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Performance of the Beta-Binomial Model 
for Clustered Binary Responses: 
Comparison with Generalized Estimating 
Equations 

Seongah Im 
University of Hawai’i at Mānoa 

Honolulu, HI 

 

 
This study examined performance of the beta-binomial model in comparison with GEE 

using clustered binary responses resulting in non-normal outcomes. Monte Carlo 

simulations were performed under varying intracluster correlations and sample sizes. The 

results showed that the beta-binomial model performed better for small sample, while GEE 

performed well under large sample. 

 

Keywords: Correlated binary responses, clustered data, non-normal, summed scores, 

intracluster correlation, overdispersion, beta-binomial, generalized estimating equations 

 

Introduction 

A series of item responses coded as 1 or 0 is often observed in various research 

studies in the social and behavioral sciences. Binary responses usually indicate 

pass/fail, agree/disagree, yes/no, and correct/incorrect. Subjects’ traits measured by 

these items are often summarized by averaging or summing up the binary values. 

In educational research, the normal linear models (e.g., linear regression, ANOVA, 

mixed linear model) have been commonly accepted to analyze the summed scores. 

They can be reasonable choices when the central limit theorem holds. However, 

this standard approach may be limited in some situations where the normal models 

cannot properly approximate binomial probabilities of summary scores, often with 

skewed distributions (Warton & Hui, 2011). In addition, the fact that the summed 

test scores bound within a lower-to-upper limit is contradictory to the characteristic 

of a normal distribution having an infinite range, possibly leading to predicted 
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values that are out of range. This could be an important consideration in educational 

research especially when predicted scores and estimates from a statistical model are 

utilized for making decisions on teachers and students. If normal linear modeling 

using summed or aggregate scores is not appropriate, models based on the binomial 

distribution can be an alternative that can address concerns related to non-normality 

and limited range (Ferrari & Comelli, 2016; Jaeger, 2008). 

When item responses constitute total scores or binomial counts in binomial 

modeling, it should be noted that repeated responses within an individual 

respondent are more alike than those from different respondents, thus leading to 

extra-binomial variation, a feature known as overdispersion. When an analysis 

ignores dependence within a subject or cluster (i.e., intracluster correlation), the 

results can produce biased estimates and distort standard errors, leading to invalid 

inferences (Jaeger, 2008). Thus, a study that proposes appropriate statistical 

approaches to properly deal with correlated binary responses resulting in skewed 

outcomes would be necessary and important. Among the statistical approaches that 

are capable of dealing with the concerns mentioned above, this study employed the 

beta-binomial model (Williams, 1982) and examined its performance using Monte 

Carlo simulation. 

Studies Using the Beta-Binomial Model 

The beta-binomial model is a commonly used approach for overdispersion that is 

often a manifestation of intracluster correlation. The beta distribution allows a 

binomial parameter to be heterogeneous and enables the beta-binomial model to 

explain various shapes of distributions with negative to positive skewness. 

Empirical studies using the beta-binomial regression with clustered binary data can 

be found in some fields including public health, economics, and ecology. Among 

them, some relevant examples are studies in health sciences that used survey data 

to fit varying shapes of health-status survey scores from different subdomains of 

health (e.g., Arostegui et al., 2007; Khan & Morris, 2014; Lamu & Olsen, 2018). 

In these studies, the beta-binomial regression worked well for the aggregate scores 

that had various non-normal distributions, compared to the normal linear models or 

some nonparametric approaches such as those with extended estimating equations 

(Basu & Rathouz, 2005) and quantile regressions. Recently, Najera-Zuloaga et al. 

(2017) suggested the extend use of the beat-binomial model in the context of the 

longitudinal design to identify risk factor for chronic disease patients and found that 

the application leaded to clinically relevant results. 
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The main interest of the beta-binomial analysis is on the marginal 

distributions of aggregate counts or proportions, rather than modeling of initial 

binary observations at data collection. When the binary responses from the initial 

data collection are available and the marginal scores in relation to covariates are of 

interest, a population averaged or marginal model such as the generalized 

estimating equations (GEE) of Liang and Zeger (1986) would be desirable because 

taking the summary scores in each cluster means information regarding the trials or 

items is lost in the aggregation process. GEE analyzes the mean response and the 

within-cluster dependence, assuming the primary interest is in the former and 

regarding the latter as a nuisance that must be taken into account for valid inference. 

The parameter estimates of GEE are known to be consistent even when the working 

correlation matrix reflecting dependence within clusters is misspecified (Wang & 

Carey, 2003). 

Often researchers who employ the GEE contrasted it with generalized linear 

mixed models (GLMM). The studies noted that GEE produced slightly 

overestimated parameters and GLMM reduced power. Type 1 errors were elevated 

with small sample sizes in both GEE and GLMM, while either of the two methods 

clearly outperformed (Hallgren et al., 2016; Hubbard et al., 2010). While both 

approaches can adeptly handle clustered outcomes, they address dependency 

differently. The way to interpret the regression coefficients of the two models are 

different, and the size of the coefficients also substantially differ depending on the 

extents of correlation within clusters (Hu et al., 1998; Lee & Nelder, 2004). Rather 

the GEE regression estimates are similar to those from the beta-binomial model and 

other quasi-likelihood binomial models with beta-binomial type variance (Agresti, 

2013). The nuisance parameter, i.e., the within-cluster correlation, can be compared 

to intracluster correlation estimated from the beta-binomial model. 

