DIGITALCOMMONS Journal of Modern Applied Statistical

— @WAYNESTATE— Methods
Volume 19 | Issue 1 Article 11
6-8-2021

Extending Singh-Maddala Distribution

Mohamed Ali Ahmed
Al Madina Higher Institute of Management and Technology, Giza, Egypt, mrmohamedali2005@yahoo.com

Follow this and additional works at: https://digitalcommons.wayne.edu/jmasm

b‘ Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical

Theory Commons

Recommended Citation

Ahmed, Mohamed Ali (2021) "Extending Singh-Maddala Distribution," Journal of Modern Applied
Statistical Methods: Vol. 19 :Iss. 1, Article 11.

DOI: 10.22237/jmasm/1608553680

Available at: https://digitalcommons.wayne.edu/jmasm/vol19/iss1/11

This Regular Article is brought to you for free and open access by the Open Access Journals at
DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical
Methods by an authorized editor of DigitalCommons@WayneState.


http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm/vol19
https://digitalcommons.wayne.edu/jmasm/vol19/iss1
https://digitalcommons.wayne.edu/jmasm/vol19/iss1/11
https://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/jmasm/vol19/iss1/11?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Modern Applied Statistical Methods 702
May 2020, Vol. 19, No. 1, eP2992. Copyright © 2020 IMASM, Inc.
doi: 10.22237/jmasm/1608553680 ISSN 1538 — 9472

Extending Singh-Maddala Distribution

Mohammed Ali Ahmed
Al Madina Higher Institute of Management and Technology
Giza, Egypt

A new distribution, the exponentiated transmuted Singh-Maddala distribution (ETSM), is
presented, and three important special distributions are illustrated. Some mathematical
properties are obtained, and parameters estimation method is applied using maximum
likelihood. Illustrations based on random numbers and a real data set are given.

Keywords: Singh-Maddala distribution, moments, order statistics, quantile function,
maximum likelihood estimation

Introduction

The Burr distribution was first discussed by Burr (1942) as a two-parameter family;
itis a very flexible distribution that can express a wide range of distributions shapes.
The Singh-Maddala (SM) distribution introduced by Singh and Maddala (1976). It
is known under various other names, such as the Burr XII distribution (Tadikamalla,
1980; Al-Khazaleh, 2016), the Pareto IV (Arnold, 1983) distribution, beta-P
(Mielke & Johnson, 1974) distribution and generalized log-logistic (El-Saidi et al.,
1990) distribution. The SM distribution includes, overlaps, or has as a limiting case
many commonly-used distributions such as gamma, lognormal, log logistic, bell-
shaped, and J-shaped beta distributions (but not U-shaped). The SM distribution is
used in various fields such as finance, hydrology, and reliability to model a variety
of data types.

Generally, the cumulative distribution function (CDF) of the transmuted
function (Aryal & Tsokos, 2011) is given by

F(x)=(1+2)G(x)~(AG(x)) ;4| L0 < x <0, (1)

then, the CDF of the exponentiated transmuted function is defined by
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F(x) =2 () =[ 1+ )6 ()= A(G (%))’ | =0 < x<ce. )

The aim of this study is to present and study a new distribution called the ETSM
distribution based on the exponentiated transmuted function.

The CDF and PDF of the ETSM Distribution

The CDF and the probability density function (PDF) of the Singh and
Maddala (Singh & Maddala, 1976) are, respectively,

G(x;a,b,p):l{u(%ja:l :x>0;a,b,p>0 (3)

and

a-1 a-(p+)
g(x;a,b, p):(%j(gj {1+(%) } ,X>0,a,b,p>0. 4)

The exponentiated transmuted Singh-Maddala (ETSM) distribution can be derived
easily by substituting equation (3) into equation (2); it yields the CDF of the
ESTM(a, b, p, v, 1) distribution as follows:

oo L) )

where v, a, and p are shape parameters and b and 1 are scale parameters.
Differentiating equation (5) yields the PDF of the ETSM distribution:
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x{(1+2) 1_(“[%)3]—:) _al1- 1+(§n_p (6)

x{(1+2) =24 1—(1+(%)a

The ETSM distribution has several special cases as follows: setting A =0
gives the exponentiated Singh-Maddala (ESM) distribution, setting v = 1 gives the
transmuted Singh-Maddala (TSM) distribution, and setting 2 =0 and v =1 gives
the Singh-Maddala (SM) distribution. Displayed in Figure 1 are plots of the ETSM
density for some values of the parameters a, b, p, v, and 4.

