antigens to be tested(205). Whole T cell repertoire through CDR3 

spectratyping and next generation sequencing is now being used to assess T cell 

diversity(206). This method does not require an a priori knowledge of antigens and can 

be performed with less than 1 mL of whole blood. While these methods all provide insight 

into the immune system after vaccination, they require tissue or blood samples from the 

patient, and do not recapitulate events within the entire tumor microenvironment in situ in 

the analysis. Furthermore, site monitoring of the immune response still remains of critical 

consideration in the field of immunotherapy, and molecular imaging techniques have been 

employed. 

 ImmunoPET imaging has been targeting immune biomarkers CTLA-4, PD-1, 

CD47, CD11b, T cell receptor, CXCR4, B7-H3, granzyme B, CD3+ T cells and IFN-γ in 

various preclinical studies(207,208). 89Zr- and 64Cu- labelled PD-L1(209) and 89Zr-

MPDL3280A (NCT02453984) PET tracers are in clinical development for imaging PD-L1. 

First-in-human PD-L1 imaging studies demonstrated heterogeneous tumor uptake 

among tumors with minimal PD-L1 expression through IHC, coupled with high 

background uptake in secondary lymphoid tissues(210). This study proved clinical 
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feasibility, although improvements are necessary to improve background uptake and 

expression correlating to imaging results. 18F-Clofarabine (CFA) is in development for 

monitoring immune cell proliferation through deoxycytidine kinase imaging(211). T cell 

activation through the deoxyguanosine pathway is in trials using 18F-D-

arabinofuranosylguanine (AraG) PET imaging(212). CD8+ T cells are imaged through 

89Zr/64Cu-anti-CD8(213,214) and 89Zr-IAB22M2C PET imaging(58). 

 The potential for imaging provides a unique opportunity to directly monitor immune 

responses within the tumor microenvironment before tumor shrinkage and response can 

be verified through other means. Immunotherapy regimens are still being optimized, and 

significant efforts have been made to identify and validate predictive biomarkers to aid in 

treatment decisions. These biomarkers could be used alone or in combination imaging, 

and additionally with ex vivo analysis and validation throughout treatment. 

1.5 Specific aims and summary of research 

The studies outlined in this dissertation have been partitioned into three specific 

aims. In the first aim found in Chapter 2, titled “Monitoring Src Status after Dasatinib 

Treatment in HER2+ Breast Cancer with 89Zr-trastuzumab PET imaging”, I explored the 

relationship between Src and HER2 is explored as is the ability of 89Zr-trastuzumab to 

monitor changes in HER2 after Src treatment. In this study, upon abrogation of Src 

signaling with dasatinib, an increase in 89Zr-trastuzumab binding and uptake was 

observed in in vitro cell studies and in vivo animal studies of trastuzumab-sensitive (BT-

474) and trastuzumab-resistant (JIMT-1) lines. The uptake to standard 18F-FDG imaging 

was compared to find that this metabolic tracer failed to distinguish differences in tumor 

uptake after dasatinib treatment. Ex vivo tumor analysis showed a correlation between 
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pSrc (Y416) abrogation and pHER2 (Y1221/1222) expression, and 89Zr-trastuzumab 

uptake. 

In the second aim, described in Chapter 3, entitled “Using 89Zr-cetuximab PET 

imaging to visualize membrane EGFR expression following dasatinib treatment in TNBC”, 

the ability of 89Zr-cetuximab was explored to measure changes in EGFR localization after 

dasatinib treatment, and if any correlation can be made with an improved response to 

combination dasatinib and cetuximab treatment. Using TNBC cell lines MDA-MB-231 

(KRAS mutant), MDA-MB-468 (KRAS wild-type-wt), an increase in 89Zr-cetuximab 

binding and internalization was demonstrated after dasatinib treatment, coupled with a 

decrease in both pSrc (Y416) expression, and in nuclear EGFR expression as shown by 

western blots. In vivo studies of using the tumors established from these two cell lines 

including a TNBC patient-derived xenograft (JAX TM00089, KRAS wt), an increase in 

89Zr-cetuximab uptake was demonstrated after dasatinib treatment, with a concomitant 

improvement in treatment responses with combination dasatinib and cetuximab therapy 

in kras wild-type cell lines. Ex vivo validation studies showed a correlation between EGFR 

expression and 89Zr-cetuximab uptake. 

In the final aim found in Chapter 4, titled “Using immunoPET to monitor tumor 

response to immunotherapy”, the ability for 89Zr-labeled anti-IFNγ (89Zr-anti-IFNγ) was 

evaluated to visualize changes in tumor uptake after a HER2/neu DNA vaccine that 

induces an active T-cell response against rat neu antigen. In transgenic mice and mice 

bearing syngeneic tumors, a significant increase was observed in 89Zr-anti-IFNγ uptake 

within the tumor after vaccination, with a low uptake in secondary lymphoid organs 

(spleen, lymph nodes). Further validation indicated that this was due to an increase in 
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IFN-γ production and CD8 T-cell infiltrates within the tumor.  

As is pertains to this thesis, ways to monitor response to targeted therapy and 

immunotherapies are warranted. These results will provide fundamental insights into the 

biology of the tumor microenvironment for further refinement of treatment strategies and 

combinations.  
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CHAPTER 2: MONITORING SRC STATUS AFTER DASATINIB TREATMENT IN 
HER2+ BREAST CANCER WITH 89ZR-TRASTUZUMAB PET IMAGING 

 
This chapter was adapted in full from “Monitoring Src status after dasatinib 

treatment in HER2+ BC with 89Zr-trastuzumab PET imaging” by Brooke McKnight and 

Nerissa T. Viola-Villegas, originally published in Breast Cancer Research and used with 

their permission. 

2.1 INTRODUCTION 

The human epidermal growth factor receptor 2 (HER2) has become a critical 

therapeutic target with trastuzumab (Herceptin®) as the mainstream, first-in-line standard 

of care in HER2-positive BC patients(215,216). Unfortunately, response rates to HER2-

targeted therapy remain dismal due to acquired and de novo resistance, which in part, 

can be attributed to alterations in receptor tyrosine kinases (RTKs)(189), and downstream 

signaling transduction pathways, such as Src(217,218).  

Src is a non-receptor tyrosine kinase expressed ubiquitously that interacts with 

several RTKs(158). Its activation enhances cellular migration and survival(149). It has 

been shown that the hyperactivation of Src leads to HER2 stabilization and vice 

versa(157), establishing a functional relationship between the two oncogenes(157). This 

was reported in a study by Tan et al. wherein Src abrogation concomitantly led to 

decreased HER2 levels within 7-14 days of treatment with a Src inhibitor, PP2 in 

vitro(157). Thus, Src is implicated as a key molecule in resistance to trastuzumab therapy, 

making this signaling axis an attractive target for inhibition.  

Dasatinib (Sprycel®) is a Src and BCR/ABL tyrosine kinase inhibitor and was FDA-

approved for leukemia in 2006(219). Preclinical data reported by Seoane et al. 

demonstrated the synergistic effects of dasatinib with trastuzumab as evidenced by 
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attenuated phosphorylated levels of Src, ERK and AKT in HER2+ BC(220). These 

preclinical findings were validated in a prospective phase I-II trial exploring combinatorial 

efficacy and safety of dasatinib, trastuzumab and paclitaxel in patients with BC(221). 

Monitoring of tumor response to this drug cocktail was conducted through 

immunohistochemistry (IHC) analysis of patients’ skin samples. However, better ways to 

non-invasively monitor tumor response can be achieved by exploring the direct causal 

relationship between HER2 and Src.  

In this study, the potential of 89Zr (t1/2 ~ 3.27 d) labeled trastuzumab was 

investigated as a surrogate tool to monitor biologic effects of dasatinib (Sprycel) treatment 

in HER2+ BC. First evaluation the specificity of 89Zr- trastuzumab in BT-474 

(HER2+/ER+/PR-), JIMT-1 (HER2+, trastuzumab resistant), and MDA-MB-468 (triple 

negative) cell lines was evaluated with its ability to resolve changes in HER2 expression 

during dasatinib treatment. Next, the utility of 18F-FDG and 89Zr-trastuzumab as a 

predictive imaging tool was examined using the same group of mice-bearing BT-474 and 

JIMT-1 tumors treated with dasatinib. After imaging, HER2 PET uptake was correlated to 

changes in tumor volume, immunoblots, and immunohistochemistry.  

2.2 RESULTS 

2.2.1 Characterization of 89Zr-trastuzumab 

Radiolabeling yields of >95% were obtained with >97 % purity after purification via 

spin column. A specific activity of 2.98 ± 0.2 mCi/mg (20.9 ± 5.6 Bq/µmol) was 

established. The labeled antibody retained immunoreactivity towards HER2 with 85% 

retention (Figure 12, n = 3). 
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Figure 12. 89Zr-trastuzumab retains immunoreactivity in BT-474. Immunoreactivity of 
89Zr-trastuzumab showed retained reactivity with r2 = 0.96. 
 

2.2.2 In vitro treatment studies with dasatinib  

BT-474 (Fig. 13A) and JIMT-1 (Fig. 13B) cells were treated with increasing 

concentrations of dasatinib to achieve an IC50 value for 72 h post-treatment. IC50 value of 

1.3 ± 0.12 µM and 0.22 ± 0.09 µM were achieved for BT-474 and JIMT-1 respectively. 

BT-474 and JIMT-1 cells were treated with dasatinib for 6-48 h and western blots were 

performed on treated and untreated cell lysates to observe protein expression. In BT-474 

cells (Fig. 13C), there was no change in total HER2 or total Src protein expression upon 

treatment with dasatinib. After 6 h of exposure to dasatinib, total abrogation of pSrc (Y416, 

directly associated with dasatinib Src tyrosine kinase activity(222)) and pHER2 

(Y1221/1222, autophosphorylation site) were observed. In JIMT-1 cells (Fig. 13D), 

attenuation of pHER2 (Y1221/1222) after 24 h and pSrc (Y416) activity after 6 h was 

displayed post-dasatinib treatment. There was no change in total HER2 or Src protein 

levels upon treatment as shown by densitometry. 
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Figure 13. Dasatinib treatment decreases pSrc (Y416) and pHER2(Y-1221) protein 
levels in vitro. BT-474 (A) or JIMT-1 (B) cells were treated with increasing concentrations 
of dasatinib for 72 h to achieve IC50 values of 1.3 ± 0.12 µM and 0.8 ± 0.02 µM, 
respectively. BT-474 cells (C) and JIMT-1 (D) were treated with IC50 dasatinib up to 48 h 
and western blots were performed for HER2, Src, pSrc (Y416), and pHER2 (Y1221/1222). 
Densitometry results are shown as the ratio of target protein/GAPDH. 
 

Next, the ability of HER2 to internalize trastuzumab after dasatinib timecourse 

treatment was investigated using 89Zr-trastuzumab (Fig. 14). A steady decrease in 89Zr-

trastuzumab internalization was exhibited by both BT-474 and JIMT-1. Internalization of 

89Zr-trastuzumab in untreated BT-474 was measured at 10.37 ± 1.62% without dasatinib 

treatment, however, internalized fractions decreased after 6 h and 24 h of dasatinib 
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treatment with ~7.68 ± 0.53% (p = 0.02), and 7.42 ± 0.74% (p = 0.03) respectively. At 48 

h, only ~4.78 ± 0.42% (p = 0.006) of the radiotracer was found intracellularly. JIMT-1 cells 

also showed a decrease in internalization upon treatment. From  2.6 ± 0.25% internalized 

in untreated cells, bound activity was reduced to 1.22 ± 0.10% (p = 0.009) after 24 h, and 

0.17 ± 0.5% (p < 0.0001) after 48 h of treatment. No significant reduction in internalized 

radiotracer was observed after 6 h of dasatinib exposure (1.96 ± 0.46%, p = 0.10). 

 These results are similar to the amount of total membrane-bound HER2 present 

extracellularly (and thus, available for tracer targeting) during dasatinib treatment as 

represented by the total amount of 89Zr-trastuzumab bound (Fig. 14). Compared to 

untreated BT-474 cells with 14.10 ± 1.22% bound radiotracer, a decrease was observed 

in treated groups after dasatinib exposure for 6 h (11.79 ± 1.00%, p = 0.0854) and 24 h 

(11.42 ± 2.04%, p = 0.038). Further reduction was observed after 48 h with 8.88 ± 1.44% 

(p = 0.0002). In JIMT-1 cells, a similar trend was observed with lower 89Zr-trastuzumab 

binding in groups treated for 6 h (2.46 ± 1.02%, p = 0.9578), 24 h (1.26 ± 1.00%, p 

=0.2075) and 48 h (0.34 ± 0.21%, 0.0277) relative to untreated cells at 3.16 ± 0.50%. 
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Figure 14. 89Zr-trastuzumab binding and uptake decreases upon dasatinib 
treatment. Internalization and binding assays of 89Zr-trastuzumab on BT-474 and JIMT-
1 cells treated with dasatinib IC50 from 0-48 h showed a decrease in probe internalization 
and binding over time  
 
 These results are in good agreement with the western blot findings. In BT-474, an 

abrogation of pHER2(Y1221/1222) was observed after 6 h dasatinib treatment. Coupled 

with the internalization assays, the same decrease in tracer internalization was observed 

after 6 h. Similarly, in JIMT-1, a decrease in pHER2 after 24 h dasatinib treatment was 

observed, which is where drop off in internalization of the tracer occurs. These results 

suggest that there is an association between dasatinib treatment and a decrease in 

internalization, which results in a reduction in total cellular accumulation (89Zr-

trastuzumab %bound + internalized). 
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Figure 15. 89Zr-trastuzumab binding and uptake decreases upon dasatinib 
treatment. Treatment and imaging scheme illustrate treatment of tumors for 7 d and/or 
14 d with dasatinib followed by PET imaging with 18F-FDG. 89Zr-trastuzumab was 
administered a day after with imaging acquired 48 h p.i. Tx = Treatment. 
 
2.2.3 Validation of 89Zr-trastuzumab specificity to HER2 

From in vitro studies using BT-474 (HER2+/ER+), JIMT-1 (HER2+/ER-), and MDA-

MB-468 (HER2-/ER+) cells, co-administration of 25-fold unlabeled trastuzumab exhibited 

lower binding of 89Zr-trastuzumab in HER2+ cell lines and did not change binding in MDA-

MB-468 HER2- cell line (Fig. 16A). In BT-474, there was a 6-fold decrease of 89Zr-

trastuzumab binding in trastuzumab blocked cells compared to control (1.07 ± 0.24% vs. 

6.64 ± 1.14%, p < 0.0001). JIMT-1 cells exhibited a 2-fold decrease in 89Zr-trastuzumab 

binding in 25-fold trastuzumab blocked cells compared to control (0.65 ± 0.18 vs. 1.46 ± 

0.24, p = 0.0007). MDA-MB-468 cells did not exhibit a difference in 89Zr-trastuzumab 

binding between 25-fold blocked cells and control (0.71 ± 0.40 vs. 1.11 ± 0.56, p = 0.34).  

 Mice bearing BT-474, JIMT-1, or MDA-MB-468 xenografts were imaged with 89Zr-

trastuzumab at 48 h p.i. (Fig. 16B-C). MDA-MB-468 tumors exhibited the lowest uptake 

of 3.9 ± 0.6 %ID/g, compared to BT-474 (17.9 ± 2.2 %ID/g, p < 0.001) and JIMT-1 (7.7 ± 

0.6 %ID/g, p < 0.001) tumors. Interestingly, there was significantly less 89Zr-trastuzumab 

uptake in JIMT-1 tumors compared to BT-474 (p < 0.0001). 
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Figure 16. 89Zr-trastuzumab is specific for HER2. BT-474, JIMT-1, and MDA-MB-468 
cells were incubated with 100 ng 89Zr-trastuzumab alone or co-incubated with 25-fold 
unlabeled Trastuzumab before being lysed and radioactivity measured using a gamma 
counter (A); nude mice bearing MDA-MB-468, BT-474, or JIMT-1 tumors were imaged 
with 89Zr-trastuzumab 48 h p.i. (B); tumor ROIs showing significant uptake in HER2+ 
tumors, but no uptake in MDA-MB-468 HER2- tumors (C). 
 
