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CHAPTER 1. INTRODUCTION 

The incidence and prevalence of Type 2 diabetes (T2D) is climbing steadily across the 

globe. There are approximately 425 million adults living with diabetes around the world with more 

than 90% of them having T2D. This prevalence will increase to 629 million worldwide by 2045 

(1). The incidence of T2D was most commonly seen in older adults; however, it has been 

discovered with increasing incidence in younger adults, adolescents and children due to physical 

inactivity, poor diet and increased incidence of obesity. Despite of the fact that the causes of T2D 

are not been completely understood, it is revealed to be strongly related to overweight, obesity, 

ethnicity, family history and increasing age. Additional but modifiable risk factors include: 

prediabetes, impaired glucose tolerance, excess adiposity, poor nutrition, smoking and physical 

inactivity (1). Among these factors increasing the risk of T2D, the most influential factors are 

behaviors related to modern lifestyle, which include unhealthy food choices and more sedentary 

lifestyle. It has been demonstrated by clinical trials that adopting healthy diet (2-4) and increasing 

physical activity (5) can prevent or delay T2D.  

T2D is characterized by hyperinsulinemia, insulin resistance, and pancreatic -cell failure. 

T2D is generally affected by genetic and environmental factors. Recent studies have revealed 

possible interactions between T2D and the gut microbiome (6, 7). It was revealed that healthy 

individuals and patients with T2D had different composition of gut microbiome, specifically the 

population ratio of Bacteroidetes to Firmicutes (8). In addition, a specific strain (Akkermansia 

muciniphila) was reported to have a decreased abundance even prior to the incidence of diabetes 

and inflammatory bowel disease (9).  

Obesity is one of the major factors that contributes to the incidence of T2D by decreasing 

insulin sensitivity in liver, adipose tissue, skeletal muscle and subsequently induce β-cell function 
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(10). The global prevalence of obesity explains the tremendously increased incidence of T2D over 

the past two decades. Obesity is characterized by low-grade chronic inflammation, and it is known 

to increase the risk of life-threatening diseases including diabetes, cardiovascular diseases, and 

nonalcoholic fatty liver disease. Over 600 million people are suffering from obesity and its related 

comorbidities (11). 

The understanding of obesity etiology and developing effective prevention and treatment 

strategies have been challenging due to various contributing risk factors. Obesity occurs mainly 

due to unregulated balance between energy intake and expenditure. Increasingly researches have 

been focused on the regulation of energy balance, including biological, behavioral and 

environmental interactions from the point of human gut microbiome (12). To reverse the 

consequence of caloric imbalance, lifestyle intervention has been a focus for its potential benefits. 

In general, individuals with modified behaviors achieved effective weight loss of 5% – 10% for 

up to 12 months (13). In addition, the association between obesity and gut microbiome in both 

mouse and human studies have shown evidence that obesity is associated with altered relative 

abundance of gut microbiota diversity, such that a higher capacity for harvesting energy from the 

diet was observed in obese individuals (8). Recent studies have shown evidence that gut microbiota 

has a causal role in energy balance, obesity development and associated metabolic dysfunctions 

(14).  

Gut microbiota 

The human microbiome is a complicated and dynamic ecosystem, which contains trillions 

of microbes. It is considered a “hidden organ” due to its inhabiting microbes (15) and accounts for 

approximately 1 kg of body weight (16). It has effects on nutrient absorption, metabolism, 

immunologic regulation and pathogen resistance (17, 18). Human gut is initially colonized by 

bacteria starting from the mother and the surrounding environment from the moment of birth. 
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Factors contributing to the composition of gut microbiota include infant delivery methods, mode 

of feeding, antibiotic treatment and environment hygiene. In the first year of age, the infant 

gastrointestinal tract (GIT) develops extremely dense microbial colonization when influenced by 

factors including host genotype, gut environment changes and the introduction of solid foods (19). 

The gut microbiota gradually shapes into a stable and more complex community at approximately 

3 years of age (16). In adult individuals, gut microbiota remains relatively stable and most strains 

are gut colonizers for decades. The early colonizers acquired from parents and siblings have the 

most possibility to exert physiologic, metabolic and immunologic effects on the host (20). In fact, 

the ecosystem of gut microbiota is modified by various factors in daily life, including diet alteration 

and antibiotic exposure. Both the gut bacteria and the host receive corresponding nutrients when 

various diets are introduced. According to a mouse study, it has been reported that diet alteration 

accounted for approximately 57% of total structural variation in gut microbiota while genetics 

explained less than 12%. Furthermore, diet might play a dominating role in shaping gut 

environment into an entity which would accelerate the development of metabolic syndrome (21). 

In addition to diet, antibiotic is another factor that significantly disturb the gut microbiota 

ecosystem. When an individual takes a single dose of an oral antibiotic, it takes the gut microbiota 

approximately four weeks to resemble the pre-treatment status while some species need 

significantly longer time such as six months. Repeated antibiotic exposure may also induce a 

diversity alteration that gut microbiota would not be able to recover to its original status ever. 

Instead of recovering, it shifts into a new stabilized but altered composition (18, 22). 

Evidence showed that healthy adults share most bacterial species, which constitute the 

concept of “core microbiota”. On the other hand, culture-independent sequencing researches 

demonstrated a vast gut microbial diversity over time and across populations. There are more than 
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a thousand species-level phylotypes in an adult, while most of them belong to a limited number of 

phyla (15). The two major bacteria divisions that most phylotypes belong to are Bacteroidetes and 

Firmicutes, fewer phylotypes are members of Actinobacteria, Proteobacteria, Fusobacteria and 

Verrucomicrobia phyla (23), and others belong to methanogenic archaea, eukarya and viruses (15).  

Over the last few decades, the discovery of the composition and functions of the human 

gut microbiota has increased enormously. The composition of gut microbiota varies depending on 

pH, temperature, oxygen tension, redox potential, water activity, salinity and light (24). The gut 

microbiota mainly colonizes in the colon where no digestive enzymes are secreted to process 

indigestible macronutrients from the ileum. With gut microbial metabolism, oligosaccharides and 

polysaccharides are processed into short chain fatty acids, and phenolic compounds are processed 

into bioactive compounds (25). Backhead et al. discovered that the alteration of gut microbiota in 

germ-free mice with microbiota achieved from conventionally raised, genetically obese mice 

resulted in an increase of 60% of body fat, and development of insulin resistance in two weeks 

regardless of a decreased consumption by 29% and an increased activity by 27% when compared 

to germ-free mice whose gut microbiota composition was not altered (26).  Based on these findings 

in animal studies, clinical trials have been conducted to study the differences of microbiota in the 

human gut. It was reported that the overweight/obese and lean individuals showed substantial 

differences in intestinal microbiota composition and their functions, which including decreased 

microbial richness and increased pro-inflammatory microbial species related to low-grade 

inflammation and insulin resistance (27, 28). The major contribution of gut microbiota to the host 

is to prevent the colonization of potential pathogenic microorganisms, including outcompeting 

invading ecological niches and metabolic substances from pathogens. In addition, gut microbial 

metabolites are providing up to 50% of the daily energy requirements for colonocytes, which is 
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mainly butyrate by fermenting carbohydrates into organic acids. The gut microbiota also play an 

important role in modulating the host immune system, not only affecting new-borns but also 

healthy adults (29). In fact, the benefits of gut microbiota can be easily overcome by 

gastrointestinal infection, chemotherapy and chronic diseases such as inflammatory bowel disease 

and colon cancer (29). 

Probiotics 

The concept of probiotic was first described as “substances secreted by one microorganism 

which stimulates the growth of another” by Lilly and Stillwell in 1965 (30). In the following two 

decades, the definition of “probiotic” has been continuously revised by Fuller (31) and Havenaar 

et al. (32). The current internationally accepted definition was refined by Guarner and Schaafsma, 

which is “living microorganisms, which upon ingestion in certain numbers, exert health benefits 

to the host beyond inherent basic nutrition”(33). In Expert Panel 2001, the Food and Agriculture 

Organization of the United Nations and the WHO (FAO/WHO) gave probiotics the definition as, 

“living microorganisms that, when administered in adequate amounts, confer a health benefit on 

the host”, which has been most widely adopted and accepted worldwide since then. In the 

following year, FAO/WHO Working Group produced guidelines to help with interpretation of the 

original document (34).  

The effects of probiotics cannot be generalized since the effects are very strain specific. 

And a single probiotic strain might present various benefits when used in combination or used 

individually. The benefits may also vary when used among different individuals (35). 

Bifidobacterium, Lactobacillus and Saccharomyces are extensively studied and commonly used 

as probiotics in humans and animals (36). Dairy products are the most widely distributed products 

containing Lactobacillus and Bifidobacteria, which has made consumers worldwide aware of the 

concept of “probiotics”. Some of the benefits of dairy probiotics have been extensively studied, 
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such as reducing antibiotic-associated diarrhea (37), relieving seasonal allergies (38), improving 

symptoms of inflammatory bowel diseases (39), shortening duration of acute respiratory infections 

in healthy children and adults(40), and lowering blood cholesterol in hypercholesterolaemic adults 

(41). 

Probiotics can interact with the host in multiple ways, which include inhibiting pathogenic 

effects by producing bactericidal substances to compete with pathogens and toxins for adhering to 

intestinal epithelial layer; improving epithelial homeostasis by enhancing barrier function, 

promoting intestinal epithelial cell survival and stimulating epithelial protective responses; 

promoting immune system by modulating innate immunity and controlling pathogen-induced 

inflammation (36). 

Prebiotics 

In addition to probiotics that are beneficial to host health, prebiotics are supplemented to 

boost effects of probiotics. Prebiotics was first defined by Gibson as non-digestible food 

ingredients that can benefit the host health by selectively stimulating the growth and/or activity of 

one single bacterium or a limited number of bacteria in the colon. A food ingredient can be 

categorized as a prebiotic when it meets all the following requirement: Can be neither hydrolyzed 

nor absorbed in upper part of GIT; be a selective substrate for one bacteria or a limited number of 

beneficial bacteria commensal in the colon, which are stimulated to grow and/or are metabolically 

activated; has the ability to alter colonic microbiota by favoring a healthier composition; be able 

to induce luminal or systematic improvement on host health. The potential categories of prebiotics 

include non-digestible carbohydrates, peptides and proteins, and lipids (42).  

In 2016, the International Scientific Association for Probiotics and Prebiotics (ISAPP) 

updated the definition of prebiotic as: a substrate that is selectively utilized by host micro-

organisms and confers a health benefit (43). Ingredients that have been reported with 
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gastrointestinal health benefit include non-digestible oligosaccharides (NDO), human milk 

oligosaccharides, and soluble fermentable fibers. NDO are carbohydrates with low molecular 

weight in-between simple sugars and polysaccharides (44), and the most studied NDO are 

galactooligosaccharides (GOS), fructooligosaccharides (FOS) and inulin. NDO have been used 

widely since 1980 for modifying emulsification capacity, gel formation, viscosity, freezing point 

and coloring in food industry. In addition, NDO show beneficial properties such as moderate 

sweetness, low calorimetric value and low glycemic index. Dietary fibers cannot be digested by 

human enzymes but can be fermented by microbes in the GIT. Common substances produced from 

fermentation are lactic acid, hydrogen, methane, carbon dioxide and short-chain fatty acids 

including acetate, propionate and butyrate. They are able to increase fecal weight and defecation 

frequency, to relieve constipation and improve the health of large intestine mucus layers (45).  

Numerous studies have focused on improving gut microbial ecosystem using prebiotics by 

modification of bifidobacterial and lactobacilli colonization (46). Evidence showed that 

supplementation of prebiotics (a GOS and FOS combination) was associated with reducing early 

occurrences of atopic dermatitis in infants (47); decreasing incidence of atopic eczema in six month 

old infants (48); relief of symptoms associated with intestinal bowel disorders and providing 

positive effects on lowering risk of colon cancer (49); and improving immune responses in elderly 

people (50).  

Food companies started to add prebiotics into probiotic foods in the market, then the term 

“synbiotic” was defined. Andersson et al. gave synbiotics the definition as: mixtures of probiotics 

and prebiotics that beneficially affect the host by improving the survival and implantation of live 

microbial dietary supplements in the GIT of the host (51). Studies have shown evidencs that 



8 

 

   

 

synbiotics are beneficial for immune system, which include reducing C-reactive protein levels, 

increasing glutathione levels (52), and suppressing intestinal and systemic inflammation (53). 