— ETSM(25,05.05,1.
} - ETSM(2.5,0.5,0.5.2.2)
! — ETSM(2.5.0.5.0.5,0.25.3)
| —. ETSM(2.5,0.5.0.5,1,0.25)

\ -

I{x)

Figure 1. The PDF of the ETSM distribution with different parameters
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Statistical Properties

The Quantile Function of the ETSM Distribution

The quantile function of the ETSM distribution is derived in the following
Corollary

Corollary 1. The quantile function of the random variable X having the CDF of
the ETSM distribution is given by the nonlinear equation

1

qJ/v 2ap
X, = . 7
T (A0 (14 4) XD ")
Proof. Equating q to the CDF,
q=p(X <x,)=F(x,)=0x,>0,0<q<L1.

Then

<k

(1+z)(1—[1+(xﬂ_p]‘ﬂ 1{“@1

and

_Tam

X, = T , ®)

! A 1+4
PTG
L q -

where the last equation is a nonlinear quantile function and it needs a numerical
solution to be solved.
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The rth Moment

The r'™ moment of a random variable X of the ETSM distribution can be obtained
from the following theorem:

Theorem 1.  The r'™ moment of the random variable X having the PDF of the
ETSM distribution is given by

]{Z( )[é 1} )" (4 )B[i_g;l’vﬂﬂ ©)

Proof. The r' moment of a random variable X can be obtained from

= [ X" (x)dx. (10)

Then, substituting equation (6) into (10) yields
vj X' l+/1[ [1+(§ja] }—/{1—{“(5}1 J
b b
a-1 a —(p+1) a ] P
(@) [ (1%)2{1{1{5” J "
b )\b b b

Setting y =1 —[1 + (x/ b)3]® gives x" = b'[(1 — y) P — 1]". Substituting this into
(11) yields

v-1

(11)

1 r

E(Y7)=[vor | (@-y) ™" 1]t (v+ay-2y?) " (e A-22y)dy.  (12)

0

Then, integration by parts and binomial expansion yield
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E(X")=

- st

Setting r = 0 gives E(x°) = 1. Setting r = 1 gives

E(X)=

o b(a%)[ » m{%‘j-l]u)’““" (e[ = +1,v+1j] 4

Setting r = 2 gives

E(X?)=

(2 0o =i 2

Similarly, E(X®) and E(X?) can be calculated. The variance can be given by the fact
that Var(X) = E(X?) — [E(X)]?. Therefore, Skewness and Kurtosis can be given,
respectively, by

E(X®)-3E(X)E(X?)+2E°(X)

Skewness( X )= v (X) ,
sy X IS EL I )98 )

The Moment Generating Function

The moment generating function of the ETSM distribution is obtained in the
following theorem:

Theorem 2. The moment generating function of the random variable X which
has the PDF of the ETSM distribution is given by
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it_f

r=0

Proof. Clearly, from the following fact
M, (t) = E(exp(xt)),

using the expansion of exp(xt) yields

Then
Mx(t):z;QE(xr)
and hence
Mx(t)ziq,u; . (16)
The Mode

The log function of the PDF is
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logf (x) = logv -+ (v—1)log {(111)[1[“(917
ﬂ{l{l{%ﬂp] ]+Iog(%)+(al)log(gj 0
(5] o]

Then
L logf (x)= (v-1) (1%){1 H(pl)(i)p)(g)
" {(1%)[1 1{@172[1{“(3) } } }
AP

N I G
] oo 1]

The mode can be determined by equating the previous equation to zero where
it is a nonlinear equation and needs a numerical solution, to be solved with respect

9



EXTENDING SINGH-MADDALA DISTRIBUTION

to x on one condition: that the value of x that satisfies the following equation must
be less than zero.

