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This article introduces calibration estimators under different distance measures based on 

two auxiliary variables in stratified sampling. The theory of the calibration estimator is 

presented. The calibrated weights based on different distance functions are also derived. A 

simulation study has been carried out to judge the performance of the proposed estimators 

based on the minimum relative root mean squared error criterion. A real-life data set is also 

used to confirm the supremacy of the proposed method. 

 

Keywords: Calibration estimation, stratified sampling, distance function, auxiliary 

information 

 

Introduction 

In survey sampling, the precision of the estimate of study variable can be increased 

by using the most popular stratified sampling technique. The calibration-based 

estimation method helps in improving the survey estimates by means of auxiliary 

information (e.g., known population total or mean of the auxiliary variables) 

through adjusting the initial design weights. A calibration estimator uses modified 

weights which are known as calibrated weights. These calibrated weights are 

determined by minimizing a given distance function to the initial design weights 

respecting a set of constraints associated with auxiliary information. Furthermore, 

the auxiliary variables are used to increase the precision of survey estimates of the 

population. In such situations, the ratio and regression methods of estimation are 

well known in sampling theory. Deville and Särndal (1992) defined calibration as 

an approach to estimation for finite populations consisting of (a) A computation of 

https://doi.org/10.22237/jmasm/1619481600
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weights that incorporate specified auxiliary information and are restrained by 

calibration equation(s), (b) The use of these weights to compute linearly weighted 

estimates of totals and other finite population parameters: weight times variable 

value, summed over a set of observed units, (c) An objective to obtain nearly design 

unbiased estimates as long as non-response and other non-sampling errors are 

absent. 

In literature, many researchers considered the case of one auxiliary variable, 

but not much attention is given to estimate the character of the main variable taken 

into account of two or more auxiliary variables. Olkin (1958) introduced a 

multivariate ratio estimate by using more than one auxiliary variables. Shukla 

(1965) followed the work of Olkin and gave a multivariate regression estimate only 

for one sampling case and also extended it for the double sampling scheme. 

Similarly, Raj (1965) introduced a multivariate difference estimator by taking the 

benefit of two or more auxiliary variables over single auxiliary variable. Though, 

these problems become much severe in computation when two or more auxiliary 

variables are considered. Some calibration-based estimators were defined by Tracy 

et al. (2003), Kim et al. (2007), and Koyuncu (2012) in stratified sampling. 

Koyuncu and Kadilar (2013) considered various loss functions to define some new 

weights and based on these weights, calibration estimators are compared under 

single auxiliary variable. The main aim of this article is to introduce calibration 

estimator under different distance measures based on two auxiliary variables in 

stratified sampling scheme. Also, we have shown that all the derived estimators 

under two auxiliary variables perform better than the estimators under single 

auxiliary variable. 

The rest of the article is as follows. We first discuss notations and calibration-

based estimators under different distance functions. We then describe the 

simulation study. A real-life application on Forced Expiratory Volume (FEV) data 

set studied in East Boston is then illustrated. Finally, the conclusions of this study 

are presented. 

Notations and Calibration Estimators 

Consider a case where the information on two auxiliary variables is available. 

Suppose there is a finite population Ω = {1, 2,…, N} which is divided into H strata, 

with the hth stratum containing Nh (h = 1, 2,…, H) units, such that 
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1

H

h

h

N N
=

= .  

A simple random sample of size nh is drawn without replacement from the hth 

stratum such that 

 

 
1

H

h

h

n n
=

= .  

 

The study and two auxiliary variables are denoted as y, x1, and x2, respectively. 

Furthermore, 
: 1 : 2 :, , andh i h i h iy x x  denote the values taken by the ith (i = 1, 2,…, Hh) 

unit from the hth (h = 1, 2,…, H) stratum in the population by y, x1, and x2. Let the 

population mean of the two auxiliary variables 

 

 1 1 : 2 2 :

1 1

1 1
and

h hN N

h i h i

i ih h

X x X x
N N= =

= =    

 

be known. The primary aim is to estimate the population mean 

 

 :

1

1 hN

h i

ih

Y y
N =

=  .  