Akkermansia muciniphila 

The probiotic this study focused on was Akkermansia muciniphila (A. muciniphila). The 

name Akkermansia was derived from a Dutch microbiologist Antoon Akkermansia for his 

contribution to the study of microbial ecology. Muciniphila was named after its preference of 

mucin as an important nutrient. The A. muciniphila cells are non-motile, Gram-negative and oval-

shaped. The reason for limited studies on A. muciniphila is the characteristics of strictly anaerobic. 

Growth of A. muciniphila occurs at temperature of 20 - 40 °C with pH 5.5 - 8.0. It is able to grow 

on brain-heart infusion, Columbia media, and gastric mucin. A. muciniphila has the ability to use 

mucin as carbon, nitrogen and energy source (54). It is the first isolated intestinal microbial of the 

Verrucomicrobia phyla (55). It was suggested by Derrien et al that A. muciniphila had a higher 

abundance in the colon than in the ileum, both in mono-colonized and conventionally raised mice 

(56, 57). The development of A. muciniphila in human with different demographics and at various 

life stages was investigated by Carmen et al.. A. muciniphila was detected in the GIT of 1-month 

old infants and it takes less than one year to reach the abundance level of 108 cells/g as in adults 

while the level decreases significantly (1 logarithmic unit) in elderly subjects (58). 

Several clinical studies have been done to reveal abundance of A. muciniphila among 

different target population. Results showed that there is a negative correlation between A. 

muciniphila abundance and BMI, both in children and adults (59-61). Interventions such as weight 

loss and calorie restriction were able to increase A. muciniphila prevalence significantly (62, 63). 

Dietary ingredients were tested for their benefits on A. muciniphila population and relevant 

improvement on host health status. These ingredients included as FOS (64, 65), oat bran(66), black 

tea extracted polyphenols (67), grape pomace polyphenols (68), and cranberry polyphenols (69). 
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With all the potential health benefits, food manufacturers have been promoting food 

products containing probiotics and/or prebiotics. However, before largescale production can be 

achieved, the characteristics of probiotics and optimal culturing conditions should be defined. At 

the present time, there is not much research that has been conducted in these areas. Therefore, the 

current research was conducted to collect this information. 

Specific aims 

The objective of the current study was to improve the growth and survivability of A. 

muciniphila in GIT conditions and to further examine the long term (6-month) dietary effect of A. 

muciniphila supplementation on high-fat diet induced obesity and diabetes in C57BL/6 mice. 

Aim 1 

The first aim was to optimize the growing conditions of A. muciniphila, such as 

temperature, pH and prebiotics. These would subsequently be used in improving techniques to 

overcome the issue of culturing difficulties. It is hypothesized that alternative carbohydrate source 

other than dextrose could also be used as a part of growth medium that may improve the optimal 

growth condition and eliminate adverse effects on host glucose homeostasis. The selected 

prebiotics could be incorporated as synbtiotic to further bring out potential benefits.  

Aim 2 

Aim 2 was to improve sustainability of A. muciniphila in GIT by developing new coating 

technology. From the evaluated properties of A. muciniphila, additional obstacles such as adverse 

environmental conditions from human GIT would be investigated to discover the the ability of A. 

muciniphila to tolerate stressed conditions. Specifically, the significant impact on cell viability 

from human GIT such as the acidic stomach environment and the drastic change in pH post 

stomach digestion with the digestive enzymes would be examined. The improvement of 

encapsulation was hypothesized to enhance cell viability throughout the passage of GIT where 
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harsh environment would significantly diminish cell count post digestion without encapsulation. 

Thus, various frequently used encapsulation methods would be evaluated to determine the 

potential optimal technique in protecting A. muciniphila viability and availability. The optimal 

encapsulation method would ensure the delivery of coated A. muciniphila cell through GIT 

digestion with minimal loss of viability and consequently reaching favorable condition in the large 

intestines.  

Aim 3 

Aim 3 was to determine long term effect of A. muciniphila dietary supplementation on 

high-fat diet induced obesity and diabetes. Continuous supplementation of A. muciniphila was 

hypothesized to maintain C57BL/6 mice glucose homeostasis, reduce body weight and improve 

body composition. It was expected that high-fat fed mice treated with A. muciniphila would 

maintain consistent weight gain similar to that of mice fed the control low-fat diet, and maintain 

normal fasting glucose levels via an altered energy absorption. This aim would focus on evaluating 

potential beneficial effects of A. muciniphila supplementation in order to improve the 

understanding of its sustainability and dosage effect over long time of supplementation. 
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CHAPTER 2. OPTIMIZATION OF THE GROWTH CONDITIONS FOR A. 

MUCINIPHILA 

The determination of optimal growth condition is fundamental but critical because the 

information will be used to further enhance culturing techniques, optimize manufacturing 

processes, determine storage methods and evaluate the necessity of additional protection for 

delivering through human GIT. Temperature and pH are the two most important factors for 

growing microorganisms; therefore, tests were designed to determine the optimal temperature and 

pH for supporting the optimal growth of A. muciniphila within tolerable ranges of temperature and 

pH. To stimulate the growth of A. muciniphila as a probiotic, several well-known prebiotic 

ingredients were compared as part of growth media to create a potentially superior synbiotic 

formula. After achieving an optimal growth condition for A. muciniphila on a small scale, the next 

test was set to find the proper and cost-efficient media supplement for manufacturing A. 

muciniphila for achieving a larger quantity, which could be further utilized when preparing A. 

muciniphila culture for mouse studies and human clinical trials. 

In animals and humans, most of the gut microbiota confronts large amounts of bile salts. 

Bile acids are synthesized mainly from cholesterol in the liver, conjugated with taurine or glycine, 

stored in gall bladder and released into duodenum upon the need in fatty acid digestion. The 

presence of bile salts is continuous through enterohepatic circulation (70). Besides the fact that 

bile salts are natural emulsifiers in the intestines, they also function as a microbial detergent. Some 

microorganisms possess the ability to modify bile salts biochemically to resist the detergent 

property. Therefore, bile salt tolerance (carried out by bile salt hydrolase (BSH) activity) is 

desirable for probiotics (71). In the small intestine, microbial bile salt hydrolase produces 

unconjugated bile acids by removing taurine or glycine molecules (72). Released bile acids are 
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absorbed back to the enterohepatic portal system via terminal ileum, while part of them enters 

large intestine to be metabolized into secondary and tertiary bile acids (73). These freed bile acids 

are less soluble thus less are reabsorbed by intestinal lumen when compared to conjugated bile 

acids. Consequently, these free bile acids are excreted in feces from human body. This could 

promote higher metabolism of cholesterol and lower serum cholesterol subsequently. Based on 

this mechanism, the deconjugation of bile salts by BSH is ubiquitous within healthy gut microbiota 

(74, 75). Probiotics with BSH activity have been proved to improve LDL-cholesterol and 

subsequently bile acids level in clinical study (75). A few microorganisms have been discovered 

with BSH activities, such as Bifidobacterium spp., Lactobacillus spp., Bacteroides fragilis subsp. 

fragilis, Enterococcus spp., Clostridium perfringens, and Listeria monocytogenes (70, 76, 77). 

Inspired by discovery of BSH activity in probiotics like Bifidobacterium spp., Lactobacillus spp, 

BSH activity of A. muciniphila was an evaluation objective for its potential benefits to the host 

health in the current study. 

In addition to discovery of optimum culture and manufacture conditions and potential BSH 

activity of A. muciniphila, the last aim was to evaluate the efficacy of proper storage method for 

maintaining viability of A. muciniphila during short and long-term storage.  

Methods 

Anaerobic culture medium preparation 

Dehydrated Brain-heart Infusion (BHI) medium (Bioworld, Dublin, OH) was dissolved in 

distilled water with concentration of 37 g/L and 0.1% w/v resazurin solution (Thermofisher Acros 

Organics, Morris Plains, NJ) was supplemented afterwards in the medium. After boiling, BHI 

medium was cooled to room temperature while sparging with 100% nitrogen, then dispensed into 

anoxic Hungate-type tubes with a volume of 10 mL each under the same gas atmosphere. Filled 
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hungate tubes were then autoclaved at 121 °C for 15 min, cooled to room temperature, and stored 

at 4 °C for further culture if not used immediately. 

Resuspension and culture of A. muciniphila 

The procedure of resuspension and culturing requires to be under oxygen-free environment. 

The purchased A. muciniphila came in a double-layered vacuum ampoule. One cannula was 

prepared to supply nitrogen to the ampoule containing freeze-dried A. muciniphila powder. With 

gassing cannula inserted in the ampoule, 0.5 mL of BHI medium was added to the vial and the cell 

pellet was resuspended completely. The cell suspension was transferred into a prepared hungate 

tube using a 1 mL syringe with hypodermic needle, which was also flushed with nitrogen. It is 

possible that certain ingredients of the freeze-dried pellet might inhibit growth in the first hungate 

tube, therefore additional two hungate tubes were used to make diluted culture of 1:10 and 1:100 

in order to guarantee successful resuscitation.   

Handling and transferring of actively growing A. muciniphila cultures 

When culturing A. muciniphila in small quantity, hungate tubes were used to culture and 

transfer at all times. The surface of hungate tube cap had to be sanitized before and after inoculation 

and transfer. The butyl rubber septum and screw cap were sterilized over flaming. Since microbial 

growth induces overpressure in hungate tubes, excess gas was removed by puncturing the septum 

with a sterile injection needle. Then a sterile anoxic, disposable 1 mL syringe with a 25 G 

hypodermic needle was used to withdraw and transfer cultures. 

Strain verification 

Contamination quick screening 

Gram staining technique was used for quick screening of cross-species contamination. A. 

muciniphila culture sample was heat-fixed on slide, then stained as manufacturer instructed. 
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Stained slides were viewed under light-microscope (Fisher scientific, Hampton, NH) with oil-

immersion at 100/1.25 lens to check color and shape of cells. 

General PCR verification 

DNA of A. muciniphila sample was extracted using QIAamp DNA Mini Kit (Qiagen, 

Germantown, MD) according to manufacturer’s instructions. Extracted DNA was stored at – 20 °C 

for future tests. Two specific primers were used to verify the sample DNA, 16s rDNA forward 

primer: 5’ CAG CAC GTG AAG GTG GGG AC 3’, 16s rDNA reverse primer: 5’ CCT TGC GGT 

TGG CTT CAG AT 3’ (78). The PCR mixture was prepared with final volume of 25 μL, which 

contained 12.5 μL of 2 x PCR Sigma ReadyMix RedTaq PCR Reaction Mix (Sigma-Aldrich, St. 

Louis, MO), 0.1 μM forward primer, 0.1 μM reverse primer, 2 μL template DNA, 8.5 μL nuclease-

free water. Eppendorf Mastercycler EP S Thermal Cycler (Eppendorf, Hamburg, Germany) was 

used to for PCR with procedure of initial denaturation at 95 °C for 5 minutes, followed by 40 

cycles of denaturation at 95 °C for 15 seconds, primer annealing at 60 °C for 40 seconds, extension 

at 72 °C for 30 seconds, and final extension at 72 °C for 5 minutes. 1.5% agarose gel was prepared 

with 1 x Tris-Borate-EDTA (TBE) buffer for gel electrophoresis. PCR product was compared to 

low range DNA ladder with range 25 – 700 bp (Thermo Fisher Scientific, Ann Arbor, MI). The 

gel containing separated PCR products was visualized by SYBR Green staining under Bio-rad 

Imager (Bio-rad, Hercules, CA). 

Turbidity verification 

Fresh A. muciniphila culture was used from the original A. muciniphila stock, then a ten-

fold serial dilution was made. Duplicated hungate tubes were prepared for each diluted 

concentration. A. muciniphila original culture and all diluted cultures were incubated at 37 °C for 

10 hours. 500 μL of each culture was transferred using an anoxic syringe into 48-well plate and 

optical density (OD) values were measured at 595 nm using Epoch 2 spectrophotometer (Biotek, 
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Winooski, VT). At the same time, each diluted culture was tested for colony forming unit (CFU) 

using pour-plating technique with ten-fold dilution (79). BHI agar was prepared by dissolving 1.6 % 

agar and 3.7 % BHI medium in distilled water. 10 μL of each dilution was pipetted onto the bottom 

of petri dish (60mm x 15mm), then 15 mL BHI agar was poured into the petri dish and swirled for 

even distribution. All petri dishes were placed in anaerobic jar for 24 hours at 37 °C. Standard 

curve was established based on OD values and their corresponding CFU/mL.   

