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A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) 

function without constraint nor reparameterization. A simulation study is employed to 

investigate the feasibility and performance of a Markov chain Monte Carlo method within 

Bayesian estimation framework to estimate a fully random version of a logistic growth 

curve model under manipulated conditions such as the number and timing of measurement 

occasions and sample sizes. 

 

Keywords: Growth modeling, latent growth modeling, nonlinear growth models, 

logistic functions, Markov chain Monte Carlo, Bayesian inference 

 

Introduction 

Repeated measures data are common in social and behavioral sciences, especially 

when research questions revolve around developments or learnings over time. The 

linear latent growth model (LGM) or growth model (GM; Bollen & Curran, 2006; 

Preacher et al., 2008) has been an indispensable method for understanding 

individual differences in such longitudinal developmental processes. Nonlinear 

GM (Blozis & Harring, 2015; Browne, 1993; Grimm & Ram, 2009; Grimm et al., 

2011) extend the GM framework for linear processes to nonlinear functions thought 

to more accurately represent complex response-time relations characterizing 

change in human behaviors, traits, and abilities. In contrast to their linear 

counterparts, nonlinear functions are flexible and can often be tailored so that the 

parameter of the function correspond to interesting and meaningful facets of the 

longitudinal process. 

These facets might include asymptotic or limiting behavior (Browne, 1993; 

Browne & Du Toit, 1993), change points (knots) in processes that exhibit distinct, 
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or multiple phases (Cudeck & Klebe, 2002). An interesting nonlinear function that 

has garnered considerable attention in the applied and methodological literatures is 

the logistic (S-shape or sigmoidal) function. The logistic function is ideally suited 

for many change processes including skill acquisition and cognitive development 

(Grimm & Ram, 2009; Ram & Grimm, 2007) because it is characterized by natural 

lower and upper bounds, allows for gradual change near these bounds as well as a 

surge of more rapid change toward the center of the process (Choi et al., 2009). 

Consider the case of behavior cessation in which behavior prevalence decreases 

slowly at first followed by a period of steady decline, accelerates, gradually begins 

to slow and eventually plateaus as cessation of the behavior is approached. 

(Contrary to the backward S shape of such behavior cessation, skill acquisition 

would follow a forward S shape with the process progressing in reverse order). 

Choi et al. (2009) proposed a reparameterization of a conventional logistic 

growth function that allowed the estimation of lower and upper asymptotes as well 

as a surge point (i.e., that time t where maximum change occurs) and the surge slope 

(i.e., the rate of change at that juncture). Choi et al. demonstrated how this new 

parameterized logistic function could be fit as an GM with structural equation 

modeling (SEM) software. While the nonlinear constraint feature in SEM software 

permits such a nonlinear growth model to be estimated (see, e.g., Preacher & 

Hancock, 2015), it has a number of limitations. Nonlinear GMs in general, and the 

logistic GM in particular, to be fitted as structural equation models must (1) be 

constrained so parameters that enter the function in a nonlinear manner are fixed 

across individuals (see, e.g., Blozis & Cudeck, 1999; Harring et al., 2006), or (2) the 

nonlinear function be linearized using analytical or numerical methods such as a 

first-order Taylor series (see, e.g., Browne, 1993) expansion of the expectation of 

the function. 

The fully nonlinear form of the function is not permitted within the traditional 

estimation framework (see Blozis & Harring, 2015; Harring & Blozis, 2016; for a 

discussion of the computational and conceptual differences, respectively). Fixing 

intrinsically nonlinear parameters across individuals may seem too restrictive 

and/or theoretically implausible given the modeling situation. Preliminary fitting of 

individuals’ curves might indicate that such variability in all function parameters 

needs to be accommodated. Furthermore, the linearized form of the original 

nonlinear function may not fit particularly well especially if there is substantial 

intra-individual variability (Davidian & Giltinan, 1995). Fortunately, other 

estimation approaches have emerged that are well-suited to handle the 

computational burden compelled by incorporating intrinsically nonlinear functions. 
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A Bayesian approach is outlined to estimating parameters of a fully nonlinear 

