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CHAPTER 1: INTRODUCTION AND MOTIVATION 

1.0 INTRODUCTION 

The site of Cerro Azul has been occupied for hundreds of years under a variety of 

different socio-political structures [1]. While the socio-political context has changed over 

time, the basic economics of the area is still influenced by the pattern of offshore fishing. In 

the 80’s, when excavating an early site associated with the current location of modern Cerro 

Azul, Dr. Joyce Marcus arranged to have results of local fishing expeditions tabulated in 

terms of the catches returned from various nearby locations. 

Although the technology for artisanal local fishing had changed in many ways, the 

fishermen were limited to harvesting catches reasonably close to shore rather than deeper at 

sea. They were also still dependent on the unpredictability of the local climate and the food 

chains that it supported [1]. In fact, during the period of study, fishermen were observed to 

respond to an El Nino. This El Nino disrupted the traditional oceanic food chain and may 

have impacted fishermen decision making. While El Nino brought warmer waters to the area 

bringing with them invasive species, it was followed by a La Nina where the colder waters 

returned, gradually bringing back the normal food chains that fishermen had been 

accustomed to. This followed by the start of a return to normal relative to the aquatic 

environment [1]. 

Clearly this was not the first, nor will it be the last El Nino to affect Cerro Azul. 

Additionally, while there has been considerable discussion of the impact of climate change in 

its many forms on the global arena, little research has been done on the impact on the local 

economy of an area. As a result, the goal here was to use the raw data collected by Dr. 

Marcus as the basis for a model of fishermen decision making in response to each of three 
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successive phases related to the El Nino event: residual El Nino, La Nina, and the return to 

normal phase. The main hypothesis of this work is that local fishermen have adopted a 

sequence of decision-making behaviors over time in order to facilitate the sustainability 

of the local economy in light of these environmental perturbations. In order to do this, we 

will utilize models having cultural adaptation, for example, Cultural Algorithms. Cultural 

Algorithms have been shown to be effective measures of collective intelligence [2]. 

To accurately model any complex system, we must have the necessary data.  Dr. Marcus 

has provided a data set that contained information about all offshore fishing expeditions at 

Cerro Azul between the dates of March 1, 1984 through July 28, 1986 [1]. This dataset is 

comprised of 6013 records capturing fishing expeditions based upon trips taken out of Cerro 

Azul harbor and reported upon return to the local official present at the site. Catches 

produced by other methods, such as fishing in deeper water farther off shore were not 

considered.  In addition, catches were only recorded when a local official was on duty. Also, 

the focus on the major catch produced per trip was reported. 

Even with these limitations, the data set represents a major opportunity to investigate the 

impact that climate change has on the millions of local environments around the world. 

However, in order to do this, we need a model of cultural change or evolution that is capable 

of characterizing how individuals adapt to each of these scenarios. The model that we chose 

to use is Cultural Algorithms developed by [2]. It was derived from the models of Kent 

Flannery on Cultural Evolution [3] . Cultural Algorithms have been shown to be a robust 

vehicle for the describing the evolution of complex social systems. It has been used to model 

the origins of agriculture [4], the Origin of the State [5] the Collapse of Anasazi Culture [6], 

Peruvian Llama herding adaptations [3], and Prehistoric Artic Hunting behavior. We begin 
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our journey in the next section with a discussion of the environmental setting for the 

evolutionary model. 

1.1 THE CERRO AZUL ECOSYSTEM 

 

Figure 1.1: The site location of Cerro Azul location, Yellow Star inside Yellow Circle. 
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Figure 1.2: The Topographical Map of Peru. Cerro Azul is in the yellow circle. 
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The town of Cerro Azul is located south of Lima, Peru on the Pacific Ocean as shown 

in Figure 1.1.  It is part of the Canete Valley [7] and its location is highlighted in the 

topographic map shown in Figure 1.2. The coastal area is comprised of three basic geologic 

formations: the playa or sandy beach just north of Cerro Azul bay; cliffs of volcanic rock to 

the immediate south; and a narrow band of cobbled shore that extends south to the Rio 

Canete. This geological diversity was certainly a factor in the creation of a diverse collection 

of aquatic resources. Figure 1.3 gives the relative location of the modern town of Cerro Azul 

and the ancient site [1]. The ancient site is displayed with contour mapping.  The area in front 

of the modern town is composed of sandy beach or playa. The darkened coastline to the 

south represents the volcanic cliff that extends to the Centinel or lighthouse. After that the 

coastline is a narrow band of pebbles and rocks. 
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Figure 1.3: Relative location of modern day and prehistoric Cerro Azul [1] 
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Over 50 species were caught during the period of the survey, and evidence for 30 or 

more came from the nearby archaeological site of Cerro Azul. Most of these are found in the 

intertidal zones and shallow waters just off of the coast. The difference in those harvested in 

ancient and modern times can be attributed to changes in technology (nets, motors, etc.) and 

the changing dynamics of the marine ecosystem. The geologic diversity has resulted in a 

subsequently diverse food chain with four basic tropic levels. Level One consists of energy 

producers, algae and small phytoplankton. They convert energy from the coastal waters into 

plant-based energy. They are consumed by small animals that comprise levels two and three 

in the aquatic food chain. They predators include zooplankton, various crustaceans, mollusks, 

as well as sardines and anchovies. Level three is characterized by medium level predators 

such as octopi, squid, fish such as hake, along with sea lions, and various and diverse bird 

species. The top level of the food chain, level 4, is comprised of sharks, large squids, whales, 

and flounder.  

Cerro Azul is located in a subtropical desert zone and the number of indigenous 

species is relatively sparse. However, with the introduction of irrigation canals the number of 

plant species has increased markedly. The principle crops are cotton, potatoes, and maize. 

Cotton is planted in the spring (November) and harvested in the fall, while potatoes are 

planted in the fall and harvested in the spring (November). Maize is grown over the entire 

year. 

Figure 1.4 taken from [1] gives an illustration of how these different environmental 

components interact to produce a complex system. The sketch describes how the marine and 

land-based economies interact through the actions of human agents at the nearby ancient site 

of Cerro Azul in the Late Intermediate Period (1000 A.D – 1470). Energy moves up the food 
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chain from producers to consumers in the marine food chain and is harvested by medium 

predators, birds. The birds transfer the energy into guano that is then used by human to 

fertilize the irrigated fields. Produce from the fields are then used to provide the fishermen 

with resources to harvest the ocean species such as anchovies and sardines. The excess 

harvest can then be dried and shipped to more inland places. 

 
Figure 1.4: Interactions between environmental components [1] 

The nature and extent of these interactions have changed over the years, but clearly 

the environment can be described as a complex system. A complex system is characterized 

by the nonlinear interaction of its components, such that a small change in one component 

can produce major changes in other components through feedback loops. Such changes can 

result in the new adaptations, and the emergence of spontaneous organization of components 

at different levels of granularity [8]. Even a relatively slight change in ocean temperature can 

cause non-trivial adaptations or adjustments in the interactions with the other components. In 

the next section, we look at a particular source of short term change, the El Nino-Southern 

Oscillation (ENSO). An ENSO cycle is composed of a year of above average water 
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temperatures (El Nino) followed by a period of cooling temperatures (La Nina). In this work 

we will be concerned with modeling adaptations of local offshore fisherman to the changes 

produced as the result of a larger than normal ENSO cycle. 

1.2 ENSO: AN EXAMPLE OF SHORT TERM CLIMATE CHANGE. 

The El-Nino portion of the El-Nino Southern phenomenon was discovered in the 

1600’s by Peruvian fisherman. In a typical year the east-to-west rotation of the earth 

produces trade winds that collect heat and moisture off of the coastal regions of Peru and 

blow them west towards Indonesia. This allows an upwelling of the cool Humboldt Current 

to dominate the regions along the continental shelf [1]. This is shown schematically in Figure 

1.5. 

 
Figure 1.5: Normal conditions for circulation of the heat. [9] 

Notice that warmer waters move westward towards Indonesia and create a 

thermocline or upwelling of cooler waters at 80 degrees west nears the coast of Peru. This 

causes a corresponding circulation of air in the opposite direction towards the Peruvian coast 

as shown in Figure 1.5. This produces abundant rainfall in Indonesia that benefits the rice 
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crops there. On the other hand, it produces a desert like dry area along the South American 

Coast. 

 Occasionally, certain conditions in the atmosphere lead to the reduction in the 

strength of the trade winds which means that less warm water is moved from the east (South 

America) to the West (Indonesia). This reduces the gradation of the thermocline and leads to 

a warming of water on the South American side as shown in Figure 1.6.  This produces dry 

weather and crop reductions in Indonesia and heavy rainfall and corresponding floods along 

the South American coast. At the same time the warming temperature of the South American 

waters kills phytoplankton and algae and forces the fish that normally feed on them off the 

coast to move elsewhere. Warm water fish then move south to fill in the gaps left by the 

departure of the cold water variety. 

 
Figure 1.6: The conditions produced by an El Nino. [9] 
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The technical definition of El Niño is characterized by a positive ONI (Oceanic Nino 

Index) where equatorial sea surface temperatures are greater than or equal to +0.5ºC.  La 

Niña is characterized by a negative ONI, less than or equal to -0.5ºC. For a full-fledged El 

Niño or La Niña episode, these thresholds must be exceeded for a period of at least 5 

consecutive overlapping 3-month seasons [9]. Although 0.5 degrees Celsius might not seem 

much locally, this is an overall elevation in an ocean with an enormous amount of volume.  

Additionally, some species are sensitive to very minor changes in water temperature. These 

changes in water temperature undoubtedly will affect the distribution of species and the 

potential disruption of natural food chains as well. Figures 1.7 shows the surface temperature 

gradient over the Pacific Equatorial region from South America to Indonesia produces as a 

result of the El Nino [10]. 

Figure 1.8 show monthly ocean temperatures at Callao, Peru near where Dr. Marcus 

collected her data, between 1981 and 1986 [10]. Notice the huge spike starting in August 

1982 when the temperature began at 15.9 degrees Celsius and peaked at 24.2 degrees 

Celsius, an increase of 8.3 degrees Celsius, during the very powerful El Nino of 1983. Then 

there is a subsequent cooling phase, La Nina, where the water cools back down to normal 

oceanic temperatures and the thermocline and trade winds readjust accordingly. The cooling 

effects of the La Nina are displayed in Figure 1.9. 

The impact on the past and present sites of Cerro Azul has been described by [1]. The 

data collected during her period of observation indicates that a number of invasive warm 

water species moved into the area to harvest increased population of invertebrates. These 

invasive species include invertebrates. [12] monitored small animal life on the floor of Ancon 

Bay from 1981 to 1984. During the 1982 -1983 El Nino, the episodes of short-term warming 
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increased the Oxygen saturation of this bay’s deep-water zone from < 8.5 % to > 20%.  As a 

result, the small mollusk species increased from 0 to 5; the small Crustacean species rose 

from 0 to 10; and the species of bristle worms rose from 4 to 29 [1]. 

As late as March 1984, the recorded data shows that fishermen of Cerro Azul were 

still catching shark Paloma, Pompano, the Pez Dama or whale shark, Dolphin. Then came 

two mild La Nina episodes, the episodes of short-term cooling and the invasive tropical 

species were gone. Their place was taken by the Lorna and the Mismis, both of which 

flourished under the cooler conditions of La Nina.  Dr. Marcus found no remains at Cerro 

Azul of invasive species such as shrimp, pompano, dolphin, or arched blue crab, or shrimp. 

These are four species that are likely to have the area   in El Nino years.

 

Figure 1.7: A heat map comparing the powerful El-Nino of 1997 to 2015 
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Figure 1.8: Monthly avg. temperatures at Callu, Peru from 1981 to 1986 [1] 

14.8

16.6

16.4

17.3

17.3

16.5

15.2

15.2

14.8

14.4

14.8

14.9

15.4

16.5

17.1

16.4

16.6

16.6

16.6

16.3

15.9

16.3

19.2

21.6

23.2
23.3

23.2

23.9

24

24.2

19.8

17.6

16

15.9
15.8

15.5
15.8

16.1

16.5

17.9

16.2

15.8
15.7
15.5

14.8
14.5

15.2

14.6

15.1
15.415.5

15.1

14.714.8
15

14.7

14.314.314.214.3

14.7

16.6

15.8

15.115.2
15.4

15.6

16.1

15.3
15

15.5

16.4

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25
Te

m
pe

ra
tu

re
 C

en
tig

ra
de

Month - Year

Monthly Ocean Temperatures at Callao - Peru (1981 - 1986)



14 
 

 
 

 
Figure 1.9: La Nina and its cooling affect in blue. 

While the intensity for each of these El Nino occurrences varies, Dr. Marcus’ data 

was collected during a very powerful El Nino [13] and includes almost 50 different catch 

types collected from over 30 different site locations. The focus of this thesis will be to use 

tools from the area of Collective Intelligence, Cultural Algorithms, to assess the adaptation 

the modern fishermen have had to make in order to adjust to the sequence of changes 

produced as a result of the ENSO process. It is anticipated that an understanding of these 

adjustments will lead to a better understanding of what was done in ancient occupation such 

as that of Huarco. 

1.3 CULTURAL ALGORITHMS 

Classical optimization problems are more efficient than evolutionary algorithms in 

the solution of linear, quadratic, and strongly convex algorithms.  However, evolutionary 

algorithms have been shown to be more efficient for discontinuous, non-differentiable, multi-

modal and noisy problems.  The main difference between these two approaches is how they 
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implement their search process and how they utilize their information about the search space.  

Classical optimization problems use deterministic rules to move from one point to another in 

the search space.  Evolutionary Algorithms, in contrast, use probabilistic, non-deterministic, 

transition rules.   In addition, classical optimization uses sequential search while evolutionary 

computation implements parallel search.  Different classes of Evolutionary Algorithms (EA) 

have been developed that are based upon models of natural evolution. These nature-inspired 

approaches include Genetic Algorithms, Genetic Programming, Evolutionary Programming, 

Evolution Strategies, Particle Swarm Optimization, Ant Colony Optimization, Cultural and 

Co-evolutionary Algorithms among others, [13]. 

It has been shown that if Evolutionary Algorithms were to utilize domain knowledge 

to make decisions, the overall system performance can be increased.  Domain knowledge can 

reduce the search space by heuristically by pruning undesirable parts. In 1979, Reynolds 

incorporated the domain knowledge explicitly into the evolutionary process with the 

introduction of Cultural Algorithms [14]. Cultural Algorithms, CAs, model the principles of 

human social evolution, and can bias the search process with prior knowledge about the 

domain.  Also, Cultural Algorithms can utilize information gained during the evolutionary 

process. Cultural Algorithms can be viewed as a direct extension of Genetic Algorithms with 

the additional component of the belief space to explicitly hold information collected by an 

evolving population over time [2].  

Cultural Algorithms are a model of collective intelligence in which groups of 

individuals are able to interact with each other to solve problems that no individual is able to 

do on its own. The majority of these models are inspired by real-life, naturally occurring 

systems.  These include Particle Swarm Optimization (PSO), Ant Colony Optimization 
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(ACO), and Cultural Algorithms (CA) [13].  These algorithms are different in the way they 

process and exchange information over the spatial and temporal scale as represented in 

Figure 1.10.  The scales grow exponentially from particle swarms, ant, chimps and hominids, 

and then finally to Cultural Algorithms as stated by [14] In terms of spatial and temporal 

scale, Cultural Algorithms encompass all the other algorithms, so we will focus on the 

performance of socially motivated systems from the standpoint of Cultural Algorithms in this 

thesis.   

 

Figure 1.10: The Scale of Social Interaction [14] 
 

The Cultural Algorithm portrays evolution in human culture at both the macro-

evolutionary level, which takes place within the belief space, and at the micro-evolutionary 

level which occurs in the population space. As such, it can be viewed as a co-evolutionary 
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mechanism that supports dual inheritance of knowledge in both the Belief Space and the 

Population Space. The two co-evolutionary components are connected by a communication 

protocol that allows the adaptations in each of the two components to influence each other.  

 What differentiates Cultural Algorithms from existing evolutionary algorithms is that 

Cultural Algorithms can use different knowledge sources in the problem-solving process 

instead of just one or two locally transmitted value. The study of Semiotics has shown that 

various types of knowledge can be stored and retrieved by different species in nature, often 

influenced by their specific niches. The knowledge sources include normative knowledge 

(ranges of acceptable behaviors), situational knowledge (exemplars or memories of 

successful and unsuccessful solutions etc.), domain knowledge (knowledge of domain 

objects, their relationships, and interactions), history knowledge (temporal patterns of 

behavior), and topographical knowledge (spatial patterns of behavior). This set of categories 

is viewed as being complete for a given domain in the sense that all available knowledge can 

be expressed in terms of a combination of one of these classifications. These knowledge 

sources can be configured as a network in the Belief Space such that changes in one 

knowledge source can impact changes in another over time.  

The population space is characterized by a network of agents that connects with each 

other in terms of a social network. The network is termed a Social Fabric because the 

network connections can be dynamically adjusted over time based upon use. Individuals can 

distribute knowledge through the network by a variety of mechanisms including majority 

win, auctions, and games.  
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1.4 MULTI-OBJECTIVE PROBLEM STATEMENT 

In this research we investigate the potential for building agent-based models of 

fishing patterns by applying a suite of tools from Artificial Intelligence and Data Mining to 

existing archaeological data from the fishing port, Cerro Azul, Peru.  Perhaps we can 

discover some behavior tendencies between the fishermen.  Additionally, an interesting 

question is what impact the ENSO has on fishing patterns at the site over time.    

The key to our approach here is that decision making for fishermen can take the form 

of two complementary objectives. 

1) One objective is to optimize the number of high-quality catches, those that will be 

attractive to consumers. 

2) A second goal is to minimize the amount of resources consumed in the process of 

the fishing activity. In other words, they wish to optimize their ability to just be 

able to fish regardless of what is caught.   

We can model the interaction between these two goals as a competitive game.  

Evolutionary techniques have been successfully employed to model the trade-off between 

conflicting goals, multi-objective optimization. A specific version of Cultural Algorithms has 

been developed to solve knowledge intensive multi-objective problems, the Multi-Objective 

Cultural Algorithms Toolkit (MOCAT), [15]. We will use the MOCAT system here to model 

the tradeoffs between these goals as they are impacted by the changing environment. These 

tradeoffs will be represented mathematically via a Pareto front, where optimum combinations 

of these goals are viewed in terms of tradeoffs in resources.  MOCAT will be discussed in 

subsequent chapters. 
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1.5 ORGANIZATION OF THE DISSERTATION 

Chapters 2 through 3 focus on the data and statistical basis for the model to be 

developed. In chapter 2, we present the database of records produced from the survey 

conducted by Marcus.  It contains a discussion of the database of fishing trips that will be 

used as the basis for the construction of the fishermen decision-making model. Each entry in 

the database will be associated with one of the three phases of the ENSO observed here: the 

residual El Nino; the La Nina or cooling phase; and the back to normal phase when 

temperatures have returned to normal. Chapter 3 provides statistics about fishing behavior at 

three different scales of analysis, macro, meso, and micro, for each of these three phases.  

The macro level provides analytics that summarize behavior over the entire period of 

observation. The meso scale corresponds to monthly patterns of behavior. Finally, the Micro 

scale provides statistics about fishing behavior on a daily basis.  

Chapters 4 through 5 are dedicated to model development. Chapter 4 gives an 

overview of Cultural Algorithms. It describes the basic Cultural Algorithms framework and 

demonstrates how that can be used for the solution of single CAT (Cultural Algorithm 

Toolkit) and multi-objective problems. Chapter 5 gives an overview of the Multi-Agent 

fishing model employed here. Chapters 6 through 7 provide results for the multi-objective 

analysis used here. It is shown that there appears to be a daily learning curve with regards to 

where and when fishing trips should be taken; and, that the nature of these trips differs 

between the El Nino, La Nina, and Back to Normal phases. These differences represent 

decision-making adaptations to the changes in the environment produces by the ENSO. It is 

shown that these differences are statistically significant and represent the adjustment of the 
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collective consciousness to the observed environmental events. Chapter 8 gives our 

conclusions. 
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CHAPTER 2: AN OVERVIEW OF THE CERRO AZUL FISHING DATA SET 

2.0 INTRODUCTION 

The data we analyze is from 1980s while the historic site is more than 500 years 

prior. Dr. Joyce Marcus spent 1982-1986 excavating in Cerro Azul, Peru.  Due to arid 

weather, architecture, fishing nets, and fish middens from 1100 to 1470 A.D were all well 

preserved.  Dr. Marcus explored early “community self-sufficiency” and “community 

specialization” during Incan times.  The Kingdom of Huarco contained two localities [1].  

The coast proper was ruled by the Kingdom of Huarco, and the piedmont was ruled by 

Kingdom of Lunahuana. Both sites were later defeated by the Inca’s in 1470.  As in any 

society, the diet will typically differ based on a person social status.  From bone remains 

found in different housing compounds, Marcus observed that different fish were eaten by 

different levels of society, such as the diets of the elites’ versus that of the commoners’. 

