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The effects of three scale identification constraints in mixture IRT models were studied. A 
simulation study found no constraint effect on the mixture Rasch and mixture 2PL models, 
but the item anchoring constraint was the only one that worked well on selecting correct 
model with the mixture 3PL model. 
 
Keywords: Item response theory, mixture models, scale identification, MCMC, 
Bayesian estimation 
 

Introduction 

When the same IRT model does not fit all members of a population, a mixture IRT 
model (MixIRTM) may be appropriate. The MixIRTM is formed by an integration 
of an IRT model with a latent class model (Mislevy & Verhelst, 1990; Rost, 1990). 
The IRT part of the model estimates a continuous latent variable and the latent class 
part estimates a categorical latent variable. Combining these two models permits 
examining the possibilities that a population of examinees may be classified into 
some number of discrete latent classes, and that item and ability parameters may 
differ for each class (Bolt, Cohen, & Wollack, 2002). 

Characterizing members of different latent classes is important for 
interpreting the meaning of the classes. Comparison of item parameter estimates 
between latent classes is one approach for characterizing the latent classes (Rost, 
1990). In order to make such comparisons, however, the latent classes need to have 
a common metric. 

Three methods have been proposed for developing a common metric between 
latent classes. These three methods are also commonly used in general IRT to fix 
the metric: item anchoring, person centering, and item centering (de Ayala, 2009). 
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The first (item anchoring) is concurrent calibration in which one or more items are 
used to anchor the metrics between classes (Bolt et al., 2002; Choi, Alexeev, & 
Cohen, 2015; von Davier & Yamamoto, 2004). The second method, person 
centering, is to impose equality constraints by fixing the mean and standard 
deviation of one latent class to some values such as zero and one (Baker & Kim, 
2004; Cho, Cohen, & Kim, 2013; Cho, Cohen, & Templin, 2008; De Boeck, Cho, 
& Wilson, 2011). A third method, item centering, is setting the sum of item 
difficulties to zero for each latent class (Cho & Cohen, 2010; Dai & Mislevy, 2006; 
Rost, 1990).  

Item anchoring may be used when there are either theoretical or empirical 
reasons for fixing some set of items to given values. If item parameters are known, 
for example, it is possible to fix the item parameters at known values in each group. 
When multiple groups are analyzed, these items may be used as anchors to link the 
metric across groups. As an example, in the likelihood ratio test for differential item 
functioning (DIF), all item parameter estimates can be constrained to the same 
values in each group except those of the studied item(s) (Thissen, Steinberg, & 
Wainer, 1993). Then the item parameters of the studied item(s) are estimated in 
each group. 

Person centering is to impose equality constraints for some reference class by 
setting the mean of one group to zero and the unit of scale (i.e., its standard 
deviation) to one. The item and ability parameter estimates for the other groups are 
then estimated relative to the estimates for the reference group. Person centering is 
used in programs such as LOGIST (Wingersky, Barton, & Lord, 1982), BILOG-
MG (Zimowski, Muraki, Mislevy, & Bock, 2003), MULTILOG (Thissen, Chen, & 
Bock, 2003), and PARSCALE (Muraki & Bock, 2003).  

Item centering sets the mean of the item difficulty parameters to zero during 
calibration. Programs such as WINSTEPS (Linacre, 2001a), BIGSTEPS (Linacre 
& Wright, 2001), FACETS (Linacre, 2001b), and WINMIRA (von Davier, 2001) 
use item centering (de Ayala, 2009). Programs such as M-plus (Muthén & Muthén, 
2012) and OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007) allow 
researchers to impose any of these three methods. Although each of the three 
methods has been reported in the literature, relatively little research exists 
investigating the impact of these constraints on developing a common metric in 
MixIRT models. 

Rost (1990) described a constraint for the mixture Rasch model (MixRM) in 
which the mean item difficulty was set to zero. There is somewhat less agreement, 
however, an about constraint used for the mixture 2PL model (Mix2PLM) or 
mixture 3PL model (Mix3PLM). Results from Choi, Alexeev, Cohen, and Kim 
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(2010) for the Mix3PLM indicated that both item centering and person centering 
worked well for recovery of generating parameters. These results were based on 
only five replications, however, and for a relatively small number of conditions. 
Therefore, it is difficult to generalize their conclusion. 

The purpose of this study was to investigate the effects of these three 
constraints on establishing a common metric between latent classes in MixIRT 
models. An empirical example is provided for motivation and a simulation study is 
provided examining the impact for each method on selection of the correct model, 
recovery of item and latent class parameter estimates, and selection of the correct 
latent class for each examinee. 

Mixture IRT Models 
MixIRTMs assume there may be groups or classes of examinees that are latent in 
the population and for which the same IRT model does not hold. An examinee 
population is assumed to be composed of a fixed number of discrete latent classes 
each of which fit an IRT model (Bolt, Cohen, & Wollack, 2001). All examinees 
who belong to a latent class are assumed to be homogeneous on a set of unique 
characteristics that differentiates one class from another. These models may be 
appropriate when a single IRT model is not the best fit to the data. 

A 3-parameter logistic model is assumed to hold for each class in a Mix3PLM. 
Item and ability parameters are allowed to differ between latent classes. Each 
examinee is parameterized both by a class membership parameter (g = 1, ..., G) and 
an ability parameter (θj). 

The probability of a correct response in the Mix3PLM can be written as 
 

   (1) 

 
where g indexes latent class (g = 1, ..., G), j is the jth examinee among N examinees 
(j = 1, ..., N examinees), θj is the latent ability of examinee j, πg is the proportion of 
examinees for each class, aig is the discrimination parameter for item i in class g, 
big is the difficulty parameter for item i in class g, and cig is the lower asymptote 
parameter for item i in class g. Class membership decides the relative difficulty of 
the items for an examinee in that class. The MixRM and Mix2PLM can be 
considered as nested within the Mix3PLM in Equation 1 (Sen, Cohen & Kim, 
2016). One can obtain the probability of a correct response for the Mix2PLM, for 

P yij = 1|θ j( ) = π g cig + 1− cig( ) exp aig θ j − big( ){ }
1+ exp aig θ j − big( ){ }

⎡
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example, by constraining the guessing parameter to zero. Similarly, one can obtain 
the probability of a correct response for the MixRM by constraining the 
discrimination parameter to one and the guessing parameter to zero. 

