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INVITED ARTICLE 

Logistic Regression: An Inferential 
Method for Identifying the Best 
Predictors 

Rand Wilcox 
University of Southern California 

Los Angeles, CA 

 

 
When dealing with a logistic regression model, there is a simple method for estimating the 

strength of the association between the jth covariate and the dependent variable when all 

covariates are entered into the model. There is the issue of determining whether the jth 

independent variable has a stronger or weaker association than the kth independent variable. 

This note describes a method for dealing with this issue that was found to perform 

reasonably well in simulations. 

 

Keywords: Regression, binary data, strength of association 

 

Introduction 

Let Y denote some outcome variable of interest and let X1,…, Xp denote p covariates. 

A basic issue is determining whether Xj is a better predictor of the typical value of 

Y than Xk, 1 ≤ j < k ≤ p. In the regression literature, there are numerous methods 

for estimating the relative importance of the p covariates, which were reviewed by 

Wilcox (2018). A simple strategy is to compare the correlation of Xj with Y to the 

correlation between Xk and Y. However, a concern with this strategy is that the 

strength of the associations can depend on the covariates included in the model. 

Methods for dealing with this issue have been developed, but generally they do not 

indicate the strength of the empirical evidence that Xj, say, is a better predictor than 

Xk when all p covariates are included in a linear regression model. Tibshirani, 

Taylor, Lockhart, and Tibshirani (2016) as well as Lee, Sun, Sun, and Taylor (2016) 
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derived methods aimed at dealing with this latter issue assuming normality and 

homoscedasticity. Wilcox (2018) derived a robust method that allows 

heteroscedasticity. 

The focus here is on the situation where Y is binary and the conditional 

probability of Y = 1 is given by the logistic regression model. That is, it is assumed 

that 

 

 ( )1P 1| , ,
1

p

A
Y X X

A
=  =

+
,  (1) 

 

where A = exp(β0 + ∑ βjXj) for unknown constants β0,…, βp. An obvious 

speculation is that a simple modification of the method in Wilcox (2018) can be 

used for the situation at hand. However, simulations revealed that this is not the 

case; it performs poorly. This note describes two modifications of Wilcox’s method 

aimed at dealing with this issue. 

The Proposed Method 

Momentarily consider the case of a single explanatory variable and let Ŷ be some 

estimate of the typical value of Y given X. Explanatory power (e.g., Wilcox, 2017) 

is 
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where τ2 is some measure of variation; η is known as the explanatory measure of 

the strength of the association. When the ordinary least squares estimator is used 

and τ2 is taken to be the variance, η2 is the coefficient of determination. In particular, 

when p = 1, η2 = ρ2, where ρ is Pearson’s correlation. 

Note that for two independent variables, Xj and Xk, determining which is more 

important can be approached by testing 

 

 0 : j kH  = .  (3) 

 

In terms of Tukey’s three-decision rule (e.g., Wilcox, 2017), if this null hypothesis 

is rejected, make a decision about whether ηj is greater than or less than ηk. 

Otherwise, no decision is made. 
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Given X1j,…, Xnj, let Aij = exp(β0 + βjXij). Then, based on the logistic 

regression model, Aij/(Aij + 1) corresponds to πij = P(Y = 1 | Xij). Let 2

j  denote the 

population variance associated with π1j,…, πnj. Note that for the situation at hand, 

to test (3) it suffices to test 

 

 0 : j kH  = .  (4) 

 

Let b0,…, bp be estimates of β0,…, βp, respectively, based on the random 

sample (Yi, Xi1,…, Xip), i = 1,…, n. Let 
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be the estimate of πij where Âij = exp(b0 + bjXij). Then 
2

j  is estimated with 
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where 
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j ij
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The value of βj can depend on which other independent variables are included in 

the model. This issue is addressed here by including all of the independent variables 

when estimating βj with bj, which yields an estimate of 
2

j  via (6). 

A percentile bootstrap method is used to test (4). First, generate a bootstrap 

sample by sampling with replacement n vectors from n vectors (Y1, X11,…, X1p),…, 

(Yn, Xn1,…, Xnp) yielding ( ) ( )1 11 1, , , , , , , ,ip n n npY X X Y X X        . Let ˆ
j 

 be the 

bootstrap estimate of σj. Repeat this process B times yielding ˆ
jb 

 (b = 1,…, B). Let 

C denote the proportion of times 1
ˆ

b   is less than 2
ˆ

b  . That is, 
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where the indicator function ( )* *

1 2 1ˆ ˆI b b  =  when * *

1 2
ˆ ˆ

b b  , otherwise 

( )* *

1 2 0ˆ ˆI b b  = . From Liu and Singh (1997) a (generalized) p-value is 

2min(C, 1 − C). This will be called method P henceforth. 