GM using a logistic function via Markov chain Monte Carlo (MCMC; Gelman et 

al., 2004) methods using OpenBUGS (Lunn et al., 2009; Spiegelhalter et al., 2002; 

Thomas, 2009). Although describing the repeated measures with a nonlinear 

function is an important analytic activity, it will be demonstrated how covariates 

can be introduced at a secondary stage to explain, in part, observed heterogeneity 

in growth characteristics. To investigate various practical issues of fitting a logistic 

GM, a Monte Carlo simulation will be carried out, in which the number and location 

of measurement occasions as well as sample size is manipulated. The required 

OpenBUGS code needed to fit the various models and source code for the final 

model can be found in the Appendix. 

Methodology 

Logistic Growth Model 

Choi et al. (2009) presented an extension of the logistic function presented by 

Verhulst (1845) who was interested in studying population growth to a longitudinal 

setting. For the ith individual at time point t, the fitted logistic function can be 

specified as 
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In this expression, the ith subject has four individual-specific parameters: the lower 

asymptote γLi, the upper asymptote γUi, the logistic intercept β0i related to (but not 

equal to) the relative location of the individual’s surge point, and the logistic slope 

β1i related to (but not equal to) the slope of the individual’s surge (further details 

regarding β0i and β1i are forthcoming). In Choi et al. (2009), the values of 

asymptotes γLi and γUi were assumed to be known and common for all individuals 

(e.g., reflecting no knowledge and complete mastery, respectively). This 

modification facilitated a logit-type transformation of the individual-level data 

needed to convert Equation 1 to a model that is linear in its parameters, and one 

that could be estimated with SEM software by either using gradient-based methods 

such as Maximum Likelihood (ML) or limited information estimators such as 

Weighted Least Square (WLS). As will be illustrated in the later part of this paper, 

one of the advantages of an MCMC approach is one can model the logistic growth 

with equation (1) without the logit-type transformation. 
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Logistic Model Reparameterization.  Although β0i and β1i have a sensible 

generalized linear model interpretation, other equivalent parameterizations may 

actually represent other key features of the sigmoidal change process that are more 

informative. Choi et al. (2009) proposed two factors, the surge point (SP) and surge 

slope (SS), as alternatives to the logistic intercept and slope growth factors which 

highlight important stages in the developmental process. The authors defined the 

SP factor as the location on the time axis where the maximum gain (maximum 

slope) for the response occurs. Mathematically, the surge point is the abscissa 

corresponding to the inflection point (change in concavity) on the logistic curve. 

The surge point for the ith subject can be expressed as the quotient of an individual’s 

logistic intercept and slope: 

 

 0 1i i iSP  = − .  (2) 

 

An individual’s slope at the surge point, the surge slope, can be expressed as a 

function of individual lower and upper asymptotes and their logistic slope (see Choi 

et al., 2009 for more details of the SP and SS factor derivation): 

 

 ( )U L 10.25i i i iSS   = − .  (3) 

 
 

 
 
Figure 1. Logistic growth curves of three subjects with various type of lower and upper 
asymptotes 
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Note, the SP and SS parameters are not directly expressed in the parameters in 

equation (1), yet because these coefficients are thought to represent change 

characteristics which are more fundamental to understanding the developmental S-

shaped process, the function in equation (1) must be expressed in terms of these 

newly formed parameters as 
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Figure 1 depicts sample trajectories for various logistic growth scenarios based on 

equation (4). 

 

Model Specification.  Using equation (4) as the logistic function to move 

forward with individually-varying parameters, the response at the tth measurement 

occasion (t = 1,…, m) for individual i (i = 1,…, n), can be written as 
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The time-specific disturbances are assumed to be normally distributed, 

δti ~ N(0, σδ), where σδ is the error standard deviation of the logistic growth model. 