The beta-binomial model was also compared to GLMM with aggregate data 

in a few studies. Harrison (2015) found that the beta-binomial model performed 

well even with data sets generated under random intercepts GLMM with 

experimental factors in ecology. Ferrari and Comelli (2016) also found that the 

beta-binomial model was powerful and outperformed GLMM in a range of 

experimental conditions. Yet, studies that systematically compare the beta-

binomial model and GEE have been rare. In an empirical study in health service, 

Dilba and Aerts (2004) compared the beta-binomial model and GEE for clustered 

data and found that Type 1 error rates of the two methods were close under an 

exchangeable correlation matrix, yet the generalizability of the finding was 

questionable as the study was performed using an empirical data set. 
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In education, early researchers (e.g., Carlin & Rubin, 1991; Gross & Shulman, 

1980; Huynh, 1976) used the beta-binomial distribution to depict varying 

distributions from criterion referenced testing. Later, Fox (2008) applied the model 

to a multivariate randomized response data. These studies focusing on the depiction 

of the non-normal outcomes, however, did not aim to examine regression modeling 

of aggregate or clustered scores in relation to a set of covariates. Knowing that the 

beta-binomial model could be suitable for modeling non-normal test scores from 

dependent binary responses, yet the systematic examination compared with a well-

known marginal model has been rare, this study investigated the performance of 

the beta-binomial model in comparison with GEE using correlated binary responses 

simulated under three experimental conditions that are relevant in real world testing 

situations. In the next section, GEE with logit link and the beta-binomial logistic 

model are described, followed by the simulation design, and results of analyses 

from the two models. 

Two Models 

Generalized Estimating Equations 

The Generalized Estimating Equations of Liang and Zeger (1986) was designed to 

develop a marginal or population-averaged model that tests influence of covariates 

on exponentially distributed (e.g., Poisson, Binomial, Gamma) response variables, 

and facilitates analysis of data collected in repeated, longitudinal, and panel designs. 

GEE is an extension of generalized linear model (GLM: McCullagh & Nelder, 

1989), in which a specific type of correlation structure is incorporated into the 

variance function. The dependence among response variables across trials is 

specified as a working correlation matrix that accounts for the form of within-

subject correlation. 

For a case of binary responses, yij denotes a response of subject i at repeated 

trials j with either taking the value of 1 for correct or positive endorsement or 0 for 

incorrect or negative endorsement, where i = 1,…, N and j = 1,…, m. The GEE with 

logit link is 

 

 Tlog
1
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where ui = (ui1, ui2, uim) is the vector of the means. The parameter estimates β are 

the solutions of the following equation (1), in which 1 2 1 2

i i i=V D R D  is the working 

covariance matrix of Yi where D is the diagonal vector and R is a working 

correlation matrix. 
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As likelihood estimation methods require that each observation in the model is 

independent of the others, GEE uses a quasi-likelihood method for estimating 

parameters using the first two moments and produces parameter estimates that are 

asymptotically normal (Liang & Zeger, 1986). A consistent estimator of the 

asymptotic covariance matrix of β, the solution of the equation (1), is obtained by 

the robust (also often called sandwich) estimator. The GEE parameter estimates are 

more efficient and consistent when the number of clusters increase even under 

misspecification of working correlation matrix. In this study, exchangeable 

correlation matrix was used, assuming the correlation among responses between 

any two observations is a constant because the correlation structure is appropriate 

to use with level-1 clustered data (Hilbe, 2009, p. 447). 

Beta-Binomial Model 

The beta-binomial model (Williams, 1982) is a well-known conjugate mixture 

model for clustered binary data. It applies with totals or aggregates from binary 

items or trials. Suppose 
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where the Bernoulli random variable yij takes value 1 with a probability p and 0 

with a probability q = 1 – p, and Yi = 0, 1,…, mi. Under conventional binomial 

model, Yi ~ Binomial(mi, p) and the correlation coefficient between yij and yik is 0 

for every j ≠ k. When the independence assumption is violated, some alternative 

approaches to deal with the dependence should be considered. The beta-binomial 

model can be legitimately chosen to revamping extra-binomial variation or 

overdispersion due to intracluster dependence. The beta-binomial assumes that a 

success probability pi for cluster i (i.e., a subject i) is beta-distributed with two shape 

parameters α > 0 and β > 0. The appropriateness of the beta-binomial distribution 
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is dependent upon how well the beta distribution can represent the population of 

pis. The versatility of the beta distributions with different combinations of α and β 

allows one to handle various shapes of distributions. Its probability mass function 

of beta-binomial distribution is 
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where B(., .) is the beta function. Let πi = αi / (αi + βi) satisfy a logistic relationship 

with a predictor vector XT. Then Yi follows a beta-binomial distribution with the 

mean and the variance as follows: 

 

 ( )E i i i iY m = = ,  (3) 

 

 ( ) ( ) ( )2V 1 1 1i i i i i i iY m m    = = − + −  ,  (4) 

 

where intracluster correlation ρi = (αi + βi + 1)–1. As shown in equation (3), the 

beta-binomial form of expectation is the summation of individual means that is the 

same as that for binomial distribution, but the variance (4) is different from the 

binomial variance, πi(1 – πi). The multiplicative component of [1 + ρi(mi – 1)] in 

(4) specifically designates the role of statistical dependence among trials or items 

(Agresti, 2013; McCullagh & Nelder, 1989). The mean equation for the binomial 

logistic regression model with the grouped or summed outcome variable is 

 

 
Tlog i

i im





 
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− 
X β ,  

 

where XT is a transposed vector of explanatory variables and β is a vector of 

regression parameter estimates. The parameter ρi can be formulated as a function 

of predictors, but more typically it is taken to be a constant and thereby restricting 

αi + βi to be constant for all i (Simonoff, 2003). In this study, the intracluster 

correlation was modeled as a constant, assuming correlations among responses are 

exchangeable, so as to compare results of beta-binomial model to those from GEE. 



