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Pareto Distribution under Hybrid 
Censoring: Some Estimation 

Gyan Prakash 
Moti Lal Nehru Medical College 

Allahabad, India 

 

 
In the present study, the Pareto model is considered as the model from which observations 

are to be estimated using a Bayesian approach. Properties of the Bayes estimators for the 

unknown parameters have studied by using different asymmetric loss functions on hybrid 

censoring pattern and their risks have compared. The properties of maximum likelihood 

estimation and approximate confidence length have also been investigated under hybrid 

censoring. The performances of the procedures are illustrated based on simulated data 

obtained under the Metropolis-Hastings algorithm and a real data set. 

 

Keywords: Hybrid censoring, approximate confidence length (ACL), invariant 

LINEX loss function (ILLF), generalized entropy loss function (GELF) 

 

Introduction 

The Pareto Type-II distribution is used here for Bayesian inference, having the 

probability density function 

 

 ( ) ( )
( )1

f ; , ; 0, 0, 0x x x
     

− +
= +    .  (1) 

 

Parameter θ is known as the shape parameter, whereas the parameter σ is the scale 

parameter. The given model in Equation (1) is also called the Lomax distribution 

and is the result of a mixture of the Exponential distribution with scale parameter α 

and given scale parameter α is distributed as the Gamma density with parameters θ 

and σ. 

The Pareto distribution provides a very flexible family of fat-tailed 

distributions and is a useful model for the income distribution of the higher income 

group. The model given in Equation (1) plays a vital role in socioeconomic studies 
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also. It is frequently used as a model for examining areas including city population 

distribution, stock price variation, oil field sites, and armed areas. It is suitable for 

approximating the right tails of distributions with positive skewness. The Pareto 

distribution has a decreasing failure rate, so it has repeatedly been used to model 

survival after some medical procedures (the ability to survive for a long time 

appears to increase the longer one survives after certain medical procedures). 

The Pareto distribution plays an important role in a variety of other problems 

and was discussed by Steindle (1965) for size of cities and firms, business mortality 

by Lomax (1954), and service time in the queuing system by Harris (1967). A lot 

of work is available on the Pareto model, and very few of them are stated here. Al-

Hussaini et al. (2001) obtained the Bayes prediction bounds for Type-I censored 

data from a finite mixture of Lomax components. Madi and Raqab (2004) used the 

Pareto model in the forecasting of temperature records. 

D. C. Singh et al. (2007) assumed a classical Pareto model for the testimation 

of unknown parameters under the Linex loss function. Li (2011) discussed the 

maximum likelihood and Bayes estimates for reliability parameters of the Pareto 

model by using progressive Type-II censored samples. Al-Zahrani and Al-Sobhi 

(2013) used Lomax distribution based on general progressive censored data for 

evaluating the problem of the probability S = P(Y < X). The Bayes prediction bound 

lengths for the Pareto Type-II model were obtained by Prakash and Singh (2013) 

by using several different censoring criteria. 

Okasha (2014), in his article about the E-Bayesian method, considered 

computing estimates of the unknown parameter, reliability, and hazard functions of 

Lomax distribution based on Type-II censored data. Prakash (2014) inspecting the 

Bayes estimators under right ordered sample data for the Lomax model. Some 

statistical inference for the two-parameter Pareto distribution based on Progressive 

Type-II censored data were discussed recently by Prakash (2017). 

The objective of the present study is to investigate Bayesian inferences for 

unknown parameters of the underlying distribution based on hybrid censored data. 

The Bayes estimators under two different asymmetric loss functions, maximum 

likelihood estimators and ACL, have been obtained. The risks of the Bayes 

estimators have been compared within different asymmetric loss functions. The 

performances of the procedures are illustrated by a simulation technique based on 

the Metropolis-Hastings (M-H) algorithm and by a real data example was discussed 

by Lawless (1982). 
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Hybrid Censoring & ML Estimation 

The conventional Type-I and Type-II censoring schemes are the most popular 

censoring schemes for reliability analysis. The considered hybrid censoring scheme 

is a mixture of Type-I and Type-II censoring schemes. Some recent studies on 

hybrid censoring have been carried out by many authors, including Childs et al. 

(2003), Kundu (2007), Banerjee and Kundu (2008), Dube et al. (2011), 

Balakrishnan and Kundu (2013), B. Singh et al. (2014), and Kayal et al. (2017). 

