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CHAPTER 1: INTRODUCTION 

1.1 Hereditary cancer predisposition  

Cancer is a complex disease defined by uncontrolled cell growth that eventually leads to 

cells invading other nearby organs. It remains one of the leading causes of morbidity and 

mortality worldwide and places an enormous financial burden on those affected. Startlingly, the 

estimated financial annual cost of cancer is projected to reach $158 billion by 2020 in the US 

alone (Mariotto et al., 2011).  There are over 100 types of cancer, classified by the organ of 

origin.  What causes this uncontrolled growth is not always clear.  The advent of molecular 

profiling has helped to uncover mechanisms underlying tumor development and at the same time 

has helped to further classify tumors by sub-type.  Decades of research have shown various 

environmental carcinogens to play a role as well as genetic and epigenetic contributions.  

Tumorigenesis is a multistep genetic process and usually begins with a somatic mutation 

in a tumor suppressor gene (involved in DNA repair, apoptosis, etc.) or oncogene.  For tumor 

suppressor genes, an additional somatic mutation causing a loss of heterozygosity (LOH) of the 

wild type (WT) allele is often necessary for tumor progression. This observation confirmed 

Knudson’s two-hit hypothesis (Knudson, 1971).  Individuals who carry a germline variant in a 

tumor suppressor gene are at significantly higher risk than the general population as they are 

born already with the “first hit”.  These individuals are said to have an inherited cancer risk 

predisposition (Figure 1).  
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Figure 1.  Non-hereditary and hereditary initiation of tumorigenesis by two-hit hypotheses 
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1.2  Ovarian cancer  

Ovarian cancer (OVCA) begins in the ovaries or Fallopian tubes, which are part of the 

female reproductive system (Figure 2). Ovaries are almond in size and shape and are responsible 

for ova and female hormone production. Ovarian cancer is less common than other cancers, such 

as breast or colon cancer, and accounts for approximately 3% of all of cancers in women 

(National Cancer Institute, 2013).  Still, it is estimated that over 21,000 new cases of ovarian 

cancer occur yearly, in the United States alone (American Cancer Society, 2014).  Yet, despite 

being ranked as the 11
th

 most common cancer in women, it is the 5
th

 leading cause of cancer-

related death among women, and is the top cause of female reproductive cancer deaths (Bell et 

al., 2011).  The five year survival rate at diagnosis averages just 44.2% (American Cancer 

Society, 2014).  The high mortality rate is mostly due to poor early detection as only 15% of 

patients are diagnosed in early, more treatable stages (National Cancer Institute, 2013).  Accurate 

risk prediction holds promise as prophylactic measures can be taken before the cancer develops 

(Bast, Hennessy, and Mills, 2009). 

Recent studies suggest that at least 25% of epithelial ovarian cancer cases arise due to an 

inherited risk factor (Walsh et al., 2011).  Hereditary breast and ovarian cancer (HBOC) 

syndromes are, for the most part, autosomal dominant genetic disorders in which germline 

mutations elevate lifetime risk of developing breast or ovarian cancer up to as much as 87% and 

49% respectively (Antoniou et al. , 2003; Risch et al. , 2001; Claus et al. , 1996).  The risk 

among the general population is 12% for breast and 1.4% for ovarian cancer (Plevová et al. 

2009).  Therefore, women with a personal or family history of OVCA and/or young onset and/or 

multiple cases of breast cancer are counseled to consider genetic screening per guidelines of the 

National Comprehensive Cancer Network (NCCN) (Genetic/Familial High-Risk Assessment: 

http://en.wikipedia.org/wiki/Ovary
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Breast and Ovarian www.nccn.org). Current testing panels mostly feature genes involved in 

DNA repair and cell cycle control, such as BRCA1 and BRCA2, which explain the majority of 

inherited ovarian and breast cancer, as well as 22 other genes including ATM, BARD1, BRCA1, 

BRCA2, BRIP1, CDH1, CHK2, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, 

RAD50, RAD51C, RAD51D, SMARCA4, and TP53.  Additional genes tested that are not directly 

involved with DNA repair or cell cycle control include; EPCAM, NF1, PTEN and STK11. 
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Figure 2. Diagram of the female reproductive system 

Source: https://www.womenshealth.gov/cancer/ovarian-cancer.  This image is free of copyright 

restrictions and may be copied, reproduced, or duplicated without permission of the Office on 

Women’s Health in the U.S. Department of Health and Human Services 
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1.2.1 Diagnostics and detection 

While significant advances in diagnosis and treatment for various other forms of cancer 

have led to excitement in the field of oncology, OVCA mortality rates have only slightly 

decreased since "the war on cancer" was officially declared in 1971 (NIH Surveillance, 

Epidemiology and End Results Program: Cancer of the Ovary - Cancer Stat Facts, 2017).  This is 

mostly due to a lack of advancement in early detection since survival rates depend greatly on the 

stage at which the cancer is diagnosed.  Women diagnosed before the cancer has had a chance to 

metastasize have a dramatically increased five-year survival rate relative to those diagnosed at a 

more advanced stage. The 5-year survival rate is over 90% with diagnosis at stage I and standard 

treatment. Unfortunately, less than 20% percent of OVCA patients are diagnosed in the early 

stages of the disease (National Cancer Institute, 2013).  Ovarian cancer is difficult to detect early 

since a woman may be asymptomatic until the cancer has advanced to Stages 3 and 4.  Unlike 

breast cancer, tumors that grow in the ovaries or Fallopian tubes are not readily detectable by 

self-examination.  When symptoms do appear, they are often vague and may not illicit 

immediate medical care. Symptoms include: abdominal pain, vaginal bleeding, weight loss, 

abnormal periods, back pain, bloating, nausea and vomiting, etc (NIH, 2017).  Therefore, 

accurate risk assessment to identify likely cases prior to occurrence holds much promise since 

prophylactic surgery can virtually eliminate a woman’s chances of developing OVCA. 

1.2.2 Risk factors   

Today, in the United States, the average woman’s lifetime risk of developing invasive 

ovarian cancer is 1 in 75 (National Cancer Institute 2013; Risk Factors - Ovarian Cancer 

Research Fund Alliance, 2017).  While women of all ages are susceptible to developing ovarian 

cancer, incidences are highest in women 55-64 years of age (National Cancer Institute, 2013; 
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Risk Factors - Ovarian Cancer Research Fund Alliance, 2017). There are, in addition to age, 

multiple factors that affect a women's lifetime risk. Caucasian ancestry, nulliparity, infertility, 

the use of hormonal replacement therapy, and obesity have all been found to correlate with an 

increased risk (National Cancer Institute, 2013; Risk Factors - Ovarian Cancer Research Fund 

Alliance, 2017).  The reproductive history is thought to be important to ovarian cancer risk since 

the risk increases with the amount of menstrual cycles a woman has during her fertile years.  

Therefore, a woman is at an increased risk if she has never had any children, has begun 

menstruation before the age of 12, started menopause after 50, or has never used oral 

contraceptives or undergone tubal ligation (National Cancer Institute, 2013; Risk Factors - 

Ovarian Cancer Research Fund Alliance, 2017).  

However, none of these factors are strong enough to predict the risk of ovarian cancer 

occurrence with enough conviction as to prompt prophylactic surgery. The single most 

influential factor on a woman's risk is her family history (National Cancer Institute, 2013; Risk 

Factors - Ovarian Cancer Research Fund Alliance, 2017; Chun and Ford, 2012; Trifonov, 

Todorova, and Uzunova, 2001).  While the average woman’s lifetime risk is just 1.4%, those 

with a first degree relative diagnosed with OVCA have a 5% lifetime risk (Centers for Disease 

Control and Prevention, 2017).  Therefore, women with a family history of ovarian cancer are 

encouraged to undergo genetic risk assessment. 

1.3 Genetic risk assessment 

Hereditary breast and ovarian cancer (HBOC) syndromes are for the most part autosomal 

dominant genetic disorders where germline mutations elevate lifetime risk of developing breast 

or ovarian cancer up to 87% and 49% respectively (Risch et al., 2001; Claus et al., 1996).  

Genetic testing can identify those at risk before the cancer develops, which in some cases leads 
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to prophylactic measures.  For those already with a diagnosis, testing for germline mutations can 

inform risk of additional cancers as well as identify risk in unaffected relatives who may also 

carry the same mutation. Therefore, identifying those at increased risk due to genetic inheritance 

can lead to improved clinical outcomes (Narod et al., 2013).  A diagnosis of HBOC is considered 

when either ovarian or breast cancer occurs on the same side of a family for multiple generations 

or multiple first-degree relatives (Kobayashi et al., 2013). Specifically, the likelihood of familial 

risk for HBOC increases with each of the following criteria (Clinical, Guidelines, and Guidelines 

2018): 

 A diagnosis of breast or OVCA under the age of 45  

 OVCA at any age 

 A blood relative diagnosed with breast cancer before 50 years of age 

 Breast/OVCA across multiple generations on the same side of the family  

 A second diagnosis of breast cancer or ovarian cancer in the same individual 

 Breast cancer in a male blood relative 

 Breast or ovarian and pancreatic cancer all on the same side of the family 

 A history of cancer in a family of Ashkenazi Jewish ancestry 

Two genes commonly associated with HBOC are BRCA1 and BRCA2, while other less 

common mutations have been found in tumor suppressor genes such as TP53, PTEN, CDH1, 

ATM, CHK2 or PALB2, etc. (Kobayashi et al., 2013).  Another inherited syndrome, Lynch 

Syndrome (also known as hereditary nonpolyposis colorectal cancer or HNPCC) has also been 

linked to ovarian cancer with a 12% lifetime risk (National Comprehensive Cancer Network, 

2016).  Because of the heterogeneity of inherited OVCA risk, testing clinics currently offer large 

genetic sequencing panels which include all 24 genes known to associate with increased risk of 

http://www.cancer.net/node/18590
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breast, ovarian, and/or uterine cancers; ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHK2, 

EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NF1, PALB2, PMS2, PTEN, RAD50, 

RAD51C, RAD51D, SMARCA4, STK11, TP53.   

1.4 Genetic Penetrance 

The proportion of individuals carrying a variant (allele) of a gene that also express the 

trait associated with that variant is referred to as penetrance.  The degree of penetrance for 

disease associated genetic loci varies greatly. Some mutations have complete penetrance, 

meaning all individuals with the mutation have or will develop the disease (e.g Cystic Fibrosis, 

Huntington’s disease).  Most cancer-associated risk loci have incomplete penetrance, and many 

carriers of the risk mutation may never develop cancer.  BRCA1 is the most highly penetrant 

gene in hereditary breast and ovarian cancer syndrome with an 80% lifetime risk of breast cancer 

and up to a 50% lifetime risk of OVCA (Risch et al., 2001; Claus et al., 1996; Hereditary Breast 

and Ovarian Cancer | Cancer.Net, 2017).  Because clinical decisions such as prophylactic surgery 

and chemo-preventative therapies are made based on risk assessment, accurate penetrance 

estimates of cancer-associated loci is invaluable.  Currently, genes known to be mutated in 

hereditary cancer syndromes are referred to as having high, moderate, or low penetrance (Table 

1, Stanislaw C., 2016).  Unfortunately, penetrance is particularly difficult to determine for many 

cancer-associated risk loci as pathogenic variants in these highly conserved genes tend to be rare.  

In addition, environmental factors as well as other genetic and epigenetic alterations can 

contribute, meaning penetrance can vary based on the carrier. Therefore, germline mutations in 

cancer-associated genes are often described as having an unknown penetrance.   
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Table 1. Penetrance varies by gene and is often unknown. Table adapted from “Genetic 

evaluation and testing for hereditary forms of cancer in the era of next-generation sequencing”  

Stanislaw C., 2016. 

 

 

 

PENETRANCE GENE CANCER RISK and GUIDELINES FOR 
CLINICAL MANAGEMENT  

High BRCA1 
BRCA2 
APC 
PTEN 
TP53 
MLH1 
MSH2 
MSH2 
PMS2 
STK11 
CDH1 
MUTHY 

Strong evidence for increased risk with 
well-defined risk profiles, prophylactic 
surgery or other preventative measures 
advised 

Moderate ATM 
CHEK2 
PALB2 

Moderate evidence for increased risk of 
certain cancers, increased surveillance 
advised  

Low/unknown  RAD50 
RAD51C 
RAD51D 
BRIP1 
BARD1 
POLE 
POLD1 

Varied evidence with clinical management 
based on personal and family history 
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1.5 BRCA1 and BRCA2 

Both BRCA1 (breast cancer type one susceptibility) and BRCA2 (breast cancer type two 

susceptibility) are tumor suppressor genes necessary for genomic stability.  Carriers of a 

pathogenic mutation in either gene are at a greatly increased risk of multiple types of cancer, 

most notably breast and ovarian.  These two genes account for 5 to 10% of all OVCA cases 

(Ramus and Gayther, 2009).  In the general population, approximately 1 in 400 people have a 

BRCA1/2 mutation that leads in increased cancer risk (PDQ Cancer Genetics Editorial Board 

2002).  The prevalence of BRCA1/2 pathogenic mutations is particularly high for certain 

ethnicities, specifically among Ashkenazi Jews where 1 in 40 are carriers of pathogenic founder 

mutations (Robles-Díaz et al., 2004). Both genes have been well characterized and are involved 

in numerous cellular processes important for genomic stability.  

BRCA1 encodes for an E3 ubiquitin-protein ligase that facilitates a diverse range of 

cellular processes including DNA damage repair, cell cycle control, apoptosis, transcriptional 

regulation and embryonic development (W. Wu et al., 2008).  BRCA1 interacts with numerous 

proteins by taking part of large complexes required for these pathways.  For instance, BRCA1 

has been shown to interact with RNA polymerase II for regulation of p21 in response to DNA 

damage (Moisan and Gaudreau, 2006), is involved in the MRE11-RAD50-NBS1 (MRN) 

complex (L. Chen et al., 2008), as well as binds BRCA2 and RAD51 for homology directed 

repair of double stranded DNA breaks (J. J. Chen et al., 1999).  BRCA1 has also been shown to 

regulate chromatin remodeling via the SWI/SNF complex (Bochar et al., 2000) and ubiquitinates 

RBBP8 for CHK1 mediated G2/M cell cycle control (Yarden et al., 2012).  

Similarly, BRCA2 is also involved in numerous cellular processes required for genomic 

stability. These biological processes include DNA repair, cell division, histone acetylation, and 
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replication fork maintenance. BRCA2 selectively binds to ssDNA and mediates HRR by aiding 

in RAD51 ssDNA assembly and stabilization. This enables RAD51 to displace replication 

protein-A (RPA) which binds single strand DNA (ssDNA) during the initial steps of DNA repair 

(J. J. Chen et al., 1999). BRCA2 forms a complex with PALB2 to direct the localization of 

POLH to collapsed replication forks (Buisson et al. 2014).  In addition, this interaction is part of 

a complex including RAD51C and involved in DNA repair by HRR (Sy et al., 2009).  BRCA2 

also regulates centrosome duplication via NPM1 (H. F. Wang et al., 2011).  The BRCA2 protein 

likely has additional functions yet to be verified. For example, it is suspected to play a role in S 

phase checkpoint activation (Yoshida and Miki, 2004) and prevent R-loop DNA damage 

incurred through the transcription process (Bhatia et al., 2014).  

1.6 Missing heritability 

For complex traits such as susceptibility to cancer it is possible to establish an estimate of 

how much of the phenotypic variance is due to genetic inheritance. One classic means of 

determining the heritability of a trait is through twin studies that measure the similarity of a trait 

between monozygotic twins as compared to dizygotic twins.  Monozygotic twins are derived 

from a single fertilized egg and thus share the same genetic material while dizygotic twins, 

formed from separate eggs, share about half of their genes.  Because both sets of twins share the 

same environment, at least in childhood, this approach controls for much of the environmental 

contribution to cancer risk.  If monozygotic twins resemble each other more than dizygotic twins 

for a particular trait, then the heritability of that trait is estimated as twice the observed 

difference.   

Using this approach, a high amount of heritability has been observed in various types of 

cancers, including melanoma (58%), prostate (57%), ovary (39%), and breast (31%) amongst 
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others (Mucci et al., 2016). However, as with many multifactorial diseases, there is a gap in our 

knowledge of the genetics underlying the predisposition.  Often, the known genetic variation 

attributed to a disease do not account for its total estimated heritability.  This is referred to as ‘the 

missing heritability issue’. For certain diseases, this unexplained heritability often limits how 

informative genetic testing can be.  Specifically, while ovarian cancer is demonstrated to have a 

strong genetic component, the known risk loci cannot account for the majority of the familial 

risk.  Therefore, many women with compelling personal and or family histories regularly test 

negative for the currently described susceptibility loci (Stafford et al., 2017). 

1.7 Variants of unknown significance  

Rare and private mutations are likely to account for much of the missing heritability in 

ovarian cancer. This hypothesis is supported by the fact that many women who undergo genetic 

testing are found to have a “variant of unknown significance” (VUS) (Stafford et al., 2017; 

Towler et al., 2013; Domchek and Weber, 2008).  The term “VUS” is used to describe a rarely 

seen mutation, unannotated in its functional consequence on the protein or disease risk. 

Assessing these variants is crucial for accurate risk assessment, prevention and targeted therapy.  