 Tissue distribution addressed concerns against enhanced permeation retention 

(EPR) effect. In BT-474 tumor, 89Zr-trastuzumab uptake in the tumor was 16.01 ± 3.78 

%ID/g, which is significantly higher than an isotype-matched IgG control (1.02 ± 0.87 

%ID/g, p = 0.0002) (Fig. 17, Table 10). 89Zr-trastuzumab had an average tumor uptake of 

4.13 ± 2.36 %ID/g (Fig. 17, Table 11) in JIMT-1 tumors, whereas the non-specific IgG 

control probe exhibited a significantly lower tumor accumulation of 0.79 ± 0.24 %ID/g  (p 

= 0.0338).  
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Figure 17. 89Zr-trastuzumab tumor uptake compared to isotype matched control. 
Mice bearing BT-474 and JIMT-1 tumors were injected with 89Zr-IgG or 89Zr-trastuzumab 
and tumors were removed 48 h p.i. and measured using a gamma counter. In both cell 
lines, specific 89Zr-trastuzumab uptake is significantly higher than isotype control IgG. 
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89Zr-trastuzumab 89Zr-IgG 

 Mean  S.D. Mean  S.D. 

Blood 2.39 ± 1.14 1.71 ± 1.01 

Tumor 16.10 ± 3.79 1.02 ± 0.87 

Heart 3.17 ± 1.43 0.50 ± 0.21 

Lungs 13.37 ± 9.79 0.50 ± 0.28 

Liver 9.27 ± 5.56 9.12 ± 2.66 

Kidneys 4.53 ± 3.85 5.27 ± 2.47 

Stomach 1.86 ± 1.23 0.59 ± 0.30 

Intestines 3.74 ± 0.80 3.44 ± 1.41 

Spleen 8.15 ± 3.75 0.54 ± 0.35 

Pancreas 1.76 ± 1.20 0.21 ± 0.20 

Brain 0.25 ± 0.29 0.15 ± 0.04 

Bone 10.34 ± 3.26 0.03 ± 0.01 

Muscle 0.33 ± 0.18 0.06 ± 0.02 

Table 10. 89Zr-trastuzumab and 89Zr-IgG biodistribution in BT-474 tumors. 
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89Zr-trastuzumab 89Zr-IgG 

 Mean  S.D. Mean  S.D. 

Blood 6.69 ± 2.53 1.23 ± 0.65 

Tumor 4.13 ± 2.36 0.08 ± 0.02 

Heart 2.20 ± 0.92 0.39 ± 0.18 

Lungs 3.01 ± 2.25 0.65 ± 0.44 

Liver 4.70 ± 1.46 9.43 ± 6.96 

Kidneys 4.49 ± 1.28 5.10 ± 1.59 

Stomach 1.13 ± 0.46 0.34 ± 0.17 

Intestines 3.79 ± 1.07 3.08 ± 0.35 

Spleen 2.79 ± 1.38 0.36 ± 0.16 

Pancreas 0.93 ± 0.38 0.12 ± 0.06 

Brain 0.33 ± 0.19 0.12 ± 0.04 

Bone 0.65 ± 0.40 0.02 ± 0.01 

Muscle 0.33 ± 0.17 0.04 ± 0.04 

Table 11. 89Zr-trastuzumab 89Zr-IgG biodistribution in JIMT-1 tumors. 

2.2.4 In vivo monitoring of tumor response to dasatinib  

Mice bearing palpable BT-474 tumors were dosed with dasatinib for 7 and 14 days 

and imaged with 18F-FDG and 89Zr-trastuzumab (Fig. 18). Tumor uptake of 18F-FDG was 

not statistically different between untreated mice (3.60 ± 1.51% ID/g) and those treated 

with dasatinib for 7 d (3.86 ± 0.59 %ID/g, p = 0.99) and 14 d (4.63 ± 0.21 %ID/g, p = 0.80) 

(Fig. 19A). In comparison, 89Zr-trastuzumab exhibited a significant decrease in tumor 

accumulation in both treated groups (7 d: 11.05 ± 2.10 %ID/g, p < 0.0001, and, 14 d: 9.2 

± 1.85 %ID/g, p < 0.0001) compared to untreated tumors (17.88 ± 2.18 %ID/g) (Fig. 19B). 
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No significant difference in probe uptake was observed between 7 and 14 d treated 

cohorts (p = 0.3925) (Fig. 19C). A correlation between changes in tumor volumes 

measured prior and after treatment vs. 89Zr-trastuzumab VOI PET uptake displayed a 

significant positive correlation (r = 0.85, p = 0.001) (Fig. 19D) wherein a decrease in tumor 

volume matched a lower PET readout. 

 
Figure 18. 89Zr-trastuzumab binding and uptake decreases upon dasatinib 
treatment. Treatment and imaging scheme illustrates treatment of tumors for 7 d and/or 
14 d with dasatinib followed by PET imaging with 18F-FDG. 89Zr-trastuzumab was 
administered a day after with imaging acquired 48 h p.i. (B). Tx = Treatment. 
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Figure 19. 89Zr-trastuzumab PET imaging predicts tumor response to treatment in 

BT-474 xenografts. Untreated (left) and treated BT-474 tumors for 7 d (middle) or 14 d 
(right) with 75 mg/kg dasatinib were imaged with FDG-PET (A). In the same group of 
mice, PET imaging with 89Zr-trastuzumab demonstrated attenuated tracer accumulation 
in treated groups compared to control (B). Tumor VOIs demonstrated lower tumor uptake 
of 89Zr-trastuzumab in treated groups compared to control; no observed changes were 
detected by FDG in both control and treated groups (C). % change in tumor volume during 
treatment correlated with 89Zr-trastuzumab uptake (D). T = tumor, L = liver. *** denotes p 
< 0.001. 
 

In JIMT-1 tumor bearing mice, FDG-PET did not distinguish untreated tumors (3.81 

± 0.78 %ID/g) vs. dasatinib-treated groups (7d: 3.36 ± 0.89 %ID/g, p = 0.7338; 14 d: 3.20 

± 1.37 %ID/g, p = 0.6126) (Fig. 20A). Using the same mice, tumor uptake of 89Zr-

trastuzumab displayed VOIs of 8.04 ± 0.71 %ID/g for control; a two-fold decrease in 

uptake after 7 d (3.88 ± 1.47 %ID/g, p < 0.0001) and 14 d (4.45 ± 1.23 %ID/g, p < 0.0001) 

was observed during dasatinib treatment (Fig. 20B). Similar to BT-474 xenografts, there 
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was no observed difference in tracer accumulation observed between treated cohorts (p 

= 0.7120) (Fig. 20C). Changes in tumor volumes displayed a direct, positive correlation 

with 89Zr-trastuzumab PET uptake (r = 0.82, p = 0.0002) (Fig. 20D).  

 

Figure 20. 89Zr-trastuzumab PET imaging predicts tumor response to treatment in 

JIMT-1 xenografts. Untreated (left) and 7 d (middle) or 14 d (right) treated JIMT-1 tumors 
imaged with FDG (A). The same group of mice imaged with 89Zr-trastuzumab after 48 h 
p.i. (B). VOIs drawn on the tumors displayed lower accumulation of 89Zr-trastuzumab in 
treated groups compared to control but no change in FDG-PET tumor uptake was 
observed across all cohorts (C). % Change in tumor volume correlated with 89Zr-
trastuzumab uptake (D) T = tumor, L = liver. *** denotes p < 0.001. 
 
2.2.5 Ex Vivo analysis of BT-474 and JIMT-1 Tumors 

After imaging, tumors were removed for ex vivo validation of the PET readout. 

From the immunoblot analysis, BT474 tumors showed a moderate decrease in total Src 

levels upon treatment with dasatinib, whereas its activity was mitigated by 2.6-fold as 

displayed by pSrc (Y416) levels in both 7 and 14 d treated cohorts (Fig. 21A). Additionally, 
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there is a decrease in total HER2 via densitometry after 7 d and 14 d treatments (Fig. 

21A). A positive correlation between pSrc (Y416) (r = 0.70, p = 0.025) (Fig. 21B) and 

pHER2 (r = 0.64, p = 0.046) (Fig. 21C) (measured by densitometry) against tumor VOI 

values for BT-474 was observed. 

Figure 21. Ex vivo validation on excised BT-474 tumors confirm PET uptake. 
Western blots were performed for HER2, Src, and pSrc (Y416) expression using BT-474 
tumor lysates (A); a plot of the pSrc (Y416) densitometry shows a linear relationship with 
89Zr-trastuzumab PET uptake (B); a plot of the pHER2 (Y1221) densitometry vs. tumor 
VOI shows a positive linear relationship with 89Zr-trastuzumab PET uptake (C). 
 

Treated and control JIMT-1 tumors did not show a difference in total HER2 or Src 

expression, however, a noticeable decrease in both pSrc and pHER2 after 7 and 14 d 

treatments was displayed (Fig. 22A). Moreover, a significant, positive association 
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between pSrc (Y416) (r = 0.68, p = 0.022) and 89Zr-trastuzumab tumor VOI was achieved 

(Fig. 22B). A direct relationship between dephosphorylated HER2 and tracer uptake in 

the tumor was also demonstrated (r = 0.63, p = 0.037) (Fig. 22C). 

 

Figure 22. Ex vivo validation on excised JIMT-1 tumors confirm PET uptake. 
Western blots were performed for HER2, Src, and pSrc (Y416) expression using JIMT-1 
tumor lysates (A); a plot of the pSrc (Y416) densitometry shows a linear relationship with 
89Zr-trastuzumab PET uptake (B); a plot of the pHER2 (Y1221) densitometry vs. tumor 
VOI shows a positive linear relationship with 89Zr-trastuzumab PET uptake (C). 
 

IHC was performed to visualize subcellular localization of HER2 and pSrc (Y416) 

in excised tumors. Unmodulated BT-474 tumors showed strong positive membranous 

HER2 staining (Fig. 23A, top left panel), whereas, predominant cytoplasmic HER2 

localization was exhibited in tumors treated for 14 days with dasatinib. (Fig. 23A, top 
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right). Lower pSrc (Y416) staining was observed in treated tumors (Fig. 23A, bottom right) 

compared to control (Fig. 23A, bottom left). Control JIMT-1 tumors exhibited lower 

expression of membrane-localized HER2 (Fig. 23B, top left) compared to BT-474 but 

translocation to cytoplasmic regions was observed in treated sections (Fig. 23B, top right). 

Higher pSrc (Y416) staining is displayed in control (Fig. 23B, bottom right) versus 

dasatinib treated tumor sections (Fig. 23B, bottom left). 

 

Figure 23. Immunohistochemistry on excised BT-474 and JIMT-1 tumors show 

HER2 and pSrc (Y416) changes. IHC (40× magnification) was performed on excised 
BT-474 tumors (A) and JIMT-1 (B) showing HER2 (top) and pSrc (Y416, bottom) 
expression with (right) and without (left) dasatinib treatment (A). 
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2.3 DISCUSSION 

Trastuzumab has been the standard of care for two decades for HER2+ BC(134). 

Unfortunately, about half of patients with HER2-overxpressing BC do not respond to 

trastuzumab due to de novo and acquired resistance mechanisms(223). The non-

receptor tyrosine kinase Src was shown to be a key modulator of trastuzumab response, 

and is an important downstream node of multiple trastuzumab resistance 

pathways(149,158,218,223,224). Targeting Src with dasatinib in vitro re-sensitized 

trastuzumab-resistant cell lines, suggesting this pathway as a strategy to overcome 

resistance(158). Additionally, patients with high levels of phosphorylation of Src at the 

Y416 residue have presented a lower clinical response rate and higher progressive 

disease after trastuzumab treatment, compared to those with lower pSrc (Y416) levels, 

suggesting that pSrc activation is correlated with trastuzumab resistance(225).  

Clinical trials (NCT01306942, NCT00566618, and NCT00820170) are currently 

examining dasatinib as part of a multicombinatorial treatment in BC. Previous studies 

have focused on monitoring dasatinib response by radiolabeling dasatinib itself(226). This 

method has its limitations, since this can potentially miss functional effects upstream or 

downstream of the Src signaling pathway. Previous studies have demonstrated the 

relationship of Src and HER2 where it is shown that hyperactivated Src is stabilized by 

aberrant HER2 signaling, and one study in particular demonstrated that modulating c-Src 

with PP2 in vitro decreased HER2 levels after 7 days of treatment and abrogated it 

completely after 14 days of treatment(157,227). Thus, HER2 PET as a surrogate 

predictive marker of dasatinib treatment is worth investigating with 89Zr-trastuzumab PET 

imaging currently in patient trials not only for HER2+ tumor detection(228) but as a marker 
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of response to other targeted treatment (NCT01081600 for AUY922 HSP90 inhibitor, 

NCT01565200 for T-DM1 ).  

Previous studies have stated that using 89Zr-trastuzumab PET imaging to monitor 

response to therapy would only be feasible if the drug is directly acting on HER2(59). 

Using 89Zr-trastuzumab as a surrogate marker of targeted inhibition of effector molecules 

downstream of the HER2 signaling pathway has been conceptually proven, for example 

with Hsp90 inhibition(37). To the best of our knowledge, this is the first study that 

demonstrated the potential of 89Zr-trastuzumab PET to monitor Src response to dasatinib 

treatment. Specifically, we have shown that 89Zr-trastuzumab detects lower membrane 

HER2 expression with concomitant internalization of HER2 after 6 h (BT-474) or 48 h 

(JIMT-1) dasatinib treatment, as shown by our internalization assays. The lower 

internalization was coupled with a lower total HER2 present on the cell surface, confirmed 

by 89Zr-trastuzumab binding experiments and western blots of pHER2(Y1221/1222), 

which activates HER2 receptor activation. From our in vivo studies, 89Zr-trastuzumab 

detected changes in HER2 expression upon inhibition of functional Src, where standard-

of-care FDG-PET imaging has failed to detect differences in tumor uptake after dasatinib 

treatment. Importantly, the PET uptake directly correlated with tumor regression.  The 

PET results were histologically validated with a concomitant decrease in membranous 

HER2 staining in treated groups coupled with the abrogation of pSrc (Y416) staining. 

Furthermore, western blot analysis probing for functional Src activity exhibited a direct 

relationship with the HER2 PET readout.  It is worth noting that our studies are limited to 

single agent Src inhibition; the utility of HER2 PET in combinatorial therapies including 
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Src in HER2+ BC still warrants further investigation.  

In conclusion, 89Zr-trastuzumab can potentially delineate changes in Src activity in 

HER2+ BC in both trastuzumab-sensitive and resistant phenotypes.  
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CHAPTER 3: USING 89ZR-CETUXIMAB PET IMAGING TO VISUALIZE MEMBRANE 
EGFR EXPRESSION FOLLOWING DASATINIB TREATMENT IN TNBC 

 
3.1 INTRODUCTION 

TNBC accounts for 20% of all diagnosed BC and lack of therapeutic targets 

(ER/PR/HER2) makes it more difficult to treat, resulting in chemotherapies such as taxane 

or anthracycline as the mainstay standard of care(229). While many TNBC patients 

initially respond to chemotherapy, the high rate of recurrence and progression makes it a 

far more aggressive disease with worse prognosis compared to other subtypes.  

 Gene expression profiling studies identified EGFR as a potential biomarker 

indicating possible treatments due to its overexpression in TNBC(230,231). A number of 

EGFR-targeted therapies that were previously approved for other cancer types are 

currently explored for TNBC, including monoclonal antibodies (panitumumab and 

cetuximab) and small molecule inhibitors (gefitinib, erlotinib, and afatinib)(232). 

Unfortunately, achieving significant response rates in the clinic were dismal(233,234) 

possibly due to the lack of biomarkers to select appropriate patients who would be 

predited to respond. One explanation may be attributed to the receptor’s nuclear 

translocation, diminishing drug targeted delivery to cell-surface receptors. nEGFR acts as 

a transcription factor regulator  involved in tumorigenesis(235,236). Interestingly, the 

expression of nEGFR has been correlated with poorer outcomes in many 

cancers(82,237,238), and resistance to anti-EGFR therapies, including 

cetuximab(168,239). Previous studies have shown that Src Family Kinase (SFK) 

inhibition with dasatinib blocks nEGFR translocation, transporting EGFR to the plasma 

membrane; thus, enhancing cetuximab sensitivity in TNBC and non-small cell lung cancer 
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(168,239,240).  

