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The sample size dichotomized was related to the measure of sampling adequacy, 

considering the explanations provided by factors and commonalities. Monte Carlo 

simulation generated multivariate normal samples and varying the number of observations, 

the factor analysis was applied in each sample dichotomized. Results were modeled by 

polynomial regression based on the sample sizing. 

 

Keywords: Exploratory factor analysis, dichotomized data, sample size, polynomial 

regression. 

 

Introduction 

Exploratory factor analysis (EFA) is an effective method that can provide valuable 

data on the multivariate structure of a measurement instrument, identifying the 

theoretical constructs (Laros, 2005). It is applied to evaluate the correlation patterns 

existing on a large set of original variables and utilizes those correlation patterns to 

group a relatively smaller number of factors that can be used to recognize relations 

of variables interrelated among themselves. However, it is important to understand 

the nature of the dataset in order to make important decisions in the analysis process. 

One consideration is the dimensioning of normal multivariate samples 

involving dichotomized variables. Other factors include the relation, for the same 

sample size, among the results of the exploratory factor analysis (EFA) for 

dichotomized variables is unknown. 

https://dx.doi.org/10.22237/jmasm/1556669760
https://dx.doi.org/10.22237/jmasm/1556669760
mailto:rosileisouzanovak@gmail.com
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Many studies have been conducted using exploratory factor analysis (EFA) 

as an investigative tool with normal multivariate data, where this data is 

dichotomized, with the objective of assisting the researcher to clarify this question. 

However, there are still no conclusive studies on the relation between sample size 

of dichotomized data and the results of the exploratory factor analysis (EFA). 

Everitt (1975) and Nunnally (1978) recommended sampling 1/10 (ten 

subjects per variable). Cattell (1978) suggested 3/6 (6 subjects to 3 variables). 

Gorsuch (1983) indicated the relation was at least 3/5 (5 subjects to 3 variables). 

MacCallum et al. (1999) have demonstrated, mathematically and empirically, that 

the sample size requirements are dependent on two aspects, factor and structure. 

They also showed that, as the common factors are sufficiently represented by an 

adequate number of variables, the proportion of the communalities have a 

considerable effect over the adjustment between sample and factorial loads. 

Mundfrom and Shaw (2005) recommended the sample size of 180 observations 

using the Monte Carlo method, varying the number of factors, the ratio of factors 

and the communalities. This question becomes more complex when the data studied 

by factor analysis are dichotomized. 

Methods 

For the execution of the study that verified the influence of the sample size of 

dichotomized data on an EFA the Matlab software was used, with the implement 

of three programs: Matrizc5, Simula5 and Regrespoli1. 

Matrizc5 was used to generate multivariate normal random samples using the 

Monte Carlo simulation, from a phi correlation matrix, considering a distribution 

Z ~ N(0, 1) the dichotomization followed the condition P(z ≤ zc) = 0.50, obeying 

the proportion of fifty percent of zero and fifty percent of one. From those samples, 

its corresponding dichotomized samples have been generated, all obeying the pre-

requirements where the generated samples would have the MSA > 0.5 and the 

communalities ≥ 0.7. The samples not fitting the pre-requirements stablished were 

discarded and substituted. 

For the analysis of correlation, the phi correlation coefficient is a technique 

of great importance in a statistical study that uses dichotomous data, but when 

dichotomized data is used, the use of the tetrachoric correlation coefficient is ideal. 

Dichotomized multivariate normal data was used, and therefore it would be 

adequate the utilization of the tetrachoric correlation matrix, although many times 

this matrix is singular, not being appropriate for the use of factor analysis 

(Embreson & Reise, 2013, p. 37). The tetrachoric correlations matrix was 
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substituted by the phi correlation matrix, so the effect of this substitution over the 

factor analysis can be evaluated. 

The sampling simulations have been generated with 30 variables and 4 factors. 

The sample sizes were considered equal to 2, 3, 4, 5, 6,…, 50 times the number of 

variables. 

Described in Table 1 are the details of the 8 simulations carried out. The first 

column represents the simulation number and the second column the vectors 

representing the number of variables per factor, where the sum of elements from 

the vector indicates the number of variables and each column represents a factor. 