Wilcox (2018) found that method P performs poorly when Y is continuous 

and a robust regression estimator is used. An alternative method was found that 

performed reasonably well which differs from the bootstrap method used here in 

two crucial ways. First, Wilcox’s method uses two independent bootstrap samples. 

The first yields 1̂
  and the second is used to compute 2̂  . The same bootstrap 

sample is used to get 1̂
  and 2̂  . The second difference is that C is replaced by 

 

 ( ) ( )* *

1 22
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B B

 
= =

 
−
 .  (7) 

 

An obvious speculation is Wilcox’s method continues to perform well for the 

situation at hand, but simulations revealed that this is not the case. 

The proposed method for testing (4) is readily generalized to comparing pairs 

of non-overlapping explanatory variables. Consider, for example, the case of p = 4 

explanatory variables where the goal is to test 

 

 0 12 34:H  = .  (8) 

 

Then, proceed as before but with Â12 = exp(b0 + b1Xi1 + b2Xi2) when estimating σ12, 

and Â34 = exp(b0 + b3Xi3 + b4Xi4) when estimating σ34. Bootstrap estimates of σ12 

and σ34 are computed as previously described. 

Simulation Results 

Simulations were used as a partial check on the ability of method P to control the 

probability of a Type I error when there are p = 4 independent variables. The 

independent variables were generated from a multivariate normal distribution 

having a common correlation ρ. Three values for ρ were used: 0.0, 0.5, and 0.8. The 

sample size was taken to be 50 and 100. Given the goal of testing (4), when j = 1 

and k = 2, two choices for slopes were used: (β1, β2, β3, β4) = (0, 0, 1, 1) and 

(1, 1, 0, 0). Simulations were also run when testing (8); the slopes were then taken 

to be (0, 0, 0, 0) and (1, 1, 1, 1). 
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Table 1. Simulation estimates of the actual Type I error probability when testing (4), 
α = 0.05 
 

n ρ (β1, β2, β3, β4) B = 200 B = 500 

50 0.0 (0, 0, 1, 1) 0.004 0.002 

50 0.5 (0, 0, 1, 1) 0.047 0.044 

50 0.8 (0, 0, 1, 1) 0.061 0.045 

100 0.0 (0, 0, 1, 1) 0.001 0.002 

100 0.5 (0, 0, 1, 1) 0.061 0.053 

100 0.8 (0, 0, 1, 1) 0.042 0.051 

50 0.0 (1, 1, 0, 0) 0.070 0.065 

50 0.5 (1, 1, 0, 0) 0.076 0.069 

50 0.8 (1, 1, 0, 0) 0.064 0.057 

100 0.0 (1, 1, 0, 0) 0.072 0.066 

100 0.5 (1, 1, 0, 0) 0.069 0.058 

100 0.8 (1, 1, 0, 0) 0.062 0.053 

 
 
Table 2. Simulation results when testing (8), α = 0.05 
 

n ρ (β1, β2, β3, β4) B = 200 

50 0.0 (0, 0, 0, 0) 0.005 

50 0.5 (0, 0, 0, 0) 0.002 

50 0.8 (0, 0, 0, 0) 0.002 

100 0.0 (0, 0, 0, 0) 0.004 

100 0.5 (0, 0, 0, 0) 0.004 

100 0.8 (0, 0, 0, 0) 0.005 

50 0.0 (1, 1, 1, 1) 0.070 

50 0.5 (1, 1, 1, 1) 0.068 

50 0.8 (1, 1, 1, 1) 0.048 

100 0.0 (1, 1, 1, 1) 0.072 

100 0.5 (1, 1, 1, 1) 0.062 

100 0.8 (1, 1, 1, 1) 0.056 

 
 

Compiled in Table 1 are the estimates of the actual Type I error probability 

when testing (4) at the 0.05 level. The estimates are based on 2000 replications. 

Two choices for B were used: 200 and 500. Results in Wilcox (2018) suggest that 

B = 200 might suffice, which was the motivation for considering it here. 