Studies developing 89Zr(t1/2 ~ 3.27 d) labeled cetuximab (Erbitux®) as a positron 

emission tomography (PET) tracer have been reported. This EGFR-specific imaging 

probe is currently in clinical trials to select cancer patients who may benefit from 

cetuximab treatment in many cancer types(241–243). To date, 89Zr-cetuximab has shown 

promise in visualizing tumors expressing EGFR, and could be used to monitor EGFR 

receptor expression and steer individualized treatments(244). 

 In this aim, it was hypothesized that 89Zr-cetuximab could be used as a tool to 

monitor membrane EGFR expression after dasatinib treatment in TNBC. 89Zr-cetuximab  

specificity was evaluated in EGFR-positive TNBC cell lines MDA-MB-231 (KRAS mutant) 

and MDA-MB-468 (KRAS wild type (wt)) and was compared against low EGFR-

expressing TNBC MDA-MB-453 (KRAS mutant) cells. After establishing the tracer’s 

specificity, its potential to assess changes in membranous EGFR density was 

investigated in both EGFR-positive TNBC xenografts post-treatment with dasatinib 

through in vitro internalization assays and western blots. An EGFR-positive, Kras wt 

TNBC patient derived xenograft (PDX, JAX TM-00089) was also investigated for ex vivo 

treatment studies. Validation of 89Zr-cetuximab PET was conducted using western blots, 

immunohistochemistry (IHC) and autoradiography. 

3.2 RESULTS 

3.2.1 Radiolabeling and characterization of 89Zr-cetuximab 

 89Zr-cetuximab radiolabeling yields of >90% were obtained with >95% purity after 

purification via spin column. A specific activity of 4.7 ± 0.3 mCi/mg was established. The 
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labeled antibody retained immunoreactivity towards EGFR with 74.8 ± 3.4% (Fig. 24) 

n=3). 

Figure 24. 89Zr-cetuximab retains immunoreactivity in MDA-MB-468. A Lindmo assay 
was performed to measure immunoreactivity of 89Zr-cetuximab after modifications and 
shows retained reactivity towards EGFR. 
 

The potential of 89Zr-cetuximab was investigated to assess changes in 

membranous EGFR levels was examined. Using the same treatment scheme, treated 

and untreated cells were incubated with 89Zr-cetuximab at 4 °C to prevent internalization. 

Surface-bound activity increased for both MDA-MB-231 (17.9 ± 3.6% vs. 26.0 ± 3.0%, p 

= 0.042) and MDA-MB-468 (18.9 ± 0.6% vs. 47.3 ± 3.8 %, p = 0.0002) after dasatinib 

treatment (Fig. 25A).   

Internalization rates of 89Zr-cetuximab after dasatinib treatment were investigated 

over time and compared against membrane bound fractions (Fig. 25B). An increase in 

internalization of the tracer after 48 h of drug treatment compared to control was observed 

in MDA-MB-231 cells (16.6 ± 3.3% vs. 26.2 ± 3.7%, p = 0.0002). Similar but more 

pronounced effects were observed in treated MDA-MB-468 cells where internalized 

fractions were higher by 1.5-fold (27.7 ± 3.33%, p = 0.0098) and three-fold (42.6 ± 4.39%, 
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p < 0.0001) at 24 h and 48 h respectively, compared to control groups (17.9 ± 0.8%). 

Membrane-bound activity for both cell lines did not show a significant difference between 

control and treated groups likely due to internalization. The low-EGFR expressing MDA-

MB-453 demonstrated minimal binding and internalization of the tracer. Collectively, this 

in vitro binding assay suggests that the radiotracer was able to measure higher 

membrane-localized EGFR levels after blockade of Src activity. 
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Figure 25. Internalization and uptake of 89Zr-cetuximab. MDA-MB-231 and MDA-MB-
468 cells exposed to dasatinib for 48 h showed higher surface-bound 89Zr-cetuximab 
compared to untreated controls (A); incubation from 8-48 h with dasatinib showed higher 
internalized fractions of the tracer at later time points (B). * denotes p < 0.05, *** denotes 
p < 0.001.  

A. 

B. 
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The low-EGFR expressing MDA-MB-453 demonstrated minimal binding and 

internalization of the tracer (Fig. 26). This suggests that exposure to dasatinib resulted in 

higher membrane-bound EGFR levels available, which can be visualized and quantified 

by 89Zr-cetuximab. Importantly, an increase in cell surface EGFR concomitantly leads to 

higher receptors available for drug delivery.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Non-specific tracer uptake in MDA-MB-453. In vitro 89Zr-cetuximab 
internalization in MDA-MB-453 cells (A). Comparison of 89Zr-cetuximab tracer % bound, 
internalized, and total tracer bound and internalized between MDA-MB-231, MDA-MB-
468, and MDA-MB453 cell lines (B). 
 
3.2.2 89Zr-cetuximab is specific for tumors expressing EGFR in vivo 
 The specificity of 89Zr-cetuximab for EGFR was investigated through in vivo 

imaging using mice bearing different EGFR-expressing TNBC tumors (MDA-MB-468 = 

MDA-MB-231 > MDA-MB-453). In MDA-MB-231, tumor uptake was 6.8 ± 1.0 %ID/g at 24 

h p.i. and 7.0 ± 0.4 %ID/g at 48 h p.i. Tumor accumulation plateaued at 96 h with 8.7 ± 
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2.9 %ID/g (Fig. 27A,C). In MDA-MB-468 xenografts, tumor uptake was 7.8 ± 1.3 %ID/g 

at 24 h p.i., 7.6 ± 1.7 %ID/g at 48 h p.i. and 6.8 ± 1.2 %ID/g at 96 h p.i. (Fig. 27B-C). At 

48 h p.i., the optimal time where tumor-to-background was identified, the accumulation of 

89Zr-cetuximab was significantly lower in this control tumor compared to MDA-MB-231 

(6.7 ± 0.4 %ID/g, p < 0.0001) and MDA-MB-468 (7.6 ± 1.7 %ID/g, p = 0.0012) (Fig. 27D).  
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Figure 27. In vitro timecourse imaging of 89Zr-cetuximab in MDA-MB-231 and MDA-
MB-468 xenografts. Female nude mice bearing MDA-MB-231 tumors were injected with 
89Zr-cetuximab and imaged from 24-96 h p.i. and tumor VOIs were measured (A). Female 
nude mice bearing MDA-MB-468 tumors were injected with 89Zr-cetuximab and imaged 
from 24-96 h p.i. and tumor VOIs were measured (B). Tumor time activity curve 
demonstrating tumor VOIs throughout imaging time in both cell lines (C). 89Zr-cetuximab 
imaging tumor VOIs in MDA-MB-231 and MDA-MB-468 tumor bearing mice (D). *** 
denotes p < 0.001. 

D. 
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3.2.3 EGFR expression after dasatinib treatment in vitro 

The half maximal inhibitory concentration (IC50) values of 0.88 ± 0.10 µM (Fig. 28A) 

and 19.3 ± 0.06 µM (Fig. 28B) were achieved for MDA-MB-231 and MDA-MB-468 cells, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Achieved IC50 values for MDA-MB-231 and MDA-MB-468 cells.  
MDA-MB-231 (A) or MDA-MB-468 (B) cells were treated with increasing concentrations 
of dasatinib for 72 hours to achieve IC50. 
 

In MDA-MB-231 cell lysates (Fig. 29A) incubated with dasatinib for 48 h, a 

decrease in phospho-EGFR (Y845) from 1.17 to 0.8 and phospho-Src (Y416) levels from 

1.19 to 0.74 as measured by densitometry were observed. Total levels of EGFR remained 

the same. In MDA-MB-468 cells (Fig. 29A), a two-fold decrease in pEGFR (Y845, 1.17 to 

A. 

B. 
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0.69) and pSrc (Y416, 1.87 to 0.83) levels after 48 h exposure to dasatinib was also 

observed. Total EGFR levels changed between untreated and (0.88 to 0.95) treated cells. 

Total Src levels for both cell lines were slightly lower in the treated lysates.   

Next, using the same cell lines, the nuclear (N) and membranous plus cytoplasmic 

(C) localization of EGFR after treatment was investigated(Fig. 29B). In MDA-MB-231, 

there is approximately 21.3% nEGFR present in the untreated samples, which dropped 

to as much as 10-fold upon treatment. Interestingly, total Src protein in the nuclear region 

increased in cells exposed to the drug (43% to 59%). In MDA-MB-468 cells (Fig. 29C), 

64% of EGFR was found in the nucleus of the untreated samples, whereas treatment 

decreased localization to 45%. More nuclear Src i was observed (50%) in the treated cells 

compared to control (41%).  Collectively, these results demonstrates concordance with 

previous reports wherein mitigated Src activity and expression decreased nuclear EGFR.   

  



88 
 

 

 

Figure 29. In vitro dasatinib treatment alters EGFR compartmentalization. MDA-MB-
231 (left) and MDA-MB-468 (right) cells were treated with dasatinib IC50 (+) values for 48 
h or left untreated (-). Lysates were evaluated for pEGFR (Y845), EGFR, pSrc (Tyr416), 
and Src (A); nuclear (N) and membrane plus cytoplasmic (C) extracts were collected from 
MDA-MB-231 (B) and MDA-MB-468 (C) cells after 48 h dasatinib treatment or from control 
cells and evaluated for EGFR and Src localization. 
 
3.2.4 In vivo monitoring of membrane EGFR with 89Zr-cetuximab  

Tumor-bearing athymic nude mice treated with either dasatinib or vehicle (Fig. 29) 

were imaged with 89Zr-cetuximab at 48 h p.i. In MDA-MB-231 xenografts, (Fig. 30A) 89Zr-
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cetuximab had higher tumor accumulation in treated vs. control groups (8.7 ± 1.6 %ID/g 

vs. 11.9 ± 3.7 %ID/g, p = 0.025)(Fig. 30B).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30. In vivo 89Zr-cetuximab PET imaging in MDA-MB-231 xenografts. Mice 
bearing MDA-MB-231 tumors were left untreated (left) or treated with dasatinib (right) for 
5 days before undergoing 89Zr-cetuximab PET imaging at 48 h p.i. (A). 89Zr-cetuximab 
tumor VOIs demonstrate higher uptake of the tracer in treated mice compared to control 
(B). * denotes p < 0.05. 
 

Autoradiography of excised tumors demonstrated spatial distribution of the tracer 

with higher focal uptake observed in treated (Fig. 31A, right) vs. control (Fig. 31A, left) 

tumor sections. Immunohistochemistry on serial sections displayed compartmentalization 

of EGFR (Fig. 31B, top) and pSrc (Y416) (Fig. 31B, bottom) levels with (left) and without 

(right) treatment. In control tumors, elevated EGFR protein appeared localized to the 

A. 

B. 
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nucleus, whereas after dasatinib treatment an increase in membranous staining of EGFR 

was observed. Cytoplasmic phospho-Src (Y416) staining was observed control tumors 

but staining was abrogated upon treatment.  

Western blot densitometry analysis demonstrated a significant increase in total 

EGFR in treated mice when compared to untreated mice (0.35 ± 0.05 vs. 0.23 ± 0.07, p 

= 0.043) (Fig. 31C, Table 12). Functional EGFR (pEGFR-Y845) was mitigated after 

dasatinib treatment. Based on densitometric ratios of EGFR/GAPDH, a ratio of 0.64 ± 

0.31 was observed in control tumors vs. 0.08 ± 0.16 in treated groups (p = 0.0173)(Table 

12). An almost three-fold decrease in pSrc (Y416) expression was displayed between 

tumors that were given vehicle and dasatinib (1.57 ± 0.554 vs. 0.638 ± 0.06, p = 0.0151). 

Total Src expression was not significantly different between control and dasatinib treated 

tumors (0.498 ± 0.13 vs. 0.583 ± 0.10, p = 0.3406). A positive correlation was achieved 

between total EGFR and tumor VOI (r = 0.83, p = 0.011) (Fig. 31D). 

  



91 
 

 

 

 

 
 
 

 
 
 
 
 

Figure 31. Ex vivo analysis on MDA-MB-231 tumors. Ex vivo autoradiography (A), 
H&E (B, bottom), and IHC of EGFR (B, top) and pSrc (Y416, B, middle) shows differences 
in tracer localization and expression after dasatinib treatment (right) compared to control 
(left). Western blots of control (left) and dasatinib treated (right) tumors were evaluated 
for pEGFR (Y845), EGFR, pSrc (Y416), and Src (C). Densitometry for EGFR was 
correlated to tumor VOI (D). 
  

A. B. 

C. D. 
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Control 

Mean ± S.D. 
Dasatinib 

Mean ± S.D. P-value 

pEGFR (Y845) 0.64 ± 0.31 0.08 ± 0.16 0.02 

EGFR 0.23 ± 0.07 0.35 ± 0.05 0.04 

pSrc (Y416) 1.6 ± 0.55 0.64 ± 0.06 0.02 
Src 0.5 ± 0.13 0.58 ± 0.1 0.34 

Table 12. Densitometry of MDA-MB-231 tumors. 

Treated MDA-MB-468 tumors (Fig. 32A) exhibited an almost two-fold increase in 

89Zr-cetuximab uptake compared to control, untreated tumors (14.25 ± 3.92 %ID/g vs. 

8.45 ± 1.72 %ID/g, p = 0.0013) (Fig. 32B).  

 

 

 

 

 

 

 

 

 
 
Figure 32. In vivo 89Zr-cetuximab PET imaging in MDA-MB-468 xenografts. Mice 
bearing MDA-MB-468 tumors were left untreated (left) or treated with dasatinib (right) for 
5 days before undergoing 89Zr-cetuximab PET imaging at 48 h p.i. (A). 89Zr-cetuximab 
tumor VOIs demonstrate higher uptake of the tracer in treated mice compared to control 
(B). ** denotes p < 0.01. 
 

Autoradiographic images of excised tumors displayed an increase in tracer uptake 

in dasatinib treated (right) tumors compared to control untreated tumors (left) (Fig. 33A). 

IHC on serial sections for EGFR (top) showed dark positive EGFR staining in the nucleus 

A. 
B. 
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and cytoplasm in untreated tumors, which changed to strong membranous EGFR staining 

after treatment. A close examination of pSrc (Y416) expression (bottom) also showed a 

positive cytoplasmic stain in untreated tumors, which was attenuated in the treated tissue 

sections (Fig. 33B). 

Immunoblots further reinforced the tracer readout. A significant increase in total 

EGFR (0.12 ± 0.03) compared to control tumors (0.05 ± 0.03, p = 0.024) was achieved 

(Fig. 33C, Table 13). Phosphorylation of EGFR at Y845 displayed a decreasing trend 

after dasatinib treatment compared to control (0.07 ± 0.03 vs. 0.11 ± 0.4). We observed 

a two-fold decrease in pSrc (Y416) protein after dasatinib treatment (0.30 ± 0.6 vs. 0.47 

± 0.02, p = 0.006). Similarly, to MDA-MB-231, there was no significant change in total Src 

protein level after dasatinib treatment (0.56 ± 0.08 vs. 0.58 ± 0.12, p = 0.842). 

Densitometry of total EGFR significantly correlated with tumor VOI (r = 0.89, p = 

0.007)(Fig. 33D). 

  



94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33. Ex vivo analysis on MDA-MB-468 tumors. Ex vivo autoradiography (A), 
H&E (B, bottom), and IHC of EGFR (B, top) and pSrc (Y416, B, middle) shows differences 
in tracer localization and expression after dasatinib treatment (right) compared to control 
(left). Western blots of control (left) and dasatinib treated (right) tumors were evaluated 
for pEGFR (Y845), EGFR, pSrc (Y416), and Src (C). Densitometry for EGFR was 
correlated to tumor VOI (D).  

A.  B.  

C.  
D.  
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Control 

Mean ± S.D. 
Dasatinib 

Mean ± S.D. P-value 

pEGFR (Y845) 0.11 ± 0.04 0.07 ± 0.03 0.12 

EGFR 0.05 ± 0.03 0.12 ± 0.03 0.02 

pSrc (Y416) 0.47 ± 0.01 0.3 ± 0.06 0.01 
Src 0.56 ± 0.08 0.58 ± 0.12 0.84 

Table 13. Densitometry of MDA-MB-468 tumors. 