The second program, Simula5, performed the factor analysis at each normal 

sample and to its dichotomized correspondent, individually oscillating the 

observations number, obtaining the MSA mean values, the proportion of variance 

explained by the first factor, the total proportion of variance explained and the 

communalities. In the factor analysis, the principal component analysis was used to 

estimate the model parameters. The Kaiser criterion was used to select the number 

of factors. Varimax rotation was used as rotation method, in order to simplify the 

data structure. 

The third program, Regrpoli1, performed the modelling of the results only at 

the dichotomized samples. The results obtained from the MSA mean values, the 

proportion of variance explained by the first factor, the total proportion of variance 

explained, and the vector of the mean communalities values were modelled in 

function of the Naperian logarithms of the sample sizes, in order to decrease the 

variation. Polynomial models were used as the regression models. 
 
 
Table 1. Classification of the variables per factor 
 

Simulation Variables Per Factor 

1 [8 8 8 6] 

2 [9 7 7 7] 

3 [10 10 5 5] 

4 [11 7 6 6] 

5 [12 6 6 6] 

6 [13 6 6 5] 

7 [14 6 5 5] 

8 [15 5 5 5] 
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The regression model evaluation was carried out making use of the following 

indicators: coefficient of determination (R²), chi-square statistics for the adherence, 

and standard deviation of the adjustment. To each regression model used, residual 

analyses have been performed (null mean, homoscedasticity, Kolmogorov-

Smirnov test for normality and independence tested through the Durbin-Watson 

test) being those conditions satisfied. 

Results 

The influence of the sample size of dichotomized data was verified on an EFA 

obtained tables containing the results of the polynomial regression models for the 

MSA, proportion of variance explained by the factor 1, total proportion of variance 

explained by the factors and the communalities, as its adjustment indicators. 

Results Obtained for the MSA 

In Table 2 are represented the polynomial regression models for 8 cases of factor 

analysis, considering the MSA as the dependent variable (y) and the sample size 

Naperian logarithm as independent variable (x). 

In all the cases simulated, the best adjusted model corresponds to the fifth-

degree polynomial model. 

Table 3 shows the indicators for each of the performed regressions, in all cases 

the coefficient of determination is higher than 99%, and the value of the chi square 

statistics presents a significant result for the adherence of the adjustments. The 

standard deviations of the adjustments (SY) are all too small. 
 
 
Table 2. Regression models for the MSA 
 

Simulation Vector Model y = a0+ a1x + a2x2 +…+ anxn 

1 [8 8 8 6] y = –21.5511+41.2623x–30.6581x2+11.4442x3–2.1394x4+0.1599x5 

2 [9 7 7 7] y = –15.4156+28.7041x–20.4691x2+7.3558x3–1.3273x4+0.0960x5 

3 [10 10 5 5] y = –18.9449+36.2168x–26.7230x2+9.9133x3–1.8427x4+0.1370x5 

4 [11 7 6 6] y = –15.0365+28.6548x–20.9585x2+7.7331x3–1.4331x4+0.1064x5 

5 [12 6 6 6] y = –15.7350+30.1716x–22.2007x2+8.2335x3–1.5331x4+0.1144x5 

6 [13 6 6 5] y = –10.3839+19.0753x–13.0924x2+4.5424x3–0.7938x4+0.0558x5 

7 [14 6 5 5] y = –21.4265+41.3447x–30.8745x2+11.5713x3–2.1702x4+0.1627x5 

8 [15 5 5 5] y = –21.7826+41.7090x–30.9973x2+11.5696x3–2.1619x4+0.1615x5 
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Table 3. Indicators for the MSA regression 
 

Simulation Vector R2 χ2 SY 

1 [8 8 8 6] 0.9994 0.00003 0.00086 

2 [9 7 7 7] 0.9997 0.00002 0.00065 

3 [10 10 5 5] 0.9997 0.00001 0.00057 

4 [11 7 6 6] 0.9998 0.00001 0.00050 

5 [12 6 6 6] 0.9997 0.00001 0.00005 

6 [13 6 6 5] 0.9999 0.00000 0.00038 

7 [14 6 5 5] 0.9995 0.00002 0.00075 

8 [15 5 5 5] 0.9996 0.00002 0.00074 

Results Obtained for the Proportion of Variance Explained by the First 

Factor 

In the Table 4 are represented the polynomial regression models for 8 cases of 

factor analysis, considering the proportion of variance explained by the first factor 

as the dependent variable (y) and the sample size Naperian logarithm as 

independent variable (x). 