" e a)a-8)-2a] () 52 Jo (o R )
& togf (x)=(v-1) 2
> [(1+4)(1-B)~2A]

[(1+2)a-8)-4A][(1+2) p(a-1 D" 7 ]
[+ )~ B)-2A]
(4 2)-8)-2n] 220 3 Jor (1))
[+ 2)1-B)-2AT
[(1+2)(1-B)-2A ] Zip(bj(a—l)D()(l—Bi)Ei}
[(1+2)1-B)-2AT
[(“M(iij( E - 2@(1"} YE, (1- B)}

[(1+4)(1-B)- ftA]
o el gl
((1”)_2}“(1‘Bi))(zfip(ml)(zijf( DR _24p(a- 1)(b3)Dl<az>Eij

(1+2)-22(1- Bi))

+

[EN

+

+

10
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Reliability Properties

Properties of reliability (Meeker & Escobar, 1998) will be obtained.

The Survival Function

Because
F(x)=1-F(x),

the survival function is

F(x)=1- (1+4)[1{1+@a}"]_l[l_[l{g}"I V. (18)

The Hazard Rate Function

The hazard rate function of the ETSM distribution is derived in the following
Corollary:

Corollary 2.  The hazard function of the random variable X having CDF and PDF
of the ETSM Distribution is given by

. (1““)[1{“@ a}p}_ﬂ[l{l{‘x’ H
OGN Sl

Proof. Generally, the hazard function of the random variable X is given by

11
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(19)

x(@j(éjal{u(l}a_w (1+4)-24|1- 1+(;‘

T

Figure 2 illustrates the Hazard function of the ETSM distribution with
different parameters. One can see, in Figure 2, two types of Hazard functions curves
of the ETSM distribution are described as follows: An increasing then constant then
decreasing Hazard curve and an increasing then decreasing Hazard curve.

i x)

— ETS5M(2.0.1.3.0.3.,5)

-- ETSM(303.3.0.5.2)
— ETsM(4.05.2.0.253)
ETSM(3.0.7.5.1.0.3)

Figure 2. The hazard function of the ESTM distribution with different parameters

12
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The Cumulative Hazard Rate Function
Based on

v (20)

Order Statistics of the ESTM Distribution

The r'™ moment of order statistics of the ETSM distribution (Arnold et al., 1992) is
derived in the following theorem:

Theorem 3. The density fun(xJ) of the u'™ order statistic, for u=1, 2,..., n, from

iid random variables X1, Xa,..., Xn following the ETSM distribution (Arnold et al.,
1992) is given by

2 V—1+vu+vw—-v (21)

7]

13
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Proof. Generally, the density fu:n(xu) of the u™ order statistic, foru =1, 2,...,
n, from iid random variables X1, Xz,..., Xn (Arnold et al., 1992) is given by

(%)= L))F(xu P F ()

B(u,n—u+1

Using binomial expansion yields

2 v-1+vu+vw-v (22)

T T sl

Substituting equation (6) into the previous equation yields

14



MOHAMED ALI AHMED

A"
(BT i ]

Setting y = 1 —[1 + (x/ b)3]™® gives x" = b'[(1 — y) P — 1]". Substituting this into
(23) yields

E(y) = [(1— y) —l}wa) (y+ay-2y?)"" (1+A-22y)dy. (24)

Using integration by parts and binomial expansion yields

E(X ) =—Y (2 b (rbr]

VU + VW vu+vw| ap

o @ (VU + VW V_ r/a-1-j i i—j+1 (25)
XZZ( i ] a 1i(-1) (1) B( . ,vu+vw+1j

i=0 j=0 i

Maximum Likelihood Estimation

Let X1, Xa,..., Xn be iid random variables following the ETSM(a, b, p, 4, V)
distribution; then the likelihood function (Garthwait et al., 1995) is given by

15
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(BRI )] oo ]

Hence, the log likelihood function is

et 4T 441

+ |oglj(ap/b)(xi /b)a_l :1+(xi /b)a}_

+Iog]i[[(1+/1)2’1[1:1+(%jay]]

Then

+|ogﬁ[{(1+1)-21[1-{1+(%ja}p]

Let

16
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SR EHIEROES
T =]

Then, differentiating with respect to a yields

ol (x;B)

- :(v—l)iZ;:(

pE,C, (In D, ))[(1+ /”L) 2(1-B)]
[(1+2)(1-8)-1A]

(gJerware s

4
T

n, [(-2pA)EC, (InD;) ]

"% [(weA)-22(-8)]