3.2.5 Effects of combinatorial dasatinib and Cetuximab therapy 

 The addition of cetuximab in combination with dasatinib after neoadjuvant Src 

inhibition was next explored. In this longitudinal study, mice treated with dasatinib prior to 

PET imaging were further stratified into two arms after PET imaging. One group received 

continuous dasatinib treatment while a second group received dasatinib plus cetuximab 

(Fig. 34). The same control group of mice used in the imaging scan was monitored for 

tumor progression throughout the study. 

 
Figure 34. Treatment Scheme. Mice were implanted with MDA-MB-231 or MDA-MB-
468 tumors and allowed to acclimate for 10 days before either receiving dasatinib (50 
mg/kg for 5 d) or left untreated. Mice then underwent 89Zr-cetuximab PET imaging 48 h 
p.i. of the tracer. After imaging, dasatinib treated mice were stratified into treatment 
groups of dasatinib only (50 mg/kg for 5 d) or dasatinib (50 mg/kg for 5 d) plus cetuximab 
(0.2 mg i.p. 2x/week). 
 

In MDA-MB-231 tumor bearing mice, no tumor response benefit was achieved in 

both treatment arms (Fig. 35A). No correlation was derived between 89Zr-cetuximab VOI 
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and % change in tumor volume after treatment (Fig. 35B) (r = 0.095, p = 0.735). 

  On the other hand, a synergistic effect was observed in MDA-MB-468 tumors (p 

= 0.021) receiving the combinatorial therapy compared to dasatinib treatment alone (Fig. 

35C). An examination of the correlation between tumor VOI and % change in tumor 

volumes revealed a negative correlation wherein higher accumulation of 89Zr-cetuximab 

in the tumor resulted in slower growth. (r = -0.62, p = 0.013)(Fig. 35D). 

 
Figure 35. Tumor response to combination treatment or cetuximab alone. Tumor 
volume (mm3) of MDA-MB-231 tumors undergoing treatment for 30 days (A). Correlation 
between 89Zr-cetuximab tumor VOI (%ID/g) and percent change in tumor volume after 
treatment regimen in MDA-MB-231 (B). Tumor volume (mm3) of MDA-MB-468 tumors 
undergoing treatment for 30 days (C). Correlation between 89Zr-cetuximab tumor VOI 
(%ID/g) and percent change in tumor volume after treatment regimen in MDA-MB-468 
(D). 
  

A.  B.  

C.  D.  
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3.2.6 Evaluating changes in EGFR localization after Dasatinib Treatment in TNBC 
PDX 

The effects of dasatinib treatment and the potential of 89Zr-cetuximab to monitor 

changes in membranous EGFR density in an EGFR-expressing TNBC PDX tumor model 

was investigated. Palpable tumors dosed with dasatinib for 5 days had a significantly 

higher tracer uptake compared to the control untreated arm (7.27 ± 2.3 %ID/g vs. 4.48 ± 

1.14 %ID/g, p = 0.0273) (Fig. 36A-B). 

 

 

 

 

Figure 36. 89Zr-cetuximab PET imaging in TM00089 PDX tumors. Mice bearing 
TM00089 PDX xenograft tumors were treated with dasatinib (50 mg/kg for 5 d) or left 
untreated before imaging with 89Zr-cetuximab at 48 h p.i. (A). 89Zr-cetuximab tumor VOIs 
demonstrate higher uptake of the tracer in treated mice compared to control (B). 
 

Tumors were removed post-imaging for autoradiography and IHC. 89Zr-cetuximab 

tracer distribution increased in the dasatinib treated tumor (Fig. 37A, right), compared to 

control tumor (Fig. 37A, left). Immunohistochemistry on serial sections for EGFR was 

evaluated (Fig. 37B). Positive nuclear and membranous EGFR staining in control tumors 

(left) were observed, whereas in dasatinib-treated tumors (right), an increase in diffused 

membranous EGFR staining was observed (Fig. 37B, top). Examination of pSrc (Y416) 

expression (Fig. 37B, bottom) showed a decrease in total staining between control, 

A.  B.  
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untreated tumors (left) and dasatinib treated tumor sections (right). 

 To assess the treatment response to combination dasatinib and cetuximab 

therapy, the mice were treated with the combination for three additional weeks and tumor 

volumes were measured (Fig. 37C). There was a significant (p = 0.0006) improvement in 

response to treatment in the combination mice compared to untreated control. Untreated 

mice had an average tumor volume of 85.18 ± 26.71 mm3, compared to combination 

treated mice with an average tumor volume of 3.53 ± 7.07 mm3, with 3 out of the 4 tumors 

completely regressing in volume. Change in tumor volume expressed as a percentage of 

starting tumor volume was correlated to 89Zr-cetuximab tumor uptake (%ID/g) (Fig. 37D). 

There was a significant, negative correlation between tumor regression and VOI (r = -

0.682, p = 0.043). 
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Figure 37. Ex vivo tumor TM00089 tumor analysis and extended combination 
treatment. Ex vivo autoradiography (A), H&E (B, bottom), and IHC of EGFR (B, top) and 
pSrc (Y416, B, middle) shows differences in tracer localization and expression after 
dasatinib treatment (right) compared to control (left). Correlation between 89Zr-cetuximab 
tumor VOI (%ID/g) and percent change in tumor volume after treatment regimen in 
TM00089 (C). Tumor volume (mm3) of TM00089 tumors undergoing treatment for 30 days 
(D). 
 
3.3 DISCUSSION 

Recently, 89Zr-labelled antibodies nimotuzumab(245), imgatuzumab(246), and 

panitumumab(36,247), and affibody ZEGFR:2377(22) have been under investigation for 

use in imaging EGFR expression in vivo in addition to 89Zr-cetuximab(248). Throughout 

these studies, EGFR has been established as a promising and robust target for 

A.  B.  

C.  D.  
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immunoPET imaging and targeted radiotherapeutics(249). Unfortunately, disparities 

between in vivo EGFR expression and 89Zr-cetuximab PET uptake have been 

observed(248).  This may be in part, due to the compartmentalization of EGFR between 

the nucleus and plasma membrane(168). The non-receptor tyrosine kinase Src has 

shown to be a key modulator of nEGFR translocation(239), and is an important 

downstream node of cetuximab response pathways(166,168,240,250). The literature and 

these studies have shown that targeting Src with dasatinib in TNBC cell lines expressing 

high levels of nEGFR in vitro resulted in a translocation of EGFR to the plasma 

membrane, suggesting this pathway a strategy to enhance EGFR available for further 

anti-EGFR treatments(251). Additionally, patients with high nEGFR expression have poor 

survival and prognosis in non-small cell lung cancer(237). 

The Window of Opportunity Trial of dasatinib in operable triple negative BCs with 

nEGFR (NCT02720185) is currently underway to determine if dasatinib can prevent 

nuclear translocation of EGFR in stage I-III TNBC. Patients will be subjected to oral 

dasatinib (100 mg) treatment 7-10 days prior to planned surgery or research biopsy and 

plasma membrane EGFR expression will be measured. An increase of at least 25% 

membrane EGFR expression from baseline to post-dasatinib treatment will be considered 

significant. With this perspective, the initiative to validate 89Zr-cetuximab as a tool to non-

invasively monitor the translocation of nEGFR to the membrane is potentially useful for 

selection patients who’ve responded to dasatinib and could further benefit from EGFR 

targeted therapies.  

Specifically, these results have shown that 89Zr-cetuximab detects higher plasma 

membrane EGFR expression with concomitant nEGFR translocation after 48 h of 
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dasatinib treatment, as shown by binding and internalization assays. The lower 

internalization was coupled with an increase in total EGFR levels and a decrease in 

pSrc(Y416) levels, which confers Src response to dasatinib, as measured by western 

blots. In vivo studies demonstrated 89Zr-cetuximab uptake increased after dasatinib 

treatment in TNBC xenografts MDA-MB-231 and MDA-MB-468. This was validated 

through ex vivo autoradiography, histology, and western blots. Immunohistochemistry 

looking at EGFR localization demonstrated an increase in membranous EGFR after 

dasatinib treatment in all xenografts, coupled with a decrease in pSrc(Y416) expression. 

Western blots of tumor lysates have shown an increase in total EGFR levels, with a 

concomitant decrease in pEGFR(Y845) and pSrc (Y416) levels, conferring response to 

dasatinib. Further analysis into utilizing this read out as a predictive biomarker of 

cetuximab response was evaluated in KRAS mutant cells MDA-MB-231, and KRAS wt 

cells MDA-MB-468. Tumor VOI significantly correlated with tumor response to treatment 

in MDA-MB-468 cells, and was coupled with a significant treatment benefit, whereas in 

MDA-MB-231 cells, there was no benefit to cetuximab observed. Taken collectively, 89Zr-

cetuximab PET imaging can potentially be utilized in clinical trials to measure EGFR 

translocation from the nucleus to the membrane in patients treated with dasatinib, and 

potentially other Src inhibitors.  
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CHAPTER 4. UTILIZING IMMUNOPET IMAGING TO MONITOR TUMOR RESPONSE 
TO IMMUNOTHERAPY 

 
This chapter was adapted in full from “Interferon-gamma PET imaging as a 

predictive tool for monitoring response to tumor immunotherapy” by Heather Gibson, 

Brooke McKnight, Agnes Malysa, Greg Dyson, Wendy Wiesend, Claire McCarthy, Joyce 

Reyes, Wei-Zen Wei, and Nerissa T. Viola-Villegas originally published in Cancer 

Research and used with their full permission. 

4.1 INTRODUCTION 

During adaptive immunotherapy, activated T cells infiltrating a tumor are often the 

principal components of treatment providing a “search-and-destroy” mechanism through 

specific recognition of tumor-associated antigens (TAA)(252,253). Recent emerging 

tumor-targeted ITx strategies are met with positive and durable outcomes in a subset of 

patients, however many remain non-responsive, exposing a strong urgency for consistent 

methods to monitor therapeutic response in a timely manner(203). Peripheral immune 

monitoring assays are often restricted to one antigen, are non-standardized, and may not 

reflect the dynamic activity occurring within the tumor(254,255). Post-treatment biopsy 

can be used to evaluate tumor infiltrates(256) however tumor heterogeneity and general 

accessibility may impact the adequacy and/or feasibility of this approach(257). Image-

guided focal analysis of intratumoral immune activity may eliminate these issues by 

providing non-invasive, real-time efficacy predictions in situ. To date, ITx positron 

emission tomography (PET) tracer development has focused on immune cell surface 

molecule detection, particularly against CD3(47), and CD8(258). Others have developed 

tracers targeting immune checkpoint molecules PD1/PD-L1(42,43,259–262) to help 

identify candidate patients for checkpoint blockade therapy. These probes are limited, 
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however, as they do not mark functional downstream effector tumoricidal activity. 

The cytokine interferon-γ (IFN-γ) is predominantly produced by activated Type 1 T 

helper (Th1)-skewed CD4 T cells, cytotoxic CD8 T cells (CTL), and both NK and NKT 

cells(263). Both Th1 and CTL contribute to antigen-specific tumor cell recognition and 

destruction, which is particularly advantageous in the context of immunotherapeutic 

approaches including checkpoint blockade, adoptive cell therapies, and vaccination(264–

266). IFN-γ signaling contributes to tumor cell killing by a variety of mechanisms including 

upregulation of Fas/FasL and MHC molecules (267,268), however tumor expression of 

PD-L1 is also positively regulated by IFN-γ signaling, which ultimately serves as a 

feedback mechanism to quell immune activation.   

 The focus of this study described in this chapter underscores the development of 

a monoclonal antibody PET tracer targeting IFN-γ. The results show that IFN-γ PET 

associates with response to immunotherapy. Tumors treated with TAA DNA vaccination 

show increased IFN-γ detection with an influx of T cells. The level of IFN-γ uptake 

inversely correlates to tumor growth rate. Alternatively, in a model of induced T cell 

exhaustion, T cells were found to infiltrate the tumor but failed to produce detectable IFN-

γ as measured by PET imaging. Results further demonstrated that IFN-γ PET provides 

consistent sensitivity for the detection of immunotherapy response when compared to 

antigen-specific peripheral immune monitoring. Collectively, IFN-γ PET may serve as a 

non-invasive, comprehensive approach to the evaluation of tumor immunotherapy. 

4.2 RESULTS 

4.2.1 PET imaging to visualize Neu+ tumors and CD3+ T cell infiltration 

 First, tumors bearing Neu, which is the target of our vaccine in subsequent studies, 



104 
 

 

were visualized by imaging tumor bearing mice with an anti-neu probe, 64Cu-Ab4. 64Cu 

was selected as the tracer due to its short half-life (t1/2 ~ 12.07 h) and its applicability 

towards serial imaging studies. NeuT mice (n = 4) with palpable tumors exhibited a tumor 

uptake of 5.43 ± 0.72 %ID/g at 4 h p.i., and increased to 7.15 ± 0.45 %ID/g at 24 h p.i. (p 

= 0.5163)(Fig. 38A). Time-course imaging displayed a significant decrease in liver (17.0 

± 2.2 %ID/g to 9.5 ± 2.38 %ID/g, p < 0.0001) and heart (15.5 ± 2.3 %ID/g to 6.7 ± 1.8 

%ID/g, p < 0.0001) uptake from 4 h to 24 h, respectively (Fig. 38B). Tumor volumes as 

measured in mm3 were significantly correlated to tumor uptake at 24 h p.i. (r =0.832, p = 

0.002)(Fig. 38C).  

 
Figure 38. Visualizing presence of Neu+ tumors with 64Cu-Ab4. NeuT mice bearing 
palpable tumors (left) or no tumor (right) were imaged with 64Cu-Ab4 4 h or 24 h p.i. (A); 
time course imaging uptake of tumor, liver, heart, and muscle (B); NeuT tumor volumes 
were correlated to tumor uptake as measured in %ID/g at 24 h p.i. (C). 
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 CD3+ T-cell infiltrates were next visualized within the tumor microenvironment with 

an anti-CD3 tracer, 89Zr-anti-CD3. Tumor bearing NeuT mice were injected with 89Zr-anti-

CD3 and serially imaged from 4 h to 72 h p.i. (Fig. 39). Tumor uptake did not significantly 

change over time, with 3.4 ± 0.5 %ID/g at 4 h p.i., and decreasing to 3.1 ± 0.6 %ID/g at 

72 h p.i. (p = 0.960). Heart uptake increased from 5.35 ± 2.8 %ID/g to 6.23 ± 3.83 %ID/g 

after 72 h p.i. (p = 0.607). Liver uptake significantly increased after 72 h, from 8.28 ± 2.02 

%ID/g to 10.78 ± 1.36 %ID/g (p = 0.005). Spleen uptake significantly increased after just 

48 h, from 10.08 ± 0.9 %ID/g to 16.58 ± 1.65 %ID/g (p < 0.0001), and continued to rise 

after 72 h to 18.53 ± 3.0 %ID/g (p < 0.0001). 

Figure 39. Time course imaging of 89Zr-anti-CD3. Mice were injected with 
89

Zr-anti-
CD3 and images of MIP are shown for each time point (top). L = liver, S = spleen. A plot 
of the volumes-of-interest obtained from select tissues is shown over time from 4-72 h p.i. 
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4.2.2 89Zr-anti-IFN-γγγγ PET tracer identifies localized IFN-γγγγ production 

The rat mAb AN-18 to murine IFN-γ was labeled with 89Zr using desferrioxamine 

as the chelate (89Zr-anti-IFN-γ) in good yields and purities according to previously 

reported methods(269). Timecourse imaging was performed on mice bearing tumors at 

24, 72, and 120 h p.i. (Fig. 41). At 24 h, there was 12.0 ± 3.2% ID/g within the tumor. At 

72 h p.i., there was 11.7 ± 3.1 %ID/g within the tumor, and plateaued at 12.7 ± 3.0 %ID/g 

after 120 h p.i. Time activity curves demonstrate a consistently low muscle uptake. At 72 

h p.i., heart uptake decreases to below tumor uptake levels, and is the time where we 

determined subsequent imaging experiments would take place. Spleen uptake, a 

secondary lymphoid organ, was consistent throughout all timepoints. 