While modern fishermen use equipment that allows them to catch a wider variety of species, 

the catches can be destined for local consumption or exported commercially to larger cities, 

such as Lima. As a result, the movements of certain catches that are targeted for commercial 

sale are more likely to be tracked than others, and fishermen may want to take more risks or 

more effort to find them. These factors will be key to the model developed earlier. 

Wirth states that, “Each city, like every other object in nature, is, in a sense, unique” 

[17].  However, according to [17], “culture change in the direction of increased scale and 

complexity can occur in varied ways. I suggest that the cultural ecologists should do as others 

have and view this variety as a source of stimulation for theory-building.” As Jayoussi 

presented in his PhD Thesis [19] a complex system can viewed as different levels of 

granularity relative to the questions that we wish to ask about it. Similarly, we also 
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implement the several levels of analysis here; the entire period of the survey; monthly; 

weekly; and daily. In this research we investigate the potential for applying multi-objective 

cultural algorithms models of fishing patterns at the weekly and daily scales by using 

suitable-tools from Artificial Intelligence and Data Science to the existing archaeological 

data from a prehistoric fishing center, Cerro Azul. We begin by describing the basic structure 

of the Database system developed to support model development from the raw data in 

Section 2.1. Then, in Section 2.2 we briefly describe the Graphical User Interface to the 

Cerro Azul Database and illustrate how it can support queries at a variety of spatial and 

temporal scales. Section 2.3 provides our conclusions. 

2.1 AN OVERVIEW OF THE DATABASE CONTENT AS A COMPLEX SYSTEM 

Drs. Joyce Marcus and Maria Rostworowski led a team of researchers from The 

University of Michigan from 1982 through 1986 to excavate five seasons of research at 

ancient nearby site of Cerro Azul. Later, in the last three years of their project, they began 

recording the catch of every boat that returned to the Capitanian del Puerto with the 

cooperation of the local government.  In addition, further data on fishing was collected from 

Peru’s Instituto del Mar, [1].  Marcus refers to the fishermen as “Artisanal” Fishermen in the 

sense that they are small scale and independent entities that can provide for both local 

consumption and export. The dataset consists of 6013 records.  Each record has the following 

properties: 

1. Relates to exactly one fishing trip. 

2. Contains fish from only one site location. (main source) 

3. Contains fish belonging to only one species (main catch). 

4. Fishermen always departed from the home site (Cerro Azul). 
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The fishing activity around Cerro Azul is a complex system that has many different 

parts that interact with each other. We can view the different levels as Macro, Meso and 

Micro in terms of their temporal scale. The three basic phases of ENSO constitute the Macro 

scale. The Meso scale is represented by the monthly statistics. The micro level corresponds to 

the days of the week for a given week. These form the basic structure of the Cerro Azul 

database constructed here. The basic structure of the database can be visualized in Figure 2.1. 

There we see how the basic variables are related to each other in the database. 

The basic organization of the database reflects the most-coarse grained temporal 

measurement used here which is based upon the ENSO phases discussed earlier and 

summarized below. ENSO, the El Nino Southern Oscillation, consists of three phases: El 

Nino, La Nino, and back to normal.  El Nino is the first phase of change from the normal 

weather pattern. It is the warming phase of the ENSO. El Nino means “The Little child, 

referring to baby Jesus” [10], this term originally applied to the lighter warming affect that 

happens around Christmas time. The El Nino not only affects temperature but also rainfall.    

The next phase, La Nina, is the cooling phase, with increased upwelling.  La Nina is Spanish 

for “Little Girl”.  Sometimes there will be more than one La Nina during the same ENSO. 

The final phase of the ENSO is the “back to normal”.  At this point the weather has returned 

to pre-El Nino conditions along with the food chains.  Using ENSO’s cycles, our dataset of 

fishing trips is divided into three different temporal phases at the Macro level: Phase I, Phase 

II, and Phase III. 

Table 2.1 gives the Peru Fishing Database Dictionary listing the data variables and 

their possible values. It shows that there are 6013 Identifiers, one for each fishing trip. We 

used Catches and Sites name and abbreviation for each species and site in the data analysis 
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and the model.  The fishermen caught 48 different catch types by travelling to 29 different 

sites. The number of Individual Catch trips range from 1 to 6013 catches and the Total 

Weight of Fishing Expedition’s catch range from 0.2 to 1000 Kilograms. Meanwhile, the 

number of days for each fishing trip varies between 1 to 7 days.  The desirability of each 

catch based upon modern preferences is given below: 

3 = Highly Desirable (targeted)    

2= Desirable (okay), and 

1 = Fall Back (opportunistic) 

“Highly desirable” catches are targeted by fishermen as the most commercially desired fish. 

“Desirable” fish are still commercial in nature, but will attract less of a return. The “Fall 

Back” classification corresponds to more ubiquitous but less commercial catches - ones that 

reflect the result of fishing rather than the catch that was produced. Risk-wise, it is better to 

come back with something rather than nothing from a subsistence point of view.  

In addition, there are six classifications of catches that reflect generic differences in 

species: 

1=Cartilaginous,  

2=Boney,  

3=Crustacean,  

4=Mammal,  

5=Penguin, and 

6=Turtle.  
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Figure 2.1: The different levels of data analysis: Macro, Meso and Micro.  
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Table 2.1: Data Dictionary of the Peru Database 

Field Name Description Values Comments 

ID Unique Identifier (1 - 6013)  Fishing Trip ID 

Catch Catch Name 48 Different Catch 
Types   

Site Site Name  29 Different Sites   

Count Number of Individual Catch (1 - 6000)   

Weight Total Weight of Fishing Expedition in 
Kilograms (0.2 – 1000)   

Depart Date Departure Date of Fishing Expedition (02/29/1984 - 
07/27/1986)   

Return Date Return Date of Fishing Expedition (03/01/1984 - 
07/28/1986)   

Trip Duration 
(Length) Number of Days for Fishing Expedition ( 1 - 7)   

Round Trip 
Distance From CA 

Round Trip Distance from CA (Extended) in 
Kilometers (0 - 198) round trip dist. in KMs 

Phase Phase of Return date Fishing Expedition (1 - 3) 1=Residual El Nino,  2=La  Nina,  
3=Back To Normal 

Return Day of 
Week 

Day of the Week for Fishing Expedition 
Return (1 - 7) 1=Monday, 2=Tuesday..., 

6=Friday, 7=Saturday 
Num. of DOW 
using RtnDate 

Number of Days of the Week (using Return 
Date) that occurred in that month (4,5) Number of M,T,W,R,F,S,S in 

month 
Site Loc North to 
South 

Ordering all site locations from North to 
South   

numbers are used for sorting 
purposes only and do not 

t di t  
Site Relative to CA Site Location relative to CA (Extended) 

Includes Faro and La Centinela (1-3) 1=North of CA,   2=Cerro Azul,               
3=South of CA 

Species Category Classification of Catch (1-6) 
1=Cartilaginous,2=Boney, 
3=Crustacean, 4=Mammal, 5=Penguin, 
6=Turtle 

Comments changes or notes to data Count updated, 
sites combined.   

Depart Year Fishing Expedition-Depart Year (1984 - 1986)   

Depart Month Fishing Expedition-Depart Month (1 - 12)   

Depart Day Fishing Expedition-Depart Day (1-31)   

Return Year Fishing Expedition - Return Year (1984 - 1986)   

Return Month Fishing Expedition - Return Month (1 - 12)   

Return Day Fishing Expedition - Return Day (1- 31)   

Desirability 
Desirability of species (decision by 
Fishermen) ( 1- 3) 

3 Highly  Desirable, 
2= Desirable, 
1 = Fall Back 

Indicator Fish species that signify climate change true or false sensitive to temperature 
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Table 2.2 shows the catch list type based on categories of the Catches. The majority 

of catch types are boney fish, followed by cartilaginous. Table 2.3 provides a description of 

the three temporal phases of ENSO as used in our classification. They are based upon the 

temperature charts presented earlier. Phase I (El Nino) runs from March 1 to June 30, 1984. 

Phase II (La Nina) runs from July 1, 1984 to end of July 1985.  Phase III (Back to Normal) 

runs from August 1, 1985 to end of July 1986.  

We analyze the Catch list, type of catch, desirability of the catch for each of the three 

Phases as shown in Table 2.4. It shows the Catch list, type, their commercial desirability, and 

whether they were caught in each of the three Phases given above. Note that La Nina 

contains the diverse set of catches. The represent a combination of catches returning to the 

area as the water warms along with those catch types that are yet to leave for warmer waters. 

Table 2.5 shows the Trip Count for each Catch Type by Phase and the percentage of 

the catch for each phase. The data shows that we have 714 trips for phase I, 4305 trips for 

phase II, and 994 trips for phase III.  The number of trips for La Nina reflects the fact that it 

is the only one of the three that is completely charted along with the fact that there is a much 

greater variety of catch types as a result of the mixing of water temperatures. 
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Table 2.2: Listing of Catch Type 

Cartilaginous Boney Crustacean Mammal 
Azul ayanque Langostino chancho marino 
guitarra bonito     
pejegallo caballa     
Raya cabinsa     
tembladera chita     
tollo cojinova     
  jurel     
  lenguado     
  liza     
  lorna     
  mismis     
  mojarilla     
  pampano     
  pejerrey     
  pintadilla     
  volador     
  zorro     
  

Table 2.5 gives a list of all sites that were said to have been the primary visit location 

for each trip. For each site, their one way and round-trip distances are given in Kilometers. 

Their relative position, North and South of Cerro Azul, is given as well. Relative position is 

very important when it comes to the scheduling of fishing trips in response to phase, 

seasonal, and local weather changes. From the table it is clear that there were more northern 

sites targeted than southern ones. This might reflect the important commercial value of warm 

water fish to the local fishermen. Note that Cerro Azul, Faro, and La Centinel were assumed 

to be part of one general location, with a round trip distance of 1km for each.  
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Table 2.6 gives the percentage of trips for each catch in each period. The four most 

pervasive catches were Lorna, Mismis, Raya, and Tollo. They range from desirable on the 

one hand to fall back on the other. These catches persist through all three levels of ENSO and 

represent those catches that were sustainable throughout the ENSO period. Overall, almost 

four times as many trips were taken in La Nina than in the other two phases. Perhaps this 

reflects the diversity as well as the unpredictability of this transitional phase over time. 

Table 2.3: Temporal Categories for Phases I. II and III  

Phase Weather Pattern Start Date End Date 

Phase I Residual El Niño March 1, 1984 June 30, 1984 

Phase II La Nina July 1, 1984 July 31, 1985 

Phase III Back to Normal August 1, 1985 July 31, 1986 
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Table 2.4: The Catch list, type, and desirability for all three Phases 

 
Name Catch Type Desirability Phase I – 

 
Phase II -  

 
Phase III  
  1 albacora Boney High / Targeted   Y   

2 anchoveta Boney Okay     Y 
3 angelona Cartilaginous Fall Back Y Y Y 
4 ayanque Boney Okay   Y   
5 azul Cartilaginous Fall Back Y Y Y 
6 bonito Boney High Y Y Y 
7 burro Boney Okay   Y   
8 caballa Boney Okay Y Y Y 
9 cabinsa Boney Okay   Y   
10 cabrilla Boney Okay Y Y Y 
11 cachema Boney Fall Back   Y   
12 cangrejo Crustacean Fall Back   Y   
13 chancho 

 
Mammal Fall Back Y Y Y 

14 chita Boney Okay   Y Y 
15 coco Boney Okay Y Y   
16 cojinova Boney High / Targeted Y   Y 
17 corvina Boney High / Targeted Y Y Y 
18 cristalino Cartilaginous Fall Back Y Y Y 
19 diamante Cartilaginous Fall Back Y Y   
20 guitarra Cartilaginous Fall Back Y Y Y 
21 jurel Boney Okay Y Y   
22 langostino Crustacean High / Targeted Y Y   
23 lenguado Boney Okay Y Y Y 
24 lisa Boney Okay   Y Y 
25 lorna Boney Okay Y Y Y 
26 machete Boney Fall Back   Y   
27 mantaraya Cartilaginous Fall Back Y     
28 mismis Boney Okay Y Y Y 
29 mojarilla Boney Okay Y Y   
30 pampano Boney High / Targeted Y     
31 pejegallo Cartilaginous Fall Back Y Y Y 
32 pejerrey Boney Okay     Y 
33 pez dama Boney Fall Back Y Y   
34 pez gato Boney Fall Back   Y Y 
35 pez martillo Cartilaginous Fall Back   Y   
36 pez rata Cartilaginous Fall Back Y Y Y 
37 pinguino Bird Fall Back   Y   
38 pintadilla Boney High / Targeted Y Y Y 
39 raya Cartilaginous Fall Back Y Y Y 
40 robalo Boney Okay   Y Y 
41 sardina Boney Okay   Y   
42 sierra Boney Okay Y     
43 tembladera Cartilaginous Fall Back Y Y Y 
44 tollo Cartilaginous Fall Back Y Y Y 
45 tortuga Reptile Fall Back   Y   
46 trambollo Boney Okay   Y   
47 volador Boney Fall Back     Y 
48 zorro Boney Okay Y Y Y 
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Table 2.5: The Site Distances from Cerro Azul. 

Site Name 
One Way 
Distance (KM) 

Round Trip 
Distance (KM) Relative to CA 

San Bartolo 78 156 North 
San Pedro 66 132 North 
Cerro Blanco 54 108 North 
Mala 44 88 North 
Playa Asia 33 66 North 
Isla Asia 31 62 North 
Asia 28 56 North 
Mal Paso 25 50 North 
Playa Sarapampa 23 46 North 
Valdivia 18 36 North 
Los Leones 16 32 North 
Isla Corriente 10 20 North 
Corriente 9 18 North 
Gallardo 7 14 North 
Los Lobos 6 12 North 
Los Reyes 3 6 North 
Cerro Azul 0.5 1 Cerro Azul 
Faro 0.5 1 Cerro Azul 
La Centinel 0.5 1 Cerro Azul 
Puente Tabla 2 4 South 
Playa La Costa 3 6 South 
Santa Bárbara 5 10 South 
San Vicente de Canete 9 18 South 
Playa Hermosa 10 20 South 
Boca del Rio 14 28 South 
Herbay 16 32 South 
Cinch Cruces 28 56 South 
Colorado 39 78 South 
Jaway 40 80 South 
Tambo de Mora 58 116 South 
Monzo 99 198 South 
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Table 2.6: The Trip Count for each Catch Type by Phase 
Des. Catch Type Phase I Ph. I % Phase II Ph. II % Phase III PhIII % SUM All P % 

1 albacora     1 0.0%     1 0.0% 
2 anchoveta 1 0.1%     1 0.1% 2 0.0% 
3 angelona 1 0.1% 7 0.2% 1 0.1% 9 0.1% 
2 ayanque     22 0.5%     22 0.4% 
3 azul 38 5.3% 80 1.9% 116 11.7% 234 3.9% 
1 bonito 33 4.6% 87 2.0% 13 1.3% 133 2.2% 
2 burro     2 0.0%     2 0.0% 
2 caballa 6 0.8% 12 0.3% 4 0.4% 22 0.4% 
2 cabinsa     4 0.1%     4 0.1% 
2 cabrilla 1 0.1% 3 0.1% 1 0.1% 5 0.1% 
3 cachema     1 0.0%     1 0.0% 
3 cangrejo     1 0.0%     1 0.0% 
3 chancho marino. 54 7.6% 294 6.8% 150 15.1% 498 8.3% 
2 chita     45 1.0% 11 1.1% 56 0.9% 
2 coco 9 1.3% 1 0.0%     10 0.2% 
1 cojinova 1 0.1%     45 4.5% 46 0.8% 
1 corvina 3 0.4% 3 0.1% 5 0.5% 11 0.2% 
3 cristalino 2 0.3% 39 0.9% 3 0.3% 44 0.7% 
3 diamante 2 0.3% 15 0.3%     17 0.3% 
3 guitarra 47 6.6% 14 0.3% 36 3.6% 97 1.6% 
2 jurel 18 2.5% 4 0.1%     22 0.4% 
1 langostino 73 10.2% 4 0.1%     77 1.3% 
2 lenguado 38 5.3% 28 0.7% 1 0.1% 67 1.1% 
2 lisa     2 0.0% 13 1.3% 15 0.2% 
2 lorna 46 6.4% 1173 27.2% 72 7.2% 1291 21.5% 
3 machete     3 0.1%     3 0.0% 
3 mantaraya 1 0.1%         1 0.0% 
2 mismis 11 1.5% 895 20.8% 17 1.7% 923 15.4% 
2 mojarilla 1 0.1% 6 0.1%     7 0.1% 
1 pampano 12 1.7%         12 0.2% 
3 pejegallo 23 3.2% 159 3.7% 35 3.5% 217 3.6% 
3 pejerrey         98 9.9% 98 1.6% 
3 pez dama 1 0.1% 3 0.1%     4 0.1% 
3 pez gato     4 0.1% 2 0.2% 6 0.1% 
3 pez martillo     13 0.3%     13 0.2% 
3 pez rata 5 0.7% 32 0.7% 5 0.5% 42 0.7% 
3 pinguino     1 0.0%     1 0.0% 
2 pintadilla 7 1.0% 12 0.3% 5 0.5% 24 0.4% 
3 raya 128 17.9% 608 14.1% 168 16.9% 904 15.0% 
1 robalo     1 0.0% 1 0.1% 2 0.0% 
2 sardina     4 0.1%     4 0.1% 
2 sierra 6 0.8%         6 0.1% 
3 tembladera 5 0.7% 6 0.1% 15 1.5% 26 0.4% 
2 tollo 136 19.0% 653 15.2% 138 13.9% 927 15.4% 
3 tortuga     2 0.0%     2 0.0% 
2 trambollo     1 0.0%     1 0.0% 
3 volador     7 0.2% 2 0.2% 9 0.1% 
2 zorro 5 0.7% 53 1.2% 36 3.6% 94 1.6% 

  SUM 714 Phase I 4305  Phase II 994  Phase 
III 

6013  Total 
 



33 
 

 
 

In Table 2.7, we list the Trip Count for each Catch Type for all Phases, sorted by Trip 

Count from largest to smallest in each phase. Observe that the higher desirable fish are 

caught more frequently in the El Nino and La Nina phases, whereas the top catches in the 

Back to Normal phase are mostly okay or fall back. In addition, one can see certain species 

change their frequencies over time. For example, Pejegallo was the focus for 23 trips in the 

residual El Nino phase, 159 trips in the La Nina phase, and 35 trips in the Back to Normal 

phase. Another catch type, Pejerrey, went from 0 in El Nino, to 3 in La Nina, and 98 in the 

Back to Normal phases.  Figure 2.2 shows how the location of even a single catch changes 

over time. As the week go on, the search for Mismis moves from colder waters in the south 

to Cerro Azul as the waters there get colder and become more attractive to Mismis. 