Empirical Example: TIMSS 2011 Grade 8 Science Test 

An example is provided to illustrate the problem of comparing metrics between 
different latent classes in the same model. For this example, data were taken from 
the TIMSS 2011 Grade 8 Science Test (Foy, Arora, & Stanco, 2013; IEA, 2013). 
Seventeen multiple-choice items and eight short answer items (scored 
dichotomously) were analyzed for this example. The multiple-choice items were 
scored correct or incorrect and blanks were skipped and not scored. Approximately 
.04% (= 2,694/(2,493*25)) of total responses were blanks and ranged from .00% 
for Item 1 and to 31.13% for Item 24. The short answer items also were scored as 
either correct or incorrect, and blank items were skipped. The items measured four 
content domains: Biology (8 items), Chemistry (6 items), Physics (4 items), and 
Earth Science (7 items). 
 
Sample. Data from seven of the 45 countries in the TIMSS 2011 program 
were used for this example. The sample of 2,493 students in this data set was from 
the following countries: Chinese Taipei (N = 357, Mean = 564), Ghana (N = 410, 
Mean = 306), Morocco (N = 464, Mean = 376), Norway (N = 247, Mean = 494), 
Singapore (N = 423, Mean = 590), the Republic of Korea (N = 361, Mean = 590), 
and Ukraine (N = 231, Mean = 501). The seven countries were selected, because, 
as a group, their average scale scores on the test approximated high, middle and 
low achievement among the participating countries. Singapore, Chinese Taipei, and 
the Republic of Korea had the highest mean mathematics scores, Ukraine and 
Norway were average, and Morocco and Ghana were among the lowest for 
participating countries. 
 
Estimation.  The MixRM and Mix2PLM were estimated with each of the three 
constraints for establishing a common metric: Item anchoring (Constraint 1) was 
done by using a single anchor item. Person centering (Constraint 2) was done by 
setting the mean ability of the first latent class to zero with unit variance. Item 
centering (Constraint 3) was done by setting the mean of item difficulties to zero in 
each class.  

Estimation of model parameters was done using the Markov Chain Monte 
Carlo (MCMC) algorithm as implemented in the OpenBUGS computer software 
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(Spiegelhalter et al., 2007). The following conjugate priors were used in the 
estimation of the MixRM and Mix2PLM in the empirical example: 
aig ∼ Normal(0,1) and aig > 0, i = 1, ..., n items; big ∼ Normal(0,1); 
cig ∼ Beta(5,17); θj ∼ Normal(μg,1), j = 1, ..., N examinees; μg ∼ Normal(0,1), 
g = 1, ..., G latent classes; and (π1, ..., πG) ∼ Dirichlet(0.5, ..., 0.5); where a is the 
discrimination parameter, b is the difficulty parameter, c is the lower asymptote 
parameter (c was used for Mix3PLM in the simulation study). The conjugate priors 
have been used for default priors for BILOG program and Li, Cohen, Kim, & Cho 
(2009) also used same prior information. All these priors also were used in the 
simulation study. 

Heidelberger and Welch (1983) convergence diagnostics were used to 
determine the number of iterations as implemented in the Coda package using R 
(Plummer, et al., 2012). Autocorrelations, density plots, and history plots were also 
examined for further evidence of convergence. For the MixRM, a burn-in of 8,000 
iterations and 22,000 post-burn-in iterations were found to be sufficient for 
convergence for all parameters with Constraint 1 (item anchoring) and Constraint 
3 (item centering). A burn-in of 2,000 iterations and post-burn-in iterations of 
24,000 were sufficient for convergence for Constraint 2 (person centering). For the 
Mix2PLMs, a burn-in of 8,000 iterations and 21,000 post-burn-in iterations were 
sufficient for Constraint 1. A burn-in of 9,000 iterations and 16,000 post-burn-in 
iterations were used for Constraint 2, and a burn-in of 3,000 iterations and 27,000 
iterations for Constraint 3 were used. The Mix3PLM did not appear to be 
converging for all three constraint conditions. Therefore, it was not appropriate to 
include the Mix3PLM in this empirical study. 

Results for Example 
Model Selection.  BIC (Schwartz, 1978) was used to inform model selection 
for the MixRM and Mix2PLM as described by Congdon (2003). AIC values 
(Akaike, 1973) were calculated for comparison purposes, as described by Congdon 
(2003), although results from Li et al. (2009) suggest BIC may be more accurate 
for MixIRT models. Smaller AIC and BIC values indicate the better fitting model. 

Both indices suggested different numbers of latent classes. AIC suggested five 
latent classes using Constraint 1 (item anchoring), six latent classes using 
Constraint 2 (person centering), and seven latent classes using Constraint 3 for the 
MixRM (item centering). BIC suggested five latent classes using Constraints 1 and 
2 and six classes using Constraint 3. For the Mix2PLM, AIC suggested four latent 
classes for the Mix2PLM using Constraints 1 and 2 and a 3-class solution using 
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Constraint 3. Based on BIC, a 3-class solution was suggested for all three 
constraints (see Table 1). 

 
Label Switching.  Label switching can occur in both maximum likelihood 
estimation and MCMC estimation. It can be observed in real data when latent 
classes switch during a single MCMC chain. It also can be inferred when multiple 
modes exist of the posterior densities for class membership. In addition, if different 
latent classes for a MixIRT model have higher percentages of agreement under the 
different constraints, then a second type of label switching may be inferred. For this 
example, labels were switched based on the highest percentages of agreement for 
group membership. 
 
