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INVITED ARTICLE 

Bivariate Analogs of the Wilcoxon–Mann–
Whitney Test and the Patel–Hoel Method 
for Interactions 

Rand Wilcox 
University of Southern California 

Los Angeles, CA 

 

 
A fundamental way of characterizing how two independent compares compare is in terms 

of the probability that a randomly sampled observation from the first group is less than a 

randomly sampled observation from the second group. The paper suggests a bivariate 

analog and investigates methods for computing confidence intervals. An interaction for a 

two-by-two design is investigated as well. 

 

Keywords: Cliff’s method, dominance, bootstrap methods 

 

Introduction 

Consider two independent random variables, X and Y. One of the more basic 

methods for comparing the corresponding distributions is in terms of p = P(X < Y), 

the probability that a randomly sampled observation from the first distribution is 

less than a randomly sampled observation from the second distribution. The 

Wilcoxon–Mann–Whitney (WMW) test is based on an estimate of p, but it uses an 

incorrect estimate of the standard error when distributions differ. That is, inferences 

about p can be inaccurate regardless of how large the sample size might be. 

Numerous methods have been derived for dealing with this issue, several of which 

were compared by Neuhäuser et al. (2007). A method derived by Cliff (1996) was 

found to perform relatively well. 

Now consider the situation where multivariate distributions are to be 

compared. An ANOVA-type analog of the WMW test was derived by Brunner et 

al. (2002). Wilcox noted that in the univariate case, inferences about p are related 

https://doi.org/10.22237/jmasm/1556669880
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to how deeply zero is nested in the distribution of D = X – Y. Based on this 

perspective, Brunner et al. (2002) suggested a multivariate technique for the two-

sample case. Wilcox (2005) also suggested a projection-type method. Roughly, the 

data for both groups are projected onto a line connecting the center of the two 

clouds of data. Then an analog of methods based on p is used. For a description of 

other rank-based multivariate methods, see for example Puri and Sen (1971), 

Brunner et al. (2002), Chakraborty and Chaudhuri (2015), as well as Oja and 

Randles (2004). 

The goal is to suggest and investigate an alternative approach that is limited 

to comparing two independent groups based on bivariate data. A possible appeal of 

the method is that it is readily interpreted by non-statisticians. As will be seen, it 

has close ties to p. This is followed by a bivariate generalization of the Patel and 

Hoel (1973) approach to interactions. 

Proposed Measures of Effect Size 

For the first of two independent groups, let (X1,X2) denote a randomly sampled pair 

of observations having some unknown bivariate distribution. Let (Y1,Y2) denote a 

randomly sampled pair from the second group. Here, the possible outcomes are 

broken down into to three categories. The first is X1 > Y1 and X2 > Y2, in which case 

it said that the pair (X1,X2) completely dominates (Y1,Y2). The second category is 

when X1 < Y1 and X2 < Y2, in which case (Y1,Y2) completely dominates (X1,X2). The 

third category is that neither pair completely dominates. Then a way of 

characterizing the difference between the groups is with 

 

 ( ) ( )1 1 2 2 1 1 2 2 and  and P X Y X Y P X Y X Y =   −     (1) 

 

the difference between the probability that (Y1,Y2) completely dominates minus the 

probability that (X1,X2) completely dominates. 

A related perspective is based on a generalization of how analogs of the 

WMW test deal with tied values. Let p1 denote the probability that (X1,X2) 

completely dominates. Let p2 denote the probability that neither point dominates, 

and let p3 indicate the probability that (Y1,Y2) completely dominates. Let 

P = p3 + 0.5p2. Note that when δ = 0, P = 0.5, in which case there is interest in 

testing 

 

 0 : 0.5H P =   (2) 
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As will be seen, computing a confidence interval for δ plays a role when testing (2). 

Next, an analog of the Patel–Hoel approach to interactions is described. 

Consider a two-by-two design and let δ1 denote δ for the first level and let δ2 denote 

δ for the second level. Generalizing the Patel and Hoel (1973) notion of an 

interaction an obvious way, no interaction is taken to mean that Δ= δ1 – δ2 = 0. 

Alternatively, let P1 denote P for the first level of the first factor and let P2 denote 

the value of P for the second level. No interaction is taken to mean PI = P1 – P2 = 0. 

Inferences About P, δ and Δ. 