Table 2.8 presents the Trip Count and corresponding percentage of the total trips for 

each site by phase. In that Table we see that while Cerro Azul and Faro dominate in terms of 

site location over all three phases as might be expected, visits to the North and South differed 

markedly between the phases. There are more visits north to places like Asia in La Nina as 

warm water fish began to move back north to warmer waters.  Trips to the south for colder 

water fish increased from El Nino to Back to Normal is indicated by increased visits to the 

Rio Canete during the period of observation. These changes probably reflect the attempts to 

track targeted fish as they moved into and out the region as a result of ENSO. 
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Table 2.7: Trip Count based for Catch Type, Sorted by Trip Count by largest to smallest 
Des. Catch Phase I Des. Catch Phase II Des. Catch Phase III 

2 Tollo 136 2 lorna 1173 3 raya 168 
1 Raya 128 2 mismis 895 3 chancho 

 
150 

3 langostino 73 2 tollo 653 2 tollo 138 
1 chancho 

 
54 3 raya 608 3 azul 116 

1 Guitarra 47 3 chancho 
 

294 3 pejerrey 98 
2 Lorna 46 3 pejegallo 159 2 lorna 72 
1 Azul 38 1 bonito 87 1 cojinova 45 
2 lenguado 38 3 azul 80 3 guitarra 36 
3 Bonito 33 2 zorro 53 2 zorro 36 
1 Pejegallo 23 2 chita 45 3 pejegallo 35 
2 Jurel 18 3 cristalino 39 2 mismis 17 
3 pampano 12 3 pez rata 32 3 tembladera 15 
2 Mismis 11 2 lenguado 28 1 bonito 13 
2 Coco 9 2 ayanque 22 2 lisa 13 
2 pintadilla 7 3 diamante 15 2 chita 11 
2 Caballa 6 3 guitarra 14 1 corvina 5 
2 Sierra 6 3 pez martillo 13 3 pez rata 5 
1 pez rata 5 2 caballa 12 2 pintadilla 5 
1 tembladera 5 2 pintadilla 12 2 caballa 4 
2 Zorro 5 3 angelona 7 3 cristalino 3 
3 Corvina 3 3 volador 7 3 pez gato 2 
1 Cristalino 2 2 mojarilla 6 3 volador 2 
1 diamante 2 3 tembladera 6 2 anchoveta 1 
2 anchoveta 1 2 cabinsa 4 3 angelona 1 
1 angelona 1 2 jurel 4 2 cabrilla 1 
2 Cabrilla 1 1 langostino 4 2 lenguado 1 
3 Cojinova 1 3 pez gato 4 1 robalo 1 
1 mantaraya 1 2 sardina 4 1 albacora   
2 Mojarilla 1 2 cabrilla 3 2 ayanque   
1 pez dama 1 1 corvina 3 2 burro   
3 Albacore   3 machete 3 2 cabinsa   
2 Ayanque   3 pez dama 3 3 cachema   
2 Burro   2 burro 2 3 cangrejo   
2 Cabinsa   2 lisa 2 2 coco   
1 Cachema   3 tortuga 2 3 diamante   
1 Cangrejo   1 albacora 1 2 jurel   
2 Chita   3 cachema 1 1 langostino   
2 Lisa   3 cangrejo 1 3 machete   
1 Machete   2 coco 1 3 mantaraya   
1 Pejerrey   3 pinguino 1 2 mojarilla   
1 pez gato   1 robalo 1 1 pampano   
1 pez martillo   2 trambollo 1 3 pez dama   
1 Pinguino   2 anchoveta   3 pez martillo   
3 Robalo   1 cojinova   3 pinguino   
2 Sardina   3 mantaraya   2 sardina   
1 Tortuga   1 pampano   2 sierra   
2 Trambollo   3 pejerrey   3 tortuga   
1 Volador   2 sierra   2 trambollo   

Sum of Catch Count 714     4305     994 
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Figure 2.2: Catch Count by week for Mismis 
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Table 2.8: The Trip Count and corresponding percentage for each Site by Phase 

Site 
Phase 

I 
Phase I 

% 
Phase 

II 
Phase 
II % 

Phase 
III 

Phase 
III % 

Asia 71 9.9% 221 5.1% 69 6.9% 
Boca del Rio 5 0.7% 17 0.4% 24 2.4% 
Cerro Azul 389 54.5% 1553 36.1% 526 52.9% 
Cerro Blanco   0.0% 2 0.0%   0.0% 
Cinco Cruces   0.0%   0.0% 1 0.1% 
Colorado   0.0% 62 1.4% 4 0.4% 
Corriente 35 4.9% 66 1.5% 6 0.6% 
Faro 96 13.4% 1300 30.2% 139 14.0% 
Gallardo   0.0%   0.0% 4 0.4% 
Herbay   0.0%   0.0% 8 0.8% 
Isla Asia 3 0.4% 1 0.0%   0.0% 
Isla Corriente 1 0.1% 103 2.4% 10 1.0% 
Jaway   0.0% 6 0.1% 2 0.2% 
Los Leones 8 1.1% 6 0.1% 3 0.3% 
Los Lobos 7 1.0% 28 0.7% 10 1.0% 
Los Reyes 4 0.6% 188 4.4% 6 0.6% 
Mal Paso 7 1.0% 13 0.3%   0.0% 
Mala 1 0.1%   0.0%   0.0% 
Monzo   0.0% 1 0.0%   0.0% 
Playa Hermosa   0.0% 3 0.1%   0.0% 
Playa La Costa 3 0.4% 4 0.1%   0.0% 
Playa Sarapampa 3 0.4%   0.0% 1 0.1% 
Puente Tabla   0.0% 30 0.7%   0.0% 
San Bartolo   0.0% 2 0.0%   0.0% 
San Pedro 2 0.3% 2 0.0%   0.0% 
San Vicente de Canete 35 4.9% 441 10.2% 156 15.7% 
Santa Bárbara 43 6.0% 255 5.9% 25 2.5% 
Tambo de Mora 1 0.1%   0.0%   0.0% 
Valdivia   0.0% 1 0.0%   0.0% 
Sum 714   4305   994   



37 
 

 
 

2.2 THE STRUCTURE OF THE DATABASE INTERFACE 

This section will focus on the database interface and how it supports the data mining of 

spatial and temporal patterns of fishing behavior by both site location and catch that will be 

used to develop and test our model of agent-based fishing behavior here. The key index 

variables used to retrieve and display data used here are Fish ID and Catch ID. These will be 

used to express our hypotheses at the different levels of temporal and spatial granularity 

required to build the model.  We discuss the data mining at the sites level turning our 

attention to the different sites and demonstrate the ability of the system to generate the 

statistical output by fish species for both fish count (catch count) and fish weight for the three 

different levels of temporal granularity. 

 The following, Figure 2.3 shows the Menu Screen developed by Dr. Reynolds and 

Khalid Kattan. The catch log screen takes a particular catch index (from 1 to 6013), and uses 

the location and fish maintenance tabs (tables) to allow extract the associated variables for 

that data record. The four other tabs correspond to customized data displays to be used to 

address queries related to key hypotheses. Examples of their use will be given later in this 

section.  

Each of the two Maintenance tabs (catch and location) is associated with a specific 

indicator or index variable table as shown in Figure 2.4. A combination of those indicator 

values can be used to extract combinations of the descriptor variables pointed to by each. 

Figure 2.5 gives the Maintenance screen for Catches (Fish). The user can select a subset of 

catches by clicking on the appropriate boxes. Figure 2.6 gives the Maintenance screen for 

Location selection. Figure 2.6 provides the screen for Ad Hoc reporting that allows the joint 
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selection of catch, location, phase etc. to shape the query results. The result of one such query 

is given as 3D Line Graph in Figure 2.8 

  
Figure 2.3: Menu Screen developed by Dr. Reynolds and Khalid Kattan 
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Figure 2.4: Displays the Database diagram with two index variables, fish and location ID 

Notice the one-to-many table relationships between tblFish and tblCatch and between 

tblLocation and tblCatch.   This is because for each recorded trip (in tblCatch), we only 

record the one Fish/Catch and the one Location it was caught at. 
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Figure 2.5: Gives the Catch Log screen result for catch ID 1. 
 



41 
 

 
 

 

Figure 2.6: Gives the Fish Maintenance Screen. 

Figure 2.6 shows the Fish Maintenance screen that allows the user to select a subset 

of variables for display. By setting Active field to yes, the fish species will be used in the 

result set.  Setting the field to Active – no, allows the omission of a fish species.  Similarly, 

in Figure 2.7, those sites selected as active will appear in the result set.  
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Figure 2.7: This screen shows the Location Maintenance screen. 
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Figure 2.8: This screen shows the Ad-hoc Reporting.  

Figure 2.8 shows the Ad-hoc Reporting screen. This screen allows interactive 

reporting by allowing different parameters to be selected (year, fish, location, trip length) to 

filter the output of a query.  The report refreshes based on the user’s parameters. 
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Figure 2.9: The Reporting by Species Type and Location Type.  

In Figure 2.9, notice the background changes colors from red to blue as going from 

north (Asia) to south (Colorado).  We chose red to represent the warmer sea temperature and 

blue to represent cooler. 

2.3 CONCLUSIONS 

In this Chapter we have described the basic temporal and spatial structure of the 

Cerro Azul knowledge base that was generated from Dr. Marcus’s raw data. The Database 
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Interface that facilitates the query and display of selected data records was also provided. 

This knowledge base will be the foundation upon which the Agent-Based fishing model will 

be produced in later chapters. While some basic trends were briefly mentioned here, in the 

next chapter we will present some data patterns at a variety of temporal and spatial scales that 

will provide the environmental assumptions around which the model will be created.  
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CHAPTER 3: DATA MINING AT THE MESO AND MICRO LEVELS 

3.0 INTRODUCTION 

  The original dataset contains 6013 records capturing fishing expeditions between 

early 1984 through mid-1986.  These records capture the response of local fisherman to the 

warming and then cooling of the ocean. They are part of a complex system that can be 

assessed at a number of levels of granularity. In the previous chapter the database system that 

we developed for the application was introduced. We then used the system to determine 

whether the three basic phases of the ENSO event can be viewed as eliciting different 

responses from the fishermen at the macro level. 

The results suggested that while there were some similarities between the three 

phases at the macro-level, the responses exhibited particular differences in the decision-space 

between them [20]. For example, certain catches such as Lorna and Mismis were caught in 

all three phases. On the other hand, the three phases differ in terms of the quality of their 

catches, and the effort taken to acquire them. This implies that our model needs to address 

these two conflicting goals. First, fishermen are after quality in terms of returns on their 

investment. Second, the fishermen want to make a sufficient investment in the fishing trip in 

order to produce a successful result. These two goals are conflicting in the sense that an 

expenditure of resources does not necessarily guarantee a quality catch. This can be viewed 

as a bi-objective problem, with two complementary goals. 

In this chapter we examine each of the three phases at the meso- and micro-levels 

relative to these two goals. The granularity of the meso-level is expressed here in terms of 

months. The micro-level corresponds to the days of the week within each of the months. 

Ultimately we will want our model to correspond to the daily decisions made by fishermen in 
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each phase. In the next section we begin by distinguishing between the phases in terms of the 

quality of fish caught in each phase at the meso- and micro- scales. In section 3.3 we 

investigate resource expenditure invested in fishing trip based upon the catch type. We view 

distance travelled and the number of trips made as surrogates for the investment of effort in a 

given catch type here.  

3.1 THE-LEVEL: MONTHLY AND DAILY CHANGES IN QUALITY 

We begin by describing the catches in detail. Table 3.1 gives the name of each catch, 

along with its desirability from an economic standpoint, along with the Phases in which it 

was caught. Each Phase is defined over a corresponding set of dates and labeled with an 

abbreviation; REL is Residual El Nino; LN is La Nina; and BTN is Back to Normal. In the 

following table we show all 48 types of catches based on the desirability. Of those 48, only 7 

of these are rated as highly desirable which represent 14.58%, 20 are rated as desirable are 

desirable which represents 41.67%, finally, 21 are fall back which represents 43.75%, highly 

desirable catches are ones. Our assumption is the highly desirable catches are more likely to 

be targeted by fishermen. Desirable ones may have commercial value also well. Fall Back 

catches are those that are not necessarily targeted for a trip but in order for the trip to be 

called successful something needs to be returned, even though they may have neglible 

commercial value. The commercial viability was determined by looking at comments by 

fishermen and published material. 
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Table 3.1: Species catch during each phase for desirability   

 
Catch 
Name 

  

3/1/84 - 
6/30/84 

7/1/84 - 
7/31/85 

8/1/85 - 
7/31/86 

 

 
Catch Type Desirability 

Phase 
I - 

REL 

Phase 
II -  
LN 

Phase 
III - 
BTN 

Description / Scientific Name/ 
Sample Measurements 

1 Albacore Boney 
High / 

Targeted   Y   Tuna 

2 Anchoveta Boney Okay     Y Anchovies 

3 Angelona Cartilaginous Fall Back Y Y Y   

4 Ayanque Boney Okay   Y   
med size drum, Cynoscion 
analis, sample: 32cm, 370g 

5 Azul Cartilaginous Fall Back Y Y Y   

6 Bonito Boney High Y Y Y 

"Pacific bonito", Sarda 
chiliensis, sample: 41cm  600g 
; 58cm and 1700g 

7 Burro Boney Okay   Y   
med size drum, Sciaena 
fasciata , sample, 35cm 850g 

8 Caballa Boney Okay Y Y Y 

"Pacific mackerel", Scomber 
japonicus peruanus, sample: 
34.5cm, 325g 

9 Cabinsa Boney Okay   Y     

10 Cabrilla Boney Okay Y Y Y 

Peruvian Rock Bass, 
Paralabrax humeralis, sample, 
28cm, 300g 

11 Cachema Boney Fall Back   Y   
  
 

12 Cangrejo Crustacean Fall Back   Y   
"Purple stone Crab", 
Platyxanthus orbignyi 

13 
Chancho 
marino Mammal Fall Back Y Y Y Dolphin, "pig of the sea" 

14 Chita Boney Okay   Y Y 
Grunt, Anisotremus scapularis, 
sample: 40cm, 1000g 

15 Coco Boney Okay Y Y   med size drum 

16 Cojinova Boney 
High / 

Targeted Y   Y "blackruff" 

17 Corvina Boney 
High / 

Targeted Y Y Y Drum, Cilus gilberti 

18 Cristalino Cartilaginous Fall Back Y Y Y   

19 Diamante Cartilaginous Fall Back Y Y   Shark 

20 Guitarra Cartilaginous Fall Back Y Y Y   

21 Jurel Boney Okay Y Y   

"Chilean Jack Mackerel", 
Trachurus symmetricus, 
sample 40cm, 400g 

22 Langostino Crustacean 
High / 

Targeted Y Y   Shrimp 

23 Lenguado Boney Okay Y Y Y 

"left-eye Flounder", 
Paralichthys adspersus, 
sample: 40cm, 750g 

24 Lisa Boney Okay   Y Y Mullet 

25 Lorna Boney Okay Y Y Y 
med size drum, freq. caught, 
Sciaena deliciosa 

26 Machete Boney Fall Back   Y   not active 
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 Name Catch Type Desirability 

Phase 
I - 

REL 

Phase 
II -  
LN 

Phase 
III - 
BTN 

Description / Scientific 
Name/ Sample 
Measurements 

27 Mantaraya Cartilaginous Fall Back Y     
 
 

28 Mismis Boney Okay Y Y Y 
 
 

29 Mojarilla Boney Okay Y Y   
small drum, Stellifer minor, 
sample: 16cm, 68g 

30 Pompano Boney 
High / 

Targeted Y       

31 Pejegallo Cartilaginous Fall Back Y Y Y 

  
 
 

32 Pejerrey Boney 
High / 

Targeted     Y 
absent from CA in El Nino, 
but came strongly  in 1986 

33 pez dama Boney Fall Back Y Y   
whale shark, Rhinocodon 
typus 

34 pez gato Boney Fall Back   Y Y 

  
 
 

35 pez martillo Cartilaginous Fall Back   Y   
  
 

36 pez rata Cartilaginous Fall Back Y Y Y 

 
  
 

37 Pinguino Bird Fall Back   Y 
  
 

bird – penguin 
 

38 Pintadilla Boney Okay Y Y Y 

"Morwong", Cheilodactylus 
variegatus, eaten by elites 
during Later Intermediate, 
sample: 28cm, 300g 

39 Raya Cartilaginous Okay Y Y Y Ray 

40 Robalo Boney 
High / 

Targeted   Y Y 

Sciaena starksi, largest drum 
caught in present day CA, and 
Late Int included even larger 

41 Sardina Boney Okay   Y   Sardine 

42 Sierra Boney Okay Y     

"Sierra mackerel", 
Scomberomorus maculatus 
sierra, sample, 44cm and 450g 

43 Tembladera Cartilaginous Fall Back Y Y Y "rays", "Discopyge spp." 

44 Tollo Cartilaginous Okay Y Y Y 

"Smoothound shark", Mustelus 
mento, ranges 75 to 150cm, 
most common cartilaginous 
fish caught in CA today 

45 Tortuga Reptile Fall Back   Y   Turtle 

46 Trambollo Boney Okay   Y   
"Scalled Benny", Labrisomus 
philippii, 28cm 450g 

47 Volador Boney Fall Back     Y flying fish 

48 Zorro Boney Okay Y Y Y 
Drum, Menticirrhus rostratus, 
sample: 36cm , 650g 

 

        Table 3.2: provides the average catch count for each catch types over all 29 months of 

the survey. It gives the number of months over which the observations are taken along with 

the average, standard deviation, and maximum and minimum monthly average. For each of 
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these catches there were some months where it was not caught at all. Lorna and Mismis, both 

found in all three phases, contribute the most to the overall catch count. Likewise, 18 of the 

24 most frequent catches are highly desirable or good. The remainders are classified as 

Fallback. This suggests a rather selective focus towards commercially viable product. 

           Tables 3.3 – 3.5 gives the total catch count for each month based upon the days of the 

week. Notice that for the highly desirable category, Table 3.3, the week starts heavy and the 

catches are reduced in size as the week goes on. These are in fact targeted species and appear 

to be sought after first. Tables 3.4 and 3.5 exhibit the opposite. The number of catches 

increases in general from Monday through Wednesday, and sometimes there is a second 

follow up wave beginning on Thursday and going on through Saturday. These suggest that 

there is a community learning curve where agents learn where other less desirable fish are 

(2). We suggest that the Fallback category exhibits a similar curve, since if they cannot find a 

desirable species they will fall back to whatever is available since a successful trip returns 

with something.  
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Table 3.2: The statistics for Catch Count for the entire period. 

Species Obs. Mean Std. Dev. Min Max 

Ayanque 29 17.82759 54.45055 0 276 

Azul 29 12.48276 21.80207 0 106 

Bonito 29 56.03448 158.6428 0 790 

Caballa 29 52.34483 142.5926 0 684 

Cabinsa 29 21.72414 90.23418 0 462 
Chancho 
marino 29 16.72414 31.12979 0 172 

Chita 29 10.2069 26.49445 0 138 

Cojinova 29 7.413793 33.65531 0 181 

Guitarra 29 4.965517 10.65861 0 48 

Jurel 29 94.2069 224.9129 0 840 

Langostino 29 256.931 758.7817 0 3114 

Lenguado 29 27.86207 78.90805 0 328 

Liza 29 106.7586 358.778 0 1760 

Lorna 29 14391.24 17327.77 0 62316 

Mismis 29 2252 3613.489 0 12672 

Mojarilla 29 24.55172 93.20162 0 480 

Pompano 29 16.96552 91.36211 0 492 

Pejegallo 29 44.7931 63.1316 0 221 

Pejerrey 29 1674.414 6201.353 0 32040 

Pintadilla 29 13.72414 30.24294 0 143 

Raya 29 142.931 162.2372 0 635 

Tembladera 29 14.72414 39.03103 0 200 

Tollo 29 179.7241 345.7662 0 1707 

Volador 29 41.17241 139.9587 0 666 

Zorro 29 295.6207 538.3419 0 2304 
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  Figure 3.1 provides a graphical illustration of how catch count changes monthly over 

the observation period. The red strip represents the size of catches caught near Cerro Azul 

proper (Cerro Azul, La Centinela, and El Faro). The blue strip corresponds to the total caught 

south of Cerro Azul, and the red band stands for those catches made on trips north of Cerro 

Azul. This catch is present in all three phases, but particularly targeted in the La Nina phase. 

Appendix A, which will be added later, contains these graphs for all of the recorded species. 

 

Figure 3.1: The Total catch count per month relative to trip direction for: Lorna 
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Figure 3.2: The Total trip count per month relative to trip direction for Lorna 
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Table 3.3: Total Catch Count by month for High Desirability. 

Sum of All Fish Caught for each month on each Day of week using Return Day 

High Desirability 

Year Month Desire. Mon Tues Wed Thur Fri Sat Sun 

1984 3 1 166 789 1073 1235 644 746 327 

1984 4 1 3442 567 762 625 1466 960 934 

1984 5 1 47 180 1039 258 531 2 35 

1984 6 1     20 7       
End of Residual El Nino  

(SUM) 3655 1536 2894 2125 2641 1708 1296 

1984 7                 

1984 8 1   8   214 434 396 347 

1984 9 1 144 5 17     17 40 

1984 10 1           18   

1984 11                 

1984 12 1 13 24     20 12   

1985 1 1 54   9 25 20 6 9 

1985 2 1 8 60 580 88 94 428 146 

1985 3                 

1985 4 1     75     159 130 

1985 5 1 11       4   65 

1985 6                 

1985 7                 

End of La Nina (SUM) 230 97 681 327 572 1036 737 

1985 8                 

1985 9 1   13 13     3   

1985 10                 

1985 11 1   15 24 150 3     

1985 12                 

1986 1 1         12     

1986 2 1           9   

1986 3                 

1986 4 1   10 9     10   

1986 5                 

1986 6 1           12   

1986 7 1 263 116 77 42 12 293 88 

End of Back to Normal (SUM) 263 154 123 192 27 327 88 



55 
 

 
 

Table 3.4: Total Catch count by month for Okay Desirability. 