 
Table 1. Model Comparison Information Criteria for MixRMs and Mix2PLMs 
 

  AIC  BIC 

 Latent 
Classes 

Constraint 1 
(Item 

Anchoring) 

Constraint 2 
(Person 

Centering) 

Constraint 3 
(Item 

Centering) 
 

Constraint 1 
(Item 

Anchoring) 

Constraint 2 
(Person 

Centering) 

Constraint 3 
(Item 

Centering) 

MixRMs 

1 67670 67670 67670  67820 67820 67820 
2 65890 65870 65870  66190 66170 66180 
3 65210 65180 65200  65660 65640 65660 
4 64910 64810 64850  65510 65430 65470 
5 64520 64460 64490  65280 65240 65270 
6 64520 64420 64240  65430 65350 65170 
7   64190    65280 

         

Mix2PLMs 

1 66430 66460 66460  66580 66750 66760 
2 65300 65550 65210  65890 66140 65810 
3 64660 64550 64570  65540 65450 65470 
4 64370 64330 64570  65540 65530 65770 

 
 

An example of agreement results for class membership between different 
constraints using BIC for the MixRM is shown in Table 2. Values on the main 
diagonal indicate the number of exact agreements: 959 examinees (38.5%) of the 
sample were placed into Class 1 by both Constraints 1 and 2. The percent matching 
was 91.2% between Constraints 1 (item anchoring) and 2 (person centering) and 
94.3% between Constraints 1 (item anchoring) and 3 (item centering). There was 
no label switching observed for the MixRMs with Constraints 1 and 2 but label 
switching was observed for the MixRM between Constraints 1 and 3. 
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Table 2. Latent Class Classifications for the MixRM with Constraint 1 and Constraint 2 
 
MixRM with 
Constraint 1 

MixRM with Constraint 2 
Class 1 Class 2 Class 3 Class 4 Class 5 Total 

Class 1 959 31 0 0 3 993 
 (38.5%) (1.2%) (0.0%) (0.0%) (0.1%) (39.8%)      

  
 

Class 2 1 239 1 0 0 241 
 (0.0%) (9.6%) (0.0%) (0.0%) (0.0%) (9.7%)      

  
 

Class 3 132 6 990 1 0 1129 
 (5.3%) (0.2%) (39.7%) (0.0%) (0.0%) (45.3%)      

  
 

Class 4 20 14 0 48 3 85 
 (0.8%) (0.6%) (0.0%) (1.9%) (0.1%) (3.4%)      

  
 

Class 5 6 0 1 0 38 45 
  (0.2%) (0.0%) (0.0%) (0.0%) (1.5%) (1.8%)      

  
 

Total 1118 290 992 49 44 2493 
  (44.8%) (11.6%) (39.8%) (2.0%) (1.8%) (100.0%) 
 
 

The percentage of agreement for classification of class membership for the 
Mix2PLM was 80.8% between Constraints 1 and 2 and 89% between Constraints 
1 and 3. Label switching was observed for the Mix2PLMs between Constraints 2 
and 3. 

 
Comparison of Class Means and Latent Class Proportions.     Additional equating 
or scale transformation was not required for comparisons of scale parameters within 
each constraint as this was accomplished by each of the constraints. Comparisons 
of scale parameters between constraints for the same model, however, did require 
an additional scale transformation (Choi et al., 2010). Mean and sigma equating 
was used for these transformations. Means for each of latent classes are reported in 
Table 3 and indicate differences among the three constraints for the MixRMs. As 
an example, the differences between means for Constraints 2 and 3 appear to be 
relatively large for classes 1, 2, 4, and 5. For the Mix2PLM, the means for class 2 
using constraint 2 also differed from those for the other two constraints. 

The proportions of examinees in latent classes 1 to 6 for each constraint are 
reported in Table 4. Those for the MixRM look somewhat similar although the 
proportions for the first and third classes differ for each of the three constraints. The 
Mix2PLMs had different proportions of class membership for each constraint. The 
proportions in class 3 look similar for the three constraints, however, the 
membership proportions of classes 1 and 2 look different for the different 
constraints. Joint classifications for the MixRM and Mix2PLM also differed for 
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each of the constraints. These results clearly suggest different classifications for the 
different constraints. 
 
 
Table 3. Latent Class Means for MixRM and Mix2PLM 
 
 Mixture Rasch Model  Mixture 2PL Model 

Latent 
Classes Constraint 1 Constraint 2 Constraint 3   Constraint 1 Constraint 2 Constraint 3 

1 0.38 0.00 0.78  -1.24 -1.43 -1.58 
2 0.77 0.59 1.12  1.34 -0.07 0.86 
3 -1.18 -1.47 -0.72  0.90 0.92 0.79 
4 0.15 -0.50 0.46     
5 1.45 0.90 1.46     
6     -0.24         

 
 
Table 4. Proportions of Latent Classes for MixRM and Mix2PLM 
 
 Mixture Rasch Model  Mixture 2PL Model 

Latent 
Classes Constraint 1 Constraint 2 Constraint 3   Constraint 1 Constraint 2 Constraint 3 

1 39.8 44.8 43.8 
 

47.6 31.4 38.9 
2 9.7 11.6 9.5 

 
29.5 47.2 38.7 

3 45.3 39.8 40.7 
 

22.9 21.5 22.4 
4 3.4 2.0 3.9 

    

5 1.8 1.8 1.8 
    

6 
  

0.3 
    

 
 

Correlations between parameter estimates for each MixIRTM under each of 
the constraints should be high if constraints had no impact. Most correlations 
between constraints in each latent class for the MixRM were high (r = .99). Those 
between Constraints 1 and 2 (r = .918) and between Constraint 2 and 3 (r = .928) 
in Class 4, however, were slightly smaller, suggesting that there might be some 
effect of constraints in Class 4. Correlations between discrimination parameter 
estimates within latent classes ranged from .88 to .99 in the Mix2PLM. Correlations 
between difficulty estimates in each latent class suggested estimates differed 
between constraints in the Mix2PLM. Exceptions were correlations between 
Constraints 1 and 3 in Class 1 (r = .98) and between Constraints 1 and 2 in Class 3 
(r = .99). 

 
Conclusions.  For both models, the constraints had a somewhat different 
effect on item difficulty estimates, ability estimates, numbers of latent classes, 
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classifications of examinees into latent classes, and proportions of membership in 
each latent class. The number of latent classes extracted differed for each constraint 
used with the MixRM, but not for the Mix2PLM. Mean ability, proportions of 
group memberships, and item parameter estimates also differed depending on the 
constraint used. 

Simulation Study 

A simulation study was used to better understand the impact of the three constraints 
in the context of three MixIRT models: MixRM, Mix2PLM, and Mix3PLM. 
Simulation conditions included two sample sizes (600 examinees and 2,400 
examinees), two test lengths (20 and 40 items), and three different cases of latent 
classes (1-, 2-, and 3-classes with different proportions of simulated classes for each 
of these three MixIRT models. Simulated proportions of 30% and 70% were used 
for the two latent class simulations and for the three latent class simulations 60%, 
30%, and 10% were used. Twenty replications were done of the three constraints × 
two test lengths × two sample sizes × one to three latent classes × three mixture 
IRT models = 108 conditions. 