Consider the goal of making inferences about δ, which will yield a method for 

making inferences about P. Let (Xi1,Xi2) denote a random sample from the first 

group (i = 1, …, n1). And let (Yj1,Yj2) denote a random sample from the second 

group (j = 1, …, n2). Let dij = 1 if (Yj1,Yj2) completely dominates (Xi1,Xi2) and 

dij = – 1 if (Xj1,Xj2) completely dominates (Yi1,Yi2). If neither pair completely 

dominates, dij = 0. An estimate of δ is simply 

 

 
1 2

1ˆ
ijd

n n
 =    

 

An estimate of P is ( )ˆˆ 1 / 2.P = −  

Now, consider the goal of testing (1) as well as computing a 1 – α confidence 

interval for P. Four strategies are considered. The first approach is based on a 

simple modification of the method derived by Cliff (1996). Let 
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Then 

 

 
( ) ( )2 2 2

1 1 2 22

1 2

1 1
ˆ

n s n s

n n




− + − +
=   

 

estimates the squared standard error of ̂ . Let z be the 1 – α/2 quantile of a standard 

normal distribution. Rather than use the more obvious confidence interval for δ, 

results in Cliff (1996, p. 140) suggest using instead 

 

 
( )

2
3 2 2 2

2 2 2

ˆ ˆ ˆˆ ˆ1

ˆ ˆ1

z z

z

    

 

−  − +

− +
  

 

(Also see Feng & Cliff, 2004.) 

The confidence interval for δ is readily modified to give a confidence for P. 

Letting 
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a 1 – α confidence interval for P is 

 

 2 11 1
,

2 2

C C− − 
 
 

  

 

This will be called method C, henceforth. 

Simulations reported below indicate that method C performs well when the 

sample sizes are equal, including situations where there is heteroscedasticity, 

meaning that the marginal distributions have different variances. That is, 

VAR(X1) ≠ VAR(Y1) and VAR(X2) ≠ VAR(Y2). However, when n1 ≠ n2 and 
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simultaneously the marginal variances differ, method C can be unsatisfactory in 

terms of controlling the Type I error probability. A closer look at the simulation 

results revealed that the estimate of the standard error of ̂  can be inaccurate. 

Three methods were examined that were aimed at dealing with unequal 

sample sizes. The first was to use a bootstrap estimate of the standard error, which 

is computed as follows. Begin by generating a bootstrap sample from the first 

group. That is, randomly sample with replacement n1 pairs of values from (Xi1,Xi2), 

i = 1, …, n1. Next, generate a bootstrap sample from the second group, compute ̂  

based on these two bootstrap samples and label the result δ*. Repeat this B times 

yielding δ
1
*, …, δ

B
*. The estimate of squared standard error of ̂  is 

 

 ( )
2

2 * *1

1
b

B
  = −

−
  

 

where * * /b B = . Here, B = 100 was used, which has been found to suffice for 

a range of other situations (Wilcox, 2017). Using method C, but with 2̂  replaced 

by 2 , was found to improve the control over the Type I error probability, but 

situations were found where it was unsatisfactory.  

The second approach was to use a basic percentile bootstrap method, which 

does not use an estimate of the standard error. Based on a bootstrap sample from 

each group compute an estimate of P and lable the result P*. Repeat this process B 

times yielding P
1
*, …, P

B
*, only now B = 599 bootstrap samples are used, which is 

motivated by results in Wilcox (2017). Put these B bootstrap estimates in ascending 

order and label the result 
* *

(1) ( )BP P  . Let ℓ = αB/2, rounded to the nearest 

integer, and B – ℓ. Then an approximate 1 – α confidence interval for P is 

( ) ( )( )* *

1
,

u
P P

+
. Let A = ∑I(P* > 0.5), where the indicator function I(P* > 0.5) = 1 if 

P* > 0.5; otherwise I(P* > 0.5) = 0. Let p* = A/B. A (generalized) p-value is 

2min(p*,1 – p*), which is called method PB henceforth. But this approach proved 

to be unsatisfactory as well in some of the situations described here. 

The finding that method C performs well in simulations when the sample sizes 

are equal motivated the third approach. Let n = min{n1,n2}. Next, generate a 

bootstrap sample of size n from each group and compute a 1 – α confidence interval 

for δ using method C based on these bootstrap samples. Let L denote the lower end 

of the confidence interval and U the upper end. Repeat this process B times yielding 

L1, …, LB and U1, …, UB. The final confidence interval for δ is taken to be ( ,L U ), 

where L  = ∑Lb/B and U  = ∑Ub/B. This will be called method CPB henceforth. 
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This is the only method found to perform reasonably well in simulations when there 

is both unequal sample sizes and heteroscedasticity. A confidence interval for P can 

be computed in a similar manner. 