THE BETA-BINOMIAL MODEL FOR CLUSTERED BINARY RESPONSES 

8 

Method 

Experimental Factors of Simulation Design 

The simulation design of this study included two types of non-normal marginal 

distributions, negative and positive skewed distributions. Three experimental 

factors were manipulated for each type of distributions, totaling 36 experiments. 

Data generation in each experiment was performed with 1000 repetitions. 

 

Intracluster Correlation. The impact of clustering on statistical results 

crucially depends on the strength of intracluster correlation. Specifically, if the 

intracluster correlation is relatively strong, the failure to take clustering into account 

is likely to have more profound effect on the outcomes of statistical analysis 

(Galbraith et al., 2010). This study set three different exchangeable correlations, 

r = 0.2, 0.4, and 0.6. The three correlations chosen reflect a range of magnitudes of 

correlations among items that are often found in surveys, tests, and questionnaires 

in education. 

 

Number of Items. Three different numbers for items or trials were used, i.e., 

m = 8, 15, and 30. As this study tried to mimic real testing situations, those numbers 

were chosen based on hypothetical reliability coefficients calculated based on the 

Spearman-Brown formula (Spearman, 1910), which predicts a psychometric 

reliability for a lengthened test. All three conditions of 8, 15, and 30 resulted in 

predicted reliability around or above 0.8 (a satisfactory condition for reliability) for 

each of working correlation coefficients of 0.2, 0.4, and 0.6. An exception was 

made for the case of the working correlation 0.2 with m of 8, which resulted in 0.6 

that is considered an acceptable cutoff. 

 

Sample Size. Two different sample or cluster sizes were chosen, N = 50 and 200. 

The two conditions were chosen based on Pan’s recommendation (2001b) using 

varying conditions of the GEE simulations with exchangeable correlations of 0.2, 

0.4, and 0.6. The study showed that when N = 50, in most cases the power was less 

than or around 0.8 in most of the experimental conditions, and N = 200 always led 

to the power above 0.9. 

Data Generation 

The use of the GEE approach to generate correlated binary responses was 

advocated by Prentice (1988) because fully parametric approaches to estimating 
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marginal response probabilities from a series of binary responses could be 

intractable except paired binary cases. Emrich and Piedmonte (1991) developed an 

algorithm reflecting Prentice’s suggestion. The first step in the algorithm is to 

obtain correlated binary responses by applying threshold approaches to correlated 

continuous responses satisfying a desired marginal logit model. Each set of 

correlated binary observations or Bernoulli responses is treated like a block 

fulfilling the marginal condition. Thus, the 0 or 1 pattern within a block does not 

necessarily need to be the same as the patterns in other blocks as long as it meets 

the marginal condition, indicating the binary response patterns can vary across 

different blocks or individuals. Then, the dependence structure within the responses 

is parameterized in term of the given correlation matrix of the latent continuous 

responses (Emrich & Piedmonte, 1991; Touloumis, 2016). 

An R package SimCorMultRes (Touloumis, 2017) adopting the suggested 

steps was used to simulate data sets with a multilevel structure (e.g., items at level 

1 and subjects at level 2 in this study) given varying exchangeable correlations, 

sample sizes, and item numbers as mentioned before. The simulated multilevel data 

sets were analyzed using GEE. In the second step, all of the simulated data sets 

were made level-1 aggregated or clustered, which is the same as the process of 

summing up the binary responses to produce test total scores in practice. Two 

predictors included in data generation were X1~ N(0, 1) and X2 ~ Po(3). Both of 

the two covariates X1 and X2 were the level-2 predictors because the beta-binomial 

model cannot accommodate any level-1 predictor as the model utilizes the 

aggregate outcomes only and the two models can be only comparable under the 

same conditions. 

For each type of distribution (i.e., positively and negatively skewed), a set of 

true parameters for the coefficients (β0, β1, β2) were submitted. For the negatively 

skewed distributions, the three true parameters were 0.7, 0.3, and 0.2, respectively. 

In the positively skewed distributions, each parameter was fixed at –0.7, 0.3, 

and -0.2 correspondingly. Those true values and the distributions of the two 

covariates reflected results of an empirical analysis performed with an educational 

test. For GEE modeling, the R package geepack (Højsgaard et al., 2016) and 

another package, aod (Lesnoff & Lancelot, 2012) for beta-binomial modeling with 

maximum likelihood estimation, were used. 