Yet we currently lack a means to functionally validate private mutations in a clinical setting 

(Towler et al., 2013). The American College of Medical Genetics and Genomics (ACMG) 

provides detailed guidance as to the interpretation of genomic variants (Richards et al., 2015) 

(Table 2).  However, in the case of a missense change, it is difficult to obtain strong evidence for 

pathogenicity, especially when rare. Therefore, the vast majority of compelling sequence 

changes remains annotated as having only moderate evidence as to its pathogenicity.   
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ACMG Evidence for Pathogenicity: 

VERY STRONG • Loss of function variant in a cancer-associated gene 

STRONG • Functional assay supportive of damaging effect 

• Increased prevalence in cases versus controls (O.R. >5) 

• Co-segregation with disease in multiple affected family members 

MODERATE • In a mutational hot spot or well-established functional domain 

• Extremely low frequency or absent from ExAC, 1000 genomes  

• In-frame deletions/insertions   

• Co-segregation with disease in multiple affected family members 

• Multiple lines of computational evidence 

 

Table 2. ACMG Evidence for Pathogenicity. Simplified and adapted from “Standards and 

guidelines for the interpretation of sequence variants: a joint consensus recommendation of the 

American College of Medical Genetics and Genomics and the Association for Molecular 

Pathology”  
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1.8 Implicating novel risk loci 

When a trait or disease is suspected to be inherited, there are various approaches that can 

be employed to identify the genes and variants responsible.  One approach is through linkage 

analysis, a hypothesis-neutral means to find segments of DNA which all affected persons of a 

family share but the healthy relatives do not have.  This is possible because genetic variants that 

are close in proximity tend to be inherited together. The analysis begins with genotyping genetic 

“markers” (highly variable regions of the DNA) on each chromosome for both affected and 

unaffected individuals of a family.  Once a region is identified as shared between and unique to 

those affected, additional markers are added to further narrow the search within this region until 

a specific gene and genetic variant is implicated.  This method is most appropriate when 

attempting to map monogenic disease mutations and requires large families.   

For complex traits and disease predisposition, a better approach to implicating genetic 

variants is through association, such as a Genome Wide Association Study (GWAS). These 

studies look for genomic variants that are statistically more prevalent in cases versus controls by 

genotyping across the entire genomes of hundreds or thousands of individuals both with and 

without the trait/disease of interest.  GWA studies rely heavily on the “common disease, common 

variant” (CDCV) assumption and are typically designed to exclude SNPs with a MAF < 5% 

(Visscher et al., 2012).  They lack the statistical power necessary to detect rare variants, which 

are more likely to have a high effect.  Therefore, GWA studies are best for implicating common 

and low risk alleles that are not clinically actionable.  

High-throughput sequencing using next generation technology allows for a more efficient 

and unbiased approach in the discovery of novel cancer predisposition loci and has helped to 

determine the frequency of germline mutations in HBOC.  However, because of the rarity of 
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ovarian cancer, large cohorts are obtained by recruiting participants that are not selected based 

on family history.  This means that, in large studies, most of the underlying etiology is sporadic, 

and the majority of the causal variants uncovered are in BRCA1 and BRCA2, genes with already 

well-established roles in OVCA.  For example, a recent publication reports the results of 

sequencing 1915 patients with OVCA and found that of these cases, 347 (18%) carried 

pathogenic germline mutations in genes associated with OC risk, 80% of which were in BRCA1 

and BRCA2 (Norquist et al., 2015).   Because patients were not selected for age or family history, 

the vast majority of cases in this cohort are sporadic and not due to an underlying inherited risk.  

This type of study, while impressive in size, is limited to estimating the prevalence of known 

pathogenic mutations in the study population.   

Hereditary OVCA is a rare disease with a high degree of genetic heterogeneity.  

Therefore, despite the fact that any women with a diagnosis of OVCA is considered at risk of 

possible germline risk, the best study design for identifying novel putative risk loci includes a 

much stricter selection of patients.  The most appropriate study sample would include only 

OVCA patients with a suspicious family history indicating genetic inheritance of risk and would 

exclude those with known pathogenic variants (Stafford et al., 2017).  Candidate risk loci 

identified by the whole exome/genome sequencing of this sample would then be assessed by 

both bioinformatics and functional analysis.    

1.9 Gene panel vs whole exome sequencing for diagnostic purposes 

Because of the immense heterogeneity of inherited cancer risk, current testing is 

performed by analyzing a panel of associated risk genes to increase the chance of finding a 

causal genetic variant. However, despite the introduction of larger and more inclusive gene 

panels, issues of low diagnostic yield remain, and inconclusive results have brought an additional 
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burden of stress on clinicians, patients, and relatives.  Our knowledge regarding inherited cancer 

risk is still very incomplete.  Therefore, testing panels are frequently being updated and 

subsequently outdated and many who question the utility of panels favor a more practical whole 

genome/exome approach by which genes can be analyzed post hoc without the need for 

additional testing.  The future of genetic testing seems poised for this approach, but hesitation 

remains for various reasons.   

One valid argument against employing exome sequencing in place of panel testing is that 

it would sacrifice quality for quantity.  High quality variant calls are necessary for accurate 

clinical genetic diagnosis and whole exome sequencing (WES) is not ideal for detection of 

variants in regions high in GC content, with many repeats, or with homology to other areas of the 

genome (Sekhar et al., 2014).  In contrast, panel testing focuses on a small number of genes 

allowing for the luxury of more coverage, greater read depth, and thus higher quality variant 

calls.  Therefore, panels are traditionally believed to have superior detection of pathogenic 

variants and thus a better diagnostic yield.  However, as our technology advances and 

bioinformatic pipelines for variant calling improves, the quality of WES data will inevitably 

reach comparable clinical sensitivity if it has not yet already.  A recent study assessing the 

coverage in 100 samples demonstrated that 99.7% of pathogenic variants were detectable by 

WES at clinical sensitivity, and all had at least some coverage on exome sequencing (Laduca et 

al., 2017). Another study compared the diagnostic performance of WES to two panels, TruSight 

Cancer (94 genes) and another custom panel of 122 genes and identified a similar number of 

variant calls (amongst shared genes) despite greater average read depth in panels (Feliubadaló et 

al., 2017).  
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 Another important consideration besides call quality is cost.  However, the cost 

discrepancy between WES and panels is narrowing and the long-term benefits of exome 

sequencing may, in some cases, outweigh the difference.  While sequencing exomes is more 

expensive than sequencing panels, they provide additional patient data regarding genes that may 

one day be clinically relevant and is accessible without the need for retesting.  Panels can quickly 

become outdated with each novel gene discovery and insurance will often only cover genetic 

testing once.   

Yet another valid concern for molecular diagnostic labs is testing turn-around time.  

Many smaller labs may not be set up for WES on so many samples and sometimes immediate 

clinical decisions are based on mutational status. Therefore, when to choose exome sequencing 

over panel testing should be made on a case by case basis.  Currently, as a first step into this new 

era, WES may only be necessary in cases suspected to have inherited risk.  For instance, NCCN 

guidelines stipulate that women diagnosed with ovarian cancer are eligible for genetic testing 

regardless of family history (“National Comprehensive Cancer Network. Panel Members 

Genetic/Familial High-Risk Assessment: Breast and Ovarian (Version 1), 2018). While panel 

testing is likely sufficient for most cases, those patients with a family history of breast or ovarian 

cancer may benefit more from whole exome sequencing.  

1.10 DNA repair and genomic integrity 

The integrity of an organism’s genetic material is essential to its survival.  However, our 

DNA is constantly being damaged during the process of cellular metabolism as well as by 

external environmental assaults such as radiation.  Consequently, all forms of life have 

developed the ability to identify and repair these genomic lesions. While there exist many types 

of DNA lesions, the most harmful is the double strand break (DSB).  DSBs occur due to 
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exposure to ionizing radiation (IR), various chemotherapeutic reagents, reactive oxygen species 

(ROS) generated by cellular metabolic processes and in certain circumstances during DNA 

replication (Mehta and Haber, 2014).  DSBs that go unrepaired can lead to a deletion, 

amplification or even translocation of genetic material, potentially at a locus encoding for a 

tumor suppressor or oncogene.   Therefore, effective repair of DSBs by either homologous 

recombination repair (HRR) or non-homologous end joining (NHEJ) is crucial to avoid 

tumorigenesis.  

1.10.1 Homologous recombination repair  

Homologous recombination repair (HRR) is a highly conserved and non-error prone 

process that corrects DSBs using the sister chromatid as a template for gene conversion (Figure 

3). Therefore, this mechanism can only be employed during G2 and S phase of the cell cycle, 

when a homologue is available.  Shortly after the double strand lesion occurs, HRR is initiated 

by the phosphorylation of H2AX at Ser139 by ATM or ATR (Helt et al., 2005; Rogakou et al., 

1998).  Phospho-H2AX (γH2AX) recruits various proteins to the damaged DNA, most notably 

MRE11, RAD50 and NBS1 which form the MRN complex.  This complex binds the broken ends 

of the DNA for stability, likely preventing additional breakage in addition to initiating DNA 

strand resection by endonuclease MRE11 (Lamarche, Orazio, and Weitzman., 2010).  The 

resection creates single-stranded DNA (ssDNA) which is stabilized by Replication Protein A 

(RPA) and acts as a probe in the search for a homologous sequence.  Next, the broken strand 

invades the sister chromatid through the action of RAD51, which replaces the RPA through the 

action of BRCA2 (Buisson et al.. 2010).  RAD51 then replaces RPA and forms filaments on the 

DNA necessary for the strand exchange between homologous sequences (Buisson et al. 2010).  

Synthesis of the missing DNA segment is filled in by replication machinery PCNA and 
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polymerase δ and ε (Sneeden et al., 2013).  Finally, the connected segments of the two DNA 

molecules (Holliday junction) are resolved by nucleases.  

1.10.2 Non-homologous end joining 

Another pathway for DSB repair is Non-Homologous End Joining (NHEJ).  During this 

process, breaks in DNA are corrected by a direct ligation of the blunt ends and thus do not 

require a homologue to serve as a template. While this mechanism is more error prone, it is the 

most reliable mechanism for DSB repair in post-mitotic cells. NHEJ involves three basic steps: 

DNA DSB damage recognition, processing of break ends, and strand ligation (Figure 3). In 

NHEJ, DSBs are quickly recognized by heterodimer KU70/KU86 (KU80) which act to both 

protect the strand ends from degradation as well as recruit DNA-PKcs, the catalytic subunit of 

DNA dependent protein kinase (Jin and Weaver, 1997). End processing may occur before 

ligation and may involve several enzymes including a nuclease (ARTEMIS), polymerases, 

polynucleotide kinase/phosphatase (PNKP), and Aprataxin (APTX) among others (Povirk, 

2012). For ligation of the processed break ends, both DNA ligase IV and XRCC4 are recruited 

and activated via phosphorylation by DNA-PKcs (Povirk, 2012).  
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Figure 3. Schematic illustration of the repair of a DNA DSB by homologous recombination 

repair (HRR) and non-homologous end joining (NHEJ). Image Source: 

https://www.intechopen.com/books/new-research-directions-in-dna-repair/radiosensitization-

strategies-through-modification-of-dna-double-strand-break-repair. Permission of image use 

granted by Dr. Yoshihisa Matsumoto, Tokyo Institute of Technology. 

 

 

https://www.intechopen.com/books/new-research-directions-in-dna-repair/radiosensitization-strategies-through-modification-of-dna-double-strand-break-repair
https://www.intechopen.com/books/new-research-directions-in-dna-repair/radiosensitization-strategies-through-modification-of-dna-double-strand-break-repair
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1.11 Targeted therapy in clinical cancer care 

Our greater understanding of the molecular genetics underlying tumorigenesis has led to 

a whole new field of precision medicine in which therapies are developed to target specific 

“drivers” or deficiencies that encourage cancer progression.  What initiates or “drives” the 

process of tumorigenesis and metastasis differs by cancer subtype and even by individual tumor. 

Tumor sequencing has thus become a routine practice in clinical cancer care to inform 

therapeutic decisions.  For instance, the most common driver of tumorigenesis in breast and 

ovarian cancer is genomic instability due to inefficient DNA repair by homologous 

recombination (Spring and Perspect 2015; van Gent and Kanaar 2016).  Platinum-based agents, 

the first-line therapy for these tumors, exploit this deficiency by causing DSBs vis intra and 

interstrand DNA crosslinking (Ph and Andrea, 2016).  Cancer cells are most sensitive to this 

drug as they lack the ability to repair these breaks and damage will accumulate leading to 

eventual cell death.  

Another targeted therapy often used in conjunction with platinum in breast and ovarian 

cancer is polyADP-ribose polymerase (PARP) inhibitors (PARPi). The PARP family of proteins 

is involved in a form of ssDNA repair known as Base Excision Repair (BER). Cancer cells 

deficient in other DNA repair mechanisms are more dependent on the PARP proteins.  By 

inhibiting this pathway, the cell loses its ability to repair DNA leading to synthetic lethality.  

Tumor cells with mutant BRCA1 and/or BRCA2 have demonstrated to be up to 1000 times more 

sensitive to PARPi as compared to WT cells (Farmer et al., 2005; Bryant et al., 2005).  In clinical 

trials, the use of PARPi has shown to improve progression-free survival when added to the 

treatment of women with breast or ovarian cancer responsive to platinum (Robson et al. 2017; 

Ledermann, 2016; Evans and Matulonis, 2017).
 
 More recently, investigators have identified an 

https://en.wikipedia.org/wiki/Ovarian_cancer
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additional mechanism of action for PARPi.  PARP proteins were found to localize at DNA 

damage sites and become trapped on the DNA when bound to an inhibitor, blocking DNA 

replication, and causing cell toxicity (Lord and Ashworth, 2017).  
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Sample ascertainment and description 

Study samples were acquired through the Karmanos Cancer Institute Genetic Registry 

(KCIGR), an IRB approved biospecimen repository comprising females with a personal or 

family history of breast and/or ovarian cancer and at elevated risk of harboring a BRCA1/2 

mutation.  Over 800 DNA samples from breast and/or ovarian cancer patients were collected 

spanning the years of 1999-2013, when HBOC genetic screening was limited to BRCA1/2 and 

risk assessment was performed using BRACAPRO and Myriad II, which were the standard of 

care during the duration of accrual.  BRCAPRO is a computer-based Bayesian probability model 

that uses breast and/or ovarian cancer family history to determine the probability that a BRCA1 

or BRCA2 mutation accounts for the pattern of these cancers in the family (Parmigiani, Berry, 

and Aguilar, 1998).  Key attributes of consideration include the population prevalence of BRCA 

mutations, age-specific penetrance, and Ashkenazi Jewish heritage.  Myriad II is a set of 

prevalence tables categorized by ethnic ancestry (Ashkenazi Jewish or non-Ashkenazi Jewish), 

breast cancer age of onset (age ≤50 years), and the presence of ovarian cancer, in the patient 

and/or first- or second-degree relatives.  Myriad II is based on historical test data from the 

Myriad Genetic Laboratories clinical testing service (Frank, 1999).   

Through the KCIGR biospecimen repository, we obtained 89 DNA samples from high 

risk Caucasian women with a personal history of OVCA.  Participants were either confirmed 

BRCA1/2 mutation carriers or BRCA1/2 negative after full gene sequencing, BART 

(BRCAnalysis rearrangement test) or testing for the three common Ashkenazi Jewish mutations 

(Myriad Genetics Laboratories, Salt Lake City, Utah).  Participants testing positive for 

pathogenic BRCA1/2 germline mutations were excluded from the study sample.  The final 
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sample consisted of 48 BRCA1/2 mutation negative Caucasian OVCA patients from 47 families 

(one mother-daughter pair).  All subjects provided written informed consent for the collection of 

blood samples and access to medical records.  The protocol (HIC#024199MP2F(5R)) was 

approved following Full Board Review by the Human Investigation Committee at Wayne State 

University, Detroit, Michigan.   

Information regarding tumor histology, tumor grade, age of diagnosis, and family history 

of study sample is summarized in Table 3.  Tumor histology from study sample patients included 

serous (n=26), endometrioid carcinoma (n=5), mixed (n=4) adenocarcinoma (n=2), mucinous 

(n=1), clear cell (n=1), and undefined (n=9).  Tumor grade included grade 2 (moderately 

differentiated, n=6), grade 3 (poorly differentiated, n=24), and grade 1 (well differentiated, n=1).  

Ovarian cancer was the primary diagnosis for 43 patients, while four had a primary diagnosis of 

breast cancer and one of cervical cancer followed by a secondary OVCA diagnosis.  Of those 

with a primary OVCA diagnosis, six had a secondary cancer diagnosis: two breast, two colon, 

one uterine and one melanoma.   
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Table 3. Tumor histology, tumor grade, age of diagnosis and family history of study 

sample 

 

 

 

Mean Age at Diagnosis 52.8 (yrs.) 25-81 (range) 

Histology n= % 

    Serous 26 54 
    Endometrioid 5 10 
    Mixed 4 8 
    Adenocarcinoma, NOS 2 4 
    Clear Cell 1 2 
    Mucinous 1 2 
    Unknown 9 19 

  Stage n= % 

    I 8 17 

    II 5 10 

    III 23 48 

    IV 3 6 

    Unknown 9 19 

Grade n= % 

    Grade 1- well differentiated 1 2 
    Grade 2- moderate 6 13 
    Grade 3- poor 24 50 
    Unknown 17 35 

Personal and Family History n= % 

personal BC/OVCA diagnosis < 50 yrs. of age 15 31 
personal second primary cancer diagnosis  12 25 
personal/family history of BC 31 65 
family history of OVCA 14 29 
family history of epithelial cancer 47 98 
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2.2 Whole exome sequencing  

DNA from peripheral blood samples was isolated by the Karmanos Applied Genomics 

Technology Center, Detroit, MI using QIAamp DNA mini kit (Qiagen) and whole exome 

sequencing (WES) was performed using Nextera Rapid Capture Kit. Samples were 

demultiplexed using Illumina’s CASAVA 1.8.2 software (Kumar et al., 2014). Read quality was 

assessed with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/2) and 

alignment to the human reference genome (hg19) (Lander et al., 2001) was performed using 

Burrows Wheeler Aligner (BWA) (Li and Durbin, 2009).  PCR duplicates were removed using 

Samtools, (Li et al., 2009) and subsequent local realignment, Qscore recalibration, variant calling 

and filtering was performed using Genome Analysis Toolkit (GATK) (DePristo et al., 2011) 

Unified Genotyper and Haplotype Caller.  SNPs were filtered out if: 1). Four or more alignments 

have mapping quality = 0 and the number of alignments that mapped ambiguously were more 

than 1/10 of all alignments for the given SNP.  2). SNP is represented by less than 5 reads 3). 