MCMC estimation was used for model estimation using the same priors as in 
the example. The Heidelberger and Welch (1983) convergence diagnostic was used 
to monitor convergence. The number of latent classes was determined using the 
Bayesian information criterion (BIC). AIC was also monitored. At each iteration, 
the posterior mean of the deviance was used to calculate AIC and BIC. 
 
 
Table 5. Simulated Performance Patterns 
 

Type of Knowledge Group 1 Group 2 Group 3 

1 Good Average Poor 
2 Average Poor Good 
3 Poor Good Average 

 
 

Three types of knowledge were simulated in each test as suggested by Li et 
al. (2009). The generating parameters for the knowledge type are given in Table 5. 
Generating parameters for the MixIRTM are given in Table 6. Those for Items 1 to 
5 were the same for the three latent classes and were used as anchors for Constraint 
1. 25% of items were designed as anchor items following the suggestion in Kolen 
and Brennan (2004) that the anchors should be at least 1/5 of the total test in length. 
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Item parameters for the remaining items were used to simulate three types of 
knowledge. Items 6 to 10 simulated Type 1 knowledge, Items 11 to 15 simulated 
Type 2 knowledge, and Items 16 to 20 simulated Type 3 knowledge. 
 
 
Table 6. Generating parameters for MixIRT Model Simulations: 25% Anchor Items 
 
  Class 1  Class 2  Class 3 

Type of 
Knowledge Item b a c   b a c   b a c 

1, 2 & 3 
(Anchors) 

1 -0.50 1 0.20  -0.50 1 0.20  -0.50 1 0.20 
2 -0.50 1 0.20  -0.50 1 0.20  -0.50 1 0.20 
3 0.00 1 0.20  0.00 1 0.20  0.00 1 0.20 
4 0.50 1 0.20  0.50 1 0.20  0.50 1 0.20 
5 0.50 1 0.20  0.50 1 0.20  0.50 1 0.20              

1 

6 -2.00 2 0.10  -0.50 1 0.20  1.00 1 0.30 
7 -1.75 2 0.10  -0.25 1 0.20  1.25 1 0.30 
8 -1.50 2 0.10  0.00 1 0.20  1.50 1 0.30 
9 -1.25 2 0.10  0.25 1 0.20  1.75 1 0.30 
10 -1.00 2 0.10  0.50 1 0.20  2.00 1 0.30              

2 

11 -0.50 1 0.20  1.00 1 0.30  -2.00 2 0.10 
12 -0.25 1 0.20  1.25 1 0.30  -1.75 2 0.10 
13 0.00 1 0.20  1.50 1 0.30  -1.50 2 0.10 
14 0.25 1 0.20  1.75 1 0.30  -1.25 2 0.10 
15 0.50 1 0.20  2.00 1 0.30  -1.00 2 0.10              

3 

16 1.00 1 0.25  -2.00 2 0.10  -0.50 1 0.20 
17 1.25 1 0.25  -1.75 2 0.10  -0.25 1 0.20 
18 1.50 1 0.25  -1.50 2 0.10  0.00 1 0.20 
19 1.75 1 0.25  -1.25 2 0.10  0.25 1 0.20 
20 2.00 1 0.25   -1.00 2 0.10   0.50 1 0.20 

 

Note: a = discrimination, b = difficulty, and c = lower asymptote parameters 
 
 

Class 1 was simulated to have good performance on Type 1 knowledge, 
average performance on Type 2 knowledge, and poor performance on Type 3 
knowledge. Class 2 was simulated to have average, poor and good performance on 
Types 1, 2, and 3 knowledge, respectively. Class 3 was simulated to have poor, 
good and average performance on Types 1, 2, and 3 knowledge, respectively. The 
item parameters for class 1 were used for the 1-class model. Item parameters for 
classes 1 and 2 were used for the 2-class model. The 3-class model was simulated 
using the item parameters for classes 1, 2, and 3. The pattern for the 20-item test 
was used twice for the 40-item test. 
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Recovery Evaluation.  Bias, root mean square error (RMSE), and Pearson 
correlations were calculated to evaluate the accuracy of the estimates of item and 
class mean parameters. RMSE was computed as the square root of the average of 
the square of the distance between the estimator and its generating parameter (see 
Equation 5). The bias, RMSE, and Pearson correlation were computed across items, 
latent class groups, and replications by Equations 4 and 6. 
 

   (2) 

 

   (3) 

 

   (4) 

 
where  is the estimated item difficulty parameter for item i in latent group g for 

rth replication, big is the generating true value of item difficulty for item i in latent 
group g, R is the number of replications (r = 1, ..., R), I (I = 1, ..., I) is the number 
of items, and G (g = 1, ..., G) is the number of latent classes in the model being 
estimated. 

In order to estimate bias and RMSE, item parameter estimates need to be on 
the same scale as the generating parameters. The metrics of estimates from each 
replication were transformed to the metric of generating parameters using the mean 
and sigma equating method (de Ayala, 2009; Kolen & Brennan, 2004). 

 
Monitoring Convergence.   Three convergence diagnostics were used: 
the Heidelberger and Welch (1983), the ratio of the standard deviation of the 
parameter estimate to the MC standard error for the parameter estimate, and the 
95% credibility interval. For the MixRM and Mix2PLM, chains were monitored 
using Heidelberger and Welch convergence diagnostics and the ratio of the standard 
deviation to the MC standard error for the parameter. The 95% credibility interval 
was used to monitor convergence of the Mix3PLM. 

Bias b̂( ) = Σr=1
R Σg=1

G Σ i=1
I b̂igr − big( )
RGI

,

RMSE b̂( ) = Σr=1
R Σg=1

G Σ i=1
I b̂igr − big( )2
RGI

,

Cor b̂,b( ) = 1R Σr=1
R
Cov b̂igr − big( )

σ
b̂igr
σ big

b̂igr



CHOI & COHEN 

13 

The chain for the MixRM was found to have converged for all parameters 
after a burn-in of 5,000 iterations and 5,000 post-burn-in iterations. The chain for 
the Mix2PLM converged with a burn-in of 6,000 iterations and a post burn-in of 
11,000 iterations. Autocorrelations, density plots, and history plots were examined 
for further evidence of convergence for the MixRM and Mix2PLM. 

