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As shown above, the performance of SUBIC is fully tunable using the pair of tuning parameters

in response to data with different levels of variances. From Table 8, it is clear that SUBIC’s

superior performance is very stable for both low and high variance data. In particular, the robust

performance against high-variance data is achieved by setting larger values of tuning parameters.

3.5 Application in Personalized Medicine

In this section we demonstrate how SUBIC method is capable of identifying patient subgroups

with guidance of the target variable LVMI. We study the population of African-Americans with

hypertension and poor blood pressure control who have high risk of cardiovascular disease.

Figure 15: Results of SUBIC implementation (top panel) and COBRA method (bottom panel) on the data related to
African-American patients at high risk of cardiovascular disease.

Data are obtained from patients enrolled in the emergency department of Detroit Receiving

Hospital. After preprocessing step, our data consists of 107 features including demographic char-
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acteristics, previous medical history, patient medical condition, laboratory test result, and CMR

results related to 90 patients. To achieve a checkerboard pattern, we reorder rows and columns

(original data) at first [27] using hierarchical clustering and then apply SUBIC method. The results

are shown in the top panel of Figure 15. In addition, we implemented convex biclustering method

(COBRA) developed by Chi et al. [27] using package “cvxbiclustr" in R for comparing with our

SUBIC method. Results obtained using different tuning parameters (λ) are shown in the bottom

panel of Figure 15.

In Figure 15, our SUBIC method detects 4 subgroups using 15 features for λ1 = λ2 = 104.

These 15 features belong to 3 major groups of features including: 1) Waist Circumference Levels

(mm); 2) Average Weight (kg) and 3) Calculated BMI. The statistics related to these risk factors

based on 4 groups of patients is summarized in Table 10. It is worth mentioning that other poten-

tial risk factors such as "Troponin Level" or "Plasma Aldosterone" can be also significant but these

three groups of features are sufficient to describe the disparity among patients based on guidance

of the target variable LVMI. On the contrary, COBRA method fails to find any patient subgroups

for this data set.

Table 10: Average of three disparity factors and LVMI (along with standard deviation)
for subgroups detected by SUBIC

Subgroup size Waist Circumference Levels (mm) Average Weight (kg) Calculated BMI LVMI

A 24 1248.86 (104.73) 125.17 (13.16 ) 41.65 (5.20) 85.78 (11.95)

B 28 1092.65 (74.55) 99.73 (11.01) 35.18 (3.81) 82.74 (13.77)

C 29 972.83 (89.67) 84.88 (10.25) 30.01 (4.97) 80.97 (13.70)

D 9 813.33 (123.79) 64.46 (10.65) 23.83 (4.39) 79.38 (11.8)

Total 90 1067.76 (163.59) 98.20 (22.24) 34.10 (7.28) 82.64 (12.98)
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3.6 Discussion and Conclusion

In this chapter, we have developed a novel supervised subgroup detection method called SUBIC

based on convex optimization. We used the idea of convex biclustering approach [27] and proposed

a new supervised biclutering approach which overcomes the limitation of previous works when we

have a target variable.

SUBIC is a predictive model that combines the strength of biclustering and tree-based meth-

ods. We introduced a new elastic-net penalty term in our model and defined two new weights in

our objective function to enable the supervised training under the guidance of a clinically rele-

vant target variable in detecting biclusters. We further presented a generalized additive model for

predicting target variables for new patients. We evaluated our SUBIC approach using simulation

studies and applied our approach to identify disparities among African-American patients who are

at high risk of cardiovascular disease. Future directions include extending our SUBIC approach to

predict categorical target variables, such as stages and subtypes of heart diseases.
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CHAPTER 4 TREATMENT RECOMMENDATION USING SURVIVAL
ANALYSIS FOR PERSONALIZED HEALTHCARE

Survival analysis has been developed and applied in the number of areas including manufac-

turing, finance, economics and healthcare. In healthcare domain, usually clinical data are high-

dimensional, sparse and complex and sometimes there exists few amount of time-to-event (la-

beled) instances. Therefore building an accurate survival model from electronic health records is

challenging. With this motivation, we address this issue and provide a new survival analysis frame-

work using deep learning and active learning with a novel sampling strategy. First, our approach

provides better representation with lower dimensions from clinical features using labeled (time-to-

event) and unlabeled (censored) instances and then actively trains the survival model by labeling

the censored data using an oracle. As a clinical assistive tool, we introduce a simple effective

treatment recommendation approach based on our survival model. In the experimental study, we

apply our approach on SEER-Medicare data related to prostate cancer among African-Americans

and white patients. The results indicate that our approach outperforms significantly than baseline

models.

4.1 Problem Statement

Survival analysis has been applied in several real-world applications such as healthcare, manu-

facturing and engineering in order to model time until the occurrence of an future event of interest

(e.g. biological death or mechanical failure) [54]. Censoring attribute of survival data makes sur-

vival analysis different from the other prediction approaches. One popular survival model is the

Cox Proportional Hazards model (CPH) [30] which model the risk of an event happening based

on linear combination of the covariates (risk factors). The major problem of Cox-based models is

linear relationship assumption between covariates and the time of event occurrence. Hence, there
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have been developed several model to handle non-linear relationship in survival analysis like as

survival neural network and survival random forest models.

In the healthcare area, medical researchers apply survival analysis on EHRs to evaluate the

significance of many risk factors in outcomes such as survival rates or cancer recurrence and sub-

sequently recommend treatment schemes. There exist two specific challenges in survival analysis

from EHRs: 1) Clinical data are usually high dimensional, sparse and time-dependent where ap-

plying traditional survival approaches do not perform well enough to estimate the risk of a medical

event of interest accurately, 2) In many health survival applications, labeled data (time-to-event

instances) are small, time-consuming and expensive to collect. In this situation, it is hard to learn

a survival model based on traditional approaches which able to predict the relative risk of patients

precisely.