In all the cases simulated, the most adequate adjusted model corresponds to 

the fifth-degree polynomial model. 

Table 5 shows indicators for each of the performed regressions. It can be 

verified that the determination coefficient is unstable, varying from approximately 

53% to 97%, the chi square statistics presents significant results for the adherence 

of adjustments. The standard deviations of the adjustments (SY) are higher than the 

values obtained for the MSA, as shown in Table 3. 
 
 
Table 4. Regression models adjusted to the proportion of variance explained by the first 
factor 
 

Simulation Vector Model y = a0+ a1x + a2x
2 +…+ anx

n 

1 [8 8 8 6] y = –214.9676+487.2247x–397.6769x2+159.3493x3–31.4406x4+2.4493x5 

2 [9 7 7 7] y = 69.0479–99.3620x+84.0601x2–35.5341x3+7.4710x4–0.6237x5 

3 [10 10 5 5] y = –308.3474+709.5802x–594.8604x2+245.1407x3–49.8066x4+3.9983x5 

4 [11 7 6 6] y = –60.2234+192.9703x–172.5162x2+74.5397x3–15.6904x4+1.2938x5 

5 [12 6 6 6] y = –195.5082+462.8827x–380.1304x2+380.1304x3–30.9207x4+2.4571x5 

6 [13 6 6 5] y = 110.3694–170.6008x+144.4636x2–60.7441x3+12.6325x4–1.0377x5 

7 [14 6 5 5] y = 14.3890+35.4019x–30.0291x2+12.0569x3–2.3342x4+0.1760x5 

8 [15 5 5 5] y = –409.1023+872.4216x–697.7957x2+276.1447x3–54.1198x4+4.2053x5 
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Table 5. Indicators for the regression of the proportion of variance explained by the first 
factor 
 

Simulation Vector R2 χ2 SY 

1 [8 8 8 6] 0.8188 0.0073 0.0560 

2 [9 7 7 7] 0.5938 0.0070 0.0596 

3 [10 10 5 5] 0.9677 0.0043 0.0479 

4 [11 7 6 6] 0.7680 0.0055 0.0530 

5 [12 6 6 6] 0.6622 0.0054 0.0578 

6 [13 6 6 5] 0.7065 0.0044 0.0552 

7 [14 6 5 5] 0.5605 0.0075 0.0721 

8 [15 5 5 5] 0.5265 0.0064 0.0576 

Results Obtained for the Proportion of the Total Variance Explained 

In Table 6 are represented the polynomial regression models for 8 cases of factor 

analysis, considering the proportion of the total variance explained as the dependent 

variable (y) and the sample size Naperian logarithm as independent variable (x). 
 
 
Table 6. Regression models adjusted to the total proportion of variance explained by the 
factors 
 

Simulation Vector Model y = a0+ a1x + a2x
2 +…+ anx

n 

1 [8 8 8 6] y = –318.2401+821.9924x–684.5084x2+279.4772x3–56.1966x4+4.4641x5 

2 [9 7 7 7] y = 651.9000–1151.6000x+909.400x2–358x3+70.2000x4–5.5000x5 

3 [10 10 5 5] y = –46.4662+293.9963x–276.3715x2+123.2896x3–26.5760x4+2.2351x5 

4 [11 7 6 6] y = 67.3391+55.3461x–80.5261x2+43.0299x3–10.1817x4+0.9018x5 

5 [12 6 6 6] y = 43.8470+114.8543x–136.0102x2+69.0988x3–16.2540x4+1.4583x5 

6 [13 6 6 5] y = 398.8664–641.9936x+502.0180x2–195.6648x3+37.8994x4–2.9143x5 

7 [14 6 5 5] y = –273.7632+724.5202x–595.2926x2+239.3083x3–47.3217x4+3.6945x5 

8 [15 5 5 5] y = –14.3238+194.4189x–172.7246x2+72.6408x3–14.7524x4+1.1691x5 

 
 