The Mix3PLM failed to converge after 35,000 iterations based on the 
Heidelberger and Welch diagnostics or on the ratio of the standard deviation of the 
parameter estimate to the MC standard error for the parameter estimate. 
Autocorrelation plots, density plots, and history plots also failed to show 
convergence. Based on the 95% credibility interval, however, the Mix3PLMs were 
considered to have converged after a burn-in of 6,000 iterations and a post burn-in 
of 11,000 iterations. 

 
Model Selection.  BIC was used to inform model selection. AIC was provided 
as a comparison index. The percentages in Table A1 of the Appendix indicate the 
number of correct model selection decisions for each condition in which the 
generating model was selected. Model selection for the MixRM was correct for all 
but one of the conditions for Constraint 1.  

All model selections were 100 percent correct for the Mix2PLM. For the 
Mix3PLM, however, model selection results varied ranging between 25 percent and 
100 percent correct. The lower percentages occurred mainly under Constraints 2 
and 3. Results were similar under Constraint 1 for all conditions for all three 
MixIRTMs. Unlike results for the MixRM and Mix2PLM, however, there were 
clearly some problems for the Mix3PLM, with Constraint 2. For the smaller sample 
size, (N = 600), the Mix3PLM detected fewer correct 3-class models. The numbers 
of students for each class in the small sample (N = 600) with the 3-class condition 
were 360, 180, and 60, respectively. It is possible the smallest sample size among 
three classes (i.e., N = 60) might not have been sufficient to estimate the Mix3PLM. 
Further, increasing test length to 40 items but with the same smaller sample may 
not have provided sufficient additional information for accurate estimation of model 
parameters. 

In addition, in the larger sample size (N = 2,400) and 1-class condition for the 
Mix3PLM with Constraint 2, only 45 percent correct detections were observed for 
both the 20- and 40-item tests.  The 1-class solution is the usual IRT solution, i.e., 
with no latent classes. In this case, it appears that under Constraint 2, model 
selection did not work well for the usual 3PL model. These results suggest that 
Constraint 2 affected model selection when the larger sample size was simulated 
for the 1-class model (i.e., a 3PL model without any latent classes). 
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Comparison of model selections for AIC and BIC indicated BIC had more 
correct selections than AIC for the MixRM and Mix2PLM. This was also the case 
for the Mix3PLM except for three conditions: smaller sample size × 3-classes for 
Constraints 2 and 3 and the longer test length × larger sample size × 3-class using 
Constraint 3. These results are consistent with from Li et al. (2009) which found 
that BIC made more correct model selections for all three MixIRTMs. 

 
Label Switching.   Label switching was observed between replications. 
This type of label switching is easily observed in simulation studies because the 
generating parameters are known and can be compared with the estimated 
parameters for each of the latent classes (Cho, Cohen, & Kim, 2006; Li et al., 2009). 
When label switching was identified, the problem was solved by comparing 
frequencies between generated class membership and the posterior mode estimates 
of class membership. The latent classes of each replication were switched manually 
based on the frequency comparisons prior to the recovery analysis. 

 
Recovery Analysis.   Recovery was analyzed only for replications for 
which the correct number of latent classes was selected by BIC. For the MixRM, 
bias values were all zero for item difficulty and very small for latent class means, 
ranging between –.002 and .002. Correlations between generating values and item 
difficulty estimates were all high, ranging from .979 to .999. RMSEs for item 
difficulty ranged from .049 to .229.  

For the Mix2PLM, the type of constraint did not appear to affect recovery of 
item difficulties (see Table A2 in the Appendix). RMSE results suggested recovery 
of the item and class mean parameters was also generally satisfactory. Bias and 
correlation statistics for item difficulty and discrimination estimates for the 
Mix2PLM were all zero for item difficulty. Recovery of item difficulty for the 
Mix2PLM was generally good with the possible exceptions of the small sample 3-
class model conditions. Bias statistics for item discrimination parameters were also 
relatively small, ranging from .002 to .043. RMSEs in the large sample conditions 
were slightly smaller, ranging from .080 to .199 and suggest a sample size effect on 
recovery of item discrimination.  

Bias and RMSE results for recovery analysis of class mean parameters in the 
Mix3PLM were all close to zero. Bias for the item difficulty and lower asymptote 
parameters also were close to zero as well, although bias values were higher than 
.3 for item discrimination in the 2,400 students × 1-class condition for Constraint 2 
(person centering) and in the 40-items × 2,400 students × 1-class condition for 
Constraint 3 (item centering). In addition, Constraint 1 (item anchoring) had the 
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lowest RMSE values for all conditions except for shorter test length × larger sample 
size × three classes for item difficulty and discrimination (see Tables A3 and A4 in 
the Appendix). 

A high percentage of correct selections was observed for the MixRM and 
Mix2PLM with no apparent affect on model selection. The Mix3PLM, however, 
had a low percentage of correct selections under Constraints 2 and 3. These results 
appear to be related to poor recovery of item parameters. 

Recovery of class membership was examined by calculating the percentage 
of correct class identifications for each condition and comparing that with the 
percentage of examinees simulated in that class after label switching. If the correct 
model was indicated by the BIC index, this was considered as a correct model 
selection. Latent class membership was recovered well for the MixRM and 
Mix2PLM. For the Mix3PLM, under Constraint 2, the 20 items × 2,400 students 
for the 2-class model had 84% correct identifications. All other conditions had 
correct identifications of 90% or greater. In addition, the percentage of correct 
membership identifications decreased as the number of latent classes increased. 
Sample size and type of constraint did not appear to affect class membership 
identification. These patterns were similar to those reported by Li et al. (2009). 

Discussion and Conclusions 

The effects of three scale identification methods were investigated for establishing 
a common metric between latent classes in MixIRT models. Results from an 
empirical example with the MixRM suggested that each of the constraints had a 
somewhat different effect on item difficulty estimates, ability estimates, numbers of 
latent classes, classifications of examinees into latent classes, and proportions of 
membership in each latent class. Similar results were observed for these data for 
the Mix2PLM with the exception that the same number of latent classes was 
extracted using all three constraints. 

A simulation study investigated the impact of the three constraints in the 
context of three dichotomous MixIRT models: MixRM, Mix2PLM, and Mix3PLM. 
Exploratory MixRM, Mix2PLM, and Mix3PLM analyses were done to determine 
the best fitting model to the simulated data. The criterion used for model selection 
was BIC. Selection for the MixRM and Mix2PLM using BIC was close to 100 
percent. For the Mix3PLM, model selection under Constraint 1 was better than 
under Constraints 2 or 3. 

