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JangDong Seo 
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Bloomington, IN 

 
 

 
 
Longitudinal data analyses commonly assume that time intervals are predetermined and 
have no information regarding the outcomes. However, there might be irregular time 
intervals and informative time. Presented are joint models and asymptotic behaviors of the 
parameter estimates. Also, the models are applied for real data sets. 
 
Keywords: longitudinal data, informative time, joint model, exponential family, 
outcome and time processes, asymptotic multivariate normality, model selection 
 

Introduction 

Longitudinal studies are commonly designed in many research fields in order to see 
changes over time in which time intervals are prearranged and shared by all 
participants. The time points are assumed to be independent of responses, providing 
no information with respect to measurements. In informative schedule data, 
however, time points are highly related to prior outcomes; therefore, time intervals 
become irregular, and all subjects have their own unique time points. Due to these 
reasons, the assumptions of traditional methods are not satisfied.  

A new approach named the joint model is getting popular in an attempt to 
handle irregular measurement occasions in the analysis, which is combining 
longitudinal data and time with any other factors that the researcher is interested in 
(Henderson, Diggle, & Dobson, 2000; Kim, Zeng, Chambless, & Li, 2012; Liang, 
Lu, & Ying, 2009; Lin & Scharfstein, 2004; Lipsitz, Fitzmarice, Ibrahim, Gelber, 
& Lipshultz, 2002; Qiu, Stein, & Elston, 2013; Wu, Lin, Yi, & Huang, 2012). For 
example, Liang et al. (2009) presented a joint model of longitudinal data with 
informative observation times via latent variables to handle highly irregular time 
points and longitudinal outcomes. Their model is for longitudinal outcomes and 
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censoring or dropout time under the assumption that censoring time is non-
informative. Outcomes are measured only at the dropout time.  

Lipsitz et al. (2002) presented a joint model for longitudinal data. The joint 
model assumes time points are not fixed and dependent on previous outcomes, and 
the repeated measurements are supposed to follow a multivariate normal 
distribution. It can be applied to normally distributed responses only. Bronsert 
(2009) presented a joint model of a longitudinal process and informative time 
schedule data. Lin (2011) studied the validity of the joint model by checking the 
asymptotic multivariate normality of the maximum likelihood estimators (MLEs) 
of the joint model, when outcomes are normally distributed and time is 
exponentially distributed.  

The model presented by Bronsert (2009) and Lin (2011), however, is limited 
to normal distribution; therefore, the current study has two goals. The first is 
generalizing the joint model to fit members of the exponential family of 
distributions for outcomes, while assuming that time follows an exponential 
distribution. For instance, the Poisson, Bernoulli, and Gamma probability density 
functions are combined with the exponential distribution of time, including the 
relationship between the outcome and time as well for count data, binary data, and 
waiting time or survival time, respectively.  

The second goal is computing the likelihood ratio test statistic and model 
selection criteria, such as the Akaike information criterion (AIC), the Akaike 
information criterion with correction (AICc), and the Bayesian information (BIC), 
for model comparisons. The underlying assumption of the joint models is time is 
informative, which means the current time point for collecting an outcome is 
dependent on the one-step prior outcome. Therefore, time intervals become 
irregular from subject to subject, and the number of measurements are different 
across all subjects.  

These circumstances are relatively common in public health. For instance, if 
a patient’s health outcome is poor, the doctor will ask the patient to visit the clinic 
more often than a patient with a good health outcome, because the former patient 
needs more intensive care. In this situation, all subjects do not share the common 
time points for checkups as assumed in the traditional methods, such as repeated 
measures analysis of variance, multivariate analysis of variance, or mixed-effects 
model. Hence, as an alternative, the current joint models are developed because the 
results of analyses using the traditional methods will be biased. 
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Methodology 

The Likelihood Function and Parameter Estimation 
Three outcome distributions are selected as examples from the exponential family 
of distributions: the Bernoulli for binary outcome, the Poisson for count data, and 
the Gamma for waiting time or survival time. So, the presented joint models are 
named as Bernoulli-Exponential, Poisson-Exponential, and Gamma-Exponential 
models.  