Let us assume a total of n identical units are put on a test. Under the hybrid 

censoring scheme, the test is terminated when a pre-assigned number m (say) out 

of n units have failed or when a pre-determined time t has been reached. Hence, in 

the hybrid censoring scheme, m and t are respectively assumed as the number of 

failures and the experimental time. The test will not exceed m or t, respectively. 

Now let us assume the lifespans of the test units are T1, T2,…, Tn and are 

identically independently distributed with density function Equation (1). Let 

T1:n ≤ T2:n ≤…≤ Tn:n be the corresponding order statistic. Let the number of 

failures and the observation times be denoted by M and T = min(Tm:n, t), 

respectively. Therefore, the observed samples are assumed to be 

(T1:n, T2:n,…≤ TM:n; M). 

The likelihood function based on hybrid censored data is defined when t0 and 

d are the observed values of T and M, respectively, as 
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Taking the logarithm on Equation (2) and differentiating with respect to the 

unknown parameters, we get 

 



GYAN PRAKASH 

5 

 

( )

( )
( ) ( ) ( )

1

1 10

Log L | , log

1 1
Log L | ,

d d

i ii i

d
x n H

n n d
x

x t x

  
 


  

    = =


= + −



     − 
   = − + − 
    + + +     

 
  

 

Hence, the maximum likelihood estimators corresponding to the parameters θ and 

σ are denoted by 
Ml̂  and Ml̂ , respectively, and obtained as 
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.  (4) 

 

A simple iterative procedure was adopted for solving Equation (4). For this, let σ(0) 

be an initial guess value of σ. Then successive approximations of σ are σ(1) = h(σ(0)), 

σ(2) = h(σ(1)),…, σ(m+1) = h(σ(m)). Stop the iterative procedure at the mth stage if 

|σ(m+1) – σ(m)| < φ for some pre-specified small value φ. 

Now, the second derivatives of the logarithm of the likelihood function are 

obtained and given as 
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The observed information matrix is denoted by I(Θ) and defined, for ( )ˆ ˆ ˆ, =Θ  

the ML estimation of the parameter Θ = (θ, σ), as 
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Following Park and Balakrishnan (2009), the Fisher Information matrix is obtained 

by 
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Here, ρ(x; Θ) and fi:n(x; Θ) are known as the hazard function for Equation (1) and 

the probability density of Xi:n, respectively, and defined as 
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Hence, 
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It is clear that the elements of ℓ(Θ) from Equation (6) are to be computed 

numerically. 

The Bayes Estimation under Asymmetric Loss Function 

Prakash (2017) defined the joint prior density function, when both the parameter of 

the underlying distribution given in Equation (1) are assumed as the random 

variable, and given as 

 

 ( )
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1 1π , e e
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The joint posterior and marginal posterior densities corresponding to the parameters 

θ and σ are obtained as 
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The greatest number of Bayesian inference was developed under the usual 

symmetric loss function called the squared error loss function. The squared error 

loss is symmetrical and gives equal importance to the losses due to overestimation 

and underestimation. Parsian and Kirmani (2002) discussed the infeasibility of the 

squared error loss in most practical situations. Based on the practical importance of 

the Pareto distribution, a useful and flexible class of asymmetric loss functions, 

called Invariant LINEX Loss Functions (ILLFs) has used for the Bayesian inference. 

Following Prakash (2015) the ILLF is defined for an estimate Θ̂  of the parameter 

Θ as 

 

 ( )I

ˆ
L 1; 0, 1,ce c c = −  −   = − =

Θ
Φ Φ

Θ
.  (15) 

 

The parameter c is defined as the shape parameter of the ILLF. See Prakash (2015) 

for more details regarding the ILLF. The Bayes estimators for the parameters θ and 

σ under ILLF are obtained by solving following equality for each parameter: 

 

 L
ˆ1 1

exp π π ; ,cc d e d   

 

 

   
−  =   =  

     
  .  (16) 

 

Some numerical methods are applied here for the analysis of the proposed 

methods due to the non-existence of a closed expressions for the Bayes estimators. 



GYAN PRAKASH 

9 

Several authors have already explored in their articles that the Bayes estimators 

under the LINEX loss function perform better than the squared error loss function. 

We are not going for the same. Here, we considered another asymmetric loss 

function named the Generalized Entropy Loss Function (GELF) and study the 

performances of the Bayes estimators for a selected set of parametric values. 