As for the Patel—Hoel analog of an interaction, a simple extension of method 

C can be used to compute a confidence for Δ when n1 = n2. Let δ1 represent δ when 

focusing on level one of Factor A with level two ignored, and let 
1̂  be the estimate 

of δ given by (1). An estimate of the squared standard error of 
1̂  is now denoted 

by 2

1̂ . Similarly, let δ2 be the estimate of δ2 when focusing on level two of Factor 

A, with level one ignored, and denote its estimate with 
2̂ . The estimated squared 

standard error of 
2̂  is denoted by 2

2̂ . Then an approximate 1 – α confidence 

interval for Δ is simply 
2 2

1 /2 1 2
ˆ ˆ ˆz   − + , where z1 – α/2 is the 1 – α/2 quantile of 

a standard normal distribution. It can be seen that 

 

 2 1

2
IP

 −
=   

 

An estimate of PI is 

 

 2 1
ˆ ˆ

ˆ
2

IP
 −

=   

 

an estimate of the squared standard error is 

 

 ( )2 2 2

1 2

1
ˆ ˆ

4
S  = +   

 

and a 1 – α confidence interval for is 
1 /2

ˆ
IP z S− . This will be called method CPH. 

As for n1 ≠ n2, a percentile bootstrap method can be used. Simply proceed in the 

same manner as method PB. For each group generate a bootstrap sample as 

previously described. Compute an estimate of Δ based on these bootstrap samples 

and label the result Δ*. Repeat this process B times yielding ( )* 1, ,b b B = . Put 

these B values in ascending order and label the results 
* *

(1) ( )B    . Then an 

approximate 1 – α confidence interval for Δ is ( ) ( )( )* *

1
,

u+
  , where l and u are 

defined as before. A confidence interval for PI can be computed in a similar manner. 
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This will be called method IPB henceforth. Although method PB was found to be 

unsatisfactory in some situations, simulations indicate that method IPB performs 

reasonably well. 

Simulation Results 

Simulations were used to investigate the small-sample properties of methods C, 

CPB and CPH. Data were generated from one of four bivariate distributions where 

the marginal distributions were taken to be g-and-h distributions, which contain the 

standard normal distribution as a special case. Let Z be a random variable having a 

standard normal distribution. Then 

 

 
( )( ) ( )

( )

2

2

exp 1  exp / 2 / ,  if 0

exp / 2 ,  if 0

V gZ hZ g g

V Z hZ g

= − 

= =
  

 

has a g-and-h distribution, where g and h are parameters that determine the first 

four moments. The four distributions used here are the standard normal (g = h = 0), 

a symmetric heavy-tailed distribution (h = 0.5, g = 0), an asymmetric distribution 

with relatively light tails (h = 0, g = 0.5), and an asymmetric distribution with heavy 

tails (g = h = 0.5). It is noted that in theory, when h = 0.5, kurtosis is not defined 

for a g-and-h distribution. That is, kurtosis is infinitely large. When g = h = 0.5, 

skewness is not defined as well. But of course, when generating data on a computer, 

values are in effect generated from a bounded distribution, in which case data are 

being generated from a distribution with a finite level of skewness and kurtosis. 

Table 1 summarizes the skewness and kurtosis values used here, where estimates 

of the skewness and kurtosis, based on one million observations generated from the 

g-and-h distribution, are used when they are not defined. 

Data for each group were generated by first generating data from a bivariate 

normal distribution having correlation ρ and where the marginal distributions have 

mean zero and variance one. Three choices for ρ were used: 0.0, 0.8 and –0.8. Then 

the marginal distributions were transformed to one of the four g-and-h distributions 

in Table 1. Heteroscedasticity was considered by multiplying all values in group 

two by k, where k was taken to be one (homoscedasticity) or four. For n1 ≠ n2, 

k = 1/4 was used as well. The probability of a Type I error, when testing at the 0.05 

level, was estimated with 5000 replications except when using a bootstrap method. 