SNP quality is below 50 4. QD score (variant confidence) is below 1.5.  Variant files were 

constructed using Genome Trax BIOBASE biological databases analysis software 

(http://www.biobase-international.com) and annotated with Illumina BaseSpace VariantStudio 

application v2.2.4 (www.illumina.com) and snpEff (Cingolani et al., 2012).   

2.3 Panel and candidate genes analyzed 

Genes analyzed for potential risk variants included those currently featured on HBOC 

genetic testing panels by Ambry OvaNext and Myriad MyRisk: BRCA1, BRCA2, MLH1, MSH2, 

MSH6, PMS2, EPCAM, APC, MUTYH, CDKN2A, CDK4, TP53, PTEN, STK11, CDH1, 

BMPR1A, SMAD4, PALB2, CHK2, ATM, NBN, BARD1, BRIP1, RAD51C, RAD51D, in addition 

to 155 non-panel candidate genes important to DNA damage response or cell cycle regulation 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/2
http://www.biobase-international.com/
http://www.illumina.com/
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and 64 genes listed as having disease causing mutations associated with OVCA in HGMD.  A 

full list of non- panel candidate genes analyzed is provided in Table 4. 
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Table 4.  Non-Panel genes analyzed for high impact variants Genes were chosen based on 

their involvement in either DNA repair cell cycle control, or due to being listed as having 

“disease causing mutations” (DM) associated with OVCA in HGMD. 
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2.4 In silico SNP assessment  

In silico variant assessment of single nucleotide polymorphisms (SNPs) was performed 

using online available bioinformatics tools, HGMD (Stenson et al., 2003), dbSNP (Sherry et al., 

2001), ExAC (http://exac.broadinstitute.org), SIFT (Ng, 2003) and PolyPhen (Gnad et al., 

2013).  Variants were stringently filtered to include only exonic SNPs most likely to have a 

moderate to high effect impact on protein function (frameshift, nonsense, and missense) while 

also rare, (<0.02 MAF ExAC; European, non-Finnish) and predicted to be damaging by SIFT 

and/or PolyPhen, which take into consideration parameters such as amino acid substitution and 

evolutionary conservation. Variants passing these criteria were confirmed by forward and reverse 

strand Sanger sequence (GENEWIZ, South Plainfield, NJ) unless otherwise specified.  

Additional bioinformatic resources were consulted to further describe variants including: dbSNP, 

UCSC Genome browser, and the Human gene mutation data base (HGMD) which lists variant 

risk predictions from Mutation predictor risk assessment, Likely hood ratio test for functional 

prediction (LRT), Mutation taster prediction, and Genomic Evolutionary Rate Profiling (GERP).  

2.5 Next generation sequencing validation 

Next generation sequencing and other high throughput methodologies are fast and 

efficient at the cost of accuracy.  Therefore, all variants of interest called by WES were validated 

by Sanger sequencing. Using the primers listed in Table 5, 400-700 bp DNA products, which 

included the variant of interest were amplified by PCR (Polymerase Chain Reaction) followed by 

agarose gel electrophoresis to check for amplification and possible contamination. The amplified 

DNA fragments were then purified by spin column and quantified before being sent out to 

GENEWIZ for Sanger sequencing.  
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2.5.1 Primer design  

Primers for PCR amplification and targeted sequencing were designed using Primer3Plus 

(http://www.bioinformatics.nl/cgi- bin/primer3plus/primer3plus.cgi), which includes information 

regarding primer binding specificity, GC percentage, and melting temperature (Table 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.bioinformatics.nl/cgi-%20bin/primer3plus/primer3plus.cgi
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Table 5. Primers for the amplification and sequencing of indicated genomic loci 

Gene dbSNP ID   Variant Forward Sequencing Primer Reverse Sequencing Primer 

ATM N/A c.2503_2507del AAGAAGAACTTTCATTCTCAGAAGTAG TTTTTCATCATATAATCCCTATGCTC 

ATM N/A c.5697_5698insA TGGTGTACTTGATAGGCATTTGA TCTGAGCTTTTCCACACTGC 

ATM rs1800054 c.146C>G GAGCTACAGAACGAAAGGTAGTAAA TTTCCTCTAATCTGAAGTCTTGTGAA 

ATM rs138327406 c.4388T>G ATCAGAAAATTCTTCTTGCCATA CAGGAGGTTGAGGATGCAGT 

ATM rs28904919 c.998C>T TTTTGTGGGAGCTAGCAGTG GGTGGCTCATGCCTGTAATC 

ATM rs56009889 c.6919C>T GTGGGGAGATGTCATGCAG GGGACACCAATGCCTCTACTT 

ATM rs35203200 c.7618G>A CCTCAGATAAGAAAAGA TGCAGTGGGTAGAGCGTG 

AXIN1 rs143974067 c.1018G>A TTCCTGAAGACAAAGCCCAG  GTCACTAACATGCCCTGCTT 

BRCA1 rs4986852 c.3119G>A TCCCATAGGCTGTTCTAAGTTATCTG  CAGAGGCAACGAAACTGGACTCA 

BRCA1 rs1800744 c.4535G>T TTGAGCTATTTTTCTAAAGTGGGCTTA  AGGCAACATGAATCCAGACTTCTAG 

BRCA2 rs80358479 c.1889C>T GCCTCTGAAAGTGGACTGGA  GCAGGCATGACAGAGAATCA 

BRCA2 rs28897747 c.8149G>T TAAAACTAGTAGTGCAGATACCCAAAAAGTG  CAATGACTGATTTTTACCAAGAGTGCAAA 

BRCA2 rs11571747 c.8567A>C TGGAGGAAATGTTGGTTGTGTTGA  CCTTCATGTTCTTCAAATTCCTCCTGA 

BRCA2 rs11571833 c.9976A>T CACCTGTCTCAGCCCAGATGAC AGTTGTAATTGTGTCCTGCTT 

BUB1B rs28989188 c.1227A>C TTCCCCACTTTACGCTTTTG  ACCATAGAAGGCAGCAGTGG 

CHK1 N/A c.1564-1565insA TGAAGTGCCTCTAAAGTTTCCA  TGTTCACACAATGATGAAACCA 

CHK2 rs587780185 c.565A>G ATCACAGTGGCAATGGAACC CTCCCAAAGTGCTGGGATTA 

ERCC6 rs201486862 c.2137A>G TCGGATCATTCTGTCTGGCT ATGAGCCTGGCCATCTTTCT 

FANCM rs144567652 c.5713C>T TCTAGCACTTCAGGGGCATC TGAAGTGAGCTGTTAGCCATCC 

HMMR rs146791423 c.1054G>T ACCTCACAATGCCATTCCA AAGCTGAAAGGCTGGTCAAG 

MCM4 N/A c.1610-1611del  GCGGGACAAGGAAGGATTTT  CATGTTCACGGTGGAGAAGG 

MSH6 rs63751005 c.620T>C TGAACTGGGGCTGGTATTCA AAGCACACACCATATGCACG 

MUTYH rs34612342 c.494A>G GTCTCTTTCTGCCTGCCTGT CTACGTTGCCATCCACCAC 

MUTYH rs36053993 c.1145G>A AACACTGGACAGTGCCACCT AAGGGTCAAGGGGTTCAAAT 

NBN rs61754966   c.511A>G CAACAAAGAAATTTGGGGAAC GCAGTGACCAAAGACCGACT 

PALB2 rs45551636 c.2993G>A TTTGGCTTAGGGCATTGTTT GACATGTCTGGCTTCCACCT 

PALB2 rs45532440 c.2014G>C CCTGATGAAGACTTTGGACCTC TAAGATGGGGAAAGCAGGTG 

PALB2 rs200283306 c.3508C>T TCTGTCTGGACATAAACAAGCAA ACTCTCAGCGTGGGTGTGAT 

PALB2 rs45478192 c.2816T>G  ATCTTTCAGATTCTTTCAAGACTCAAGCC  CTGGATTAAACAAAAATGAAACAACCAAGC 

PALB2 rs45494092 c.1010T>C ATTTCACCAGGGCGACTACA TTGACTCAAAGGGCTCCACT 

PALLD rs138897963 c.909A>T ACCTCAGCAGATGTTGTGTC  ATGGGTGCCTAAATGTCGGA 

PMS2 rs200513014 c.1004A>G CAGTGGCTGCTGACTGACAT GTTGCAGTGAGCTGAGATCG 

POLK N/A c.1336del TGAATAGGCTATGGGAGAAAGAA GGCATTTATTGCAGGGAGTG 

POLQ rs148626322 c.7537C>T TCCCAAAGAGGGTTACAGGA AGGCTGAGCGTCAAGCTATC 

RAD1 N/A c.1154del CGGCCACCTTTAGACTCTTG TTGGGAGTTCTGAGCAGTGTT 

RAD51D rs587781756 c.511C>T CCTGCAGCAAAACGTCCTAT AGTAGGACACCTGCCCACAG 

RAD51D rs387906843 c.616C>T ACCACTGTGACAACTGACCA AGTAGGACACCTGCCCACAG 

RAD52 rs4987208 c.1245T>G TAGCAGGAAGCGGAAACG ACTGCAGTGGGCTCTCAGTC 

RAD52 rs4987207 c.806C>A TCCAGTTCCTCTTTGGTCCT AGGATCTCCCCTTAATTTTTGTG 

REC8 N/A c.1622G>A GACCTTCCCCCACTACACAG TGGGGATGGGAGAAGTAGAA 

RECQL rs150889040 c.962G>A  GAAGCTCTGACCATCCCTGA  CAACAGTTGCCACTACTACCTG 

TP53I3 rs145078765 c.755C>G TCTGAAATCGGGTTCCCTCT AGGCCTCATAAATGGTGAACTT 
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2.5.2 PCR amplification  

Polymerase chain reaction (PCR) is a frequently used method for the exponential 

amplification of short sequences of DNA.  PCR requires the use of primers (Table 5) that a 

thermo-stable DNA polymerase extends to replicate the target (HotStarTaq Plus DNA 

Polymerase, QIAGEN Fast Cycling PCR KitCat No./ID: 203743). Each round of amplification 

requires a three-stage temperature fluctuation process to facilitate the reaction (see PCR Protocol 

below).  For ample product yield, the thermocycler (Mastercycler, Eppendorf, Hamburg, 

Germany) was set for 36 rounds of amplification. 

PCR reaction set up            20 μl   

Qiagen Master Mix =         10 μl 

Primer (forward) =               2 μl 

Primer (reverse) =               2 μl 

DNA (25ng/μl) =                 2 μl            

sterile dH
2
0                      4 μl 

PCR protocol:  

1. Original denaturation: The DNA was heated at 95°C for 5 minutes to denature.  

PCR Cycle begins:  

2. Denaturation: 96°C for 5 seconds 

3. Primer Annealing: 55-62 °C (optimized for specific primer pair efficiency)  

4. Elongation: 68 °C for 15 seconds  

PCR Cycle ends (new cycle begins)  

5. Final elongation: After the last PCR cycle (36 in total), the reaction was incubated at 72 °C for 

2 minutes to ensure full extension of any remaining ssDNA.  
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2.5.3 Agarose gel electrophoresis 

Agarose gel electrophoresis is a simple method that separates DNA fragments by 

molecular weight/size.  DNA molecules carry a negative charge due to the phosphate backbone 

and migrate towards the positively charged end of an electric field.  For visualization, ethidium 

bromide is incorporated into the gel as it intercalates between the bases of dsDNA and fluoresces 

under UV light.  The size of the DNA fragment determines the speed at which it migrates.  The 

larger the fragment, the slower it will migrate through the porous gel. Therefore, DNA product 

size can be measured by comparison with a standardized ladder.  This method is used for the 

confirmation of PCR product and to identify possible contamination that occurred during the 

amplification process.  

Agarose Gel Electrophoresis Protocol: 1 g of agarose powder (Thermo Scientific, 

Waltham, MA, Cat# R0491) was dissolved into 100 ml of TAE buffer by boiling. 15μl of 

ethidium bromide was then mixed into the solution before allowing it to solidify in a gel forming 

tray.  Once solidified, the gel was placed onto an electrophoresis plate, and submerged in TAE 

buffer.  2μl of loading dye (QIAGEN Fast Cycling PCR KitCat ID: 203743) was added to the 

PCR product. 2μl of PCR product was loaded in each well.  For PCR product size measurement, 

2μl of a 100bp DNA ladder was also added. The gel was then given 45 minutes of a 400-mA 

current at 80 volts, followed by visualization using a UV source (Fisher Biotech, Wembley, 

Austrailia, Electrophoresis Systems). 

2.5.4 Sanger sequencing  

Sanger sequencing is a commonly employed method for the accurate sequencing of DNA 

using chain-terminating (dideoxy) nucleotides incorporated by a DNA polymerase during in-

vitro PCR amplification. Each nucleotide version, ddATP, ddTTP, ddCTP, ddGTP, is labeled 
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with a unique fluorescent dye so that during replication, DNA fragments are randomly 

terminated with the fluorescent label.  The amplified products are then separated by Capillary 

Array Electrophoresis (CAE), which detects fluorescently labeled fragments and provides an 

ordered sequence of the fragments based on product length to be computationally assembled. 

The Sanger method, developed in 1977 by Frederick Sanger, was once the most widely 

employed sequencing technology. While high throughput sequencing (Next Generation 

Sequencing) has become the current preferred methodology, Next-Gen results are often validated 

using Sanger sequencing as it is considered more reliable.  

Sanger Sequencing Preparation Protocol: PCR products were purified by spin column 

(Qiagen QIAquick PCR Purification Kit Cat# 28104) and quantified by spectrophotometer 

(NanoDrop 2000, Thermo Scientific).  PCR reactions were prepared before shipment to 

GENEWIZ and trace files were visualized using SnapGene Viewer v3.3.3. 

Sequence Reaction             15 μl 

Primer =                                5μl 

DNA (25ng/μl) =                  2μl            

sterile dH
2
0                       8μl 

2.6 Cell line assessment and cell culture  

HeLa cells were used for all functional experimentation during this project.  This cell line 

was chosen based on various necessary criteria including having at least some wild type (WT) 

p53 expression (Figure 4A), an intact homologous repair pathway, a doubling capacity of every 

24 hours (Figure 4B) and epithelial in origin.  While HeLa is a cervical cell line, it is often used 

in cancer studies for these reasons.  Although use of an ovarian cell line is ideal, most immortal 

ovarian cell lines do not have WT p53 activity (Mullany et al., 2015; Fleury et al., 2015) 
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meaning processes downstream of p53 such as DNA damage, cannot be assayed accurately.  

Additionally, the issue of cell line misidentification is common with many “ovarian cell lines” 

(Korch et al., 2012).   All cell lines considered for experimental purposes were sent for 

authentication (Wayne State University at Applied Genomics Technology Center).   The C13 

ovarian cell line obtained from an outside lab was confirmed to be ME-180 cervical cells.  All 

other cell lines were authenticated as being correctly labeled.  

 HeLa cells stably transfected with p.DR-GFP were a kind gift from Dr. Jeffery Parvin of 

Ohio State University. Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% Fetal Bovine Serum (HyClone, GE, Little Chalfont, United Kingdom 

Cat# SH30396.03), NaHCO3 (3.7g/L) 1% penicillin strep (Gibco Life Technologies, Carlsbad, 

CA Cat# 15140-122) and incubated at 37°C 5% CO2.   For passaging, cells were harvested using 

trypsin, and split 1:6.  Freeze downs of aliquots were maintained in a freezing media of 10% 

DMSO, 50% DMEM, 40% FBS and kept at -140°C. 
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Figure 4. Cell line analysis 

A. Western blot for p53 expression in cell lines. p53 expression observed in positive control 

(LJT), ME-180 (originally thought to be C13 ovarian cell line and shown to be cervical of origin 

during authentication) and HeLa.  p53 expression was not detected in hTERT immortalized 

ovarian cells (hTERT OV), SKOV3 cells or TP53-negative control MDAH041.  Abnormal p53 

expression was detected in T80 SV40-Transformed ovarian cells.   B. Microscopy images of 

GFP activity as a proxy for intact HRR in ME-180, and HeLa (see section 2.8 Homologous 

Recombination Repair Assay). Very little GFP activity was observed in T80 cells and none in 

SKOV3 or hTERT immortalized ovarian cells.  

A 

 

 

 

 

B  
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2.7 Protein detection and quantification 

Western blot was employed to assay protein expression and quantification.  First, cells 

were lysed, and proteins solubilized using ice cold RIPA (Radio immunoprecipitation assay 

buffer) supplemented with protease and phosphatase inhibitors.  Protein concentration was 

determined by Bradford assay.  Proteins were then reduced and denatured by adding 4x Laemmli 

buffer plus β-mercaptoethanol to lysates (9:1 ratio respectively), in addition to boiling at 95°C 

for 5 min using thermocycler.  Lysates were stored at -80°C until use for SDS page (sodium 

dodecyl sulfate polyacrylamide gel electrophoresis).  