The ILLF grows almost exponentially on one side of zero and nearly linearly 

on the other side. A suitable alternative of ILLF is a GELF, which is defined for 

any estimate ̂  as 

 

 ( ) ( ) ( )EL log 1; 0
b

b b =  −  −  .  (17) 

 

The parameter b is the shape parameter of the GELF. See Calabria and Pulcini 

(1996) for more detail about the entropy loss function and P. K. Singh et al. (2008) 

for GELF. 

Now, the Bayes estimators corresponding to the parameters θ and σ under 

GELF are obtained by solving following the equality for each parameter: 

 

 

1

E
ˆ π ; ,

d
d d  

−

− 





 
 =    = 

 
 .  (18) 

Metropolis-Hastings Algorithm 

Metropolis et al. (1953) and Hastings (1970) have discussed an algorithm called the 

Metropolis-Hastings (M-H) algorithm, which is widely used to simulate samples 

from a given posterior distribution by making use of an arbitrary proposal 

distribution and provides an alternative way for computing Bayes estimates. 

The sample was generated from the posterior distribution given in Equation 

(12) in following way: 

Let us assume that parameters θ and σ are independently distributed as normal. 

In order to simulate replicates from the prescribed distribution, we need to 

implement following steps: 

 

1:- Select an initial guess of δ = (θ, σ) and set it as δ0 = (θ0, σ0). 

2:- Now, generate a new δ′ by using the proposed N(δn–1, Σ) distribution. 

Here n is the iterative stage and Σ is the variance-covariance matrix. 
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3:- Now, compute 
( ) ( ) 

1
min 1,π π

n
h

  −

 

 
= . 

4:- Then generate a sample u from the Uniform distribution U(0, 1). 

5:- If u ≤ h, then set δn → δ′; 

Otherwise δn → δn–1. 

6:- Repeat steps 2-5 up to N times and collect an adequate number of 

replicates. Then estimate the associated Bayes estimates and the 

corresponding risks of the parameters under for the concerned loss 

functions. 

 

In the previous sections, we proposed different estimators for the unknown 

parameters of the underlying distribution. Now we assess their behavior in terms of 

risk by using hybrid censored samples. These values are computed using Monte 

Carlo simulations on the basis of 10,000 replications. 

The performance of the ML estimators under squared error loss function and 

the approximate confidence lengths are presented in Table 1 and Table 2 based on 

a simulation study under the hybrid censoring pattern. Prakash (2014) studied the 

Bayes estimators of the concerned distribution under the right censored data and 

noted that the risks were minimized for smaller σ (small values of scale parameter). 

Thus, in the present study, the pre assumed values of σ are 0.25, 0.50, and 1.00 and 

the assumed values of shape parameter are θ = 0.50, 1.00, 2.00, and 5.00. 
 
 
Table 1. Risk of maximum likelihood estimators 
 

   Based on simulated data  Based on real data 

θ = 2.00   σ  σ 

 m t 0.25 0.50 1.00  0.25 0.50 1.00 

ˆ
Ml
θ  5 1.00 0.6481 0.6633 0.6716  0.5818 0.6012 0.6039 

 10  0.6325 0.6505 0.6563  0.5524 0.5842 0.5883 
 15  0.6053 0.6219 0.6475  0.5335 0.5487 0.5571 
 5 5.00 0.7269 0.7476 0.7545  0.6523 0.6564 0.6771 
 10  0.6974 0.7223 0.7237  0.6077 0.6491 0.6491 
 15  0.6702 0.6937 0.7101  0.5901 0.6122 0.6371 
          

ˆ
Ml

σ  5 1.00 0.9148 0.9358 0.9473  0.8233 0.8501 0.8538 

 10  0.8266 0.8514 0.8594  0.7161 0.7399 0.7455 
 15  0.8074 0.8303 0.8657  0.7082 0.7292 0.7608 
 5 5.00 1.0237 1.0522 1.0618  0.9206 0.9263 0.9549 
 10  0.9162 0.9506 0.9525  0.7923 0.8495 0.8495 
 15  0.8971 0.9295 0.9541  0.7864 0.8169 0.8513 
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The simulation is carried out for a particular set of hybrid censored data of 

size n(= 20), and different choices of m, t, and level of significance ε. It is observed 

that the risk magnitude decreases when the censored sample size m increases, 

whereas the opposite trend is seen when the pre-determined failure time t increases. 

Similar properties also are seen when the scale parameter σ increases. 