Exponential growth rate calculation 

Growth curve under each condition was established with OD values at each time point. 

Based on the equation achieved by turbidity verification, CFU of each time point could be 

determined by corresponding OD value. The first step was to identify the start and end points of 

exponential phase based on the growth curve. The following formula was adopted to calculate 

growth rate. X0 implies the initial CFU, Xt implies the final CFU and “log” is the logarithm of the 

base (80). 

Growth rategeneration/hour =
2.303 (logXt − logX0)

Duration time (hour)
 

Optimal and tolerable temperature test 

Fresh A. muciniphila culture was used as original culture stock, from which 0.1 mL was 

inoculated into each anaerobic BHI tube. Duplicate hungate tubes were cultured for testing under 

each temperature. Then each sets of tubes were incubated for 10 hours in incubators with 

temperature set up to 25 °C, 35 °C, 37 °C, 40 °C, 43 °C and 46 °C respectively. 500 μL of A. 

muciniphila culture was transferred from each hungate tube into 48-well microplate using anoxic 

syringe and OD values were measured at 595 nm at hourly interval. Consequent growth curves, 

growth rate and final viabilities were generated and calculated. 
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Optimal and tolerable pH test 

After hungate tubes were filled with 10 mL BHI medium, pH value was adjusted to 2, 3, 

4, 5, 6, 6.5, 7, 7.5, 8, 9 with Na2CO3 and HCl using pH meter (Oakton, Vernon Hills, IL). Duplicate 

hungate tubes were cultured for testing at each pH level. All tubes were purged with nitrogen, 

autoclaved and cooled down to room temperature before inoculation. Actively growing A. 

muciniphila was used as the original A. muciniphila stock, then each hungate tube prepared of 

varied pH value was inoculated with 0.1 mL of original A. muciniphila stock. All tubes were 

incubated for 10 hours at 37 °C in incubator. 500 μL of A. muciniphila culture was transferred 

using anoxic syringe from each hungate tube into 48-well and OD values were measured at 595 

nm. Consequent growth curves, growth rate and final viabilities were generated and calculated. 

Prebiotics selection 

Duplicate hungate tubes were used for testing with each prebiotic. After filled with 10 mL 

BHI without dextrose medium, each hungate tube was supplemented with 0.2% w/v prebiotic 

ingredients including: isomaltooligosaccharide (IMO), inulin (INU), fructooligosaccharide (FOS), 

galactooligosaccharide (GOS), guar gum (GG), acacia gum (AG), karaya gum (KG), tragacanth 

gum (81), and potato starch (PS). All tubes were purged with nitrogen, autoclaved and cooled 

down to room temperature before inoculating. Actively growing A. muciniphila culture was used 

as the original A. muciniphila stock, then each supplemented hungate tube was inoculated with 0.1 

mL of orginal A. muciniphila stock. 500 μL of each culture was transferred by anoxic syringe into 

48-well plate, and the plate was incubated at 37 °C for 10 hours. OD values were measured at 595 

nm every 30 min after a 5-second orbital swirl for the most consistent reading. Subsequent growth 

curves, growth rate and final viabilities were generated and calculated. 

Prebiotic ingredients were purchased from the following companies. GG: Bulk 

supplements.com, Henderson, NV; IMO: FiberYum, Hawthorne, NY; INU and TG: MP 
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Biomedicals, Solon, OH; FOS and GOS: Quantum Hi-Tech Biological Company, Guangzhou, 

China; AG: Heather’s Tummy Fiber, Seattle, Washington; KG: Alfa Aesar, Haverhill, MS; PS: 

Bob’s Red Mill, Milwaukie, OR.  

Upscale supplement selection 

The 0.2% w/v dextrose was replaced using five different sugars with the same 

concentration. The supplement options included fructose, galactose, lactose, sucrose and maltose. 

Same volume of A. muciniphila was inoculated into each medium and incubated at 37 °C for 10 

hours. Consequent growth curves, growth rate and final viabilities were generated and calculated. 

After the best three supplement ingredients were selected, the next step was to explore the 

concentration that favored the growth of A. muciniphila most. The concentration levels being 

tested were adjusted to 0.1%, 0.2%, 0.5%, 1% and 2%. Procedure was the same as sugar selection. 

Final viabilities were calculated and compared. 

Quantitative bile salt hydrolase activity 

BSH activity was determined by measuring the amount of amino acid released from 

conjugated bile salts by selected probiotics (82). A. muciniphila culture pellet was collected by 

centrifugation and transferred into 2 mL microtubes. PBS (pH 7.4) buffer was used twice to wash 

off BHI medium from A. muciniphila culture collect at centrifuge speed of 12,000 rpm for 1 minute. 

Supernatant from washing was discarded after centrifuge, then the pellet was resuspended with 

100 μL of PBS buffer and 100 μL of 1% bile salts (LP0055 OXOID, Ontario, Canada) and was 

incubated at 37 °C for 75 minutes. After being centrifuged at 13,000 rpm for 5 minutes, 100 μL 

supernatant was transferred into 1.5 mL microtube and 400 μL of 2% ninhydrin was added. 

Microtubes were heated for 2 minutes in a 90 °C waterbath, and subsequently OD values of all 

culture were measured at 570 nm. One unit of BSH activity (U/g) was defined as the amount of 

enzyme liberating 1mmol of amino acid from the substrate in one minute. The concentration of 
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protein was measured using Bradford method with albumin as standard (Thermo Fisher Scientific, 

Ann Arbor, MI). In addition to A. muciniphila, another four probiotic strains were prepared with 

the same steps as comparisons to A. muciniphila. The strains included Lactobacillus acidophilus 

(Swanson, Fargo, ND), Lactobacillus reuteri (Nature’s Bounty, Bohemia, NY), Lactobacillus 

plantarum (Swanson, Fargo, ND) and Bacillus coagulans (Sundown Naturals, Bohemia, NY). All 

samples were triplicated in this study. 

Storage test 

Storage glycerol solution (50% v/v) was autoclaved and stored at 4 °C for future use. A. 

muciniphila culture was centrifuged, and the pellet was suspended with sterile 50% glycerol 

solution with a ratio of 1:1. The A. muciniphila glycerol mixture was transferred into microtubes, 

flash frozen with liquid nitrogen and stored at - 80 °C. Frozen A. muciniphila glycerol mixture was 

tested for CFU after 1-month, 2-month and 6-month of storage.   

Statistics 

Data were expressed as mean ± SD. Statistical analysis was performed using one-way 

analysis of variance (ANOVA) with a Tukey post-hoc test using GraphPad Prism version 6.00 for 

Windows (GraphPad Software, San Diego, CA). Results were considered statistically significant 

at p < 0.05.  

Results 

Verification of strain A. muciniphila was performed using PCR and gel electrophoresis 

imaging. The band appeared with 327 bp was considered as positive result. The verified A. 

muciniphila culture was used for all further tests. 

The correlation of A. muciniphila culture OD value and its corresponding CFU was 

established as the following equation: 𝑦 = 1𝐸 + 07 𝑥1.2956 (Figure 1).  
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Figure 2 presented the growth of A. muciniphila during an incubation time of 10 hours by 

showing its growth curve at temperature 25, 35, 37, 40, 43 and 46 °C. These growth curves showed 

that temperatures ranging from 35 °C to 43 °C had similar growth curves while 46 °C reduced cell 

growth and cells barely grew under 25 °C. Growth rate (Figure 3) of cells incubated at 35 °C, 

37 °C, 40 °C and 43 °C showed no significant difference. Growth rate at 46 °C was at an 

intermediate level, which was not significantly different from growth rates at all other temperatures. 

Growth rate at 25 °C was significantly slowed down when compared to 35 °C and 37 °C (p < 0.05), 

while no difference was found when compared to growth rates at 43 °C and 46 °C. Figure 4 

presented the effects of temperature on final culture viability (CFU x 106/mL) of A. muciniphila. 

Viabilities were similar at 35 °C, 37 °C and 40 °C while viabilities at 43 °C and 46 °C was 

significantly lower when comparing to 37 °C (p < 0.05). 25 °C supported the growth of A. 

muciniphila at the lowest level, whose viability was significantly less than viabilities at all other 

temperatures (p < 0.0001). 

Growth curves of A. muciniphila in BHI medium with adjusted pH level of 2, 3, 4, 5, 6, 

6.5, 7, 8 and 9 at 37 °C during an incubation time of 12 hours were presented in Figure 5. The 

results showed that pH 6.5 was the best pH promoting growth of A. muciniphila, followed by pH 

6, pH 7 and pH 7.5. Further calculation confirmed that pH 6.5 was the best pH level with the fastest 

growth rate (Figure 6), which was significantly faster than growth rates at any other temperature 

(p < 0.0001). Growth rates at pH 6, 7 and 7.5 were at similar level ranging with no significant 

difference among these three levels. Growth of A. muciniphila at pH 4 and pH 5 were significantly 

slower when compared to pH 6.5 (p < 0.0001) while nearly no growth was detected in medium 

adjusted to pH 2, 3, 8 and 9. The final viability of A. muciniphila at each pH level was presented 

in Figure 7. Medium with pH adjusted to 6.5 promoted the highest final viability, which was 
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significantly higher when compared to the cells grew under all other pH levels (p < 0.0001). 

Medium with pH level at 6 and 7 showed final viabilities at a similar level with no significant 

difference. The viability at pH 7.5 was significantly lower than the viability at pH 7 (p < 0.01) and 

the viability dropped to around 4  106 CFU/mL in medium at pH 5. Medium with pH adjusted to 

2, 3 and 4 was not able to promote the growth of A. muciniphila, whose final viabilities were 

around half of the viability in medium with pH 5. Growth in medium adjusted to 8 and 9 was 

shown with the least viability, which was significantly lower than viabilities at all other pH levels 

(p < 0.0001) 

The effects of prebiotics on growth of A. muciniphila was presented as Figure 8. IMO and 

GOS had the best two growth curves among the nine selected prebiotics. In comparison, medium 

with GG, FOS, INU, AG, KG and TG resulted in reduced cell growth while PS was shown with 

the least growth of A. muciniphila. Further calculation of growth rate (Figure 9) showed that all 

nine prebiotics were able to promote the growth of at a similar growth rate with no significant 

difference. There was no difference found when compared the growth rates in medium adjusted 

with prebiotics to medium with dextrose, except for PS (p < 0.05). Figure 10 presented the final 

viabilities of A. muciniphila in medium modified with each prebiotic. IMO promoted the highest 

viability, which was significantly higher than GOS as the second highest (p < 0.05). FOS, GG, AG 

and INU showed approximately half viabilities of IMO while KG and TG had comparable final 

viabilities as BHI medium with no dextrose. PS showed a significantly lower level of viability 

comparing to all other prebiotics (p < 0.0001). 

Figure 11 presented the effects of sugars on growth of A. muciniphila. There were four 

candidates showing similar growth curves, which were fructose, dextrose, sucrose and lactose. 

Fructose and dextrose had same sharp exponential phase, and sucrose had similar OD value as 
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fructose during lag phase. A. muciniphila cultured in lactose medium showed longer time in 

exponential phase with lower final viability when compared to cultures in fructose, sucrose and 

dextrose medium. Maltose medium was able to support the growth of A. muciniphila, which 

presented a good exponential slope while the final OD value was less than half of values measured 

in top four sugar media. Culture in galactose medium revealed nearly the same growth curve as 

control, which was BHI medium without dextrose. Calculation of growth rate (Figure 12) reported 

that growth rates of A. muciniphila in fructose, sucrose and maltose reached to a similar growth 

rate as in dextrose with no significant difference noted. Growth in lactose and galactose was 

significantly slower than the growth in fructose and dextrose (p < 0.01). The final cell viabilities 

suggested that A. muciniphila achieved the highest viability in medium fortified with fructose, 

which was significantly higher than that in dextrose (p < 0.05). The second highest viability was 

observed in sucrose, which promoted the viability of A. muciniphila with no significant difference 

from the viability in dextrose. Lactose was able to promote the viability of A. muciniphila at an 

intermediate level, which was significantly lower than fructose and sucrose (p < 0.05) but 

significantly higher than maltose and galactose (p < 0.0001). It was clear that A. muciniphila could 

grow in medium adjusted with maltose and galactose; however, the viabilities were at the same 

level as in control medium with no significant difference, which were only around one third of the 

viability in fructose medium (Figure 13). 