Figure 40. Time course imaging of 89Zr-anti-IFNγγγγ.  Mice were injected with 89Zr-anti-
IFNγ and images of MIP are shown for each time point (top). H = heart, T = tumor. A plot 
of the volumes-of-interest obtained from select tissues is shown over time from 24-120 h 
p.i. 
 

In mice treated with CpG-ODN to stimulate IFN-γ, whole-body PET images were 

acquired 72 h p.i., a time point identified to exhibit reliable tracer uptake in the tumor, with 
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low liver and blood pool background (Fig. 41A). VOIs drawn on splenic tissues 

demonstrated higher tracer accumulation (3.50 ± 0.61 %ID/g, n=3) in CpG-ODN-treated 

groups compared to untreated controls (Ctrl: 0.83 ± 0.12 %ID/g, n=3) (Fig. 38B). 

Tissue distribution of 89Zr-anti-IFN-γ at 72 h p.i. demonstrated 20.04 ± 12.2 %ID/g 

uptake in the spleen (Fig. 41B, Table 14). Uptake within the blood circulation (0.67 ± 0.69 

%ID/g), as well as tissues responsible for excretion, liver (9.77 ± 9.12 %ID/g), and kidneys 

(3.93 ± 0.6 %ID/g) were low. There was also low uptake in the bone and muscle. 

Specificity was further confirmed through competitive binding experiment where a 

decrease in spleen uptake (20.04 ± 12.20 vs. 1.88 ± 2.74 %ID/g, n=4, p=0.0061) with 10X 

cold mAb blockade was observed, consequently increasing non-specific tissue 

accumulation in the blood (19.46 ± 12.69 %ID/g, p=0.0043), heart (10.57 ± 8.91, p=0.30), 

and liver (11.69 ± 9.82 %ID/g, p=0.99). Notable differences in splenic uptake in the 

imaging and tissue distribution (10-fold lower mass) are due to “mass effects”, wherein a 

greater mass of protein administered potentially saturated receptor binding sites and 

rendered slower pharmacokinetics(57). 

Since IFN-γ is a soluble protein, the mechanism of localized IFN-γ imaging was 

investigated. Plated TUBO tumor cells were exposed to IFN-γ and/or 89Zr-anti-IFN-γ tracer 

in quintuplicate followed by analysis of membrane binding and internalization (Fig. 41C). 

TUBO cells incubated with 89Zr-anti-IFN-γ alone show limited tracer surface binding (1.13 

± 0.28%) and internalization (0.29 ± 0.13%). When TUBO is pre-incubated with IFN-γ, 

enhanced 89Zr-anti-IFN-γ surface binding (13.62 ± 2.60%) and internalization (3.93 ± 

1.07%) is observed (membrane: p=0.00039, internalized: p=0.0015). Detection of tracer 

binding to TUBO cells after IFN-γ exposure suggests localized imaging may be due to 
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sequestration of IFN-γ on its receptor in vivo. 

Figure 41. Validation of specificity of 89Zr-anti-IFN-γγγγ A) BALB/c mice treated with CpG-
ODN and imaged with the tracer 72 h p.i. displayed higher uptake in the spleen compared 

to control (Ctrl) untreated cohorts (n=3 each). B) Tissue distribution of 
89

Zr-anti-IFN-γ at 
72 h p.i. demonstrated lower probe accumulation in the spleen upon competitive 

saturation with 10× cold AN-18 mAb (n=4 each). C) Binding of 
89

Zr-anti-IFN-γ receptor-

localized IFN-γ was tested in vitro. TUBO cells were incubated with 
89

Zr-anti-IFN-γ alone 

(n=5), or with recombinant IFN-γ (rIFN-γ) and washed before addition of 
89

Zr-anti-IFN-γ 
(n=5). Activity was measured by a gamma counter and adjusted for cell count. * denotes 
p < 0.05, *** denotes p < 0.001.  
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Table 14. Biodistribution with 89Zr-anti-IFNγγγγ   

4.2.3 IFN-γγγγ PET detects active anti-tumor immunity in situ in a syngeneic tumor 

model 

To test the capacity of 89Zr-anti-IFN-γ as a non-invasive measure of anti-tumor 

immune response, neu+ TUBO tumor bearing BALB/c mice were imaged after receiving 

two rounds of HER2/neu DNA vaccination as detailed in Figure 42A. This vaccine induces 

HER2-specific humoral and T cell responses and ~10% equivalent of cross-reactive anti-

neu T cells without cross-reactive neu-specific antibody(270). Tumor volumes began to 

stabilize or regress within 1 week after the second vaccination compared to untreated 

TUBO-bearing mice (Fig. 42A). Mice were injected with 89Zr-anti-IFN-γ tracer for PET 

imaging (Fig. 42B and Fig. 43) at 72 h p.i. A nearly two-fold increase in tumor uptake was 

Tissue Control 10×××× mAb block 

 

 

Mean ± S.D. Mean ± S.D. p-value 

Spleen 20.04  ± 12.20 1.88 ± 2.74 0.0061 

Blood 0.67  ± 0.69 19.46 ± 12.69 0.0043 

Heart 0.30   ± 0.04 10.57 ± 8.91 0.2956 

Liver 9.77  ± 9.12 11.69 ± 9.82 0.9999 

Kidneys 3.93 ± 0.60 10.64 ± 7.18 0.7755 

Bone 4.19 ± 1.18 1.01 ± 0.94 0.9951 

Muscle 0.73 ± 0.65 1.08 ± 1.23 >0.9999 
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observed in vaccinated (Vx: 10.07 ± 1.50 %ID/g, n=6) versus control mice (Ctrl: 5.97 ± 

0.61 %ID/g, n=6, p=0.0001). An 89Zr-labeled rat IgG isotype control tracer demonstrated 

similar tumor accumulation (72 h p.i.) in both untreated (5.27 ± 0.79 %ID/g) and 

vaccinated (5.93 ± 0.85 %ID/g) mice. This suggests baseline intratumoral IFN-γ levels are 

low without treatment. The notable low accumulation of the isotype control tracer after 

vaccination supports the specificity of the IFN-γ tracer and suggests increased 89Zr-anti-

IFN-γ uptake is not simply due vascular permeability and retention effects post-ITx. 
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Figure 42. PET evaluation of immunotherapy response in orthotopic TUBO 
mammary tumors. Tumor volume was monitored in both untreated control (Ctrl, n=11, 
left) and vaccinated (Vx, n=12, right) tumors. TUBO cells were inoculated 10 days prior 
to the start of vaccinations, given on days 0 and 14. PET imaging was conducted on day 
15 (Ctrl) and 21 (Vx) (A); Representative whole body maximum intensity projections (MIP, 
top row) and planar (bottom row) images of control (left panels, n=6) and vaccinated (right 

panels, n=6) mice with 
89

Zr-anti-IFN-γ tracer (left). White circle = tumor, L = liver, H = 

heart, S = spleen, Th = Thymus. Tumor VOIs were measured for each mouse with an 
89

Zr 
labeled rat IgG isotype control included for each treatment group (n=3, untreated control; 
n=6, vaccinated control) (B); MIP image (top panels) and planar sections (bottom panels) 

of 
89

Zr-anti-CD3 images in control (left, n=5) and vaccinated mice (middle, n=6) (C). A 

non-specific 
89

Zr labeled Armenian hamster IgG isotype control was used to measure 
tumor VOI in a separate group of untreated mice (right, n = 3).  
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Figure 43. MIP images of 89Zr-anti-IFNγγγγ. Detection in all control (left) and vaccinated 
(right) TUBO bearing mice. 

4.2.4 Detection of tumor infiltrating lymphocytes via CD3 immunoPET 

Total T cell presence in the tumor microenvironment was assessed in separate 

groups of mice via immunoPET imaging of CD3+ tumor infiltrating lymphocytes using 

89Zr-anti-CD3 (Fig. 42C and Fig. 44). Vaccinated tumors exhibited a modest, insignificant 

increase of CD3 tracer binding compared to control (6.25 ± 0.37 %ID/g, n=6 vs. 4.58 ± 

0.83 %ID/g, n=5, p=0.16). Both cohorts failed to demonstrate a significant change in 

uptake compared to Armenian hamster isotype control IgG (5.90 ± 1.26 %ID/g, n=3, 

p=0.87 (Ctrl), p=0.49 (Vx)). Untreated TUBO tumors have endogenous T cell infiltrates 

as detected by flow cytometry upon dissociation (Fig. 45A). However, CD3 immunoPET 
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suboptimally detected these TILs in both untreated and vaccinated mice with measured 

VOIs similar to the non-specific IgG tumor accumulation. This may be due to excessive 

uptake by the spleen, a T cell-homing secondary lymphoid tissue (Ctrl: 17.06 ± 3.56 

%ID/g, Vx: 18.36 ± 1.49 %ID/g, Fig. 45B), which can act as a tracer “sink.” In contrast, 

limited splenic accumulation was observed with the IFN-γ PET probe (Ctrl: 3.58 ± 0.81 

%ID/g, p<0.0001, Vx: 4.97 ± 0.97 %ID/g, p<0.0001). 

 

 

 

Figure 44. MIP images of 89Zr-anti-CD3. Detection in all control (left) and vaccinated 
(right) TUBO bearing mice. 
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Figure 45. T cell detection in TUBO-bearing BALB/c. Tumors from untreated TUBO-
bearing mice were dissociated and stained with CD45, to detect total leukocyte infiltrates, 
and the T cell receptor beta chain (TCRβ), to identify the T cell fraction, by flow cytometry 

(A); spleen VOIs were calculated for each TUBO-bearing mouse imaged with either 
89

Zr-

anti-IFNγ or
 89

Zr-anti-CD3 (B). 
 
4.2.5 Ex vivo validation via IHC, qPCR, and ELISA 

Upon completion of imaging, tissues were collected for ex vivo validation. Tumor 

tissue was assessed to verify CD3+ and CD8+ T cell presence, as well as expression of 

IFN-γ. Transcripts levels of CD3, CD8 and IFN-γ were increased in tumor tissue after 

vaccination (Fig. 46A, Ctrl: n=11, Vx: n=13), in concordance with the PET imaging data. 

Cultured TUBO cell cDNA is included as a negative control. CD3 and CD8 proteins were 

increased after treatment (46B) and intratumoral IFN-γ protein was also confirmed and 

quantitated by ELISA (Fig. 46C). ELISA results showed higher total IFN-γ in Vx (n=11) 

versus Ctrl (n=10) TUBO tumors (85.37 ± 65.89 vs. 41.69 ± 20.12 pg/mg tissue, p=0.043).  

Peripheral vaccine-induced immunity was measured by HER2/neu-specific serum 

IgG (Fig. 46D) and splenic T cell responses (Fig. 46E). HER2-specific IgG was only 

detected in vaccinated mice (18.68 ± 7.40 µg/mL, n=14, p<0.0001). TUBO tumors 

constitutively express the cell surface oncogene neu, which is foreign in wild-type BALB/c 

mice. Neu-specific IgG is detected in unvaccinated control TUBO-bearing mice (1.58 ± 
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1.60 µg/mL, n=13), which is further increased in vaccinated animals (6.18 ± 7.34 µg/mL, 

n=14, p=0.0019). While the HER2 DNA vaccine itself does not induce anti-neu IgG(270), 

tumor cell killing likely enhances immune activity to this foreign antigen. Detection of 

HER2-specific IFN-γ-producing T cells was restricted to vaccinated mice, similar to anti-

HER2 IgG (119.40 ± 95.18/106 splenocytes (SC), n=7, vs. 0.83 ± 2.04/106 SC in untreated 

controls, n=6, p=0.0012). Peripheral anti-neu T cells were detected in all vaccinated 

animals (8.33 ± 7.75/106 SC) while only 1 of 4 untreated controls showed T cell 

responsiveness to neu (0.83 ± 2.04/106 SC, p=0.033). The absolute quantities of HER2 

and neu-specific IgG and T cells were ~10-fold lower than similarly vaccinated non-tumor-

bearing mice(270). This may be due to tumor-associated immune suppression by 

myeloid-derived suppressor cells or regulatory T cells (Tregs), which are reportedly 

increased in TUBO-bearing mice(270–272). 
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Figure 46. Ex Vivo validation of immunotherapy response in TUBO-bearing mice. 
Tumors were removed after imaging and validated. A) Total RNA obtained from Ctrl (n=11) 
and Vx (n=13) tumor tissue was analyzed by qPCR with primers specific to CD3 (left), 
CD8 (middle), and IFN-γ (right). Cultured TUBO cells serve as control (n=2). B) Western 
blots from lysed decayed tumor tissues post-CD3 or IFN-γ PET were conducted to 
analyze presence of CD3 and CD8 protein in the Vx vs Ctrl mice. C) IFN-γ ELISA was 
conducted with protein lysates of TUBO tumor segments of control Ctrl (n=10) and Vx 
(n=11) mice. D) HER2 and neu-specific IgG were measured in serum by flow cytometry 
(Ctrl: n=13, Vx: n=14). E) HER2 and neu-responsive T cells were measured by IFN-γ 
ELISPOT (Ctrl: n=6, Vx: n=7). * denotes p < 0.05, ** denotes p < 0.01, *** denotes p< 
0.001. 
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4.2.6 Detection of ITx response in a spontaneous tumor model 

 The capacity of IFN-γ PET imaging to detect anti-tumor immune activity was tested 

in a spontaneous tumor setting. Neu transgenic (NeuT) mice are engineered to express 

a transforming rat neu under the mouse mammary tumor virus promoter(273), allowing 

immune system recognition of neu as a self-antigen(270). Studies were conducted in 

male NeuT mice, which develop 1-2 spontaneous neu+ salivary tumors between 30-40 

weeks of age(273). Once tumors were palpable, Tregs were depleted using anti-CD25 

mAb clone PC61 to enhance ITx response given NeuT mice are immune tolerant to rat 

neu(270,274), followed by two HER2/neu DNA vaccinations. Vaccination of NeuT mice 

(n=7) controlled tumor growth rate compared to untreated (n=6) tumor-bearing NeuT mice 

(Fig. 47A, p=0.032). IFN-γ PET of vaccinated tumors displayed a nearly two-fold higher 

uptake of 89Zr-anti-IFN-γ (8.37 ± 0.35 %ID/g, n=4) vs. control (4.63 ± 0.47 %ID/g, n=3, 

p=0.001), indicating infiltration of functional anti-tumor T cells (Fig. 47B and Fig. 48B). An 

examination of tumor infiltrates via CD3 PET (Fig. 47C and Fig. 48B) revealed a similar 

trend (8.05 ± 1.47 %ID/g vs. 4.43 ± 0.72 %ID/g, n=3 per group, p=0.012). 
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Figure 47. PET detection of anti-tumor immunity in spontaneous tumor-bearing 
NeuT mice. Control, untreated mice (Ctrl, n=6) were imaged by PET after palpable 
tumors were permitted to grow 31 days. For vaccinated mice (Vx, n=7), upon detection of 
palpable spontaneous salivary tumors, regulatory T cells (Treg) were depleted 10 d prior 
to the first vaccination. Mice received two HER2/neu DNA vaccinations 14 d apart. PET 
imaging was conducted 7 days after the final vaccination (A); representative whole body 
maximum intensity projections (MIP, top row) and planar (bottom row) images of control 

(left panels, n=3) and HER2/neu DNA-vaccinated (right panels, n=4) mice with 
89

Zr-anti-
IFN-γ tracer (left) (B). White circle = tumor, L = liver, S = spleen. Tumor VOIs were 
calculated for each mouse. C) Representative CD3 PET images of MIP (top) and planar 
sections (bottom) are shown for Ctrl (left) vs. Vx groups (right). * denotes p< 0.05. 
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Figure 48. 89Zr-anti-IFNγγγγ and 89Zr-anti-CD3 PET in all tumor-bearing NeuT mice. MIP 

images of (A) 
89

Zr-anti-IFNγ and (B) 
89

Zr-anti-CD3 detection in all control (left) and 
vaccinated (right) NeuT mice bearing spontaneous salivary tumors. Tumors are indicated 
by arrow; L = liver. 

Validation of T cell infiltration and IFN-γ production was conducted by qPCR in 

tumor tissue samples (Fig. 49A). CD3 and CD8 detection showed a variable modest, 

A. 