Let yij be the outcome for the ith subject measured at the jth time point when 
j = 1, 2, …, ni; therefore, the ith subject has yi = (yi1, yi2, …, yini)' collected at 
ti = (ti1, ti2, …, tini)'. Then the joint distribution of outcomes and time points given 
some explanatory variables xi becomes  
 
 fΘ(yi, ti | xi) = fΘ(yi | ti, xi) ⋅	fΘ(ti | xi), (1) 
 
where Θ is a vector of unknown parameters. A general model can be assumed for 
the joint distribution of yi and ti. Consequently, the general model under the 
assumption that the current outcome is dependent on the one-step prior outcome 
(yij − 1) and current time point (tij) becomes 
 

 fΘ(yi, ti | xi) = fΘ(ti1 | xi)  ⋅	fΘ(yi1 | ti1, xi) ⋅	 fΘ(yij | tij, yij−1, xi) ⋅	fΘ(tij | yij−1, xi). (2) 

 
Based on this general model, a joint model was developed for each member of the 
exponential family of distributions, while assuming time to follow an exponential 
distribution. To derive joint models, the concept of the generalized linear model is 
adopted, because the generalized linear model provides a unified class of models 
of regression analysis, regardless of discrete or continuous outcomes (Dobson, 
2001; Fitzmaurice, Laird, & Ware, 2004; McCullagh & Nelder, 1989; Nelder & 
Wedderburn, 1972). Generalized linear model can be written with p explanatory 
variables as  
 
 g(μi) = β1Xi1 + β2Xi2 + ⋯	+	βpXip. (3) 
 

In the current joint models, this expression is modified to take into account of 
the relationship of current time and one-step prior outcome, such as 

j=2

ni

∏
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 g(μi) = β0 + β1x1 + ⋯	+	βk xk + γtij+	φyij−1 = Xi
' β + γtij+	φyij−1, (4) 

 
where γ is the effect of current time on the mean response, and φ is the effect of the 
previous outcome on the mean response of the current outcome. Using the 
generalized linear model form, two different types of linear predictors are used: 
 
 g(μi) = Xi

' β  or g(μi) = Xi
' β + γtij+	φyij−1 (5) 

 
where the former link function is used for the mean for the first observation of the 
ith subject, and the latter is for the jth mean of the ith subject to incorporate the 
effects of the current time and the one-step prior outcome. Hence, the mean 
functions can be expressed as, for instance, 
 
 μi1 = exp(Xi

' β)  or μij = exp(Xi
' β + γtij+	φyij−1), (6) 

 
if the log link function is used. To find the MLEs, a nonlinear optimization function, 
named the maxLik in R, is used (Henningsen & Ott, 2010; R Core Team, 2014). In 
simulation studies, it is tested whether parameter estimators of the joint models 
follow asymptotic normality as the number of observations increases, 
 
   (7) 

 
where θ is the unknown parameter,  is the MLE of θ, θ0 is the true value of θ, 
and  is the Fisher information matrix. Then, the models are applied to a real-life 

situation, and three information criteria are used to compare models. 

Bernoulli-Exponential Model 
This model is for binary data with informative time. The likelihood function for m 
individuals is expressed as 
 

n θ̂ −θ0( )→ N 0, Iθ0
−1( ),

θ̂
Iθ0
−1
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  (8) 

 
The mean functions, using the logit link function, are 
 

  and   (9) 

 
where μi1 and μij are the means for the first and the jth observation with 
j = 2, 3, ⋯, ni, for the ith subject and yi1 and yij are the first and the jth observation 
with j = 2, 3, ⋯, ni, for the ith subject.  The parameters of α and δ in the likelihood 
function represent the relationship between the prior outcome and current time. By 
using the notation of ni, each subject can have a different number of measurements. 
The coefficients of γ and φ represent the effects of the current time and previous 
outcome on the mean value, and the Xi

' is the ith column of the design matrix used 
when estimating the parameters of the models. The design matrix can hold 
categorical variables and covariates, if any. Within the design matrix, a column can 
be added representing each categorical variable and covariate. Thus, the log-
likelihood function for m individuals can be written as the sum of m individuals’ 
log-likelihood functions, 
 