The effects of sugar concentrations on A. muciniphila final culture viabilities were showed 

in Figure 14. A similar trend was found among all three figures, which showed that medium with 

0.5, 1.0 and 0.2% of sugar were the best three concentrations with higher level of final culture 

viabilities than at other two concentrations. In medium adjusted with fructose, 0.5% fructose 

showed a significantly high level of viabilities when compared to 1.0% (p < 0.01) and 0.2% (p < 
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0.001). Dextrose with concentrations of 0.5% and 1.0% promoted the highest viabilities, which 

were significantly better than viability achieved at concentration of 0.2% (p < 0.01). In medium 

adjusted with sucrose, viabilities were similar at concentrations of 0.2, 0.5 and 1%, which were 

significantly higher than at other concentrations (p < 0.01). 

BSH activity of strains A. muciniphila, L. acidophilus, L. reuteri, L. plantarum and B. 

coagulans were compared in  

Table 1. To appropriately compare their BSH activity, all probiotics strains were adjusted 

to start with a similar total protein content of approximately 356.5 (μg/mL). Results showed that 

L. reuteri and L. plantarum had significantly higher BSH activity levels than all the other strains 

(p < 0.0001). L. acidophilus, A. muciniphila and B. coagulans presented a similar level of BSH 

activity without significant differences. 

The efficiency of glycerol stock in maintaining viabilities of A. muciniphila was presented 

in Figure 15. Results showed that A. muciniphila was able to be recovered successfully with less 

than 0.1 Log number of viability lost after 1, 2 and 6 months of storage. 

Discussion 

Routine verification of A. muciniphila was tested using PCR and gel electrophoresis 

imaging. Cultures with positively verified A. muciniphila were used for all further tests. Thus there 

should be no concern regarding contamination of all the test samples. 

In order to culture sufficient amount of A. muciniphila for discovering its characteristics 

and preparing for in-vivo mouse supplementation study, it is necessary to identify the best growth 

conditions for culturing A. muciniphila. Based on previous findings, A. muciniphila was able to 

grow within 20 - 40 °C with pH range of 5.5-8.0 (54). The growth of bacterial can be largely 

characterized by three fundamental growth constants, which are exponential growth rate, lag time 

and total growth (83). Due to the shape of standard curve, the determination of lag time is difficult 
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to guarantee the precision. Therefore, growth rate and final cell viability were used to determine 

the optimal growth conditions for A. muciniphila. It was found that A. muciniphila was able to 

growth within the temperature range of 25 – 46 °C. Based on calculated growth rates and final 

viabilities, temperature from 35 – 43 °C could promote the growth with no significant difference 

among the different temperatures. Temperature at or below 25 °C and temperature at or above 

46 °C were not appropriate temperatures for A. muciniphila to grow. The next growth condition 

being evaluated was pH tolerance range, which helps to determine optimal growing pH and also 

important for exploring the survival rate of A. muciniphila under various pH environment in 

GIT. To exert health benefits, dietary probiotics have to survive through GIT (stomach acids) and 

colonize in the gut (84). Therefore, the growth of A. muciniphila were compared in culture medium 

with adjusted pHs including pH 2, 3, 4, 5, 6, 6.5, 7, 7.5, 8, and 9. The results showed that the 

optimal pH range for culturing A. muciniphila should be controlled within 6 – 7.5 

where pH 6.5 was the best pH level, which was consistent with the findings from previous study 

(54). The minimal cell growth at pH 2, 3, 4, 5, 8 and 9 indicated a low survival probability of A. 

muciniphila when administered orally. In short conclusion, A. muciniphila showed similar growth 

under a range of temperature; however, it was highly sensitive to different pH levels. Therefore, 

the control of culture pH is the most critical step to guarantee the optimal growth of A. muciniphila. 

The gastric pH values of healthy adults are within the range of pH 2 – 3 under fasting 

conditions. While during gastric emptying procedure, pH level changes from highly acidic 

environment in stomach to nearly neutral environment in duodenum (pH 6 – 6.5). In small 

intestines, pH shifts gradually in different locations as well:  pH value is 7.4 in terminal ileum, 5.7 

in cecum and 6.7 in rectum (85). Based on these conditions and the results, the in-vivo delivery of 

probiotics through stomach is critical since the strongly acidic condition would significantly 
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diminish the viability of A. muciniphila. Therefore, an effective protection method is necessary 

to maintain the integrity of probiotics through GIT. 

Limited studies have been done to investigate proper prebiotics for promoting growth of A. 

muciniphila. A previous study showed that supplementation of FOS restored the decreased A. 

muciniphila population of 107/g feces back to 109/g feces induced by obesity in DIO mice (78). 

Similar promoting benefit was reported by Everard et al. and Reid et al. as well (65, 86). Although 

FOS has been widely investigated as a common prebiotic, there are a number of potential prebiotic 

ingredients haven’t been evaluated for the strain of A. muciniphila. Therefore, nine prebiotic 

ingredients including IMO, INU, FOS, GOS, GG, AG, KG, TG and PS were evaluated. To 

compare the potential effects of prebiotics on A. muciniphila growth, 0.2% w/v dextrose as a 

carbohydrate source in BHI medium was replaced by each of the individual prebiotic at the same 

concentration and subsequently being inoculated with A. muciniphila. Based on the comparison of 

exponential growth rates of A. muciniphila, it was concluded that IMO and GOS were able to 

support the growth of A. muciniphila at the best efficiency when compared to all other prebiotics. 

The potential factor for their superior bioavailability to A. muciniphila might be due to the simple 

structures of sugar molecular composition as compared to other sugar molecules. Viabilities of A. 

muciniphila in medium with other prebiotics suggested that these prebiotics were not favoring 

ingredients for A. muciniphila growth, which could be explained by their long and complex 

structure branch-chained with extra sugar or sugar acid units such as mannose, rhamnose and 

galacturonic acid. In conclusion, IMO was the best prebiotic option in promoting growth of A. 

muciniphila in regard to growth rate and final viabilities. A synbiotic formula of A. muciniphila 

with IMO would be able to deliver additional viabilities and its related benefits. 
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In addition to optimum growth condition in terms of temperature and pH, optimization of 

cost-efficient and effective ingredients was also investigated for finding better method to promote 

productivity in scaling up A. muciniphila production. According to results of prebiotics test, we’ve 

demonstrated that dextrose was the best ingredient that showed the outstanding growth rate and 

the highest culture viability as expected. Additionally, dextrose is less expensive as compared to 

all other types of prebiotics. Inspired by this finding, six common carbohydrates were tested, which 

included dextrose, galactose, lactose, fructose, sucrose and maltose. Final culture viabilities 

indicated that fructose and sucrose promoted the most growth of A. muciniphila. In conclusion, 

fructose was the best sugar for culturing A. muciniphila. Dextrose was another candidate that could 

assure fast growth rate while sucrose was the candidate to guarantee a better culture viability. 

Before starting to produce large quantity of A. muciniphila for animal study, it was 

necessary to determine the optimal concentrations for the selected top three sugars. Results have 

shown that 0.5% of sugar supplementation promoted the best growth of A. muciniphila, which was 

significantly higher than the growth in BHI culture medium with an original sugar concentration 

of 0.2%. A sugar concentration higher than 1.0% was shown to lower viability of A. muciniphila 

suggesting that the osmotic pressure balance might be disturbed by higher concentration of sugar. 

In conclusion, the optimal concentration for culturing A. muciniphila was 0.5% of fructose, sucrose 

or dextrose. 

Inspired by evidences that Lactobacillus strains having varied level of bile salt hydrolase 

activity (87, 88), the BSH activity of A. muciniphila was also investigated. L. acidophilus, L. 

reuteri, L. plantarum and B. coagulans were compared with A. muciniphila. L. acidophilus has 

been reported to present hydrolase performance for sodium glycocholate and sodium taurocholate 

in a previous study (89). B. coagulans was lately shown to have deconjugation ability on bile salts 
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(90) while its BSH activity level has not been quantified. In this study, L. acidophilus, B. coagulans 

and A. muciniphila were shown to have a similar level of BSH activity with no significant 

difference observed among these three strains. These results indicated that A. muciniphila would 

have a good survival rate due to its BSH activity, which could protect probiotics against the 

detergent effects of bile salts in the gut. 

Following optimizing the culturing conditions of A. muciniphila, its stability and potential 

functions were evaluated as well. Before moving forward, an effective storage method had to be 

evaluated and confirmed. Glycerol stock is the solution normally used for long-term bacteria 

storage. To ensure A. muciniphila with reliable quality and quantity during storage, the efficiency 

of 50% glycerol stock has been confirmed in this study. The viability of strictly anaerobic strain 

A. muciniphila could be guaranteed with minimal loss of viability after being stored within glycerol 

stock in short-term and long-term storage.  
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CHAPTER 3. ENHANCE THE SUSTAINABILITY OF A. MUCINIPHILA IN GIT USING 

ENCAPSULATION TECHNOLOGY 

Preserving the sustainability of probiotics is extremely important to convey potential 

benefits to the host. Probiotics, especially a large number of anaerobes, are fragile cells which 

could be affected by a wide range of environmental factors including atmosphere, pH, temperature, 

acidification during fermentation and hydrogen peroxide production. In the current market besides 

capsulated supplements, probiotics are widely incorporated in dairy products. Meanwhile, the 

variety of non-dairy food products is increasing rapidly as well, such as energy bars and beverages 

(91). However, the survival of probiotics in those products has been reported to be low (92). 

Therefore, it is important to design in vitro studies to investigate the ability of probiotic strains 

survivability through harsh environment such as GI tract. Resistance to high acidity in stomach 

and to high concentration of bile components in proximal intestine are critical selection criteria for 

probiotics. Since Lactobacillus and Bifidobacterium have been widely incorporated in food 

products, their tolerance to low pH and bile salts were extensively studied. Evidences showed that 

popular strains such as Lactobacillus casei, Lactobacillus acidophilus, Bifidobacterium animalis, 

Bifidobacterium lactis showed minimal survival rate under these stress factors (93). For spore-

forming lactic acid producing bacteria, very few strains (Bacillus laevolacticus and most 

Sporolactobacillus strains) were tolerant to acidic environment while only Bacillus racemilacticus 

and Bacillus coagulans were tolerant to bile salts (94).  

Based on previous evidence that most probiotic strains would lose viability in simulated 

stomach and intestine conditions, protecting viable quantity and maximizing health benefits of 

those probiotics have drawn extensive research interest (95). When incorporating microbial 

species in foods or supplements, a functional dose is required. Health Canada accepted that when 
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Bifidobacterium and/or Lactobacillus is delivered orally, the dose level should be at one billion (1 

x 109) CFU per serving. The Italian Ministry of Health has regulated that the number of viable 

cells administered per day should be 1 x 109 CFU minimum (34). The efficacy of added probiotic 

strains depends on the dosage and the viability throughout the digestive tract after consumption. 

Dairy companies have modified their formulations to ensure sufficient viability in their probiotic 

products, such as using freeze-dried powders, or packaging with sachet and stick forms (96).  

Nowadays, encapsulation has been used for maintaining probiotic viability in food 

products. It is a process of utilizing a material or system to coat or entrap one or a mixture of 

materials. The coating material is called wall material or shell and the material coated is called 

core material or internal phase. The wall material is designed to protect the core material against 

environmental stresses including oxygen, acidity, enzyme reactions (97). Encapsulation 

techniques are utilized to produce efficient delivery vehicle to target locations within GIT, which 

have been extensively utilized in food industry. The current family of encapsulation includes 

emulsification, coacervation, spray-drying, freeze-drying, and extrusion (92).  

Spray-drying is one of the most widely utilized encapsulation technologies in commercial 

food processing. It is considered as an inexpensive, fast and consistently reproducible procedure. 

The principle of the procedure is dissolving the core material in a dispersion of matrix material. 

The dispersion is atomized by heated air to remove water quickly, and then separate powdered 

particles at a lower temperature. The major disadvantage is the high temperature could be 

detrimental to temperature and oxygen sensitive constituents, especially probiotic culture (98).  

On the other hand, freeze-drying is an alternative to spray-drying for probiotics that are 

sensitive to heat or oxygen. The lyophilization procedure produces a vaccum-drying condition 

under very low temperature, which significantly preserves viability of microorganism during 
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process. The process is beneficial for oxygen sensitive strains whose viability would be 

dramatically damaged during spray-drying. However, commercial application of freeze-drying is 

limited due to its higher cost and longer processing time when compared to spray-drying (99). 