(26)

differentiating with respect to b yields

5¢(x;B) =(Vl)zn:(a(abpjc ][ (1+2)+24(1- Bi)]
o = [@+2)(@-B)-2A]

(®)ore [ae-a)eac, (b5
5

G
, |@aec(3)

L[ A)-220-8)]

(27)

differentiating with respect to p yields

17
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_ (BInG,)|| (1+4) ®|+22(1-8B))
%pﬁ):(v—l); [[EM)( (b Dm] }

(FJereJeomsd o fangcame]

+zl Kabp)DalE} _g[(lm)—zz(l—a)]
differentiating with respect to v yields
ot(x.B) (”] ng[ 1+4)(1-B)-4AT, (29)
ov v
and differentiating with respect to / yields
o0(xB) o (1-B)-A v [1-2(1-B))]

(30)

o vl z[1+/1 1-8)-2A] &[(@+1)-24(1-8)]

Let 6 be the vector of the unknown parameters (a, b, p, 4, v); then elements of the
5 x 5 information matrix I(a, b, p, 4, v) can be obtained by

1, <6)_E{_%a(eﬂ)

L.

Then IX(a, b, p, 4, V) is the variance covariance matrix of the unknown parameters
(@, b, p, 4, v) and the asymptotic distributions of the maximum likelihood
estimators (MLE) parameters are

\/ﬁ(éi—ei)st(o,rl(éi)), i=1..5.

The approximation of the 100(1 — «)% confidence intervals for the unknown
parameters based on the asymptotic distribution of the ETSM(a, b, p, 4, v) are
determined as

18
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0,2, I’l(ﬁi), i=1...,5,

where z,2 is the upper (a / 2)™" percentile of a standard normal distribution.

llustration

This purpose is to obtain MLEs of the ETSM distribution parameters using random
numbers to study the MLEs sample behavior. Obtaining parameters estimates is
described as follows:

Step (1):

Step (2):
Step (3):

Step (4):

and 100 using the ETSM distribution.

Generating a random sample Xz, X2,..., Xn Of sizes n = 10, 30, 50,

Selecting parameters values: a=0.7,b=2,p=2,2=03,v=15
Solving (26) to (30) by iteration to get MLEs, biases, root of mean

squared error (RMSE), and the Pearson type of parameter
estimators (Pearson, 1895) of the ETSM distribution.

Repeating steps from 1 to 3 10,000 times.

In this study, random numbers samples are generated with Mathcad using conjugate

gradient iteration method. All results are illustrated in Table 1.

The more sample size increases the more biases and RMSE decrease. In
addition, the sampling distribution of a is a Pearson Type | distribution at all times,
the sampling distribution of p is a Pearson Type IV distribution at all times, the
sampling distribution of A is a Pearson Type | distribution at all times, the sampling
distribution of v is a Pearson Type | distribution at all times, and the sampling
distribution of b differs according to sample size. The estimators can be consistent,

specially, when sample size increases.

Table 1. Biases and RMSE of parameters estimation within small, medium, and large

samples
Mean ; Pearson
Sample for 1000 Blases RMSE system Pearson
Size Parameter times Each Total Each Total coefficient type
10 a=07 1.796 1.096 4.444 1.982 9.460 -0.5520 |
b=2 5.436 3.436 7.469 0.2650 v
p=2 4.126 2.126 4.125 0.2370 v
A=0.3 0.151 -0.149 0.425 -0.2420 |
v=15 2.986 1.486 3.547 -0.4150 |

19
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Table 1 (continuous).

Mean : Pearson
Sample for 1000 Blases RMSE system Pearson
Size Parameter times Each Total Each Total coefficient type
30 a=0.7 1.098 0.398 3.507 1.043 7.523 -0.5290 |
b=2 5.071 3.071 6.331 0.2960 \Y
p=2 3.207 1.207 2.719 0.1980 \Y
A=03 0.237  -0.063 0.262 -0.1510 |
v=15 2.620 1.120 2.823 -0.8460 [
50 a=0.7 0.890 0.190 2.771 0.678 5.787 -5.2560 |
b=2 1.796 2.392 4.678 -0.6430 |
p=2 5.436 0.965 2.160 0.0098 \Y]
A=03 4.126  -0.049 0.231 -0.1360 |
v=15 0.151 0.995 2.537 -0.4810 [
100 a=0.7 0.829 0.129 2.108 0.510 4.865 -3.4980 |
b=2 3.865 1.865 4.039 -0.3960 |
p=2 2.704 0.704 1.841 0.0022 \%
A=03 0.255 -0.045 0.212 -0.1150 |
v=15 2.173 0.673 1.914 -0.2980 [
300 a=0.7 0.725 0.025 0.799 0.201 1.580 -3.0129 |
b=2 2.730 0.730 1.374 -0.3210 |
p=2 2.301 0.301 0.594 0.0010 \%
A=03 0.281  -0.019 0.104 -0.1010 |
v=15 1.620 0.120 0.455 -0.2130 [
Application