Next, 50-70μg of whole cell lysate was loaded into each well of a polyacrylamide gel and 

separated by electrophoresis.  Gel percentage varied by size of protein of interest.  Stacking gels 

were prepared at 5%.  7.5% separating gels were used for proteins above 100 kDa and 12% gels 

for proteins below 100 kDa. Following separation, proteins were transferred from the 

polyacrylamide gel to a nitrocellulose membrane by electrical current (250 -350 mA).  Small 

molecular weight proteins were transferred for approximately 1 hour at room temperature (RT), 

large molecular weight proteins 3-4 hours RT or 18 hours overnight at 4°C.  

Membranes were then blocked with 5% bovine serum albumin (BSA) in Tris Buffered 

Saline with Tween 20 (TBST).   Next, membranes were incubated with protein specific 

antibodies at RT for two hours, given three 10 min washings with TBST, incubated with 

secondary antibody for 1 hr. RT, and followed by three more 10 min TBST washings.  Images 

were obtained by LI-COR Biosciences, Lincoln, NE, Odyssey Blot Imager and protein 

expression was quantified using ImageJ software and normalized to appropriate loading control 

(ACTIN for smaller proteins, VINCULIN for large molecular weight proteins).   
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RIPA lysis buffer               80 ml 

1 M Tris-HCL ph. 7.4           4 ml 

1.5 M NaCl                       8 ml  

1% NP40                       800 μl  

5% Na-deoxycholate            4 ml  

.4 M EDTA                       200 μl  

dH20                                   63 ml 

The day of lysis, 10 μl of protease inhibitor cocktail (PIC), sodium pyrophosphate (NaPP), 

sodium fluoride (NaF), sodium orthovanadate (NaV), and phenylmethane sulfonyl fluoride 

(PMSF) was added to every ml of RIPA lysis buffer 

SDS page stacking gel            5%                                

4x stacking buffer             1.25 ml 

Acrylamide/Bis 40:32% .5 ml 

dH
2
0                                      3.25 ml 

10% APS                        25μl 

Temed                                      5 μl 

SDS page separating gel        7.5%    12%                       

2x separating buffer      5 ml   5 ml 

Acrylamide/Bis 40:32% 2.5 ml    3 ml 

dH
2
0                           2.5 ml   2 ml 

10% APS                          100 μl   100 μl 

Temed                                     25 μl   25 μl 
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Transfer buffer:   LMW <100kDA     HMW >100kDA 

TRIS                      6.06 g                 6.06 g 

Glycine                  28.8 g                 28.8 g 

Methanol               400 ml                200 ml 

dH
2
0                   1600 ml              1800 ml 

SDS                         -----                  .01% 

Antibodies for protein detection:  

Protein            Cat#              Manufacturer         

ATM  sc-377293  Santa Cruz Biotechnology, Dallas, TX 

BRCA1 sc-6954  Santa Cruz Biotechnology, Dallas, TX  

BRCA2 sc-28235  Santa Cruz Biotechnology, Dallas, TX 

P53  AHO0152  Invitrogen, Carlsbad, CA   

CHK1  sc-7898  Santa Cruz Biotechnology, Dallas, TX 

CHK2              sc-9064  Santa Cruz Biotechnology, Dallas, TX 

TP53I3 sc-16664  Santa Cruz Biotechnology, Dallas, TX 

FANCM          AB97905   Abcam, Cambridge, United Kingdom 

REC8  sc-15152  Santa Cruz Biotechnology, Dallas, TX 

RAD1  sc-166495  Santa Cruz Biotechnology, Dallas, TX 

RAD51D sc-398819  Santa Cruz Biotechnology, Dallas, TX 

HMMR PA5-21105   Invitrogen, Carlsbad, CA  

MCM4  sc-28317  Santa Cruz Biotechnology, Dallas, TX 

VINCULIN 700062   Invitrogen, Carlsbad, CA    

ACTIN sc-1616  Santa Cruz Biotechnology, Dallas, TX 
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2.8 Homologous recombination repair assay 

The homologous recombination repair assay is a sensitive method developed to measure 

Homologous Recombination Repair (HRR) pathway efficiency following double strand breaks 

(DSB).  HeLa cells were stably transfected with pDR-GFP (direct recombinase green fluorescent 

protein) plasmid and selected with 1.5μg/ml puromycin.  The pDR-GFP plasmid contains two 

inactive GFP alleles; one is inactive due to the presence of an additional sequence that contains 

the 18bp restriction enzyme recognition site for I-SceI, the other is inactive due to a truncating 

mutation.  When a second plasmid encoding the enzyme I-SceI is transiently transfected into 

cells containing this plasmid, the I-SceI restriction site is cleaved creating a DSB. The break can 

only be repaired by the cells’ own endogenous HRR pathway using the second inactive GFP 

allele as a template.  In the case of a working HRR pathway, this leads to the restoration and 

activation of the first GFP allele (Figure 6A). Therefore, the amount of GFP following I-SceI 

DSB induction proxies for the efficiency of the HRR pathway.  This method can accurately assay 

a gene’s involvement in the HRR pathway by measuring the amount of GFP observed after 

siRNA knock down as compared to a scramble siRNA control.  

HRR Assay Protocol: Cells were harvested with trypsin, counted using a hemocytometer 

and reseeded at 40,000 into each well of a 24 well plate.  The next day, media was replaced with 

450 µl serum and antibiotic free media and cells were transfected with I-SceI and siRNA specific 

to the gene of interest using Lipofectamine 3000 (Thermo Fisher, Waltham, MA, Cat# 

L3000015) according to manufacturer’s protocol.  As a negative control, cells were transfected 

with p.cDNA3 empty vector in place of I-SceI to gauge background GFP signal.  As a positive 

control, cells were transfected with scramble siRNA plus I-SceI.  Each condition was performed 

in triplicate.  Forty-eight hours post transient transfection of the I-SceI containing plasmid, cells 
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were visualized for GFP signals using fluorescence microscopy (Olympus 1X71) followed by 

harvesting and analysis by flow cytometry (BD FACSCanto II and BD FACS Diva Software 

v8.0.1, BD Biosciences, San Jose, CA).  Gating procedure was set to select singlets, live (DAPI) 

and GFP (FITC) positive cells (Figure 6B).  A t-test was employed to compare cells transfected 

with a siRNA knockdown of a gene of interest to the siRNA scramble positive control and 

adjusted for background GFP (negative control).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene                       Cat#                        Manufacturer 

Scramble 1027310 Qiagen, Hilden, Germany 

ATM S100299299 Qiagen, Hilden, Germany 

BRCA1 SC-29219 Santa Cruz, Dallas, TX 

BRCA2 S102653434 Qiagen, Hilden, Germany 

CHK1 S100287658 Qiagen, Hilden, Germany 

CHK2 S102224264 Qiagen, Hilden, Germany 

FANCM S104158280 Qiagen, Hilden, Germany 

HMMR S102653196 Qiagen, Hilden, Germany 

MCM4 S100300818    Qiagen, Hilden, Germany 

RAD1 S102653462 Qiagen, Hilden, Germany 

RAD51D S100045094 Qiagen, Hilden, Germany 

REC8 AM16708 Ambion (Invitrogen), Carlsbad, CA 

TP53I3 S100069636 Qiagen, Hilden, Germany 
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Figure 5. Homologous recombination assay A. Schematic of DSB induction during I-SceI 

cleavage and GFP induction by HRR. B. Flow cytometry gating procedure for selection of GFP 

positive cells. 
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2.9 Clonogenic survival assay 

The clonogenic survival assay tests the ability of a single cell to form a colony and is a 

well-established method to determine the importance of a gene to cellular survival as well as to 

test cell sensitivity to DNA damaging treatments such as ionizing radiation or chemotherapeutic 

drugs.  Certain drugs are of interest due to their ability to create double strand breaks in DNA. 

Because DSBs are repaired using the HRR pathway, cells efficient in this pathway retain the 

capacity to repair themselves and produce colonies after exposure, while those deficient in HRR 

do not.  Therefore, clonogenic assays involving drug treatments that induce DSBs are an 

excellent tool for identifying genes important to the HRR process, as well as for indicating which 

chemotherapeutic drug may be most appropriate for targeted therapy considering the genomic 

background of certain tumors.   

Clonogenic survival assay protocol: Cells were plated (350,000) in 60-mm tissue culture 

dishes and incubated overnight at 5% CO2 and 37°C.  The next day cells were transfected with 

siRNA using Oligofectamine (Invitrogen, Carlsbad, CA Cat# 12252-011) according to the 

manufacturer’s protocol.  24 hours after transfection, cells were counted, and 100 to 300 cells 

were reseeded in triplicate of a 6 well plate and placed back in incubator.  The following day (48 

hours post siRNA knock down) the media was replaced with serum free media containing a 

DNA damaging reagent such as Cisplatin, Etoposide, Olaparib, or mock control for the duration 

and drug concentration optimized for an IC50 (50% cell growth inhibition) in HeLa.  Cells were 

rinsed twice before adding back fresh media and incubated at 5% CO2 and 37°C for 1.5 weeks 

until colonies had formed (>50 cells per colony).  For fixation and staining, medium was 

removed, and cells washed PBS before adding add 2 ml of acidic acid fixation solution for 5 

minutes followed by 2 ml 0.5% crystal violet solution for 2 hours at room temperature. Once the 
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crystal violet was rinsed off, plates were air-dried at RT for up 24 hours. Colonies were counted 

both by eye and with a colony counter (GELCOUNT, Oxford Optronix, Abingdon, UK).  Plating 

efficiency (PE) was calculated as the number of colonies formed divided by the number of cells 

seeded x 100%.  Survival after drug treatment was determined by calculating the number of 

colonies formed divided by the number of cells seeded x 100%, adjusted for PE.   

2.10 Statistical analysis of functional data 

Statistical analyses of homologous recombination repair and clonogenic assays were 

carried out using R statistical software (version 3.4.1). Prior to the analysis, we checked for and 

did not find outliers (i.e., data points greater than 3 standard deviations from the mean for each 

variable). We next investigated the distribution of replicates for each tested condition (reduction 

in HRR efficiency, plating efficiency, and adjusted survival rate after drug treatment following 

siRNA knockdown). First, we calculated Shapiro-Wilk’s tests, which tests the null hypothesis 

that a sample distribution was drawn from a normally distributed population. Next, we assessed 

skewness and kurtosis for each gene per condition. For small samples (n < 50), z-scores less than 

1.96 for either skewness or kurtosis suggests a normal distribution
14

. We performed 

approximately six replicates for each condition to reduce inflation of Type II error. The overall 

pattern of results generated from the HRR and clonogenic assays indicated normal distributions 

(detailed results available upon request). Paired sample t-tests were then conducted to identify 

mean differences in the survival rates for each siRNA knock down condition and its respective 

scramble siRNA control. 
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CHAPTER 3: RESULTS PART I 

3.1 Clinically actionable variants  

We performed WES on blood DNA from 48 women with a personal history of OVCA 

and determined to be at high risk for inheritance of a germline predisposition mutation, but with 

no known deleterious mutations in BRCA1/BRCA2.  In total, five clearly pathogenic loss of 

function variants were identified (Table 6).  Four were in genes currently featured on newer 

comprehensive HBOC panels; two novel frameshift variants in ATM (c.2503_2507del and 

c.5697_5698insA) and two truncating variants in RAD51D (rs587781756 p.Q171* and 

rs387906843 p.R206*, as well as a pathogenic variant in a non-panel gene, FANCM 

(rs144567652 p.R1931*) previously found to be strongly associated with hereditary risk of 

breast cancer (Peterlongo et al., 2015).  Pathogenic variants in genes with an associated cancer 

risk are considered clinically actionable, meaning a medical intervention, or risk reduction 

measures are available.   
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Table 6. Clinically Actionable Variants are those of high impact (frameshift or stop gain) in 

genes already associated with either breast or ovarian cancer. AA= Amino acid change, 

MAF= Minor allele frequency (ExAC, European non-Finnish) OBS= Number of times variant 

was observed in sample. N/A= Not Available.  All variants listed were confirmed by Sanger 

DNA Sequencing. 

 

 

 

 

 

 

 

 

 

 

Table 6. Clinically Actionable Variants  

ID Gene Consequence AA  dbSNP ID  Variant  MAF OBS 

OCF28-1 ATM FRAMESHIFT CATCTG>C  N/A c.2503_2507del N/A 1 

OCL56 ATM FRAMESHIFT G>GA  N/A c.5697_5698insA N/A 1 

OCJ19 FANCM STOP R1931* rs144567652 c.5713C>T 0.0009 1 

OCH26 RAD51D STOP Q171* rs587781756 c.511C>T N/A 1 

OCK1 RAD51D STOP R206* rs387906843 c.616C>T 0.0001 1 
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ATM (Ataxia Telangiectasia Mutated) codes for a protein kinase important for DNA 

damage recognition and activation of substrates including p53, BRCA1, and other homologous 

recombination repair factors.  Homozygous mutations in ATM cause ataxia-telangiectasia, a rare 

inherited autosomal recessive disorder which affects the immune and nervous systems and leads 

to increased sensitivity to radiation and cancer susceptibility.  Although heterozygous 

ATM mutation carriers do not have ataxia-telangiectasia, they have a 17-52% lifetime risk of 

developing breast cancer (Broeks et al., 2000).  However, despite association of ATM with 

ovarian cancer in recent literature, carriers are not routinely counseled with this information as 

exact risks are unknown.  One patient with an ATM pathogenic variant in our sample (OCF28-1) 

had a family history of liver, lung (n=2) and breast cancer, on the same parental side of the 

family.  The proband herself was first diagnosed with breast cancer at the age of 48 before a 

secondary diagnosis of OVCA at 57 (Figure 6A).  The second carrier of an ATM frameshift 

mutation (OCL56) was diagnosed at 73 and had a family history of OVCA (two additional cases 

besides herself) as well as two cases of breast cancer, all on the maternal side (Figure 6B).   
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Figure 6. ATM LOF variants may lead to increased OVCA risk A. Kindred OCF28-1. 

Proband (indicated with arrow) is positive for ATM c.2503_2507del pathogenic variant. B. 

Kindred OCL56. Proband (indicated with arrow) is positive for ATM c.5697_5698insA 

pathogenic variant. 

 

A.  Kindred OCF28-1 

B.  Kindred OCL56 



50 
 

 
 

 

The second gene featuring pathogenic variants in our sample, RAD51D (paralog of 

RAD51), has recently been identified as a moderately penetrant gene in hereditary ovarian cancer 

(Janatova et al., 2015; Thompson et al., 2013; Meindl et al., 2010).  RAD51D forms a complex 

with RAD51B, RAD51C and XRCC2 in order to bind single stranded DNA, a necessary process 

for DNA repair by homologous recombination and is required for RAD51 foci formation upon 

DNA damage induction (Tarsounas, Davies, and West, 2004).  Although rare among familial 

breast cancer patients (Thompson et al., 2013), loss of function variants in RAD51D have been 

associated with a relative risk for OVCA of 6.30. (95% CI 2.86-13.85) (Loveday et al., 2016).  

Two pathogenic nonsense SNPs in RAD51D were discovered in our sample.  One carrier 

(OCH26) was diagnosed at the age of 61 and had a family history of prostate (n=2), breast (n=2) 

and ovarian cancer on her paternal side, while the second carrier (OCK1), diagnosed at 67, had a 

comparatively weak family history with a single diagnosis of colon cancer on her paternal side 

and lung cancer in a maternal aunt.  

In addition, a pathogenic nonsense mutation in a non-panel gene, FANCM (rs144567652, 

p.R1931*) was identified.  This variant has been recently associated with increased risk of breast 

cancer (OR of 3.93) (Peterlongo et al., 2015), warranting contact for further counseling.  

FANCM is the most highly conserved member of the Fanconi Anemia Complementation Group 

(Schwab et al., 2015).  This group is associated with the autosomal recessive genetic disorder, 

Fanconi Anemia, which is characterized by genomic instability, hypersensitivity to DNA damage 

induced by crosslinking agents and substantial increased risk of leukemia and other cancers 

(Bogliolo and Surrallés, 2015).  Other members of the Fanconi Anemia complementation group 

include breast and ovarian cancer-associated genes; RAD51C (FANCO), BRCA1 (FANCS), 

BRCA2 (FANCD1), BRIP1 (FANCJ) and PALB2 (FANCN).  FANCM encodes for an ATP-
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dependent helicase important for the resolution of DNA: RNA hybrids, thus ensuring stability 

with genome duplication (Schwab et al., 2015).  The nonsense variant identified here has been 

shown to affect protein function by also inducing exon skipping (Peterlongo et al., 2015).  The 

carrier (OCJ19) of FANCM rs144567652 was diagnosed with OVCA at 49 years of age and had 

a family history of breast (n=2), multiple myeloma, leukemia, and ovarian, all on the maternal 

side of her family (Figure 7).  
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Figure 7.  Kindred OCJ19. Proband is carrier of FANCM pathogenic variant 
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3.2 Variants of unknown clinical significance detected in HBOC panel genes 

 

As most women in our sample were not found to be carriers of a clearly pathogenic 

mutation upon WES, I next sought to identify potentially deleterious variants in HBOC panel 

genes and found that 23 women in the sample (37%) harbored one or more rare and predicted to 

be damaging variants of unknown significance (VUS), in panel genes; ATM, BRCA1, BRCA2, 

CHK2, MHS6, MUTHY, NBN, PALB2, and PMS2 (Table 7).  Analysis of the Human Gene 

Mutation Database (HGMD) (Stenson et al., 2003) revealed that six of these variants are 

annotated as “disease causing” (DM), ten as “possibly disease causing” (DM?) and three as 

“disease associated polymorphism” (DP) in the Human Gene Mutation Database (HGMD) 

(Stenson et al., 2003). 