Extrusion is another encapsulation technology which is less hazardous when compared to 

spray-drying. It is a procedure of producing small droplets of an encapsulated material using 

pressure to force solution through openings in droplet-generating device or nozzles. The size of 

droplets depends on diameter of openings or nozzle. This technology is relatively gentle and it 

could be operated under aerobic or anaerobic environment (92). Syringe-extrusion is one of the 

common used process, which is typically used to produce alginate beads. An alginate solution 

containing bioactive core is extruded in calcium chloride solution to form droplets (99). For the 

basic protection against acidity, alginate beads have been proven to maintain viability throughout 

GIT and can be suitable for long-term storage (100). 

There is no study showing evidence regarding the tolerability of A. muciniphila to high 

level of acid and bile salt. In current study, the first objective was to investigate the survival rate 

of A. muciniphila under stressed environment. The second objective was to evaluate the best 

encapsulation methods to preserve the viability of A. muciniphila; in addition, the ability of 

encapsulation in protecting the bioactivity of A. muciniphila was further investigated using a 

simulated digestion method. It was hypothesized that a significantly improved viability would be 

observed using encapsulation method when compared to delivering probiotics with no protection. 

Methods 

Acid tolerance 

A. muciniphila cells were harvested by centrifugation and were washed three times using 

PBS. Washed pellet was suspended with 1 mL of BHI. Fresh simulated gastric solution was 

prepared daily by mixing 3 g/L pepsin in 0.9% w/v saline, and the pH was adjusted to 2.0. The 
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suspended A. muciniphila was mixed with 5 mL of simulated gastric solution and 1.5 mL of 0.9% 

w/v saline (87). The mixture was incubated at 37 °C for 3 hours, during which 0.1 mL aliquots 

were drawn to determine viability at constant intervals of 0, 1, 2 and 3 hours. 

Bile salts tolerance 

Bile salt medium was prepared by suspending 0.3% w/v bile salts (LP0055 OXOID, 

Ontario, Canada) in BHI medium. A. muciniphila cells were harvested by centrifugation and were 

washed twice using 0.9% saline (87). Washed pellet was suspended in 1 mL bile salt medium and 

inoculated into bile broth and incubated at 37 °C for 3 hours, during which 0.1 mL aliquots were 

drawn to determine viability at constant intervals of 0, 1, 2 and 3 hours. 

Spray-drying 

A. muciniphila culture was centrifuged to form A. muciniphila pellet, which was suspended 

with PBS to prepare for spray-dry. The Yamato GB210A spray dryer (Yamato Scientific America, 

Santa Clara, CA) was used in current study. Inlet temperature was set to 120 °C and outlet 

temperature was 55 – 60 °C. Speed was controlled at 1.75 mL/min, and pressure was 0.15-0.20 

Mpa. Dried A. muciniphila powder was sprayed into the collector and then stored in 50 mL tubes 

at – 20 °C for testing. Viability of A. muciniphila stock prepared for spray-drying and viability of 

spray-dried A. muciniphila powder were compared using pour-plating method to evaluate the loss 

of cell viability during spray-drying procedure. All samples were tested in duplicates. 

Freeze-drying 

A. muciniphila culture was centrifuged to form A. muciniphila pellet, which was suspended 

with sterile 10% sucrose BHI solution in 50 mL tube to prepare for freeze-dry. The A. muciniphila 

and sucrose BHI mixture was flash frozen with liquid nitrogen and stored at – 80 °C overnight. In 

the next day, the 50 mL tube was uncapped, sealed with gauze and was freeze-dried for 48 hours 

using FreeZone Triad Freeze Dryer (Labconco, Kansas City, MO). Freeze-dried A. muciniphila 
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was gently grinded into powder and stored in – 20 °C freezer. Viability of A. muciniphila stock 

prepared prior to freeze-drying and viability of freeze-dried A. muciniphila powder were compared 

by pour-plating method to evaluate the loss of cell viability during freeze-drying procedure. All 

samples were tested in duplicate. 

Extrusion 

Freeze-dried A. muciniphila powder was dissolved in 1% sterile sodium alginate solution 

(Sigma-Aldrich, St. Louis, MO) at 5% (w/v). A homogenizer (IKA-labortechnik, Wilmington, NC) 

was used to homogenize A. muciniphila powder with the solution. Once the mixture was fully 

homogenized, it was transferred into a 60 mL syringe with a 22 G needle to extrude droplets into 

sterile 0.1 M CaCl2 solution (Thermo Fisher Scientific, Ann Arbor, MI). Droplets of A. muciniphila 

formed solid sphere beads after a 30-minute swirl in the CaCl2 solution. All the beads were drained 

from the solution and washed twice with sterile deionized water to get rid of excessive solution. 

Washed beads were dehydrated in the dehydrator (Excalibur, Sacramento, CA) at room 

temperature for 48 hours, and stored at room temperature after fully dehydrated. Viability of A. 

muciniphila stock prepared for extrusion and viability of dehydratedd A. muciniphila beads were 

compared using pour-plating method to evaluate the loss of cell viability during extrusion 

procedure. All samples were duplicated in the test. 

Extrusion efficacy test 

The efficacy of encapsulated A. muciniphila beads was evaluated using simulated 

gastrointestinal digestion fluids to investigate the protective effect of encapsulation on viabilities. 

PBS with 3 mg/mL pepsin (Sigma, St Louis, MO) was adjusted to pH 2 and enteric digestion fluid 

(EDF) were used to simulate pH and digestive enzymes as human GIT. EDF was prepared with 

the following formula: 0.4% w/v pancreatin (Sigma, St Louis, MO), 1.5% w/v bile salt (LP0055 

OXOID, Ontario, Canada), 0.5% w/v amylase (Sigma, St Louis, MO), 0.1% w/v trypsin (Sigma, 
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St Louis, MO), and 0.5% w/v lipase (Sigma, St Louis, MO) (81). A. muciniphila beads were 

weighed first and then added into pepsin-PBS for an incubation of 1 hour at 37 °C. All liquid was 

discarded after incubation. Then EDF was added and incubated with A. muciniphila beads at 37 °C 

for 1.5 hours. After incubation, A. muciniphila beads were drained from excessive liquid and 

washed with sterile deionized water. Washed A. muciniphila beads were added into sterile PBS 

and homogenized. Serial dilution and pour-plating method were used to test the viability of beads. 

At the same time, the same amount of original A. muciniphila beads were processed with same 

procedure and tested for viability as untreated control.  

Statistics 

Data were expressed as mean ± SD. Statistical analysis was performed using one-way 

analysis of variance (ANOVA) with a Tukey post-hoc test using GraphPad Prism version 6.00 for 

Windows (GraphPad Software, San Diego, CA). Results were considered statistically significant 

at p < 0.05.  

Results 

Figure 16 showed the effects of low pH and pepsin on viability of A. muciniphila. It was 

clear that A. muciniphila was intolerant to this stressed condition. One hour of incubation resulted 

in loss of 3.7 Logs of CFU (p < 0.0001), while in the following two-hour incubation, the cell 

viability was maintained at a relatively stable status with no significant difference in the following 

hours. 

The tolerance ability of A. muciniphila to bile salts was presented in Figure 17. A. 

muciniphila was observed with a significant decreased level of viability (1 Log number) within 

the first hour (p < 0.0001). The viability was maintained at a similar level with no significant 

difference in the following two hours.  
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Table 2 listed the loss of viabilities after the procedure of encapsulation. Freeze-drying 

method showed the minimal loss of cell viability and extrusion method presented an intermediate 

preservation. Among three methods evaluated, viability of A. muciniphila had the most loss during 

the procedure of spray-drying. Consequently, freeze-drying and extrusion methods were selected 

for testing protection efficacy through simulated GIT. The results noted that freeze-dried A. 

muciniphila without protection encountered a tremendous decrease of viability while extruded 

beads were able to maintain A. muciniphila viability to the maximum level with barely no loss. 

Discussion 

The significant loss of CFU in both simulated stomach and proximal intestinal conditions 

indicated that A. muciniphila was not able to survive through acidic environment as in a stomach. 

This finding was consistent with previous test in exploring optimal pH for promoting growth of A. 

muciniphila, which reported that A. muciniphila was sensitive to low pH level (pH < 5) and was 

not able to survive. When testing its tolerance to bile salt, there was only 1 Log number of decrease 

found in its cell viability, which suggested that A. muciniphila had better tolerance to bile salts 

when compared to acids. The previous data reported that A. muciniphila showed a good BSH 

activity, which helped with bile salts deconjugation and elimination of the detergent effect of bile 

salts on A. muciniphila. In conclusion, it was necessary to provide additional protection for A. 

muciniphila in order to guarantee sufficient and viable cells through human GIT. 

The determination of proper encapsulation method is extremely critical for incorporating 

probiotics in food products with adequate amount of living cells. In this study, three widely used 

encapsulation methods were tested to determine the optimal vehicle for protection and the potential 

delivery of A. muciniphila. The results showed consistency as hypothesized that freeze-drying 

method maintained the highest viability of A. muciniphila while extrusion method showed an 

higher viability loss, which was possibly due to steps as washing, drying and dehydration 
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additional to the steps of freeze-drying. The largest viability loss during spray-drying process 

might be caused by high temperature and potential air exposure. Although spray-drying is the most 

time and cost saving method among the three options, result in this study suggested that spray-

drying would not be a proper encapsulation method for processing A. muciniphila especially in 

large quantity production. Based on this comparison, freeze-drying and extrusion were reliable 

encapsulation methods to minimize the loss of A. muciniphila cells during process. The next step 

was to test the efficacy of freeze-drying and extrusion in protecting A. muciniphila from low pH 

and enzyme activities through simulated gastrointestinal digestion. The results showed that A. 

muciniphila beads produced from extrusion method were effective in maintaining viabilities under 

simulated stressed environment. The minimal loss in CFU has proved that A. muciniphila beads 

could highly preserve the cell viability while the coating served anti-acid and non-enzymatic 

reactive purposes. In comparison, the huge viability loss in freeze-dried A. muciniphila powder 

indicated that A. muciniphila cells barely survived with sucrose solution as the only coating 

material. In conclusion, extrusion would be the best encapsulation technique that could be used to 

incorporate A. muciniphila in food product to minimize cell loss during processing and GIT 

digestion. This efficient protection could guarantee bioaccessibility and bioavailability of A. 

muciniphila for subsequent beneficial function in GIT.  
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CHAPTER 4. LONG-TERM DIETARY EFFECTS OF A. MUCINIPHILA 

SUPPLEMENTATION ON HIGH-FAT INDUCED OBESITY AND DIABETES  

In-vivo study is useful to better understand the effect of gut microbiota on health and 

disease. Various studies have been focused on individual biomarkers or key attributes for certain 

adverse physiological conditions (101); however, very few studies suggested any longer-term 

effect for A. muciniphila administration in an obese mouse model. Current study was designed to 

attempt to evaluate weight loss potential and glycemic control, and to observe possible sustainable 

effects of A. muciniphila supplementation over a significantly longer period in a diet-induced 

obese mouse model. It was hypothesized that supplementation of A. muciniphila for six months 

would decrease body weight gain and improve glucose homeostasis. Mouse body weight was 

monitored regularly in this study; additionally, individual mouse body composition was measured 

at the end of the study to further investigate the effects of long-term A. muciniphila 

supplementation. Glucose homeostasis was also evaluated to understand the effect of A. 

muciniphila on parameters including fasting blood glucose, glucose tolerance and insulin 

resistance. It was intended to further explore the potential anti-obesity mechanism of A. 

muciniphila. Energy balance including food intake, fecal energy loss and basal energy expenditure 

were measured to provide valuable information on energy absorption and metabolism. In addition, 

supplementation safety of A. muciniphila oral administration was evaluated for the intention of its 

future potential human study and food product development as a probiotic additive. The results 

achieved from this mouse study would be informative and inspiring for future investigation of A. 

muciniphila in clinical studies. 
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Methods 

Experimental animals 

6-8 week old male C57BL/6 mice (Charles River Laboratoreis, Wilmingtong, MA) were 

housed in Biological Science Building within a controlled environment: 12-hr day/night cycle, 

room temperature kept at 72 - 77 °F, and moisture of 35 - 40%. Mice were randomly grouped as 

six mice per cage with food and water ad libitum. Sani-chip bedding was provided in each cage to 

avoid possible consumption of bedding materials. Upon reception, mice were acclimated for three 

days with control diets. Grouped mice were assigned to three groups of 12 including control diet 

(CD), high-fat diet (HF) and A. muciniphila supplemented high-fat diet (A. m). The energy content 

of CD diet was 3.85 kcal/gram, which contained 10% of calories from fat and 70% from 

carbohydrate (D12450J, Research Diets Inc, New Brunswick, NJ). The HF diet had 5.24 kcal/gram, 

with 60% energy from fat and 20% from carbohydrates (D12492M, Research Diets Inc, New 

Brunswick, NJ). All diets were stored at 4 °C until use. Mice in group A. m had daily oral 

administration of A. muciniphila solution with a CFU of approximately 1010. A. muciniphila 

solution was prepared daily by washing frozen A. muciniphila glycerol stock twice with sterile 

water for the purpose of getting rid of any excess storage media solution with glycerol. The final 

A. muciniphila culture pellet was resuspended in sterile water and fed to mice within 30 min after 

preparation via gavaging. Mice in group CD and HF were orally administered daily with equivalent 

volume of sterile water. Treatments lasted for six months. Food intake and body weight were 

recorded weekly. Mice in groups HF and A. m were transferred to Wayne State University iBio 

facility in the fifth month of treatment. After three-weeks’ stay in iBio facility, mice returned to 

Biological Science Building. 
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Glucose homeostasis analysis 

Fasting glucose was measured monthly and the last measurement was performed prior to 

sacrifice. In each of the monthly blood collection, mice were fasted for six hours with only water 

provided. Mouse was restrained in the restraining device with the tail exposed. A small drop of 

blood was obtained from the tail vein and placed on the test strip of blood glucose meter. Accu-

check glucometer was used in this study (Roche, Indianapolis, IN).  