Note that σδ or variants of σδ is the most fundamental measure for data-model fit in 

many types of modeling of continuous outcomes. Therefore, we will investigate σδ 

as a measure of model estimation quality or appropriateness when we are evaluating 

different models and/or options in the later part of this paper. By imposing the 

Gaussian probability density functions for the outcome and other logistic growth 

parameters, the probability models for the logistic growth model can expressed as 
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where 
L

 , 
U

 , κSP, κSS, 
L

 , 
U

 , σSP, and σSS are means and standard deviations 

(i.e., inverse of precisions in OpenBUGS setting) for the probability model of γL, 

γU, SP, and SS, respectively. Using information in (6), the likelihood function for 

this model can be expressed as 
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It is worthwhile to note several characteristics of this likelihood function for the 

logistic growth model. First, this likelihood function approach can be categorized 

as an individual-level data approach (Choi & Levy, 2017; Levy & Choi, 2013), 

which requires individual-level data instead of summary-level data. Second, from 

the likelihood function in equation (7), full conditional distributions should be 

constructed that may require considerable programming. Third, in this model 

specification, there are 4n + 9 parameters (n individual parameters for γL, n 

parameters for γU, m individual parameters for the SP factor, n individual 

parameters for the SP factor, and 
L

 , 
L

 , 
U

 , 
U

 , κSP, σSP, κSS, σSS, and σδ to be 

estimated. For example, with n = 100, there are 409 parameters needed to be 

estimated! Estimating such large number of parameters with traditional estimation 

methods is evidently very challenging. However, by virtue of simulation-based 

estimation methods, such as MCMC within OpenBUGS, one can estimate such 

large amount of logistic growth model parameters without great difficulty merely 

by specifying the model in accordance with the OpenBUGS language.  

To implement MCMC estimation within Bayesian framework in OpenBUGS, 

prior distributions should be specified. In this paper, uninformative conjugate priors 
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(distributions parameterized to have large variances) are specified for the means 

and standard deviations associated with the individually varying logistic growth 

parameters. Specifically, 
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These settings for the logistic growth parameters prior distributions will be used for 

all analyses throughout the remainder of the paper. It is also possible to include 

time-invariant covariate(s) as predictors of each logistic growth parameter. For 

example, if one is interested in including a covariate C for the SS factor, the 

probability model for SS factor and coefficients for the covariate can be specified 

as 
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  (9) 

 

Although covariates play an important role in any latent growth model, for 

simplicity’s sake, this component is not included in the upcoming analysis and 

simulation. The Appendix contains an OpenBUGS syntax for the logistic growth 

model. 

Simulation 

The logistic GM can be analyzed using MCMC methods. To empirically evaluate 

and compare the performance of these methods, a Monte Carlo simulation was 

employed considering various conditions thought to impact the accuracy and 

precision of the logistic growth parameters. All data were generated using language 

R (R Development Core Team, 2010). For MCMC, a general OpenBUGS model 

was formulated based on the model in equation (4) and prior distributions (see 

Appendix) using the OpenBUGS (Lunn et al., 2009) program. The first 5,000 

MCMC iterations were discarded as burn-in iterations and estimates were based on 

the subsequent 10,000 iterations sampled from the marginal posterior distributions 

of all parameters of interest. Quantities characterizing these marginal posterior 

distributions, (e.g., median, weighted mean, 95% credibility intervals) can be 
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readily obtained. The R to OpenBUGS interface BRugs (Ligges et al., 2017) was 

used for communication between R and OpenBUGS. 
 