However, in the case of Ml̂  it is noted that the risk magnitude first increases up to 

σ ≤ 0.50 and then decreases. The effect of variation in the shape parameter θ is also 

observed. A minor reduction in the magnitude of the Bayes risk has been noted 

when the values of the shape parameter increase. The minimum risk magnitude was 

observed for θ = 2.00. Hence, all the results discussed here are only for θ = 2.00. 
 
 
Table 2. Asymptotic confidence interval 
 

θ = 2.00, n = 20 ε = 99%  ε = 95% 

    σ  σ 

  m t 0.25 0.50 1.00  0.25 0.50 1.00 

θ 

B
a

s
e

d
 o

n
 

s
im

u
la

te
d

 d
a

ta
 5 1.00 0.9568 0.9452 0.9242  0.8621 0.8584 0.8312 

 10  0.8847 0.8765 0.8514  0.7895 0.7838 0.7393 
 15  0.8791 0.8551 0.8319  0.7645 0.7527 0.7315 
 5 5.00 1.0728 1.0632 1.0342  0.9645 0.9356 0.9298 
 10  0.9791 0.9771 0.9422  0.8946 0.8746 0.8167 
 15  0.9785 0.9556 0.9227   0.8564 0.8416 0.8106 
           

 

B
a

s
e

d
 o

n
 r

e
a

l 

d
a

ta
 

5 1.00 0.9708 0.9592 0.9383  0.8761 0.8723 0.8452 
 10  0.8986 0.8905 0.8653  0.8035 0.7978 0.7833 
 15  0.8909 0.8851 0.8619  0.7944 0.7827 0.7614 
 5 5.00 1.0868 1.0772 1.0482  0.9785 0.9496 0.9438 
 10  1.0029 0.9912 0.9562  0.8886 0.8686 0.8507 
 15  1.0002 0.9855 0.9527   0.8763 0.8715 0.8406 

           

σ 

B
a

s
e

d
 o

n
 

s
im

u
la

te
d

 d
a

ta
 5 1.00 0.9519 0.9407 0.9198  0.8589 0.8552 0.8219 

 10  0.8456 0.8294 0.8193  0.7519 0.7463 0.7026 

 15  0.8513 0.8394 0.8066  0.7404 0.7288 0.7089 

 5 5.00 1.0658 1.0564 1.0279  0.9595 0.9371 0.9254 

 10  0.9782 0.9562 0.9028  0.8551 0.8355 0.7786 

 15  0.9506 0.9281 0.8958   0.8307 0.8162 0.7857 

           

 

B
a

s
e

d
 o

n
 r

e
a

l 

d
a

ta
 

5 1.00 0.9754 0.9643 0.9443  0.8825 0.8787 0.8521 

 10  0.8789 0.8609 0.8462  0.8155 0.7799 0.7556 

 15  0.8856 0.8599 0.8371  0.7908 0.7793 0.7584 

 5 5.00 1.0894 1.0854 1.0514  0.9832 0.9546 0.9429 

 10  0.9714 0.9599 0.9555  0.9191 0.9098 0.8218 

 15  0.9933 0.9785 0.9463   0.8713 0.8665 0.8362 
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Table 3. Risk magnitude under the ILLF 
 

θ = 2.00, n = 20 Based on simulated data  Based on real data 

    σ  σ 

 c m t 0.25 0.50 1.00  0.25 0.50 1.00 

ˆ
L
θ  0.25 5 1.00 0.6963 0.7122 0.7207  0.6274 0.6476 0.6504 

  10  0.6041 0.6213 0.6479  0.5295 0.5453 0.5542 
  15  0.5861 0.6047 0.6107  0.5029 0.5359 0.5401 
  5 5.00 0.7781 0.7996 0.8067  0.7006 0.7049 0.7264 
  10  0.6714 0.6958 0.7129  0.5883 0.6112 0.6371 
  15  0.6534 0.6792 0.6807   0.5603 0.6032 0.6032 
           