   (10) 

 

L Θ, yi ,…, ym( ) =

exp yi1 log
µi1
1− µi1

⎛

⎝⎜
⎞

⎠⎟
+ log 1− µi1( )⎛

⎝
⎜

⎞

⎠
⎟

× exp yi1 log
µi1
1− µi1

⎛

⎝⎜
⎞

⎠⎟
+ log 1− µi1( )⎛

⎝
⎜

⎞

⎠
⎟

j=2

ni

∏

⋅exp α +δ yij−1( ) ⋅exp −eα+δ yij−1tij( )

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

.
i=1

m

∏

µi1 =
exp ′X iβ( )
1+ exp ′X iβ( ) µij =

exp ′X iβ + γ tij +ϕ yij−1( )
1+ exp ′X iβ + γ tij +ϕ yij−1( ) ,

l = li
i=1

m

∑ = yi1 log
µi1
1− µi1

⎛

⎝⎜
⎞

⎠⎟
+ log 1− µi1( )⎛

⎝
⎜

⎞

⎠
⎟

i=1

m

∑

+ yi1 log
µij
1− µij

⎛

⎝
⎜

⎞

⎠
⎟ + log 1− µij( )⎛

⎝
⎜

⎞

⎠
⎟

j=2

ni

∑
i=1

m

∑

+ α +δ yij−1 − e
α+δ yij−1tij( )

j=2

ni

∑
i=1

m

∑ .
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The function can be separated into two parts: one with the first two rows and 
the other with the last row. The former is the likelihood for outcome process, which 
represents the relationships among the current time, prior outcome, and covariates. 
The latter is the likelihood for time process, which is the relationships between the 
current time and prior outcome. Because the time process does not have any β 
terms, the time process can be ignored, while maximizing the log-likelihood 
function with respect to β, or vice versa. Therefore, in the simulation studies, the 
multivariate normality test is conducted separately for the outcome and time 
processes. This concept is applied to the other joint models. 

Poisson-Exponential Model 
This model is developed to handle count outcomes and informative time. The 
likelihood function of the model for m individuals can be written as 
 

   (11) 

 
where the mean functions, using the log link function, for the initial and the jth 
outcome of the ith subject are expressed as 
 
  and   (12) 

 
Hence, the log-likelihood function for all individuals, which is the sum of m 
individuals’ log-likelihood functions, becomes 
 

   (13) 

L Θ, yi ,…, ym( ) =
exp yi1 log µi1( )− µi1 − log yi1!( )( )
× exp yij log µij( )− µij − log yij !( )( )
j=2

ni

∏

⋅exp α +δ yij−1( ) ⋅exp −eα+δ yij−1tij( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

,
i=1

m

∏

µi1 = exp ′X iβ( ) µij = exp ′X iβ + γ tij +ϕ yij−1( ).

l = li
i=1

m

∑ = yi1 log µi1( )− µi1 − log yi1!( )( )
i=1

m

∑

+ yi1 log µij( )− µij − log yij !( )( )
j=2

ni

∑
i=1

m

∑

+ α +δ yij−1 − e
α+δ yij−1tij( )

j=2

ni

∑
i=1

m

∑ .
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Gamma-Exponential Model 
This model is used for waiting or survival time and informative time. The likelihood 
function becomes the product of the density functions for all individuals: 
 

   (14) 

 
with the mean functions, using the log link function, are 
 
  and   (15) 

 
The log link function is used to avoid any negative mean values. However, if 

the design allows negative means, the identity or inverse link function can be used. 
Then, the log-likelihood function for all individuals can be written as 
 

L Θ, yi ,…, ym( ) =

exp

yi1 1/ µi1( )− log µi1( )
−1/ vi1

+ vi1 log vi1( )
+ vi1 −1( )log yi1( )− log Γ vi1( )( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

× exp

yi1 1/ µij( )− log µij( )
−1/ vij

+ vij log vij( )
+ vij −1( )log yij( )− log Γ vij( )( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

j=2

m

∏

⋅exp α +δ yij−1( ) ⋅exp −eα+δ yij−1tij( )