Sum of All Fish Caught for each month on each Day of week using Return Day 

Okay Desirabilty 

Year Month Desire. Mon Tues Wed Thur Fri Sat Sun 
1984 3 2 542 820 2059 897 789 4210 1208 

1984 4 2 780 1211 1059 432 244 1102 242 

1984 5 2 2 424 347 5220 558 24 84 

1984 6 2 2849 1189 2067 928 5161 5539 183 
End of Residual El Nino  

(SUM) 4173 3644 5532 7477 6752 10875 1717 

1984 7 2 3961 3845 8179 4006 2202 3401 7937 

1984 8 2 2986 1941 3732 8215 5362 5065 1660 

1984 9 2 8491 9944 6363 4385 7753 12981 11187 

1984 10 2 5233 8018 17564 12289 9322 9288 6973 

1984 11 2 3673 7202 10158 12070 6226 7466 5702 

1984 12 2 9351 8523 14697 4977 4323 10897 8299 

1985 1 2 9659 10406 8038 4942 6574 11701 10940 

1985 2 2 3205 5522 10034 8045 11990 10749 8719 

1985 3 2 10853 7938 12474 5744 11174 15839 12167 

1985 4 2 6236 5339 3445 4018 3565 4965 5994 

1985 5 2 2058 3671 5099 4905 9210 5022 5544 

1985 6 2 4140 5280 9713 10348 7802 4810 3326 

1985 7 2 2388 4872 4740 7632 6636 4884 4896 

End of La Nina (SUM) 72234 82501 114236 91576 92139 107068 93344 

1985 8 2 720 480 180 420 1812 660   

1985 9 2 1988 11 2311 1353 2784 2606 730 

1985 10 2 960 1202 1988 1429 1004 817 1767 

1985 11 2 14 44 536 3730 842 1110 92 

1985 12 2 248 207 411 337 307 63 4 

1986 1 2 691     384 83     

1986 2 2 2 673 35 1258 2305 216   

1986 3 2 738 456 9315 2528 465 1700 565 

1986 4 2 79 360 4 23 97 882 14 

1986 5 2 17   14 2 5   4 

1986 6 2 2 6   10 2   4 

1986 7 2     12 2 4   1 
End of Back to Normal 

(SUM) 5459 3439 14806 11476 9710 8054 3181 
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Table 3.5: Total Catch count by month for Fall Back Desirability 

Sum of All Fish Caught for each month on each Day of week using Return Day 

Fall Back Desirability 

Year Month Desire. Mon Tues Wed Thur Fri Sat Sun 

1984 3 3 5 16 94 54 82 292 58 

1984 4 3 8 55 241 311 218 63 42 

1984 5 3 2 26 88 142 103 506 16 

1984 6 3 7 51 134 58 134 150 18 
End of Residual El Nino  

(SUM) 22 148 557 565 537 1011 134 

1984 7 3 3   33   47 3 85 

1984 8 3 62 68 173 133 48 52 120 

1984 9 3 70 103 241 178 168 261 228 

1984 10 3 251 88 309 175 261 164 140 

1984 11 3 175 152 457 337 396 512 327 

1984 12 3 610 39 129 297 383 107 415 

1985 1 3 42 115 125 104 72 748 90 

1985 2 3 30 76 51 174 409 204 199 

1985 3 3 135 186 196 122 265 203 453 

1985 4 3 116 269 173 43 101 89 201 

1985 5 3 44 13 438 292 651 310 222 

1985 6 3   70 254 119 94 182 62 

1985 7 3   6 57 5 5     

End of La Nina (SUM) 1538 1185 2636 1979 2900 2835 2542 

1985 8 3               

1985 9 3       24 16 30 10 

1985 10 3 29 15 38 9 67 82 37 

1985 11 3 34 208 172 88 212 81 16 

1985 12 3 27 41 119 14 21 81 176 

1986 1 3 26   4   18 10 1 

1986 2 3 31 211 291 112 138 19 35 

1986 3 3 424 133 3554 329 913 1163 452 

1986 4 3 181 557 135 855 1301 111 14 

1986 5 3 6 924 47 168 125 234 88 

1986 6 3 2586 2015 5185 6359 1309 6433 1380 

1986 7 3 8722 8704 2835 6088 3146 8181 2766 

End of Back to Normal(SUM)  12066 12808 12380 14046 7266 16425 4975 
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3.2 EFFORT EXPENDED ON TRIPS OVER TIME 

     It is clear from the above, that catch quality is a factor in the selection of a fishing trip by 

agents. In this section we provide evidence relative to the importance of another concern, 

resource expenditure. All of the trips in the database are successful trips in the sense they 

came back with something. We view the distance travelled to achieve that success are an 

investment in the basic fishing activity. So the Payout, or catch count, can be viewed as a 

return on the investment. 

      The following table, Table 3.6, shows the distance from Cerro Azul to all other sites. 

That was visited during the entire survey period. Notice that sites 17 a-c are all viewed to be 

co-located and constitute the immediate area around Cerro Azul. We assume that the round 

trip distance to each is one km. 
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Table 3.6: The distance from Cerro Azul to all sites 

 

 

 
Site Name 

One Way 
Distance (KM) 

Round Trip 
Dist. (KM) 

Relative to 
Cerro Azul 

1 San Bartolo 78 156 North 
2 San Pedro 66 132 North 
3 Cerro Blanco 54 108 North 
4 Mala 44 88 North 
5 Playa Asia 33 66 North 
6 Isla Asia 31 62 North 
7 Asia 28 56 North 
8 Mal Paso 25 50 North 
9 Playa Sarapampa 23 46 North 

10 Valdivia 18 36 North 
11 Los Leones 16 32 North 
12 Isla Corriente 10 20 North 
13 Corriente 9 18 North 
14 Gallardo 7 14 North 
15 Los Lobos 6 12 North 
16 Los Reyes 3 6 North 

17a Cerro Azul 0.5 1 Cerro Azul 
17b Faro 0.5 1 Cerro Azul 
17c La Centinela 0.5 1 Cerro Azul 
18 Puente Tabla 2 4 South 
19 Playa La Costa 3 6 South 
20 Santa Bárbara 5 10 South 

21 
San Vicente de 
Canete 9 18 South 

22 Playa Hermosa 10 20 South 
23 Boca del Rio 14 28 South 
24 Herbay 16 32 South 
25 Cinco Cruces 28 56 South 
26 Colorado 39 78 South 
27 Jaway 40 80 South 
28 Tambo de Mora 58 116 South 
29 Monzo 99 198 South 
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        Table 3.7 gives the number of trips that returned on a given day of the week over the 

entire period of the survey relative to each of the catch types. Lorna and Mismis taken 

together constitute over a third of the overall number trips in the period. One reason for that 

is they are present in all three phases and therefore can be a target more often than some 

others [20]. Note that the overall number of trips increases from Monday through to 

Saturday. This may result from the fact that as more information is acquired about the 

available catches, there is more opportunity to target a particular catch and location. 
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Table 3.7: Trip Count over Entire Period Based upon Return Date. 
Catch Sunday Monday Tuesday Wednesday Thursday Friday Saturday TOTAL 

albacora 1 0 0 0 0 0  1 
anchoveta   0 0 1 1 0  2 
angelona   1 1 3 3 0 1 9 
ayanque 1 5 2 0 3 5 6 22 
azul 29 21 21 50 32 41 40 234 
bonito 27 16 13 10 22 18 27 133 
burro   0 0 1 1 0  2 
caballa 3 1 3 2 5 5 3 22 
cabinsa 1 0 0 0 0 2 1 4 
cabrilla 1 0 0 1 1 1 1 5 
cachema   0 0 0 0 1  1 
camarón   0 0 3 0 1  4 
cangrejo   0 0 1 0 0  1 
chancho 

 
66 37 64 94 69 88 80 498 

chita 6 2 11 7 9 12 9 56 
coco 2 1 2 0 1 3 1 10 
cojinova 8 7 10 5 2 2 12 46 
corvina 2 0 2 1 2 2 2 11 
cristalino 1 7 2 8 9 5 12 44 
diamante 2 2 2 5 0 2 4 17 
guitarra 6 5 20 16 21 16 13 97 
jurel 2 1 5 3 3 5 3 22 
langostino 7 8 11 17 13 10 7 73 
lenguado 7 6 14 6 8 16 10 67 
lisa 1 3 2 1 3 3 2 15 
lorna 180 132 160 201 197 208 213 1291 
machete   1 0 1 0 0 1 3 
mantaraya   0 0 0 0 1  1 
mismis 126 92 113 150 137 155 150 923 
mojarilla   0 1 0 1 2 3 7 
pampano   0 2 1 5 2 2 12 
pejegallo 28 16 28 38 34 37 36 217 
pejerrey 9 12 12 16 20 11 18 98 
pez dama 1 0 1 1 0 1  4 
pez gato 2 0 0 2 0 1 1 6 
pez 

 
2 1 4 2 0 3 1 13 

pez rata 5 1 6 12 3 5 10 42 
pinguino   0 1 0 0 0  1 
pintadilla   1 5 2 5 6 5 24 
raya 120 56 92 149 166 175 146 904 
robalo   0 0 1 1 0  2 
sardina 1 1 1 1 0 0  4 
sierra 1 1 0 2 1 1  6 
tembladera 1 0 4 7 5 7 2 26 
tollo 122 83 82 141 158 178 163 927 
tortuga   0 0 0 0 1 1 2 
trambollo   1 0 0 0 0  1 
volador 3 2 0 2 0 0 2 9 
zorro 10 12 8 16 13 18 17 94 
Total 784 535 705 980 954 1050 1005 6013 
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Table 3.8 now breaks down the trips for each catch type into each of the three phases. 

Now we can see why the trip count increases over the course of the week. Certain highly 

targeted and desirable catches are the subject of increasingly more trips during the course of 

the week. For example, the number of trips that caught Lorna, a staple in the fishing 

repertoire, increases in general over the course of the week in all three phases. It is clearly a 

continuing target for fishermen and the fact that the number of trips increases over the course 

of a week reflects the “learning curve” that we mentioned earlier. In this case the curve 

extends across all days of the week as opposed to others that extend over earlier portions of 

the week, Monday through Wednesday for example. 
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Table 3.8: Catches by Phase for Entire Period using Return Date 

Phase 1= Residual El Nino, 2 = La Nina, 3 = Back to Normal 

          Catches Phase Sunday Monday Tuesday Wed. Thursday Friday Saturday Total 
albacora 1 0 0 0 0 0 0 0 0 
albacora 2 1 0 0 0 0 0 0 1 
albacora 3 0 0 0 0 0 0 0 0 
anchoveta 1 0 0 0 0 1 0 0 1 
anchoveta 2 0 0 0 0 0 0 0 0 
anchoveta 3 0 0 0 1 0 0 0 1 
angelona 1 0 0 0 0 1 0 0 1 
angelona 2 0 1 1 2 2 0 1 7 
angelona 3 0 0 0 1 0 0 0 1 
ayanque 1 0 0 0 0 0 0 0 0 
ayanque 2 1 5 2 0 3 5 6 22 
ayanque 3 0 0 0 0 0 0 0 0 
azul 1 4 0 3 7 9 8 7 38 
azul 2 14 9 5 18 9 12 13 80 
azul 3 11 12 13 25 14 21 20 116 
bonito 1 6 8 7 4 3 1 4 33 
bonito 2 21 8 4 5 12 15 22 87 
bonito 3 0 0 2 1 7 2 1 13 
burro 1 0 0 0 0 0 0 0 0 
burro 2 0 0 0 1 1 0 0 2 
burro 3 0 0 0 0 0 0 0 0 
caballa 1 0 0 2 0 2 1 1 6 
caballa 2 2 1 1 0 3 4 1 12 
caballa 3 1 0 0 2 0 0 1 4 
cabinsa 1 0 0 0 0 0 0 0 0 
cabinsa 2 1 0 0 0 0 2 1 4 
cabinsa 3 0 0 0 0 0 0 0 0 
cabrilla 1 0 0 0 0 0 1 0 1 
cabrilla 2 1 0 0 0 1 0 1 3 
cabrilla 3 0 0 0 1 0 0 0 1 
cachema 1 0 0 0 0 0 0 0 0 
cachema 2 0 0 0 0 0 1 0 1 
cachema 3 0 0 0 0 0 0 0 0 
camarón 1 0 0 0 3 0 1 0 4 
camarón 2 0 0 0 0 0 0 0 0 
camarón 3 0 0 0 0 0 0 0 0 
cangrejo 1 0 0 0 0 0 0 0 0 
          



63 
 

 
 

Species Phase Sunday Monday Tuesday Wed. Thursday Friday Saturday Total 
cangrejo 2 0 0 0 1 0 0 0 1 
cangrejo 3 0 0 0 0 0 0 0 0 
chancho 
marino 1 2 3 6 15 9 8 11 54 
chancho 
marino 2 51 25 33 50 40 49 46 294 
chancho 
marino 3 13 9 25 29 20 31 23 150 
chita 1 0 0 0 0 0 0 0 0 
chita 2 5 2 8 6 9 9 6 45 
chita 3 1 0 3 1 0 3 3 11 
coco 1 2 0 2 0 1 3 1 9 
coco 2 0 1 0 0 0 0 0 1 
coco 3 0 0 0 0 0 0 0 0 
cojinova 1 0 0 0 0 0 1 0 1 
cojinova 2 0 0 0 0 0 0 0 0 
cojinova 3 8 7 10 5 2 1 12 45 
corvina 1 0 0 0 0 1 1 1 3 
corvina 2 1 0 1 0 0 1 0 3 
corvina 3 1 0 1 1 1 0 1 5 
cristalino 1 0 0 0 0 1 0 1 2 
cristalino 2 1 7 2 6 7 5 11 39 
cristalino 3 0 0 0 2 1 0 0 3 
diamante 1 1 0 0 0 0 0 1 2 
diamante 2 1 2 2 5 0 2 3 15 
diamante 3 0 0 0 0 0 0 0 0 
guitarra 1 2 2 8 6 10 12 7 47 
guitarra 2 3 2 1 3 2 0 3 14 
guitarra 3 1 1 11 7 9 4 3 36 
jurel 1 2 1 5 2 2 3 3 18 
jurel 2 0 0 0 1 1 2 0 4 
jurel 3 0 0 0 0 0 0 0 0 
langostino 1 6 8 11 16 13 10 5 69 
langostino 2 1 0 0 1 0 0 2 4 
langostino 3 0 0 0 0 0 0 0 0 
lenguado 1 6 3 8 4 5 9 3 38 
lenguado 2 1 3 6 2 2 7 7 28 
lenguado 3 0 0 0 0 1 0 0 1 
lisa 1 0 0 0 0 0 0 0 0 
lisa 2 0 0 0 0 1 1 0 2 
lisa 3 1 3 2 1 2 2 2 13 
lorna 1 3 5 3 6 6 13 10 46 
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Species Phase Sunday Monday Tuesday Wed. Thursday Friday Saturday Total 
lorna 2 172 120 152 185 178 175 191 1173 
lorna 3 5 7 5 10 13 20 12 72 
machete 1 0 0 0 0 0 0 0 0 
machete 2 0 1 0 1 0 0 1 3 
machete 3 0 0 0 0 0 0 0 0 
mantaraya 1 0 0 0 0 0 1 0 1 
mantaraya 1 0 0 0 0 0 0 0 0 
mantaraya 1 0 0 0 0 0 0 0 0 
mismis 1 2 0 1 0 1 6 1 11 
mismis 2 122 92 112 148 133 144 144 895 
mismis 3 2 0 0 2 3 5 5 17 
mojarilla 1 0 0 0 0 0 1 0 1 
mojarilla 2 0 0 1 0 1 1 3 6 
mojarilla 3 0 0 0 0 0 0 0 0 
pampano 1 0 0 2 1 5 2 2 12 
pampano 2 0 0 0 0 0 0 0 0 
pampano 3 0 0 0 0 0 0 0 0 
pejegallo 1 0 1 2 7 6 4 3 23 
pejegallo 2 23 13 20 26 22 27 28 159 
pejegallo 3 5 2 6 5 6 6 5 35 
pejerrey 1 0 0 0 0 0 0 0 0 
pejerrey 2 0 0 0 0 0 0 0 0 
pejerrey 3 9 12 12 16 20 11 18 98 
pez dama 1 0 0 1 0 0 0 0 1 
pez dama 2 1 0 0 1 0 1 0 3 
pez dama 3 0 0 0 0 0 0 0 0 
pez gato 1 0 0 0 0 0 0 0 0 
pez gato 2 2 0 0 0 0 1 1 4 
pez gato 3 0 0 0 2 0 0 0 2 
pez martillo 1 0 0 0 0 0 0 0 0 
pez martillo 2 2 1 4 2 0 3 1 13 
pez martillo 3 0 0 0 0 0 0 0 0 
pez rata 1 0 0 1 3 0 0 1 5 
pez rata 2 5 1 3 7 3 4 9 32 
pez rata 3 0 0 2 2 0 1 0 5 
pinguino 1 0 0 0 0 0 0 0 0 
pinguino 2 0 0 1 0 0 0 0 1 
pinguino 3 0 0 0 0 0 0 0 0 
pintadilla 1 0 0 2 1 2 1 1 7 
pintadilla 2 0 1 2 1 3 3 2 12 
pintadilla 3 0 0 1 0 0 2 2 5 
raya 1 9 3 13 23 30 25 25 128 
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Species Phase Sunday Monday Tuesday Wed. Thursday Friday Saturday Total 
raya 2 97 42 58 93 105 117 96 608 
raya 3 14 11 21 33 31 33 25 168 
robalo 1 0 0 0 0 0 0 0 0 
robalo 2 0 0 0 0 1 0 0 1 
robalo 3 0 0 0 1 0 0 0 1 
sardina 1 0 0 0 0 0 0 0 0 
sardina 2 1 1 1 1 0 0 0 4 
sardina 3 0 0 0 0 0 0 0 0 
sierra 1 1 1 0 2 1 1 0 6 
sierra 2 0 0 0 0 0 0 0 0 
sierra 3 0 0 0 0 0 0 0 0 
tembladera 1 0 0 0 1 2 2 0 5 
tembladera 2 1 0 2 2 0 0 1 6 
tembladera 3 0 0 2 4 3 5 1 15 
tollo 1 7 4 17 19 29 32 28 136 
tollo 2 92 69 50 104 111 115 112 653 
tollo 3 23 10 15 18 18 31 23 138 
tortuga 1 0 0 0 0 0 0 0 0 
tortuga 2 0 0 0 0 0 1 1 2 
tortuga 3 0 0 0 0 0 0 0 0 
trambollo 1 0 0 0 0 0 0 0 0 
trambollo 2 0 1 0 0 0 0 0 1 
trambollo 3 0 0 0 0 0 0 0 0 
volador 1 0 0 0 0 0 0 0 0 
volador 2 2 2 0 1 0 0 2 7 
volador 3 1 0 0 1 0 0 0 2 
zorro 1 0 0 1 1 1 1 1 5 
zorro 2 9 7 1 7 9 9 11 53 
zorro 3 1 5 6 8 3 8 5 36 
TOTAL 290 784 535 705 980 954 1050 1005 6013 
 

      Figure 3.2 shows the relative number of trips devoted to boney versus cartilaginous in 

each of the three phases. La Nina has by and large the most trips associated with it and the 

learning curves found there tend to dominate the overall distribution in terms of trends in 

overall effort. 
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Figure 3.2: The Trip Count by Species Type for the Entire Period 
 
3.3 CONCLUSIONS 

The results shown in the chapter support the importance of both catch quality on the 

one hand and the investment of resources in terms of number of trips and over all distance 

travelled on the other in the description of overall fishing behavior over all three periods. 
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Although the patterns can differ between them there are certainly themes that cut across them 

all. One of the key themes is the learning curve where the number of trips can increase over 

time during the week relative to certain targeted species. There are indications there is a 

priority in terms of what catch to pursue first. Another interesting pattern can be seen with 

fall back catches which mimic trend in targeted catches since as the number of desirable 

catches starts to dwindle the deficit can be made up by Fall Back categories.  

 The goals of catch quality and trip investment will be key to the multi-objective 

model that we develop in Chapter 5. In order to prepare for the computational demands of a 

multi-objective approach we will employ an extension of the Cultural Algorithm. That will 

be described in Chapter that follows. 
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CHAPTER 4: CULTURAL ALGORITHMS AND MULTI-OBJECTIVE 
OPTIMIZATION 

4.0 INTRODUCTION 

Culture, as defined in the American Heritage English Dictionary, is: “The totality of 

socially transmitted behavior patterns, arts, beliefs, institutions, and all other products of 

human work and thought” as stated by [21].   Notice that culture composes many different 

aspects of society, and therefore some part of it is always changing and being continuously 

updated.  Cultural Algorithms (CA) have been used successfully in modeling biological 

evolution, such as the agriculture in the Valley of Oaxaca, Mexico [2].   CAs have also been 

applied to concept learning, decision trees, software testing, assessing the quality of a 

Genetic Program, and data mining, (Engelbrecht, 2007).  In this chapter, we will study the 

Cultural Algorithm in detail and see why it is called a “dual-inheritance” socially motivated 

problem- solving technique.  

We start by an overview of the Cultural Algorithm in sections 4.1 through 4.4. We 

then follow with a brief history of the development of the Cultural Framework for the 

solution single objective optimization problems in section 4.5. Section 4.6 describes the 

version of Cultural Algorithms employed for the Multi-objective problems here. Section 4.7 

gives our conclusions. 