Although the seriousness of a Type I error can depend on the situation, 

Bradley (1978) suggests that when testing at the 0.05 level, as a general guide the 

actual level should be between 0.025 and 0.075. When B = 200, estimates are less 

than 0.075 in all situations except one, where it is 0.076. The difficulty is when 

there is no association with the independent variables and simultaneously the 

covariates have a common correlation of zero, the actual Type I error probability is 
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estimated to be substantially less than 0.025. Increasing n, B, or both does not 

correct this problem. This was expected based on results in Wilcox (2018). 

Contained in Table 2 are results when testing (8) with B = 200. In this case 

the estimates never exceed 0.075. Again, when there is no association and the 

covariates have a common correlation of zero, the estimates are substantially less 

than 0.025 as was expected. 

Illustration 

Method P is illustrated with data from the Well Elderly 2 study (Clark et al., 2011), 

which was generally focused on an intervention program aimed at improving the 

emotional and physical wellbeing of older adults. The focus was on data collected 

after intervention. One issue was the association between a measure of depressive 

symptoms (CESD) and two independent variables: a measure of life satisfaction 

(LSIZ) and the cortisol awakening response (CAR), which is the change in cortisol 

upon awakening and measured again 30-45 minutes later. Both enhanced and 

reduced CARs are associated with various psychosocial factors, including 

depression and anxiety disorders (e.g., Bhattacharyya, Molloy, & Steptoe, 2008; 

Pruessner, Hellhammer, Pruessner, & Lupien, 2003). A CESD score greater than 

15 is regarded as an indication of mild depression. A score greater than 21 indicates 

the possibility of major depression. The goal was to understand the relative 

importance of the two independent variables in terms of the probability that a CESD 

score is greater than 15. 

The explanatory strength of the associations was estimated to be 0.002 and 

0.201 for CAR and LSIZ, respectively. The sample size is n = 243. The p-value 

when testing (4) is less than 0.001. (B = 500 was used.) 

However, the logistic regression model assumes that the probability of the 

event under consideration has a monotonic association with the independent 

variables. As a partial check on this assumption, Figure 1 shows a plot of the 

regression surface based on a nonparametric smoother (e.g., Wilcox, 2017, section 

15.5.4). Note that the plot suggests that the association is not monotonic. However, 

a monotonic association does appear to be reasonable when the CAR is negative, 

ignoring CAR values that are positive. And the same is true when the CAR is 

positive, ignoring CAR values that are negative. Focusing only on CAR values less 

than zero, the estimates of the explanatory strength of the associations were 0.070 

and 0.189 for the CAR and LSIZ, respectively, and the p-value when testing (4) is 

0.012. For positive CAR values, ignoring negative CAR values, the estimates were 

0.121 and 0.199 and the p-value is 0.236. So, it appears that LSIZ is more important 
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than the CAR when the CAR is negative. When the CAR is positive, LSIZ is 

estimated to be more important, but the empirical evidence supporting this 

conclusion is weak. For this latter situation, the sample size is now n = 94. 

It is known that leverage points, meaning outliers among the independent 

variables, can have an inordinate impact on the estimates of the slopes yielding a 

misleading indication of the nature of the association among the bulk of the data. 

The analysis just described was conducted again with leverage points removed 

resulting in the same conclusions. 
 
 

 
 
Figure 1. Shown is a smooth where the goal is to estimate the probability that CESD is 
greater than 15 given the cortisol awakening response (CAR) and a measure of life 
satisfaction (LSIZ) 
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Conclusion 

An issue not addressed is testing (4) for every j < k in a manner that controls 

familywise error rate (FWE), meaning the probability of one or more Type I errors. 

Some simulations were run based on the Bonferroni method. Reject (4) if the 

p-value is less than or equal to α/C, where C is the number of tests to be performed. 

With n = 50 and B = 500, situations were found where the actual FWE was 

estimated to be greater than 0.08 when testing at the 0.05 level. Increasing B = 1000 

did not correct this problem. Increasing the sample size to n = 100, still using 

B = 1000, resulted in estimates less than 0.075 among the situations considered, but 

this issue is in need of further study. 

As was illustrated, situations are encountered where the logistic regression 

model can be inappropriate. For p = 2 independent variables, a smooth of the 

regression surface might suggest how to deal with this issue. But of course, when 

p > 2, dealing with this concern is more difficult. One possibility is to use a partial 

residual plot as suggested by Fowlkes (1987). An analog of this approach can be 

applied via the R function logrchk, which is stored in the file Rallfun-v35 described 

below. The resulting plot might suggest modifications of the logistic regression 

model that provides a more satisfactory approximation of the true association. But 

the extent to which this approach provides a satisfactory solution for the situation 

at hand is unclear. 