 

In a stratified sampling scheme, the classical unbiased estimator of the 

population mean is given by 

 

 st

1

H

h h

n

Y w y
=

= ,  (1) 

 

where wh = Nh / N are the stratum weights. 

Tracy et al. (2003) proposed the calibrated estimator of the population mean 

under stratified sampling as 

 

 
c

st h h

i S

Y y


= ,  (2) 

 

where Ωh (h = 1, 2,…, H) are the calibrated weights which can be obtained by 

minimizing any of the following distance functions: 
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subject to the constraints 

 

 1 1

1 1

H H

h h h h

h h

x w X
= =

=  ,  (8) 

 

 2 2

1 1

H H

h h h h

h h

x w X
= =

=  .  (9) 

 

Where qh are suitably chosen weights. The form of estimator depends on the choice 

of qh. 

Case 1 

The Lagrange function for the weights Ωh, which satisfy the calibration Equations 

(8) and (9) by minimizing the distance function D1(Ωh, wh), is given by 
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  (10) 

 

where λ1 and λ2 are Lagrangian multipliers. Differentiating L1 with respect to Ωh 

and setting equal to 0, we have 

 

 ( )1 1 2 21h h h h h hw q x q x  = + +   (11) 

 

On putting the value of Ωh from Equation (11) in Equations (8) and (9), 

 

 
2

1 1 2 1 2 1 1
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H H H H

h h h h h h h h h h h

h h h h
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+ = −    ,  (12) 

 

 
2

1 1 2 2 2 2 2
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H H H H

h h h h h h h h h h h
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Solving for λ1 and λ2, we obtain the following: 
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2 2
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where 

 

 1 1 1
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H H
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= −    (17) 

 

The value of Ωh after putting the value of λ1 and λ2 is given by 
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  (18) 

 

Thus, the calibration estimator under stratified sampling based on two auxiliary 

variables is stated as: 

 

 
c

st2 0 1 1 2
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H
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where 
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The calibration estimator under D1(Ωh, wh) for a single auxiliary variable is 

available in literature: 

 

 1 1
TR1 2

1 1
1

H H
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h h h hh h
h h h h h hH

h hh h hh

w X w x
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=

−
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
.  (20) 
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Case 2 

The Lagrange function for the weights Ωh, satisfying the calibration Equations (8) 

and (9) by minimizing the distance function D2(Ωh, wh), is given by 

 

 
( )

2

2 1 1 1 2 2 2

1 1 1 1 1

2 2 2
H H H H H

h h

h h h h h h h h

h h h h hh

w
L x w X x w X

q


   

= = = = =

−    
= − − − −   
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       

 

where λ1 and λ2 are Lagrangian multipliers. Differentiating L2 with respect to Ωh 

and setting equal to 0, we have 

 

 
( )

2

1 1 2 21

h
h

h h h h

w

q x q x


 
=

− −
.  (21) 

 

Under higher-order approximations, 

 

 ( )1 1 2 21 2 2h h h h h hw q x q x  = + + .  (22) 

 

On putting the value of Ωh from Equation (22) in Equations (8) and (9), 
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1 1 2 1 2 1 1

1 1 1 1

1

2

H H H H

h h h h h h h h h h h

h h h h
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1 1 2 2 2 2 2
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Solving the system of equations for λ1 and λ2 and using the values of Ωh, λ1, and λ2, 

the form of the estimator will be 

 

 ( )c
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1
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2

H
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=
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where 
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Case 3 

The Lagrange function for the weights Ωh, satisfying the calibration Equations (8) 

and (9) by minimizing the distance function D3(Ωh, wh), is given by 

 

 

2

3 1 1 1 2 2 2

1 1 1 1 1

1
1 2 2

H H H H H
h

h h h h h h h h

h h h h hh h

L x w X x w X
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where λ1 and λ2 are the Lagrange multipliers. Differentiating L3 with respect to Ωh 

and setting equal to 0, we have 

 