4.1 THE CULTURAL ALGORITHM FRAMEWORK 

As we mentioned previously, the Cultural Algorithm is composed of three distinct 

parts: The Belief Space, the Population Space, and the Communication Protocol based on [2] 

. Selective information that is learned in the population space can be accepted by the belief 

space.  This updated knowledge becomes part of the decision- making belief space that can 

be used to influence the next generation in the Population Space.  These two parallel flows of 
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information, from the belief space to the population space and from the population space to 

the belief space, are what make Cultural Algorithms a “dual-inheritance” system.  Next, we 

discuss how this information is passed between the two spaces, namely the Communication 

Protocol.  The Communication Protocol contains three main functions for exchanging within 

the Cultural Algorithm.   

First, the Accept function is used to select data from the most-fit individuals to send 

to the Belief Space.  Second, the Update function revises this new accepted information 

inside the Belief Space.  Finally, the Influence function is used to bias the next generation in 

the Population Space.   We can view the Population Space operating at the micro-

evolutionary level, while the Belief Space, changing only after a complete generation 

operates at a macro-level evolution. The Cultural Algorithm framework is presented in the 

Figure 4.1, [21] 

 
Figure 4.1: The Framework of Cultural Algorithm [21] 



70 
 

 
 

The Population Space can be any standard Evolutionary Algorithm, including Genetic 

Algorithms, Particle Swarm Optimization, Ant Colony Optimization, or Brainstorm 

Optimization [22].  We will not discuss the different Evolutionary Algorithms in detail, but 

rather we will focus on what differentiates the Cultural Algorithm from the others, its Belief 

Space. The Belief Space allows learned knowledge to be explicitly used to control the 

problem-solving process. It is therefore a data intensive approach that can support both single 

and multi-objective problem solving. 

We present the pseudo code for Cultural Algorithms in the next figure [14]. 

Set the generation counter, t = 0; 

Create and initialize the population space, C(0); 

Create and initialize the belief space, B(0); 

While stopping condition(s) not true do 

      Evaluate the fitness of each xi(t) ∈ C(t); 

      Adjust (B(t), Accept (C(t))); 

      Variate (C(t), Influence (B(t))); 

      t = t + 1; 

      Select the new population; 

End 

Figure 4.2: Pseudo code for Cultural Algorithms [14] 

4.2 THE BELIEF SPACE 

All five knowledge types were designed to allow evolution-based optimization for a 

given domain [23]. Each of the knowledge types can provide different levels of performance 
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in respect to entire Cultural Algorithm Framework.  There is evidence that from Semiotics 

that each of these formats is used by various species in nature.  

Situational Knowledge Source exists to provide an example for others to follow.  

Usually, the selected elite individuals are used as role-models by non-elites in decision 

making.  The Situational Knowledge Source was incorporated by [24].  Later modifications 

also accepted sub-elite individuals within a given margin.   

 Normative Knowledge, also introduced by Chung, uses the Belief Space to store 

normal or acceptable ranges for a variable’s values.  Normative Knowledge provides 

guidelines for individual behavior. In Evolution, the social guidelines are the building blocks 

of the human social intelligence based on [25].  Normative knowledge is kept current by 

updating its values to match performance in the current environment.  

 Topographical Knowledge, “Regional Schema”, was added by [27]. The data 

structure representation is an array of size n where n is the number of cells in the mesh. Each 

cell in the data structure contains a lower and an upper bound for the n variables indicating 

the ranges associated with the best solutions found in that cell so far, and a pointer to its 

children.  The topographical knowledge structure is initialized by sampling a solution in 

every cell in the grid and creating a list of best cells.  The update occurs when a cell is 

divided into sub-cells, when an accepted individual’s fitness value is better than the best 

solution in that cell, or if the fitness value of the cell’s best solution has increased after a 

change event is detected. Topographical Knowledge provides a spatial or array framework in 

which environmental patterns can be identified and adjusted as needed.  

 Domain Knowledge was introduced into the Cultural Algorithm system b [28] in 

order to solve dynamic resource optimization problems. The domain knowledge contains the 



72 
 

 
 

overall system ranges for all parameters and is updated by the most-fit individuals from the 

population space.  Domain knowledge can be used to dynamically predict patterns in the 

solution landscape. For example, if an upward slope is detected, then we know there will be 

an increase in resources.  The new location of the peak can also be predicted and adjusted 

simultaneously. 

 The fifth knowledge type, Historical Knowledge, also referred to as Temporal 

Knowledge, was added into Cultural Algorithms by [29] to provide global system reasoning 

and to allow backtracking of actions. It contains information about sequences of 

environmental changes in terms of shifts in the distance and direction of the optimum in the 

search space.  Information regarding the events and temporal-spatial relations between them 

is recorded by [30]. Historical knowledge behaves like the system macro-based manager, 

while Domain Knowledge is more micro-evolutionary. 

4.3 THE POPULATION SPACE 

 The acceptance function determines which individuals and their behaviors can impact 

the Belief Space knowledge. It is often specified as a percentage of the number of current 

individuals ranging between 1% and 100% of the population size and is based upon selected 

parameters such as performance based on [24].  For example, we can select the best 

performers, the top ten percent, the worst performers, or any combination. The acceptance 

function can also be adjusted in a rule-based fashion based upon the state of the problem-

solving process. Che utilized the experience of the entire population since the population size 

was small relative to the number of cones that made up the performance landscape as stated 

[23]. 
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 The first influence function was a random integration function, implemented by [30].  

From this emerged three phases of problem solving: coarse-grained (explorers) fine-grained 

(exploitation); and backtracking (retracing). While a given phase is taking place, an 

individual is likely to be controlled by a knowledge source for several time steps. Thus, an 

individual is plugged into a role within the population based upon the current state of the 

problem-solving process.   

The five knowledge sources described above were added to Cultural Algorithms at 

different times, reflecting different problem-solving needs. When used together, they showed 

interesting collective behaviors regarding different roles in the search process. Since we are 

applying the Cultural Algorithms to a general set of problem environments it is important 

that their actions be integrated together. The integration function is maintained by the 

communication protocol.  We will discuss the communication protocol in the next section.   

Each knowledge source in the Belief Space holds a different type of knowledge, and 

each can extract a different experience from groups of individuals. Figure 4.3 summarizes the 

knowledge update process in the Belief Space. Normative and Topographical knowledge are 

updated using information about all of the accepted individual experiences in the current 

generation, which is indicated by orange in the graph. The other three knowledge sources 

base their updates only on the best performer, which is labeled with magenta.   Although 

each individual knowledge source bases its updates on new knowledge from the current 

generation of agents, and its own accumulation of knowledge, there is a difference in that 

some knowledge sources will also use other knowledge sources as part of the update process 

while others do not.   
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In Figure 4.3 we can see that domain and history knowledge use situational 

knowledge when they are updated.  The final difference between the knowledge sources is 

that updating is called in different situations.  Except for History knowledge, all other four 

knowledge sources are frequently updated by [23] when no environmental dynamics or 

change in the position of the best value occurs.  However, when the environment changes or 

a new best value is found, History, Situational and Topographical knowledge are updated 

together.  

4.4 THE COMMUNICATION PROTOCOL 

 The communication protocol of a Cultural Algorithm System is composed of two 

functions: accept and influence [31].  The acceptance function determines which individuals 

will be selected to update the Belief Space.  The influence function determines how the 

Belief Space guides or biases the population space in generating new solutions. Both 

functions can use all the five knowledge categories. In addition, we have the update function 

that coordinates the updating of each individual knowledge source described above, as shown 

in Figure 4.3 [23].  
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Figure 4.3: Knowledge Update in the Belief Space [23]. 

4.5 HISTORICAL DEVELOPMENT OF CULTURAL ALGORITHMS 

 In 1979, Reynolds developed the Cultural Algorithm, applying it model the evolution 

of agriculture in The Valley of Oaxaca, Mexico. His idea was to research motivations of 

economic and social change in the evolution from a hunter-gatherer to an agriculture society. 

In these early applications, Reynolds used a theoretical background from Flannery’s theory 

about the origins of agriculture based on Barceló, [31] .  Agriculture needs intensive labor 

resources.  This means these labor resources cannot be utilized for other activities, also 

important for group survival. Reynolds programmed a computer system that calculated the 

way in which members of this group would arrange their economic activities to approach a 

balance between investment of agricultural labor and investment of labor in other activities.  

We provide a history of the Cultural Algorithms and discuss when new components were 
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added.  We also discuss how the Cultural Algorithm knowledge distribution mechanism 

changed. 

4.5.1 DEVELOPMENT OF THE FIVE KNOWLEDGE SOURCES 

 Chung developed one of the first software systems to implement Cultural Algorithms.  

His tool kit, Cultural Algorithm with Evolutionary Programming (CAEP), used Normative 

and Situational Knowledge in the Belief Space and Evolutionary Programming in the 

Population Space by [24].  Later, Jin added Topographical Knowledge to the Belief Space 

extending Chung original system by [27].  This key point is this allowed agents to use their 

regional information when implementing the acceptance, update, and influence function.  

Next, Saleem extended a Cones World optimization problem developed by De Jong 

reacting to the dynamic movement of cones concentration in the environment by [30]. The 

Cones World problem is to try to find the highest peak in multi-dimensional multi-peak 

landscape.  Saleem needed two additional knowledge sources to implement his new design:  

history and domain.  History Knowledge enabled the system to reason regarding time, while 

Domain Knowledge provided reasoning with respect to cone attributes: their shape, slope, 

and altitude.  Saleem integration function used random selection of the five different 

Knowledge Sources, as shown in Figure 4.4 Structure of the Belief Space of CADE (Cultural 

Algorithm Dynamic Environment by [33]. 

  There was no predetermination as to which knowledge source would influence which 

individual.  The new Cultural Algorithm Framework was named CADE, Cultural Algorithms 

for Dynamic Environments.  Its belief space is shown in the figure below. 
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Figure 4.4: Structure of the Belief Space of CADE [33] 

4.5.2 KNOWLEDGE SOURCE INFLUENCE AND THE MARGINAL VALUE 

[31] incorporated an ecological distribution mechanism, namely knowledge swarms 

from Foraging Theory.  She used the Marginal Value Theorem to decide which Knowledge 

Source will influence which individual.  The Marginal Value Theorem (MVT) states that an 

individual will stay in a patch of land until the current resource gain is less than the average 

expected value for the population.  From basic animal instincts, the individual will keep 

moving to another patch that satisfies the marginal value constraint by [31].  The size of a 

knowledge sources area under the wheel is a function of its ability to produce above average 

gain as stated by [31].  The better the performance the larger the pie slice on the wheel. Each 

of the five knowledge sources is initially given 20% of the wheel area.  In Figure 4.5, the left 

represents the initial evenly allocated sections.  The pie chart on the right shows how some 

knowledge sources began outperforming the others. 

influence() 

History Knowledge 

Normative Knowledge 

Situational Knowledge  

Domain Knowledge 

accept() 

Topographical Knowledge 

 Changed? 



78 
 

 
 

 
Figure 4.5: Example of the Roulette Wheel Function [31] 

Peng referred to the Knowledge Sources as predators, competing to gain control over the 

individuals, the prey, in the population space. 

4.5.3 THE SOCIAL FABRIC AND MAJORITY WINS 

The Social Fabric, introduced by [21], now allowed an individual to look at what their 

“neighbors were doing”, instead of forcing each agent to act independently. The network 

topology type, such as square, l-best (local), or g-best (global) was kept constant, but the 

positions of the agents within the network were randomly selected at each time step. In this 

way, Ali was able to accurately study the impact of just adding in the communication links to 

the search process. Since the connections were dynamically re-established at each time step, 

Ali viewed this as a weaving process and thus coined the term, the Social Fabric introduced 

by [21]. 

Ali wanted to investigate what social structures emerge in the population when 

knowledge sources can influence individuals through a social network.  Ali embedded the 

existing Cultural Algorithms framework into the Repast Toolkit and named his new system, 
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Cultural Algorithms Simulation Toolkit (CAT) by [21].  It represents the extent to which the 

influence of a knowledge source can spread through a population. The interconnections 

between agents in the population were viewed metaphorically as a social fabric, created by 

the interactions between agents. Knowledge sources in the Belief Space select individual 

from the population to influence individual agents in the population. In Figure 4.6 we present 

Schema of Social Fabric developed by [21].  Each knowledge source in the Belief Space is 

color coded and its color is applied to the individual agent in a network that it is to influence 

at that time step. The network shown in the diagram is a homogeneous square network; 

everyone has exactly four neighbors. Each of those agents has a position on the landscape. 

Ali used three homogeneous networks in his version: lbest (degree of two for each agent), 

square (degree of 4 for each agent), and gbest (degree of n-1 nodes for each agent). lbest and 

global topologies are shown in Figure 4.7. 
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   Figure 4.6: Schema of Social Fabric [21] 

 
 

 

Figure 4.7: The Social Fabric component in CAT 1.0 [21] 
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(a) 

 (b) 

Figure 4.8: Topologies in the Social Fabric [21] 

In Figure 4.8 we see the Topologies in the Social Fabric (a) lbest topology. (b) gbest 

topology, as presented by [21]. The network organization established at the beginning of the 

run and the connections between individual agents remained constant over the course of the 

problem-solving process even though the agents were able to move to different positions on 

the landscape, thus a homogenous and not heterogeneous network.  This fixed network gives 

a type residual memory. 

At each time step, every individual is influenced by one of the knowledge sources. 

Knowledge Sources do not know anything about the network and the selected individuals’ 

position in it and vice versa. The process is a double blind. The individual then transmits the 

name of the influencing Knowledge Source to its neighbors through as many hops as 

specified. Next, each node counts up the number of Knowledge source bids that it collects. It 

will have the direct influence from the Knowledge Source that selected it, plus the ID’s of the 
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Knowledge Sources transmitted to it by its neighbors. The Knowledge Source that has the 

most votes is the winner and will direct the individual for that time step. 

4.5.4 NICHING AND WEIGHTED MAJORITY WINS 

 Che extended Ali’s original CAT 1.0 system by adding a homogenous social network 

structure developed by [23]. Che experimented with how knowledge sources can influence 

individuals using different kinds of social networks.  He also removed randomization in the 

social fabric and node assignment by assigning a unique id to everyone.  Each generation 

remembers its previous neighbors.  The neighborhood is homogenous and does not change 

throughout the entire simulation as stated by [23]. This allows everyone, regardless of the 

current position in their environment, to utilize information from the knowledge source of its 

neighbors to make a better-informed decision.  To implement this, Che added two 

components to the existing influence function:  (1) utilizing the knowledge sources of 

individuals and the transmission to immediate neighbors used a fixed topology and (2) the 

selection of the knowledge source for everyone determined by using its own influence 

combined with their neighbors, an “incentive-based decision-making function” as introduced 

by [23]. He called the modified CAT system, CAT 2.0. 

[23] modified the decision-making approach to allow for an incentive-based scheme.  

Each of the votes received by an individual is associated with a weight. The selected 

Knowledge Source is the one with the most total weight. This supported the co-evolutionary 

focus since less frequently used knowledge sources would produce a new result, exceeding 

the Knowledge Source that is used most frequently stated by [23] .  

The modification is based upon a fundamental voting technique used in the earliest 

Cultural Algorithms and again reflecting the predator-prey approach to co-evolution.  
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Incentive based Majority Win developed by [31]  when everyone calls the influence function, 

the influence function will have a “direct” knowledge source designated to this individual by 

spinning the knowledge wheel. At the same time, this individual can also receive information 

from its neighbors regarding controlling knowledge sources. In Figure 4.9, we present an 

example of individual with Octagon Network topology.  Agent A0 is directly influenced by S 

(Situational KS) and there are an additional three neighbors that are currently influenced by 

S.  Using Majority Wins, the Situational Knowledge Source, with a total count of four, wins 

the right to influence the current individual, A0. Figure 4.10 shows the majority win process. 

 

A0
S
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A1
N
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D

A7
D
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T
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Figure 4.9: Knowledge Source Interaction by [23]. 
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Figure 4.10: Majority Win in Belief Space by [23]. 
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Figure 4.11: Weighted-Majority Win in Belief Space by [23]. 

 

Reynolds introduced vector voting as a decision-making model for hunter-gatherer 

society simulation. Che’s addition used the current average fitness of each Knowledge 
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Sources as weight of each Knowledge Sources count then applying a majority win based on 

the weighted count as shown in Figure 4.11.  In Figure 4.10, Knowledge source S wins, but 

in Figure 4.10, D wins because of the weighting; .25 *2 =.5 whereas S has .15 * 3 = .45.   All 

the previous voting mechanisms do not allow more than one Knowledge Source to influence 

an individual.  What if more than one Knowledge Source could cooperate with another, 

would this improve the overall performance of the Cultural Algorithm?  One type of 

framework that models cooperation or competition in the Knowledge Distribution 

Mechanism is shown in Figure 4.12.   

One of the designs of the network topology of the CA is to allow communication 

between individuals by implementing a simple memory of past actions as stated [21] . A 

wide range of systems in nature and society can be described in terms of complex networks. 

Examples include the Internet, a network of interconnected routers, or human social systems 

[21].  With recent advances in modeling such complex systems it is apparent that the 

topology and evolution of real networks are determined by robust organizing principles.  We 

are interested in the various topologies that have been used and have become implanted 

within the mathematical frameworks and graph theory, [21]. To really understand the 

observed effects in the system it is necessary to include additional components of the social 

network to the model. For example, in a social system one can examine the effects of 

knowledge flow between a chain of individuals across the network represented by a certain 

topography which can be static or dynamic. [21] stated that, Multi-layered networks are a 

beneficial addition to the study of agent-based simulations. 
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Figure 4.12: Different Knowledge Distribution Mechanisms. 

 

Additional network layers describing the different sets of relationships can be 

included to allow us to describe to what extent everyone can affect and interact with other 

individuals on the test-bed landscape. In addition, the rise of cultural influences can also add 

to the dynamics of the network and contribute in the formation of a network. Multi-layered 

networks have been used in the modeling of past societies using Cultural Algorithms [21].  

For example, the collapse of the Ancient Anasazi in south-western Colorado can be modeled 

as allowed a hierarchical collection of networks which evolve over time within the context of 

Cultural Algorithms developed by [6]. 
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4.6 THE MULTI-OBJECTIVE MODEL 

 Single objective optimization problems are suitable for situations in which the 

different sub-problems that contribute to the performance function are correlated with each 

other. However, often in the real-world objectives are conflicting in nature; the achievement 

of one performance goal can be at the expense of another. Problems like this are called multi-

objective problems where each goal is associated with its own objective function. The goal is 

to allocate resources in such a way that each receives a certain level of performance.  Both 

Best and Liu have used Cultural Algorithms in the past to solve multi-objective benchmark 

problems [15]; [33] . In this thesis we will employ a version of Cultural Algorithms to solve a 

real-world multi-objective problem, the artisanal fishing problem. While only a brief 

overview is presented here the approach is described in more detail in [35]. 

A multi-objective problem can be formally described in terms of the set of functions 

to be optimized, the set of constraint functions, and the parameters along with parameter 

ranges. A general formulation of a multi-objective problem can be written as such: 

Let 𝐹𝐹: {𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, … ,𝑓𝑓𝑛𝑛} be the set of objective functions. 

Let 𝐺𝐺: {𝑔𝑔1,𝑔𝑔2,𝑔𝑔3, … ,𝑔𝑔𝑚𝑚} be the set of constraint functions. 

Let 𝑥⃑𝑥 = < 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑘𝑘 > be the vector containing the parameters. 

Let [𝑟𝑟𝑖𝑖1 , 𝑟𝑟𝑖𝑖2] be the range for each parameter𝑥𝑥𝑖𝑖. 

In a multi-objective problem, “optimizing” the objective function set may involve 

maximizing some functions while minimizing some others.  

As described previously a Cultural Algorithm must have a Population Space, a 

Communication Protocol, and a Belief Space. For the CA developed for this application we 

employ a particle swarm population model. Each particle represents a vector and it can be 
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controlled by one or more knowledge sources in the Belief Space. It can be interpreted is a 

version of the traditional Particle Swarm Optimization (PSO) algorithm developed by [36]. 

The acronym for the system is thus CAPSO (Cultural Algorithm Particle Swarm 

Optimization. The vanilla Particle Swarm algorithm is given below. There, each individual is 

influenced by the value of its best performing neighbors (GBEST). 

1. Initialize an array of particles with random positions and velocities on D 
dimensions,  
 
2. Evaluate the desired minimization function in D variables,  
 
3. Compare evaluation with particle’s previous best value (PBEST[]): If current 
value < PBEST[] then PBEST[] = current value and PBESTx[][d] = current position 
in Ddimensional hyperspace,  
 
4. Compare evaluation with group’s previous best (PBEST[GBEST]): If current value 
< PBEST[GBEST] then GBEST=particle’s array index,  
 
5. Change velocity by the following formula:  

V[][d] = V[][d] +  
ACC-CONST*rand()*(PBESTx[] [d] - PresentX[] [d])  
+  
ACC-CONST*rand()*(PBESTx[GBEST] [d] - PresentX[l[d]), and,  

 
6. Move to PresentX[][d] + v[][d]: Loop to step 2 and repeat until a criterion is met. 

However, in our variant, particle velocities are controlled by the knowledge sources 

in the Belief in PSO but through a VEGA-like [37] mechanism. We provide pseudocode 

below for CAPSO’s CA variant [35]. 