Table 7. Indicators for the regression of the total proportion of variance explained by the 
factors 
 

Simulation Vector R2 χ2 SY 

1 [8 8 8 6] 0.9352 0.0077 0.1088 

2 [9 7 7 7] 0.9659 0.0037 0.0766 

3 [10 10 5 5] 0.9637 0.0041 0.0803 

4 [11 7 6 6] 0.9805 0.0027 0.0639 

5 [12 6 6 6] 0.9642 0.0039 0.0784 

6 [13 6 6 5] 0.9602 0.0034 0.0741 

7 [14 6 5 5] 0.9794 0.0027 0.0658 

8 [15 5 5 5] 0.9563 0.0053 0.0893 
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The best adjusted model corresponds to the fifth-degree polynomial model 

for all the simulated cases. 

Table 7 shows the indicators for each of the performed regressions. It can be 

verified that the determination coefficient is always higher than 93%, the chi-square 

statistics present significant results for the adherence of the adjustments. The 

standard deviations of the adjustments (SY) are also higher than the values obtained 

for the MSA, as shown in Table 3. 

Results Obtained for the Communalities 

In Table 8 are represented the polynomial regression models for 8 cases of factor 

analysis, considering the communality mean as dependent variable (y) and the 

sample size Naperian logarithm as independent variable (x). 

It can be verified that in all simulated cases the better adjusted model 

corresponds to the fifth-degree polynomial model. 
 
 
Table 8. Regression models adjusted to the communalities 
 

Simulation Vector Model y = a0+ a1x + a2x
2 +…+ anx

n 

1 [8 8 8 6] y = –4.8152+11.6841x–9.7178x2+3.9597x3–0.7933x4+0.0627x5 

2 [9 7 7 7] y = 8.9975–16.3317x+12.8092x2–5.0046x3+0.9732x4–0.0753x5 

3 [10 10 5 5] y = 3.4162+4.9483x+3.5994x2–1.3114x3+0.2385x4–0.0173x5 

4 [11 7 6 6] y = –2.2536+6.5603x–5.6869x2+2.3933x3–0.4923x4+0.0398x5 

5 [12 6 6 6] y = 1.6673–1.9025x+1.5143x2–0.6110x3+0.1234x4–0.0099x5 

6 [13 6 6 5] y = –4.3464+9.8290x–7.5191x2+2.8354x3–0.5287x4+0.0391x5 

7 [14 6 5 5] y = 5.1505–8.7622x+6.9154x2–2.7317x3+0.5382x4–0.0422x5 

8 [15 5 5 5] y = 1.6175–1.3603x+0.6928x2–0.1383x3+0.0031x4–0.0015x5 

 
 
Table 9. Indicators for the regression of the communalities 
 

Simulation Vector R2 χ2 SY 

1 [8 8 8 6] 0.8445 0.00019 0.0018 

2 [9 7 7 7] 0.8889 0.00013 0.0015 

3 [10 10 5 5] 0.9249 0.00013 0.0014 

4 [11 7 6 6] 0.9009 0.00012 0.0014 

5 [12 6 6 6] 0.8060 0.00020 0.0018 

6 [13 6 6 5] 0.8211 0.00016 0.0016 

7 [14 6 5 5] 0.9025 0.00015 0.0016 

8 [15 5 5 5] 0.8367 0.00018 0.0017 
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Table 9 shows the indicators for each of the performed regressions, showing 

that the determination coefficient is higher than 80%, the chi square statistic 

presents significant values for the adherence of the adjustments. The standard 

deviations of the adjustments (SY) are lower than the values obtained for the 

regressions of the proportion of variance explained by factor 1 and by the 

proportion of variance explained by the factors (Tables 5 and 7). 