Now 2000 replications were used due to the increased execution time. 
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Table 1. Some properties of the g-and-h distribution.  
 

g h K1 K2 

0.0 0.0 0.0 3.0 

0.0 0.5 0.0 11,986.2 

0.5 0.0 1.8 8.9 

0.5 0.5 126.1 24,711.9 

 
 

Reported in Table 2 are the estimated Type I error probabilities using method 

C when n1 = n2 = 10. When k = 1, for fixed ρ, altering g or h does not change the 

results because the ranks of the values remain the same. Although the importance 

of a Type I error can depend on the situation, Bradley (1978) suggested as a general 

guide, when testing at the 0.05 level, the actual level should be between 0.025 and 

0.075. Method C satisfies this criterion. The largest estimate is 0.056 and the lowest 

is 0.025. But when n1 ≠ n2, and k ≠ 1, the estimate exceeds 0.080 in some situations. 
 
 
Table 2. Estimates of the actual Type I error probability using method C, α = 0.05, 
n1 = n2 = 10 
 

g h p k=1 k=4 

0.0 0.0 0.0 0.046 0.053 

0.0 0.0 0.8 0.043 0.051 

0.0 0.0 -0.8 0.025 0.025 

0.0 0.5 0.0 0.046 0.055 

0.0 0.5 -0.8 0.025 0.025 

0.0 0.5 0.8 0.043 0.048 

0.5 0.0 0.0 0.046 0.056 

0.5 0.0 0.8 0.043 0.050 

0.5 0.0 -0.8 0.025 0.025 

0.5 0.5 0.0 0.046 0.052 

0.5 0.5 0.8 0.043 0.054 

0.5 0.5 -0.8 0.025 0.025 

 
 

Shown in Table 3 are the estimated Type I error probabilities using method CPB 

when n1 = 10 and n2 = 40. As can be seen CPB generally performs reasonably well 

but situations are encountered where it does not satisfy Bradley’s criterion; 

estimates less than 0.025 occur, the lowest estimate being 0.016 when ρ = –0.8 and 

k = 1. Increasing the first sample size to n1 = 20, now the estimate is 0.033. For 

n1 = 20 and n2 = 50 the estimate is 0.034. 
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Table 3. Estimates of the actual Type I error probability, α = 0.05, n1 = 10, n2 = 40 using 
method CPB. 
 

g h p k=1 k=4 k=1/4 

0.0 0.0 0.0 0.053 0.056 0.065 

0.0 0.0 0.8 0.024 0.015 0.024 

0.0 0.0 -0.8 0.016 0.027 0.031 

0.0 0.5 0.0 0.053 0.055 0.061 

0.0 0.5 0.8 0.024 0.019 0.031 

0.0 0.5 -0.8 0.016 0.022 0.023 

0.5 0.0 0.0 0.053 0.052 0.068 

0.5 0.0 0.8 0.024 0.019 0.028 

0.5 0.0 -0.8 0.016 0.027 0.041 

0.5 0.5 0.0 0.053 0.061 0.059 

0.5 0.5 0.8 0.024 0.018 0.029 

0.5 0.5 -0.8 0.016 0.026 0.029 

 
 

Reported in Tables 4 and 5 are interaction results. Now heteroscedasticity was 

introduced by multiplying the values in the second of the four groups by k. Table 4 

shows the results using method CPH when n1 = n2 = n3 = n4 = 10. As can be seen, 

all of the estimates are reasonably close to the nominal level; the lowest estimate is 

0.048 and the highest is 0.064. Using instead method IPB, the estimates (not shown 

in Table 4) were a bit higher than the estimates using CPH but always less than 

0.07. However, when there is both unequal sample sizes and heteroscedasticity, 

estimates using CPH can exceed 0.075. Results in Table 5 are based on method IPB 

when there are unequal sample sizes. Now the lowest estimate is 0.022 and the 

highest is 0.071. So Bradley’s criterion is met in all situations except when k = 1 

and ρ = 0.8. 
 
