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�ber) without reducing true positives, suggesting high speci�city of the proposed method to

delineate functionally eloquent areas and pathways from individual patient. In this study,

we selected β = 0.95 as an optimal value to sort out true positive �bers belonging to each

Ci.

Table. 4.10 shows quantitative comparison of the DCNN-CL-ATT classi�cation, Ci,

with its gold standard ESM, Dj. Cortical terminals of class �bers, Ci, whose pic were thresh-

olded at β = 0.95 were compared with the locations of ESM results, Dj, in 70 children with

focal epilepsy. The overlap match was counted if any of �ber terminals includes the mea-

sured ESM electrode within each of four Euclidean distance thresholds: contact, 1cm, 1.5cm

and 2cm. The detection probability gradually increased with the distance. For instance, the

average values of detection probability were 72%/83%/90%/90% (contact/1cm/1.5cm/2cm)

for somatosensory areas, 74%/81%/87%/93% (contact/1cm/1.5cm/2cm) for language areas,

40%/80%/80%/90% (contact/1cm/1.5cm/2cm) for auditory areas, and 57%/85%/87%/88%

(contact/1cm/1.5cm/2cm) for visual areas, respectively. We found that compared with our

previous DWI-MAP analysis of somatosensory and language function[46, 47], the proposed

method could improve about 9-14% of the detection probability by classifying more outliers

(e.g., association �bers with higher curvatures) into correct ESM localizations.

Figure 4.7: Representative examples of DCNN determined-white matter pathways.
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Table 4.10: Probability of individual DTI class, Ci, to match individual ESM class.
ESM DTI contact 1 cm 1.5 cm 2.0 cm
D1 C1 0.7857 0.8571 1.0000 1.0000
D2 C34 0.6000 0.8000 0.9333 0.9333
D3 C4 0.6071 0.8571 0.9286 0.9286
D4 C37 0.7879 0.8182 0.8788 0.8788
D5 C5 0.7241 0.7931 0.8966 0.9310
D6 C38 0.6364 0.7879 0.8182 0.8182
D7 C16 0.8574 0.8574 0.8574 0.8574
D8 C49 0.7333 0.8667 0.8667 0.8667
D9 C29,30 0.7368 0.8947 0.8947 0.8947
D10 C62,63 0.9091 0.9091 0.9091 0.9091
D11 C8,11,14 0.6923 0.8462 0.8462 0.8462
D12 N.A N.A N.A N.A N.A
D13 C8,13,14 0.6667 0.7222 1.000 1.000
D14 N.A N.A N.A N.A N.A
D15 C7,12,19 0.6667 0.6667 0.6667 1.000
D16 N.A N.A N.A N.A N.A
D17 C25,32 0.2000 0.8000 0.8000 0.8000
D18 C58,65 0.6000 0.8000 0.8000 1.0000
D19 C2,17,24 0.6333 0.8000 0.8333 0.8333
D20 C35,50,57 0.5625 0.7500 0.8125 0.8438
D21 C6,7,15 0.7500 1.0000 1.0000 1.0000
D22 C39,40,48 0.3333 0.8333 0.8333 0.8333
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Representative examples of the proposed DCNN-CL-ATT classi�cation derived-white

matter detection of �bers, Ci, at β = 0.95 were presented at Fig. 4.7, as compared with

eloquent areas determined by ESM which were obtained from four di�erent test subjects:

D2,8 from an 8 years old boy, D3,5 from a 12 years old girl, D9,11 from another 8 years old

boy, and D13,15,17,19 from a 14 years old girl. It is notable that all predictions given by

DCNN-CL-ATT (i.e., RGB-colored �bers in Fig. 4.7) are spatially well matched to the gold

standard ESM electrodes, which suggests high translational value of the proposed work as an

imaging tool to improve clinical ESM procedure by guiding accurate placement of electrodes

in actual eloquent areas.