B. 
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insignificant increase after vaccination, while IFN-γ mRNA increased (Ctrl: n=3, Vx: n=5, 

p=0.036). Peripheral immune response to the vaccine was evaluated by measuring 

serum anti-HER2 and anti-neu IgG as well as spleen-resident HER2- and neu-responsive 

IFN-γ-producing T cells. Tolerance to HER2/neu in NeuT mice was apparent with a 

comparatively lower ITx response vs. wild-type BALB/c mice bearing TUBO tumors in 

Figure 2. HER2-specific IgG was detected in vaccinated animals (Fig. 49B, 8.7 ± 4.9 

µg/mL, n=8, p=0.0016 vs. Ctrl, n=5), while anti-neu IgG was negligible or absent in all 

samples tested. Despite increased intratumoral detection of IFN-γ in vaccinated NeuT 

mice by PET, peripheral T cell response to neu was low (Fig. 49C, 15.80 ± 8.84/106 SC, 

n=5) with HER2 vaccination, and was not significantly increased relative to untreated 

control (n=5, p=0.27). that detected in non-immune tolerant BALB/c mice bearing TUBO 

(10.0%, Fig. 49C). These results support the hypothesis that peripheral immune 

monitoring may be an inadequate measure of anti-tumor immunity with tumor-responsive 

T cells preferentially localizing within the tumor, supporting the use of in situ analysis 

methods such as PET imaging. 
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Figure 49. Ex vivo validation of anti-tumor immunity in spontaneous tumor-bearing 
NeuT mice. A) Total RNA was isolated from tumor tissue and qPCR analysis for CD3, 
CD8, and IFN-γ was conducted (n=3 each) B) Serum HER2 (Ctrl, n=5; Vx, n=8) and neu-
specific IgG (Ctrl, n=5; Vx n=8) was measured by flow cytometry. C) HER2 and neu-
responsive T cells were measured by IFN-γ ELISPOT (n=5 each). * denotes p < 0.05, ** 
denotes p < 0.01. 



123 
 

 

4.2.7 IFN-γγγγ PET imaging is an indicator of immune activation status in situ 

To test the capacity of 89Zr-anti-IFN-γ to predict treatment outcomes, BALB/c mice 

(n=11) bearing variably-sized TUBO tumors were treated with our HER2 vaccine as 

described previously, resulting in a range of growth slopes (Fig. 50A, Fig. 51). 89Zr-anti-

IFN-γ PET imaging was conducted two weeks after the final vaccination and tumor volume 

was monitored for an additional ten days. Tumor-localized 89Zr-anti-IFN-γ tracer uptake 

inversely correlated with tumor growth rate (Fig. 50B and Fig. 4.13, r=-0.64, 95% CI: (-

0.90,-0.06); p=0.034), suggesting IFN-γ PET is an indicator of the effects of ITx on these 

tumors.  

The outcome of IFN-γ PET in a setting where tumor-infiltrating T cells are present 

but have become exhausted was evaluated. TUBO-bearing mice were treated with 

passive ITx, mAb 7.16.4 to rat neu. This mAb has been shown to inhibit neu signaling in 

addition to initiating host anti-tumor immunity(275,276). Once tumors were established at 

~50 mm3, 1 mg doses of 7.16.4 were given i.p. at 3-4 day intervals for a total of 5 

treatments, which reduced and stabilized tumor growth (Fig. 50C). 89Zr-anti-IFN-γ (n=5) 

or control IgG (n=6) PET imaging was conducted on day 30 after treatment onset, at 

which time tumor growth had resumed. Tumor uptake of IFN-γ tracer was 

indistinguishable from IgG control, suggesting a lack of immune activity (Fig. 50D). CD8 

T cell infiltration was evaluated by IHC (Fig. 50E). Blinded pathologist enumeration of the 

three regions with highest infiltration was calculated, showing a 12-fold increase in CD8 

T cells after 7.16.4 treatment versus control (Ctrl: 3 ± 1, 7.16.4: 36 ± 19). Vaccinated 

TUBO tumor had the largest detected CD8 infiltration (74 ± 25). Overall, CD8+ tumor 

infiltration was intermittent, with high-density regions scattered among areas with no 
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detectable CD8+ TILs (Fig. 50E). We further validated CD8 T cell infiltration after 7.16.4 

therapy by flow cytometry in a parallel cohort of treated and control mice (Fig. 50F, n=4 

each). An overall increase in CD45+ infiltrates (Ctrl: 6.84 ± 1.85%, 7.16.4: 16.95 ± 5.88%, 

p=0.036) and CD8+ T cells (Ctrl: 0.41 ± 0.19%, 7.16.4: 4.96 ± 1.96%, p=0.018) was 

detected after mAb treatment. Interestingly, the majority of CD8+ TILs expressed the T 

cell exhaustion marker PD-1 (Fig. 50G, 79.7 ± 10.3%) compared to control tumors (20.5 

± 9.3%, p=0.0001). Collectively these results suggest this treatment model promotes an 

inactive and exhausted CD8 T cell status despite tumor infiltration, leading to reduced 

IFN-γ production which can be detected by 89Zr-anti-IFN-γ PET imaging.
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Figure 50. IFN-γγγγ PET depicts response to ITx. Tumor volume was monitored in TUBO-
bearing vaccinated BALB/c mice (n=11). TUBO cells were inoculated 13 days prior to the 
start of vaccinations, to allow for variability in tumor volumes at treatment onset. Vaccines 
were given on days 0 and 14. PET imaging was conducted on day 28 (A); weekly tumor 

growth rate, calculated by regression analysis of log tumor growth, versus 
89

Zr-anti-IFN-
γ tracer uptake is plotted for each mouse and evaluated by Pearson’s correlation (B); 
tumor growth was monitored during passive immunotherapy with anti-neu mAb 7.16.4, 
given as 5 doses at 1.5 mg i.p. every 3-4 days as indicated beginning 15 days after tumor 

inoculation. 
89

Zr-anti-IFN-γ (n=5) or 
89

Zr-rat-IgG control (n=6) PET imaging was 

conducted 30 days after treatment onset (C); tumor VOIs were calculated for 
89

Zr-anti-

IFN-γ or 
89

Zr-rat-IgG tracers in 7.16.4 treated TUBO-bearing mice (D); intratumoral 
localization of CD8 was analyzed by IHC on FFPE tissue (400×). H&E sections are 
included. CD8 enumeration is found in the lower right corner of each panel (E); control 
and 7.16.4-treated tumors (n=4 each) were dissociated and analyzed for T cell infiltration 
by flow cytometry by staining for CD45 and CD8 (F); PD-1 expression was analyzed by 
flow cytometry (G) on CD8+ tumor infiltrates from (F). * denotes p < 0.05, ***denotes p < 
0.001. 
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4.3 DISCUSSION 

Several major drawbacks to the use of general T cell surface markers and immune 

checkpoint ligands for PET imaging can complicate the assessment of immunotherapy 

response. T cells are densely present in normal secondary lymphoid tissues, such as the 

spleen, thymus and lymph nodes, which may hinder tumor-specific T cell imaging. 

Intratumoral detection of total CD3+ T cells and CD8+ cytotoxic lymphocytes has been 

shown to positively correlate with patient outcomes(277,278). However, the chronic 

inflammatory tumor microenvironment promotes checkpoint molecule expression, driving 

cytotoxic T cells into an exhausted state with diminished effector activity. Visualizing 

components of checkpoint signaling axes (e.g. PD1/PD-L1) can provide go-or-no-go 

treatment decisions by selecting patients with higher likelihood of responding to 

checkpoint blockade(279). In general, these methods do not measure downstream 

effector function of cytotoxic T cells. Larimer et al. reported on the utility of a peptide-

based imaging tracer specific granzyme B, a cytotoxin released by activated CTL using 

a syngeneic colon cancer model(45). The tracer identified responders from non-

responders after mono- or combinatorial anti-CTLA-4 and anti-PD1 targeted inhibition; 

however, it is unclear whether the peptide tracer (7.46 ± 2.24 µg per mouse) solicited 

inhibitory effects on the enzymatic activity of granzyme B. Nevertheless, the study 

substantiates the rationale that imaging effector molecules along the T cell signaling axis 

may provide a better readout of immune response to treatment.  

In this study, the capabilities of IFN-γ PET were demonstrated to measure active 

anti-tumor immunity, providing a predictive tool for non-invasive in situ tumor evaluation. 

This approach is highly specific to the tumor compared to total T cell imaging due to the 
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fact that IFN-γ is secreted by CTLs within the tumor. Imaging CD3, on the other hand, 

targets the general T cell population that are not only localized in the tumor but also in 

other lymphoid tissues. Find antibody-based tracers to immune cell surface molecules 

were found to may create artifacts in the experimental system. Efforts to label CD8-

specific full-length mAbs (clones 2.43 and non-depleting YTS-105.18) resulted in 

depletion of the target cell population and tracer accumulation in the kidneys with lack of 

secondary lymphoid tissue detection (data not shown) despite detection of CD8+ tumor 

infiltrates by flow cytometry and IHC (Fig. 6E-F). Anti-CD3 mAb clone 2C11 is routinely 

utilized for its pan-T cell receptor agonist activity, which may also potentially alter T cell 

function in vivo. Alternatively, it is conceivable that tracers to surface receptors may 

antagonize signaling, which could create off-target effects. Careful selection of antibody 

clones or construction of antibody fragment-based tracers like the CD8 diabody 

generated by Tavare et al.(213) or the VHH probe by Rashidian et al.(258) may alleviate 

some of these factors, but thorough quality control is necessary. Tracers targeting soluble 

cell products may also circumvent many of these problems. 

A caveat to detection of cytokines by PET imaging is the soluble nature of these 

proteins. Localization of 89Zr-anti-IFN-γ was observed in the spleen after CpG-ODN 

treatment and in the tumor after HER2/neu vaccination, suggesting the tracer is 

sequestered within the tissue.89Zr-anti-IFN-γ complexes in vitro and find maximal binding 

when TUBO cells are pre-incubated with IFN-γ, supporting the working hypothesis that 

localized imaging is due to detection of IFN-γ associated with its receptor. 

Ex vivo validation experiments showed a general trend in agreement with the PET 

imaging results, a direct correlation to tracer uptake is difficult to establish. These assays, 
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similar to a biopsy, are sampling a fragment of a heterogeneous tumor, yielding 

opportunity for equivocal results. Further, our IHC analyses on TUBO tumors (Fig. 6E) 

show the tissue is non-uniform, with regions of variable CD8 T cell infiltration after ITx 

ranging from moderate density to a virtual absence. For these reasons, imaging tools like 

immunoPET are advantageous, bridging a clinical need by providing a more 

comprehensive view of the entire tumor microenvironment.  

These results showed 89Zr-anti-IFN-γ tracer uptake can be indicative of response 

to therapy in both cancer vaccination and TAA-specific mAb models. IFN-γ PET further 

demonstrated it may be more sensitive for determining response to immunotherapy when 

compared to peripheral immune evaluation, a point which should be evaluated further. 

IFN-γ PET has the potential to serve as a universal non-invasive measurement of immune 

activity in situ for a variety of cancers with virtually any immunotherapy modality with no 

need for knowledge of specific antigens or cumbersome ex vivo antigen recall assays. 

Additionally, the utility of IFN-γ PET can potentially expand beyond cancer immune 

monitoring to include examination of localized inflammatory conditions such as injury, 

infection, or autoimmune disease. Taken together, these results support the development 

of IFN-γ PET tracers for clinical evaluation of tumor immunotherapy. 
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CHAPTER 5. MATERIALS AND METHODS 

5.1 In vitro cell culture and in vitro tumor induction 

5.1.1 Cell culture and propagation 

All cells were adhered and grown at 37 °C with 5% CO2 according to the following 

conditions listed in Table 15.  All cells were split once they reached 80% confluence and 

were tested for mycoplasma with MycoAlert Mycoplasma Detection Kit (Lonza) and 

certified by the Biobanking and Correlative Services Core at Wayne State University. 

Cell Line Characteristic Media Passage  Obtained 

BT-474 ER+, HER2+ 

1:1 DMEM:F12 
(VWR) + 5% FBS + 
1% Pen-Strep + 1% 

NEAA 

1×/ week 
 

Dr. Jason S. 
Lewis 

(MSKCC, NY, 
USA) 

JIMT-1 
HER2+, 

trastuzumab 
resistant 

DMEM + 1% Pen-
strep + 5% FBS 

 

2×/week 
 

Dr. Jason S. 
Lewis 

(MSKCC, NY, 
USA) 

MDA-MB-
468 

TNBC, EGFR-
high 3×/week 

Dr. Julie 
Boerner 

(Wayne State, 
Detroit, USA) 

MDA-MB-
231 

TNBC, EGFR-
high 2×/week 

Dr. Steven 
Patrick 

(Wayne State, 
Detroit, USA) 

MDA-MB-
453 

TNBC-EGFR 
low 2×/week ATCC 

TUBO Neu+ 

DMEM (High 
Glucose),10% NCTC, 

10% FBS, 1% L-
glutamine, 1% NEAA, 
1% Pen-Strep, 0.1% 
2-mercaptoethanol, 

1% Sodium 
Bicarbonate, 

oxalacetic acid, 
sodium pyruvate, 

insulin 

3×/week 

Dr. Guido 
Forni (U. 
Torino, 

Torino, Italy) 

Table 15. Cell lines and growth conditions. 
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5.1.2 Tumor induction  

All animal handling and manipulations were conducted in accordance with the 

guidelines set by Wayne State University Institutional Animal Use and Care Committee. 

Female athymic nu/nu mice (6-8 week old) were purchased from Charles Rivers 

Laboratories (Wilmington, MA). All cells in 150 µL 1:1 media:Matrigel (BD Biosciences, 

Bedford, MA) were injected on the right shoulder at concentrations listed in Table 16. 

Monitoring of tumor growth was performed weekly with calipers. The tumor volume was 

calculated using the formula: length × width × height × pi/6. Mice with tumor volumes 

ranging from 150 – 250 mm3 were utilized. 

Cell Line Characteristic Xenograft Protocol (cells) 

BT-474 ER+, HER2+ 
Estrogen pellet 3 days prior 

(0.72 mg slow-release) 
10×106 

JIMT-1 
HER2+, trastuzumab 

resistant 
5×106 

MDA-MB-468 TNBC, EGFR-high 3×106 

MDA-MB-231 TNBC, EGFR-high 5×106 

MDA-MB-453 TNBC-EGFR low 5×106 

TM00089 TNBC, PDX - 

Table 16. Tumor inoculation protocol. 

5.1.3 NeuT mice and TUBO tumor induction 

Heterozygous BALB/NeuT (NeuT) mice were in-house bred and provided to us by 

the lab of Professor Wei-Zen Wei. NeuT male mice, which express a transforming rat neu, 

develop atypical ductal hyperplasia in 1-2 parotid glands by 6 weeks of age which 

progresses to multifocal acinic cell adenocarcinoma in situ at ~19 weeks of age(273). 
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BALB/c mice (6-8 week old) were purchased from Charles River Laboratories 

(Wilmington, MA) and were inoculated with TUBO cells in the #4 mammary fat pad. 

Monitoring of tumor growth was performed weekly with calipers. 

5.2 Antibody conjugation to chelates  

p-Benzyl-isothiocyanate-desferrioxamine (DFO-Bz-SCN, Macrocylics, Inc.) or  p-

SCN-Bn-1,4,7-triazacyclononane-1,4-7-triacetic acid (NOTA, Macrocyclics, Inc.) was 

conjugated to the antibodies listed on Table 17 according to previously published 

protocols(269). The synthesis was performed using the mole equivalence of DFO or 

NOTA to the antibody listed in Table 17 in 0.9% saline, pH ~9 at 37 °C for 1 h. The 

monoclonal antibody (mAb) DFO- or NOTA-conjugates were obtained by passing through 

a spin column filter with a molecular weight cut-off of 30 kDa (GE Vivaspin 500) using 

sterile saline as eluting buffer. 

Antibody Company DFO:mAb 
Mole Ratio 

Specific 
Activity 

(mCi/mg) 

Clone or Catalog 
No. 