To address the first challenge, recently, semi-supervised learning using deep feature representa-

tion has been applied in number of areas and could improve the performance of different machine

learning tasks as well as survival analysis. In the other word, applying unsupervised learning us-

ing deep learning can reduce the complexity of raw data and provide robust features with lower

dimensions. Using this represented features in the supervised learning algorithms (e.g. survival

models) establishes a semi-supervised learning framework which achieve higher performance.

To overcome the second challenge, active learning is well suited to get high accuracy when the

labeled instances are small or labeling is expensive and time-consuming. Active learning approach

from censored data has been rarely addressed in the literature. However it has been widely used in

the other aspects of health informatics where the labeled data are scarce.

In this chapter, first, we propose a novel survival analysis approach using deep learning and

active learning termed DASA. Our model is capable to learn more accurate survival model using
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high dimensional and small size EHRs in comparison with some baseline survival models. Second,

we introduce a personalized treatment recommendation approach based on our survival analysis

model which can compare the relative risk (or survival time) associate with different treatment

plans and assign better one. We evaluate our approach using SEER-Medicare dataset related to

prostate cancer. We consider two racial subgroup of patients (African-American and whites) in our

analysis and apply our model on each dataset separately.

Our contributions in this chapter lie into three folds: 1) To best of our knowledge, we pro-

pose the first deep active survival analysis approach with promising performance, 2) In our active

learning framework we develop a new sampling strategy specifically for survival analysis and 3)

Our model with proposed treatment recommendation approach is highly potential to apply for

evaluation of new treatment effect on new patients where the labeled data is scarce.

4.2 Background

In this section, we review some basic concepts and approaches for modeling of survival analysis

and active learning. The background related to deep learning has been discussed in the chapter 1.

4.2.1 Introduction to Survival Analysis

Survival analysis is a kind of statistical modeling where the main goal is to analyze and model

time until the occurrence of an event of interest, such as death in biological systems and failure

in mechanical machines. The challenging characteristics of survival data is the fact that time-to-

event of interest for many instances is unknown because the event might not have happened during

the period of study or missing tracking occurred caused by other events. This concept is called

censoring which makes the survival analysis is different. The special case of censoring is where

the observed survival time is less than or equal to the true event time called right-censoring the
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main focus of our study.

Since the censored data is present in survival analysis, the standard statistical and machine

learning approaches are not appropriate to analyze and predict time-to-event outcome because

those approaches miss the censored/right-censored instances. Survival modeling provides different

statistical approaches to analyze such censored data in many real-world applications.

In survival analysis, a given instance i, represented by a triplet (Xi, δi, Ti) where Xi refers to

the instance characteristics and Ti indicates time-to-event of the instance. If the event of interest

is observed, Ti corresponds to the time between baseline time and the time of event happening,

in this case δi = 1. If the instance event is not observed and its time to event is greater than the

observation time, Ti corresponds to the time between baseline time and end of the observation,

and the event indicator is δi = 0. The goal of survival analysis is to estimate the time to the event

of interest (T ) for a new instance Xj .

Survival and hazard functions are the two main functions in survival modeling. The survival

function indicates to the probability that the time to the event of interest is not less than a deter-

mined time (t). This functions (S) denoted by following formula:

S(t) = Pr(T > t) (4.1)

The initial value of survival function is 1 when t = 0 and it monotonically decreases with t.

The second function, hazard function indicates the rate of occurrence of the event at time t given

that no event occurred earlier. It describes the risk of failure (dying) changing over time. The
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hazard function (or hazard rate or failure rate) is defined as following:

h(t) = lim
δ(t)→0

Pr(t ≤ T ≤ t+ δ(t)|T ≥ t)

δ(t)
(4.2)

Survival and hazard function are non-negative functions. While all the survival function de-

creases over time, The shape of a hazard function can be in different forms: increasing, decreasing,

constant, or U-shaped.

There exist several models for survival analysis in the literature. Among all, Cox Proportional

Hazards (CPH) model [30] is the most popular model for survival analysis. CPH estimates the

hazard function h(x) as a regression formulation:

h(t,Xi) = h0 exp(Xiβ) (4.3)

where h0 is the baseline hazard function which can be an arbitrary nonnegative function of

time and Xi refers to covariate vector for instance i, and β is the coefficient vector estimated after

survival model training by maximizing the cox partial likelihood. Because the baseline hazard

function h0(t) in CPH is not determined, we cannot use the standard likelihood function in training

process [30]. The partial likelihood is the product of the probability of each instance i at event time

Ti that the event has happened for that instance, over the summation of instances (Rj) probability

who are still at risk in this time (Ti):

L(β) =
∏

i=,δi=1

exp(Xiβ)∑
j∈Rj

exp(Xjβ)
(4.4)

Since the censored instances exist in survival data, the standard evaluation metrics such as
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mean squared error and R-squared are not appropriate for evaluating the performance of survival

analysis [49]. In survival analysis, the most popular evaluation metric is based on the relative risk

of an event for different instances called concordance index or c-index. This measure defines as

following formula:

1

N

∑
i,δi=1

∑
j,yi<yj

I[S(ŷi|Xi) < S(ŷj|Xj)] (4.5)

Where N refers to the all comparable instance pairs and S is the survival function. The main

motivation for using c-index in survival analysis is originated from the fact that the medical doctors

and researchers are often more interested in measuring the relative risk of a disease among patients

with different risk factors, than the survival times of patients.

In general, the survival analysis models can be divided into two main categories: 1) statis-

tical methods including non-parametric, semi-parametric and parametric and 2) machine learning

based methods such survival trees, bayesian methods, neural networks and random survival forests.