Carriers of deleterious variants in either ATM, CHK2, PALB2 or NBN are typically 

counseled for their risk of breast cancer, but not ovarian cancer despite associations in current 

literature (Walsh et al., 2011; Thorstenson et al., 2003; Norquist et al., 2015; Lawrenson et al., 

2015).
.
  In addition to the pathogenic ATM frameshift mutations previously discussed, we 

detected an additional six rare and predicted to be damaging missense VUSs in ATM; rs1800054, 

rs138327406, rs28904919, rs1801673, rs56009889, rs35203200.  The ATM variant rs1800054 

(p.S49C) has recently been implicated as associated with a slightly increased risk for breast 

cancer (OR 1.08 (C.I .95-1.22) for heterozygotes, 1.44 (.39-5.32) for homozygotes (Fletcher et 

al., 2010).  ATM variant rs138327406 (p.F1463C MAF= 0.002) is listed as a disease-causing 

mutation in HGMD and was found in three of six women of Ashkenazi Jewish (AJ) descent in 

our sample, always in combination with a second rare polymorphism 266 amino acids apart 

(rs2227922, p.P604S, MAF=0.003) which was predicted to be benign.  These variants were not 

seen in any other women in our sample and linkage data suggests they are not in disequilibrium 
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(r
2 

=0.5, Haploreg v4, CEU).  Therefore, it is suspected that there may be a founder effect 

resulting in the coupled segregation on a single haploblock in the AJ population.  One participant 

(OCG29) was found to have inherited both variants on the same parental allele.  We were not 

able to confirm co-segregation in the other two participants as fresh peripheral blood samples 

were not available to prepare RNA for this analysis.  However, we did find that the unaffected 

daughter of OCD16 was wild type for both variants, suggesting likely co-segregation.   

Similarly, with PALB2, a detected a pair of rare SNPs inherited together, rs45532440 

(p.E672Q MAF= 0.02) and rs45551636 (p.G998E MAF= 0.02) r
2=

0.69, in two unrelated 

individuals (OCH26 and OCE17-2).  PALB2 (partner and localizer of BRCA2), physically 

interacts with BRCA2, and is critical for the localization and stability of BRCA2 in the nucleus. 

Females with monoallelic germline loss of PALB2 have a 2-4 fold increased breast cancer risk 

(Rahman et al., 2010; Erkko et al., 2007).  CHK2 and NBN are also known breast cancer-

associated genes in which we found an interesting VUS in our sample.  Female CHK2 and NBN 

pathogenic mutation carriers are at an increased lifetime risk of developing breast cancer with a 

2-fold for CHK2 and 3-fold for NBN carriers, (The CHEK2 Breast Cancer Case-Control 

Consortium 2004).  Both patients had a family history of breast cancer and the carrier of CHK2 

had a secondary diagnosis of breast cancer.  The p.I232V (rs587780185) variant in CHK2 is 

extremely rare (MAF= 00001).  SIFT and PolyPhen predict this alteration as deleterious and 

probably damaging.  NBN p.I171V (rs61754966) has contradictory annotations among various 

bioinformatics assessment tools, but is annotated as a disease-causing mutation in HGMD.  

Numerous potentially deleterious VUSs in Lynch syndrome and familial adenomatous 

polyposis associated genes were detected in the study sample.  Lynch syndrome (hereditary 

nonpolyposis colorectal cancer), is an autosomal dominant inherited disorder caused by 
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mutations in mismatch repair genes; MLH1, MSH2, MSH6, PMS2, or EPCAM which lead to high 

risk of colorectal cancer (80% lifetime risk) among others, including cancer of the ovaries (10-

15% lifetime risk) and endometrium (71% lifetime risk) (Strafford, 2012).  Skin cancer, in the 

form of Muir-Torre syndrome (a variant of Lynch) is another non-colonic phenotype observed in 

some Lynch families (Bansidhar, 2012; South et al., 2008).  A rare (MAF=0.007), highly 

conserved (GERP=5.35) and predicted as deleterious VUS was found in the Lynch associated 

gene, MHS6 (p.V509A rs63751005).  The carrier of this SNP (OCD16) was diagnosed with 

OVCA at the age of 25, followed by a secondary diagnosis of colon cancer at the age of 65 and 

had a family history of colon and skin cancer as well.  Two patients in the sample were 

heterozygous for very rare missense MUTHY mutations considered to be pathogenic and the 

cause of MYH-associated polyposis (MAP) in homozygote carriers (rs34612342 p.Y179C 

MAF= 0.002 and rs36053993 p.G396D MAF= 0.003).  Although it is possible that a second 

pathogenic MUTHY variant occurred sporadically in the other parental allele, tissue was 

unavailable to detect this change in these patients.  Biallelic mutations in MUTYH have been 

shown to mimic Lynch syndrome by disrupting base excision repair and resulting in a somatic 

loss of function of mismatch repair (Morak et al., 2014).  The carrier of the MUTYH variant, 

rs34612342, (OCE17-2) had a family history of skin and breast cancer and was a carrier of an 

additional VUS in the Lynch gene PMS2.  The carrier of MUTHY rs36053993 (OCQ15) was also 

diagnosed with melanoma and had a family history of colon (n=2) skin (n=2) and ovarian cancer.   

Another conspicuous finding in our sample was the occurrence of a specific BRCA2 

truncating mutation in four unrelated individuals.  The BRCA2 variant p.K3326* (rs11571833) 

results in a 93-amino acid truncation and has a minor allele frequency (MAF) of 0.009 (EXAC 

non-Finnish). The odds ratio of observing this mutation in our sample relative to its MAF in the 

https://ghr.nlm.nih.gov/gene/MLH1
https://ghr.nlm.nih.gov/gene/MSH2
https://ghr.nlm.nih.gov/gene/MSH6
https://ghr.nlm.nih.gov/gene/PMS2
https://ghr.nlm.nih.gov/gene/EPCAM
https://ghr.nlm.nih.gov/art/large/female-reproductive-system.jpeg
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ExAC cohort is 4.95 (Fisher’s Exact test p-value = 0.01).  It is worth noting that this allele is 

much more frequent in the Finnish population (MAF=.01).  However, even using this more 

frequent MAF as a reference, our test indicates that the allele is still significantly overrepresented 

(p = 0.03, OR = 3.71).  Although the role of BRCA2 has been established in breast and ovarian 

cancer, the K3326* variant is considered to be benign by commercial testing and therefore was 

not identified in the initial BRCA1/BRCA2 screening.  However, recent literature is in 

disagreement with this classification and established that this SNP is a risk factor for lung, oral 

and pancreatic cancers (Akbari et al., 2008; Martin et al., 2005; Rudd et al., 2006) all of which 

were observed in the family histories of the four K3326* carriers; throat (OCP36), lung (OCK1 

and OCF28-1) pancreatic (OCN22), and esophageal cancer (OCN22).  The accepted risk for 

breast cancer in carriers of this SNP is low but significant (p = 0.047, OR 1.53, 95% CI 1.00-

2.34) (Thompson et al. 2015).  Two of the four carriers had a family history of breast cancer, one 

of which had a primary diagnosis of breast cancer prior to ovarian cancer.  Furthermore, analysis 

of the GAME-ON database (>15000 OVCA cases and >30,000 controls) indicates that this SNP 

is also associated with OVCA with a p-value of 2.7x10
-4

 and OR (95% CI) = 1.31 (1.22-9.32) for 

all histologies, and for 8,864 invasive serous OVCA cases versus controls, the p-value was 

7.11x10
-8

 and OR (95% CI) = 1.57 (1.44-1.70).  This data was provided by the Ovarian Cancer 

Association Consortium (OCAC) (http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/).  These 

findings indicate that BRCA2 K3326* is likely a low risk allele in ovarian cancer. 

 

 

http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/
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Table 7. Rare and predicted to be deleterious/damaging variants of unknown clinical 

significance in sample. AA= Amino acid change, MAF= Minor allele frequency (ExAC, 

European non-Finnish) OBS= Number of times variant was observed in sample. MUT PRED= 

Mutation predictor risk assessment,  LRT= Likely hood Ratio Test for functional predicting of 

mutation,  DEL= deleterious, TOL= Tolerated NEUT= Neutral, MUT TAST= Mutation Taster 
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prediction, DC= Probably Disease Causing, PM= Probably Polymorphism, GERP= Genomic 

Evolutionary Rate Profiling, a score above 2 indicates a highly constrained sequence,  HGMD 

Variant class; DM= Disease causing mutation, DM?= Possible disease causing mutation, DP= 

Disease associated mutation,  N/A= Not Available.  All variants listed were confirmed by Sanger 

DNA Sequencing. 
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3.3 High impact mutations in non-panel candidate genes  

A portion of the missing heritability in OVCA is likely due to risk factors in genes not 

currently featured on testing panels.  The implication of even a highly penetrant mutation would 

be difficult to interpret if rare, even in a mechanistically relevant gene not previously associated 

with the disease.  Despite selecting for patients with high risk of genetic inheritance, half of the 

subjects in our sample were not found to harbor a pathogenic variant, nor a variant of unknown 

significance in any of the 24 panel genes currently tested in HBOC syndromes (Figure 8).  I 

therefore sought to identify rare (MAF ≤ 0.02) mutations in our sample of high functional impact 

(frameshift or stop gain) in candidate genes.  Using DAVID (https://david.ncifcrf.gov/) 

functional annotation and literary searches I compiled a candidate gene list including 115 genes 

involved in DNA repair and/or cell cycle control, the two pathways most commonly associated 

with HBOC, in addition to 64 genes having a disease-causing variant (DM) in HGMD for 

ovarian cancer. A full list of non- panel candidate genes analyzed is provided in methodology 

section (Table 4).   

This analysis uncovered 11 high impact mutations in four cell cycle control genes, 

CHK1, RAD1, TP53I3 (n=2), MCM4, and six DNA repair genes, FANCM, HMMR, POLK, 

POLQ, RAD52 (n=2), and REC8 (Table 8).  Importantly, this analysis resulted in the discovery 

of a clinically actionable pathogenic nonsense variant in FANCM (rs144567652) previously 

discussed.  Most of these non-panel genes are not featured in HGMD, and are they are not 

analyzed during clinical testing.  Therefore, I have provided the mouse phenotype seen in knock-

out studies where possible.  A common phenotypic presentation of many known cancer 

predisposition genes, such as BRCA1/2, includes embryonic lethality in homozygote knockouts 

https://david.ncifcrf.gov/
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and increased cancer incidence in heterozygotes, which are reported in mouse model studies of 

some of these genes (Table 8).   

The frameshift mutation in CHK1 (Checkpoint Kinase 1) is notable because much like 

panel gene CHK2, it encodes for a serine/threonine protein kinase required for checkpoint-

mediated cell cycle arrest and activation of DNA repair HRR.  I also discovered a frameshift 

variant in RAD1, a gene whose protein product functions as part of the 9-1-1 cell cycle 

checkpoint complex to arrest cellular proliferation in the presence of incomplete DNA 

replication or damaged DNA, as well as in MCM4 (Mini-chromosome maintenance complex 

component 4), a highly conserved helicase protein required for genome replication by initiation 

of replication fork formation (Sheu et al., 2014).  The TP53I3 (TP53 inducible protein 3) 

nonsense SNP (rs145078765 p. S252* MAF= 0.0009) is also of great interest as it was observed 

in two unrelated individuals in our sample.  TP53I3 is an oxidoreductase-like protein and an 

inducer of reactive oxygen species (ROS), that is transcriptionally activated by the tumor 

suppressor P53 and likely to be involved in P53-mediated apoptosis (Zhang et al., 2015).  

Among DNA repair genes, I observed high impact mutations in those encoding DNA 

polymerases, POLK (c.1336del), a translesion polymerase that initiates the continuation of 

replication through DNA lesions in damaged DNA, and POLQ (p.Q2513* rs148626322), a gene 

associated with micro homology-mediated end-joining pathway (MMEJ), both in the same 

patient.  I also identified truncating variants in chromatid cohesion REC8, whose protein product 

binds sister chromatids during meiosis, and HMMR (hyaluronan mediated mobility receptor), 

which encodes for a cell motility protein that forms a complex with tumor suppressors BRCA1 

and BRCA2.  Common missense variations in HMMR have been shown to modify the penetrance 

of breast cancer risk in BRCA1 pathogenic mutation carriers (Maxwell et al., 2011).  
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Furthermore, two RAD52 truncating SNPs; rs4987207 p.S346* and rs4987208 p.Y415* were 

discovered.  RAD52 mediates complementary ssDNA annealing and recruits RAD51 

recombinase to promote recombination and HRR.  However, the RAD52 truncating variants 

observed in our sample had previously been found to lack an association with OVCA or breast 

cancer (J. Han et al., 2002).  
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Figure 8. Summary of variant findings amongst our 48 subjects of high risk for 

genetic inheritance of OVCA.
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Table 8. High Impact Mutations in DNA repair and Cell Cycle Control Genes, not 

Featured on HBOC Testing Panels. Rare and high impact variants (frameshift or stop gain) in 

sample found in DNA repair or cell cycle control genes not currently known to associate with 

breast or ovarian cancer.  MAF=Minor Allele Frequency in Non-Finish Europeans (ExAC).  

Mouse Phenotype= Available phenotypic information on homozygote (-/-) or heterozygote (+/-) 

mouse knock out models. Ovary expression data RPKM (reads per kilobase per million) obtained 

by https://gtexportal.org. *For reference, OVCA genes BRCA1=.6, BRCA2= .095, RAD51D= 4.  

All variants listed were confirmed by Sanger DNA Sequencing. 
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3.4 BRCA2 p.K3326* truncation as a possible modifier of penetrance  

The prevalence of the BRCA2 K3326* variant (Figure 9A) in our sample, along with the 

evidence of an association with lung, aero digestive, and pancreatic cancer (Akbari et al. 2008; 

Martin et al. 2005; Rudd et al. 2006) indicate that this variant may be of minimal risk when 

inherited alone but could act as a modifier of penetrance to a secondary more deleterious 

mutation.  A portion of the missing heritability in OVCA is likely due to this type of polygenic 

inheritance.  This possibility led to the investigation of other putative pathogenic variants that 

each of the four carriers had inherited in addition to BRCA2 p.K3326* (Table 4).  I therefore 

looked for additional rare, and moderate or high impact variants in either HBOC panel genes or 

candidate genes (involved in DNA repair/cell cycle and with cancer associations in HGMD) 

amongst the four BRCA2 K3326* carriers.  A complete list of rare and predicted to be damaging 

variants of moderate impact in cell cycle and DNA repair genes is available in the appendix 

(Table 12).  

 In analyzing relevant candidate genes, I identified two patients who along with K3326* 

were carriers of an additional, clearly pathogenic variant; a RAD51D nonsense mutation (OCK1) 

and ATM frameshift mutation (OCF28-1).  This observation is interesting because BRCA2 

interacts with the RAD51 paralogs and a BRCA2/RAD51D double knockdown leads to a greater 

loss of cellular viability (Jensen et al., 2013).  The carrier of both the ATM frameshift and 

BRCA2 K3326* variants developed both breast and ovarian cancer.  Sequencing of some of her 

immediate family members at these loci determined that both variants were inherited from her 

father, who died of liver cancer and a twin sibling and paternal grandfather of the patient, both of 

whom died of lung cancer (a disease associated with this SNP), but whose genotypes are not 

available (Yufei Wang et al., 2015).  A second female sibling of this patient had inherited the 
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ATM frameshift but not the BRCA2 K3326* variant and developed breast cancer at the age of 46 

(Figure 9B).  
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B. 