Graphics Obtained Through Polynomial Regression 

The graphics shown represent the tables of the MSA regression models, variance 

explained by the first factor, total variance explained, and communalities means in 

comparison to the sample size Naperian logarithm of the sample sizes for the 

simulations 1, 4 and 8, which represent the group behavior. Those graphics are 

shown in Figures 1, 2, and 3. 
 
 

  

  
 
Figure 1. MSA regression models, variance explained by the factor 1, total variance 
explained, and communalities means in relation to the sample size logarithm of the vector 
for sample [8 8 8 6] 
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Figure 2. MSA regression models, variance explained by the factor 1, total variance 
explained, and communalities means in relation to the sample size logarithm of the vector 
for sample [11 7 6 6] 
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Figure 3. MSA regression models, variance explained by the factor 1, total variance 
explained, and communalities means in relation to the sample size logarithm of the vector 
for sample [15 5 5 5] 
 

Conclusion 

The influence of the sample size from dichotomized data on an EFA, for the studied 

cases, leads to the following conclusions: 

 

I. For all the studied variables (MSA, proportion of variance explained by the 

first factor, total proportion of variance explained, and communalities 

means) the adequate polynomial regression model, in relation to the 

logarithm of the sample sizes, is the fifth-degree model. 

II. The better adjustment was verified for the MSA, with coefficient of 

determination always higher than 0.99. It can also be verified that the MSA 

grows as the sample size gets larger but tends towards stabilization. 
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III. The worst adjustment was verified for the proportion of variance explained 

by the first factor, with great variability on the coefficient of determination, 

in some cases close to 0.50. On the corresponding graphics this result is 

very clear. 

IV. The adjustment for the total determination also presented a good result, 

according to what is suggested by the indicators found, with coefficient of 

determination higher than 0.93. 

V. The adjustment for the communalities means presented a coefficient of 

determination higher than 0.80, a result that is lower than the total 

determination. 

References 

Cattell, R. (1978). The scientific use of factor analysis in behavioral and life 

sciences. New York: Plenum Press. doi: 10.1007/978-1-4684-2262-7 

Embreson, S. E., & Reise, S. P. (2013) Item response theory. New York: 

Psychologists Press. doi: 10.4324/9781410605269 

Everitt, B. (1975). Multivariate analysis: The need for data, and other 

problems. British Journal of Psychiatry, 126(3), 237-240. doi: 

10.1192/bjp.126.3.237 

Gorsuch, R. L. (1983). Factor analysis (2nd edition). Hillsdale, NJ: L. 

Erlbaum Associates. 

Laros, J. A. (2005). O uso da análise fatorial: Algumas diretrizes para 

pesquisadores. In L. Pasquali (Ed.), Análise fatorial para pesquisadores (pp. 141-

160). Brasília, Brazil: Universidade de Brasília LabPAM. 

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample 

size in factor analysis. Psychological Methods, 4(1), 84-99. doi: 10.1037/1082-

989X.4.1.84 

Mundfrom, D. & Shaw, D. T. (2005). Minimum sample size 

recommendations for conducting factor analyses. International Journal of 

Testing, 5(2), 159-168. doi: 10.1207/s15327574ijt0502_4 

Nunnally, J. (1978). Psychometric theory (2nd edition). New York: McGraw-

Hill. 

https://doi.org/10.1007/978-1-4684-2262-7
https://doi.org/10.4324/9781410605269
https://doi.org/10.1192/bjp.126.3.237
https://dx.doi.org/10.1037/1082-989X.4.1.84
https://dx.doi.org/10.1037/1082-989X.4.1.84
https://doi.org/10.1207/s15327574ijt0502_4

	A Study Verifying the Dimensioning of a Multivariate Dichotomized Sample in Exploratory Factor Analysis
	Recommended Citation

	table1
	table2
	table3
	table4
	table5
	table6
	table7
	table8
	table9
	figure1
	figure2
	figure3
	ref_cattell_1978
	ref_embreson_reise_2013
	ref_everitt_1975
	ref_gorsuch_1983
	ref_laros_2005
	ref_maccallum_et_al_1999
	ref_mundform_shaw_2005
	ref_nunnally_1978