Readers for more comprehensive review can refer to the recent review provided by wang et al.

[116].

4.2.2 Introduction to Active Learning

Active learning is a subfield of machine learning and statistical modeling. The goal of an active

learner is the same as a passive learner but the key idea behind active learning is that a machine

learning algorithm can lead to better performance with fewer training labels if it can select the data

for learning. An active learner chooses queries, usually in the form of unlabeled data instances

to be labeled by an oracle which can be a human annotator. Active learning is very efficient

in many data-driven applications, where there exist numerous unlabeled data but labels are rare,
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time-consuming, or expensive to be labeled [102].

Since large amounts of unlabeled data is nowadays often available and can be easily collected

by automatic processes, active learning would be demanding in modern applications in order to

reduce the cost of labeling. The active learning framework overcomes the challenge of insufficient

labeled data by efficiently modeling the process of obtaining labels for unlabeled data. The ad-

vantage is that the active learner just requires to query the labels of just a few, carefully selected

instances during the iterative process in order to achieve more accurate learner [56].

There exist several approaches/scenarios in which active learners ask queries. The three main

approaches widely used in the literature are [102]: 1) membership query synthesis [3], 2) stream-

based selective sampling [4], and 3) pool-based sampling [67]. For all approaches, there are also

several different query strategies that have been developed to decide which unlabeled instances

should be selected. Among above three approaches, pool-based sampling is most popular in many

real-world applications. This approach has been demonstrated in Figure 16:

Oracle (e.g., human annotator)

Unlabeled 
pool set (U)

Labeled data 
(L)

Training 
process

Queries
selection

Machine learning model

Figure 16: The pool-based active learning approach [102]
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According to Figure 16, in pool-based sampling approach, A learner may start to be trained

with a few number of labeled instances (L), then requests labels for one or more carefully selected

unlabeled instances (U ) using an oracle. After labeling, the new instance is simply added to the

labeled set(L), and the learner proceeds training process in a standard supervised way. This process

continues until some specified iterations or achieved desired accuracy.

4.3 Related Works

Deep learning and active learning as two advanced machine learning methods have been ap-

plied in different areas but there exist a few research in the literature that use the benefit of deep

learning or active learning in survival analysis. In this section we review the research works which

use any of those methods in survival analysis.

Vinzamuri et al. [115] provided the first ever active learning framework for survival analysis.

They developed this approach just for regularized Cox regression survival models. Authors pro-

posed a novel sampling strategy based on discriminative gradient for selecting the best candidate

from the unlabeled pool set. Finally, they evaluated their model performance using public EHRs

datasets and compared with some state of the art survival regression methods.

In the deep learning domain, there exist few studies which developed survival analysis frame-

work using deep learning recently. In 2016, Ranganath et al. [94] proposed a new survival model

using deep learning termed deep survival analysis. They used Deep Exponential Family (DEF) for

capturing complex dependencies from clinical features including laboratory measurements, diag-

nosis, and medications codes. They applied their model on a large EHR dataset related to coronary

heart disease. In the other research [77], authors introduced a new deep learning approach which

can directly predict the survival times for graft patients using foundations of multi-task learning.



60

They demonstrated that their model outperforms usual survival analysis models such as cox pro-

portional hazard model in terms of prediction quality and concordance index.

Katzman et al. [60] proposed a cox proportional hazards deep multi-layer perceptron called

DeepSurv to predict risk of event occurrence for patient and provided personalized treatment rec-

ommendations. They performed their approach on simulated and real-world datasets for testing

and evaluation. Finally, They used DeepSurv on real medical studies to illustrate how it can provide

treatment recommendations. In the other research, Lee et al. [66] introduced a different approach

called DeepHit which employs deep architecture to estimate the survival times distribution. They

used neural network including two types of sub-networks: 1) a single shared sub-network and 2)

family of cause-specific sub-networks. They evaluated their method based on real and synthetic

datasets which illustrate that DeepHit leads to better performance in comparison with state of the

art methods.

Based on our review, there exist no study to develop a survival analysis approach using both

deep learning and active learning. We address this gap in the literature to propose a deep active

learning framework for survival analysis. However, There are some studies that develop deep active

learning methods for other machine learning tasks. For example, Zhou et al. [125] developed a

semi-supervised learning framework termed active deep network (ADN) for sentiment analysis.

They used restricted Boltzmann machines (RBM) for feature learning based on labeled reviews

and large amount of unlabeled reviews, then applied gradient-descent based supervised learning

for fine tuning and constructing semi-supervised framework. Finally they used active learning in

their framework to improve model performance. In the other study, Liu et al. [74] proposed a deep

active learning approach using Deep Belief Network (DBN) for classifying hyperspectral images

in remote sensing application. A summary of our review has been illustrated in Table 11 which
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Table 11: Summary of research works used deep learning or active learning in survival analysis

Authors Research DL AL SA Ref
Zhou et al. (2013) proposed semi-supervised sentiment classification

algorithm
[125]

Vinzamuri et al. (2014) developed survival regression for censored data
for electronic health records

[115]

Ranganath et al. (2016) introduced a deep hierarchical generative ap-
proach for survival analysis in heart disease

[94]

Nei et al. (2016) proposed a survival analysis model applied on
high-dimensional multi-modal brain images

[89]

Liao et al. (2016) proposed a survival analysis framework using a
LSTM model

[72]

Huang et al. (2017) developed a survival model using CNN-based
and one FCN-based sub-network and applied on
pathological images and molecular profiles

[58]

Chaudhary1 et al. (2017) introduced a DL based, survival model on hepato-
cellular carcinoma patients using genomic data

[21]

Liu et al. (2017) proposed an active learning approach using DBN
for classification of hyperspectral images

[74]

Luck et al. (2017) developed a patient-specific kidney graft survival
model using principle of multi-task learning

[77]

Sener&Savarese. (2017) developed an active learning framework using
CNN for image processing applications

[101]

Katzman et al. (2018) proposed a Cox proportional hazards deep neural
network for personalized treatment recommenda-
tions

[60]

Lee et al. (2018) developed a survival model using deep learning
which trained based on a loss function that uses
both risks factors and survival times

[66]

Note: DL, AL and SA refer to Deep Learning, Active Learning and Survival Analysis.

indicates no research have been developed yet to address a survival approach using deep learning

and active learning.