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

i=1

m

∏

µi1 = exp ′X iβ( ) µij = exp ′X iβ + γ tij +ϕ yij−1( ).
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   (16) 

Parameter Estimation 
The log-likelihood function is commonly used to find the MLEs for convenience. 
Generally, computing the MLEs needs an iterative method that can be performed 
in the statistical computing software (Fitzmaurice et al., 2004). Many nonlinear 
optimization methods are provided in commonly used statistical computing 
software, such as SAS or R (Nash & Varadhan, 2011; SAS Institute, 2008). 
However, none of them seems to be superior to any other methods in any situations. 
In this study, a non- linear optimization routine, named the maxLik function in R, is 
chosen because it provides a single, unified interface to a variety of optimization 
routines, providing methods handling the likelihood-specific properties of the 
estimates, including standard errors (Henningsen & Ott, 2010; R Core Team, 2014). 
The Newton-Raphson maximization algorithm is used by default in the maxLik 
function. 

Parameter Testing and Model Selection 
There are three ways of using the likelihood function: (1) the Wald test, (2) the 
score test, and (3) the likelihood ratio test. They are used for hypothesis testing, to 
determine the significance of the parameter estimators or to determine the 
confidence intervals (Agresti, 2007). The likelihood ratio test uses the ratio of two 
maximized log-likelihood functions for comparing two nested models: (1) the 
maximized log-likelihood value for the null hypothesis denoted by  for the 
reduced model and (2) the maximized log-likelihood value for the alternative 
hypothesis denoted by . Hence, if the MLEs are asymptotically normal, the 

likelihood ratio test statistic used is 

l = li
i=1

m

∑ =

yi1 1/ µi1( )− log µi1( )
−1/ vi1

+ vi1 log vi1( )
+ vi1 −1( )log yi1 −1( )− log Γ vi1( )( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟i=1

m

∑

+

yij 1/ µij( )− log µij( )
−1/ vij

+ vij log vij( )
+ vij −1( )log yij −1( )− log Γ vij( )( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

j=2

ni

∑
i=1

m

∑

+ α +δ yij−1 − e
α+δ yij−1tij( ).

j=2

ni

∑
i=1

m

∑

l̂red

l̂ full
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   (17) 

 
where dffull is the degrees of freedom for the full model and dfred is the degrees of 
freedom for the reduced model. Then, the value is compared to a chi-squared 
distribution with the degrees of freedom equal to the difference between the two 
models’ number of parameters. When the difference gets larger, it shows the 
reduced model is inappropriate (Fitzmaurice et al., 2004). 

The likelihood ratio test is used because the log-likelihood functions for the 
joint models are already found, so it is easy to extract the information. Model 
selection criteria computed are the AIC, the AICc, and the BIC to compare nested 
and non-nested models. The AIC measures a relative quality of a model to provide 
a method on model selection with given data. The AIC is defined as 
 
 AIC = 2k – 2ln(L), (18) 
 
where k is the number of parameters in the model and ln(L) is the maximized value 
of the log-likelihood function of the model. The AIC takes into account both the 
statistical goodness of fit and the number of parameters to be estimated. A model 
with a low AIC value is preferred, which has the fewest number of parameters with 
adequate fit to the data (Everitt, 2006). For example, because ln(L) is the maximized 
log-likelihood at , the AIC of the Bernoulli- Exponential model becomes 
 

   (19) 

 
The AICc is the AIC with a correction for finite sample size and is defined as 

2 l̂ full − l̂red( ) ~ χdf full−dfred2 ,

Θ̂

AIC = 2k − 2

yi1 ′X iβ̂
i=1

m

∑ + log 1

1+ exp ′X iβ̂( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+

yij ′X iβ̂ + γ̂ tij + ϕ̂ yij−1( )
+ log 1+

exp ′X iβ̂ + γ̂ tij + ϕ̂ yij−1( )
1+ exp ′X iβ̂ + γ̂ tij + ϕ̂ yij−1( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟j=2

ni

∑
i=1

m

∑

+ α̂ + δ̂ yij=1 − e
α̂+δ̂ yij=1tij( )

j=2

ni

∑
i=1

m

∑

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

.
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   (20) 

 
where k is the number of parameters and n is the sample size. The AIC performs 
poorly with small sample size and the AICc converges to AIC as n increases, so the 
AICc is recommended (Burnham & Anderson, 2002).  