 
Table 1. Simulation design conditions 
 

Simulation factors Levels 

Growth type Linear, Logistic 

n 50, 100, 200 

p 3, 5 

l Left (1), Middle (2), Right (3), All (4) 

Replication # 200 

μ(γL, γU, SS, SP) 20, 80, 25, 10 

var(γL, γU, SS, SP) 9, 9, 9, 1 

Within subject error variance 1 
 

Note: n = sample size, p = number of time points, l = locations of measurement points 

 
 

 
 
Figure 2. Growth curves for 5 measurement points based on the simulation design 
(n = 200) depicting trajectories of left measurement location (l = 1), middle measurement 
location (l = 2), right measurement location (l = 3), all measurement location (l = 4) 
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Table 2. Measurement point locations (l) over number of measurement points (p) 
 

Location p = 3 p = 5 

Left (1) 0, 5, 10 0, 2.5, 5, 7.5, 10 

Middle (2) 5, 10, 15 5, 7.5, 10, 12.5, 15 

Right (3) 10, 15, 20 10, 12.5, 15, 17.5, 20 

All (4) 0, 10, 20 0, 5, 10, 15, 20 

 
 

Three sample sizes, n = 50, 100, and 200; two different number of measure 

occasions, p = 3 and 5; four different types of measurement locations (l), Left (1), 

Middle (2), Right (3), and All (4) were considered. All simulation conditions and 

population model parameters are summarized in Tables 1 and 2. For each condition, 

200 datasets (i.e., replication number = 200) were generated, and each dataset was 

analyzed using MCMC with OpenBUGS. Figure 2 depicts sample trajectories from 

generated data from the given simulation conditions. 

Outcome Statistics Examined 

Several summary statistics were examined to evaluate four growth factors (γL, γU, 

SS, and SP) over different simulation conditions. First, for evaluating the bias of 

point estimates, mean bias (MB) and mean relative bias (MRB) were employed 

(Bandalos & Leite, 2013): 
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where θ is the true value, ˆ
i  is the ith replication of the point estimate given the 

estimation method converged in that replication, and rep was the number of times 

the estimation method converged within the 200 replications. Second, for 

evaluating the variability and reliability of the point estimates, root mean squared 

error (RMSE) was examined and is defined as: 
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Results 

Bias of Estimates 

Statistics regarding the bias of estimators (MB and MRB) are presented in Table 3. 

Here are the common themes of the MB and MRB simulation results. Frist, the 

estimates of the upper asymptote, γU, showed poorer performance (e.g., large bias) 

compared to γL, SS, SP. The γU estimates were recovered with accuracy as the 

absolute value of MRB estimate was less than 0.05. This occurred, however, only 

when p = 5; l = middle, right, or all; and n = 200. The   estimates were particularly 

biased when the sample size was small (i.e., n = 50). Second, the biases were 

smaller as the number of time points increased. Specifically, the p = 5 scenario 

clearly outperformed the p = 3 scenario across the majority of simulation conditions 

except for the γU estimates. That is, increasing the number of measurement points  
 
 
Table 3. MB, MRB, RMSE of estimates 
 

   MB  MRB  RMSE 

p l n γL γU SS SP  γL γU SS SP   γL γU SS SP 

3 1 50 18.23 24.13 17.64 7.97  -0.09 -0.70 -0.29 -0.20  2.57 56.02 7.59 2.15 
  100 19.12 36.19 19.00 7.92  -0.04 -0.55 -0.24 -0.21  1.39 43.86 6.15 2.13 
  200 19.29 44.53 19.45 7.83  -0.04 -0.44 -0.22 -0.22  1.33 35.50 5.71 2.21 
 2 50 16.38 25.29 15.82 8.77  -0.18 -0.68 -0.37 -0.12  4.63 55.36 9.42 1.87 
  100 17.79 72.79 19.49 9.05  -0.11 -0.09 -0.22 -0.09  3.22 10.70 6.02 1.54 
  200 19.93 79.63 23.42 9.98  0.00 0.00 -0.06 0.00  0.26 0.45 1.82 0.08 
 3 50 14.48 23.22 18.56 9.06  -0.28 -0.71 -0.26 -0.09  5.95 57.18 6.84 1.41 
  100 18.21 79.31 23.35 9.93  -0.09 -0.01 -0.07 -0.01  2.13 0.81 1.98 0.13 
  200 18.25 79.66 23.72 9.93  -0.09 0.00 -0.05 -0.01  2.10 0.39 1.56 0.11 
 4 50 17.05 25.33 14.60 8.62  -0.15 -0.68 -0.42 -0.14  3.98 55.26 10.72 2.01 
  100 19.26 77.19 20.41 9.78  -0.04 -0.04 -0.18 -0.02  1.12 4.19 5.07 0.42 