A recovery analysis was done to evaluate the effectiveness of the estimation 
algorithms for the different constraints. Item and latent class mean generating 
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parameters were compared to the item and latent class mean estimates. Bias and 
RMSEs for latent class mean parameter estimates were close to zero for all 
conditions for all MixIRTMs. However, there were variations in recovery results 
for the different models. 

For the MixRM, all bias and correlations suggested that generating 
parameters were recovered well. Type of constraint did not appear to affect 
recovery of item difficulties and recovery of item and class mean parameters was 
generally good. Recovery of item difficulties for the Mix2PLM was generally good 
except for the 3-class model in the small sample conditions. The type of constraint 
did not appear to affect recovery of item difficulty for this model. For the 
Mix3PLM, recovery was moderately good for Constraint 1 but less so for 
Constraints 2 and 3.  

No constraint effect was observed on model selection for the MixRM or 
Mix2PLM. For the Mix3PLM, model selection under Constraint 1 was best 
compared to the other two constraints. Results suggest that any of the three 
constraints might be used for the MixRM and Mix2PLM but only Constraint 1 
appeared appropriate for the Mix3PLM. Correct model selections and recovery 
were poorer for the Mix3PLM than for the other two MixIRT models. Latent class 
membership was recovered well for the MixRM and Mix2PLM.  

Recovery was best for the Mix2PLM and worst for the Mix3PLM. When the 
types of constraints were compared, Constraint 2 had the worst results. Test length 
did not appear to affect recovery of item parameters although the longer test length 
was associated with improved correct identification of class membership in the 
MixRM and Mix2PLM. The larger sample size appeared to have better recovery of 
item parameters based on correlations. The more latent classes in the model, the 
poorer the recovery of class membership and item parameters. 

Constraint 1 (Item Anchoring) generally performed best. An important 
problem, when using this constraint, is determining the set of anchor items. This is 
the same concern present in studies of differential item functioning (DIF) and 
equating. There are two methods to determine the anchor items in the MixIRTMs: 
deciding which items to select on the basis of theoretical reasons or based on 
statistical evidence (e.g., non-speededness items in speededness test). Choi et al. 
(2015) used the likelihood ratio test for DIF to determine the anchor items. 

When three different types of constraint were involved in the present study, 
there was no problem for either the MixRM or the Mix2PLM. However, the 
Mix3PLM did not do as well with respect to selection of the correct model. This 
was particularly the case when Constraints 2 and 3 were used.  
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Appendix A 
Table A1. Percent of Correct Model Selections for the MixIRT Models 
 
    BIC AIC 

Constraint Item Sample Latent 
Classes Mix RM Mix 2PLM Mix 3PLM Mix RM Mix 2PLM Mix 3PLM 

1. Item 
Anchoring 

20 

600 

1 100.00 100.00 100.00 95.00 100.00 100.00 

2 100.00 100.00 100.00 90.00 100.00 100.00 

3 100.00 100.00 100.00 95.00 100.00 100.00 

2400 

1 100.00 100.00 100.00 85.00 100.00 100.00 

2 95.00 100.00 95.00 70.00 90.00 95.00 

3 100.00 100.00 95.00 65.00 95.00 95.00 

40 

600 

1 100.00 100.00 100.00 100.00 100.00 100.00 

2 100.00 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 100.00 100.00 100.00 100.00 

2400 

1 100.00 100.00 90.00 100.00 100.00 90.00 

2 100.00 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 100.00 100.00 100.00 100.00 
          

2. Person 
Centering 

20 

600 

1 100.00 100.00 100.00 90.00 100.00 100.00 

2 100.00 100.00 100.00 90.00 100.00 100.00 

3 100.00 100.00 40.00 100.00 100.00 100.00 

2400 

1 100.00 100.00 45.00 65.00 100.00 45.00 

2 100.00 100.00 90.00 75.00 95.00 65.00 

3 100.00 100.00 90.00 55.00 100.00 60.00 

40 

600 

1 100.00 100.00 90.00 100.00 100.00 65.00 

2 100.00 100.00 95.00 100.00 100.00 95.00 

3 100.00 100.00 25.00 100.00 100.00 100.00 

2400 

1 100.00 100.00 45.00 100.00 100.00 45.00 

2 100.00 100.00 95.00 100.00 100.00 95.00 

3 100.00 100.00 95.00 100.00 100.00 85.00 
          

3. Item 
Centering 

20 

600 

1 100.00 100.00 100.00 95.00 100.00 100.00 

2 100.00 100.00 100.00 95.00 100.00 100.00 

3 100.00 100.00 40.00 100.00 100.00 100.00 

2400 

1 100.00 100.00 100.00 75.00 100.00 100.00 

2 100.00 100.00 100.00 75.00 95.00 95.00 

3 100.00 100.00 100.00 70.00 95.00 90.00 

40 

600 

1 100.00 100.00 100.00 100.00 100.00 100.00 

2 100.00 100.00 95.00 100.00 100.00 95.00 

3 100.00 100.00 25.00 100.00 100.00 100.00 

2400 

1 100.00 100.00 25.00 100.00 100.00 25.00 

2 100.00 100.00 60.00 100.00 100.00 60.00 

3 100.00 100.00 30.00 100.00 100.00 70.00 
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Table A1. (Cont’d). 
 

    BIC AIC 

Constraint Item Sample Latent Classes Mix 
RM 

Mix 
2PLM 

Mix 
3PLM 

Mix 
RM 

Mix 
2PLM 

Mix 
3PLM 

MixIRTM       98.86 100.00 82.36 91.25 99.17 88.06 

Constraint 1    99.58 100.00 98.33 91.67 98.75 98.33 

Constraint 2    100.00 100.00 75.83 89.58 99.58 79.58 

Constraint 3       100.00 100.00 72.92 92.50 99.17 86.25 
 20-items   99.72 100.00 88.61 82.50 98.33 91.39 

  40-items     100.00 100.00 76.11 100.00 100.00 84.72 
  N = 600  100.00 100.00 83.89 97.22 100.00 97.22 

    N = 2400   99.72 100.00 80.83 85.28 98.33 78.61 
   1-class 100.00 100.00 82.92 92.08 100.00 80.83 
   2-class 99.58 100.00 94.17 91.25 98.33 91.67 