Glucose tolerance test was performed in the fifth month of treatment. Glucose solution 

(10%) was prepared and subsequently filtration sterilizated using a 0.2 μm syringe filter. Following 

the same fasting procedure as above, fasting blood glucose of each mouse was measured as the 

first time point. Each mouse was then gavaged with a glucose solution with a dose of 2 mg/g of 

body weight. Blood glucose levels of each mouse were measured at 15, 30, 60 and 120 minutes 

time points. Areas under the curve were calculated using standard trapezoid method (102).  

Fecal energy test 

Fecal samples were collected in the fifth month of treatment. Fecal pieces from each 

individual cage were collected for a 24-hour period with food and water provided. Samples were 

air-dried and stored in - 20 °C for further analysis. Bomb Calorimeter (Parr, Moline, IL) was used 

to measure fecal energy content. In order to produce sufficient energy output, duplicated fecal 

samples of 0.5 g each from each cage was weighed and burnt in the calorimeter to measure energy 

released from the samples by measuring the quantity of heat produced. The fecal energy (kcal/g) 

was calculated based on the actual amount of fecal content combusted, which was pre-test fecal 

sample weight with post-test non-combustible residue weight subtracted. In addition, fecal energy 

output/ energy intake ratio was calculated using the following formula: output ratio = total feces 

energy/ total energy intake  100%. 
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Body composition analysis (BCA) and energy expenditure analysis 

Mice of group HF and A. m were transferred to Wayne State University iBio facility at the 

end of fifth month. After a three-day acclimation, lean mass and fat mass of each mouse were 

determined using EchoMRI-100 analyzer (EchoMRI, Houston, TX). Mouse was placed in the 

holder tube without anesthetization, and the holder was inserted into the MRI analyzer. It took 2 -

3 minutes to finish the measurement of one mouse. In this study, each mouse was measured 

consecutively three times to minimize free water error during measurement. 

After BCA was performed, each mouse in groups HF and A. m was caged individually for 

five days in TSE PhenoMaster home cage system (TSE systems, Chesterfield, MO). Activity level 

of each mouse was measured by light beam interruptions recorded by activity monitor embedded 

in the metabolic cage. Records were generated automatically to report the accumulation of distance 

travelled. 

Blood collection and serum sample preparation 

After each mouse was euthanized by CO2 exposure, approximately 1 to 1.5 mL of blood 

was collected from each mouse using heart puncture method. Cervical dislocation was performed 

afterwards to make sure mouse was deceased. The blood sample collected was transferred into a 

1.5 mL microtube and left undisturbed at room temperature for approximately 30 min. Blood 

samples were then centrifuged at 1000 g for 10 minutes at 4 °C and the resulting supernatant was 

aliquoted immediately into microtubes for different tests in order to avoid freeze-thaw cycles. All 

microtubes were stored in a - 80 °C freezer for future testing. Any hemolyzed samples were 

excluded from all tests. 

Homeostatic model assessment of insulin resistance (HOMA-IR) 

Fasting insulin was measured as manufacturer instructed using Ultra sensitive mouse 

insulin ELISA kit (#90080 Crystal Chem, Doners Grove, IL). OD values were measured within 



39 

 

   

 

30 minutes using plate reader at 450 nm and 630 nm. Insulin standard curve was generated to 

quantify sample fasting insulin levels. OD values of mouse serum samples were interpolated using 

the mean absorbance value of each sample and the standard curve. Fasting glucose and fasting 

insulin results were used to calculate HOMA-IR using the following equation: HOMA-IR = 26 x 

fasting glucose level (mg/dL) x fasting insulin level (ng/mL) / 405 (103). 

Toxicity evaluation 

Serum alanine transaminase Assay 

Serum alanine transaminase (ALT) concentration was measured as manufacturer instructed 

using ALT assay kit (#EALT-100, BioAssay Systems, Hayward, CA). OD values were measured 

at 5 minutes and 10 minutes at 340 nm. ALT activity was determined using the equation: 

𝐴𝐿𝑇 (𝑈/𝐿) = 381 ×
∆OD𝑆−∆OD𝑁𝐴𝐷𝐻

𝑂𝐷𝑆𝑇𝐷−𝑂𝐷𝐵𝐿𝐾
. ∆ODS was calculated by subtracting each sample OD at 10 

minutes from the OD at 5 minutes. ∆ODNADH was calculated by subtracting NADH standard OD 

at 10 minutes from the OD at 5 minutes. ODSTD and ODBLK were OD values of NADH standard 

and blank at 340 nm at 5 minutes. 

Aspartate transaminase assay 

Serum aspartate transaminase (AST) concentration was measured as manufacturer 

instructed using AST assay kit (#EASTR-100, BioAssay Systems, Hayward, CA). OD values were 

measured at 5 minutes and 10 minutes at 340 nm. ALT activity was determined using the equation: 

𝐴𝑆𝑇 (𝑈/𝐿) = 388 ×
∆OD𝑆−∆OD𝑁𝐴𝐷𝐻

𝑂𝐷𝑆𝑇𝐷−𝑂𝐷𝐵𝐿𝐾
. ∆ODS was calculated by subtracting each sample OD at 10 

minutes from the OD at 5 minutes. ∆ODNADH was calculated by subtracting NADH standard OD 

at 10min from the OD at 5 minutes. ODSTD and ODBLK were OD values of NADH standard and 

blank at 340 nm at 5 minutes. 

γ-Glutamyltransferase activity assay 
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Serum γ-Glutamyltransferase (GGT) activity was measured as manufacturer instructed 

using GGT activity calorimetric assay kit (MAK089 Sigma-Aldrich, St. Louis, MO). OD values 

were measured every 5 minutes when incubated at 37 °C until the OD value was greater than the 

OD value of the highest standard concentration. The final measurement (A418) final for calculating 

the enzyme activity was the penultimate reading and the time of the penultimate reading was Tfinal. 

The first step of calculations was to establish a standard curve with initial measurement of pNA 

standards. Change in measurement from Tinitial to Tfinal was calculated as ∆A418= (A418) final - (A418) 

initial, which was compared to the standard curve to determine the amount of pNA generated (B) 

between Tinitial and Tfinal. GGT activity was determined using the equation: 𝐺𝐺𝑇 (𝑚𝑈/𝑚𝐿) =

𝐵 × 𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

(𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) × 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 
, reaction time = Tfinal - Tinitial.  

Blood urea nitrogen assay 

Urea concentration in blood was measured as manufacturer instructed using QuantiChrom 

urea assay kit (DIUR-100 BioAssay Systems, Hayward, CA). OD values were measured at 520 

nm and the urea concentration was determined the equation: [𝑈𝑟𝑒𝑎] (𝑚𝑔/𝑑𝐿) =

 
𝑂𝐷𝑆𝑎𝑚𝑝𝑙𝑒−𝑂𝐷𝐵𝑙𝑎𝑛𝑘

𝑂𝐷𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑−𝑂𝐷𝐵𝑙𝑎𝑛𝑘
× 𝑛 × [𝑆𝑇𝐷], n was the dilution factor, [STD] was 50. Conversion of BUN 

and Urea was: BUN (mg/dL) = [Urea]/ 2.14. 

C-reactive protein assay 

C-reactive protein concentration was measured as manufacturer instructed using Mouse C-

reactive protein (CRP) ELISA kit (#80634 Crystal Chem, Elk Grove Village, IL). The final OD 

values were measured within 30 minutes at 450 nm and 630 nm. CRP calibration curve was plotted 

using OD values and their corresponding CRP concentrations. The CRP concentration of serum 

sample was interpolated using the calibration curve and mean OD value of each sample. 
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Statistics 

Data were expressed as mean ± SD. Statistical analysis was performed using one-way 

analysis of variance (ANOVA) with a Tukey post-hoc test using GraphPad Prism version 6.00 for 

Windows (GraphPad Software, San Diego, CA) after a significant difference was identified by 

ANOVA. Results were considered statistically significant at p < 0.05.  

Results 

After six months of treatment, body weight trends of the three groups were presented in 

Figure 18. The rate of body weight gain of CD group was the slowest, in which CD mice gained 

about 8 g in the last thirty days. The group with the fastest gaining trend was HF group, and A. m 

group showed a body weight gain between CD and HF groups, which had a rate of weight gain 

faster than CD but slower than HF. The weight gain in A. m group was not significantly different 

from weight gain in HF group, except a significant lower level of weight gain in A.m group was 

observed within a period of 26 days (day 46 to day 72) when compared to HF group (p < 0.05). 

Food intake of grouped mice was measured every week. Food intake of CD group was 

significantly higher than that of HF and A. m groups (p< 0.01), while no significant difference was 

found between HF and A. m groups (Figure 19). Energy intakes were calculated based on the 

caloric content in foods, which was 3.9 kcal/g for CD diet and 5.2 kcal/g for HF/A. m diet. During 

six-month of treatment, mice in CD, HF and A. m groups consumed similar level of energy with 

no significant difference among the three groups (Figure 20).  

Fasting blood glucose of each mouse was measured on monthly basis, which corresponding 

to first, second, fourth, fifth and sixth month. Figure 21 clearly pictured that fasting blood glucose 

of HF group mice was at the highest level among the three groups with a peak at 232 ± 39 mg/dL 

after four months of treatment. It was noted that CD and A. m group had relatively stable fasting 

blood glucose during all six months. There was no significant difference found between CD and 
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A. m group during all six months treatment except for the third month (p < 0.05); however, mice 

in HF group showed significantly higher fasting blood glucose when compared to CD group along 

the treatment period (p < 0.01).  

In addition, all three groups of mice were tested for glucose tolerance as well. Blood 

glucose levels were measured at time points of 0, 15, 30, 60, and 120 minutes (Figure 22). Baseline 

glucose started at a similar level across groups; however, significant difference were observed after 

15 minutes when HF group showed higher blood glucose levels as compared to both CD and A. 

m groups. The blood glucose of CD and A. m groups decreased to baseline level 60 minutes after 

glucose intake. This was not observed in HF group, where average blood glucose level was 

decreasing very gradually in a span of 120 minutes before returning to baseline level. HF group 

reached to the peak at 15 minutes time point, when A. m group showed a significantly lower level 

(p < 0.001). After another 15 minutes, no obvious decrease was found in HF group while A. m 

group had a significant drop of blood glucose (p < 0.0001). At the 60-minute time point, blood 

glucose level of HF group slowly decreased, which was still significantly higher than the level of 

A. m group (p < 0.001). At the end of 120 minutes, A. m group showed the lowest blood glucose 

when HF showed a significantly higher level (p < 0.001).  