 ( )1 1 2 21h h h h h h h hw w q x w q x  = + + .  (26) 

 

On putting the value of Ωh from Equation (26) in Equations (8) and (9), 
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Solving the system of equations for λ1 and λ2, 
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The form of the estimator is 
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The calibration estimator under D3(Ωh, wh) for a single auxiliary variable is given 

as: 

 

 21 1
TR3 2 2
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Case 4 

The Lagrange function for the weights Ωh, satisfying the calibration Equations (8) 

and (9) by minimizing the distance function D4(Ωh, wh), is given by 
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where λ1 and λ2 are the Lagrange multipliers. Differentiating L4 with respect to Ωh 

and setting equal to 0, we have 
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On putting the value of Ωh from Equation (33) in Equations (8) and (9), 
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Solving the system of equations for λ1 and λ2, 

 

 

( )

2 2 2

2 1 1 2 21 1
1 2

2 2 2 2 2

1 2 1 21 1 1

ˆ ˆ
1

2

H H

h h h h h h h h hh h

H H H

h h h h h h h h h hh h h

w q x X w q x x X

w q x w q x w q x x

 = =

= = =

−
=

−

 

  
,  (36) 

 

 

( )

2 2 2

1 2 1 1 21 1
2 2

2 2 2 2 2

1 2 1 21 1 1

ˆ ˆ
1

2

H H

h h h h h h h h hh h

H H H

h h h h h h h h h hh h h

w q x x X w q x X

w q x w q x w q x x

 = =

= = =

− −
=

−

 

  
.  (37) 

 

The form of the estimator is 

 

 ( )c

st4 0 1 1 2

1

1 ˆ ˆˆ ˆ
2

H

h h h h

h

Y w y X X 
=

= + + ,  (38) 

 

where 

 

 
( )

2 2 2 2 2

1 2 2 1 21 1 1 1
0 2

2 2 2 2 2

1 2 1 21 1 1

2 2 2 2 2

2 1 1 1 21 1 1 1
1

2 2 2 2

1 21

ˆ

ˆ

H H H H

h h h h h h h h h h h h h h hh h h h

H H H

h h h h h h h h h hh h h

H H H H

h h h h h h h h h h h h h h hh h h h

H

h h h h h hh h

w q x y w q x w q x y w q x x

w q x w q x w q x x

w q x y w q x w q x y w q x x

w q x w q x





= = = =

= = =

= = = =

=

−
=

−

−
=

   

  

   

 ( )
2

2

1 21 1

H H

h h h hh
w q x x

= =
− 
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Case 5 

The Lagrange function for the weights Ωh, satisfying the calibration Equations (8) 

and (9) by minimizing the distance function D5(Ωh, wh), is given by 

 

 

1

5 1 1 1

1 1 1

2 2 2

1 1

log
H H H

h
h h h h h h h h

h h hh

H H

h h h h

h h

L q w w x w X
w

x w X


  

 

−

= = =

= =

   
= − + − − −   

  

 
− − 

 

  

 

  

 

where λ1 and λ2 are the Lagrange multipliers. Differentiating L5 with respect to Ωh 

and setting equal to 0, we have 

 

 ( )1 1 2 21h h h h h hw q x q x  = + + ,  (39) 

 

which is same as the value of Ωh in Equation (11). Thus, the calibration estimator 

under D5(Ωh, wh) will have the same form of estimator as in Equation (19). 