CA.Initialize() // Initialize the Belief Space 
 
CA.CreateSituationalKnowInitGuesses(numInitGuesses) 
 
//The Population Space 

objfuncs = [objective functions provided by problem/user] 
pop = Population.Initialize(locations, velocities) 
pFront = ParetoFront.Initialize() 
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do repeat until termination condition: 
 

Foreach indiv in Pop: 
 indiv.position += indiv.velocity 
 
Foreach indiv in Pop: 

If no pFront members dominate or equal F(indiv): 
pFront.Add(F(indiv)) 
If F(indiv) dominates an item(s) in pFront: 

remove dominated item(s) from pFront 
 

//VEGA method of selecting elites 
elite = [] 
foreach objf in objfuncs: 

elite.Add(Pop.Select(top 1/7 of performers according to objf) 
elite.Remove(any duplicates) 

 
 

//GA Method of evolving particle velocities 
foreach indiv in pop and not in Elite: 

Rnd0 = random.between(0, 1) 
 
Rnd1 = random.between(0, 1) 
Rnd2 = random.between(Rnd1, 1) 
Rnd3 = random.between(Rnd2, 1) 
Rnd4 = random.between(Rnd3, 1) 
 
If rnd0 < rnd1: //both crossover and mutation 

Indiv.velocity = Crossover(elite.pickrandom().velocity, indiv.velocity) 
Indiv.velocity = Mutation(Indiv.velocity) 

Else if rnd0 < rnd2: //(crossover but no mutation) 
Indiv.velocity = Crossover(elite.pickrandom().velocity, indiv.velocity) 

 Else if rnd0 < rnd3: //(mutation but no crossover) 
Indiv.velocity = Mutation(Indiv.velocity) 

 Else if rnd0 < rnd4 //(weighted average between part’s velocity & an elite’s) 
Indiv.velocity = vectorWgtAvg(elite.pickrandom().velocity, 
indiv.velocity) 

 Else: #Neither crossover nor mutation 
 

 //END PSO Population     
  

  CA.Acceptance(elite) 
 

CA.Update() 
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Foreach indiv in pop but not in elite: 
 ks = CA.ChooseKnowledgeSource(sit, norm, or hist) 
 targVelocity = CA.Influence(indiv, ks) 
 indiv.velocity = vectWgtAvg(indiv.velocity, targVelocity) 
 indiv.knowSource = ks 
 

The Cultural Algorithm – Particle Swarm (CAPSO) configuration used here employs 

situational knowledge to store the non-dominated vectors that constitutes the Pareto Front 

under construction. In addition it implements the topographic knowledge function as a 

multithreaded, multicore-capable “drill-down” mechanism that “spawns” a number of 

competing particle swarms. These take the place of the regional schema associated with 

Topographic knowledge discussed earlier. It assigns each of them to a separate child thread 

connected to a single knowledge source which is a shared structure located on the main 

thread to accept and distribute knowledge from each of these child threads. Below is 

pseudocode for CAPSO’s multithreaded drill-down mechanism: 

subspaceDims = the set of dimension lengths of each subspace that the search space 
//will be divided into. This is given as an argument to the program/ 
 
subspaces = divide searchSpace into equal portions of subspaceDims dimension 

lengths:  
 
//For each subspace within the search space spawn a new thread, spawn a new 
particle //swarm in that portion of subspace, then attach the particle swarm to the 
thread. 
foreach subspace in searchSpace: 

newThread = new Thread(new particleSwarm(subspace)) 
threads.add(newThread) 

 
 while(threads.any.isActive()):  

//wait for all the threads to come in 
 

//After all the threads have come in, reports about what happened in the program 
//(learning curve data, knowledge source dominance data, etc.), are printed. 

 Reports.Print()  
[35] 
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After each run of the population individuals are selected to contribute to the Belief 

Space. They are used to update the scores for the competing knowledge sources. These 

Knowledge sources are invoked stochastically on the basis of point totals acquired from the 

control of particles in the population.  

1. If a solution set (represented by a point in vector-space) is added to the Pareto Front 

and (but) does not dominate any existing point on the currently constructed Pareto 

Front, 5 points are added to the total score for the knowledge source currently 

influencing that particle.  

2. If it is the initial vector added to the Pareto Front then the associated knowledge 

source is given 10 points for initiative. 

3. If the new point does dominate one or more existing points within the Pareto Front, 

then the absolute value of the vector distance between the new point and the closest 

dominated point is added to the score for the associated knowledge source. 

Knowledge sources are then selected to influence mini-swarms based upon their scores for 

the current generation. 

4.7 CONCLUSIONS 

In this chapter the basic Cultural Algorithm was first described. We then provided a 

history of its development. The Chapter concluded with a description of a variation of the 

Cultural Algorithm that used a PSO based population for the specific solution of multi-

objective optimization problems such as the one described here, CAPSO. With Stanley’s 

design of CAPSO, the implementation was carried out as part of collaborative work by [35]. 

 This configuration will be used to statistically test the differences in the spread of 

different tours between the three ENSO phases in Chapter 7. In other words,  while there 
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appear to be differences in the shape of the generated Pareto curves developed in Chapter 6 

via our simulation model, are those statistically different from each other and from other 

linear models? This is a computationally intensive task for which the Cultural Algorithm 

with its intensive use of knowledge to drive the search will be good at.   

 



93 
 

 
 

CHAPTER 5: ARTISANAL FISHING MODEL 

5.0 INTRODUCTION 

 
 

Figure 5.1: Artisanal fisherman - traditional techniques [37] 

Artisanal Fishing agents employ small-scale, low technology, and low capital fishing 

practices conducted by non-commercial agents. The techniques can be in the form of cast 

nets, harpoons, arrows, rod and reel, and small boats. These agents are often defined as part 

of a familial unit. They will often make short overnight fishing expeditions close to the shore. 

Their catches are not often exported and more likely to be consumed locally. However, the 

Payout from the trips can be sold commercially and used for subsistence. What differentiates 

it from large-scale industrial fishing is that it is less stressful on the environment than 

commercial fishing can be. 

The data produced by Marcus described artisanal fishing practices over a period of 

two and one-half years centered at the modern site of Cerro Azul. During the time the 

environment was affected by a large ENSO activity. This provided us with the opportunity to 

observe the decision-making adaptation made by the fishermen to these changes over time.  

Since this was not the first ENSO that fishermen were exposed to in the area, we assume that 

https://en.wikipedia.org/wiki/File:Stilts_fishermen_Sri_Lanka_02.jpg
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the community response to the environment perturbations reflected collective practices that 

have emerged over time. 

Our initial analysis discussed in Chapter 3 suggested that the patterns of fishing 

behavior observed in the dataset reflected two basic principles: 

1. Catch desirability played a role in the scheduling of fishing trips in all three of the 

phases to different degrees. 

2. The resources required to support a successful fishing trip differed in magnitude 

from one phase to the next.  For example, in order to support a successful trip in 

La Nina it required more of an investment in resources such as gas than in other 

phases. 

These two goals can be viewed as conflicting in the sense that the resources needed to 

generate just any catch may be a lot less than those needed to produce a highly desired catch. 

In other words, goal 2 just reflects the opportunity to produce a successful trip whereas goal 

1 suggests that a trip a commercially desirable catch is most important. 

 From a broader perspective goal #1 reflects the need for profitability with regards to 

the artisanal fishing activity for a given household. If given the opportunity to choose 

between a catch that can fetch a higher local market value than another, this goal would be in 

favor of targeting that catch. To the extent that this can be done over a succession of trips for 

a family, the presumed social unit here, the fishing agent can even reap a profit over time. 

 While goal #1 stresses profitability, goal #2 relates broadly to the issue of 

sustainability. That is, the agent needs to invest sufficient resources into a trip in order to 

bring back something in order to sustain the family unit and perpetuate the fishing activity. It 

reflects the general goal of just being able to get out and fish on a given day. 
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 The two goals constitute part of a bi-objective optimization problem. The solution to 

such a problem can be viewed in terms of what is called a Pareto front. A Pareto front is a 

set of Pareto efficient allocations of resources to goals such that it is impossible to 

reallocate one in order to make it better off without making the other criterion or goal 

worse off. It was named after an Italian engineer and economist and has been applied to 

many situations such as game theory. A Pareto efficient allocation is said to be Pareto 

optimal. A Pareto front is a collection of Pareto optimal points. 

 Figure 5.2 gives an example of a Pareto curve. Points on the curve are said to be non-

dominated in the sense that an increase in one goal at that point will cause a corresponding 

decrease in performance for the other. In the Figure points A and B are said to dominate C 

since at point C an improvement in f1 can also not necessarily decrease the performance of f2 

around the that point as illustrated by both A and B. 

 

Figure 5.2: The Pareto curve is the set of non-dominated points [38] 
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Our goal will be to produce a general model for the characterization of fishing 

behavior in terms of these two fundamental goals and apply them to the simulation of fishing 

strategies here. The result of these applications will be to produce a Pareto front that is 

indicative of the tradeoffs that need to be made by local fisherman in responses to 

environmental changes during the period of observation. Figure 5.3 gives an example of the 

resultant Pareto Frontier for one of the strategic scenarios that we will be testing the model 

in. (Effort for trips taken over a Full Week in Phase 1, the Residual El Nino) 

 
Figure 5.3: An example Pareto Front for Payout and Effort. 

We will generate the corresponding Pareto fronts for a variety of scenarios in each of 

the three phases and use them as vehicles in order to describe how in general artisanal 
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fishermen respond to each of the phases of ENSO. In the following section, 5.2 we provide 

the basic model that we will be using here. Section 5.3 then gives our conclusions. 

5.1 BASIC MODEL 

 The key to the model is that while the results of each trip in terms of the catches are 

provided, there is little in the way of description as to who made these decisions. One cannot 

say that trip 68 and 124 were based upon the decision of a particular unit. So one of the basic 

assumptions that we need to make here is that a sequence of trips is associated with the 

decisions of an equivalence class of like-minded decision-makers where the identity of any 

particular decision-maker is not important. 

 Each category of agents will be asked to generate a sequence of trips within a given 

Phase. The three basic ENSO phases and their durations here are:  

Phase I: El Nino Data collected from March 1st to June 30th, 1984. 

Phase II: La Nina, Data collected from July 1st, 1984 to July 31st, 1985. 

Phase III: Back to Normal, Data collected from August 1st, 1985 to July 31st, 1986. 

 This sequence of trips for a given phase will be called a tour. A tour will begin on the 

first day of the Phase and end on the last day. The parameters used to guide an agent’s 

decision will be: 

1. The extent to which they wish to follow goal #1 (profitability) vs. goal #2 

(sustainability).  

2. The days of the week that they wish to fish (depart out). 

3. The downtime between trips. For our experiments here we assume that the agent 

makes just one trip out a day (does not go out fishing again on the same day they 

returned). 
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4. All of the sites reported by the fishermen on their return will be used in the model, 

although subsets of sites could be used in future work. 

Our analysis in Chapter 3 suggested that there was a learning curve associated with the 

trips taken, that results from prior day’s experiences were used to focus the decision-making 

in terms of both location and catch. So four basic fishing scenarios were proposed in 

response: 

1. Full Week. The agent would generate a tour decision for every day of the week, 

Monday through Sunday for all of the weeks under consideration for a Phase. 

2. No Sundays. Culturally, some agents would not wish to work on Sundays, so those 

agents will generate tours for Monday through Saturday for each week in a Phase. 

3. Mon_Tue_Wed. In our analysis in chapter 3 there were a number of instances where 

there was a trend from Monday through Wednesday. For some catches such as Lorna 

that trend was increasing. For other catches, especially highly targeted ones, the trend 

was decreasing from Monday through Wednesday. In other words, their priority was 

to harvest them first whenever possible. 

4. Thur_Fri_Sat. We also observed that there was often a second wave of fishing 

activity in the latter half of the week for some catches and for some phases. Our goal 

is to see whether there were differences in these waves in terms of goal direction. 

So having specified the days and phases over which an agent can make their decisions, 

the next question is how to operationalize the two goals. We begin first with profitability. 

Here, we will use Payout to represent Goal #1 performance. For a given trip our model 

payout is the number of catch items times the relative worth of those items. Recall that in 

Chapter 3 we classified catches in terms of three categories of desirability. Those that were 
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highly regarded for their commercial value (High), those that were of medium desirability 

from a commercial sense (Med), and those that were Fall Back catches- those that were not 

initially targeted for a trip but are still necessary to produce a successful catch when the 

others are not present. In our Payout function below we use a multiplier for the count of the 

catch based upon the desirability of that catch from a market standpoint. The Payout is not 

meant to reflect any specific currency, but the relative value of the catch produced by a trip. 

Payout = Catch Count * Desirability 

where High Des = 3, Med. Des = 2, Low Des = 1. 

 The goal of sustainability was expressed in terms of an effort function. The 

contributors to effort were as follows: 

1. Round trip distance (in KMs) between the port of origin, assumed to be Cerro Azul, 

and the site where the catch was made. 

2. Fish weight in (KGs). That will influence the effort taken to transport it back to port. 

The greater the catch weight the more power needed to do so.  

3. Miles per Gallon. While the boats used are all much smaller than commercial vessels, 

they do vary in size and capacity and therefore require engines with different power 

requirements. We selected a MPG value that reflects a middle ground in terms of 

engine power. One that would be a reasonable approximation of a range of motors 

that the agents might possess. 

4.  Relative Effort is a multiplier that adds some additional resistance to the journey. If 

the trip is for Cerro Azul and vicinity, then the round trip distance is the not adjusted. 

If the trip involves travel up or down the coast and away from Cerro Azul we added a 
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simple multiplier to reflect the additional effort that would need to be made in those 

situations with regards to weather, currents, etc. 

5. Fish weight: While profitability was expressed in terms of catch count, effort needs to 

be expressed in overall weight. So for a given trip the weight of the catch was used to 

predict effort while the count predicted profitability. 

The Effort performance function is then simply the distance divided by the miles per gallon 

times a relative effort booster to reflect other hidden cost, divided by catch weight in KG.  

Effort = ((Round Trip Dist. /MPG) * Relative Effort) / Fish-Weight 

Where Relative Effort (RE) = 1 for Cerro Azul, CA, and 3 = for North or South 

MPG = 5. 

  Now that we have our measures for trip performance we need to parameterize the 

decision making for a given agent. We do so in the following way. Each decision strategy 

characteristic of a class of decision-makers can be expressed in terms of the percentage of 

time that they are driven by increasing Payout (Profitability) relative to minimizing effort 

(Sustainability). So a decision-makers profile can be viewed as a pair of probabilities: 

 

(Probability of Maximizing, Profit; Probability of Minimizing Effort) 

 

These probabilities for any tour produced by a decision-maker will add up to 1. So (100, 0) 

means that the decisions-making agent will always select the trip with highest profitability. 

Likewise, (0,100) means that the trip that uses minimal effort is that one that will be selected 

at every choice point along the tour. The day constraints determine what choice points an 

agent can visit during the search. 
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This allows us to generate a simple plan to deal with the bi-objective problem here.  

In Chapter 6 we will generate 500 such random strategies and use each to generate a tour 

though the database of trips. For a given tour, a Profit/Sustainability profile is determined. 

The set of days over which fishing can take place for a given phase is turned into a search 

graph. The idea is that at the start of the tour the agent must select between the tours that go 

out that day based upon the effort and the profitability. A (100, 0) agent will always select 

the trip that maximizes profit for the day, while the (0,100) agent will focus on the one that 

will utilizes the least effort so as to insure sustainability. 

 A tour for a given strategy is a sequence of trips selected from day to day in the 

search graph associated with the days and the Phase over which the tour is defined [40]. An 

example of this is given in Figure 5.4 below. This gives a portion of a generated tour for the 

first few days of the Residual El Nino for the ALL Days option. In this tour the agent has 

selected to Minimize Effort 100% of the time. When the values are too close together (less 

than a certain distance) a random number generator (Mersenne Prime) is used to select the 

appropriate trip. Then, at the next day again a random number generator is used to break a 

second tie, and add it to the tour. This process while continue until the end of the Phase. The 

effort and Payout associated with the tour is then returned as a result. If the strategy was (50, 

50) then at each step a random number would be generated and each would have an equal 

chance of selection. Therefore, any combination of goals can be achieved via this schema. 
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Figure 5.4: A Decision Tree of the sample tour of the first 8 days using (0,100) 
 
 

 
 Figure 5.5: Details about the Decision Tree of the sample in Figure 5.4 
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So the performance of a tour for a given Phase/Day scenario is the sum of the profits 

and the efforts over all of the selected trips. Those points are then plotted and used to produce 

the Pareto curves discussed in the next chapter. 

5.2: CONCLUSIONS. 

We have modeled fishing agent decision making as the process of generating a 

trajectory or path through a search graph based upon the agent’s relative goals. In other 

words, the simulation can be viewed as a graph search process defined over the set of all 

possible trip sequences in order to express the differential impact of the two conflicting goals 

on over agent behavior. This will allow us to assess the impact that the changing dynamics of 

the ocean environment has on the ability of different decision strategies to work effectively. 

That will be the topics of the Chapter 6. 
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CHAPTER 6: THE EXPERIMENTAL RESULTS 

6.0 INTRODUCTION  

In this chapter, we will conduct a thorough investigation to compare and assess the 

outcomes for several scenarios as previously discussed in chapter 5. We designed the fishing 

model as a bi-objective model by using two criteria based on the data availability and fishing 

activities. We plot the effort on the x axis and payout on the y axis: 

Effort = ((Round Trip Dist. / MPG) * Relative Effort) / Fish-Weight;   Where Relative 

Effort, RE = 1 for trip to Cerro Azul, CA, 3 = for South, 3 = for North and MPG = 5. 

Payout= Catch Count * Desirability, where High D = 3, Med = 2, Low = 1. 

Our objective is to find a set of solutions that reflect the tradeoffs between the two conflicting 

goals relative to   We ran the model for each of the three different ENSO phases;  

1. Phase I: El Nino Data collected from March 1st to June 30th, 1984. 

2. Phase II: La Nina, Data collected from July 1st, 1984 to July 31st, 1985. 

3. Phase III: Back to Normal, Data collected from August 1st, 1985 to July 31st. 

In multi-objective optimization problems, the goodness of a solution is determined by 

the dominance of solution vectors within a feasible region. The feasible region is defined by 

the set of the constraints.  Here, we generated 500 random independent tours for each Phase. 

It was felt that given the structure and branching factor the search graph that the simple 

generation of a relatively large number of points, and then applying non-dominated sorting to 

produce the resultant curve would be sufficient for our purposes in this Chapter. In the 

follow-up Chapter our need to statistically characterize these distributions in more detail 

leads us to use the Cultural Algorithm described previously in Chapter 4. 
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To evaluate and assess the results we present a comparison of twelve distinct fishing 

scenarios defined in terms of the ENSO phase and days. For every Phase there are four 

different models in terms of the days of the week over which the tour was operated.  We will 

use the fisherman model where the agent cannot go out again the day that they come back 

from a fishing trip.  

First, we plot the real values of the outcome for the multi-objective function for the 

fishermen trips. We have randomly generated 500 tours of the tour graph in order to calculate 

the payout and the corresponding value for the effort. Each point (x, y) in the graph 

represents a result of a tour, where x are the Effort and y are the Payout respectively for each 

tour.  

6.1 COMPARISON OF PARETO FRONTIERS FOR PHASE I 

 To compare and assess the results we begin with a comparison between each of four 

scenarios for Phase I. Each scenario corresponds to a sequence of trips generated in the phase 

by fishermen using a particular strategy in terms of the two goals.  We begin with the Full 

Week Scenario where every day of the week is an available stop on the fishermen’s itinerary 

for the given phase. 

Figure 6.1 gives the Pareto Frontier for Fishermen whose tours can take place on all 7 

days of the week in Phase I, the Residual El Nino. Notice that in this Phase the presence of 

targeted fish dominates the need to invest in more resources to achieve a successful trip. 

Recall that in the base case for Effort, a successful trip is one that brings back a catch. All of 

the trips in our database represent successful trips in that regard. 

What this curve means is that many targeted catches can be found within a short 

distance from Cerro Azul during the time of March through June. This is the conclusion of 
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the El Nino which is moderated by the fact that it is the tail end of summer and beginning of 

fall. Warm water fish are enticed to remain in the area even though the warming phase of El 

Nino has diminished. It suggests that a productive sequence of trips in terms of Payout will 

be more dependent on timing than on location. Once fishermen are required to put more 

resources into the tour in this Phase, the Payout drops exponentially. 