A practical example using a real data set is given to see how the empirical model
works. In our example, the different distributions used are the ETSM, ESM, TSM,
and SM distributions. The following data represents the lifetime (hours) of candle
lamps for 50 devices (https://www.npl.co.uk/)

0.172,0.173 0.270, 0.200, 0.260, 0.186, 0.186, 0.191, 0.192, 0.196,
0.202, 0.212, 0.216, 0.217, 0.218, 0.219, 0.224, 0.226, 0.227, 0.227,
0.233, 0.234, 0.241, 0.244, 0.244, 0.245, 0.247, 0.250, 0.250, 0.252,
0.253, 0.234, 0.256, 0.235, 0.265, 0.265, 0.265, 0.269, 0.275, 0.276,
0.278, 0.285, 0.288, 0.290, 0.294, 0.216, 0.234, 0.217, 0.238, 0.204

20


https://www.npl.co.uk/

MOHAMED ALI AHMED

The results of some goodness-of-fit measures and likelihood ratio tests are
computed using Mathcad (version 15) and are included in Table 2 and Table 3,
respectively. Figure 3 illustrates probability density functions for different
distributions which fit the data.

Figure 3. Estimated probability density functions for different distributions

Table 2. The MLE of the parameter(s) and the associated AIC and BIC values

MLE of parameters

Model a b p A \Y KS p-value AIC CAIC BIC

ETSM 6.995 0.365 19.953 0.218 1.698 0.073 0.951 -189.188 -187.824 -179.628
(0.107) (0.024) (0.171) (0.056) (1.331)

ESM 6.625 0.360 18.121 0.000 1.746 0.932 0.012 -114.744 -113.855 -107.096
(2.157) (0.029) (6.339) — (1.283)

TSM  9.368 0.334 13.057 0.336 1.000 0.850 0.034 -123.690 -123.168 -117.954
(0.632) (0.055) (1.275) (0.068) —

SM 8.882 0.335 14526 0.000 1.000 0.128 0.028 -183.330 -182.441 -175.682
(0.118) (0.054) (2.744) — —

21
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Table 3. The log-likelihood function, likelihood ratio tests statistic, and p-values

A df

£ (likelihood ratio (degrees of
Model Ho  (log likelihood) test statistic) freedom) p-value
ESM A=0 95.665 7.858 1 5.06E-03
TSM v=0 61.372 76.444 1 0.00
SM v=0,A=0 64.845 69.498 2 0.00

Note: The log likelihood of the ETSM = 99.594

In Table 2, the MLEs of distributions parameters, the corresponding RMSE
(given in parentheses), Kolmogorov-Smirnov (KS) test statistic, AIC (Akaike
Information Criterion), CAIC (consistent Akaike Information Criterion), and BIC
(Bayesian information criterion) are computed for every distribution. The null
hypothesis that the data follows the ETSM distribution, only, can be accepted at
significance level o = 0.05 and it is clear that the ETSM distribution has the smallest
KS, AIC, CAIC, and BIC, so ETSM distribution can be the best fitted distribution
to the data compared with other distributions.

In Table 3, based on the likelihood ratio test, the null hypothesis is that the
data follow the nested model and the alternative is the data follow the full model,
where the ESM, TSM, and SM distributions are nested by the ETSM distribution.
Obviously (from the p-values) all null hypotheses can be rejected at the level of
significance a = 0.05, so ETSM distribution can fit the data better than the nested
distributions as was illustrated before.

Conclusion

The ETSM distribution is a useful distribution having flexible statistical properties,
wide applications, and generalizes some important distributions. The ETSM
distribution can be used quite effectively to provide better fits compared to other
distributions.
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