A Simulation Study 

The main objective of this study is to introduce calibration estimators for finite 

population mean under two auxiliary variables by considering different distance 

measures using stratified sampling design. The percent Relative Root Mean 

Squared Error (RRMSE%) is considered as a performance criterion to judge the 

performance of the proposed calibration estimators with the available existing 

calibration estimators by means of the simulation study. The proposed calibration 

estimators under different distance functions with two auxiliary variables are 

compared with the estimators under single auxiliary variable. Thus, four different 

artificial populations are considered to judge the performance of the proposed 

estimators. These populations involve three strata, i.e., h = 1, 2, 3, and within each 

stratum the populations following a particular distribution are shown in Table 1 (for 

more details see, e.g., Ozgul, 2018). 
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Table 1. Probability distributions and their parameters value for the study and the 
auxiliary variables 
 

Population 1 Population 2 

( )
( )

− − :2.9 1

:

1
f =

Γ 2.9

h i

h i

y
y y e  ( )

( )−
2

:

:

1

2
1

f =
2

h i

h i

y

y e
π

 

( )
−

 
 
 

2
1 :

1 :

1

2 51
f =

5 2

h i

h i

x

x e
π

 ( )  
−

1 : 1 :

1
f = for 5,10

10 5
h i h i

x x  

( )
−

 
 
 

2
2 :

2 :

1

2 21
f =

2 2

h i

h i

x

x e
π

 ( )  
−

2 : 2 :

1
f = for 3,5

5 3
h i h i

x x  

  
Population 3 Population 4 

( )
( )

− :1.2 1

:

1
f =

Γ 1.2

h i

h i

y
y y e  ( )

( )−
2

:

:

1
-5

2
1

f =
2

h i

h i

y

y e
π

 

( )
( )

− − 1 :0.9 1

1 :

1
f =

Γ 0.9

h i

h i

x
x y e  ( )

 
−  

 

2
1 :

1 :

1

2 51
f =

5 2

h i

h i

x

x e
π

 

( )
( )

− − 2 :0.2 1

2 :

1
f =

Γ 0.2

h i

h i

x
x y e  ( )

−
 
 
 

2
2 :

2 :

1

2 21
f =

2 2

h i

h i

x

x e
π

 

 
 

The auxiliary variables are normally distributed, slightly positively skewed, 

and strongly positively skewed in first stratum, second stratum and third stratum, 

respectively. The stratum sizes Nh for each population determined as N1 = 1000, 

N2 = 2000, and N3 = 3000. The sample size (n = 300) is drawn by using simple 

random sampling without replacement and for each stratum the sample size nh is 

defined by using proportion allocation as given below: 

 

 h hn nW= .  

 

Three different levels of the correlation (ρ = 0.50, 0.70, 0.90) between study and 

auxiliary variables are considered for each stratum, respectively. Therefore, each 

stratum is generated based on these correlation coefficients. The Cholesky 

decomposition of the covariance matrix is used to generate the correlated variables 

in the simulation study. So, the covariance matrix is defined as: 
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1 2

1 1 1 2

2 1 2 2

2

2

2

h h h h h

h h h h h

h h h h h

y y x y x

y x x x x

y x x x x

  

  

  

 
 

=  
 
  

Q ,  (40) 

 

where 

 

 
( )

( )
( )

( )

( )
( )

1

2

2 22 2

: 1 : 1

1 1

22

2 : 2

1

1 1
, ,

1 1

1

1

h h

h h

h

h

N N

y h i h x h i h

i ih h

N

x h i h

ih

y Y x X
N N

x X
N

 



= =

=

= − = −
− −

= −
−

 



  

 

are the population variances of the study variable, first auxiliary variable, and 

second auxiliary variable, respectively. 

 

 
( )

( )( )
1 : 1 : 1

1

1

1

h

h h

N

y x h i h h i h

ih

y Y x X
N


=

= − −
−
   

 

is the population covariance between the study variable and the first auxiliary 

variable, 

 

 
( )

( )( )
2 : 2 : 2

1

1

1

h

h h

N

y x h i h h i h

ih

y Y x X
N


=

= − −
−
   

 

is the population covariance between the study variable and the second auxiliary 

variable, and 

 

 
( )

( )( )
1 2 1 : 1 2 : 2

1

1

1

h

h h

N

x x h i h h i h

ih

x X x X
N


=

= − −
−
   

 

is the population covariance between the auxiliary variables in the hth stratum. The 

anticipated covariance matrix, denoted by Q*, is defined in Equation (41): 
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1 1 2 2

1 1 1 1 2 1 2

2 2 1 2 1 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

h h h h h h h h h

h h h h h h h h h

h h h h h h h h h

y y x y x y x y x

y x y x x x x x x

y x y x x x x x x

      

      

      



 
 
 =
 
 
  

Q ,  (41) 

 

where 
1 2 1 2

, , and
h h h h h hy x y x x x    are the population correlation coefficients between 

the study and first auxiliary variable, the study and second auxiliary variable, and 

the first and second auxiliary variables, respectively, in the hth stratum. 