Visualization of learned discriminative �ber representation

To further demonstrate the bene�t of center loss, we extracted the output of penulti-

mate layer of DCNN-FL and DCNN-CL as the representations of corresponding brain �bers

for comparison. The dimensionality of extracted representation vectors were reduced to

two using tSNE [72] for visualization. As shown in Fig. 4.8, the representations learned

by DCNN-CL have better intra-class compactness comparing to representations learned by

DCNN-FL. We further applied quantitative analysis on the advantage of center loss for

discriminative feature learning by computing the intra- and inter-class distances of represen-

tation vectors learned by DCNN-FL and DCNN-CL. To make the distances comparable, the

average intra-class distances were normalized to 1. The normalized average distances over

all �ber classes are reported in Table 4.11. As shown in the table, the inter/intra distance

ratio of �ber representations learned with DCNN-CL is 32.55 times greater than that of

representations learned with DCNN-FL, which indicates that introducing center loss results

in better intra-class compactness and greater inter-class variations.

Table 4.11: Normalized mean and standard deviation of intra- and inter-class distances.
Method Intra-class Distance Inter-class Distance

DCNN-FL 1± 0.5826 30.9720± 1.2217
DCNN-CL 1± 0.4958 1007.9916± 245.2773
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Figure 4.8: The tSNE visualization of deep �ber representations.

Visualization of interpretable �ber representation

Figure 4.9: Representative examples of attention maps.

To illustrate how our CNN models classify streamlines, we visualized the attention

maps for brain �bers from some example classes. First, we selected �bers with high classi-

�cation con�dence (pic > 0.85). Second, the corresponding attention maps over 100 points

of the selected �bers were extracted from the trained DCNN-CL-ATT model. Third, we

computed the average attention weights for �bers belonging the same class and use them as

the attention map for that class. The greater weights indicate the corresponding points are

more important for CNNs to make predictions.

Fig. 4.9 provides a clue on how the deep CNN model makes predictions for brain

�bers. Somatosensory �bers of C1,4,5,16 showed noticeable weights of attention near both s1

(precentral gyrus) and s100 (internal capsule), which indicates that DCNN-CL-ATT needs

to focus on the both ends of these �bers when make classi�cations. These attention maps

directly support the traditional homunculus representation of precentral gyrus and internal

capsule in human brain [26, 39] suggesting that separate cortico-spinal tracts connect unique
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segments of precentral gyrus and internal capsule resulting in multiple white matter pathway

classes associated with unique smatosensory functions, C1,4,5,16. Meanwhile, other language

and auditory tracts of C11,21,24,32 whose anatomical trajectories are terminated at di�erent

cortices (s1, s100) showed di�erent patterns of attention weights widely spread at entire range

of spatial coordinate. This example clearly demonstrated that our attention map could

provide supplementary marker to localize speci�c functional areas of interest by identifying

the most important segments of a given input tract detected by DCNN-CL-ATT.

Discussion

In this study, we proposed a novel CNN-based method, DCNN-CL-ATT, for evalu-

ating how deep learning of in-vivo DTI trajectory can accurately detect eloquent functional

areas determined by the gold starndard ESM data and selectively highlight the most impor-

tant segments of DTI streamlines for the predictions. In contrast to most parametric Gaus-

sian approaches, the proposed model makes no assumption regarding a priori probabilistic

distribution of individual streamlines belong to speci�c eloquent white matter pathway. The

proposed CNN method can process very large streamline datasets on a desktop computer in

a reasonable time frame automatically with only one single user-de�ned parameter (i.e., the

probability threshold, β, to decide the �nal membership of a given input �ber).

In vivo visualization of neuronal connections by placing regions of interest to classify

DTI streamlines is a promising but still challenging task in clinical application (i.e., labor

intensive and subjective to reduce reproducibility [16]). Many investigators have attempted

to objectively characterize the complicated tract patterns in DTI [82, 36]. Mixed results

have been reported depending on the employed geometrical features and similarity measures

which do not consider functional association clinically important to know. To avoid this am-

biguity, the present study has generalized the application of the-state-of-art CNN techniques

to objectively learn actual spatial coordinate trajectories of function-speci�c-white matter

pathways. However, it should be noted that the accuracy of the proposed CNN model is

highly dependent on the DTI reconstruction algorithm used to generate the DTI stream-
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lines. Although the utilized iFOD2 reconstruction provided clinically acceptable accuracy of

73-100% to detect eloquent functions within the spatial resolution of ESM (1 cm), other ad-

vanced methods may create higher quality data, which can further improve the performance

of the proposed CNN methods.