(if applicable) 

Trastuzumab 
(Herceptin ®) 

Genentech 1:4 4  

Non-specific 
human IgG 

Sigma-Aldrich 1:4 5 14506 

Cetuximab 
(Erbitux®) 

Genentech 1:5 5  

Anti-CD3 eBioscience 1:5 5 145-2C11 
Anti-IFNγ eBioscience 1:5 5 AN-18 

Anti-rat IgG 
Jackson 

ImmunoResearch 
1:5 5 012-000-003 

Anti-armenian 
hamster IgG 

Jackson 
ImmunoResearch 

1:5 5 eBio299Arm 

Anti-neu In House 
1:4* 

(NOTA:mAb) 
5 7.16.4 

Table 17. Antibodies and labeling conditions.  
Note: *the chelate used for conjugation was NOTA. 
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5.3 Radiochemistry 

5.3.1 89Zr-radiochemistry 

Approximately 1 mCi (37 MBq) of 89Zr-oxalate (3D Imaging, LLC) was neutralized 

to pH 7.0 – 7.2 using 1 M Na2CO3. mAb-DFO (200 µg) was added to the 89Zr solution and 

pH was adjusted back to 7.0 if needed. The reaction was quenched after 1-1.5 h 

incubation at room temperature upon addition of 5 µL of 50 mM 

ethylenediaminetetraacetic acid (EDTA) (pH ~7.0) to eliminate any non-specifically bound 

radiometal. 

5.3.2 64Cu-radiochemistry 

mAb-NOTA (200 µg) was added to 1 mCi (37 MBq) 64Cu solution and the pH was 

adjusted to ~5 with 0.1 M ammonium acetate. The reaction was quenched after 1-1.5 h 

incubation at room temperature upon addition of 5 µL of 50 mM EDTA (pH ~7.0) to 

eliminate any non-specifically bound radiometal. 

5.3.3 Radiolabeling efficiency 

Radiolabeling efficiency was determined via radio-instant thin layer 

chromatography (iTLC) using silica gel-impregnated iTLC strip (Agilent Technologies, 

Santa Clara, CA) and 50 mM EDTA as the solid and mobile phase respectively. Pure 

89Zr-mAb or 64Cu-mAb was obtained through spin column centrifugation (GE Vivaspin 

500, MWCO: 30 kDa) with saline used for eluting unbound radiometal. mAbs were 

assessed for immunoreactivity as previously described(280). 
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5.4 Drugs and Treatments 

Drug Company Treatment Dose Treatment 
Length 

Delivery 
Vehicle 

Dasatinib 
(Sprycel™) 

Sellechem 75 mg/kg (Aim 1) 
50 mg/kg (Aim 2) 

7 or 14 d 
5 d 

1:1 
water:glycerol 

Cetuximab Genentech 0.3 mg 2×/week 
3 weeks 

Saline 
i.p. injection 

CpG-ODN Integrated DNA 
Technologies 

100 µg 1 h prior to 
imaging 

PBS 
Intramuscular 

injection 
HER2/neu 

DNA 
Vaccine 

In house 20 µg pGM-CSF + 
50 µg pE2TM 

See scheme 
in Chapter 4 

PBS 
Intramuscular 

injection 
7.16.4 In house 1 mg in filtered 

ascites 
5× 

every 3-4 d 
PBS 

i.p. injection 

Table 18. Drugs used in the studies. 

5.4.1 Molecular therapy 

Dasatinib was administered to tumor-bearing mice via oral gavage (p.o.) for 

treatment length described in Table 18. Untreated control mice were given a 1:1 mix of 

water and glycerol (150 µL total volume via oral gavage) as placebo. Cetuximab (i.p.) was 

administered intraperitoneally (i.p.) to tumor bearing mice (Table 18). Food and water was 

given ad libitum. Tumor volumes were recorded 2-3 times per week. Percent change in 

tumor volume was analyzed using measurements obtained before the start of treatment 

to the time of imaging following formula: ((start tumor volume – end tumor volume)/start 

tumor volume)×100.  

5.4.2 Immunotherapy 

For NeuT vaccination, mice were depleted of Tregs by intraperitoneal (i.p.) 

injection of 500 µg anti-CD25 mAb PC61 10 days prior to the first vaccination. The 

HER2/neu DNA vaccine consists of an admixture of 20 µg of pGM-CSF (encoding murine 

GM-CSF) and 50 µg pE2TM (encoding the extracellular and transmembrane regions of 
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human HER2) in 50 µL PBS, which is injected intramuscularly (i.m.) into each 

gastrocnemius followed immediately by application of electrode gel and square wave 

electroporation using a BTX830 (BTX Harvard Apparatus, Holliston, MA). 

Mice bearing TUBO tumors were injected i.p. 5 times every 3-4 days with sterile-

filtered ascites containing 1 mg anti-neu mAb 7.16.4 diluted in PBS to a final volume of 

300 µL. 

5.5 IC50 Calculations 

Wells (96-well clear bottom plate, Corning) were seeded with ~1×104 cells and 

incubated for 18 h. Dasatinib was dissolved in DMSO (Sigma-Aldrich) at a 50 mM 

concentration. Serial dilutions of dasatinib (1nM to 1 mM) were made and cells were 

treated in 100 μL complete media and incubated for 72 h. Media was removed and cells 

were washed 1× with phosphate buffered saline (PBS) before addition of alamar blue 

(Life Technologies) in fresh media (1:10 Alamar blue:media) to measure cell viability. 

After 4 h incubation, absorbance was read at 570 nm on an Infinite M200 plate reader 

(Tecan). IC50 was calculated as the log(concentration) vs. absorbance – control well 

absorbance in GraphPad Prism (v. 7.02).5.5   

5.6 Internalization Assay 

Internalization of radiolabeled antibodies was evaluated on appropriate cell lines. 

Wells were seeded with ~5×105 cells and incubated for 18 h. Cells were treated with the 

established IC50 for dasatinib (Sellechem, reconstituted in DMSO) in complete media. 

After incubation, media was removed, and cells were washed 1 × PBS. Radiolabeled 

protein [1 µCi/mL (37 kBq/mL), 150 ng] in 1 mL of media was then added to each well. 

The plates were incubated at 37 °C for 2 h. Following the incubation period, the media 
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was collected, and the cells were rinsed with 1 mL 1× PBS, twice. Surface-bound activity 

was removed by washing the cells in 1 mL 100 mM acetic acid + 100 mM glycine (1:1, 

pH 3.5) at 4 °C. The cells were then lysed with 1 mL 1 M NaOH. All washes (media plus 

PBS, acid and alkaline) were collected in separate tubes and measured for bound activity 

using a gamma counter (Perkin Elmer). The %-internalized activity was calculated as the 

ratio of the activity of the lysate and the total activity collected from the media, PBS, acid 

and base washes, normalized to 50,000 cells counted using a Countess II Automated 

Cell Counter (Thermo Fisher). 

5.7 In vitro competitive binding assay 

Binding of radiolabeled mAbs was evaluated in appropriate cell lines. Wells were 

seeded with ~10×104 cells and incubated for 18 h. After incubation, radiolabeled protein 

[1 µCi/mL (37 kBq/mL, 100 ng)] in 1 mL of media was added to each well with or without 

10-fold excess unlabeled mAb (1 μg). The plates were incubated at 4 °C for 1 h. Following 

the incubation period, the media was collected and the cells were rinsed with 1 mL 1× 

phosphate buffered saline (PBS) twice. The cells were then lysed with 1 mL 1 M NaOH. 

All washes (media plus PBS and alkaline) were collected in separate tubes and measured 

for counts using a gamma counter (Perkin Elmer). The %-bound activity was calculated 

as the ratio of the activity of the lysate and the total activity collected from the media, PBS, 

acid and base washes, and was normalized to cell count using a Countess II Automated 

Cell Counter (Thermo Fisher). 

5.8 Western Blotting 

Cells were lysed on ice using 1× RIPA buffer (Pierce) supplemented with HALT 

protease and phosphatase inhibitor cocktail (Pierce.). Tumors were mechanically lysed 
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using a handheld homogenizer Polytron PE 1200E (VWR) in the same buffer. Total 

protein was calculated by the Pierce BCA Protein Assay Kit (Thermo Fisher) using the 

microplate procedure and read at A562 nm.  

Lysates were prepared in NuPAGE lithium dodecyl sulfate (LDS) sample buffer 

(Life Technologies) supplemented with 2-mercaptoethanol (Sigma-Aldrich), and brought 

up to 15 µL with lysis buffer, and incubated at 95 °C for 5 min. Proteins (15 µg for cell 

lysates, and 10 µg for tumor lysates) and ladder (Precision Plus, BioRad) were separated 

on a 4-12% before transfer to Immobilon-P polyvinylidene difluoride (PVDF) membrane 

(Millipore Sigma. Membranes were blocked in 5% non-fat dry milk in tris-buffered saline 

(TBS) (KD Medical)-0.1% Tween20 (Amresco) for 1 h at room temperature. Primary 

antibodies were diluted 1:1000 in TBST with 0.02% sodium azide and incubated at 4 °C 

for 16 h with gentle rocking before blotting with horseradish peroxidase (HRP)-linked 

secondary antibodies in 5% milk-TBST for 2 h at room temperature (Table 19). Proteins 

were visualized using Amersham ECL (GE) and images collected using a ChemiDoc 

(BioRad) system. Images were analyzed using Image Lab (BioRad) software and 

densitometry was calculated using ImageJ software  

(NIH) following previously described protocol (SYBIL). 
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 Table 19. Antibody clones and catalog numbers used for western blotting. 

Anti-rabbit and anti-mouse HRP-linked secondary antibodies were purchased from 

GE (NA934, NA931). 

5.9 PET Imaging  

Injections were administered intravenously (i.v.) in the lateral tail vein in 100-150 

µL sterile saline (Table 20). Small-animal PET scans were acquired from 1-120 hours p.i. 

using a microPET R4 or Focus220 scanner (Siemens Concorde Microsystems). The mice 

were fully anesthetized with 1-2% isoflurane (Baxter, Deerfield, IL) during the scan. 

Images were reconstructed via filter back projection. ASIPro VMTM software (Concorde 

Microsystems) was used to analyze volumes-of-interest (VOI) on various planar sections 

from the acquired image by manually drawing on the tumor site and on select organs. 

The average VOI was calculated and expressed as % injected dose per gram of tissue 

(%ID/g).  

Antibody Clone Company (Catalog Number) 

HER2 D8F12 Cell Signaling (4290) 
pHER2 (Y1221/1222 6B12 Cell Signaling (2243) 

 
Src 36D10 Cell Signaling (2109) 
pSrc (Y416) D49G4 Cell Signaling (6943) 

 
EGFR-XP D38B1 Cell Signaling (8839) 
pEGFR (Y845) N/A Cell Signaling (2231) 
CD8α D4W2Z Cell Signaling (98941) 
CD3ε D4V8L Cell Signaling (99940) 
GAPDH G-9 Santa Cruz (365062) 
Β-tubulin 9F3 Cell Signaling (2128) 
Histone H3 1B1B2 Cell Signaling (14269) 
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Tracer 
Imaging 

Dose (µµµµCi) 

Antibody 

Dose (µµµµg) 
Imaging Time (h p.i.) 

18F-FDG 150-200 - 1 h 
89Zr-trastuzumab 200-240 66.7-80 48 h 
89Zr-IgG (human) 200-240 66.7-80 48 h 
89Zr-cetuximab 180-200 36-40 48 h 
89Zr-anti-IFNγ 

180-240 42.8 – 57.1 

72 h 
89Zr-anti-CD3 72 h 
89Zr-anti-rat IgG 72 h 
89Zr-anti-hamster 
IgG 72 h 

64Cu-Ab4 200-240 66.8 - 80 24 h 

Table 20. Tracers and used imaging or antibody doses. 

5.10 Biodistribution 

89Zr-trastuzumab biodistribution was performed 48 h p.i. in BT-474 or JIMT-1 tumor 

bearing Nude mice. To prove specificity, 89Zr-IgG [20-30 µCi, 0.74-1.11 MBq, 336.02-

504.0 nmol, 5-7.5 µg] was injected in mice with BT-474 or JIMT-1 tumors to assess non-

specific accumulation of the tracer. 89Zr-anti-IFNγ biodistribution was performed at 72 h 

p.i. in BALB/c mice, and for blocking studies, 80 μg of cold AN-18 was co-injected with 

the probe in a separate cohort of mice. Select organs were harvested post-sacrifice, 

weighed and measured for bound radioactivity with a gamma counter (Perkin Elmer 2480 

Wizard 2).  

20-30 µCi of the tracer [20-30 µCi, 0.74-1.11 MBq, 336.02-504.0 nmol, 5-7.5 µg] 

was injected into the lateral tail vein. Tissues of interest were removed at indicated 

timepoints and counts were performed using a gamma counter (Perkin Elmer Wizard2). 

The %ID/g was calculated as the % of activity bound to the tissue normalized against total 

administered activity per gram of tissue weight.  
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5.11 Autoradiography and immunohistochemistry (IHC) 

5.11.1 Autoradiography 

Autoradiography was performed following previously reported protocols(281). 

Briefly, after PET imaging tumors were excised and snap frozen in liquid nitrogen before 

being embedding in OCT medium and cut into 5 µm sections (Leica CM 1850) and 

mounted on positively charged slides (Fisher). Digital autoradiography was performed by 

placing slides in a film cassette against a phosphor imaging plate (Fujifilm BAS-MS2325, 

Fuji Photo Film) at -20 °C for 18 h. Phorphor imaging plates were read at a pixel resolution 

of 25 µm with a Typhoon 7000 IP plate reader (GE Healthcare). 

5.11.2 Frozen immunohistochemistry and hematoxylin and eosin (H&E)  

 Sections were fixed in ice-cold acetone for 10 minutes and dried at room 

temperature for 20 minutes. Endogenous peroxidase activity was blocked with 3% H2O2 

for 10 minutes before blocking with protein block solution from the mouse and rabbit 

specific HRP/3,3’-diaminobenzidine(DAB) detecting IHC kit (abcam, ab64264) for 1 h at 

room temperature. Slides were incubated with primary antibodies for 18 h at 4 °C (Table 

21). Slides were developed using the same HRP/DAB detecting IHC kit and dehydrated 

with alcohols and xylenes before being covered with permount and coverslipped. Imaging 

was performed using a slide scanner (Leica SCN400) and visualized using Leica SCN400 

image viewer software.  
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Table 21. Antibody catalog numbers and dilutions for IHC. 

5.11.3 FFPE Immunohistochemistry and H&E  

After euthanasia, tumors were harvested and fixed in formalin before being 

embedded in paraffin. Blocks were sectioned into 4 µm sections using a Sakura Accu-

Cut SRM microtome (Catalog#: SRM-200 CV) and adhered onto positively charged slides 

(Histomax Plus, VWR). Slides were then incubated for 12 minutes at 65 °C and 

deparrafinized in washes of xylene and graded alcohols. Antigen retrieval was performed 

in PT module buffer (TA-250-PM4X, Fisher) for CD8 (1:200). Primary antibody 

incubations were performed for 1 h at room temperature in a humidified chamber. 

Secondary antibody incubations and DAB were performed following manufacturers 

protocols. CD8 T cell enumeration was conducted by a blinded board-certified 

pathologist. Each tumor sample was screened for hotspots of CD8 lymphocytes using a 

Nikon Eclipse Ci microscope at 100× magnification. The number of CD8+ T lymphocytes 

was counted in the three regions of highest infiltration at 400x magnification with a 0.55 

mm field diameter, and an average was calculated. For H&E staining, tissue sections 

were dipped in xylenes, graduated alcohol and distilled water washes. They were then 

stained with hematoxylin (TA-125-MH, Fisher) for 5 minutes, rinsed with an acid wash for 

1 minute and a bluing agent for 15 seconds. Eosin staining was applied to slides for 1 

Antibody Clone 
Catalog 
Number 

Dilution 

HER2 D8F12 4290 1:200 
Src 36D10 2109 1:50 

EGFR-XP D38B1 8839 1:50 
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minute and slides were rinsed in 95% ethanol three times. Lastly, sections went through 

a series of graded alcohol and xylenes steps to dehydrate sections in preparation for 

mounting with Permount (UN1294, Fisher). Pictures were taken with a Spot Idea camera 

using Spot 5.2 software (Spot, Sterling Heights, MI). 