Evaluation Criteria 

Performance of GEE and the beta-binomial model was evaluated using six 

evaluation criteria. They reported different ways to appreciate accuracy and 
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consistency of estimates and inferences from the two models. All of the calculations 

under each experimental condition were based on 1000 replications. To evaluate 

the parameter estimates, the bias and mean squared error (MSE) were reported. In 

addition, the coverage probability (CP) of 95% confidence intervals for each model 

was calculated. To evaluate inference results, Type 1 error and power rates were 

reported. Empirical Type 1 error rates were computed as the ratio that a test statistic 

produced a p-value less than 0.05 under the null hypothesis. Power was calculated 

as the ratio of a p-value below 0.05 where each coefficient was different from 0. 

Additionally, agreement rates of the inferential decisions on each coefficient at the 

nominal significance level of 0.05 were reported. 

Results 

Errors in the GEE and the Beta-Binomial Estimates 

This section reports the errors in the parameter estimates of the two models. The 

bias, mean squared error (MSE), and coverage probability (CP) of 95% confidence 

intervals for the coefficient estimates are reported in Table 1. As the positively and 

negatively skewed shapes did not seem to influence the sizes and patterns of the 

errors, the MSE values averaged over the two types of shapes are displayed in 

Figure 1, depending on the degree of intracluster correlations, the number of items, 

and sample size. 
 
 

 
 
Figure 1. MSE of the GEE (solid) and Beta-Binomial (dotted) estimates 
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Table 1. Bias, MSE, and CP of the β1 and β2 estimates of the GEE and Beta-Binomial model 
 
     Bias  MSE  CP 

Exp Type r m N βG1 βB1 βG2 βB2  βG1 βB1 βG2 βB2  βG1 βB1 βG2 βB2 

1 J 0.2 8 50 0.010 0.006 0.002 -0.001  0.030 0.029 0.012 0.011  93.3 94.1 92.9 93.4 

2 J 0.2 8 200 -0.001 -0.006 0.002 -0.002  0.007 0.007 0.003 0.002  93.5 93.6 94.1 94.9 

3 J 0.2 16 50 0.004 -0.004 0.007 0.000  0.023 0.022 0.009 0.008  92.3 94.7 92.6 94.3 

4 J 0.2 16 200 0.000 -0.008 0.001 -0.006  0.005 0.005 0.002 0.002  94.6 94.8 94.8 94.7 

5 J 0.2 32 50 0.003 -0.008 0.002 -0.008  0.018 0.016 0.007 0.006  93.7 95.3 92.8 94.6 

6 J 0.2 32 200 0.005 -0.008 0.002 -0.008  0.004 0.004 0.001 0.001  95.5 95.3 95.1 94.7 

7 J 0.4 8 50 0.016 0.005 0.007 -0.003  0.045 0.041 0.017 0.016  93.7 94.4 92.6 92.9 

8 J 0.4 8 200 0.002 -0.011 0.002 -0.007  0.011 0.010 0.004 0.003  93.8 93.4 93.3 94.3 

9 J 0.4 16 50 0.007 -0.010 0.011 -0.005  0.038 0.033 0.014 0.012  93.6 95.6 92.9 94.0 

10 J 0.4 16 200 0.001 -0.017 0.002 -0.012  0.009 0.008 0.003 0.003  94.4 95.0 93.8 93.9 

11 J 0.4 32 50 0.007 -0.017 0.004 -0.015  0.033 0.027 0.013 0.010  93.7 95.1 92.9 94.1 

12 J 0.4 32 200 0.006 -0.021 0.003 -0.016  0.008 0.007 0.003 0.002  95.1 94.5 94.1 94.0 

13 J 0.6 8 50 0.018 0.001 0.010 -0.001  0.065 0.056 0.025 0.022  93.6 94.9 93.0 93.6 

14 J 0.6 8 200 0.004 -0.013 0.002 -0.011  0.015 0.013 0.005 0.005  93.9 93.4 93.6 94.4 

15 J 0.6 16 50 0.014 -0.012 0.015 -0.006  0.055 0.046 0.022 0.017  94.8 95.6 92.0 94.6 

16 J 0.6 16 200 0.001 -0.023 0.003 -0.014  0.013 0.011 0.005 0.004  93.9 93.8 95.2 94.0 

17 J 0.6 32 50 0.013 -0.019 0.010 -0.017  0.054 0.040 0.020 0.014  93.4 95.0 93.3 94.1 

18 J 0.6 32 200 0.007 -0.028 0.004 -0.020  0.013 0.010 0.005 0.004  95.5 94.8 94.7 93.7 
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Table 1 (cont.) 
 