 

 

 

 

 

Figure 9. BRCA2 K3326* may be a modifier of penetrance A. BRCA2 protein schematic 

depicting site of truncation p.K3326* variant.  Variant occurs at the C-Terminus (red) which 

occurs in a RAD51 binding domain and site of CDK2 phosphorylation. B. OCF28 kindred. Arrow 

indicates patient OCF28-1 Kindred of proband (arrow) with p.K3326* plus pathogenic ATM 

frameshift shows inheritance of both alleles from an affected father.  
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Carriers of BRCA2 p.K3326* and additional variants of interest 

Patient 

ID 

Gene Consequence Amino Acids dbSNP ID   Variant MAF HGMD cancer 

phenotype  

SIFT PolyPhen 

OCF28-1 ATM FRAMESHIFT CATCTG>C 

Exon 13 

N/A c.2503_2507del N/A Breast/Ovarian  N/A N/A 

BRCA2 STOP K3326* rs11571833 c.9976A>T 0.009 Breast/Ovarian N/A N/A 

PALLD MISSENSE R303S rs138897963 c.909A>T 0.001 Pancreatic TOL Probably 

Damaging 

OCK1 ATM MISSENSE F1463C rs138327406 c.4388T>G 0.002 Breast/Ovarian DEL Probably 

Damaging 

BRCA2 STOP K3326* rs11571833 c.9976A>T 0.009 Breast/Ovarian N/A N/A 

ERCC6 MISSENSE M713V rs201486862 c.2137A>G 0.00001 Basal cell carcinoma, 

Cockayne syndrome,  

DEL Benign 

HMMR STOP E352* rs146791423 c.1054G>T 0.003 None N/A N/A 

RAD51D STOP R206* rs387906843 c.616C>T 0.00001 Breast/Ovarian N/A N/A 

RECQL MISSENSE C321Y rs150889040 c.962G>A 0.00001 Breast N/A Probably 

Damaging  

OCN22 BRCA2 STOP K3326* rs11571833 c.9976A>T 0.009 Breast/Ovarian N/A N/A 

BUB1B MISSENSE E409D rs28989188 c.1227A>C 0.0004 Gastrointestinal TOL Probably 

Damaging 

OCP36 BRCA2 STOP K3326* rs11571833 c.9976A>T 0.009 Breast/Ovarian N/A N/A 

AXIN1 MISSENSE V340M rs143974067 c.1018G>A 0.00004 Colorectal adenoma DEL Probably 

Damaging 

 

Table 9. Additional VUSs in carriers of BRCA2 K3326* Rare and predicted to be 

deleterious/damaging variants (SIFT/PolyPhen-2) found in carriers of BRCA2 p.K3326*. MAF= 

Minor allele frequency (ExAC, European non-Finnish) OBS= Number of times variant was 

observed in sample, DEL= deleterious TOL= Tolerated, N/A= Not Available.  All variants listed 

were confirmed by Sanger DNA Sequencing. 
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CHAPTER 4: DISCUSSION PART I 

We performed WES on 48 women with OVCA and suspected to have an inherited cancer   

predisposition, yet, were previously tested and found negative for known pathogenic mutations 

in either BRCA1 or BRCA2.  In doing so, we discovered pathogenic variants in ATM (n=2) and 

FANCM (n=1), genes currently associated with breast cancer but not OVCA, as well as in a gene 

recently implicated in hereditary ovarian cancer risk, RAD51D (n=2).  These findings suggest 

that carriers of ATM and FANCM pathogenic mutations are possibly at elevated risk of 

developing OVCA as well as breast cancer and that the underling genetics of these two cancers 

may overlap more than previously believed.  Available expression data via GTEx Portal (Broad 

Institute) indicate both genes have higher RPKM (reads per kilobase per million) scores in ovary 

tissue versus breast; ATM =3.6 breast, 8.7 ovary and FANCM =.89 breast, 1.1 ovary 

(https://gtexportal.org) indicating that these genes are expressed in ovarian cells.  Furthermore, 

the results from WES indicate that there is clinical value of resequencing BRCA1/2 negative 

individuals that fit current NCCN guidelines and whose genetic risk was assessed before the era 

of multi-gene panel testing.   

4.1 WES highlights three likely sources of missing heritability  

The majority of the high risk OVCA participants in our WES sample set did not harbor a 

known clinically actionable cancer predisposing mutation upon reanalysis with whole exome 

sequencing even in known panel genes, emphasizing the current challenge for genetic testing and 

counseling in clinical cancer care.  Despite the large heritable component to OVCA, the majority 

of underlying genetic risk remains unexplained (Pharoah et al., 2013).  Although many novel 

putative risk loci were discovered, most are rare or private familial missense mutations of 

https://gtexportal.org/
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unknown clinical significance and not found in the published literature.  The rarity of these 

variants also means that they would not be identifiable in GWAS studies.   

4.1.1 Variants of Unknown Significance 

Many high-risk women who undergo testing for HBOC are found to be carriers of one or 

more “variants of unknown significance” (VUSs), (Domchek and Weber, 2008) a rare, generally 

missense mutations, unannotated in their consequence to disease risk rather than a clearly 

pathogenic variant.  Although the functional consequence of high impact variants such as 

nonsense and frameshift mutations are straightforward to interpret, missense mutations which 

result in single amino acid substitutions are of ambiguous significance.  I observed suspicious 

missense VUSs in HBOC panel genes employing well-accepted bioinformatics techniques: 

BRCA1, BRCA2, CHK2, MUTHY, MHS6, NBN, PMS2, and most notably in ATM and PALB2.  

Overall, such suspicious variants in 23 of our 48 test subjects were uncovered.    

The ability to assess VUSs is crucial to closing the gap in unexplained heritability while 

aiding in more informed clinical decisions.  A common approach to implicating a VUS is by 

linkage analysis, whereby the causal mutation is expected to segregate with the disease in one or 

more families.  Unfortunately, DNA samples from other affected and non-affected family 

members are generally not often available.  A linkage analysis is also not ideal for low to 

moderate risk factors because these variants are not highly penetrant.  Bioinformatic prediction 

tools for variant consequence on protein function, such as SIFT and PolyPhen, are very useful 

for prioritizing variants for follow up.  However, in silico assessment tools such as these often 

contradict each other and are not considered to have enough sensitivity and specificity to inform 

clinical decisions (Richards et al., 2015).  Despite the advent of detailed guidelines for variant 

interpretation, many variants in ClinVar list numerous testing facility submissions with 
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conflicting interpretations of pathogenicity.  Thus, the vast majority of single nucleotide 

polymorphisms (SNPs) in cancer-relevant genes remain unannotated as to whether the change is 

deleterious to protein function and potentially disease causing.   

4.1.2 Polygenic risk loci  

Further complicating this issue is that under a polygenic model for hereditary cancer risk, 

carriers of multiple low penetrant genetic variants could be at high risk (Johnson et al., 2007), 

meaning much of the unexplained heritability in OVCA may be due to more than one genetic 

risk factor that, when inherited together, have an additive or synergistic effect.  One variant in 

BRCA2 (p.K3326*) stood out as a possible modifier of penetrance due to an almost five-fold 

increased occurrence over expected and the observation that two of the four women carrying this 

SNP also had a pathogenic mutation of moderate effect in a second low penetrance gene 

involved in DNA repair, (ATM and RAD51D).  This SNP results in a 93-amino acid truncation 

and is reported as benign according to genetic testing services, mostly due to weak disease co-

segregation in familial studies.  This assessment has been questioned in recent literature due to 

its association with other cancers.  Functional data have suggested that K3326* acts similar to 

wild type BRCA2 for recombination repair and MMC sensitivity (K. Wu et al., 2005).  However, 

the K3326* truncation is located at the C-terminus of the BRCA2 protein (exon 27), and deletion 

of this domain has been shown to result in reduced cellular response to stalled and collapsed 

replication forks, (T. M. Kim et al. 2014) hypersensitivity to gamma-radiation and premature 

senescence (Morimatsu, Donoho, and Hasty, 1998).  Additional evidence in the literature along 

with our findings suggest the possibility that this variant that may be of minimal effect alone but 

enhances the penetrance of another moderately penetrant inherited variant in the same functional 

pathway.  This would explain the weak genotype to phenotype correlation with this variant as 
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well as the observation that this variant has been found in-trans with other pathogenic BRCA2 

mutations, without causing Fanconi Anemia.  Due to our small sample set, the occurrence of this 

SNP with additional moderate pathogenic mutations in the same pathway could be by chance.   

However, in agreement with the hypothesis of a role as a possible modifier of penetrance, the 

BRCA2 K3326* truncation is found in The Cancer Genome Atlas (TCGA) database three times, 

each in OVCA patients who are all also carriers of pathogenic genetic variants; (TCGA-24-1562-

01 with an NF1 frameshift, aTCGA-13-1512-01 and TCGA-23-1026-01 with BRCA1 frameshift 

mutations (http://cancergenome.nih.gov).  

4.1.3 Novel genes yet to be implicated in risk association studies 

It is likely additional risk genes exist that, when mutated, predispose to breast and/or 

ovarian cancer, but have yet to be implicated due to their rarity or low penetrance.  In my attempt 

to discover novel OVCA predisposition genes, I chose to focus on genes involved in DNA repair 

or cell cycle control as these two dynamic and interrelated pathways are crucial to genomic 

stability and are the most mutated pathways in hereditary breast and ovarian cancers.  In doing 

so, I discovered 11 high impact mutations in genes that are not featured on current HBOC risk 

assessment panels (CHK1, FANCM, HMMR, MCM4, POLK, POLQ, RAD1, RAD52, REC8, and 

TP53I3) but have very similar or overlapping functions to those genes on commercial panels.  

The finding of a pathogenic variant in FANCM during this specific analysis is promising as it 

affirms the candidate gene rationale and marks the first known case of a FANCM deleterious 

variant in an ovarian cancer patient.  Of the eleven variants discovered in this analysis, five were 

novel.  The rarity of these high impact variants is likely due to the essential natures of the DNA 

repair and cell cycle pathways.  Knock out mouse model studies of CHK1, MCM4, and RAD1 all 

show embryonic lethality in homozygous null mice and increased cancer incidence in 

http://cancergenome.nih.gov/
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heterozygotes (Table 8), similarly to BRCA1/2, which makes them compelling and worthy of 

following up with functional studies.  This study is the first of its kind to describe these germline 

loss of function variants in ovarian cancer patients with inherited risk.  Further work should 

include analyzing genes in other cancer related pathways since risk loci may also occur in 

mechanisms not involved in DNA repair or cell cycle control. 

4.2 Functional assessment is necessary to implicate novel genetic loci identified by 

bioinformatics tools 

One key challenge facing genetic testing and counseling in clinical cancer care is the 

functional significance of VUSs in cancer-associated genes as well as loss of function variants in 

candidate risk genes.  This information is necessary to provide genetics professionals with 

guidance for better informed patient risk evaluation, risk reduction strategies and possibly 

improved therapeutic modalities.  While bioinformatics tools for assessment are useful for 

variant filtering purposes, they are not sensitive enough for clinical decisions.  Ideally, missense 

variants predicted by bioinformatics algorithms to be ‘pathogenic’ or ‘likely pathogenic’ and 

novel candidate genes found with high impact mutations would be functionally tested using 

sensitive and specific assays that add to computational evidence for clinical insights.  Because a 

single low-to-moderately deleterious mutation may appear inconsequential alone but could 

modify the penetrance of a deleterious mutation in the same pathway, combining the risk of 

multiple genetic variants may also lead to better risk assessment.   

 

 



73 
 

 
 

CHAPTER 5: RESULTS PART II 

Analysis of WES data from 48 high risk women with OVCA revealed 11 loss of function 

variants in genes not already implicated in hereditary OVCA risk, but whose protein products are 

involved in DNA repair and/or cell cycle control, the two most commonly mutated pathways in 

HBOC.   Because hereditary OVCA is rare, displays variable penetrance, and has a high degree 

of underlying genetic heterogeneity, the implication of a novel gene, especially of high 

penetrance, is unlikely to occur through case control associative studies.  Therefore, I chose to 

functionally assess various candidate genes found mutated in our cohort.  Specifically, FANCM, 

CHK1, MCM4, RAD1, and REC8 were of interest due to their conservation and cancer-

associated mouse model phenotype which includes embryonic lethality in homozygote 

knockouts and increased cancer incidence in heterozygotes.  I was particularly interested in 

TP53I3 because a very rare high impact mutation in this gene occurred twice in our cohort in 

unrelated individuals.  Also there was very limited functional data and no mouse model 

phenotype in the literature.  Finally, HMMR was also chosen because it has been shown to form 

a complex with BRCA1/BRCA2 and common missense variations in this gene have been shown 

to modify the penetrance of breast cancer risk in BRCA1 pathogenic mutation carriers (Maxwell 

et al., 2011).  

Genes chosen as positive controls for functional analyses include HBOC risk genes 

BRCA1 and BRCA2 (high risk) as well as ATM, CHK1, RAD51D (moderate risk).  The choice of 

multiple positive controls with both high and moderate penetrance was to gauge the sensitivity of 

the assays employed for both highly and moderately penetrant genes as well as to determine 

whether they could distinguish between a gene of high penetrance and one of moderate 

penetrance. Two highly sensitive assays were employed to measure involvement in homologous 
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recombination repair (HRR) and sensitivity to DNA damage induction; the HRR Assay and 

clonogenic survival assay, respectively (see Materials and Methods sections 2.8 and 2.9).  The 

HRR assay quantifies the efficiency of the cell’s endogenous HRR pathway by inducing double 

strand DNA breaks (DSB) into cells with a non-functional and stably transfected GFP allele.  

The GFP allele will only become active once the DSB repair has occurred, therefore the amount 

of GFP induction proxies for the efficiency of the HRR pathway.  This method accurately assays 

a gene’s involvement in the HRR pathway by measuring the amount of GFP observed after 

siRNA knock down as compared to a scramble siRNA control after DSB induction.  The 

clonogenic survival assay is a commonly applied tool to assay a gene’s involvement in cell 

survival as well as to measure drug cytotoxicity.  It is often used to determine the effectiveness 

of chemotherapeutic reagents under various tumor genetic profiles.  All functional analyses were 

carried out with the use of small inhibitory RNAs (siRNA), which interfere with the expression 

of a targeted gene by preventing mRNA translation.  Knock downs achieved by siRNA were 

verified by western blotting technique described in Materials and Methods section 2.7 “Protein 

Detection and Quantification.”  These blots are featured in the appendix of this manuscript.  

5.1 Knock down of various candidate genes found mutated in cohort lead to reduced 

homologous recombination repair efficiency 

Using the HRR protocol described in section 2.8, I compared the amount of GFP 

observed 48 hours after I-SCEI DSB induction among cells with siRNA knockdown of both 

candidate and control genes to cells with no knock down (scramble siRNA control).  All 

conditions were adjusted for a negative control background (empty plasmid in place of I-SCEI 

plus scramble siRNA).  Five to six replicates represent each condition to reduce inflation of Type 

II error.  siRNA knock down of panel genes tested (BRCA1, BRCA2, ATM, CHK2 and RAD51D), 
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led to a significant decrease in HRR efficiency after siRNA knock down.  Notably, knock down 

of BRCA1 and BRCA2 led to the highest reduction in HRR efficiency (approximately 70% and 

89% less compared to scramble control respectively (reported as mean difference MD)) while 

ATM, CHK2 and RAD51D knock down led to moderate reduction in HRR efficiency (45% 27%, 

and 35% reduction respectively), consistent with their roles as moderately penetrant genes.  

siRNA depletion of candidate genes REC8, TP53I3, CHK1 and FANCM all lead to a significant 

reduction in HRR.  The greatest reduction amongst candidate genes was observed with CHK1 

which was similar to BRCA1 and lead to a reduction of 69.2% (p=<0.001).  The next largest 

reduction in HRR efficiency was observed with FANCM, (MD= 54.1, p=<0.001).  Knock down 

of TP53I3 led to a reduction of 33% (p=0.001) and REC8 with a modest reduction of 14.8% 

(p=0.001).  siRNA depletion of RAD1 did not lead to a decrease in HRR efficiency but seemed 

to trend towards an increase. While this is not statistically significant, biologically it would make 

sense since RAD1 is believed to play a role in microhomology-mediated end joining (MMEJ) for 

the repair of ionizing radiation and chemicals that induce DSBs (Ma et al., 2003).  Therefore, 

cells depleted of RAD1 may be more reliant on the HRR pathway for DSB repair. One study has 

shown RAD1 as indispensable to microhomology-mediated end joining (MMEJ) for the repair of 

ionizing radiation and chemicals that induce DSBs (Ma et al. 2003). 
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Figure 10. HRR efficiency after siRNA knockdown.  M = Mean % of GFP; SD = Standard 

deviation; MD = mean difference as compared to scramble control.  t = statistical test for mean 

difference; * p<0.05; ** p<0.01; ***p<0.001; p-values in bold are significant. Data normalized 

to negative control for GFP background signal and positive control for GFP induction.  

  Gene M SD MD t p 

  Scramble 97.4 2.58 --- --- --- 

  
  

 P
a
n

el
 

ATM 51.9 13.43 -45.5 6.72 0.006 

BRCA1 27.5 8.32 -69.9 21.45 0.000 

BRCA2 8.6 5.02 -88.8 39.97 0.000 

CHK2 70.3 9.96 -27.1 5.98 0.003 

RAD51D 62.8 12.61 -34.7 5.452 0.011 

  
  

  
  

  
  

 N
o
n

-P
a
n

el
 

FANCM 43.3 6.68 -54.1 21.53 0.000 

CHEK1 28.2 14.04 -69.2 11.95 0.000 

RAD1 108.7 7.57 11.2 -2.52 0.119 

REC8 82.6 5.68 -14.8 6.40 0.000 

TP53I3 64.4 13.55 -33.0 7.55 0.000 
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5.2 Knock down of RAD1, CHK1 or FANCM lead to a decrease in cellular viability  

One key genetic mechanism in the process of tumorigenesis is the loss of heterozygosity 

(LOH) at tumor suppressor loci leading to the “inactivation” of genes required for the regulation 

of cell growth and differentiation (Ryland et al., 2015).  Functional loss of genes essential for 

cellular viability is known to encourage LOH (Yuxun Wang et al., 2010) and is associated with 

increased cancer risk.  For instance, ovarian breast cancer risk genes BRCA1 or BRCA2 are both 

involved in cellular viability.  To identify which of the candidate genes are also involved with 

cellular viability, I compared the clonogenic survival of cells after siRNA knockdown of 

candidate and control genes to a scramble siRNA control (Figure 11).  Five to six replicates 

represent each condition repeated to reduce inflation of Type II error.  Among panel genes 

tested, siRNA knock down of either ATM, BRCA1 or BRCA2 lead to significant a loss of 

clonogenic survival. There was no loss of cellular viability observed for panel genes CHK2 or 

RAD51D.  For candidate gene CHK1, there was a loss of clonogenic survival similar to BRCA1 

and BRCA2 (CHK1 = mean survival of 13.8%, BRCA1 = mean survival of 16.5%, BRCA2 = 

mean survival of 8.8%).  In addition, siRNA knock down of candidate gene RAD1 led to a 

reduction in clonogenic survival that was similar to that observed with ATM (mean survival of 

23.3% vs 29.6% respectively). Most interestingly, siRNA depletion of FANCM led to the 

greatest loss in clonogenic survival with a mean plating efficiency of just 2%.  
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Figure 11. Plating efficiency after siRNA knock down. M = Mean % survival; SD = Standard 

deviation; MD = mean difference as compared to scramble control.  t = statistical test for mean 

difference; * p<0.05; ** p<0.01; ***p<0.001; p-values in bold are significant. 