      3-class 100.00 100.00 70.00 90.42 99.17 91.67 

 
 
 
 
Table A2. Bias, RMSE and Correlations (Cor.) of Difficulty and Discrimination 
Parameters and Latent Group Mean in Mix2PLM over 20 Replications 
 
    Difficulty  Discrimination  Latent Group 

Mean 

Constraint Item Sample Latent 
Classes Bias RSME Cor.  Bias RSME Cor.   Bias RSME 

1. Item 
Anchoring 

20 

600 

1 0.000 0.104 0.996   0.039 0.157 0.947   0.003 0.015 

2 0.000 0.164 0.989  0.037 0.228 0.873  0.001 0.013 

3 0.000 0.201 0.984  0.014 0.286 0.800  0.005 0.024 

2400 

1 0.000 0.060 0.999  0.034 0.092 0.985  -0.001 0.004 

2 0.000 0.097 0.996  0.042 0.143 0.955  -0.002 0.011 

3 0.000 0.123 0.994   0.043 0.181 0.922   0.000 0.009 

40 

600 
1 0.000 0.119 0.994  0.028 0.150 0.948  0.001 0.005 
2 0.000 0.162 0.990  0.023 0.219 0.882  0.001 0.007 
3 0.000 0.211 0.982  0.003 0.265 0.819  0.002 0.027 

2400 

1 0.000 0.059 0.999  0.014 0.080 0.984  0.001 0.003 
2 0.000 0.092 0.997  0.015 0.118 0.965  -0.001 0.005 

3 0.000 0.128 0.993   0.025 0.171 0.928   0.000 0.009 
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Table A2. (Cont’d). 
 
    Difficulty  Discrimination  Latent Group 

Mean 

Constraint Item Sample Latent 
Classes Bias RSME Cor.  Bias RSME Cor.   Bias RSME 

              

2. Person 
Centering 

20 

600 

1 0.000 0.113 0.995  0.043 0.169 0.938  0.003 0.013 

2 0.000 0.172 0.988  0.037 0.239 0.862  0.001 0.005 

3 0.000 0.222 0.980  0.009 0.313 0.776  0.004 0.024 

2400 

1 0.000 0.065 0.999  0.034 0.097 0.983  -0.001 0.004 

2 0.000 0.102 0.996  0.043 0.150 0.950  -0.002 0.018 

3 0.000 0.133 0.993   0.043 0.199 0.909   0.001 0.005 

40 

600 

1 0.000 0.123 0.994  0.028 0.156 0.943  0.001 0.004 

2 0.000 0.166 0.989  0.022 0.224 0.878  0.001 0.005 

3 0.000 0.219 0.981  0.003 0.279 0.807  0.001 0.008 

2400 

1 0.000 0.062 0.999  0.013 0.083 0.983  0.001 0.002 

2 0.000 0.094 0.997  0.016 0.122 0.963  -0.001 0.011 

3 0.000 0.132 0.993   0.026 0.177 0.924   0.001 0.014 
              

3. Item 
Centering 

20 

600 

1 0.000 0.113 0.995  0.043 0.169 0.938  0.004 0.020 

2 0.000 0.172 0.988  0.038 0.240 0.861  0.000 0.018 

3 0.000 0.221 0.980  0.007 0.316 0.772  0.005 0.029 

2400 

1 0.000 0.065 0.999  0.034 0.097 0.983  -0.004 0.019 

2 0.000 0.102 0.996  0.043 0.150 0.950  0.001 0.005 

3 0.000 0.134 0.993   0.043 0.199 0.908   0.001 0.011 

40 

600 
1 0.000 0.123 0.994  0.028 0.156 0.943  0.003 0.013 

2 0.000 0.166 0.989  0.023 0.224 0.878  0.001 0.008 
3 0.000 0.219 0.981  0.002 0.280 0.805  0.003 0.031 

2400 

1 0.000 0.061 0.999  0.013 0.083 0.983  -0.001 0.003 

2 0.000 0.094 0.997  0.016 0.122 0.963  0.001 0.011 

3 0.000 0.132 0.993   0.026 0.177 0.924   0.001 0.012 
              

Constraint 1    0.000 0.127 0.993  0.026 0.174 0.917  0.001 0.011 

Constraint 2    0.000 0.134 0.992  0.026 0.184 0.910  0.001 0.009 

Constraint 3       0.000 0.134 0.992   0.026 0.184 0.909   0.001 0.015 
 20-items   0.000 0.131 0.992  0.035 0.190 0.906  0.001 0.014 

  40-items     0.000 0.131 0.992   0.018 0.171 0.918   0.001 0.010 
  N = 600  0.000 0.166 0.988  0.024 0.226 0.871  0.002 0.015 

    N = 2400   0.000 0.096 0.996   0.029 0.136 0.953   0.000 0.009 
   1-class 0.000 0.089 0.997  0.029 0.124 0.963  0.001 0.009 
   2-class 0.000 0.132 0.993  0.030 0.182 0.915  0.000 0.010 

      3-class 0.000 0.173 0.987   0.020 0.237 0.858   0.002 0.017 
 

Note: When RMSE is larger than .2 or correlation is less than .8, the values are bold. 
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Table A3. Bias, RMSE and Correlations of Difficulty and Discrimination Item Parameters 
in Mix3PLM 
 
    Difficulty  Discrimination 

Constraint Item Sample Latent 
Classes Bias RSME Cor.  Bias RSME Cor. 

1. Item 
Anchoring 

20 

600 

1 0.000 0.141 0.992   -0.032 0.196 0.917 

2 0.000 0.215 0.982  -0.089 0.269 0.829 

3 0.000 0.290 0.966  -0.174 0.369 0.722 

2400 

1 0.000 0.099 0.996  -0.012 0.151 0.957 

2 0.000 0.168 0.989  -0.027 0.208 0.905 

3 0.000 0.380 0.942   -0.105 0.295 0.828 

40 

600 
1 0.000 0.173 0.988  -0.026 0.193 0.915 
2 0.000 0.221 0.981  -0.076 0.260 0.842 
3 0.000 0.286 0.967  -0.134 0.323 0.775 