BIC is given by 
 
 BIC = – 2ln(L) + k log(n), (21) 
 
where k is the number of parameters and n is the sample size. The penalty associated 
with BIC is more severe than that of AIC because the sample size is included in the 
function. Like AIC, a model with the lowest BIC value is preferred. However, the 
use of BIC is not recommended due to a high risk of selecting a too simple model 
(Fitzmaurice et al., 2004). Nevertheless, in a simulation study, BIC outperformed 
AIC as sample size increased (McQuarrie, Shumway, & Tsai, 1997). Therefore, 
BIC is included as a model selection criterion because this study uses the log-
likelihood function to find parameter estimators. 

Simulation  
The purpose of the simulation is to verify the asymptotic multivariate normality of 
the MLEs of the joint models as the number of observations increases. To examine 
the property of the MLEs of the joint models, the Bernoulli, Poisson, and Gamma 
distributions are selected as explained before.  

To simulate data, six parameter schemes, five sample sizes (18, 36, 54, 90, 
and 180), and four different numbers of measurements are combined together in 
three selected distributions. Therefore, simulations were implemented with 360 
conditions (6*5*4*3) with 1,000 replications each. This simulation design was 
developed by Bronsert (2009) and Lin (2011) and adopted in this study to maintain 
consistency. With 1,000 sets of estimators in each condition, the Henze-Zirkler 
multivariate normality test statistic is computed for the outcome and time processes, 
respectively, to test the asymptotic normality of the estimators by using the maxLik 
function. To increase practical settings, two categorical variables with three levels 
each and two continuous variables were included when creating the design matrix. 
As described in Table 1, in each distribution, 20 schemes were designed with 
different sample sizes and design structures, resulting in different numbers of total 
measurements. For example, in scheme 1, 10 responses were simulated from 18 

AICc = AIC +
2k k +1( )
n− k −1

,
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subjects, resulting in 180 observations in total. In scheme 2, 5 responses were 
generated from 9 subjects and 3 responses from the remaining 9 subjects, resulting 
in 72 outcomes in total.  
 
 
Table 1. Simulation Designs 
 

Scheme Num Sample Size Num. of 
Observations Design Structure Total Num. of 

Observations 
1 18 10 Balanced 180 
2  5 & 3 Unbalanced 72 
3  10 & 5 Unbalanced 135 
4  20 & 6 Unbalanced 234 
⋮ ⋮ ⋮ ⋮ ⋮ 

17 180 10 Balanced 1800 
18  5 & 3 Unbalanced 720 
19  10 & 5 Unbalanced 1350 
20   20 & 6 Unbalanced 2340 

 
 

During the simulation, the first outcome was generated from each 
distribution, then the next outcome is calculated based on the relationship between 
the previous outcome and the previous time to predict the average outcome. For 
instance, in the Bernoulli-Exponential model, a first binary outcome was generated, 
then a second outcome was generated based on the fixed parameter values, such as 
β0 = 0.4, β1 = 0.2, β2 = 0.3, β3 = 0.1, β4 = 0.3, β5 = 0.4, β6 = 0.9, φ = 0.8, γ = 0.1, 
α = 2, and δ = 0.01. Then, it is tested if .  