     

  Gene M SD MD t p 

  Scramble 42.4 5.44 --- --- --- 

P
a
n

el
 

ATM 29.6 10.06 -12.8 -2.55 0.044 

BRCA1 16.5 3.54 -25.9 -9.78 0.000 

BRCA2 8.8 6.59 -33.6 -9.62 0.000 

CHK2 35.7 5.54 -6.7 -2.12 0.060 

RAD51D 37.7 11.94 -4.7 -0.88 0.406 

N
o
n

-P
a
n

el
 

FANCM 2.1 1.83 -40.3 -17.2 0.000 

CHK1 13.8 6.37 -28.6 -8.37 0.000 

HMMR 43.8 17.09 1.4 0.19 0.855 

MCM4 40.0 7.87 -2.4 -0.61 0.554 

RAD1 23.3 8.82 -19.1 -4.51 0.002 

REC8 42.6 4.78 0.2 0.06 0.952 

TP53I3 37.8 8.98 -4.6 -1.07 0.315 
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5.3 Cells deficient in CHK1, RAD1, TP53I3 or REC8 display significant sensitivity 

to DNA damage 

Genomic stability is directly related to a cell’s DNA repair efficiency.  Cells deficient in 

DNA repair mechanisms display greater sensitivity to DNA damaging reagents.  

Chemotherapeutic drugs; Cisplatin, Etoposide, and Olaparib specifically exploit this 

vulnerability and cells deficient in tumor suppressor genes BRCA1 or BRCA2 are especially 

sensitive to these reagents.  To assess whether, and to what extent, any of the candidate genes are 

involved in DNA repair and genomic integrity, I compared the clonogenic survival of cells with 

targeted siRNA depletion of candidate and panel genes to a scramble siRNA followed by 

exposure to Cisplatin, Etoposide, or Olaparib. These three reagents where chosen due to their 

different mechanisms regarding DNA damage and in relevance to current OVCA therapies. Cells 

were exposed to the drugs 48 hours post siRNA knock down, when the targeted depletion is 

greatest. Drug concentration and exposure were determined by optimizing for an IC50, which for 

the purposes of these experiments, is the concentration required for 50% cytotoxicity in a 

scramble siRNA knock down control.  The IC50 treatment exposure for each reagent was as 

follows: Cisplatin= 2 M for 2 hours, Etoposide= 10 M for 4 hours, and Olaparib 10 M for 4 

hours.  The clonogenic survival after drug exposure for each condition was adjusted to the 

plating efficiency observed with the same siRNA knock-down and without drug exposure.  Five 

to six replicates represent each condition repeat to reduce inflation of Type II error.  The 

assessment of candidate gene FANCM to these reagents was not possible due to the extreme loss 

of cellular viability that occurred after siRNA depletion. 
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5.3.1 Cells deficient in CHK1, RAD1 or TP53I3 display increased sensitivity to Cisplatin 

Cisplatin generates interstrand cross links (ICLs) which are covalent bonds between both 

strands of a DNA duplex.  ICLs inhibit crucial processes such as DNA replication, ultimately 

leading to chromosomal instability.  ICLs are repaired by HRR and thus, cells deficient in this 

pathway are highly sensitive to DNA-damaging agents such as Cisplatin.  As expected, all panel 

genes included in this assay (BRCA1, BRCA2, ATM, CHK2, and RAD51D) were demonstrated to 

be involved in HRR and ICL repair as targeted siRNA against their respective mRNA products 

led to significantly increased cytotoxicity with Cisplatin exposure (Figure 12A, Table 10). 

Specifically, loss of BRCA1 or BRCA2 leads to the most sensitivity, each with a mean 

difference of approximately 40% increased cytotoxicity as compared to the scramble control. 

This observation is consistent with their status as highly penetrant in cancer susceptibility when 

mutated.  Cells with knock down of candidate genes: CHK1, RAD1, or TP53I3 also displayed 

significantly increased sensitivity to cisplatin exposure equal of greater to that observed in the 

moderately penetrant panel genes ATM, RAD51D and CHK2 (Figure 12A, Table 10).  Loss of 

RAD1 led to the most sensitivity observed amongst candidate genes with a mean viability of 

18.3% which is a 33% increased cytotoxicity as compared to the scramble control (p=<0.001). 

Depletion of CHK1 and TP53I3 both led to a mean increase in cisplatin cytotoxicity of 

approximately 27% (p=<0.001, p=<0.001 respectively.)  There was no increased cisplatin 

cytotoxicity observed after knock-down of REC8, HMMR or MCM4. 

5.3.2 Cells deficient in CHK1, REC8 or RAD1 display increased sensitivity Etoposide  

Etoposide is a topoisomerase II (topoII) alpha inhibitor approved for clinical use as a 

chemotherapeutic reagent in platinum resistant OVCA.  Topoisomerase II enzymes are 

responsible for simultaneously cleaving both stands of the DNA double helix for the 
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management of entangled and supercoiled DNA. These enzymes are essential for DNA 

replication.  Inhibition of topoII by Etoposide prevents the re-ligation of cleaved DNA and 

therefore leads to DNA DSBs.  Etoposide also results in single-strand DNA breaks (SSBs), since 

it prevents the re-ligation of the stands independently of each other (Yang et al. 2009).  BRCA1 

and BRCA2 deficient cells have been described as sensitive to etoposide treatment 

(Treszezamsky et al., 2007).  Consistent with these reports, both BRCA1 and BRCA2 deficient 

cells displayed significant sensitivity to Etoposide in this assay.  Knock down of CHK2 or 

RAD51D also led to increased Etoposide sensitivity (with approximately 30% and 14% increased 

cytotoxicity respectively).  Among non-panel candidate genes, CHK1, RAD1 and REC8 knock 

down all resulted in increased cytotoxicity in response to Etoposide.  CHK1 deficient cells 

displayed a mean survival of 34.9% (p=0.024), RAD1 24.5% (p=<0.000) and REC8 35.4% 

(p=0.018), which is an increase of approximately 14%, 24% and 13% in cytotoxicity versus the 

scramble control respectively. (Figure 12B) 

5.3.3 Cytotoxicity to Olaparib is specific to BRCA1 and BRCA2 deficient cells.  

Olaparib is a PolyADP-ribose polymerase (PARP) inhibitor approved for clinical as an 

adjunct to platinum-based therapies in patients with BRCA1 or BRCA2 deficiencies.  Tumor cells 

with mutant BRCA1 and/or BRCA2 have demonstrated to be up to 1000 times more sensitive to 

PARP inhibitors as compared to WT cells (Farmer et al. 2005; Bryant et al. 2005).  Cancer cells 

deficient in HRR are more dependent on the PARP proteins which are involved in ssDNA break 

repair by Base Excision Repair (BER). Inhibiting this pathway leads to synthetic lethality as the 

cells loses its back up mechanism to repair DNA.  In clinical trials, the use of PARP inhibitors 

have shown to improve the progression-free survival when added to the treatment of women with 

breast or ovarian cancer responsive to platinum, which induces DSBs (Robson et al., 2017; 

https://en.wikipedia.org/wiki/Ovarian_cancer
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Ledermann, 2016; Evans and Matulonis, 2017).  Olaparib used as a monotherapy has shown to 

be effective in patients with germline BRCA1/2 mutation and advanced cancer (G. Kim et al. 

2015; Kaufman et al., 2015).   In this experiment, cells were treated with Olaparib in the absence 

of cisplatin and increased cytotoxicity was specific to BRCA1 and BRCA2 deficient cells 

(Figure 12C, Table 10).  ATM, CHK2 and RAD51D panel genes have demonstrated a less 

prominent role in HRR as compared to BRCA1 or BRCA2 (Figure 10).  This observation may 

indicate that sensitivity to Olaparib requires a heavier reliance on the BER pathway. It is also 

possible that deficiency of ATM, CHK2 or RAD51D would lead to increased Olaparib sensitivity, 

but only in conjunction with platinum-based therapy.   
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Figure 12. Clonogenic survival rates after drug exposure by siRNA knock down A. Cell 

Survival after exposure to Cisplatin by siRNA knockdown. All values adjusted to mean plating 

efficiency after siRNA knockdown alone.  B. Cell Survival after exposure to Etoposide by 

siRNA knockdown.  All values adjusted to mean plating efficiency after siRNA knockdown 

alone.  C. Cell Survival after exposure to Olaparib by siRNA knockdown.  All values adjusted to 

mean plating efficiency after siRNA knockdown alone.  * p<0.05; ** p<0.01; ***p<0.001. 
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Table 10. Statistical data for clonogenic survival rates after Cisplatin, Etoposide and 

Olaparib treatment by siRNA knockdown. M = Mean % survival; SD = Standard deviation; 

MD = mean difference as compared to scramble control.  t = statistical test for mean difference; 

* p<0.05; ** p<0.01; ***p<0.001; p-values in bold are significant. 
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5.4. Estimating penetrance through a 2-dimensional model of cell viability and DNA 

sensitivity 

Most cancer-associated risk loci have incomplete penetrance.  The penetrance of a 

pathogenic variant is determined by its associated lifetime risk with disease.  Genes are often 

described as having low, moderate, or high penetrance based on the lifetime risk associated with 

a loss of function variant. BRCA1 is the most highly penetrant gene in hereditary breast and 

ovarian cancer syndrome with an 80% lifetime risk of breast cancer and 50% risk of OVCA for 

LOF variants.  Accurate estimates of genetic penetrance are necessary to inform clinical 

decisions.  Therefore, it would be optimal to evaluate novel risk genes in a manner that would 

provide an indication of penetrance employing a functional test.   

The two genes with the highest known penetrance for HBOC in the literature, BRCA1 

and BRCA2, are important to both cellular viability and DNA repair.  Loss of function of either 

leads to a profound reduction of cellular viability, and increased sensitivity to DNA damaging 

reagents as observed in the various functional assays employed in this study.  Functional 

depletion of genes that are moderate in their penetrance, such as ATM, RAD51D and CHK2, lead 

to more moderately increased DNA damage sensitivity as compared to BRCA1/BRCA2, and may 

or may not impact cell viability in the absence of a cytotoxic reagent.  Because cell viability and 

DNA damage sensitivity can be observed independently of each other yet are both phenotypes of 

a BRCA-like tumor suppressor gene, plotting genes using a two-dimensional graph based on 

these phenotypical outcomes may lead to a separate geographical clustering of high and 

moderately penetrant genes in HBOC risk.  By plotting genes with known penetrance, we can 

assess the potential of this method.  If accurate, we can then use this scale to estimate the likely 

risk/penetrance of candidate risk genes that act as a tumor suppressor in a BRCA-like manner.  
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5.4.1 Plotting panel genes based on cell viability and DNA damage sensitivity after siRNA 

knock down correctly differentiates between moderate and high penetrance 

The three different chemotherapeutic drugs (Cisplatin, Etoposide and Olaparib) employed 

for the clonogenic survival assays each work via three different mechanisms to exploit repair 

deficiencies (see section 1.11 Targeted therapy in clinical cancer care).  BRCA1 and BRCA2 are 

the most highly penetrance HBOC associated genes and BRCA1 and BRCA2 deficient cells are 

particularly sensitive to all three of these chemotherapeutic reagents.  Cells deficient in tumor 

suppressor genes that are BRCA-like but moderate in penetrance, such as ATM, RAD51D and 

CHEK2, display significant but less or no increased cytotoxicity to each of these three reagents.  

Therefore, in assessing the extent to which a gene is BRCA-like, it seems rationale to take into 

consideration the sensitivity to all three of these reagents; Cisplatin, Etoposide and Olaparib 

versus a single reagent alone.  

To test this assumption, four plots were generated each with reduction in cell viability 

observed without drug exposure on the Y axis and cytotoxicity observed after DNA damage on 

the X axis.  Figure 13A features a plot that includes the pooled cytotoxicity data across all three 

tested reagents; Cisplatin, Etoposide and Olaparib.  The subsequent plots were generated by only 

accounting for cytotoxicity to each drug alone; Cisplatin; Figure 13B, Etoposide; Figure 13C, 

and Olaparib; Figure 13D.  Since we know the penetrance of the panel genes plotted (listed in 

Figure 13), we can see that the first plot (Figure 13A) which features the pooled sensitivity data 

across all three reagents is most accurate.  With this plot, highly penetrant genes BRCA1 and 

BRCA2 fall in top most section of both DNA damage sensitivity and reduction of cellular 

viability (upper right), while the scramble control falls in the lowest section of both conditions 
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(lower left).  Panel genes ATM, RAD51D and CHK2, known to be of moderate penetrance, fall in 

the middle of the graphical representation.   

The statistical data generated from pooling all conditions (cell viability after knockdown 

alone, and cytotoxicity to Cisplatin, Etoposide and Olaparib after siRNA knock down) is 

represented in Table 11.  The overall survival of cells with siRNA scramble control was 49.6%, 

which is expected due to the IC50 optimization of drugs and normal plating efficiency of HeLa 

cells.  The survival of BRCA1 deficient cells across all conditions was 22% (p=<0.00) and 

BRCA2 was 15% (p=<0.00).  All moderately penetrant genes fell in a range of 30-39% survival 

across all conditions and were all statistically significant. The statistical data and geographical 

clustering based on these data observed across panel genes tested are concordant with the current 

penetrance estimates in the literature, and with what clinicians refer to for genetic counseling and 

risk management.  Therefore, this methodology could potentially be useful in estimating 

candidate gene penetrance. 



89 
 

 
 

 

         A                                                                               B 

 

 

 

 

 

 

            C                                                                              D 

 

 

 

 

 

 

 

 

 Breast Ovarian Penetrance 

ATM 17%-52% unknown Moderate 

CHK2 23-48% unknown Moderate 

RAD51D unknown 14.8% Moderate 

BRCA1 46%-87% 39%-63% High 

BRCA2 43%-84% 15%-27% High 

 

       
      Lifetime risks for breast and ovarian cancer determine penetrance 

      Stats provided by Myriad Genetics (https://myriad.com/) 
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Figure 13. Plotting panel genes based on cell viability and pooled DNA damage sensitivity 

after siRNA knock down correctly differentiates between moderate and high penetrance.  

A. Plot with pooled DNA damage sensitivity data across all three reagents correctly indicates 

ATM, RAD51D, CHK2 as moderately penetrance and BRCA1 and BRCA2 as high penetrant. B. 

Etoposide incorrectly estimates CHK2 as highly penetrant and BRCA1 as moderately penetrant.  

C. Cisplatin incorrectly estimates CHK2 as a highly penetrant gene D. Analysis of Olaparib 

alone groups ATM with scramble control.  
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5.4.2 CHK1 and RAD1 predicted as moderate to high and TP53I3 as moderate penetrant 

genes 

As previously discussed, plotting panel genes based on cell viability and pooled 

cytotoxicity to DNA damage after siRNA knock down may differentiate between moderate and 

high penetrance.  In total, six control data points; scramble (SCR), ATM, CHK2, RAD51D, 

BRCA1 and BRCA2 represent an accurate comparison for estimating the penetrance of candidate 

genes.  I therefore plotted these data points once more alongside non-panel candidate genes.  

Again, with reduction in cell viability observed without drug exposure on the Y axis and 

cytotoxicity observed after DNA damage (Cisplatin, Etoposide, Olaparib) on the X axis (Figure 

14). Table 11 lists the statistical data from overall survival across all conditions by siRNA 

knockdown.   

In this analysis, MCM4, HMMR and REC8 were observed to cluster with the scramble 

(SCR) control suggesting they are unlikely to be BRCA-like tumor suppressor genes.  There is no 

statistical difference between these candidate genes and the scramble control in overall mean 

survival.  While REC8 deficient cells showed low but significant sensitivity to Etoposide 

treatment, the difference between scramble control and pooled DNA treatment sensitivity plus 

plating efficiency (cell viability after knock-down) was insignificant (p=0.06).  In the plot for 

estimating penetrance, candidate gene TP53I3 clustered with moderately penetrant genes and had 

a survival of 36% (p=<0.001) across all conditions versus the survival of cells with siRNA 

scramble control at 49.6%.  CHK1 fell in a graphical position indicative of a gene with moderate 

to high penetrance as the loss of cellular viability without DNA damage was observed as similar 

to BRCA1 and BRCA2, however the sensitivity observed in response to DNA damaging reagents 

was similar to moderately penetrant genes. The mean pooled survival for cells deficient in CHK1 
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for all conditions was 32.7% (p=0.001).  Of all candidate genes assayed, RAD1 was shown to be 

the most impactful regarding cell survival and cytotoxicity to DNA damage.  Cells deficient for 

this gene had a survival rate of 26.8% (p=<0.001) across all conditions and this gene fell close to 

BRCA1 and BRCA2 on the graphical representation of estimated penetrance, indicating that it 

may be a highly penetrant gene (Table 11). 
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Figure 14. Penetrance estimates based on clustering with known risk genes  
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  Gene M SD MD t p 

  Scramble 49.6 8.3 --- --- --- 
P

a
n

el
 

ATM 37.5 19.89 12.0 -2.60 0.015 

BRCA1 22.2 15.54 27.4 -7.71 0.000 

BRCA2 14.8 10.27 34.7 -13.34 0.000 

CHK2 30.1 12.95 19.5 -6.30 0.000 

RAD51D 38.6 12.92 11.0 -3.72 0.001 

N
o
n

-P
a
n

el
 

FANCM 2.1 1.83 47.5 -26.9 0.000 

CHK1 32.7 19.70 16.8 -3.89 0.001 

HMMR 46.5 13.79 3.0 -0.96 0.342 

MCM4 48.4 12.17 1.2 -0.41 0.684 

RAD1 26.8 13.12 22.8 -7.31 0.000 

REC8 44.1 11.51 5.5 -1.89 0.066 

TP53I3 36.0 11.61 13.6 -4.90 0.000 

 

Table 11. Statistical data for pooled survival rates across all clonogenic survival conditions; 

no drug, Cisplatin, Etoposide and Olaparib. M = Mean % survival, SD = Standard deviation, 

MD = mean difference as compared to scramble control.  t = statistical test for mean difference, 

p-values in bold are significant. 