2400 

1 0.000 0.480 0.908  -0.148 0.406 0.842 
2 0.000 0.167 0.989  -0.050 0.189 0.920 

3 0.000 0.256 0.974   -0.064 0.253 0.859 
           

2. Person 
Centering 

20 

600 

1 0.000 0.162 0.990  -0.016 0.212 0.899 

2 0.000 0.230 0.979  -0.093 0.279 0.821 

3 0.000 0.322 0.958  -0.187 0.383 0.720 

2400 

1 0.000 0.828 0.724  -0.511 0.781 0.604 

2 0.000 0.439 0.923  -0.096 0.366 0.829 

3 0.000 0.349 0.951   -0.127 0.337 0.796 

40 

600 

1 0.000 0.335 0.955  -0.134 0.300 0.883 

2 0.000 0.324 0.958  -0.108 0.317 0.814 

3 0.000 0.294 0.966  -0.138 0.332 0.768 

2400 

1 0.000 0.508 0.897  -0.309 0.450 0.888 

2 0.000 0.209 0.983  -0.067 0.245 0.886 

3 0.000 0.393 0.939   -0.087 0.282 0.847 
           

3. Item 
Centering 

20 

600 

1 0.000 0.162 0.990  -0.013 0.213 0.897 

2 0.000 0.227 0.979  -0.092 0.279 0.821 

3 0.000 0.304 0.963  -0.174 0.376 0.721 

2400 

1 0.000 0.118 0.995  -0.006 0.159 0.950 

2 0.000 0.161 0.990  -0.014 0.216 0.898 

3 0.000 0.192 0.985   -0.070 0.263 0.848 

40 

600 
1 0.000 0.183 0.987  -0.020 0.202 0.906 

2 0.000 0.288 0.967  -0.099 0.298 0.821 
3 0.000 0.287 0.967  -0.133 0.330 0.768 

2400 

1 0.000 0.584 0.865  -0.405 0.509 0.876 

2 0.000 0.497 0.902  -0.228 0.484 0.824 

3 0.000 0.354 0.100   -0.053 0.227 0.097 
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Table A3. (Cont’d). 
 
    Difficulty  Discrimination 

Constraint Item Sample Latent 
Classes Bias RSME Cor.  Bias RSME Cor. 

Constraint 1    0.000 0.240 0.973  -0.078 0.259 0.859 

Constraint 2    0.000 0.366 0.935  -0.156 0.357 0.813 

Constraint 3       0.000 0.280 0.891   -0.109 0.296 0.786 
 20-items   0.000 0.266 0.961  -0.102 0.297 0.831 

  40-items     0.000 0.324 0.905   -0.127 0.311 0.807 
  N = 600  0.000 0.247 0.974  -0.097 0.285 0.824 

    N = 2400   0.000 0.343 0.892   -0.132 0.323 0.814 
   1-class 0.000 0.314 0.941  -0.136 0.314 0.878 
   2-class 0.000 0.262 0.969  -0.087 0.284 0.851 

      3-class 0.000 0.309 0.890   -0.121 0.314 0.729 

 
 
 
 
Table A4. Bias, RMSE and Correlations of Lower Asymptote Item Parameter and Latent 
Group Mean in Mix3PLM 
 
    Lower Asymptote  Latent Group Mean 

Constraint Item Sample Latent 
Classes Bias RSME Cor.  Bias RSME 

1. Item Anchoring 

20 

600 

1 0.025 0.068 -0.177   0.003 0.014 

2 0.027 0.075 -0.421  0.002 0.020 

3 0.028 0.078 -0.489  0.001 0.025 

2400 

1 0.017 0.056 0.342  -0.001 0.006 

2 0.025 0.073 -0.129  -0.003 0.015 

3 0.021 0.078 -0.317   0.003 0.035 

40 

600 
1 0.025 0.068 -0.057  0.000 0.000 
2 0.029 0.074 -0.308  -0.001 0.013 
3 0.029 0.077 -0.446  0.005 0.038 

2400 

1 0.020 0.059 0.244  0.000 0.001 
2 0.023 0.070 -0.029  -0.002 0.021 

3 0.027 0.079 -0.207   -0.002 0.023 
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Table A4. (Cont’d). 
 
    Lower Asymptote  Latent Group Mean 

Constraint Item Sample Latent 
Classes Bias RSME Cor.  Bias RSME 

2. Person 
Centering 

20 

600 

1 0.028 0.071 -0.128  0.003 0.011 

2 0.029 0.074 -0.417  0.001 0.008 

3 0.028 0.078 -0.501  0.003 0.019 

2400 

1 0.075 0.235 -0.347  -0.001 0.004 

2 0.029 0.096 -0.144  -0.002 0.010 

3 0.027 0.087 -0.280   -0.005 0.038 

40 

600 

1 0.040 0.108 -0.279  -0.001 0.003 

2 0.034 0.090 -0.319  -0.002 0.013 

3 0.030 0.077 -0.445  0.005 0.051 

2400 

1 0.046 0.153 -0.266  0.000 0.000 

2 0.027 0.077 -0.042  -0.001 0.008 

3 0.028 0.082 -0.220   0.000 0.021 
          

3. Item Centering 

20 

600 

1 0.029 0.071 -0.131  0.002 0.011 

2 0.028 0.074 -0.429  0.001 0.022 

3 0.030 0.077 -0.496  0.001 0.027 

2400 

1 0.020 0.059 0.308  -0.001 0.004 

2 0.025 0.070 -0.106  -0.002 0.010 

3 0.026 0.074 -0.302   0.000 0.027 

40 

600 
1 0.028 0.070 -0.052  -0.001 0.003 

2 0.031 0.080 -0.327  -0.002 0.017 
3 0.030 0.077 -0.450  0.006 0.049 

2400 

1 -0.002 0.130 -0.388  0.000 0.001 

2 0.062 0.167 -0.223  -0.004 0.019 

3 0.005 0.049 -0.025   0.002 0.039 
          

Constraint 1    0.025 0.071 -0.166  0.000 0.018 

Constraint 2    0.035 0.102 -0.282  0.000 0.016 

Constraint 3       0.026 0.083 -0.218   0.000 0.019 
 20-items   0.029 0.083 -0.231  0.000 0.017 

  40-items     0.028 0.088 -0.213   0.000 0.018 
  N = 600  0.029 0.077 -0.326  0.001 0.019 

    N = 2400   0.028 0.094 -0.118   -0.001 0.016 
   1-class 0.029 0.096 -0.078  0.000 0.005 
   2-class 0.031 0.085 -0.241  -0.001 0.015 

      3-class 0.026 0.076 -0.348   0.002 0.033 
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