     Bias  MSE  CP 

Exp Type r m N βG1 βB1 βG2 βB2  βG1 βB1 βG2 βB2  βG1 βB1 βG2 βB2 

19 L 0.2 8 50 0.014 0.009 -0.002 0.001  0.033 0.033 0.012 0.011  91.7 92.5 92.6 94.7 

20 L 0.2 8 200 -0.002 -0.007 -0.002 0.002  0.007 0.006 0.002 0.002  94.6 94.5 95.2 95.8 

21 L 0.2 16 50 0.008 0.001 -0.003 0.005  0.022 0.020 0.008 0.008  93.7 95.4 92.4 93.8 

22 L 0.2 16 200 -0.001 -0.009 0.000 0.007  0.005 0.005 0.002 0.002  94.7 94.6 93.9 94.5 

23 L 0.2 32 50 -0.005 -0.005 -0.004 0.006  0.019 0.017 0.007 0.006  91.9 93.7 91.8 94.2 

24 L 0.2 32 200 0.002 -0.009 0.000 0.010  0.004 0.004 0.001 0.001  94.7 94.1 94.9 94.5 

25 L 0.4 8 50 0.022 0.011 -0.006 0.002  0.050 0.046 0.018 0.016  91.9 92.8 92.2 93.7 

26 L 0.4 8 200 0.001 -0.011 -0.003 0.006  0.010 0.010 0.004 0.003  93.6 93.9 95.1 95.0 

27 L 0.4 16 50 0.015 -0.001 -0.007 0.008  0.039 0.033 0.014 0.012  93.3 94.1 92.0 93.8 

28 L 0.4 16 200 0.000 -0.019 -0.001 0.014  0.009 0.008 0.003 0.003  94.8 94.3 93.8 94.2 

29 L 0.4 32 50 0.007 -0.016 -0.008 0.012  0.036 0.029 0.013 0.011  91.9 94.6 93.0 93.8 

30 L 0.4 32 200 0.002 -0.022 -0.001 0.019  0.008 0.007 0.003 0.002  93.7 93.4 94.6 93.2 

31 L 0.6 8 50 0.025 0.010 -0.010 0.001  0.068 0.060 0.026 0.022  92.6 93.4 91.6 93.9 

32 L 0.6 8 200 0.003 -0.014 -0.004 0.008  0.014 0.012 0.005 0.004  95.3 94.5 95.8 96.5 

33 L 0.6 16 50 0.022 0.001 0.009 0.014  0.066 0.049 0.019 0.015  92.0 95.0 92.2 93.2 

34 L 0.6 16 200 0.002 -0.022 -0.002 0.018  0.013 0.011 0.005 0.004  94.4 94.0 94.0 93.7 

35 L 0.6 32 50 0.009 -0.018 -0.012 0.012  0.057 0.040 0.021 0.015  92.6 94.8 92.6 94.1 

36 L 0.6 32 200 0.002 -0.029 -0.002 0.022  0.013 0.011 0.005 0.004  93.2 92.8 94.5 93.6 
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The MSE values of the beta-binomial estimates were found to be smaller than 

those of the GEE estimates across all of the experimental conditions. Regardless of 

the models, the higher correlations resulted in the higher MSE values. The higher 

the sample size, the lower the MSE values. The added number of items had smallest 

effect on the MSE values. 

Table 1 shows that the coverage probabilities demonstrated almost nominal 

95% coverage in both models across most of the experimental conditions, although 

they seem to be slightly liberal. Recalling that β1 = 0.3 for both L and J shapes, and 

β2 = 0.2 for J-shapes and –0.2 for L-shapes, signs of biases as shown in Table 1 

indicated that the GEE coefficients were overestimated, while the beta-binomial 

coefficients were underestimated in most of the experimental conditions (see also 

Table 2). 

The GEE and Beta-Binomial Estimates 

The parameter estimates of GEE and the beta-binomial model are presented in 

Table 2. Figure 2 summarizes the estimates under different conditions of sample 

size and intracluster correlation. When the sample size was small, the beta-binomial 

estimates were closer to the true parameters than the GEE estimates in most of the 

experimental conditions. In contrast, when the sample size got larger, it was 

noteworthy that the GEE estimates were consistent, staying close to the true 

parameters even with the highest correlation of 0.6, but the beta-binomial estimates 

were diverged with the added correlations. The differences between the estimates 

of the two models increased with the added correlations. 

Figure 3 compares the density plots of the GEE and beta-binomial estimates 

along with histograms of the aggregate outcomes in three experimental conditions 

that were chosen to contrast the small, medium, and large mean differences in the 

parameter estimates of the two models. One should note that the ranges of the 

estimates at the bottom plot were much larger than those shown in the upper two 

plots, although they do not look much different at first glance. In the uppermost 

plot where the mean differences were small, the density lines of the GEE and beta-

binomial estimates look very close. In the plot at the bottom with the large 

differences between the estimates, the lines were quite farther apart. The differences 

grew larger with higher intracluster correlations. 
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Figure 2. The β1 (left) and |β2| (right) estimates of GEE and the Beta-Binomial model 
 

 
 

 
 
Figure 3. Example histograms of aggregate outcomes and density plots of the GEE 
(solid) and Beta-Binomial (dotted) estimates with the small, medium, and large mean 
differences 
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Table 2. Mean estimates and standard errors of the GEE and Beta-Binomial model 
 