5.12 Quantitative real-time PCR 

Tumor tissue was snap frozen in liquid nitrogen. Total tumor RNA was collected 

by Trizol preparation (Thermo Fisher, Waltham, MA) after homogenization. cDNA was 

synthesized with ProtoScript II reverse transcriptase (New England Biolabs, MA). Real-

time qPCR was conducted with iTaq Universal SYBR Green Supermix (Bio-Rad 

Laboratories, Hercules, CA) using 10 ng cDNA/well and 500 nM primers specific to the 

indicated gene (Life Tech, Carlsbad, CA) (Table 22). Relative mRNA quantities are 

calculated by 2-∆CT compared to GAPDH. 

Target Forward primer Reverse primer 

CD3 CACTCTGGGCTTGCTGATGG TCATAGTCTGGGTTGGAACAGG 

CD8 GCTGGTAGTCTGCATCCTGCTT
C 

TTGCTAGCAGGCTATCAGTGTT
GTG 

IFNγ GAGCTCATTGAATGCTTGGC GCGTCATTGAATCACACCTG 

PD-1 CGTCCCTCAGTCAAGAGGAG GTCCCTAGAAGTGCCCAACA 

GAPDH AAGCTCACTGGCATGGCCTTC TGCTTCACCACCTTCTTGATGTC 

Table 22. qPCR primers. 

5.13 ELISA 

Tumor tissue was homogenized in standard RIPA buffer with protease inhibitor 

cocktail (Sigma-Aldrich). Protein concentration was measured by BCA assay 

(ThermoFisher). High protein binding plates (ThermoFisher) were coated with 3 µg/mL 

anti-mouse-IFN-γ mAb clone AN-18 (eBioscience) in coating buffer (0.1 M Na2HPO4, pH 
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to 9.0) and washed prior to addition of samples or standard curve using recombinant 

mouse IFN-γ (Peprotech, Rocky Hill, NJ) in duplicate. IFN-γ was detected with biotin-

conjugated anti-mouse IFN-γ clone R4-6A2 (eBioscience), avidin-HRP (ThermoFisher), 

and TMB substrate (ThermoFisher). 

5.14 Serum IgG measurement 

Serum HER2- and neu-specific IgG were quantified by flow cytometry with a BD 

FACSCanto II flow cytometer (Becton Dickinson, Franklin Lakes, NJ), using HER2 over-

expressing SKOV3 cells or neu transfected 3T3/NKB cells as previously described(282). 

Regression analysis was conducted using standard curves of anti-HER2 mAb TA-1 

(Calbiochem, Burlington, MA) or anti-neu mAb 7.16.4 (Calbiochem, Burlington, MA). 

5.15 IFN-γγγγ ELISPOT   

HER2- and neu-specific IFN-γ production was measured by ELISPOT assay as 

previously described(283). Recombinant HER2 or neu (10 µg/mL, Sino Biologicals, 

Beijing, China) were incubated with splenocytes for 48 h in round-bottom wells, followed 

by transfer to anti-IFN-γ coated (clone AN-18, eBioscience) ELISPOT plates (Millipore 

Sigma, Burlington, MA) for an additional 48 h. Spots were detected by biotinylated anti-

IFN-γ (clone R4-6A2, eBioscience) and avidin-HRP (Becton Dickinson, Franklin Lakes, 

NJ), followed by enumeration with an ImmunoSpot analyzer (Cellular Technology Limited, 

Cleveland, OH). Results are expressed as spot forming units (SFU) per 106 cells. 

5.16 Tumor dissociation and flow cytometry 

TUBO tumors from untreated BALB/c mice were dissociated using the 

GentleMACs Dissociator and mouse tumor dissociation kit (Miltenyi, Germany) following 

the manufacturer protocol. Cells were stained with a combination of antibodies listed in 
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Table 23. All antibodies/dyes were purchased from eBIoscience (San Diego, CA). 

Samples were analyzed on a BD FACSCantoII flow cytometer (Becton Dickinson, 

Franklin Lakes, NJ) and samples were gated on the viable fraction.  

Antibody Fluorophore Clone 

CD45 FITC 30-F11 

TCRβ APC H57-597 

CD8 PE-Cy7 53-6.7 

PD-1 APC J43 

Viability dye eFluor780  

Table 23.  Flow cytometry antibodies and reagents. 

 5.17 Statistical Analysis 

Statistical analysis was performed using two-way ANOVA test in in vitro assays 

and tumor uptake comparison. An unpaired t-test was used for tumor VOI comparisons. 

A value of P<0.05 was considered statistically significant. Data were expressed as the 

mean ± S.D. 
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CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 

The studies described herein encompass three parts including i) examination of 

89Zr-trastuzumab to “monitor the status of Src status after dasatinib treatment in HER2+ 

BC; ii) “Using 89Zr-cetuximab pet imaging to visualize membrane EGFR expression 

following dasatinib treatment in triple negative breast cancer”, and iii) “Using immunoPET 

imaging to monitor tumor response to immunotherapy.” The results are summarized 

below. 

6.1 Conclusions  

In chapter 2, the relationship between Src activation and HER2 was investigated. 

89Zr-trastuzumab was hypothesized to provide a surrogate read out of Src inhibition in 

HER2+ breast cancer. 89Zr-trastuzumab is specific for HER2+ breast cancers. After 

dasatinib treatment in mice bearing BT-474 or JIMT-1 tumors, 89Zr-trastuzumab uptake 

decreased compared to control, untreated tumors, and where standard-of-care FDG-PET 

imaging did not visualize differences in uptake between treated and untreated groups. 

89Zr-trastuzumab tumor uptake correlated with tumor regression and abrogation of pSrc 

(Y416) levels as measured by tumor western blot. 89Zr-trastuzumab can potentially 

assess tumor response to dasatinib in HER2+ breast cancer and could be used as a 

surrogate tool to monitor early changes in Src signaling downstream of HER2. 

 In chapter 3, 89Zr-cetuximab was utilized as a surrogate marker of EGFR 

membrane expression and availability. Upon dasatinib treatment in vitro EGFR localized 

to the plasma membrane, and pSrc (Y416) levels decreased, suggesting dasatinib 

efficacy. 89Zr-cetuximab was specific for high-EGFR expressing TNBC cell lines through 

in vitro uptake and internalization assays, and through in vitro PET imaging studies with 
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a lowly EGFR expressing MDA-MB-453 cell line used as an uptake control. After dasatinib 

treatment, EGFR localized to the plasma membrane, where 89Zr-cetuximab binding and 

internalization increased. In tumor models, 89Zr-cetuximab tumor uptake was significantly 

higher in dasatinib treated mice compared to control mice. Interestingly, in KRAS+ MDA-

MB-468 tumors, this translocation was associated with a cetuximab treatment benefit 

when combining dasatinib and cetuximab after imaging, whereas in KRAS-mutant MDA-

MB-231 tumors, there was no cetuximab treatment benefit, which has been observed 

clinically. In conclusion, 89Zr-cetuximab could be used as a marker of EGFR localization 

to predict response to cetuximab treatment, while still keeping KRAS status in mind. 

 In chapter 4, a new immunoPET probe targeting IFN-γ was developmed. Using 

89Zr-IFN-γ PET imaging, active immunotherapy response was visualized, and it was 

concluded that targeting soluble cytokine IFNγ with 89Zr-anti-IFNγ as a read out of 

activated cytotoxic T cells is superior to monitoring TILs with 89Zr-anti-CD3 after 

immunotherapy. In a syngeneic and spontaneous tumor model, 89Zr-anti-IFNγ tumor 

uptake increased after dendritic cell vaccine compared to untreated control, and 

response, as measured by tumor VOI, was correlated with tumor regression. There was 

an increase in CD3, CD8, and IFNγ mRNA after vaccination, an increase in CD8 T cell 

infiltration via IHC after vaccination, and an increase in IFNγ protein as measured by 

western blot. 89Zr-anti-IFNγ PET uptake did not increase above baseline levels in a model 

where T cells have become exhausted and display PD-1. Collectively, IFN-γ PET may 

serve as a non-invasive, comprehensive approach to evaluate tumor immunotherapy. 

6.2 Future directions 

A main challenge surrounding cancer therapeutics is designing a treatment 
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strategy that targets many heterogeneous cancer populations. Currently, breast tumors 

are characterized individually and thoroughly prior to treatment to identify a personalized 

approach to therapy, yet challenges remain in accurate breast tumor subtyping. 

Inaccuracies arise from mistakes in the collection and laboratory processing step, and 

when metastasis has occurred, from the inability to collect samples from every lesion. 

Utilizing immunoPET would meet this need by enabling non-invasive, full body profiling 

of all lesions in the body before, during, and after treatments to tailor each regimen to the 

patient’s tumor load. The studies described in this dissertation have supported this 

hypothesis through imaging response to tyrosine kinase inhibitors and immunotherapies 

alike, and these results provided fundamental insights into the biology of the tumor 

microenvironment, allowing for further refinement of treatment strategies. 

 A promising area of research for BC is through combination therapy. The most 

widely used combination treatments include targeting the PI3K/AKT/mTOR 

pathways(284). For example, the BOLERO study had demonstrated efficacy of combining 

a m-TOR inhibitor and endocrine therapy to restore hormonal sensitivity(284). Palbocib 

(Ibrance®) has been combined with letrozole (Femara®) to treat ER+/HER2- patients in 

the metastatic realm. Trastuzumab has been combined with lapatinib (Tykeb®) or 

pertuzumab (Perjeta®) to treat HER2+ metastatic BCs(284). Many clinical trials have also 

been evaluating the use of combination checkpoint inhibitors, for example combining the 

blockade of CTLA-4 and the PD-1/PD-L1 pathways. Early results have shown an increase 

in efficacy of immunotherapy and slowing of primary tumor growth and metastasis(285).  

 To enhance response rates, a number of studies have suggested combining 

checkpoint inhibitors with targeted therapies, since there is evidence linking oncogene 
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de-addiction and immunomodulation. In EGFR overexpressing TNBC, responses to PD-

1 and PD-L1 antibodies have been dismal, potentially due to the PD1/PD-L1 pathway as 

a mechanism of resistance for EGFR-TKIs. In preclinical studies, mutant EGFR lung 

cancer models treated with anti-PD-1 have demonstrated delayed tumor growth, 

suggesting a synergistic effect between anti-EGFR therapies and anti-PD-L1 in the 

clinic(286). Additionally, PD-1/PD-L1 antibodies have been combined with VEGF blocking 

agents in vivo and resulted in a synergistic anti-tumor effect(287). Currently, a phase II 

clinical trial is recruiting for TNBC (NCT02849496) patients to undergo combination 

atezolizumab (Opdivo®, anti-PD-L1) and veliparib (ABT-888, PARP inhibition) therapy. A 

similar study in small cell lung cancer showed that combining atezolizumab with 

chemotherapy as first line treatment resulted in significantly longer overall survival and 

progression free survival compared to chemotherapy alone. 

 These strategies would allow for disruption of tumor-induced immunosuppression, 

and therefore allow for the immune system to recognize the tumor presence and improve 

the anti-tumor response of checkpoint inhibitors and targeted therapies. In order to 

improve anti-cancer responses, inhibitory molecules would be blocked first to allow the 

immune system to directly attack the cancer. One consideration is the issue of toxicity in 

combining therapies. It would be important to appropriately dose and time treatment 

regimens to achieve high response and low off-target effects, especially since 

immunomodulation typically targets the entire immune system. Additionally, it is important 

that synergy is achieved with combination therapy, and not just two independent 

responses, or one therapy decreasing the targetable population of its partner treatment. 

A main challenge for combination therapy is designing a strategy that targets many 
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heterogeneous subtypes of cancer. To achieve this, though, the phenotype of each 

individual BC case should be thoroughly investigated and subtyped before treatment 

allowing researchers and clinicians to gather a general overview of what can be targeted. 

A more precise and personalized characterization of each cancer case and potential 

pathways of resistant on a patient-to-patient basis would be useful in determining 

appropriate treatments. This could include pre-treatment characterization of targetable 

tumor associated antigens (TAAs) (such as PD-1, HER2, or EGFR, for example) through 

IHC, FISH, or immunoPET imaging. Additionally, blood samples for immune cell 

population expression could be used to determine which T-cells to target. Whole genome 

profiling is also of use for prognosis. It is also important during treatment to constantly 

monitor the tumor microenvironment and immune profile to make necessary adjustments 

to combinations, and immunoPET could meet this need. For example, tumors can be 

monitored for expression of targetable biomarkers before treatment in a non-invasive 

way. After treatment has begun, tumors could be re-tested for continuous expression of 

the targeted biomarker, as well as surveillance of expression of known resistance 

pathways. Finally, after a treatment regimen has concluded, tumors can be re-imaged for 

expression of targeted biomarker to see if treatment was successful. Furthermore, we 

have demonstrated that targeted biomarkers can be visualized with various PET tracers, 

allowing for personalized imaging strategies. 

In the final imaging study, panitumumab (Vectibix®) was labeled with 89Zr at a 

target specific activity of 5 mCi/mg. Mice bearing MDA-MB-468 tumors were imaged 

following the scheme outlined in Figure 52A. At 42 h p.i., untreated mice demonstrated a 

14.8 ± 1.2 %ID/g tumor uptake, compared to dasatinib treated mice with 16.9 ± 0.5%ID/g 
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(p < 0.001)(Fig. 52B). 89Zr-panitumumab imaged tumors had significantly higher uptake 

as compared to tumors imaged with a human IgG isotype control (p < 0.001)(Fig. 52C).  

 

 

 

 

 

 

 

Figure 52. 89Zr-panitumumab PET imaging in MDA-MB-468 tumors. Mice bearing 
MDA-MB-468 tumors were treated ith 50 mg/kg dasatinib for 5 d or left untreated before 
undergoing imaging with 89Zr-panitumumab  at 48 h p.i. (A); untreated mice (left) 
demonstrate lower tumor uptake compared to dasatinib treated mice (right) (B); 89Zr-
panitumumab imaged mice demonstrated significantly higher tumor uptake as compared 
to a non-specific isotype IgG (C). 
 

When compared to 89Zr-cetuximab PET imaging, 89Zr-panitumumab imaged 

tumors demonstrated higher uptake (14.8 ± 1.2 %ID/g vs. 8.5 ± 1.7 %ID/g, p < 0.001)(Fig. 

53). This body of work has demonstrated that cell-surface and soluble protein biomarkers 

can potentially be used to aid in diagnosis, treatment decisions, and treatment monitoring.  

A. 

B. C. 
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Figure 53. 89Zr-panitumumab PET imaging compared to 89Zr-cetuximab. Mice 
bearing MDA-MB-468 tumors were imaged with 89Zr-cetuximab (left) or 89Zr-
panitumumab (right) at 48 h p.i. 
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APPENDIX – INTELLECTURAL PROPERTY 

The information on the 89Zr-α-IFNγPET tracer described in Chapter 4 comprises 

intellectual property of Wayne State University and is covered by a provisional patent filed 

by the university. 
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ABSTRACT 
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With a broad spectrum of therapies available for treating breast cancer, the need 

for personalized medicine tailoring the cure according to phenotype is evident. Such an 

approach may be fully realized with the development of quantitative imaging technologies 

for disease detection, staging and diagnosis, without increasing patient burden. Immuno-

positron emission tomography (PET) combines the targeted specificity of antibodies with 

the sensitivity of PET for whole body imaging by targeting molecular features amplified in 

lesions. ImmunoPET probes targeting different antigens and their utility to measure 

response to treatment were explored. 89Zr-trastuzumab was employed as a surrogate 

readout of Src inhibition after dasatinib treatment in HER2+ breast cancer. 89Zr-cetuximab 

was also employed to measure cell-surface EGFR expression following dasatinib 

treatment in triple negative breast cancer. Tumor infiltrating T-cells were measured using 

89Zr-anti-CD3 and 89Zr-anti-IFNγ after vaccination in a murine model of breast cancer. All 

studies utilized in vitro uptake assays, autoradiography, IHC, and western blots to validate 

tracer specificity. PET scans were analyzed after treatment to determine changes in 

tracer retention. In each study PET was able to detect tumor uptake changes which 
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occurred early (within 1 week) of treatment. Through these projects I provide clinically 

relevant imaging strategies to better predict treatment outcomes and aid clinicians in 

cancer management. 
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