    200 19.94 79.63 22.94 9.99   0.00 0.00 -0.08 0.00   0.24 0.43 2.56 0.09 

                 

5 1 50 18.96 20.88 22.08 8.48  -0.05 -0.74 -0.12 -0.15  3.04 59.17 5.23 2.36 
  100 19.82 33.62 24.33 8.84  -0.01 -0.58 -0.03 -0.12  0.85 46.39 1.94 1.19 
  200 20.07 44.91 25.86 8.79  0.00 -0.44 0.03 -0.12  0.24 35.10 1.04 1.21 
 2 50 19.77 20.93 24.50 10.02  -0.01 -0.74 -0.02 0.00  0.47 60.32 0.76 0.13 
  100 19.89 79.31 24.81 10.00  -0.01 -0.01 -0.01 0.00  0.36 0.76 0.45 0.09 
  200 19.96 79.64 24.83 9.99  0.00 0.00 -0.01 0.00  0.24 0.42 0.36 0.07 
 3 50 17.48 25.35 24.21 9.94  -0.13 -0.68 -0.03 -0.01  3.07 57.88 1.08 0.18 
  100 18.68 79.36 24.48 9.96  -0.07 -0.01 -0.02 0.00  1.70 0.71 0.76 0.11 
  200 19.03 79.68 24.75 9.97  -0.05 0.00 -0.01 0.00  1.31 0.38 0.48 0.09 
 4 50 19.73 20.53 21.80 10.00  -0.01 -0.74 -0.13 0.00  0.47 60.51 3.40 0.15 
  100 19.85 79.30 23.08 10.00  -0.01 -0.01 -0.08 0.00  0.34 0.77 2.14 0.10 

    200 19.92 79.67 23.70 10.00   0.00 0.00 -0.05 0.00   0.24 0.39 1.56 0.08 
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improved the accuracy in terms of bias of γL, SS, and SP, but did not improve the 

performance of the estimation of the upper asymptote, γU. Third, the middle (l = 2) 

and all (l = 4) growth pattern scenarios (e.g., the absolute MRB values are all less 

than .1 when n = 200 in Table 3) outperformed the left (l = 1) and right (l = 3) 

scenarios (e.g., the absolute MRB values of γU, SS, and SP are all greater than .2 

even when n = 200 and p = 3 in Table 3). That is, the estimates across these 

conditions were less biased. Furthermore, the γL estimates were more accurate for 

the l = 1 scenario than the l = 3 scenario, and the γU estimates were less biased for 

the l = 3 scenario than the l = 1 scenario. In other words, the estimation of the 

asymptote parameters, γL and γU, were sensitive to the growth pattern directionality 

(i.e., left or right side, respectively). Not surprisingly, the biases decreased as the 

sample size increased (e.g., the absolute MRB values are less than 0.02 when 

n = 200, p = 5, and l = 2). A closer examination of the sample size condition 

revealed that parameters were less biased for n = 100 than for the scenario in which 

n = 50. For the n = 200 case, the absolute value of MRB estimates were less than 

0.1 for all simulation conditions except the l = 1 case. 