The R function logIVcom applies the proposed method and has been stored 

in the file Rallfun-v35, which can be downloaded at 

https://dornsife.usc.edu/labs/rwilcox/software. The function will be added to the R 

package WRS as well, which can be installed at https://github.com/nicebread/WRS. 

References 

Bhattacharyya, M. R., Molloy, G. J., & Steptoe, A. (2008) Depression is 

associated with flatter cortisol rhythms in patients with coronary artery disease. 

Journal of Psychosomatic Research, 65(2), 107-113. doi: 

10.1016/j.jpsychores.2008.03.012 

Bradley, J. V. (1978) Robustness? British Journal of Mathematical and 

Statistical Psychology, 31(2), 144-152. doi: 10.1111/j.2044-8317.1978.tb00581.x 

Clark, F., Jackson, J., Carlson, M., Chou, C.-P., Cherry, B. J., Jordan-Marsh 

M., … Azen, S. P. (2011). Effectiveness of a lifestyle intervention in promoting 

the well-being of independently living older people: results of the Well Elderly 2 

https://dornsife.usc.edu/labs/rwilcox/software/
https://github.com/nicebread/WRS
https://dx.doi.org/10.1016/j.jpsychores.2008.03.012
https://dx.doi.org/10.1111/j.2044-8317.1978.tb00581.x


LOGISTIC REGRESSION 

10 

Randomised Controlled Trial. Journal of Epidemiology & Community Health, 

66(9), 782-790. doi: 10.1136/jech.2009.099754 

Fowlkes, E. B. (1987). Some diagnostics for binary logistic regression via 

smoothing. Biometrika, 74(3), 503-515. doi: 10.1093/biomet/74.3.503 

Lee, J., Sun, D., Sun, Y., & Taylor, J. (2016). Exact post-selection inference 

with the lasso. The Annals of Statistics, 44(3), 907-927. doi: 10.1214/15-aos1371 

Liu, R. G., & Singh, K. (1997). Notions of limiting P values based on data 

depth and bootstrap. Journal of the American Statistical Association, 92(437), 

266-277. 

Pruessner, M., Hellhammer, J. C., Pruessner, J. C., & Lupien, S. J. (2003). 

Self-reported depressive symptoms and stress levels in healthy young men: 

associations with the cortisol response to awakening. Psychosomatic Medicine, 

65(1), 92-99. doi: 10.1097/01.psy.0000040950.22044.10 

Tibshirani, R. J., Taylor, J., Lockhart, R., & Tibshirani, R. (2016). Exact 

post-selection inference for sequential regression procedures. Journal of the 

American Statistical Association, 111(514), 600-620. doi: 

10.1080/01621459.2015.1108848 

Wilcox, R. (2017). Modern statistics for the social and behavioral sciences: 

A practical introduction (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC. doi: 

10.1201/9781315154480 

Wilcox, R. R. (2018). Robust regression: An inferential method for 

determining which independent variables are most important. Journal of Applied 

Statistics, 45(1), 100-111. doi: 10.1080/02664763.2016.1268105 

https://dx.doi.org/10.1136/jech.2009.099754
https://dx.doi.org/10.1093/biomet/74.3.503
https://dx.doi.org/10.1214/15-aos1371
https://dx.doi.org/10.1097/01.psy.0000040950.22044.10
https://dx.doi.org/10.1080/01621459.2015.1108848
https://dx.doi.org/10.1201/9781315154480
https://dx.doi.org/10.1080/02664763.2016.1268105

	Journal of Modern Applied Statistical Methods
	3-6-2019

	Logistic Regression: An Inferential Method for Identifying the Best Predictors
	Rand Wilcox
	Recommended Citation


	eq1
	eq2
	eq3
	eq4
	eq5
	eq6
	eq7
	eq8
	table1
	table2
	figure1
	ref_bhattacharyya_et_al_2008
	ref_bradley_1978
	ref_clark_et_al_2011
	ref_fowlkes_1987
	ref_lee_et_al_2016
	ref_liu_singh_1997
	ref_preussner_et_al_2003
	ref_tibshirani_et_al_2016
	ref_wilcox_2017
	ref_wilcox_2018