Since, the Cholesky decomposition of the matrices Q and Q* can be written 

as 

 

 d d d d,   = =Q C C Q C C   

 

where Cd and d


C  are the Cholesky decompositions of the covariance matrices of Q 

and Q*, respectively. The correlated variables are obtained as 

 

 
1

d dZ H − = C C ,  

 

where H are the uncorrelated original values and Z are the correlated values. 

We selected R = 50000 (j = 1, 2,…, 50000) samples of size n = 300) from four 

different populations under stratified sampling. To judge the performance of the 

proposed estimators, we defined RRMSE in percentage: 

 

 
( )( ) ( )( )

2
c c

st st
1

1
RRMSE 100%

M

i

y y Y
M

 
=

= −  ,  (42) 

 

where θ is the estimator under D1, D2, D3, D4 under single and multi-auxiliary 

variables and M is the 50000 times replication of the samples. The RRMSE(%) and 

percent Relative Bias (RB) are shown in Tables 2 and 3. The proposed calibration 

estimators under different distance function with two auxiliary variables always 

outperformed to the available single auxiliary variable-based calibration estimators. 

The simulation results show that the RRMSE(%) of the proposed estimators always 

less than the existing methods for both symmetric and skewed population. The 

RB(%) is also minimum of proposed estimators when the population is symmetric. 
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Table 2. The RRMSE(%) of the estimators 
 

Population 

c

TR1
Y  

c

TR3
Y  

c

st1
Y  

c

st2
Y  

c

st3
Y  

c

st4
Y  

1 4.36118 14.74066 4.18992 2.90169 2.63285 2.46374 

2 99.71640 99.79625 77.25652 88.53831 26.93738 52.03558 

3 2.08660 8.99232 1.96409 3.13342 3.91231 4.64022 

4 0.48799 1.82036 0.39502 0.59626 1.75235 0.48761 
 

Note: 
c c

TR1 TR3
,Y Y  are the calibration estimators based on single auxiliary variable and 

c c

st1 st4
-Y Y  are the 

estimators based on two auxiliary variables 

 
 
Table 3. The RB(%) of the estimators 
 

Population 

c

TR1
Y  

c

TR3
Y  

c

st1
Y  

c

st2
Y  

c

st3
Y  

c

st4
Y  

1 0.10095 0.04328 0.21260 0.02637 0.51281 0.38908 

2 99.61680 97.72390 74.51697 87.25654 9.90099 45.04756 

3 0.58883 0.43212 0.68120 0.69430 0.66072 0.68406 

4 0.11696 0.26094 0.03394 0.02212 0.19372 0.10201 
 

Note: 
c c

TR1 TR3
,Y Y  are the calibration estimators based on single auxiliary variable and 

c c

st1 st4
-Y Y  are the 

estimators based on two auxiliary variables 

An Application 

In this section, we illustrate a real-life application and its results. For this we 

consider the Forced Expiratory Volume (FEV) data set which was used by Singh 

(2013). The real data set FEV is an index of pulmonary function that measures the 

volume of air expelled after one second of constant effort and can be downloaded 

from http://jse.amstat.org/datasets/fev.dat.txt. The FEV data set was gathered in 

East Boston, Massachusetts, 1980, on 654 children aged from 3 to 19 years who 

were seen in the childhood respiratory disease. The study variable Y is defined as 

FEV, and the two auxiliary variables are X1, age from 3-19 years, and X2, height in 

inches. For this data set, Y̅ = 2.6367, X̅1 = 9.5841, X̅2 = 60.5444, ρ(X1, Y) = 0.75646, 

ρ(X2, Y) = 0.86814, and ρ(X1, X2) = 0.79194. Our main aim is to estimate 

Y̅ = 2.6367 (assumed unknown), when X̅1 = 9.5841 and X̅2 = 60.5444 are assumed 

to be known. A pictorial representation of the real-life dataset is shown in Figure 1. 
 