Because sample sizes range from 18 to 180, simulation studies are believed 
to be enough to see if the multivariate normality test shows a trend as sample size 
increases. In addition, a different number of observations were included in each 
sample size to check if there is a certain pattern as the number of observations 
increases. Some of the simulation results are displayed in Figure 1 through Figure 
3. As can be seen, the outcome and the time processes obtain the asymptotic 
multivariate normality in three selected outcome distributions, when sample size, 
in general, goes beyond about 18. Also, it is found that the data structures, 
unbalanced or balanced, do not affect the property of the asymptotic normality. In 
addition, the time process tends to obtain the normality faster than the outcome 
process. 

n θ̂ −θ0( )→ N 0, Iθ0
−1( )
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Analysis of Bladder Cancer Data 

The proposed joint models are applied to the bladder cancer data provided in R, and 
the outputs of the analyses are presented in this section. R provides two different 
datasets, bladder and bladder1 in the package called survival (Andrews & 
Herzberg, 1985; Wei, Lin, & Weissfeld, 1989). The bladder1 is the full dataset 
with 118 subjects, and the bladder is a subset of the bladder1 with 85 subjects and 
the reduced number of variables. The bladder cancer dataset has been studied by 
many methodologists, such as Cai, Wenbin, & Zhang (2012), Sun & Wei (2000), 
Sun, Park, Sun, & Zhao, (2005), and Zhang (2002). The bladder dataset is most 
commonly used by many researchers for recurrent event modeling (Andrews & 
Herzberg, 1985; Wei et al., 1989). The variable “stop” in both datasets measures 
the time interval (in months) because the last visit. Moreover, the next visiting time 
is scheduled depending on the recurrence of bladder tumor at the time of 
measurement. Therefore, time becomes informative, and time intervals become 
irregular across all subjects. The variable “rx” in the bladder or “treatment” in the 
bladder1 represents treatment types, such as placebo, pyridoxine, and thiotepa. 
However, two treatment types are included in the bladder, and three treatments in 
the bladder1. The bladder dataset is used for the Bernoulli-Exponential model with 
the variable “rx” as an outcome variable, and the bladder1 dataset with the variable 
“treatment” as an outcome variable is applied to the Poisson-Exponential model. 

Bernoulli-Exponential Model 
The bladder cancer dataset is composed of 85 subjects with bladder tumors who 
were assigned to either thiotepa or placebo treatment group. For each patient, the 
recurrence of tumors, treatment, initial number of tumors, size (cm) of the largest 
initial tumor, and visiting time (in months) since the last visit are recorded. And, 
the status variable “event” for recurrence of tumors has 1 for recurrence and 0 for 
everything else (including death for any reason). Therefore, the Bernoulli-
Exponential model is applied with the ‘event” as an outcome variable. A chosen 
research interest is to study the effects of the treatment, initial number of tumors, 
and size of the largest initial tumor on the tumor recurrence. In the bladder dataset 
all patients are measured four times with nonzero follow-up. The placebo treatment 
group has 47 randomly selected patients, and the thiotepa group has 38 patients. 
The likelihood ratio test statistic and the corresponding p-value for each model 
shown in Table 2 can be used to test if all βs but β0 are equal to zero. Based on the 
information criteria, AIC, AICc, and BIC, the best fitting model is the one with the 
treatment, prior outcome, and current time as predictors. In the best model, the prior 
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outcome and current time have significant effects on the number of tumors 
(φ = 4.336 and γ = −0.142 with p-value of < 0.001 for both terms). More detailed 
information is provided in Table 3. 
 
 
Table 2. Model Selection Criteria for the Bernoulli-Exponential Model 
 

Model AIC AICc BIC LR Ratio P-value 
1. event ~ rx + number + size 2652.85 2654.74 2692.39 199.10 <0.001 
2. event ~ rx + number 2651.44 2652.90 2668.54 198.51 <0.001 
3. event ~ rx + size 2651.64 2653.09 2668.73 198.31 <0.001 
4. event ~ rx 2650.60 2651.67 2665.25 197.35 <0.001 
 
 
Table 3. Summary of Analysis for Cancer Recurrence (N = 85)  
 
 Model 1  Model 2 
Variable β SE P  β SE P 
Intercept -0.550 0.244 < 0.001   0.077 0.174 0.657 
rx2 0.276 0.215 0.199  0.273 0.215 0.204 
number -0.051 0.057 0.375  -0.060 0.056 0.283 
size 0.056 0.073 0.441     

Prior size 4.349 0.582 < 0.001  4.336 0.571 < 0.001 
Current time -0.142 0.021 < 0.001   -0.142 0.020 < 0.001 