 0.50 5 1.00 0.6619 0.6772 0.6855  0.5954 0.6148 0.6175 

  10  0.6008 0.6188 0.6382  0.5238 0.5523 0.5564 

  15  0.5959 0.6125 0.6247  0.5204 0.5393 0.5475 

  5 5.00 0.7415 0.7618 0.7687  0.6661 0.6702 0.6913 

  10  0.6659 0.6909 0.7011  0.5806 0.6174 0.6278 

  15  0.6612 0.6846 0.6923   0.5759 0.6028 0.6174 
           

 1.00 5 1.00 0.9142 0.9353 0.9467  0.8222 0.8491 0.8528 

  10  0.8297 0.8546 0.8814  0.7233 0.7628 0.7684 

  15  0.8229 0.8459 0.8627  0.7187 0.7444 0.7561 

  5 5.00 1.0234 1.0521 1.0616  0.9201 0.9256 0.9543 

  10  0.9197 0.9542 0.9682  0.8018 0.8527 0.8671 

  15  0.9129 0.9455 0.9561   0.7953 0.8325 0.8527 

           

ˆ
L

σ  0.25 5 1.00 0.7076 0.7233 0.7321  0.6387 0.6589 0.6617 

  10  0.6381 0.6553 0.6819  0.5635 0.5793 0.5882 
  15  0.5957 0.6144 0.6204  0.5126 0.5456 0.5498 
  5 5.00 0.7894 0.8109 0.8182  0.7119 0.7162 0.7377 
  10  0.7054 0.7298 0.7469  0.6223 0.6452 0.6711 
  15  0.6631 0.6889 0.6904   0.5701 0.6129 0.6129 

           

 0.50 5 1.00 0.6732 0.6885 0.6968  0.6067 0.6261 0.6288 

  10  0.6348 0.6528 0.6722  0.5578 0.5863 0.5904 

  15  0.6056 0.6222 0.6344  0.5301 0.5487 0.5572 

  5 5.00 0.7523 0.7731 0.7803  0.6774 0.6815 0.7023 

  10  0.6999 0.7249 0.7351  0.6146 0.6514 0.6618 

  15  0.6707 0.6943 0.7021   0.5856 0.6125 0.6271 

           

 1.00 5 1.00 0.9255 0.9466 0.9581  0.8335 0.8604 0.8641 

  10  0.8637 0.8886 0.9154  0.7573 0.7968 0.8024 

  15  0.8326 0.8556 0.8724  0.7284 0.7541 0.7658 

  5 5.00 1.0347 1.0634 1.0729  0.9313 0.9369 0.9656 

  10  0.9537 0.9882 1.0022  0.8358 0.8867 0.9011 

  15  0.9226 0.9552 0.9658   0.8051 0.8422 0.8624 
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Table 4. Risk magnitude under the GELF 
 

θ = 2.00, n = 20 Based on simulated data  Based on real data 

    σ  σ 

 b m t 0.25 0.50 1.00  0.25 0.50 1.00 

ˆ
E
θ  0.25 5 1.00 0.7126 0.7283 0.7373  0.6437 0.6639 0.6667 

  10  0.6481 0.6653 0.6919  0.5735 0.5893 0.5986 
  15  0.5937 0.6124 0.6184  0.5106 0.5436 0.5478 
  5 5.00 0.7944 0.8159 0.8232  0.7169 0.7212 0.7427 
  10  0.7154 0.7398 0.7569  0.6323 0.6552 0.6811 
  15  0.6611 0.6869 0.6884   0.5687 0.6109 0.6109 
           

 0.50 5 1.00 0.6782 0.6935 0.7018  0.6117 0.6311 0.6338 

  10  0.6448 0.6628 0.6822  0.5678 0.5963 0.6004 

  15  0.6036 0.6202 0.6324  0.5281 0.5467 0.5552 

  5 5.00 0.7573 0.7781 0.7851  0.6824 0.6865 0.7073 

  10  0.7099 0.7349 0.7451  0.6246 0.6614 0.6718 

  15  0.6687 0.6923 0.7001   0.5836 0.6105 0.6251 
           

 1.00 5 1.00 0.9305 0.9516 0.9613  0.8385 0.8654 0.8691 

  10  0.8737 0.8986 0.9254  0.7673 0.8068 0.8124 

  15  0.8306 0.8536 0.8704  0.7264 0.7521 0.7638 

  5 5.00 1.0397 1.0684 1.0779  0.9363 0.9419 0.9706 

  10  0.9637 0.9982 1.0122  0.8458 0.8967 0.9119 

  15  0.9206 0.9532 0.9638   0.8038 0.8402 0.8604 

           

ˆ
E

σ  0.25 5 1.00 0.7235 0.7392 0.7479  0.6546 0.6748 0.6776 

  10  0.6891 0.7063 0.7329  0.6145 0.6303 0.6397 
  15  0.6036 0.6223 0.6283  0.5205 0.5535 0.5577 
  5 5.00 0.8053 0.8268 0.8339  0.7278 0.7321 0.7536 
  10  0.7564 0.7808 0.7979  0.6733 0.6962 0.7221 
  15  0.6719 0.6968 0.6983   0.5779 0.6208 0.6208 