Variability of Estimates 

The statistics regarding the variability of estimates, RMSE are also presented in 

Table 3. The first trend is similar to the results reported on parameter bias—the γU 

estimates had larger values of RMSE compared to γL, SS and SP. The RMSE for the 

estimates for γU were relatively small (i.e., RMSE was less 5) when l = middle, right, 

or all, and n = 200. The SP estimates were more stable in terms of RMSE values 

compared to the RMSE values of the other three parameter estimates (e.g., the 

RMSE values of SP parameter is less than 2.37 for all simulation conditions). 

Second, the RMSE values decreased as the number of measurement occasions 

increased except when the sample size was small (i.e., n = 50). In other words, 

when the same size is small, the parameter estimates are not necessarily becoming 

more stable even when the number of measurement occasions increased. Also, 

similar to the MRB results, it seems that increasing the number of measurement 

points does not increase the performance of γU parameter estimation in terms of 

RMSE. For example, when p = 3 and l = 4, the RMSE values of γU are 55.26 (n = 50), 

4.19 (n = 100), and 0.43 (n = 200). However, when p = 5 and l = 4, the RMSE 

values are 60.51 (n = 50), 0.77 (n = 100), and 0.39 (n = 200). Third, the middle 

(l = 2) and all (l = 4) growth pattern scenarios produced parameter estimates that 

had smaller RMSE values than those produced under the left (l = 1) and right (l = 3) 

scenarios and when p = 5. When p = 3, the RMSE values of all four parameters did 
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not differ substantially across the 4 growth patterns. Fourth, the RMSE values 

decreased as the sample size increased. Consistent with the parameter bias results 

in terms of parameter estimate stability, the estimates of the growth parameters 

were more stable when n = 100 rather than when n = 50. The RMSE values of 

n = 50 are all greater than those of n = 100 and n = 200 for all simulation conditions 

as seen in Table 3. For n = 200, the RMSE values were less than 3 for all simulation 

conditions except l = 1 and for γU. 

Recommendations for Practitioners 

Based on the simulation results, several recommendations can be made for the 

implementation of logistic growth models using an MCMC algorithm in a Bayesian 

estimation framework. First, one must secure at least a sample size of 100. In 

particular, if a researcher is not sure that he is modeling the middle or whole part 

of logistic growth trajectory, he should secure at least 200 samples. As can be seen 

from the results of this study, if the sample size is less than 100, the parameter bias 

and variability is uncomfortably larger than the case of n = 200. Second, to model 

the core characteristics of the logistic growth curve model, the overall growth 

trajectory must follow logistic growth and repeated measurements from at least five 

measurement occasions must be obtained. As can be seen from the results of this 

study, if the number of measurement occasions is only 3, parameter bias and 

variability is uncomfortably large. There is simply not enough information with 

which to estimate the logistic parameters with sufficient accuracy or precision. 

Specifically, allocating more measurement points on the asymptote sides is 

recommended. Without having enough measurement points at the beginning and/or 

end of the process, the lower and upper asymptotes will not be estimated with 

accuracy or stability. Third, researchers should be aware that the fact of what part 

of the logistic growth is modeled may have a substantial impact on the estimation 

of each parameter. Before modeling, one should first check the growth pattern of 

the raw repeated measures data. This can be accomplished through a series of 

spaghetti plots and by examining individuals’ data. One should first check whether 

the growth pattern is an S-shape or sigmoidal pattern, especially if it is the whole 

growth trajectory or at least the middle part of the logistic growth pattern. Fourth, 

estimating the upper asymptote is relatively difficult. Especially when the sample 

size is small, the estimation accuracy of the parameters may show substantial bias, 

which could lead to erroneous inferences about the underlying process. Potential 

solutions for this might include (1) making the upper asymptote a known or fixed 
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point, or (2) applying an informative prior for the particularly problematic 

parameter. 