Subsequently, area under curve (AUC) based on the results of glucose levels in GTT was 

calculated, which is depicted in Figure 23. Significant difference was discovered in AUC among 

CD, HF and A. m groups. HF group was shown with a significantly higher level of AUC when 

compared to CD and A. m groups (p < 0.0001) while there was no significant difference between 

CD and A. m groups. Fasting insulin and glucose at month six were used to calculate HOMA-IR. 

Insulin results showed that while CD and HF groups had the lowest and highest respectively, there 

was no significant difference among CD, HF and A. m groups (Table 3). Fasting blood glucose of 



43 

 

   

 

HF group was shown significantly higher than that of the CD group (p < 0.01). The calculation of 

HOMA-IR confirmed that HF group had a significantly higher level when compared to CD group 

(p < 0.01) while no difference was observed between A. m and CD groups.  

Figure 24 compared the fecal energy content of the three groups. The results showed that 

CD group had the highest and A. m group had a lower fecal energy content but no significant 

difference between these two groups. HF group had the lowest fecal energy content, which was 

significantly lower than CD group (p < 0.01). Figure 25 showed that group A. m and HF had 

significantly higher fecal energy output ratio than that of the CD group (p < 0.05), while no 

significant difference was observed between A. m and HF groups.  

Body composition of mice in HF group and A. m group was measured after five months of 

A. muciniphila administration. No significant difference was observed between HF and A. m 

groups in both lean mass percentage and fat mass percentage. Data collected from metabolic cages 

showed the distance travelled of each mouse accumulated in one day. HF group and A. m group 

showed a similar level of average distance with no significant difference, which were 25431.7  

9387.4 cm/day per mouse and 23681.6  7181.2 cm/day per mouse respectively. 

Safety of A. muciniphila administration was evaluated by measuring liver and kidney 

toxicity. Serum AST, ALT and GGT of mice in CD, HF and A. m groups were compared and 

presented in Table 5. No significant difference was noted among three groups in AST, ALT and 

GGT as liver toxicity indicators. CD, HF and A. m groups showed a similar level of serum BUN 

(p > 0.05) in kidney function test. 

CRP levels of mice in three groups were tested at the end of 6-month treatment. Figure 26 

showed that there were no differences among CD, HF and A. m groups.  
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Discussion 

In the beginning of this study, mice were randomly assigned to groups with control diet, 

high-fat diet and high-fat diet with A. muciniphila administration. When comparing body weight 

of mice in HF group and A. m group, it was obvious that mice treated with A. muciniphila had 

lower body weight and slower body weight gain. These two groups started with no difference of 

body weight gain in the first two months, while the difference gradually increased and became 

significant after 46 days. However, the significance between HF and A. m groups disappeared 

during the last three months of this study. This finding indicated that the supplementation of A. 

muciniphila had ability to reduce body weight gain, but the benefit might be short-lived and may 

be reversed by other factors. Schneeberger et al. reported that abundance of A. muciniphila in DIO 

mice decreased significantly with time. The HF diet lowered A. muciniphila population by about 

10,000 folds than its initial population. In addition, A. muciniphila population also had a decrease 

of 100 folds in mice fed with CD diet for 4 months (104). Thus, it was hypothesized that population 

of A. muciniphila in GIT reduced slowly with time. Furthermore, a diet with high fat level damaged 

A. muciniphila abundance even more. Aging may be another factor that affected the abundance as 

well. When A. muciniphila was first fed to the mice, it had a consistent viability of 109 CFU, which 

could be enough to induce beneficial effects to control body weight gain in mice; however, the 

benefits were reduced because this viability was not sufficient enough to compensate for the 

significant loss of A. muciniphila abundance induced by long-term high fat feeding and aging. As 

a result, it suggested the dosage of A. muciniphila is highly important in delivering and preserving 

the benefits of A. muciniphila to the host. Moreover, it was found that mice had varied responses 

when supplemented with A. muciniphila. The body weight gain in A. m group had large variation: 

the lowest body weight gain was 16.54 g while the highest was 30.06 g. Therefore, it indicated 
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that the effect of probiotic supplementation varied individually and other genetic or environmental 

factors may play a role in determining the beneficial effects of probiotic supplementation. 

Food intakes (grams) of grouped mice showed that mice in HF and A. m groups were 

similar, which suggested that A. muciniphila had no influence on mice’s appetite for food. After 

further calculation of calories intake, it was shown that mice in CD, HF and A. m groups consumed 

similar calories each day. These results suggested that mice did not adjust the energy content of 

food by consuming less volume of HF food, and HF intake was not affected by A. muciniphila 

consumption. 

Mice in CD group had the lowest level of blood glucose while mice in A. m group presented 

lower values when compared to mice in HF group during the whole period of treatment. 

Additionally, blood glucose responses in GTT demonstrated the ability of A. m to improve glucose 

tolerance and consequently bring blood glucose back to normal level. This result supported the 

findings reported by Everard et al. (78). The improvement was further confirmed by calculation of 

AUC based on glucose tolerance test results. AUC of A. m group was similar to that of the CD 

group, while AUC of HF group was at a significantly higher level comparing to both CD and A. 

m groups. Inspired by this significant difference of AUC between A. m and HF groups, HOMA-

IR was calculated by using fasting insulin and fasting blood glucose values. HOMA-IR of HF 

group was significantly higher than CD group while the significance was diminished after 

supplementation of A. muciniphila for six months. In conclusion, the administration of A. m was 

able to lower fasting blood glucose and reduce insulin resistance when compared to HF group. An 

increase of A. muciniphila dosage might be able to further improve on blood glucose, insulin levels 

and reduce insulin resistance. 
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Fecal energy output, body composition, and activity levels were analyzed to evaluate the 

possible beneficial effects of A. muciniphila treatment. It was expected to see higher fecal energy 

content from mice in A. m group. However, the calculated energy per gram of fecal sample only 

showed a difference between CD and HF group. Therefore, the energy intake/ output ratio was 

determined as a better expression of actual energy utilization. Results revealed a significant 

difference between CD and both HF and A. m groups, but A. m and HF groups were not different. 

The trend of higher output ratio in A. m group could indicate the effect of A. m in altering energy 

absorption and excretion. However, it was suspected that 24hr fecal sample may not be sufficient 

to obtain a statistical significance in fecal energy measurement. In addition, mouse fecal pieces 

were collected per cage instead of individually, which might have contributed to inaccurate 

representation of output ratio for each mouse based on intake. Further collection of larger quantity 

of fecal sample, such as 48-hr samples collection, from each mouse individually could provide a 

better estimate of fecal energy output. 

In order to investigate whether A. muciniphila administration with a HF diet would 

positively affect body composition, body composition of mice in HF and A. m groups were 

measured at the fifth month of treatment using echo MRI machine. The similar percentage of lean 

and fat content between HF and A. m groups indicated that the administration of A. muciniphila 

was not able to alter mouse body composition. Energy expenditure of mice were measured using 

metabolic cages during the fifth month of treatment. The metabolic cages were able to record the 

activity level in term of distance traveled of each mouse throughout housing period, which 

provided more information regarding whether activity level could correlate with different 

treatment in an indirect manner. Results indicated that mice in A. m group had a non-significantly 
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lower level of daily physical activity when compared to mice in HF group. However, the 2000 cm 

per day difference could form into a significant difference after a long-term treatment of A. m. 

Evaluating the safety of A. m consumption on animal models is crucial for establishing 

safe administration in human consumers. At the end of 6-month treatment, liver and kidney 

toxicity biomarkers AST, ALT, GTT and BUN were measured to ensure safety and any possible 

unknown adverse reaction (105-107). The results showed that mice fed with control diet, high-fat 

diet and A. m fortified high-fat diet had no significant differences in AST, ALT and GTT 

concentrations, and no difference was found in BUN concentration as a kidney function parameter 

as well. These results demonstrated the safety of A. muciniphila consumption at the concentration 

administered to mice. Whether this concentration is also safe for human consumption requires 

further study with humans.  

CRP level is associated with insulin resistance (108) and diabetes mellitus (109). In insulin-

resistant obese individuals, the elevated CRP level parallel with insulin resistance and reduction 

in CRP level is associated with weight loss, but independent of body mass (110). The concentration 

of CRP is also considered as an important nonspecific biochemical marker for inflammation, thus 

CRP has been used as an indicator for the development of chronic diseases and for monitoring 

responses to treatment for inflammation and infection (111). Results in this study indicated that 

there was no significant difference among the three groups. Additional tests with higher 

concentration of A. muciniphila administration or for a longer period of time is warranted to further 

investigate the inflammation conditions. 

Conclusion 

The current study demonstrated that there were beneficial effects of A. muciniphila 

administration on glucose homeostasis on high fat induced obesity. With six months feeding of a 
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HF diet with added A. muciniphila intervention, there was no alteration of body weight and body 

composition, although there was a significant effect on reduced body weight gain at the earlier 

stage of treatment. The diminishing effect was clearly observed as mice aged and consumed high 

fat diet continuously. This led to a speculation that aging and high fat feeding had more negative 

effects than what A. muciniphila could improve with current dosage. The most consistent effect 

was observed in improving fasting blood glucose and glucose tolerance. A. m group had lower 

average levels of these parameters when compare to HF group in a consistent manner. It was 

demonstrated that A. muciniphila could maintain the long-term sustainable effect of improving 

glucose tolerance as oppose to the suppression of weight gain at the end of sixth month. 

Furthermore, GTT test and HOMA-IR as indicators for pancreatic function, did show significant 

improvement in A. muciniphila treated group, which had similar observation as low fat diet control 

group. This further shows plausible long-term effect on improving glucose homeostasis by A. 

muciniphila. In addition, the safety of A. muciniphila supplementation to the mice at current 

concentration has been demonstrated in this study. These results would provide guidelines to future 

studies with human subjects. 

Future direction 

In current study, the administration of A. muciniphila showed a slower weight gain trend 

when compared to HF group, even though a significant difference was only maintained for 

approximately one month. For future studies, energy intake and exertion, physical activity levels 

and basal metabolic rate during the time when body weight difference is significant should be 

measured in order to identify the factors that contribute to the difference. There were evidences 

showing a dramatic decrease of A. muciniphila population associated with high fat feeding and 

aging; therefore, future study should modify the dosage or frequency of A. muciniphila 

supplementation. The dosage might be adjusted depending on the on-set of body weight gain and 
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age in order to reverse the loss of A. muciniphila in the host gut. This dosage information may be 

extrapolated to human studies before a recommendation for human supplementation can be 

reached.  

Based on energy expenditure recorded in metabolic cages, mice in A. m group had lower 

activity level when compared to mice in HF group regarding their distance travelled in 24 hours. 

When less physical activity was accumulated for months, it might diminish the benefits of A. 

muciniphila consumption. This might be one of the factors contributed to the disappearance of 

significant difference of body weight between the two groups and similar body composition during 

the later period of treatment. If mice in A. m group could increase their activity level to the level 

of mice in HF group, it was spectulated that the effects of A. muciniphila would be more significant. 

Thus, it is hypothesized that increasing physical activity could enhance the beneficial effects of 

probiotic supplementation. This hypothesis should be examined in future studies. In addition, the 

future use of metabolic cages for each individual mouse and for the entire study period could 

provide information to reveal different reaction of individual mouse to probiotic supplementation, 

including difference in food intake, energy expenditure and fecal energy content. 

The next area to focus is regarding the formulation and delivery of strain A. muciniphila. 

According to prebiotic screening test, it was clear that the incorporation of IMO as prebiotic 

significantly promoted the growth of A. muciniphila. This finding could be used to adjust 

formulation of potential A. muciniphila supplementation products. The mixture of IMO and A. 

muciniphila could easily enhance its viability, which will be more cost-effective instead of 

manufacturing A. muciniphila with high CFU. In addition, this strain requires additional 

encapsulation in order to guarantee sufficient cell viability through GIT.  
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Since the safety of consuming A. muciniphila for six months has been demonstrated, the 

future study should evaluate the benefits of A. muciniphila supplementation in human subjects. 

Human gut has different microbiome composition from research animals, and more environmental 

factors could be involved in the balance of gut microbiome. Thus, clinical trials with human 

volunteers are warranted to examine effects of probiotic intake on host health. Clinical studies on 

A. muciniphila are still very limited. This study provided evidences that supplementation of A. 

muciniphila may help with body weight control and better improvement on glucose homeostasis. 