4.4 Methodology

The method developed in this research is an active learning based survival analysis uses a novel

sampling strategy. In our model, we apply deep learning for feature reduction and extraction, when

data is high-dimensional, complex and sparse. Since in survival analysis we deal with censored

and uncensored instances, the active learning design should be different from the regular approach.

In our framework, we consider censored and uncensored instances in the training set as survival

analysis needs both instances in the training process and we consider uncensored data as unlabeled
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instances in the pool set which their labels (time to event) are unknown.

The general framework in our survival analysis approach includes two main steps: 1) Deep

feature learning for survival data and 2) Active learning based survival analysis. In the first step

we do unsupervised learning using deep learning to represent features in higher level abstractions

and extract data into lower dimensions. We represent both labeled (time to event) and unlabeled

(censored) instances with together (Xtrain

⋃
Xpool) to obtain strong representation using pool of

unlabeled data. In the other words, our framework uses the advantages of abundant unlabeled data

to provide less complex and more robust features (labeled and unlabeled) for survival analysis.

In the second step, we apply our novel active learning based survival analysis on the repre-

sented/lower dimensions features obtained from the first step. This process demonstrates in Figure

17:

1- Represented Train Set

- Time to event (T)

- Censored (C) 

2- Apply any survival 

analysis model (e.g. Cox 

model or RSF)

3- Represented Pool Set

- Censored (C) 

4- Apply sampling 

strategy for ranking 

unlabeled instances

5- Select the most 

informative candidate 

from the pool set

6- Labeling of the 

candidate by oracle and 

add it to the train set 

Stop based on 

number of iterations 

or evaluation 

criterion

Figure 17: Active Survival Analysis Approach

According to this Figure, we start by applying a survival analysis method such as Cox-based

regression or Random survival forest on represented train set. In the next step we use our novel

sampling strategy (explained in the next section) to rank the unlabeled data based on their infor-
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mativeness level. Then we select the most informative candidate from the pool and add it to the

train set and repeat the process untill the stop criteria happens.

4.4.1 Expected Performance Improvement (EPI) Sampling (Query) Strategy

All active learning scenarios as well as pool-based active learning use the informativeness mea-

sure for evaluation of unlabeled instances to select the best query (the most informative unlabeled

instance). There exist several proposed approach which formulate such query strategies in the lit-

erature which can be categorized in general frameworks [102]:1- uncertainty sampling, 2- query

by committee, 3- expected model change, 4- expected error reduction, 5- variance reduction and

6- density weighted methods.

In this research we developed a new sampling (query) strategy based on properties of survival

analysis. In our strategy, we select the unlabeled instance as the most informative instance (the best

query) when it has the greatest performance change to the current survival model if we knew its

label. Our sampling model use concordance index (C-index) to define the informative measure to

query the unlabeled data. The survival model is trained again by adding a new instance (X+) from

the pool to the training set: Trainnew = Train
⋃
X+ and the performance change is formulated

based on the c-index difference as follows:

∆CX+ = Cnew model − Ccurrent model (4.6)

Similar to the other active learning sampling strategy, Our goal is to select the most informative

instance which could maximally improve the current model performance. This selection can be
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formulated as follows:

X∗ = argmax
X+∈pool

∆CX+ (4.7)

Since in the real-world applications, We do not know the true label (time to event) of the

instances in the pool, We should calculated the expected performance change over all possible

time to events (Ts) for each unlabeled records as follows:

X∗ = argmax
X+∈pool

∑S
s=1 h(Ts|X+) ∆CX+∑S

s=1 h(Ts|X+)
(4.8)

Our sampling strategy works for all survival analysis approaches such as cox-based models,

parametric models and random survival forests. As an example for the cox regression, ∆CX+ can

be formulated as following equation and X∗ is chosen based on Eq. 4.8.

∆CX+ =
1

N
[
∑
δi=1

∑
Ti<Tj

(β̂s2Xi > β̂s2Xj)−
∑
δi=1

∑
Ti<Tj

(β̂1Xi > β̂1Xj)] (4.9)

Where β̂1 and β̂2 are the estimated cox model coefficients trained based on the current and

new training set (Trainnew). N refers to the comparable (permissible) pairs in validation set for

calculating c-index.

4.4.2 Proposed Deep Active Survival Analysis (DASA) Algorithm

Algorithm 1 describes our deep active survival analysis approach called DASA in detail. First,

we apply deep feature learning on both train and pool sets. In this step we need to keep the weights

of deep network for representation learning of new instances. In line 6, we apply survival analysis

on deep represented features (Deep−Survival). This framework is flexible and all survival models
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can be used in this step. Then we start active learning iterations using EPI sampling strategy and

update the pool and train sets until convergence.