        
 Model 3  Model 4 

Variable β SE P  β SE P 
Intercept -0.179 0.201 0.374   -0.037 0.138 0.790 
rx2 0.257 0.215 0.231  0.248 0.215 0.248 
number        

size 0.070 0.071 0.329     

Prior size 4.349 0.569 < 0.001  4.331 0.606 < 0.001 
Current time -0.142 0.020 < 0.001   -0.142 0.021 < 0.001 

Poisson-Exponential Model 
The bladder1 dataset is the full data set of the study for 118 patients, and the 
maximum observed number of recurrences is 9. The dataset contains all three 
treatments, placebo, pyridoxine, and thiotepa, with a variable “rtumor”, which is 
the number of tumors found at the time of recurrence. The Poisson-Exponential 
model is then applied to model the number of tumors with predictors, such as the 
treatments, initial number of tumors, and size of the largest initial tumor. The same 
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predictors used in the Bernoulli-Exponential model are used with the variable 
“rtumor” as an outcome variable. Based on the information criteria presented in 
Table 4, the model with the treatment, prior outcome, and current time as predictors 
is selected as the best fitting model. In the model, the “thiotepa” in the treatment 
and the prior outcome have significant effects on the number of tumors 
(β2 = −0.275 and φ = 0.079 with p-value of 0.024 and < 0.001, respectively). Also, 
the likelihood ratio test statistic and the corresponding p-value for each model are 
presented in Table 4. More information about the analysis for each model is 
provided in Table 5. 
 
 
Table 4. Model Selection Criteria for the Poisson-Exponential Model 
 

Model AIC AICc BIC LR Ratio P-value 
1. rtumor ~ trt + number + size 2220.32 2223.78 2239.47 45.50 <0.001 
2. rtumor ~ trt + number 2219.59 2222.31 2236.61 44.23 <0.001 
3. rtumor ~ trt + size 2218.47 2221.19 2235.49 45.35 <0.001 
4. rtumor ~ trt 2218.13 2220.21 2233.02 43.69 <0.001 
 

Note: trt = treatment 
 
 
Table 5. Summary of Analysis for Number of tumors (N = 118) 
 
 Model 1  Model 2 
Variable β SE P  β SE P 
Intercept 1.003 0.098 < 0.001   0.933 0.076 < 0.001 
Trt2 -0.006 0.098 0.954  -0.010 0.102 0.921 
Trt3 -0.301 0.102 0.002  -0.200 0.127 0.018 
Number 0.009 0.023 0.700  0.016 0.022 0.461 
Size  -0.027 0.024 0.264     
Prior Obs 0.077 0.018 < 0.001  0.078 0.018 < 0.001 
Current time 0.001 0.003 0.802   0.001 0.003 0.839 

        
 Model 3  Model 4 

Variable β SE P  β SE P 
Intercept 1.027 0.075 < 0.001   0.968 0.059 < 0.001 
Trt2 -0.006 0.102 0.956  -0.010 0.101 0.924 
Trt3 -0.289 0.122 0.018  -0.275 0.121 0.024 
Number        
Size  -0.030 0.023 0.202     
Prior Obs 0.077 0.018 < 0.001  0.079 0.018 < 0.001 
Current time 0.001 0.003 0.797   0.001 0.003 0.837 
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The second model, “rtumor ∼ treatment + number,” in Table 4, was studied 
by Cai et al. (2012). Their research interest was to study the effects of the treatment 
and the number of initial tumors on tumor recurrence. The difference is that those 
researchers studied a time-varying latent effect model with time-independent 
covariates. The model they found is shown in Table 6. 
 
 
Table 6. Estimates of the Latent Effect Model 
 
 Est. SE 
Treatment -0.152 0.042 
Number of initial tumors 0.205 0.050 
 
 

For model comparisons, the coefficients of the Poisson-Exponential model 
are provided below. 
 