 

Pooled survival rates (%) 
all conditions  
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CHAPTER 6: DISCUSSION PART II 

6.1 Functional analyses compliment bioinformatics and strengthen cases for various 

novel risk genes 

During WES analysis, various candidate genes were found with loss of function 

mutations in women with OVCA and high risk of genetic inheritance.  While compelling 

variants are often identified through WES/WGS, they remain putative risk loci until proven 

otherwise.  Because high risk variants are rare, and hereditary OVCA has a great deal of 

heterogeneity, implicating a novel gene or variant based on enrichment in cases versus controls 

is unlikely.  Additionally, implicating a variant based on segregation is not ideal due to 

incomplete penetrance and lack of informative family members.   Bioinformatic tools alone are 

not sensitive enough to direct clinical decisions but are useful for variant filtering purposes.   

This study is unique in its ability to identify novel risk loci for two main reasons; first, 

WES was carried out on a very select group of patients with high risk of genetic inheritance, yet 

with no known pathogenic variant.  Second, candidate loci identified by well-established 

bioinformatics techniques were followed up by functional assessment using sensitive wet lab 

techniques.  This approach identified four novel genes; FANCM, CHK1, RAD1 and TP53I3 as 

having the BRCA-like phenotype typically observed in tumor suppressor genes commonly 

mutated the germline of women with inherited risk of breast and/or ovarian cancer.   

In this study, siRNA knock-down of FANCM led to a reduction in homologous 

recombination repair and large loss of clonogenic survival similar to that observed in BRCA1 or 

BRCA2 deficient cells.  Because of the large loss in cell survival after knock-down, it could not 

be assayed for cytotoxicity to Cisplatin, Olaparib, or Etoposide after knock-down and therefore 

an estimate of this gene’s penetrance could not be established.  However, the functional data 
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from this study, along with the family pedigree of the FANCM carrier (Figure 7), and association 

with familial breast cancer in recent literature (Peterlongo et al. 2015) is supportive of high risk.  

Additionally, mouse model data describes FANCM homozygous knock outs as having decreased 

life span and increased cancer incidence (Bakker et al., 2009). 

Candidate gene CHK1, like panel gene CHK2, encodes for a serine/threonine protein 

kinase required for checkpoint-mediated cell cycle arrest and activation of DNA repair by 

homologous recombination repair. This gene is highly conserved, and the c.1564-1565insA 

frameshift variant identified by WES in this study sample is novel.  In this study, siRNA knock 

down of CHK1 lead to a loss of HRR efficiency, reduction in cellular viability, and increased 

sensitivity to Cisplatin and Etoposide similar to that of observed in BRCA1/BRCA2 deficient 

cells.  Loss of function of this gene is predicted to be moderate to highly penetrant in cancer risk 

as it clusters with known high and moderate penetrant tumor suppressor genes on a 2-

dimensional model of cell viability and cytotoxicity to DNA damage.  These results are 

consistent with mouse model phenotypes describing homozygote nulls are embryonic lethal, and 

heterozygote knock-outs display enhanced tumorigenesis (Q. Liu et al., 2000).  Recently, CHK1 

has been identified as an important biomarker for chemotherapy response in breast cancer (Al-

Kaabi et al. 2015) and the deletion of CHK1 is a common genetic event that occurs in the 

beginning stages of breast cancer development (Mu et al., 2011).  Loss of heterozygosity is likely 

to have occurred in the carrier of the CHK1 frameshift.  Unfortunately, the patient declined 

tumor tissue usage, and this could not be confirmed.  The fact that CHK1 has not already been 

implicated in in hereditary risk of ovarian or breast cancer is likely because pathogenic variants 

in this gene are extremely rare.  

 



97 
 

 
 

Another novel loss of function variant was uncovered in RAD1.  Knock out mouse 

models of this gene describe embryonic lethality in homozygotes and larger, more numerous, 

earlier onset skin tumors with DMBA-TPA treatment in heterozygotes (L. Han et al., 2010).  In 

this study, siRNA knock down of RAD1 led to decreased cellular viability and increased 

sensitivity to Cisplatin, and Etoposide similar to that observed with knock down of BRCA1 and 

BRCA2.  However, RAD1 depletion did not lead to a reduction in HRR efficiency.  This indicates 

that RAD1 may be involved in DNA repair via a mechanism other than HRR.  Most of what is 

known regarding RAD1 functional activity is derived from yeast studies.  RAD1 is a part of the 

9-1-1 cell cycle checkpoint complex to arrest cellular proliferation in the presence of incomplete 

DNA replication or damaged DNA.  This complex has also been shown to participate in DNA 

repair by forming a clamp to facilitate resection of DNA double strand breaks points (Ngo and 

Lydall 2015).  One study has shown RAD1 as indispensable to microhomology-mediated end 

joining (MMEJ) for the repair of ionizing radiation and chemicals that induce DSBs (Ma et al. 

2003).  Another study in yeast identified RAD1 mutants as hyper sensitive to platinum (Perego et 

al. 1998).  While the human orthologue of yeast Rad1 is not well described in the literature, the 

observation of a germline RAD1 LOF variant in an OVCA patient considered at high risk of 

genetic inheritance, plus the results of this study’s functional analyses in a human cervical cell 

line makes a compelling case for this gene as a risk factor.  The scale of penetrance developed in 

this study estimates the LOF of RAD1 to be high risk.  The carrier of the RAD1 frameshift 

variant developed OVCA at the age of 65, and had a family history of colon, breast (n=2), 

prostate, lung, and leukemia all of which on one parental side of the family, which is indicative 

of a highly penetrant germline risk variant.  Unfortunately, segregation analysis was not possible 

since DNA samples from her deceased family members are not available.   
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TP53I3 is an oxidoreductase-like protein and an inducer of ROS, that is transcriptionally 

activated by the tumor suppressor TP53 and likely to be involved in TP53-mediated apoptosis 

(Zhang et al. 2015).  A nonsense SNP in this gene was observed twice in this study sample 

amongst unrelated individuals, despite its rarity (rs145078765, p.S252*, MAF= 0.0009). The 

functional analysis of this gene during this study indicated that loss of TP53I3 leads to a 

moderate reduction in HRR efficiency as well as increased cell sensitivity to Cisplatin.  Loss of 

function of this gene is predicted to be moderately penetrant in cancer risk as it clusters with 

known moderately penetrant tumor suppressor genes on a 2-dimensional graphical representation 

of cell viability and DNA sensitivity. 

Another candidate gene assessed in this study was REC8, which encodes for a cohesin 

complex protein required for the structural maintenance of chromosomes during meiosis. 

Cohesions are necessary to join sister chromatids together until DNA replication is complete. 

Rec8 functional studies in yeast described it as a meiosis-specific (Yoon et al. 2016).  However, 

in this study, siRNA reduction of REC8 led to a decrease in DNA repair by homologous 

recombination and increased sensitivity to Etoposide. Because the pooled data across all 

clonogenic survival conditions did not reach not significance (p=.06), this may indicate that 

REC8 LOF would be of minimal risk, and possibly a modifier of penetrance.  However, as 

mentioned previously, the methods employed in this study are specific to capture a BRCA-like 

tumor suppressor phenotype.  It is possible that the tumor suppressor functions of REC8 are 

mostly independent of DNA repair pathway.  Recently, investigators identified REC8 as a tumor 

suppressor gene epigenetically downregulated in gastric cancer (Yu et al. 2017).  Another study 

showed that epigenetic silencing of REC8 was robustly associated with PI3K pathway alterations 
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in thyroid tumors, possibly encouraging the oncogenic properties of the PI3K/AKT/mTOR 

pathway, which is important to cell cycle regulation (D. Liu et al., 2015).  

6.2 A Novel scale for estimating penetrance through a 2-dimensional model of cell 

viability and DNA sensitivity 

Most cancer-associated risk loci have incomplete penetrance. The penetrance of a 

pathogenic variant is determined by its associated lifetime risk with disease, and accurate 

estimates of genetic penetrance are necessary to inform clinical decisions.  Genes are often 

described as having low, moderate, or high penetrance based on the lifetime risk associated with 

a loss of function variant.  Unfortunately, lifetime risk estimates are difficult to obtain with rare 

variants and even well-established cancer risk loci can have unknown penetrance.  Currently, 

there exists no laboratory-based functional method for the specific purpose of estimating 

penetrance of genetic loci in HBOC.   

Candidate tumor suppressors are often assayed in conjunction with a BRCA1 or BRCA2 

positive control since these genes are the two most highly penetrant in HBOC risk.  The term 

“BRCAness” or “BRCA-like” has come to describe other tumor suppressor genes that lead to 

similar phenotypes with loss of function, such as sensitivity to DNA damage and loss of cell 

viability.  Various HBOC risk loci that possess BRCA-like tumor suppressor properties have been 

implicated in the last decade.  Many risk loci are described as moderately penetrant due to 

lifetime risks estimated to be much higher than the general population, yet much lower than 

BRCA1 or BRCA2.  In this study, all lab experimental designs incorporated the use of five 

positive controls for the comparison of novel candidate risk genes to two highly and three 

moderately penetrant established risk genes in the context of BRCA-like tumor suppressor 

properties.   
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The assays employed in this study were sensitive enough to implicate all five established 

HBOC cancer risk genes tested.  Importantly, a pooled analysis of cell viability and cytotoxicity 

to DNA damage was able to clearly distinguish between moderate and high-risk genes in a 2-

dimentional geographical representation. Notably, this technique estimated candidate genes 

CHK1 and RAD1 as moderate to high and TP53I3 as moderately penetrant genes.   

While preliminary, this scale has the potential to functionally validate additional 

candidate genes identified by other WES studies and possibly estimate the penetrance of certain 

established HBOC risk genes with unknown lifetime risk profiles (RAD50, BRIP1, BARD1, etc.)  

This approach could eventually serve as a tool to better inform clinical management of certain 

patients.  Genetic testing clinics that engage in research may choose to employ this methodology 

to help in closing the gap in missing heritability of this disease.   

6.3 Limitations and Future Directions 

It is important to note the various limitations of this study.  Firstly, because WES targets 

exonic DNA, it was only possible to analyze the protein coding and closely surrounding regions 

on the genome in these high-risk women.  While bioinformatic analysis was performed on the 

1000 bps captured upstream of the exons of panel genes, no suspicious variants were uncovered 

in either promoter or splice donor/acceptor loci.  Additionally, large copy number variants 

(CNVs) are not readily detectable through WES data and could be a source of missing 

heritability.  Using ExomeDepth, an R package which relies on read depth to indirectly infer 

deletions or duplications, I was able to analyze all exomes for possible CNVs in panel genes, but 

no true calls were detected (data not shown).   

Additionally, the candidate gene analysis performed was primarily focused on DNA 

repair and cell cycle control as these are the two most commonly mutated pathways in HBOC.  It 
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is likely that risk loci occur outside of these pathways and further analyses of these exomes 

should be performed with this in mind.  However, one important consideration in pathway 

analysis of WES data is that it is far easier to determine that a variant leading to a loss of 

function versus a gain of function by sequence change.   

Furthermore, it must be emphasized that the penetrance estimates derived from functional 

studies are specific to a loss of function risk loci in BRCA-like tumor suppressor genes involved 

in cell viability and/or DNA repair.  Accordingly, the functional analysis employed in this study 

suggests that candidate genes REC8, HMMR, and MCM4 lack the “BRCA-ness” tumor 

suppressor phenotype typically observed in breast and ovarian cancer risk genes.  However, we 

cannot say for certain that they are not risk factors by other means.  Still, the overall approach 

may be applicable to develop similar penetrance estimate scales specific to other cancer related 

pathways.  Additionally, the use of siRNA for gene depletion is not optimal since the various 

siRNA have different knock down efficiencies.  This makes it difficult to accurately compare 

phenotypic outcomes by gene knockdown. Finally, because this methodology is new, it should 

be further validated, refined, and replicated in additional cell lines, and preferably by employing 

gene knock out techniques in place of mRNA depletion.  
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APPENDIX 

 

Table 12. Rare missense variants in non-HBOC panel genes involved in DNA repair or cell 

cycle control and are associated with cancer phenotypes in HGMD. MAF=Minor Allele 

Frequency in (ExAC Non-Finnish Europeans.).  DEL= Deleterious TOL= Tolerated, N/A= 

Information not available, *Variants in these genes were not confirmed by Sanger DNA 

sequencing. 

 

Gene Amino 

Acids 

dbSNP ID MAF OBS HGMD (cancer phenotype 

associated with gene) 

SIFT Polyphen 

APEX1* P248L rs201100630 0.00005 1 Head and Neck DEL Benign 

AXIN1 V340M rs143974067 0.00004 1 Colorectal adenoma DEL Probably Damaging 

BUB1B E409D rs28989188 0.0004 1 Gastrointestinal TOL Probably Damaging 

CASP10* I406L rs80358239 0.004 1 Autoimmune lymphoproliferative 

syndrome II 

TOL Possibly Damaging 

ERCC4* E875G rs1800124 0.019 1 Lung, Cockayne, Xeroderma 
pigmentosa, Breast/Ovarian, 

Fanconi anaemia, 

DEL Possibly Damaging 

ERCC6 M713V rs201486862 0.00006 1 Cockayne syndrome, basal cell 

carcinoma,  

DEL Benign 

EXO1* D270V rs201509012 0.0005 1 Colorectal  DEL Possibly Damaging 

EXO1* G759E rs4150001 0.009 1 Colorectal TOL Benign 

FANCA* T475M N/A N/A 1 Fanconi Anemia DEL Possibly Damaging 

FANCA* A602G N/A N/A 1 Fanconi Anemia DEL Possibly Damaging 

FANCF* P320L rs45451294 0.017 2 Fanconi Anemia  TOL Probably Damaging 

MLH3* V741F rs28756990 0.006 1 Colorectal, Breast/Ovarian,  TOL Possibly Damaging 

PALLD* R303S rs138897963 0.001 1 Pancreatic TOL Probably Damaging 

PMS1* T75I rs61756360 0.0008 1 Breast/ovarian DEL Probably Damaging 

RAD50* T191I rs2230017 0.0007 1 Breast/Ovarian DEL Benign 

RBL1* R199H N/A N/A 1 Multiple adenoma DEL Probably Damaging 

RBL1* E624Q N/A N/A 1 Multiple adenoma TOL Possibly Damaging 

RECQL C321Y rs150889040 0.00001 1 Breast N/A N/A 

WRN* T573A rs150148567 0.001 1 Colorectal, Breast, Pancreatic, 

Werner syndrome 

DEL Probably Damaging 
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Figure 15. Western blots for siRNA knock down. Lysates from functional assays indicating 

protein expression with scramble (+) and reduction of same protein with targeted siRNA knock 

down (-) compared to Actin or Vinculin loading control.     
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While 25% of ovarian cancer (OVCA) cases are due to inherited factors, most of the 

genetic risk remains unexplained. This study addressed this gap by identifying previously 

undescribed OVCA risk loci through the whole exome sequencing (WES) of 48 BRCA1/BRCA2 

wild type women diagnosed with OVCA, selected for high risk of genetic inheritance. Five 

clearly pathogenic variants were identified in this sample, four of which are in two genes 

featured on current multi-gene panels; (RAD51D, ATM). In addition, a high impact variant in 

FANCM (R1931*) was identified.  FANCM has been recently implicated in familial breast 

cancer risk but is not yet featured on testing panels.  Numerous rare and predicted to be 

damaging variants of unknown significance were detected in genes on current commercial 

testing panels.  Also, the BRCA2 variant p.K3326*, considered benign but resulting in a 93 

amino acid truncation, was overrepresented in our sample (OR= 4.95, p=0.01) and coexisted in 

the germline of these women with other deleterious variants, suggesting a possible role as a 

modifier of genetic penetrance.  
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A candidate gene analysis detected loss of function (LOF) variants in genes involved in 

OVCA relevant pathways; DNA repair and cell cycle control, including FANCM, CHK1, 

TP53I3, REC8, HMMR, RAD1, and MCM4. Wet lab functional assessment implicated FANCM, 

CHK1, RAD1 and TP53I3 as having the BRCA-like phenotype typically observed in tumor 

suppressor genes commonly mutated the germline of women with inherited risk of breast and/or 

ovarian cancer.  Importantly, plotting various panel genes based on cell viability and sensitivity 

to DNA damage after siRNA knock down correctly differentiated between moderate and high 

penetrant genes. This technique identified candidate genes CHK1 and RAD1 as high and TP53I3 

as moderate in penetrance.  

The results of this project indicate that WES on study samples filtered for family history 

and negative for known causal variants is the most appropriate study design for identifying rare 

and novel high-risk variants. This study implicates novel risk loci as well as highlights the 

necessity of wet lab functional assessment.  Importantly, this study also suggests that wet lab 

assays may be employed to differentiate moderate from high risk genetic loci.  
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