Algorithm 2 Deep Active Survival Analysis (DASA) Algorithm
Require: Training set (XT ), Pool set (XP ), Survival status (δ), Time to event (T ), Deep architecture pa-

rameters (hidden layers, hidden units, ...), Active learning maximum iteration (max−iter)

1: Round = 1

2: Training deep network for feature reduction on (XT
⋃
XP )

3: Train set←− X ′T

4: Pool set←− X ′P

5: repeat

6: Model = Deep−Survival (X
′
T , δ, T )

7: for each record in the pool (x ∈ X ′P ) do

8: Apply EPI sampling strategy and calculate the expected performance improvement for each

instance

9: end for

10: X∗ = argmax
x∈X′P

∑S
s=1 h(Ts|x) ∆Cx∑S

s=1 h(Ts|x)

11: Labeling (time-to-event) of X∗ by an Oracle based on original features

12: X
′
P ←− X

′
P− {X∗}

13: X
′
T ←− X

′
T

⋃
{X∗}

14: δX∗ ←− 1

15: Round←− Round+ 1

16: until Round 6= max−iter
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4.4.3 Treatment Recommendations Using Proposed DASA Approach

In this section, we propose a simple yet effective approach to discover treatment patterns and

treatment recommendations using DASA. Our method is highly useful when EHRs are high-

dimensional and small size. Suppose XT = {XT
1 , X

T
2 , ..., X

T
n } is the treatment set and XA =

{XA
1 , X

A
2 , ..., X

A
N} refers to all other personalized features related to each patient where N >> n.

Therefore, the input features is the union of these two sets (XT

⋃
XA). Since in the case of high-

dimensional features, traditional approaches such as cox proportional hazard or random survival

forests cannot find the pattern of specific features (e.g. small treatment set), we first represent XA

using deep learning to a lower dimension set (X ′A) and then combine this represented set with the

treatment set (XT ) to build the new feature set (Xnew = X
′
A

⋃
XT ). In the second phase, we apply

our active learning framework to train an accurate survival model based on new features and then

find the pattern of treatment sets and interpret the results (e.g. comparison the coefficient of treat-

ment options using Cox model or finding the importance of different treatment plan using random

survival forests).

In our treatment recommendation approach, we transform many clinical features to a small

feature set with higher level abstraction and more robust features. While we represent patient

information to lower dimension using deep learning we combine non-represented treatment op-

tions (as features of interest) to the represented set and then perform survival analysis using active

learning framework. In the next section, we demonstrate how our approach discover the treatment

patterns better than traditional approaches.
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4.5 Experimental Study: Survival Analysis for Prostate Cancer (SEER-Medicare

Data)

In this section, we evaluate the performance of our approach (DASA) through experimental

study. We use the Surveillance, Epidemiology and End Results (SEER)-Medicare linked database

from SEER program of the National Cancer Institute (NCI). SEER-Medicare data is a powerful

and unique source of epidemiological data on the occurrence and survival rates of cancer in the

United States. In our study, we use prostate cancer SEER-Medicare data to evaluate our survival

analysis approach and provide some insights by treatment recommendation.

4.5.1 Datasets: SEER-Medicare Prostate Cancer Data

Prostate cancer is the most popular diagnosed invasive cancer among men, with approximately

56% of all prostate cancer patients diagnosed in men with age 65 years and older [105]. For-

tunately, a wide range of men (nearly 90%) diagnosed with non-metastatic prostate cancer and

5-year relative survival rate is very high for them. The death rate for prostate cancer is different

among different populations. A good example of this racial disparity is the death rate for African-

American men which is 2.5 times higher than white men. there exists a critical need to develop

precision survival analysis for each cohort and discover the pattern of treatment.

In this study, we consider the SEER-Medicare data into two racial groups: 1) African-American

patients and 2) White patient. Both groups are including many features (more than 300 features)

such as demographic data, socioeconomic variables, tumor information and assigned treatment

with approximately 1000 and 5000 patients respectively.

Since SEER-Medicare data is high-dimensional, sparse and complex, feature representation

using deep learning can build more robust features when we use pool of unlabeled data (censored
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instances) in the representation process. In the other hand, our method using active learning has

highly potential to improve the performance of survival models when we deal with small sample

size (including time-to-event and censored instances). In this way, in experimental study, we con-

sider small samples in training of survival model and show that how our approach can improve the

prediction performance in comparison with baseline.

For labeling of the censored instances (unlabeled data) in active learning framework we used

some scientific reports such as SEER cancer statistics review from National Cancer Institute (NCI)

[55] which acts as a prior knowledge to establish an oracle. One of these statistics is illustrated in

Table 12:

Table 12: 5-Year conditional relative prostate cancer survival and 95% confidence intervals

Stage at Diagnosis Survival Time Since Diagnosis Percent Surviving Next 5 years

Percent Confidence Interval

Local

0-Year 100% (100, 100)

1-year 100% (100, 100)

3-year 100% (100, 100)

Regional

0-Year 100% (100,100)

1-year 99.3% (98.9, 99.5)

3-year 98.9% (98.4, 99.2)

Distant

0-Year 29.2% (28.4, 29.9)

1-year 34.1% (33.1, 35.1)

3-year 45.6% (43.9, 47.2)

Unstaged

0-Year 76.6% (75.6, 77.5)

1-year 81.1% (79.8, 82.1)

3-year 82.8% (81.4, 84.1)

To evaluate the performance of our approach, we first employ CPH regression model (as a well-

known survival analysis approach) and demonstrate how DASA can improve its performance based



69

on different training sample size. For deep feature representation we used Stacked Autoencoder

(SAE) deep architectures with 5 hidden layers. Figure 18 shows the average performance of our

approach for 20 iterations in comparison with baseline on the test data. We sampled training

set with 25 instances from African-American patients over 10 runs and calculated the average

performance in each iteration.