 
Table 7. Estimates of the Poisson-Exponential Model 
 
 Estimate Std. error t value Pr (>|t|) 
Intercept 0.933 0.076 12.301 < 0.001 
Treatment.pyridoxine -0.010 0.102 -0.099 0.921 
Treatment.thiotepa -0.300 0.127 -2.371 0.018 
Number 0.016 0.022 0.736 0.461 
Prior Outcome 0.078 0.018 4.285 < 0.001 
Current Time 0.001 0.003 0.203 0.839 
 
 

Even though two models have different concepts, both models found that the 
treatment has a negative effect on the number of tumors. The output in Table 7 
shows that the second treatment level, thiotepa, has a significant negative effect on 
the number of tumors, and that the effect of the number of initial tumors is not 
significant. The results based on the model by Cai et al. (2012) show similar 
findings for the estimation of the effects of the treatment and the number of initial 
tumors. As can be seen in Table 6 and 7, both methods found that the treatment has 
a negative effect on the tumor occurrence, and that the number of initial tumors has 
a positive effect on the tumor occurrence. The difference is that the model by Cai 
et al. (2012) computed the overall treatment effect, ignoring the effect of each 
treatment level, while the Poisson-Exponential model calculated the estimator for 
each treatment level, like other regression analyses normally do. Cai et al. (2012) 
stated that the treatment has a negative association because “the more often the 
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patients visited the clinic and received the treatment, the less chance they will have 
tumor recurrence” (Cai et al., 2012, see p. 10). This interpretation makes sense, but 
does not specify which treatment is the most effective to reduce the tumor 
occurrence. Yet the Poisson-Exponential model specifically pointed out that the 
thiotep treatment only can reduce the tumor occurrence. 

Discussion 

The purpose of this study was to build models that can fit outcome distributions 
belonging to the exponential family of distributions. The simulation verified the 
MLEs of the joint models obtained the asymptotic multivariate normality and that 
accordingly model selection methods are valid in the joint models, which are based 
on the normality assumption of MLEs. In addition, the computing package using R 
was developed to handle the joint models and used to analyze the bladder cancer 
data to demonstrate the performance of the models. The Poisson-Exponential 
model was compared with the latent effect model proposed by Cai et al. (2012) and 
showed its computational capability for testing treatment effect. The differences of 
the two models and the advantages of the Poisson-Exponential model over the 
latent model were detailed in the previous section.  

This study was based on two assumptions: (1) time is informative and (2) 
current outcomes are dependent on one-step prior outcomes. So this study is strictly 
limited to the situation satisfying those two conditions. However, if those 
assumptions are relaxed, the joint models can be easily expanded to be more 
flexible. For example, firstly, the current response is assumed to be dependent upon 
the one-step prior outcome. In some experiments, it is possible that the current 
response depends on the two- step prior outcome or three-step prior outcome, etc. 
In that case, the joint models can be modified to accommodate those terms in the 
models by simply replacing yt − 1 by yt − 2 or yt − 3. Secondly, time is assumed to 
follow an exponential distribution. The distribution of time can be different based 
on a research design, for example, a log-normal distribution. If that is the situation, 
the appropriate distribution can be applied to the time process; then, the MLEs from 
the time process can be obtained. Thirdly, currently time and covariates are 
assumed to be independent of each other. If they are related, another term can be 
added to define the relations between them in the models. Fourthly, the current joint 
models have a single response variable in a dataset. If multiple response variables 
are included in the analysis, the joint models should be able to take correlations 
among those into account; furthermore, the joint models give simultaneous tests for 
separate response, in addition to a single response’s analysis. All of those 
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mentioned above are technically possible and can be further explored by 
researchers in order to improve the joint models. 
 
 

 
 
Figure 1. Bernoulli-Exponential Model: Multivariate normality test results. The upper 
graph is for time process and the bottom graph for outcome process. And the filled circle 
is for balanced data and the triangle for unbalanced data. 
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Figure 2. Poisson-Exponential Model: Multivariate normality test results. The upper 
graph is for time process and the bottom graph for outcome process. And the filled circle 
is for balanced data and the triangle for unbalanced data. 
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Figure 3. Gamma-Exponential Model: Multivariate normality test results. The upper 
graph is for time process and the bottom graph for outcome process. And the filled circle 
is for balanced data and the triangle for unbalanced data. 
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