           

 0.50 5 1.00 0.6891 0.7044 0.7127  0.6226 0.6428 0.6447 

  10  0.6858 0.7038 0.7232  0.6088 0.6373 0.6414 

  15  0.6135 0.6301 0.6423  0.5389 0.5566 0.5651 

  5 5.00 0.7682 0.7899 0.7959  0.6933 0.6974 0.7182 

  10  0.7509 0.7759 0.7861  0.6656 0.7024 0.7128 

  15  0.6786 0.7022 0.7099   0.5935 0.6204 0.6358 

           

 1.00 5 1.00 0.9414 0.9625 0.9739  0.8494 0.8763 0.8809 

  10  0.9147 0.9396 0.9664  0.8083 0.8478 0.8534 

  15  0.8405 0.8635 0.8803  0.7363 0.7628 0.7737 

  5 5.00 1.0506 1.0793 1.0888  0.9472 0.9528 0.9815 

  10  1.0047 1.0392 1.0532  0.8868 0.9377 0.9528 

  15  0.9305 0.9631 0.9737   0.8129 0.8501 0.8703 
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Table 2 presents the asymptotic confidence length (ACL) for selected 

parametric values and significance levels of 99% and 95%. It is observed that the 

smaller censored sample size provides a wider ACL. Similar properties are also 

seen for σ. The larger significance level or the larger time span t gives a wider 

length. That means, as the significance level or the time span becomes narrower, 

the ACL also becomes narrower.  

We obtain the risks for the Bayes estimators based on the assumption that the 

unknown hyper parameters of the prior distribution assume arbitrary values as 

α = 0.25, β = 1.00, and γ = 3.25. The risks of the Bayes estimators are derived by 

using the M-H algorithm. Further, the shape parametric values of the loss functions 

are selected for prior study based on underlying distribution. Tables 3 and 4 

presents the risks of the Bayes estimators under the ILLF and GELF, respectively. 

For the risks for the Bayes estimators under ILLF, all the properties seen are 

similar to those discussed above for the ML estimator. Further, the risk magnitudes 

are found to be minimum for c = 0.50. However, the tendency of the risk magnitude 

is to become smaller first and then wider, except for a small time span t and large 

censored sample size m. Table 4 shows similar properties as discussed for ILLF for 

the risk obtained for Bayes estimators under GELF. It is further noted that the risk 

magnitude is smaller for ILLF as compared to GELF when other parametric values 

are fixed. 

It is also noted that the risk magnitude under GELF for the Bayes estimators 

obtained under ILLF gives the higher risk magnitude when compared with the risk 

obtained under ILLF. Similarly, a trend is also seen for the Bayes estimator under 

GELF and risk obtained by using the invariant LINEX loss criterion. However, 

these tables are not included in the article. 

Numerical Illustration 

In the present section the properties of Bayesian inference are studied by real-life 

data. Lawless (1982) considered the data representing break-down times (in 

minutes) of an insulating fluid between electrodes at a voltage of 34 KV. A total of 

18 observations are given in Table 5. Based on the above data, the numerical 

illustrations have been presented in Tables 1-4. All the properties are similar as 

discussed above for all the considered estimation criteria under the simulation. One 

remarkable point is that the risk magnitude is noted to be smaller when compared 

to the simulated data for all the considered fixed parametric values. Similarly, ACL 

is also found to be wider for the real data. 
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Table 5. The break-down times of an insulating fluid 
 

 0.19 0.78 0.96 1.31 2.78 3.16 
 4.15 4.67 4.85 6.50 7.35 8.01 
 8.27 12.06 31.75 32.52 33.91 36.71 

Conclusion 

In the present article we discussed the Bayes risks under different asymmetric loss 

functions on the hybrid censoring pattern. The Pareto Type-II model is seen here in 

the Bayesian analysis for unknown parameters. The approximate confidence length 

and ML estimation are also presented. A simulation based on the Metropolis-

Hastings algorithm was performed for illustrating the operations. The results are 

also verified with the help of a real data set. The risk magnitudes seen smaller for 

ILLF as compared to GELF when other parametric values are believed to be made. 

The performances of a real data set show better as compared to the simulated results. 
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