Deep Learning 
effect

Active Learning 
effect

Figure 18: Performance of proposed approach in comparison with baseline
(training size =25)

As demonstrated in Figure 18, our method (DASA-COX) improves the performance of Basic-

COX significantly in terms of concordance index. This improvement caused by two effects: 1)

Deep learning effect which improve the model performance by features representation using la-

beled and unlabeled instances, and 2) Active learning effect which increase the model performance

by involving the best labeled censored instance from the pool set in training process across all it-

erations.
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Figure 19 shows our approach performance for training size of 50 and 100 instances. Top panel

belongs to African-American patients and bottom panel is related to white patients. It is clear

DASA-COX outperforms baseline approach in all cases. The effect of deep learning in improving

model performance is higher at the bottom panel which can be caused by larger amount of pool set

related to white patients that provide better feature learning.
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Figure 19: Performance of proposed approach in comparison with baseline for different training size

As mentioned before, our approach is flexible enough and can employ any survival analysis
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model in its framework to improve the baseline. Hence, we perform Random Survival Forests

(RFS) model as a well-know non-linear survival model along with CPH model and evaluate our

approach across different training sizes. The results are shown in Table 13 and 14 for African-

Americans and white patients respectively.

Table 13: Performance comparison (C-index) between DASA and baseline models
(African-Americans)

Training Size CPH DASA-CPH RSF DASA-RSF

25 instances 55.2% 84.7% 16.3% 57.6%

50 instances 54.2% 74.9% 17.6% 54.5%

100 instances 59.1% 76.6% 21.4% 48.2%

200 instances 58.6% 72.6% 22.3% 47.9%

Table 14: Performance comparison (C-index) between DASA and baseline models
(Whites)

Training Size CPH DASA-CPH RSF DASA-RSF

25 instances 52.4% 87.9% 13.3% 62.1%

50 instances 51.2% 84.4% 15.5% 58.3%

100 instances 50.8% 82.3% 15.7% 49.7%

200 instances 53.6% 77.1% 18.2% 46.4%

The results confirm that our method can improve the concordance index significantly for cox

proportional hazard model and random survival forests in each datasets. According to above re-

sults, we can conclude that DASA leads to larger performance improvement in smaller training

size caused by active learning effect.

In the second step, we demonstrate how our treatment recommendation approach works. we

considered three well-known treatment options for prostate cancer: chemotherapy, radiotherapy



72

and surgery as three binary variables in our dataset. Our goal is to discover the importance of

each therapy using DASA approach for each subgroup of patients (African-Americans and white

patients). Since in the experimental study CPH illustrated a great performance, we performed

survival analysis using CPH. We do feature representation by deep stacked autoencoder network

with 150, 100 and 5 hidden unites in encoder, decoder and latent layers respectively. We used

small sample size with 50 instances in training process. Before training process, we combined

chemotherapy, radiotherapy and surgery variables (features of interest) to the represented features

came from deep learning performed on other features in training instances combined with unla-

beled pool set and then trained the cox survival model using active learning framework with 20

iterations over all features. The results for average exponential of coefficients (hazard ratios) over

10 runs shown in Table 15 for African-Americans and white patients:

Table 15: Average Hazard Ratio among different treatment plans

Method Chemotherapy Radiotherapy Surgery

African-Americans
COX-Base 1 1 1

COX-DASA 0.74 1.04 1.38

White Patients
COX-Base 1 1 1

COX-DASA 0.96 1.08 2.23

As shown above, traditional CPH model could not differentiate between treatment plans where

their hazard ratios are one. Since the data is high-dimensional traditional CPH leads to zero co-

efficients for these three treatment variables. On the other side, our approach using Cox model

can discover the risk associated to each treatment. Based on our results, surgery has the highest

risk in the both subgroup of patients, radiotherapy is associate with a decline in the survival rate

while chemotherapy increases the survival rate with lowest risk. It is obvious that the pattern of
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hazard ratios among treatment plans are different between African-American and white patients.

For example the risk related to surgery is significantly higher than the other two therapies in white

patients (more than 2 times) while in the African-Americans the pattern is different.

This experimental treatment recommendation was a simple example to show how our method

works. This approach is highly useful for comparing the risk associated with new treatment in

comparison with current treatment plans where the labeled data is rare and expensive.

4.6 Discussion and Conclusion

In this chapter, we proposed a novel survival analysis framework using deep learning and ac-

tive learning called Deep Active Survival Analysis (DASA). Our approach is able to improve the

survival analysis performance significantly and provides treatment recommendations. DASA is

highly applicable when the labeled data is scarce and high-dimensional. Our approach encom-

passes two main phases: 1) deep feature learning and 2) active learning process. We do feature

representation using deep learning to produce robust features from high-dimensional, sparse and

complex EHRs. We used the advantage of pool of unlabeled data (censored instances) to provide

better representation of labeled instances from deep learning implementation. In the active learn-

ing process, we developed a new sampling strategy specifically for survival analysis which can be

used for any survival analysis models such as Cox-based approaches and random survival forests.

In experimental study, we used SEER-Medicare data related to prostate cancer among African-

Americans and white patients to demonstrate how our model can enhance the performance of

survival analysis in comparison of traditional approach. Empirically we showed that deep learning

has greater effect on survival performance improvement in the case that we have larger pool of

unlabeled data and active learning effect is higher when we deal with smaller training sample size.
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We apply our treatment recommendation approach to find hazard ratio of three common treatment

plan (chemotherapy, radiotherapy and surgery) for prostate cancer based on Cox model. While

traditional CPH model fails to find the hazard ratios among high dimensional data, our approach

discovers them and provides some racial treatment insights.