 

 
Figure 6.1: Pareto Front for Payout, Effort, FK Phase I- EM 
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Figure 6.2: A plot of 500 tours generated for the Pareto Front - Phase I Full Wk 
 

60

17

39 8

94

66

192

79
5119

96 51011545

9

209

629772

400

37

47

141

4
61

71

469235

91

99

270

83

255

195

232

120

54128
14

41

247

23

281

6511124
75

30

178

52

187

8774

1

112

3380
161

213

58

183

239

82
68
286

81

42

98

106
95

264

67

158

27

391

350

20

8540

382

105

100

188

201

88

241

84

21

329

285

59
138

278
152

243

57

43

242
177

89
154194

237

166

153

282
163

252

301

32

55

248
90

129

169

122262

174

225190

110

121

214

130

13

102

310

7722

323

259

12
126

86

56
7202

103
149

18

78

453

144

204

304

448

198

38

196

109

244

50

70

155

340

135

116

17110

127

124

145

359

25

104

157

311

321

180

356

53

303305133

364

93

253

181

159

294

254

339

36

191

76

345

199

324

115238230

26

393

176
156

274219
143

246

327

338

390

371

132

257137

408

300

206

142

296

320

457

193

328

236

500

107

489

212

48

266

147

113

11

6

497

185
150

271

228

265

440

2
277

118

224

119

63

220
372

268

208

368

29

287

207

292

263

31

73

229

386
407

44

379

173

381

318

69

398

167

210

313

245

343

306

272

433

240

140

222
388

496
362

392

275

16234

358

267
365

251
258

302

490

325

450

353

64

205

125250

360
164

146

342
355

28

316

389

307

170

235

16

479

384

273

293

341298

369322

483

216

49

347
123

211

290
315

376

312

223
299

151

148

420

3

284

385

160

469

452

484
231

357

309

297
197

117

351

114

403

415

134

367
215

485

380

463
410

375

366

172348

422

291

467

337

456488

481

437

308

227

221

459

454

428

394461

423

288

184

352

478

487

498

477

179

131

175
260

186

218336

249

399

405

414

474

344

471295

334

139

165

168

374

182

283

349

413

480

494

330

279

256

406

435

373

495

439
233

136

482

317

395

460

319
234280

449

429

377

444

333

261

217

438

451

226

361

326

346

200

396

431

108

416

314

363
417203445

402

331499

432

475

462

412

466
370

472

465468

493

425

418

354

436

430

470

426
424

276

404411
473

189

289

269

332

421

455
335

401

464

492

397

427

441

491

486

419

383

387

378458476

447

446
434 409

442

443

0

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30 40 50 60 70 80 90

FullWeek, Phase I

Effort (Gallons / KG of Fish)

Pa
yo

ut
$



108 
 

 
 

In Figure 6.2 there seems to be a potential second front as well but it is dominated by 

the number of tours associated with the main front and connected by an intermediate set of 

tours that occur around an effort of 30. In order to investigate this phenomenon in more detail 

we studied the tours that are produced by agents that do not use Sundays to fish. Sundays are 

problematic anyway since many fishermen consider that to be a day or rest. On top of that the 

government official may not always be available to count catches on that day as well. 

Next, we present the Pareto front for tours produced by our agents when Sundays are 

not used for tours. In this case an interesting result appears. When plotting the generated 

points for these tours, one can see two relatively distinct fronts emerging there (Figure 6.3). 

Figure 6.3 shows a plot of 500 points of the real values of the Effort on the x axis and the 

Payout on the y axis.  There are clearly two fronts that have emerged.  
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Figure 6.3: Plot of 500 Tours that contain No Sundays for fishing agents in Phase I. 
 

Figure 6.4 shows the two Pareto Fronts for Payout Versus Effort, for No Sundays 

Phase I. The first and most dominant front exhibits high returns on targeted catches which 
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decrease exponentially as the effort required to produce a fishing expedition increases. The 

second less dominant front can produce yields that rival the first one but at the expense of 

more effort. 

 

Figure 6.4: The two Pareto Fronts for Payout, Effort, Phase I, No Sundays 
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The corresponding Mon_Tue_Wed Pareto front is given in Figure 6.6. It exhibits an 

exponential drop like the No Sundays initially, but the addition of more resources does effect 

to moderate that drop. This moderation suggests that there is some learning going on between 

agents during that period that is information is being exchanged between agents in order to 

allow some prediction as to where to fish in the following day. 
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Figure 6.5: Plot of 500 points of the values M_T_W Phase I fishermen. 
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Figure 6.6: Pareto Front for Payout, Effort, Mon_Tue_Wed Phase I. 
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Next, we present the graphs for 2nd half of the week, Thursday, Friday and Saturday 

scenarios. Figure 6.7 shows a plot of 500 points of the real values of the effort on the x axis 

and the payout on the y axis.  Figure 6.8 shows the Pareto Front for Payout [$ /Kg of fish] 

Versus Effort [Gallon /Kg of fish], for 2nd half of the week, Thursday, Friday and Saturday, 

Phase I with High Desirability.   

 
Figure 6.7: Plot of 500 points of the real values RFS Phase I 
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Figure 6.7 shows a plot of points of the real values of the effort on the x axis and the 

payout on the y axis produced during the search.  What is interesting here is that there 

appears to be three possible fronts there. These fronts are each yielding more than the 

M_W_F fronts even though those are just three days in length. However, they require the 

expenditure of more effort. That is, they must search progressively further from Cerro Azul 

as the week goes on. It is likely that each curve reflects trips that start on Thursdays, Fridays, 

and Saturdays respectively. Saturdays have fewer agents but it still produces comparative 

yield although with more resources needed.  

The Pareto front for the dominant front is given in Figure 6.8. That curve comprises 

the largest number of agent tours but exhibits a sharp decline as one moves away from Cerro 

Azul. This suggests that fishing grounds are moving elsewhere towards the end of the week. 

The fact that these yields later in the week are still high it means that they are going to areas 

further away that are likely to yield good results. There are clearly several emergent 

relationships between agent decision-making. It will be interesting to see how the onset of La 

Nino will impact these patterns. 
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Figure 6.8 Pareto Front for Payout, Effort, Thur_Fri_Sat Phase I. 
 

6.2 COMPARISON OF PARETO FRONTIER FOR PHASE II. 

 In the previous section we observed the emergence of several Pareto wave fronts, the 

most dominant occurring at the start of the week Mon_Tue_Wed and then trailing off with 

less payout and more resource investment as the week went on. In this section we will 

29

33

54

63

64

70

81

82

84

85

100

152

180

351

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80

Thur,Fri,Sat Phase I

Effort (Gallons / KG of Fish)

Pa
yo

ut
$



117 
 

 
 

investigate Fishermen’s decision-making behavior in response to the cooling of the ocean in 

La Nina.  

 In Figure 6.9 a plot of 500 randomly generated tours is provided. Notice that the 

Payout produced is in the range of three times that for the residual El Nino. The Effort on the 

other hand extends to almost 10 times that of the El Nino. However, recall that the tours for 

La Nina extend our almost a year while those for El Nino are over a quarter of that time. So 

if we multiply those El Nino by three we approximate the Payout for La Nina, but clearly the 

effort that are need to produce this yield have increased. Agents now need to search a wider 

range of sites to the North and South of Cerro Azul proper. 
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Figure 6.9: Plot of 500 points of randomly generated tour values for Full Wk in Phase II 

The corresponding Pareto Front is shown in Figure 6.10. Notice that the main front is 

shifted upwards in terms of Payout and stretched horizontally in terms of resources used to 

produce a successful trip. Even for those trips that required larger amounts of resources, the 

payout was better than that for the tail end of El Nino. In other words the perceived return on 

investment was definitely greater in this phase than for Phase I. The cooling waters were 

beginning to reestablish the food chains that supported a variety of new catches. In addition 
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the warm water fish, although retreating, were still within travelling distance from Cerro 

Azul to the North. In addition, travel to the South allowed the agents to capture cold water 

fish as they begin to move to move north ward. So although there were limits to what could 

be caught in nearby Cerro Azul, there was more effort to go beyond the locality to exploit the 

newly available resources. 

 
Figure 6.10: The dominant Pareto Front for Payout, Effort, Full week Phase II. 
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Next, Figure 6.11 illustrates the distribution of generated points when tours that utilize 

Sundays are removed. Removing Sundays dropped the Payout down more than it did for 

Phase I. It suggests that fishing was lucrative enough to attract more activity in the La Nina 

Phase than in Phase I. While the distribution suggests a vestigial second front that required 

more resources, the main Front was clearly the dominant attractor for decision-makers here. 

 
Figure 6.11: Plot of 500 tours for No Sundays in Phase II. 
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Figure 6.12: The Pareto Front for Payout, Effort for tours with No Sundays. Phase II 

Figure 6.12 provides the Pareto front for the dominant distribution of tours given in 

Figure 6.11 above. The Payout and Effort have been reduced since Fishermen can no longer 

use Sundays to add to their tour values. The Maximum Payout is now just three times that of 

El Nino while the resource utilization for successful trips is now about twice that of the Phase 

I main front. Investing more effort in trips is producing almost an equal amount of return. 
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Also, the curve now is more gradual when it comes to adding more resources rather than 

exhibiting the steep drop shown in Phase I.  

 

 
Figure 6.13: Plot of 500 randomly generated tours for just those that use MTW, Phase II. 

Figure 6.13 exhibits a plot of the generated tours that use only departures from MTW. 

Most of them correspond to the dominant Pareto front and are able to achieve success 

relatively close to Cerro Azul. The Payout drops quickly relative to effort, but it is more 

gradual than for Phase I with regards to effort. There appears to be a secondary front 
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associated with a group that expends high effort but achieves a Payout on the order of those 

that observe that the first front.  Figure 6.14 shows the Pareto front for the main grouping. 

There, Payout is high but declines quickly with effort used. While expending more effort 

guarantees success and compatible returns it suggests that there is some priority or privilege 

that means certain individual or groups do not have priority access to the fishing regions 

around Cerro Azul and must go elsewhere to be competitive. 
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Figure 6.14: The Pareto Front for Payout vs. Effort for tours on MTW Phase II. 
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Figure 6.15: The Plot of 500 points for trips starting on Thur_Fri_Sat in Phase II. 

The main distribution of points for Thur_Fri_Sat in Figure 6.15 is shifted down with 

regards to payoff and to the right with regards to resources relative to the M_W_F curve. 

Again there is a smaller secondary distribution to the right of the main one. If the 

Mon_Tue_Wed curve represents the tradeoff for the exploration process in this phase, the 

Thur_Fri_Sat may correspond to exploitation of found catch patterns. If that is the case, it 
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means that information collected during the first half of the week is used to trigger 

exploitation in the second half. The Pareto front associated with the Thur_Fri_Sat is given in 

Figure 6.16. There we see that the corresponding front is indeed shifted down on the Y axis 

and to the right on the left. The tradeoff between the two goals is much more gradual than for 

Mon_Tue_Wed which suggests more flexibility in the search process. 

 Overall, the relative shape of the Pareto curves in Phase II suggest that in order to 

maintain the same Payout yield per month in La Nina relative to that for El Nino the 

corresponding Pareto fronts are stretched out over a larger effort range. That means that they 

need to cover a larger area to maintain their expected returns. In addition, as one progresses 

from M through Sat each new Pareto front has a Payout that is slightly less than the Phase 

before but requires more effort to achieve. In other words, in order to achieve the same 

profitability, the agents need to invest more and work harder in the process. 

  

 



127 
 

 
 

 
Figure 6.16: The Dominant Pareto Front for Payout, Effort, Thur_Fri_Sat Phase II 

6.3 COMPARISON OF PARETO FRONTIERS FOR PHASE III, BACK TO 
NORMAL. 

 The transition between Phase I and Phase II as reflected in the Pareto fronts suggest 

that the goal of the agents want to maintain a similar per month Payout, but the mixing of 

warm and cooler waters provided more variety in terms of opportunities and required more 
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search to obtain equivalent per month results. In addition, there was more emphasis on 

fishing earlier in the week than later in Phase II than I. Given the larger area for search there 

is more of an emphasis on the flow of information among fishermen explorative phases 

associated with first days of the week rather than later in the week. But the tours in the latter 

part of the week are fewer but produce equivalent Payouts but with additional outlays of 

resources. That is possible if individuals have a good idea of where to go. It suggests that 

there is an implicit communication channels that employs the results of earlier tours in the 

week to help focus tours later in the week. .  

 The distribution of randomly generated tours for the Full week in Phase III is given in 

Figure 6.17. Notice that the tours are bringing back Payouts similar in range to that of La 

Nina but the effort range is much more limited to around 50 units. Since these conditions are 

closer to their normal conditions there is less need for a wider range of search in order to 

retrieve a catch of sufficient magnitude. The agents are employing their traditional 

knowledge once again expending diverse amount of resources to search over a broader area 

for a diverse set of catches is no longer necessary.  

Figure 6.18 gives the corresponding Pareto front for the entire week. When compared 

with that for La Nina the maximum Payouts are down somewhat but so are the resource 

expenditures required for a successful trip. There is a gap around 20 without any tours but the 

tail end picks up around 40. This indicates that rather than having a second Pareto Front that 

going larger distance on occasion was part of the natural cycle of things. Therefore, even the 

long distance trips were less of a gamble since they drew on knowledge of prior catch 

schooling behavior. 
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Figure 6.17: The Plot of 500 randomly generated tour values for Full Week in Phase III. 
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Figure 6.18: The dominant Pareto Front for Payout vs. Effort for Full week in Phase III. 
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Figure 6.19: The Plot of 500 points of tour values that exclude Sundays in Phase III. 

The distribution of tours that excluded Sundays is shown in Figure 6.19. Previously, 

the exclusion of Sundays worked to remove tours that fell in the middle range of the 

distribution. That is the same here but the excluded middle is much smaller than before. It 

appears that the uncertainty of the environment has been replaced by the more traditional one 

where not as many have the incentive to use Sundays as a buffer in order meet expectations 

in terms of Payout. In fact, the No Sundays Front is very much the same as that for the Full 

week in this Phase. 
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Figure 6.20: The Pareto Front for Payout vs. Effort for No Sundays. 
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Figure 6.21: Plot of 500 randomly generated tours for MTW in Phase III. 

Figure 6.21 displays the distribution of tours during the Phase that only took place in 

the first half of the week in the Back to Normal Phase. This tight cluster relates to the first 

portion of the Front with highest Payout. Clearly the strategy is focused more narrowly in 

and around Cerro Azul than in the previous La Nina phase. In fact the distribution stops 

around the inflection point of the No Sundays curve. This implies that those agents 
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embarking on tours at the beginning of the week were able to successfully concentrate their 

search in and around Cerro Azul proper. 

 
Figure 6.22: The Pareto Front for Payout vs. Effort for just MTW tours in Phase III. 

Figure 6.22 shows the Pareto Front for the MTW tours and it exhibits a steep decline 

with the increased consumption of resources. Notice that it stops near the 10 unit barrier. 

This emphasizes the proclivity of the agents to stay as close to the areas that they know best 

now that things have returned to normal. 
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Figure 6.23: The Plot of 500 tour values for RFS tours in Phase III. 

Figure 6.23 displays what might be viewed as three separate Pareto front, perhaps one 

for each of the three days. The bulk of the concentration requires a larger investment of 

resources than those with higher yields earlier in the front. A suggested interpretation is that 

the first front reflects a set of “mopping up” tours that are still able to find sufficient catches 

near Cerro Azul. The larger concentration may reflect the fact that tours that start on 
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Thursday or Friday and go for longer distances may be returning on Saturday. In Figure 6.24 

the first of the Pareto fronts is given, the one most likely to be associated with the mopping 

up of catch distribution near Cerro Azul. Notice the steep decline in productivity in response 

to added resources for the curve. It means that there will be less incentive for those later in 

the period to stay nearby and retrieve acceptable Payouts. 

 
Figure 6.24: The Pareto Front for Payout vs. Effort in TFS Phase III. 

 

6.4 CONCLUSIONS 

 Agent behavior was simulated relative to a number of tour constraints in each of the 

three ENSO phases under examination here. The results suggest that the nature of the curves 
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to retain Payoff levels under more uncertain circumstances. This was particularly evident in 

the La Nina Phase where agents needed to invest more resource to achieve results similar to 

the Back to Normal phases. So agents handled the increased environmental variability with 

an increased emphasis on exploration and less on exploitation in their tours. When the system 

returned to a more state the agents were able to visibly consolidate their search to more well-

known areas than before and were able to expend less resources in doing so, this increased 

their profit margin by reducing the investment in buffering their trip planning with larger 

range search. 

 While these conclusions are somewhat qualitative in nature, we will provide 

statistical support for them in the subsequent chapter. There we will investigate whether the 

generated distribution of points for each of the scenarios can be viewed as an example of the 

same generation process, or whether the addition of tour constraints to the generation 

produced any significant differences in the results. In order to do this we will call upon the 

Cultural Algorithm Configuration described in Chapter 4 since that process is 

computationally expensive in nature [35]. 
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CHAPTER 7: STATISTICAL ANALYSIS OF THE MODEL PREDICTIONS FOR 
ALL PHASES  

We have developed curve fitting for the Artisanal Fishing problem using the Cultural 

Algorithm with Particle Swarm Optimization, CAPSO [35].  The fishing problem has two 

competing objective functions; the Payout ($) produced by a trip and the Effort required 

(Gallon /Kg of fish).  In the previous chapter we observed that the shape and structure of the 

computed Pareto fronts differed in shape and structure not only between the three different 

phases but within each phase based upon what days of the week a fishermen was constrained 

to follow. For example, what would the tours look like if the tour could take place on all days 

of the week, as opposed to those tours that did not consider Sundays as a day of departure 

and so on. 

In this chapter we use statistical measures to test whether the distribution of tours 

produced by the Phase/Week combinations came from different theoretical distributions, in 

other words the choices available to fishermen.  We will test the hypothesis that the values of 

the tours exhibit an overall non-linear distribution (hyper-linear) that is exhibited by the 

distribution of all tours and not just highlighted by the Pareto front. Another way to say this 

is whether the Pareto front expresses the overall trend of the resultant tours instead of just 

being representative of a small segment of tours. The result of the analysis is to suggest that 

our bi-objective model is indeed an accurate way to characterize the patterns of results found 

in the database. 

To this end we present twelve scenarios, three phases with four depart day cases. The 

four depart day cases are the allowable days of the week to go out fishing: 1) Full week; 2) 

No Sundays (full week without Sundays); 3) Mon_Tue_Wed - Only three days 1st half of the 
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week Monday’s, Tuesday’s and Wednesday’s; finally, 4) Thur_Fri_Sat  2nd half of the week 

Thursday’s, Friday’s and Saturday’s. A Pareto frontier using Hyperbolic Regression curve 

fitting compared to Linear Regression lines and the original points are shown for all cases. 

The statistical results derived from testing the equivalence between the hyper-linear equation 

and the linear one is done for all 12 scenarios. 

7.1 ANALYSIS OF THE RESIDUAL TESTING 

There are two ways to test how well the Pareto Frontier line fits the data:  by residual plot 

and by coefficient of determination (the squared correlation, r) 2.  The squared correlation, r2, 

gives the fraction of the data’s variance that is accounted for by our bi-objective model.  

Thus, (1 – r2) is the fraction of the original variance left in the residuals that is left 

unexplained by the patterns produced by our model. r2 is always between 0% and 100%. 

When r2 is equal to 0, then the data are unrelated.  However, when the sum of squared 

residuals equals the total sum of squares for y that leads to the best linear predictor for y is 

which just the mean of y itself.  The Residual is the difference between the observed value of 

response the payout (Y) and the predicted (Yhat). The residuals test will reveal how well our 

fishing model works.  

 7.2 COMPARISON OF CURVE FITTING AND RESIDUAL PHASE I 

We present four cases for phase I- El Nino.  The four cases have tours of different 

duration for the REGULAR fishermen as follows: 1. Full week; 2. No Sundays (full week 

without Sundays); 3. Only three days 1st half of the week Monday’s, Tuesday’s and 

Wednesday’s; finally, 4. 2nd half of the week Thursday’s, Friday’s and Saturday’s. All 

scenarios conducted for High Desirability (HD) with most relative effort (MRE).   
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A Pareto frontier using Hyperbolic Regression curve produced by CAPSO is 

compared to Linear Regression lines and the original points for the residuals are depicted for 

all cases.  Figure 7.1 provides the Curve fitting for Payout [$] Versus Effort [Gallon /Kg of 

fish], for Full week Phase I with High Desirability. Figure 7.2 gives the scatterplot points for 

the Residuals for Full week Phase I with High Desirability. Figure 7.3 shows the Curve 

fitting for Payout ($) Versus Effort (Gallon /Kg of fish), for No Sundays Phase I with High 

Desirability. Figure 7.4 exhibits the scatterplot points for the Residuals for No Sundays Phase 

I with High Desirability. Figure 7.5 shows Curve fitting for Payout ($) Versus Effort (Gallon 

/Kg of fish), for 1st half week Monday’s, Tuesday’s and Wednesday’s Phase I with High 

Desirability. Figure 7.6 has the scatterplot of points for the Residuals for 1st half week 

Monday’s, Tuesday’s and Wednesday’s for Phase I with High Desirability. Figure 7.7 gives 

the Curve fitting for Payout ($) Versus Effort (Gallon /Kg of fish), for 2nd half week, 

Thursday’s, Friday’s and Saturday’s for Phase I with High Desirability. Figure 7.8 shows the 

scatterplot of points for the Residuals for 2nd half week, Thursday’s, Friday’s and Saturday’s 

for Phase I with High Desirability. 