 
Table 4. Interaction, estimates of the actual Type I error probability using method CPH, 
α = 0.05, n1 = n2 = n3 = n4 = 10 
 

g h p k=1 k=4 

0.0 0.0 0.0 0.048 0.053 

0.0 0.0 0.8 0.060 0.064 

0.0 0.5 0.0 0.048 0.052 

0.0 0.5 0.8 0.060 0.062 

0.5 0.0 0.0 0.048 0.052 

0.5 0.0 0.8 0.060 0.062 

0.5 0.5 0.0 0.048 0.052 

0.5 0.5 0.8 0.060 0.063 
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Table 5. Interaction, estimates of the actual Type I error probability using method IPB, 
α = 0.05, n1 = 10, n2 = 40, n3 = 10, n4 = 40 
 

g h p k=1 k=4 k=1/4 

0.0 0.0 0.0 0.058 0.067 0.069 

0.0 0.0 0.8 0.022 0.026 0.041 

0.0 0.0 -0.8 0.052 0.069 0.059 

0.0 0.5 0.0 0.054 0.064 0.061 

0.0 0.5 0.8 0.022 0.028 0.030 

0.0 0.5 -0.8 0.052 0.069 0.061 

0.5 0.0 0.0 0.054 0.066 0.071 

0.5 0.0 0.8 0.022 0.028 0.039 

0.5 0.0 -0.8 0.052 0.071 0.056 

0.5 0.5 0.0 0.054 0.066 0.063 

0.5 0.5 0.8 0.022 0.024 0.032 

0.5 0.5 -0.8 0.052 0.071 0.057 

Illustrations. 

Data from Thomson and Randall-Maciver (1905) are used to illustrate the proposed 

methods. They report four measurements for male Egyptian skulls from five 

different time periods: 4,000 BC, 3,300 BC, 1,850 BC, 200 BC and 150 AD. There 

are thirty skulls from each time period. Here the focus is on the first and last time 

periods and two of the measures: skull height and skull length. The probability that 

a randomly sampled pair of observations from 4,000 BC completely dominates a 

randomly sampled pair from 150 AD was estimated to be 0.52. The probability that 

a randomly sampled pair from 150 AD dominates was estimated to be 0.09 and the 

estimate of δ is 0.43. The estimate of P is 0.28 and the p-value based on method C 

is less than 0.001. That is, the results indicate that skull height and length, taken 

together, tend to be smaller in 150 AD. 

A second illustration is based on data from the Well Elderly 2 study (Clark, 

et al., 2011). The general goal was to assess the impact of an intervention program 

aimed at improving the health and wellbeing of older adults. The sample sizes for 

the control group and the experimental group were 227 and 187, respectively. 

Included were two measures of meaningful activities. Comparing the control group 

to the experimental group, Cliff’s method indicated that based on the first measure, 

meaningful activities are more likely after intervention. The p-value is 0.04. For the 

second measure the p-value was 0.05. Of interest is whether these two measures, 

taken together, again indicate that meaningful activities tend to be higher in the 

experimental group. The probability that the control group dominates was 
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estimated to be only 0.29. The probability that the experimental group dominates 

was estimated to 0.40. The estimate of P was 0.56, the 0.05 confidence interval was 

(0.52, 0.62), and the p-value was 0.02. So the results provide further evidence that 

meaningful activities tend to be more likely after intervention. 

Conclusion 

All indications are that method C provides reasonably accurate control over the 

Type I error probability when the sample sizes are equal. However, it is unclear 

when or how this method can be justified when dealing with unequal sample sizes. 

Based on extant results, the best advice is to always use method CPH instead. At 

some level this issue does not seem to raise any practical concerns. In situations 

where method C performs reasonably well, it does not appear to have any practical 

advantage over method CPH in terms of Type I errors and power. The one feature 

of method C that might make it more appealing is that it does not use bootstrap 

samples. That is, changing the seed in the random number generator can have some 

impact on the results using method CPH. Using a relatively high number of 

bootstrap samples can minimize this concern. 

The situation is similar when dealing with an interaction. A simple extension 

of method C, method CPH, performed well in simulations. But for unequal sample 

sizes, method IPB should be used. When method CPH performs well, it provides a 

slight advantage in terms of controlling the Type I error probability. More precisely, 

when the actual level using CPH exceeds the nominal level, the level using method 

IPB was estimated to be higher by a few units in the third decimal place. A positive 

feature of IPB is that, among all of the situations considered, the actual level was 

found to be less than 0.07 when testing at the 0.05 level. A possible appeal of 

method CPH is that it does not use bootstrap samples in contrast to IPB. 

Finally, R functions for applying the methods in this paper are stored in the 

file Rallfun-v35, which can be downloaded from https://dornsife.usc.edu/labs/ 

rwilcox/software/. The function MULNC applies method C when the sample sizes are 

equal and method CPB otherwise. As for interactions, the function MULNC.int 

performs method CPH and MULNCpb.int performs IPB. 
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