In sum, our method leads to more accurate survival analysis for risk prediction, survival time

estimation and treatment recommendation. Our approach is flexible enough to capture any sur-

vival analysis model and improve its performance. Our model can be applied on different areas

especially in the case of testing and comparing the risk (impact) of new treatment (e.g. in health-

care) or new technology (e.g. in the manufacturing process) where the amount of labeled instances

are small and labeling is expensive. For the future works, we will implement DASA on the other

datasets and introduce some new sampling strategy with better performance.
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CHAPTER 5 CONCLUSION AND FUTURE STEPS

5.1 Conclusion

In this dissertation, we introduced an integrated framework to develop data-driven approaches

for different aspects of precision (personalized) healthcare. First we proposed a novel predictive

approach using deep feature learning which can be applied in many domains as well as healthcare

informatics. Second we introduced a new biclustering approach using convex optimization for

patient subgroup analysis which can discover the groups of patient with similar risk factors. Our

method has potential to use in cohort analysis and treatment planning. Finally in the last chap-

ter, we developed a novel treatment recommender model using survival analysis, deep learning

and active learning which has capable to improve the performance of traditional survival analysis

models significantly and provides better interpretation for treatment recommendations. In each

work, we provided some new insights based on our theoretical and empirical contributions which

is summarized as following:

In predictive modeling using deep learning, We used unsupervised learning before supervised

learning because the success of predictive machine learning algorithms highly depends on fea-

ture representation and extraction [81]. Since in several situation, data is sparse, noisy, high di-

mensional and repetitive, supervised learning and feature selection approaches cannot identify the

pattern of data which makes them inappropriate for modeling the hierarchical and complex data.

To overcome this shortcoming, unsupervised feature learning or representation learning attempts

automatically to discover complexity and dependencies in the data to learn a compact and high-

level representation which provides better features to extract useful information when applying

classifiers and predictive models.
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We demonstrated that deep learning could be effective for small datasets as well as large data

and our comparative study between small and large clinical datasets provides some new insights

in the choice of deep representation. We believe that our model with great EHRs feature learning

has potential to be applied in different clinical and health informatics aspects including treatment

planning, risk factor identification, personalized recommendation and survival analysis. Also, our

proposed framework is highly useful for exploiting a large amount of unlabeled data in the feature

learning (unsupervised learning) step to extract high level abstraction of features when the labeled

data are limited and expensive.

In the second work (Biclustering approach), we have developed a novel supervised subgroup

detection method called SUBIC based on convex optimization. We used the idea of convex biclus-

tering approach [27] and proposed a new supervised biclutering approach which overcomes the

limitation of previous works when we have a target variable. Biclustering methods in the literature

do not exploit a target variable on subgroup detection and risk factor selection. As a result, the

detected biclusters do not link to target variables of interest. Hence, it is unable to predict the tar-

get variable for future input variables. Clearly, the target variable such as LVMI provides a critical

guidance for detection and selection of the meaningful biclusters (patient subgroups).

SUBIC is a predictive model that combines the strength of biclustering and tree-based methods.

We introduced a new elastic-net penalty term in our model and defined two new weights in our

objective function to enable the supervised training under the guidance of a clinically relevant

target variable in detecting biclusters. The choice of elastic-net penalty term can overcome the

lasso limitations. While the l1-norm can generates a sparse model, the quadratic part of the penalty

term encourages grouping effect and stabilizes the l1-norm regularization path. Also the elastic-

net regularization term performs very suitable for high dimensional data with correlated input
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variables and would be a better model when p � n specially in the case of gene expression data

and precision medicine problems [126].

In the last chapter we discussed about two specific challenges existed in survival analysis from

EHRs: 1) Clinical data are usually high dimensional, sparse and time-dependent where apply-

ing traditional survival approaches do not perform well enough to estimate the risk of a medical

event of interest accurately, 2) In many health survival applications, labeled data (time-to-event

instances) are small, time-consuming and expensive to collect. In this situation, it is hard to learn

a survival model based on traditional approaches which able to predict the relative risk of patients

precisely. To overcome these challenges, first, we proposed a novel survival analysis approach us-

ing deep learning and active learning termed DASA. Our model is capable to learn more accurate

survival model using high dimensional and small size EHRs in comparison with some baseline

survival models. Second, we introduced a treatment recommendation approach based on our sur-

vival analysis model which can compare the relative risk (or survival time) associate with different

treatment plans and assign better one.

Based on our experimental study, empirically we showed that deep learning has greater effect

on survival performance improvement in the case that we have larger pool of unlabeled data and

active learning effect is higher when we deal with smaller training sample size. We showed that Our

approach is flexible enough to capture any survival analysis model and improve its performance.

We discussed that our model can be applied on different areas especially in the case of testing and

comparing the risk (impact) of new treatment (e.g. in healthcare) or new technology (e.g. in the

manufacturing process) where the amount of labeled instances are small and labeling is expensive.
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5.2 Future Steps

In this research we focus to develop a data driven framework for precision/personalized medicine.

As explained in the previous chapters, we developed three novel analytics approaches for predic-

tive modeling, subgroup detection and survival analysis which can be applied for various precision

medicine problems. Our results show that all methods have a competitive performance based on

specific measures in comparison with baseline models. In spite of our significant contributions in

each chapter, there exist several opportunities to extent each work as future extension. Remarkable

current and future works have been described as follows:

1- Medical Data: In this study, we implemented our developed approaches on different med-

ical data sets including cardiovascular disease data related to the subgroup of African-Americans,

e-ICU collaborative research datasets and SEER-Medicare prostate cancer data. As a further di-

rection, we can use different datasets in each method and evaluate their performance. For example

using microarray (gene-expression) data and various cancer databases have high potential for our

method’s evaluation.