 

http://jse.amstat.org/datasets/fev.dat.txt
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Figure 1. Scatter plots of the three variables considered in the study 
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Table 4. The RB(%) of the estimators 
 

Sample proportion 

c

TR1
Y  

c

TR3
Y  

c

st1
Y  

c

st2
Y  

c

st3
Y  

c

st4
Y  

0.10 0.03950 0.04615 0.01779 0.00739 0.02129 0.05326 

0.20 0.02028 0.06530 0.01285 0.02056 0.02099 0.00879 

0.25 0.02355 0.02155 0.00006 0.01813 0.01112 0.02021 

0.30 0.01879 0.03494 0.00416 0.02333 0.02307 0.02546 

0.35 0.02238 0.03277 0.00715 0.01284 0.01099 0.01383 

0.40 0.00425 0.01670 0.00323 0.01319 0.00616 0.01437 

 
 
Table 5. The RRMSE(%) of the estimators 
 

Sample proportion 

c

TR1
Y  

c

TR3
Y  

c

st1
Y  

c

st2
Y  

c

st3
Y  

c

st4
Y  

0.10 2.68373 5.49804 2.50300 3.01185 2.58724 3.14774 

0.20 1.77938 3.63132 1.66208 1.98960 1.73115 2.07870 

0.25 1.53051 3.15137 1.42790 1.71235 1.49165 1.79023 

0.30 1.34280 2.77982 1.26252 1.49914 1.31864 1.56496 

0.35 1.21450 2.42789 1.12322 1.36014 1.16936 1.42141 

0.40 1.08345 2.17341 1.00891 1.20786 1.05171 1.26214 

 
 

The estimated RB(%) and RRMSE(%) of the estimators using the real-life 

data set are shown in Table 4 and Table 5, respectively. It can be seen that the 

RB(%) and RRMSE(%) of the estimators 
c

TR1Y  and 
c

TR3Y  under single auxiliary 

variables are always greater than the estimators 
c c

st1 st3-Y Y  under two auxiliary 

variables. Therefore, we conclude that proposed estimators under two auxiliary 

variables outperforms to the usual estimator under single auxiliary variable. 

Moreover, on comparing the efficiency of the estimators under different distance 

measures, the Chi-square distance function and minimum entropy distance function 

performs uniformly better than any other available in literature. The proposed 

estimators 
c

st1Y  and 
c

st3Y  are always exhibit minimum RB(%) and RRMSE(%) 

compared to the others. 

Conclusion 

Calibration estimation is a method of adjusting the original design weights to 

improve sample survey estimates by using auxiliary information such as the known 

population total (or mean) of the auxiliary variables. A calibration-based estimator 

uses calibrated weights that are determined to minimize a given distance measure 
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to the original design weights while satisfying a set of constraints related to the 

auxiliary information. Thus, this new approach of calibration estimation has gained 

much attention in recent years. In this study, we proposed calibration-based 

estimators of finite population mean with different weights in stratified sampling 

based on two auxiliary variables. We define some new weights by means of 

different distance functions. The derived estimators are compared with the existing 

single auxiliary variable based calibrated estimators. For this purpose, a simulation 

study has been made to evaluate the performance of the proposed estimators in 

terms of RB(%) and RRMSE(%). The simulation results show that calibrated 

estimators under two auxiliary variables outperforms for single auxiliary variable 

calibrated estimators and always the RB(%) and RRMSE(%) are minimum for 

symmetric population. Based on the simulation and real-life data results, the 

proposed estimators are more efficient and reliable than the single auxiliary variable 

based calibrated estimators. 
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