Discussion 

In Choi et al. (2009), a treatment of growth following logistic (sigmoidal; S-shape) 

growth functions within a traditional structural equation model estimation 

framework was proposed by a reparameterization of the logistic function. Even 

though a nonlinear parameter is embedded in the overall structure, this latent 

growth model can be estimated as a kind of structural equation using conventional 

SEM software that has the facility of nonlinear constraints. However, the nonlinear 

growth function must be coerced into fitting into the software that allows only linear 

relations among latent variables. However, fixing intrinsically nonlinear parameters 

across subjects may seem too restrictive and/or theoretically implausible given the 

modeling situation. Preliminary fitting of individual curves might indicate that such 

variability in all parameters needs to be accommodated. Whether theoretically 

based or empirically driven, the GM can be extended to handle intrinsically 

nonlinear parameters. Unfortunately, the added complexity of the newer model 

precludes estimating parameters of the model within the conventional SEM 

estimation framework. 

This research study introduced a specific, nonlinear GM—the logistic GM—

and demonstrated how it could be estimated with MCMC estimation techniques 

which are well-suited to handle the computational burdens compelled by 

incorporating intrinsically nonlinear functions. The paper proposed new modeling 

approach that can fit inherently nonlinear (i.e., logistic) growth function without 

constraint nor reparameterization. And, this paper investigated various modeling 

issues for logistic GM using a Mote Carlo simulation study. 

The current paper makes three contributions to the emerging nonlinear GM 

literature. First, this paper introduced intrinsically nonlinear GM without 

reparameterization and showed the estimation of the model within a Bayesian 

framework. Second, various practical issues associated with the logistic GM (e.g., 

number of measurement points, and locations of these points in the logistic 

trajectory, and sample sizes) were investigated using a Monte Carlo simulation 

study. Third, the study provides modeling and/or research design recommendations 

for successful implementation in practice. The recommendations can be 

summarized as follows. First, it is highly recommended to secure at least 100 

sample size. Second, with sufficient number of measurement points (e.g., 5 

measurement points), one can successfully fit a logistic GM. Third, one should set 
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the middle or full range measurement points as possible to fit a logistic GM with 

accuracy and stability. 

Undertaking the study of the logistic GM, we acknowledge known limitations. 

First, the analyses in this paper are based on moderately diffuse prior distributions. 

As mentioned before, MCMC also allows us to explicitly investigate the sensitivity 

of prior distributions for parameters when used in the context of Bayesian inference. 

The capability of cooperating prior into the estimation procedure would be a 

distinctive advantage of Bayesian approach over the traditional approaches. 

Investigating the appropriate use and/or advantages of using prior in the context of 

growth modelling is unanswered and remains as future study. Second, our 

elaboration in this paper has only focused logistic growth on unbounded continuum 

from negative infinite to positive infinite. In the model proposed in this study, a 

mathematical concept of infinity is required to conceptualize/interpret the 

asymptote parameters. New type of logistic growth model has support on a bounded 

continuum would be practically and theoretically useful, but such development 

remains as future study. Third, this study did not compare the proposed model with 

other growth models (e.g., linear or quadratic growth) in terms of model fit. Model 

fit is an important factor in the evaluation of different growth models, and it is very 

needed to conduct a comparative analysis of the proposed model and other growth 

models from this point of view. 
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Appendix 

BUGS code: 
model 
 { 
  for (i in 1:n) { 
   for (j in 1:t) { 
    y[i, j] ~ dnorm(my[i, j], ty) 
    my[i,j] <- b[i,1] + (( b[i,2] - b[i,1] ) 
/ ( 1 + exp(4*b[i,3] *(b[i,4]-x[j]) / (b[i,2] - b[i,1])))) 
   } 
   
  for (k in 1:4) { 
   b[i,k]~dnorm(mu[k],tau[k]) 
  } 
  } 
  ty ~ dgamma(1.0E-1, 1.0E-1) 
  vy <- 1 / ty 
  for (k in 1:4) { 
   mu[k] ~ dnorm(10, 1.0E-1) 
   tau[k] ~ dgamma(1.0E-1, 1.0E-1) 
   var[k] <- 1 / tau[k] 
  } 
 } 
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