An examination of the residuals, the differences between the predictions for the 

CAPSO produced hyper-linear model and the best fit linear one suggest that the values, 

although relatively uniform across effort, are large enough to suggest that the two model’s 

predictions are statistically different. In general, the hyperlinear model for All days and Non 

Sundays tends to over-predict with low effort and under-predict with higher effort.  For the 

Mon_Tue_Wed and Thur_Fri_Sat graphs the residuals are more closely aligned. However, in 

these cases the non-linear model under-predicts with lower effort and over predicts when 

effort is higher. They tend to cancel each other out so as to reduce the overall sums in each. 
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This suggests that the first two scenarios will be rejected and the last two rejected for the null 

hypothesis that the distribution of model tours is linear in nature. 

 

Figure 7.1: Curve fitting for Payout, Effort for Full week Phase I. 
 
 

 

Figure 7.2: Scattering points for Residuals for Full week Phase I.   
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Figure 7.3: Curve fitting for Payout, Effort for No Sundays Phase I. 

 

 

Figure 7.4: Scattering points for Residuals for No Sundays Phase I 
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Figure 7.5: Curve fitting for Payout, Effort for 1st half of the week Phase I  
 
 

 

Figure 7.6: Scattering points for Residuals, 1st half of the week Phase I 
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Figure 7.7: Curve fitting for Payout, Effort, 2nd half of the week Phase I  
 
 

 

Figure 7.8: Scattering points for Residuals, 2nd half of the week Phase I  
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7.3 COMPARISON OF HYPER-LINEAR AND LINEAR MODEL PREDICTIONS IN 
PHASE II 

In this section we present four cases for phase II- La Nina.  The four cases have 

different trip durations for the fishermen as follows; 1. Full week; 2. No Sundays (full week 

without Sundays); 3. Only three days 1st half of the week Monday’s, Tuesday’s and 

Wednesday’s; finally, 4. 2nd half of the week Thursday’s, Friday’s and Saturday’s. A Pareto 

frontier using Hyperbolic Regression curve fitting compared to Linear Regression lines and 

the original points for the residuals are depicted for all cases.  Figure 7.9 shows Curve fitting 

for Payout [$] Versus Effort [Gallon /Kg of fish], for Full week Phase II with High 

Desirability. Figure 7.10 shows the scattering points for the Residuals for Full week Phase II 

with High Desirability. Figure 7.11 shows Curve fitting for Payout [$] Versus Effort [Gallon 

/Kg of fish], for No Sundays Phase II with High Desirability. Figure 7.12 shows the 

scattering points for the Residuals for No Sundays Phase II with High Desirability. Figure 

7.13 Shows Curve fitting for Payout [$] Versus Effort [Gallon /Kg of fish], for 1st half week 

Monday’s, Tuesday’s and Wednesday’s Phase II with High Desirability. Figure 7.14 Shows 

the scattering points for the Residuals for 1st half week Monday’s, Tuesday’s and 

Wednesday’s for Phase II with High Desirability. Figure 7.15 shows Curve fitting for Payout 

[$] Versus Effort [Gallon /Kg of fish], for 2nd half week, Thursday’s, Friday’s and Saturday’s 

for Phase II with High Desirability. Figure 7.16 Shows the scattering points for the Residuals 

for 2nd half week, Thursday’s, Friday’s and Saturday’s for Phase II with High Desirability.  

The residual plot of the difference between the predictions of the hyperlinear model 

and the best fit linear one are uniformly large and in some cases tend to increase with effort. 

The non-linear model in all cases tends to over-predict in all cases with low effort and over 
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predict slightly with large effort. This suggests that the tests for significance based upon the 

residuals will likely result in a rejection of the null hypothesis in each.  

 
Figure 7.9: Curve fitting for Payout, Effort, for Full Week Phase II. 

 
 

 

Figure 7.10: Scattering points for Residuals for Full week Phase II  
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Figure 7.11: Curve fitting for Payout, Effort for No Sundays Phase II 

 
 

 

Figure 7.12: Scattering points for Residuals for No Sundays Phase I 
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Figure 7.13: Curve fitting for Payout, Effort for MTW Phase II 

 
 

 

Figure 7.14: Scattering points for Residuals for MTW Phase II 
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Figure 7.15:  Curve fitting for Payout, Effort for TFS Phase II. 
 

 

 

Figure 7.16: Scattering points for Residuals for TFS Phase II 
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7.4 COMPARISON OF HYPERLINEAR CURVES AND RESIDUALS IN PHASE III 

We present four cases for phase III- back to normal.  The four cases have different 

constraints on days for fishing as before: 1. Full week; 2. No Sundays (full week without 

Sundays); 3. Only three days 1st half of the week Monday’s, Tuesday’s and Wednesday’s; 

finally, 4. 2nd half of the week Thursday’s, Friday’s and Saturday’s. All scenarios are 

conducted for High Desirability with Most Relative Effort.   

A Pareto frontier using Hyperbolic Regression curve fitting is compared to Linear 

Regression lines and the original points for the residuals are depicted for all cases.  Figure 

7.17 shows Curve fitting for Payout [$] Versus Effort [Gallon /Kg of fish], for Full week 

Phase III with High Desirability. Figure 7.18 gives the scattering points for the Residuals for 

Full week Phase III with High Desirability. Figure 7.19 gives Curve fitting for Payout [$] 

Versus Effort [Gallon /Kg of fish], for No Sundays Phase III with High Desirability. Figure 

7.20 shows the scattering points for the Residuals for No Sundays Phase III with High 

Desirability. Figure 7.21 shows Curve fitting for Payout [$] Versus Effort [Gallon /Kg of 

fish], for 1st half week Monday’s, Tuesday’s and Wednesday’s Phase III with High 

Desirability. Figure 7.22 shows the scattering points for the Residuals for 1st half week 

Monday’s, Tuesday’s and Wednesday’s for Phase III with High Desirability. Figure 7.23 

shows Curve fitting for Payout ($) Versus Effort (Gallon /Kg of fish), for 2nd half week, 

Thursday’s, Friday’s and Saturday’s for Phase III with High Desirability. Figure 7.24 shows 

the scattering points for the Residuals for 2nd half week, Thursday’s, Friday’s and Saturday’s 

for Phase III with High Desirability. 

The residuals plots exhibit the differences in the predictions between the best fit 

linear and hyperlinear models respectively. The size of the residuals in all cases is relatively 
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large and in the cases of Mon_Tue_Wed and Thur_Fri_Sat the residuals increase with 

increased effort. This suggests that the hyper-linear model is better at predicting behavior 

nearer to Cerro Azul than farther away in these situations. This is interesting since it indicates 

that now the system is back to normal, and the agents are better able to predict what is going 

on in the areas that they are familiar with. 
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Figure 7.17:  Curve fitting for Payout, Effort for Full week Phase III. 

 
 

 
Figure 7.18: Scattering points for Residuals for Full Week for Phase III  
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Figure 7.19 Curve fitting for Payout, Effort for NS Phase III. 

 
 

 

Figure 7.20: Scattering points for Residuals for No Sundays Phase III.   
 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10 20 30 40 50 60 70

Pa
yo

ut
 $

Effort (Gallons / KG of Fish)

No Sundays, Phase III
HD/MRE Hyperbolic Regression with CA Linear Regression

-50000
-40000
-30000
-20000
-10000

0
10000
20000
30000
40000

0 10 20 30 40 50 60 70

Pa
yo

ut
 $

Effort (Gallons / KG of Fish)

No Sundays, Phase III
Residuals



154 
 

 
 

 

Figure 7.21: Curve fitting for Payout, Effort for MTW Phase III. 
 

 

Figure 7.22: Scattering points for Residuals for MTW Phase III  
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Figure 7.23: Curve fitting for Payout, Effort for RFS Phase III. 

 
 

 
Figure 7.24: Scattering points for Residuals for RFS Phase III  
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7.5 THE SIGNIFICANT F-TEST ANALYSIS 

The statistical results of the experimental model for twelve scenarios for three phases 

and the four available departure days will now be presented. Table 7.1 indicates the Critical 

value for the F-Test at different significant levels of α.  Table 7.2 provides the summary of 

the results of the CAPSO runs in terms of the calculated F values Fstat for Phase I, II and 

Phase III.   

Table 7.1: The Critical value for F-Test at different significant level of α.   

Significant 
 level α 

 α = 0.05  α = 0.01  α = 0.001 

F (α, df1, df2) 3.07 4.8 7.5 

 

Table 7.2: Statistical value for (Fstat) for Phase I, II and Phase III.   

Case of Fishermen 
Trip Durations 

PHASE I 
El Nino 

PHASE II 
La Nina 

PHASE III 
Back to 
Normal 

 F (α, df1, df2) = 4.8 
For α = 0.01  

Full week 13.35 25.60 16.08 Ho: are Rejected for 
all phases No Sundays 23.90 29.91 18.36 

Mon, Tue and Wed 6.31 24.75 21.31 
Thur, Fri and Sat. 7.27 37.25 14.73 
 

Here the Null Hypothesis for a given Phase/ Day combination is that the distribution 

of example points is linear in form. When the Null Hypothesis H0 is true, then the variation 

in the sample mean for our case in the fishing scenarios (the payout as Y) provides an 

unbiased estimate of variance σ2. However, if the Null Hypothesis H0 is false and the 

population means are different, then the variance in the sample means is unusually large. 

Now the value for calculated F (F stat(df1, df2)) tend to be larger than usual  which means that 
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we can reject H 0 for these large values of F, using a right-tailed statistical test as shown in 

the figure below.  Figure 7.25 describes the area of the accepted region for (1-  α  ) and the 

critical F value and the rejected region when { Fstat > F (α, df1, df2) }. 

 

Figure 7.25: The distribution of the F statistic.  
 

Based upon the values given in Table 7.2, the hypothesis that the distribution of all 

generated points is linear in nature is rejected for all Phase/Day combinations.   Two Phase 1 

scenarios, (Mon_Tue_Wed) and (Thur_Fri_Sat) would be rejected at α=0.001. It is 

interesting to note that while in most cases for Phase I and II the non-linear model over-

predicts payout with low effort whereas in El Nino the tendency is to under-predict payout 

for Mon_Tue_Wed and Thur_Fri_Sat which suggests a larger than anticipated crop of 

available catches nearby. 
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7.6 CONCLUSIONS 

 In this chapter we used the Cultural Algorithm toolkit to help test whether the bi-

objective model exhibited a hyperlinear distribution consistent with an overall non-linear 

relationship between the two complementary objectives. In other words, are the Pareto fronts 

generated in Chapter 6 truly representative of the non-linear nature of the two goals, and if so 

what are the differences between those curves in terms of parabolic curves and a best fit 

linear function? 

 The results confirm the presence of a strong hyper-linear relationship between the two 

goals for all Phase/Day combinations.  We only get close to the critical values in two 

instances in Phase I: Mon_Tue_Wed and Thur_Fri_Sat. The null hypothesis is easily rejected 

in all cases and only approaches the rejection rejoin in those two instances. In those cases, the 

drop-off in productivity as one moves away from Cerro Azul in terms of effort is so steep as 

to be approximated reasonable well by a linear model. In the other instances the hyper-linear 

model tends to be a good fit with the distribution of tours in all of the other cases especially 

for mid-range efforts. The differences that do appear are in terms of the slight over prediction 

for small and large effort values. 

 The non-linear model is the best fit in La Nina where the interaction between the 

variables has strong non-linearity to it based upon the changes in water temperature along 

with corresponding changes in catch distributions. It is also a good fit in the back to normal 

phase but it is clear that the agents have more predictive knowledge there. The non-linear 

model is the least predictive in the El Nino case, not because the distribution is overall non-

linear, but because the distribution is “box like” with a steep decline as one moves away from 
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Cerro Azul and then a relative flattening out after effort reaches a critical point. This reflects 

the ability of agents to stay close by Cerro Azul and still collect highly desirable catches. 
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CHAPTER 8: CONCLUSION AND FUTURE WORK 

Recently it has been found that the earth’s oceans are warming at a pace that is 40% 

faster than predicted by a United Nations panel a few years ago. As a result, 2019 has 

become the warmest year on record for the earth’s oceans. That is because the oceans have 

acted as a buffer by absorbing 93% of the heat produced by the greenhouse gases [40]. 

The impact of the oceanic warming has already been felt in terms of the periodic 

warming of the Pacific Ocean as an effect of the ENSO process. The ENSO process is a 

cycle of warming and subsequent cooling of the Pacific Ocean that can last over a period of 

years. This cycle was first documented by Peruvian fishermen in the early 1600’s.  So it has 

been part of the environmental challenges that have been presented to economic agents 

throughout the world since then. It has even been suggested that the cycle has increased in 

frequency over the years, perhaps in response to the overall issues related to global warming. 

So, although the onset of the ENSO cycle might be viewed as disruption of the 

fishing economy in a given area, there is some possibility that over time agents have been 

able to develop strategic responses to these changes to as to reduce the economic risk 

associated with them. In this thesis we hypothesize that at least on local level there are 

strategic and socially related mechanisms to mitigate the impact. 

To this end we employed data collected by Marcus as part of an Archaeological site 

excavation project in an ancient fishing site nearby a modern Peruvian town, both named 

Cerro Azul. Marcus arranged with the local authorities to record the results of all fishing trips 

during a period of time between March 1984 and July 1986. During that time the area was in 

the process of emerging from one of the largest ENSOs on record. This was perceived to be a 
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great opportunity to see how the collective body of fishermen was able to alter their fishing 

strategies to deal with these more uncertain times.  

While this knowledge might be useful in the understanding and interpretation of 

ancient remains, our intention was mainly to use principles from Artificial Intelligence and 

Complex Systems to provide an understanding how what the modern responses to these 

changes might be. Certainly the knowledge needed to produce a collective response from a 

group of otherwise independent agents has emerged from generations of experience. It is the 

understanding of the knowledge that concerns us here. 

To this end we generated a simple agent-based model of local fishing behavior that 

was based upon two conflicting goals: 

1. One goal was to produce a Payout over time that would allow the fishermen to 

produce an income necessary for their survival along with hopefully some profit 

to them along the way. 

2. The second goal was to ensure that enough resources were allocated to the trips, 

tours, in order to assure their success. This goal reflected the need to buffer the 

risk associated with the changing environment and its impact on the local 

economy. As stated by [35] , “the goal is to just be able to keep fishing”. 

We then produced a database to house the data collected by Dr. Marcus in order to answer 

the specific questions that we had about the local fishing systems at different levels of detail. 

Certainly one can characterize the system, even such a spatially and temporarily situated one 

as a complex system about which questions could be asked about it and hypotheses tested at 

varying levels of detail. It was the goal of the database design to support those activities. 
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 The database and its structure were described in Chapter 2. In Chapter 3 we used the 

database to collect knowledge about the system at several levels of granularity, macro-, 

meso-, and micro for each of the three ENSO phases under consideration. Once we had 

sufficient information to realize the basic parameters of our model and its constraints we 

needed to have an evolutionary tool whose sole purpose was to model and simulate Cultural 

Change. Chapter 4 presented the tool developed to support the computational demands of this 

multi-objective optimization problem. It is called CAPSO and combines Cultural Algorithms 

and Particle Swarm models to describe the agent adaptations here [35] . 

 The operation agent-based model was then discussed in Chapter 5. There we 

reformatted the dataset as a search graph. The idea was to investigate the difference in the 

goals achieved by agents that are constrained to generate a sequence of tours over the entire 

phase that fit constraints as to when they call leave, and return. In other words, these tours 

reflect choices made by the fishermen in response to the current environment that they were 

facing. The key question is whether the simulated responses support the fact that these 

responses are intrinsically different in nature or just minor variations on the same theme. 

 In order to address this question, we generated 500 random tours and used non-

dominated sorting to produce approximations of the corresponding Pareto front for each of 

four basic tours constraint scenarios in each phase. Our basic conclusions were that the goal 

was to maintain a sustained level of profitability in the wake of these changes. In order to do 

these different search strategies were employed to buffer the impact of this increased 

uncertainty. This buffering effect was particularly visible in the La Nina phase. While the 

Payout did not drop substantially over the three phase, the shape of the Pareto curves 

changed due to the need to shift resources around. More resources were invested in the La 
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Nina phase in order to sustain Payout due to the need to search over a wider range of sites for 

suitable catches. When the temperature returned to normal the related Pareto curve 

demonstrated that these additional resources were no longer needed as a buffer since the 

fishermen were now able to apply their knowledge of the local area to be more productive 

there. 

 The next question was that while theses simulations generated different tour 

distribution and different Pareto Front were they really all that different? In other words, 

could they be viewed as really just minor variations on the same search process. In order to 

address this question we applied the CAPSO Cultural Algorithm to generate a hyperlinear 

curve to describe each of the distributions and then test to see if these curves were in fact 

statistically different from each other. They were in fact different except for Mon_Tue_Wed 

and Thur_Fri_Sat in the El Nino phase.  These were the lowest level scenarios modeled and 

the observation period for the residual El Nino was only 4 month as opposed to about a year 

each for the other two. So there was less opportunity to visualize the differences here even if 

there were. 

 In summary our results suggest that indeed the collective economic response of the 

fishermen demonstrates an ability to respond to the unpredictabilities of climate change, but 

at a cost. It is clear that the fishermen have gained the collective knowledge over the years to 

produce a coordinated response that can be observed at a higher level. Of course, this 

knowledge can be used to coordinate activities only if it is communicated socially within the 

society. Although our data does not provide any explicit information about such 

communication there is some indirect evidence that the adjustments in strategy are brought 
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about by the increased exchange of experiences among the fishermen. We see that indirectly 

in two basic ways: 

1. The distributions seem to suggest dominant and successor waves of strategies that 

may be associated with the length of time over which the simulation window is 

conducted. These waves were suggested to represent how subsequent trips were 

influenced by knowledge brought back by agents from trips the days right before that 

trip. For example, Dr. Marcus recalls one brother talking to another brother about his 

fishing experiences. This knowledge might be shared with close blood relatives or 

might be conveyed in general to others. It is hard for us to say at this point. 

2. Our discussion of the meso and micro-statistics in Chapter 3 suggested that indeed 

there were at least two waves present in terms of the amount of catches returned in 

certain phases relative to certain types of catches. For example, there was often one 

that started on Monday and peaked on Wednesday, while a second started on 

Thursday and peaked on Friday or Saturday. 

In future work, we plan in use the Social Network capabilities of Cultural Algorithms to 

attempt to model the impact that knowledge acquisition and its subsequent distribution has 

on strategic decision-making. 
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Recently it has been found that the earth’s oceans are warming at a pace that is 40% 

faster than predicted by a United Nations panel a few years ago. As a result, 2019 has 

become the warmest year on record for the earth’s oceans. That is because the oceans have 

acted as a buffer by absorbing 93% of the heat produced by the greenhouse gases [40]. 

The impact of the oceanic warming has already been felt in terms of the periodic 

warming of the Pacific Ocean as an effect of the ENSO process. The ENSO process is a 

cycle of warming and subsequent cooling of the Pacific Ocean that can last over a period of 

years. This cycle was first documented by Peruvian fishermen in the early 1600’s.  So it has 

been part of the environmental challenges that have been presented to economic agents 

throughout the world since then. It has even been suggested that the cycle has increased in 

frequency over the years, perhaps in response to the overall issues related to global warming. 

Although the onset of the ENSO cycle might be viewed as disruption of the fishing 

economy in a given area, there is some possibility that over time agents have been able to 

develop strategic responses to these changes to as to reduce the economic risk associated 

with them. During that time the Cerro Azul, Peru was in the process of emerging from one of 
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the largest ENSOs on record. This was perceived to be a great opportunity to see how the 

collective bodies of fishermen were able to alter their fishing strategies to deal with these 

more uncertain times.  

 Our results suggest that indeed the collective economic response of the fishermen 

demonstrates an ability to respond to the unpredictabilities of climate change, but at a cost. It 

is clear that the fishermen have gained the collective knowledge over the years to produce a 

coordinated response that can be observed at a higher level. Of course, this knowledge can be 

used to coordinate activities only if it is communicated socially within the society. Although 

our data does not provide any explicit information about such communication there is some 

indirect evidence that the adjustments in strategy are brought about by the increased 

exchange of experiences among the fishermen.  
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