     Bias  MSE 

Exp Type r m N β1 se1 β2 se2 ρ seρ  β1 se1 β2 se2 ρ seρ 

1 J 0.2 8 50 0.310 0.162 0.202 0.099 0.093 0.043  0.306 0.164 0.199 0.100 0.095 0.047 

2 J 0.2 8 200 0.299 0.082 0.202 0.050 0.103 0.022  0.294 0.081 0.198 0.049 0.104 0.026 

3 J 0.2 16 50 0.304 0.139 0.207 0.084 0.096 0.030  0.296 0.139 0.200 0.084 0.097 0.035 

4 J 0.2 16 200 0.300 0.070 0.201 0.043 0.104 0.016  0.292 0.069 0.194 0.042 0.105 0.020 

5 J 0.2 32 50 0.303 0.126 0.202 0.075 0.098 0.024  0.292 0.125 0.192 0.075 0.099 0.030 

6 J 0.2 32 200 0.305 0.064 0.202 0.039 0.104 0.012  0.292 0.062 0.192 0.037 0.104 0.017 

7 J 0.4 8 50 0.316 0.199 0.207 0.121 0.205 0.059  0.305 0.197 0.197 0.119 0.212 0.087 

8 J 0.4 8 200 0.302 0.100 0.202 0.061 0.222 0.030  0.289 0.096 0.193 0.058 0.225 0.045 

9 J 0.4 16 50 0.307 0.182 0.211 0.109 0.208 0.047  0.290 0.175 0.195 0.105 0.213 0.075 

10 J 0.4 16 200 0.301 0.092 0.202 0.056 0.224 0.024  0.283 0.086 0.188 0.052 0.225 0.040 

11 J 0.4 32 50 0.307 0.174 0.204 0.104 0.211 0.040  0.283 0.163 0.185 0.097 0.213 0.069 

12 J 0.4 32 200 0.306 0.088 0.203 0.053 0.223 0.021  0.279 0.080 0.184 0.048 0.222 0.037 

13 J 0.6 8 50 0.318 0.237 0.210 0.145 0.342 0.072  0.301 0.229 0.199 0.139 0.354 0.154 

14 J 0.6 8 200 0.304 0.118 0.202 0.071 0.364 0.036  0.287 0.111 0.189 0.067 0.369 0.072 

15 J 0.6 16 50 0.314 0.224 0.215 0.134 0.342 0.060  0.288 0.208 0.194 0.125 0.353 0.138 

16 J 0.6 16 200 0.301 0.112 0.203 0.068 0.365 0.031  0.277 0.101 0.186 0.061 0.368 0.067 

17 J 0.6 32 50 0.313 0.218 0.210 0.131 0.344 0.054  0.281 0.196 0.183 0.116 0.354 0.135 

18 J 0.6 32 200 0.307 0.110 0.204 0.066 0.365 0.028  0.272 0.096 0.180 0.057 0.368 0.065 
 

Note: The standard deviations of the parameter estimates (not included in this table) were very similar out to the third decimal point of the standard error values 
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Table 2 (cont.) 
 
     Bias  MSE 

Exp Type r m N β1 se1 β2 se2 ρ seρ  β1 se1 β2 se2 ρ seρ 

19 L 0.2 8 50 0.314 0.161 -0.202 0.098 0.094 0.043  0.309 0.165 -0.199 0.100 0.096 0.047 

20 L 0.2 8 200 0.298 0.082 -0.202 0.049 0.103 0.022  0.293 0.081 -0.198 0.049 0.104 0.026 

21 L 0.2 16 50 0.308 0.139 -0.203 0.083 0.096 0.030  0.301 0.139 -0.195 0.084 0.098 0.036 

22 L 0.2 16 200 0.299 0.070 -0.200 0.042 0.103 0.016  0.291 0.068 -0.193 0.041 0.103 0.019 

23 L 0.2 32 50 0.305 0.136 -0.204 0.076 0.098 0.024  0.295 0.125 -0.194 0.075 0.098 0.024 

24 L 0.2 32 200 0.302 0.064 -0.200 0.039 0.104 0.012  0.291 0.061 -0.190 0.037 0.103 0.017 

25 L 0.4 8 50 0.322 0.198 -0.206 0.120 0.207 0.059  0.311 0.197 -0.198 0.119 0.214 0.086 

26 L 0.4 8 200 0.301 0.100 -0.203 0.060 0.222 0.030  0.289 0.096 -0.194 0.058 0.225 0.045 

27 L 0.4 16 50 0.315 0.183 -0.207 0.109 0.209 0.047  0.299 0.176 -0.192 0.105 0.213 0.078 

28 L 0.4 16 200 0.300 0.092 -0.201 0.056 0.223 0.024  0.281 0.086 -0.186 0.051 0.223 0.039 

29 L 0.4 32 50 0.307 0.174 -0.208 0.104 0.210 0.040  0.284 0.163 -0.188 0.097 0.212 0.072 

30 L 0.4 32 200 0.302 0.088 -0.201 0.053 0.224 0.021  0.278 0.080 -0.181 0.048 0.222 0.037 

31 L 0.6 8 50 0.325 0.237 -0.210 0.142 0.345 0.072  0.310 0.229 -0.199 0.138 0.357 0.147 

32 L 0.6 8 200 0.303 0.118 -0.204 0.071 0.363 0.036  0.286 0.111 -0.192 0.067 0.369 0.072 

33 L 0.6 16 50 0.322 0.235 -0.209 0.122 0.334 0.063  0.301 0.216 -0.186 0.112 0.347 0.181 

34 L 0.6 16 200 0.302 0.112 -0.202 0.068 0.366 0.031  0.278 0.101 -0.182 0.061 0.369 0.068 

35 L 0.6 32 50 0.309 0.219 -0.212 0.132 0.345 0.054  0.282 0.197 -0.188 0.117 0.352 0.138 

36 L 0.6 32 200 0.302 0.110 -0.202 0.066 0.366 0.028  0.271 0.096 -0.178 0.057 0.367 0.065 
 

Note: The standard deviations of the parameter estimates (not included in this table) were very similar out to the third decimal point of the standard error values 
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The last two columns under each model in Table 2 show that the estimates of 

intracluster correlation stayed very close across all of the experimental conditions. 

The sizes of the estimated intracluster correlations were slightly different, but the 

differences were fringe. For the simulated data sets with r = 0.2, the averaged 

correlation estimates were 0.099 for GEE and 0.100 for the beta-binomial model. 