2- Predictive Modeling: In chapter 2, we presented a new predictive approach using deep

learning. For future works, 1) we need to apply more deep architectures like as stacked denoising

autoencoders and adversarial autoencoders for representation learning, 2) we can employ differ-

ent machine learning tasks in the last step of our approach. For instance, we can apply clustering

instead of supervised learning to discover treatment schemes among high-dimensional EHRs and

finally 3) we can work on deep features interpretations. The key issue in using deep feature rep-

resentation is difficulties in naturally interpretation of main features. Since many deep learning

approaches use several hidden layers for multiple non-linear transformation on input features, they
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often known as black boxes where only the input and output of framework is meaningful and there

is lack of enough transparency in the model. Therefore, beside of our predictive approach, we can

develop feature selection algorithms for interpreting of the main features through deep prediction.

3- Subgroup Analysis: In chapter 3, we developed a novel biclustering approach using convex

optimization. We believe that our method is the first supervised biclustering approach which can

take the benefit of target variable’s guidance to find biclusters. The proposed prediction approach

is a simple yet effective approach and needed to be improved in the future work. Also the similarity

weights defined in our model play a key role in the final biclusters, hence there is a remarkable

opportunity to redefine them based on linear and non-linear relationship between covariates and

target variable. Finally, it is necessary to reformulate the proposed model for the case that we have

multiple target variables or the response variable is categorical.

4- Survival analysis model with treatment recommendation: In the last chapter of this dis-

sertation, we introduced a new survival analysis model for accurate risk prediction and treatment

recommendation. There exist needs to improve the sampling strategy in active learning frame-

work. On the other side we need to implement our approach using different deep architectures as

well. Another direction for the future work can be transforming of the treatment recommendation

approach to a personalized framework.

Figure 20 shows the summary of the current works and future works in this research:
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Figure 20: Current works and Future works in this research

5.3 Novelties and Contributions

According to what discussed in the chapter 1, 2, 3 and 4; This research develops and applies

data-driven methods for healthcare informatics and precision medicine. In this path it contributes

to a number of fields as follows:

1. Developing a new predictive model using deep learning for high dimensional data which can

predict the target of interest better than baseline models.

2. Providing a predictive framework which is highly useful for exploiting a large amount of un-

labeled medical records for extracting high level representation of labeled data for supervised

learning tasks.

3. Providing new insights about choice of deep architectures for feature representation among

small and large datasets.
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4. Developing a novel subgroup detection approach using biclustering and convex optimization

which can be applied on different precision medicine problem.

5. Developing a solution for proposed sparse supervised biclustering approach based on split

bregman method.

6. Developing prediction approach based on supervised biclustering framework using general-

ized additive model.

7. Developing a new survival analysis framework using deep learning and active learning for

patient risk prediction or survival time estimation.

8. Proposing a new sampling strategy in active learning framework for survival analysis based

on model performance improvement which can select the most informative candidate from

the unlabeled pool according to concordance index.

9. Introducing a new approach for discovering of treatment pattern among high-dimensional

medical data based on our proposed survival approach.

10. Providing new insights about deep learning and active learning effects on proposed survival

model performance based on small/large unlabeled pool set and size of training set respec-

tively.

11. Discovering new medical insights by applying our proposed methods on specific precision

medicine problems such as cardiovascular disease and prostate cancer.
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Massive amount of electronic medical records (EMRs) accumulating from patients and popu-

lations motivates clinicians and data scientists to collaborate for the advanced analytics to create

essential knowledge for providing personalized insights. Learning from large and complicated

data is using extensively in marketing and commercial enterprises to generate personalized rec-

ommendations. Recently the medical research community focuses to take the benefits of big data

analytic approaches and moves to personalized (precision) medicine. So, it is a significant period

in healthcare and medicine for transferring to a new paradigm. There is a noticeable opportunity to

implement a data-driven healthcare system to make better medical decisions, better personalized

predictions; and more precise discovering of risk factors and their interactions. In this research we

focus on data-driven approaches for personalized healthcare. We propose a research framework

which emphasizes on three main phases: 1) Predictive modeling, 2) Patient subgroup analysis and

3) Treatment recommendation. Our goal is to develop novel methods for each phase and apply

them in real-world applications.

In the first phase, we develop a new predictive approach based on feature representation using

deep feature learning and word embedding techniques. Our method uses different deep architec-

tures (Stacked autoencoders, Deep belief network and Variational autoencoders) for feature rep-

resentation in higher-level abstractions to obtain effective and more robust features from EMRs,
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and then builds prediction models on the top of them. Our approach is particularly useful when

the unlabeled data is abundant whereas labeled one is scarce. We investigate the performance of

representation learning through a supervised approach. We perform our method on different small

and large datasets. Finally we provide a comparative study and show that our predictive approach

leads to better results in comparison with others.

In the second phase, we propose a novel patient subgroup detection method, called Supervised

Biclustring (SUBIC) using convex optimization and apply our approach to detect patient sub-

groups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup

(African-Americans). Our approach not only finds patient subgroups with guidance of a clinically

relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the

input variables and encouraging similarity among the input variables and between the input and

target variables. Also, we introduce a predictive approach based on generalized additive model

(GAM) to predict the target variable based on supervised biclustering framework.

Finally, in the third phase, we introduce a new survival analysis framework using deep learning

and active learning with a novel sampling strategy. First, our approach provides better repre-

sentation with lower dimensions from clinical features using labeled (time-to-event) and unlabeled

(censored) instances and then actively trains the survival model by labeling the censored data using

an oracle. As a clinical assistive tool, we propose a simple yet effective treatment recommenda-

tion approach based on our survival model. In the experimental study, we apply our approach on

SEER-Medicare data related to prostate cancer among African-Americans and white patients. The

results indicate that our approach outperforms significantly than baseline models.

The insights and results provided in each step of this study could be applied by data scientists,

medical researchers and health policy makers to carry out precision medicine and personalized

healthcare in different diseases.
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