In this study, we mainly detected �bers of major pathways of su�cient size and

high coherence in the dataset. Smaller tracts or less coherent connections are currently

not reliably assessable. Higher resolution employing higher �eld strength, stronger di�usion

gradients and high angular resolution DTI could enable the delineation of such structures.

More importantly, our target classes were constructed using fMRI inevitably limited by ill-

posed neurovascular coupling [112]. Thus, the detection of eloquent area using our CNN

methods are naturally e�ective and valid on the gyral level rather than the nominal voxel

resolution. In the future, we plan to further investigate various attention mechanisms [111]

on whether they bene�t conventional connectome analysis by detecting noisy or incorrectly

tracked streamlines spatially deviated from normative population (e.g., wiggly false �bers).

We anticipate that attention weights signi�cantly altered in the population would indicate

noisy streamlines that should be excluded from the analysis.

In conclusion, the signi�cance of the proposed CNN framework for presurgical plan-

ning of potential surgical candidates includes: 1) no added risk or cost to identify functionally

important areas at both cortical and subcortical levels; 2) no need for patient cooperation,

particularly important in young children; 3) easy applicability to other types of neurosurgical

procedures (e.g., brain tumor resection). This study is an excellent example which translates

advanced deep learning techniques to clinical practice in the pediatric population in which

currently available approaches are suboptimal (i.e., ESM and fMRI). Prospective investiga-

tion of the proposed CNN method will further improve presurgical planning and provide a

unique opportunity to minimize or predict postsurgical functional de�cits in the future.
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CHAPTER 5 CONCLUSION

In this Ph.D. dissertation, we presented our research accomplishments in represen-

tation learning using convolutional neural networks with signi�cant intellectual merit and

novelty.

Summary of Contributions

In Chapter 2, we proposed a novel framework,Topic-based Skip-gram, for learning

topic-based semantic word embeddings for text classi�cation with CNNs and achieved highly

competitive results with word embeddings learned by Skipgram. While Skip-gram focuses on

context information from local word windows, the proposed Topic-based Skip-gram leverages

semantic information from documents. We also described two multimodal CNN architectures

which can ensemble di�erent kinds of word embeddings.

In Chapter 3, we proposed Directionally Convolutional Network that extends convo-

lution operations from images to the surface mesh in the spatial domain. Furthermore, we

introduced a two-stream framework combining proposed Directionally Convolutional Net-

work and a neural network for segmentation of 3D shapes. Instead of fusing the two streams

by a simple concatenation, we take our framework as an approximation of a directed graph

and combine the probabilities inferred by the two streams with an element-wise product.

Finally, Conditional Random Field was applied to optimize the surface mesh segmentation.

In Chapter 4, we proposed a novel CNN-based method for evaluating how deep learn-

ing of in-vivo DTI trajectory can accurately detect eloquent functional areas determined by

the gold starndard ESM data and selectively highlight the most important segments of DTI

streamlines for the predictions. The proposed CNN method can process very large streamline

datasets on a desktop computer in a reasonable time frame.

Future Research Directions

We believe our work will encourage new research in the area of representation learning

for di�erent data formats including text, 3D polygon, and brain �ber tracts.
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The proposed work in Chapter 2 shows a promising direction of learning topic-based

word embedding for text analysis. By integrating global semantic meaning and local word

coherence, the learned word embedding gains competitive performance for classi�cation while

has better interpretability. Actually, the paper has been cited by recent researches: text

classi�cation algorithms [24, 45] and information retrieval works [115, 23].