When r = 0.4, the estimates were 0.214 and 0.217, respectively. Under r = 0.6, the 

estimates were 0.352 and 0.360 for each model correspondingly. The smaller 

estimates than the true correlations used for the data generation indicated that the 

two hypothetical predictors explained some amount of overdispersion due to 

dependent responses within clusters. In a follow-up analysis, the estimated 

correlations from the intercept only model without the two predictors were much 

closer to the true parameters, though they were about 0.04 to 0.1 lower than the true 

values on average for both. 

Inference on the Beta-Binomial and GEE Estimates 

The power and empirical Type 1 error rates and percent agreement of statistical 

decision (AD) on the estimates are reported in Table 3. The Type 1 error rates in 

both models ranged from 0.031 to 0.075 and were slightly larger than the nominal 

0.05 level of significance on average. But they remained fairly stable across all of 

the conditions of correlations, sample sizes, and numbers of items. 

The two models agreed upon rejection or acceptance for the coefficients at 

α = 0.05. On average, the agreement rate was about 95% for the large sample and 

dropped to 88% for the small sample. The inference on the correlation estimates 

(not included in Table 3) showed higher agreement, 92% for the small sample 

condition and 99.98% for the large sample condition on average. The power rates 

of the GEE and beta-binomial estimates were averaged over the shapes and the 

number of items in Figure 4. Notably, the power of the estimates drastically 

changed from the small sample condition to the large sample condition. The higher 

intracluster correlations diminished the power of the estimates. 
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Table 3. Power, Type 1 error rate, and percent agreement on decision at α = 0.05 
 
     Power Type 1   Power Type 1  

Exp Type r m N βG1 βB1 βG1 βB1 AD1  βG2 βB2 βG2 βB2 AD2 

1 J 0.2 8 50 0.487 0.460 0.065 0.068 89.9  0.545 0.527 0.056 0.059 89.6 

2 J 0.2 8 200 0.943 0.948 0.066 0.059 97.1  0.976 0.982 0.065 0.051 98.8 

3 J 0.2 16 50 0.599 0.574 0.073 0.071 90.3  0.686 0.660 0.047 0.054 89.8 

4 J 0.2 16 200 0.990 0.990 0.055 0.052 99.0  1.000 1.000 0.052 0.053 100.0 

5 J 0.2 32 50 0.663 0.650 0.059 0.066 90.3  0.755 0.730 0.049 0.052 91.5 

6 J 0.2 32 200 0.998 0.998 0.045 0.049 99.8  1.000 1.000 0.047 0.053 100.0 

7 J 0.4 8 50 0.380 0.339 0.064 0.070 88.3  0.417 0.397 0.053 0.064 88.6 

8 J 0.4 8 200 0.834 0.839 0.031 0.038 94.7  0.918 0.933 0.067 0.057 96.1 

9 J 0.4 16 50 0.415 0.399 0.058 0.071 87.4  0.486 0.458 0.042 0.051 83.8 

10 J 0.4 16 200 0.905 0.911 0.057 0.062 94.4  0.961 0.957 0.051 0.061 96.2 

11 J 0.4 32 50 0.422 0.440 0.061 0.067 86.6  0.501 0.476 0.043 0.052 83.5 

12 J 0.4 32 200 0.936 0.948 0.050 0.059 95.4  0.971 0.980 0.056 0.060 97.7 

13 J 0.6 8 50 0.277 0.259 0.067 0.065 88.2  0.324 0.292 0.046 0.058 87.4 

14 J 0.6 8 200 0.722 0.735 0.063 0.067 90.5  0.821 0.830 0.067 0.057 91.7 

15 J 0.6 16 50 0.303 0.282 0.051 0.075 84.5  0.371 0.341 0.043 0.050 82.8 

16 J 0.6 16 200 0.749 0.765 0.062 0.049 88.2  0.863 0.864 0.063 0.060 90.1 

17 J 0.6 32 50 0.313 0.293 0.062 0.063 86.2  0.364 0.352 0.049 0.053 82.6 

18 J 0.6 32 200 0.784 0.819 0.046 0.054 88.1  0.872 0.901 0.053 0.063 91.1 
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Table 3 (cont.) 
 