In future clinical studies, it is recommended to encapsulate A. muciniphila with IMO with 

extrusion method to make sure minimal viability loss through GIT.  The mechanism of A. 

muciniphila affecting the host could be further studied using different targeted groups by 

consuming A. muciniphila with customized dosages, such as obese individuals, patients with T2D 

or patients with metabolic syndrome. The possible interactions of A. muciniphila with microbiome 

of the host could be further analyzed, such as comparing the alteration of gut microbiome, 

screening strains or metabolites for possible symbiotic effects, evaluating benefits of weight 

management through energy balance, lipid metabolism and nutrient harvest, investigating benefits 

of insulin and glucose homeostasis, analyzing improvement on gut barrier function such as 

intestinal permeability and metabolic endotoxemia. 

 

 

 

 

 



51 

 

   

 

FIGURES AND TABLES 

Table 1. Quantitative determination of BSH activity of five selected probiotic strains 

Probiotic strain Total protein (μg/mL) Total activity (U/g total protein) 

A. muciniphila 356.5 ± 24.8 32.3 ± 4.7cooo 

L. acidophilus 334.5 ± 48.0 33.9 ± 4.2coo 

L.reuteri 364.0 ± 33.8 143.6 ± 7.4a 

L. plantarum 351.5 ± 69.0 96.3 ± 15.2b 

B. coagulans 376.1 ± 61.0 20.9 ± 4.0c 

(Values with different letters were significantly different from each other at p < 0.001, p < 0.01, 

or p < 0.05.) 
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Table 2. Loss of viability after encapsulation procedure and bypass simulated GIT 

Loss during encapsulation Loss bypass GIT 

Spray-dried Freeze-dried Extruded Freeze-dried Extruded 

2.58  0.20 Logs 0.32  0.03 Logs 1.13  0.03 Logs 4.75  0.02 Logs 0.10  0.03 Logs 
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Table 3. HOMA-IR of groups CD, HF and A. m after 6-month of treatment 

  Fasting blood glucose (mg/dL) Fasting insulin (ng/mL) HOMA-IR 

CD 161.2 ± 8.9a 2.2 ± 0.8a 22.5 ± 8.6a 

HF 217.4 ± 30.2b 4.6 ± 1.1a 64.3 ± 15.5b 

A. m 177.2 ± 12.9ab    3.9 ± 2.0a*  44.5 ± 22.7ab* 

(Values in each column with different letters were significantly different from each other at p < 

0.001, p < 0.01, or p < 0.05.) 
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Table 4. Body composition of mice in groups HF and A. m 

 

Fat (g) Lean (g) Fat (%) Lean (%) 

HF 21.8 ± 2.0 22.9 ± 2.2 45.1 ± 3.6 47.9 ± 4.6 

A. m 21.3 ± 2.9 21.5 ± 2.0 45.3 ± 2.8 46.0 ± 2.6 
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Table 5. Safety of A. muciniphila administration by evaluating liver and kidney toxicity 

 

Liver Kidney 

AST (U/L) ALT (U/L) GGT (U/L) BUN (mg/dL) 

CD 4.9 ± 1.4 61.6 ± 21.8 1.7 ± 0.3 19.8 ± 2.1 

HF 9.6 ± 5.6 42.6 ± 40.9 1.7 ± 0.9 26.3 ± 5.3 

A. m 6.4 ± 3.5 78.4 ± 14.7 1.7 ± 0.4 21.3 ± 1.6 
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Figure 1. Turbidity standard curve determination. A. muciniphia cultures were incubated at 

37 °C for 10 hrs, and final optical density (OD) values were measured at 595 nm using 

spectrophotometer. Colony forming unit (CFU) was evaluated using pour-plating method at the 

same time. The verification equation was established based on OD values and their corresponding 

CFU/200 uL.  
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Figure 2. Growth curves of A. muciniphila under various temperatures. Cultures with same 

concentration of A. muciniphila were incubated for 10 hrs in incubators set with temperature at 

25 °C, 35 °C, 37 °C, 40 °C, 43 °C and 46 °C. Final culture OD values were measured at 595 nm 

at hourly interval.  
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Figure 3. Effects of temperature on exponential growth rate of A. muciniphila. Cultures with 

A. muciniphila were incubated at various temperatures for 10 hours.Bars with different letters were 

significantly different from each other at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 4. Effects of temperature on final viabilities (CFU/mL) of A. muciniphila. Cultures 

with A. muciniphila were incubated at various temperatures for 10 hours.Bars with different letters 

were significantly different from each other at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 5. Growth curves of A. muciniphila at various pH levels. Tubes with medium adjusted 

to pH level of 2, 3, 4, 5, 6, 6.5, 7, 7.5, 8, and 9 were inoculated with same concentration of A. 

muciniphila. Cultures were incubated for 12 hrs at 37 °C and final culture OD values were 

measured at 595 nm at hourly interval.  

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12

O
D

Time (Hour)

2

3

4

5

6

6.5

7

7.5

8

9



61 

 

   

 

 
Figure 6. Effects of pH levels on exponential growth rate of A. muciniphila. Cultures with A. 

muciniphila were incubated at 37 °C for 12 hours Bars with different letters were significantly 

different from each other at p < 0.001, p < 0.01, or p < 0.05.  

 

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

6 6.5 7 7.5

G
ro

w
th

 r
at

e

pH

a

b
b b



62 

 

   

 

 
Figure 7. Final viabilities of A. muciniphila (CFU/mL) at various pH levels. Cultures with A. 

muciniphila were incubated at 37 °C for 12 hours.Bars with different letters were significantly 

different from each other at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 8. Growth curves of A. muciniphila in medium adjusted with prebiotics. Tubes with 

medium adjusted by 0.2% w/v prebiotic ingredients including: isomaltooligosaccharide (IMO), 

inulin (INU), fructooligosaccharide (FOS), galactooligosaccharide (GOS), guar gum (GG), acacia 

gum (AG), karaya gum (KG), tragacanth gum (81), and potato starch (PS) were inoculated with 

same concentration of A. muciniphila. Cultures were incubated for 10 hrs at 37 °C and final culture 

OD values were measured at 595 nm at hourly interval.  
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Figure 9. Effects of prebiotics on exponential growth rate of A. muciniphila. Cultures with A. 

muciniphila were incubated at 37 °C for 10 hours. Bars with different letters were significantly 

different from each other at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 10. Effects of prebiotics on final viabilities of A. muciniphila (CFU/mL). Cultures with 

A. muciniphila were incubated at 37 °C for 10 hours. Bars with different letters were significantly 

different from each other at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 11. Growth curves of A. muciniphila in medium adjusted with sugars. Tubes with 

medium adjusted by 0.2% w/v sugars including: fructose (FRUC), galactose (GALAC), lactose 

(LAC), sucrose (SUC), dextrose (DEX) and maltose (MAL) were inoculated with same 

concentration of A. muciniphila. Cultures were incubated for 14 hrs at 37 °C and final culture OD 

values were measured at 595 nm at hourly interval.  
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Figure 12. Effects of sugars on growth rate of A. muciniphila. Cultures with A. muciniphila 

were incubated at 37 °C for 14 hours. Bars with different letters were significantly different from 

each other at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 13. Effects of sugars on final viabilities of A. muciniphila (CFU/mL). Cultures with A. 

muciniphila were incubated at 37 °C for 14 hours.Bars with different letters were significantly 

different from each other at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 14. Effects of sugar concentrations on viabilities of A. muciniphila (CFU/mL). Tubes 

with medium adjusted by varied sugar concentrations including: 0.1%, 0.2%, 0.5%, 1.0% and 2.0% 

were inoculated with same concentration of A. muciniphila. Cultures were incubated for 14 hrs at 

37 °C and final culture OD values were measured at 595 nm at hourly interval. Bars with different 

letters were significantly different from each other at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 15. Efficacy of storage method for A. muciniphila. A. muciniphila was collected from 

culture medium, suspended and stored in 50% glycerol medium stored for 6 mons. Final CFU was 

evaluated using pour-plating method.  
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Figure 16. Acid tolerance ability of A. muciniphila. A. muciniphila was incubated in simulated 

gastric solution at 37 °C for 3 hrs, and culture CFU was evaluated using pour-plating method at 

hourly interval. Bars with different letters were significantly different from each other at p < 0.001, 

p < 0.01, or p < 0.05.  
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Figure 17. Bile salts tolerance ability of A. muciniphila. A. muciniphila was incubated in 0.3% 

bile salts BHI medium at 37 °C for 3 hrs, and culture CFU was evaluated using pour-plating 

method at hourly interval. Bars with different letters were significantly different from each other 

at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 18. Mice body weight (gram) during 6-month of A. muciniphila administration. 
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Figure 19. Average food intake (grams/mice) of all groups during 6-month treatment 
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Figure 20. Average food intake (kcal/mice) of all groups during 6-month treatment 
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Figure 21. Average fasting blood glucose (mg/dL) of all groups during 6-month treatment. 

The 1st trial corresponded to the first month, the 2nd trial corresponded to the second month, the 3rd 

trial corresponded to the fourth month, 4th trial corresponded to the fifth month and the 5th trial 

corresponded to the sixth month. Statistical significance was analyzed within each trial: bars with 

different letters were significantly different from each other at p < 0.001, p < 0.01, or p < 0.05.  
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Figure 22. Glucose tolerance test on groups CD, HF and A. m. 
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Figure 23. Area under curve (AUC) of glucose tolerance test in groups CD, HF and A. m. 

Bars with different letters were significantly different from each other at p < 0.001, p < 0.01, or p 

< 0.05.  
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Figure 24. Fecal energy content (kcal/g) of groups CD, HF and A. m. Fecal energy content was 

measured using Bomb Calorimeter. Each group included two cages, and each cage was measured 

in duplicates. Bars with different letters were significantly different from each other at p < 0.001, 

p < 0.01, or p < 0.05.  
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Figure 25. Fecal energy output ratio (%) of groups CD, HF and A. m. Fecal energy output 

ratio was calculated using formula: output ratio = total feces energy / total energy intake  100%. 
Bars with different letters were significantly different from each other at p < 0.001, p < 0.01, or p 

< 0.05.  
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Figure 26. C-reactive protein (µg/mL) of groups CD, HF and A. m. Mouse serum CRP was 

measured after 6-month of A. muciniphila administration  
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ABSTRACT 

THE EXPLORATION OF CHARACTERISTICS OF AKKERMANSIA MUCINIPHILA, 

AND EVALUATION OF ITS PROBIOTIC EFFECTS ON DIABETES BY USING C57BL/6 

MOUSE MODEL 

by 

JIANGQI TANG 

December 2018 

Advisor: Dr. Kai-Lin Catherine Jen 

Major: Nutrition and food science 

Degree: Doctor of Philosophy 

The prevalence of type 2 diabetes (T2D) is increasing continuously worldwide. The 

incidence of T2D is highly correlated with poor diet, physical inactivity and occurrence of obesity. 

Recent studies reported possible interaction between T2D and gut microbiome, which revealed 

different composition of gut microbiome. A specific strain Akkermansia muciniphila (A. 

muciniphila) was reported with significantly lower abundance even prior to the incidence of 

diabetes. This study was designed to discover the optimal growth conditions based on 

characteristics of A. muciniphila and determine appropriate encapsulation method to ensure 

sufficient bioactivity through GIT. C57BL/6 mice model was further used to explore in-vivo 

benefits of A. muciniphila supplementation. Results showed medium adjusted to pH 6.5 could 

promote the best growth of A. muciniphila at 37 °C. Isomaltooligosaccharide was proved to be the 

best prebiotic ingredient. In order to manufacture in large quantity, fructose, sucrose and dextrose 

were able to promote the highest viability, especially with the concentration of 0.5%. Bile salt 

hydrolase activity was discovered in A. muciniphila with an intermediate level, which helped to 

improve its tolerance to digestion system with high concentration of bile salts. Extruded beads of 

A. muciniphila was shown to be an outstanding protection through simulated stomach and GIT. 
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After diet induced mice were supplemented with A. muciniphila for six months, results showed no 

significant change in mice body weight or daily food intake; however, improvement on glucose 

homeostasis was noticed including fasting blood glucose and glucose tolerance. In addition, mice 

supplemented with A. muciniphila showed a higher energy loss in feces while no difference was 

found in energy expenditure or body composition. A. muciniphila has been proved to be safe after 

a supplementation for six months. Future studies would investigate the benefits of A. muciniphila 

with increased dosage and its possible mechanism in the host. 
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