For the work described in Chapter 3, we proposed a framework to learn 3D polygon

representation using the most fundamental geometric features, which demonstrates a novel

approach to learning 3D polygon representation for shape segmentation and pushes up the

current state-of-the-art methods for future studies. Our work applied deep learning tech-

niques for geometric feature learning on the 3D surface, which became a trend in recent

years. We believe there will be more future researches in this area.

The presented work in Chapter 4 shows the proposed framework to learn discrimi-

native and interpretable brain �ber representation for classi�cation. Our study provided a

plausible solution to explore how deep learning frameworks make decisions. From the per-

spective of medicine, we believe this work will encourage researchers to further investigate

various attention mechanisms on whether they bene�t conventional connectome analysis by

detecting noisy or incorrectly tracked streamlines spatially deviated from normative popu-

lation (e.g., wiggly false �bers).
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APPENDIX

Journal Publications Under Revision

R1. H. Xu, M. Dong, M.-H. Lee, Y. Nakai, E. Asano, and J.-W. Jeong. Objective De-

tection of Eloquent Axonal Pathways to Minimize Postoperative De�cits in Pediatric

Epilepsy Surgery using Di�usion Tractography and Convolutional Neural Networks.

IEEE Transactions on Medical Imaging (TMI), 2018.

Conference Publications

C1. H. Xu, M. Dong, Y. Nakai, E. Asano, and J.-W. Jeong. Automatic detection of eloquent

axonal pathways in di�usion tractography using electrical stimulation mapping and

convolutional neural networks. IEEE International Symposium on Biomedical Imaging

(ISBI), 2018.

C2. H. Xu, M. Dong, and Z. Zhong. Directionally convolutional networks for 3D shape

segmentation. ICCV, 2017.

C3. H. Xu, M. Dong, D. Zhu, A. Kotov, A. Carcone, and S. Naar-King. Text classi�cation

with topic-based word embedding and convolutional neural networks. ACM Conference

on Bioinformatics, Computational Biology, and Health Informatics (ACM BCB), 2016.
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Deep learning methods have achieved great success in the areas of Computer Vision

and Natural Language Processing. Recently, the rapidly developing �eld of deep learning is

concerned with questions surrounding how we can learn meaningful and e�ective represen-

tations of data. This is because the performance of machine learning approaches is heavily

dependent on the choice and quality of data representation, and di�erent kinds of repre-

sentation entangle and hide the di�erent explanatory factors of variation behind the data

[11].

In this dissertation, we focus on representation learning with deep neural networks

for di�erent data formats including text, 3D polygon shapes, and brain �ber tracts.

First, we propose a topic-based word representation learning approach for text classi-

�cation. The proposed approach takes global semantic relationship between words over the

whole corpus into consideration and encodes the relationships into distributed vector rep-

resentations with continuous Skip-gram model. The learned representations which capture

a large number of precise syntactic and semantic word relationships are taken as input of

Convolution Neural Networks for classi�cation. Our experimental results show the e�ective-

ness of the proposed method on indexing of biomedical articles, behavior code annotation of

clinical text fragments, and classi�cation of news groups.
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Second, we present a 3D polygon shape representation learning framework for shape

segmentation. We propose Directionally Convolutional Network (DCN) that extends convo-

lution operations from images to the polygon mesh surface with rotation-invariant property.

Based on the proposed DCN, we learn e�ective shape representations from raw geomet-

ric features and then classify each face of a given polygon into prede�ned semantic parts.

Through extensive experiments, we demonstrate that our framework outperforms the current

state-of-the-arts.

Third, we propose to learn e�ective and meaningful representations for brain �ber

tracts using deep learning frameworks. We handle the highly unbalanced dataset by in-

troducing asymmetrical loss function for easily classi�ed samples and hard classi�ed ones.

The training loss avoids to be dominated by the easy samples and the training step is more

e�cient. In addition, we learn more e�ective and meaningful representations by introducing

deeper network and metric learning approaches. Furthermore, we propose to improve the

interpretability of our framework by inducing attention mechanism. Our experimental re-

sults show that our proposed framework outperforms current golden standard signi�cantly

on the real-world dataset.
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