     Power Type 1   Power Type 1  

Exp Type r m N βG1 βB1 βG1 βB1 AD1  βG2 βB2 βG2 βB2 AD2 

19 L 0.2 8 50 0.513 0.475 0.077 0.067 90.4  0.546 0.512 0.067 0.046 90.8 

20 L 0.2 8 200 0.957 0.957 0.054 0.048 97.4  0.987 0.990 0.055 0.042 98.9 

21 L 0.2 16 50 0.608 0.576 0.058 0.069 89.8  0.679 0.649 0.044 0.058 90.8 

22 L 0.2 16 200 0.993 0.995 0.053 0.061 99.4  0.996 0.997 0.054 0.055 99.7 

23 L 0.2 32 50 0.669 0.647 0.074 0.074 89.6  0.759 0.736 0.053 0.052 90.5 

24 L 0.2 32 200 0.998 0.998 0.053 0.051 99.8  0.997 0.997 0.053 0.055 100.0 

25 L 0.4 8 50 0.370 0.353 0.072 0.073 88.9  0.416 0.380 0.063 0.056 90.0 

26 L 0.4 8 200 0.855 0.861 0.064 0.049 95.6  0.925 0.929 0.061 0.050 95.2 

27 L 0.4 16 50 0.424 0.410 0.073 0.068 88.8  0.481 0.455 0.048 0.062 85.2 

28 L 0.4 16 200 0.911 0.915 0.052 0.062 95.2  0.945 0.951 0.058 0.057 96.8 

29 L 0.4 32 50 0.434 0.425 0.074 0.066 85.5  0.498 0.478 0.047 0.058 83.0 

30 L 0.4 32 200 0.936 0.936 0.063 0.055 95.0  0.965 0.975 0.066 0.068 96.8 

31 L 0.6 8 50 0.294 0.274 0.065 0.075 89.8  0.333 0.305 0.057 0.054 86.4 

32 L 0.6 8 200 0.730 0.748 0.047 0.042 90.0  0.827 0.832 0.055 0.035 90.5 

33 L 0.6 16 50 0.309 0.286 0.068 0.048 86.7  0.418 0.389 0.048 0.062 82.3 

34 L 0.6 16 200 0.778 0.798 0.056 0.060 88.2  0.832 0.861 0.060 0.063 90.9 

35 L 0.6 32 50 0.315 0.301 0.063 0.066 83.4  0.354 0.345 0.047 0.053 81.9 

36 L 0.6 32 200 0.786 0.805 0.068 0.055 86.7  0.871 0.889 0.072 0.064 90.6 
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Figure 4. Power of the GEE (solid) and Beta-Binomial (dotted) estimates 
 

Discussion and Conclusions 

This study examined performance of the beta-binomial model for aggregate 

outcomes from clustered binary responses leading to non-normal marginal 

distributions. Its performance was compared to the results of GEE. The simulated 

data sets used for each model had different structures. In GEE, the binary 

observations signifying correct or incorrect responses to each simulated item were 

the units of analysis, and the binary responses were nested within subjects. In the 

beta-binomial model, the units of analysis were the aggregate outcomes of 

correlated binary responses. 

This study found that GEE tended to overestimate the regression parameters, 

consistent with previous findings from the Hallgren et al. (2016) study. GEE under 

the large sample size performed consistently and was only slightly affected by the 

different extents of intracluster correlation. However, under small sample size, the 

estimates were prone to bias with higher correlations. Though it is known that GEE 

is less dependent on the sample size (Kenward et al., 1994; Muth et al., 2015), some 

researchers (e.g., Gunsolley et al., 1995) expressed concern about the performance 

of GEE when used for small sample. In the current study, GEE estimates under 

small sample or cluster size were found to be vulnerable for a particular case of 

binomial data with high intracluster correlation. In such a case, use of a modified 

variance estimator (Pan, 2001a) or different tests such as the robust score test (Guo 

et al., 2005) can be preferable. 
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It was found that the beta-binomial model can be a good alternative for GEE 

when sample size is small. Its estimates were closer to the true parameters than 

those of GEE. Indeed, the strength of the beta-binomial model would be valuable 

because many researchers and practitioners employ small sample or cluster size 

conditions when collecting data sets for their pilot studies or in experimental design 

settings. The beta-binomial model could be readily applied when sample size of 

clustered binary data is not large enough. 

Under the large sample size condition, the beta-binomial model generated 

more biased estimates. The consistency of the beta-binomial estimates was 

questionable especially with high correlations, opposite to the results of GEE that 

showed stable performance with the large sample. Hence, GEE and the beta-

binomial model can complement each other. 

This study also found that in both small and large sample size conditions, the 

beta-binomial model was more efficient than GEE. The absolute parameter 

estimates of the beta-binomial model were underestimated throughout experimental 

conditions, which was consistent with the result of Harrison (2015). The two 

models agreed upon rejection or acceptance for the coefficients at the significance 

level of 0.05. The power of the parameter estimates was low for the small sample, 

yet very high at around 0.9 for the large sample size, which was similar to the result 

of Pan’s (2001b) study. The Type 1 error probabilities of the two models were very 

close across the different conditions, confirming the empirical finding of Dilba and 

Aerts (2004). Though the values were slightly larger than the nominal significance 

level of 0.05, they remained fairly stable across the conditions in both models. 

Among the three experimental factors, the number of items or trials had the smallest 

effect on the parameter estimates, akin to the finding regarding the beta-binomial 

estimates in Harrison (2015). In the current study, the extent of intracluster 

correlation had profound effects on the estimation as well as on the power of the 

estimates for both models as found in Galbraith et al. (2010). 

As this study examined cases mimicking educational tests where aggregate or 

clustered outcomes have non-normal and skewed distributions from correlated 

binary responses, generalizability of the conclusions within a broader context of 

aggregate outcomes might be limited. To overcome this limitation, a future study 

can include other aggregate or clustered designs such as a cross-sectional design 

where the intraclass correlation could be much smaller. Findings of this study 

warrant further investigation on the effect of varying degrees of intracluster 

correlation under more refined sample size conditions. Different data generation 

processes can be considered especially to further investigate the biased results of 

the two models under different sample size conditions. One can also ponder a 
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systematic study including other statistical approaches that take into account 

overdispersion differently such as GLMM. This might answer the reason for 

somewhat underestimated correlation estimates even when the two predictors were 

absent in both models because other possible source of overdispersion such as inter-

individual variability could not be captured by the two models. 
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