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Generalized Ratio-cum-Product Estimator 
for Finite Population Mean under Two-
Phase Sampling Scheme 

Gajendra Kumar Vishwakarma 
Indian Institute of Technology (ISM) Dhanbad 

Dhanbad, India 

Sayed Mohammed Zeeshan 
VIT Bhopal University 

Bhopal, India 

 

 
A method to lower the MSE of a proposed estimator relative to the MSE of the linear 

regression estimator under two-phase sampling scheme is developed. Estimators are 

developed to estimate the mean of the variate under study with the help of auxiliary variate 

(which are unknown but it can be accessed conveniently and economically). The mean 

square errors equations are obtained for the proposed estimators. In addition, optimal 

sample sizes are obtained under the given cost function. The comparison study has been 

done to set up conditions for which developed estimators are more effective than other 

estimators with novelty. The empirical study is also performed to supplement the claim 

that the developed estimators are more efficient. 

 

Keywords: Statistical methods, correlation, point estimation, two-phase sampling, 

bias, MSE 

 

Introduction 

In sampling surveys, a number of sampling techniques required information about 

an auxiliary variate, say X, to increase the efficiency of the estimator (population 

mean) of the variate, say Y, the character of interest for estimation. There may be 

cases where such auxiliary information is not available but can be obtained 

relatively easily (i.e. at a comparatively low cost in terms of time and money). In 

such cases, it is worthwhile (suitable) to draw a relatively large sample from a 

population and enumerate it for the auxiliary variate X, and then take either an 

independent sample, or a sub-sample of the first sample for measuring the variable 

Y. This technique of taking samples in two phases is known as two-phase sampling. 

Some notable contributions in this direction were made by Cochran (1940), Robson 

https://doi.org/10.22237/jmasm/1608553320
https://doi.org/10.22237/jmasm/1608553320
mailto:zeeshan008x52@gmail.com
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(1957), Murthy (1964), Singh (1967), Sahai (1979), Bahl and Tuteja (1991), Singh 

and Espejo (2003), Kadilar and Cingi (2005), Singh and Tailor (2005), Singh and 

Vishwakarma (2007, 2008), Shabbir et al. (2014), Vishwakarma and Sayed (2017), 

and many others. 

In general, the two-phase regression estimator is more efficient than the two-

phase ratio (or product) estimators except when the regression line of the variable 

under study on the auxiliary variable passes through the neighborhood of the origin. 

Most of the ratio and product type estimators recently developed are simply a 

modification of other existing estimators available in the literature. This has led to 

the accumulation of a large number of the ratio as well as product type estimators 

with cumbersome structure over the passage of time. Often these estimators require 

the knowledge of other population parameters in advance or has to guess it with the 

experience gathered over the period of time in sample survey or estimate it through 

pilot survey or the sample itself and in optimum case the MSE of the proposed 

estimator is found generally equivalent to the MSE of the regression estimator (in 

two-phase). Moving in this direction, we have proposed estimators and shown that 

how in optimal case its minimum MSE of the proposed estimators is more efficient 

than regression estimator. One more aspect of the proposed method is the important 

role played by the Bias of the estimator in improving MSE which was neglected 

before in the survey literature works in the area of ratio and product estimators. 

Consider V = (V1, ,V2,…, VN) to be a finite population composed of N units 

and (yj, xj), where j = 1, 2,…, N, indicate the variates on Vj (the jth unit) of the 

population V. In the case when the population mean of auxiliary variate is unknown, 

but it can be accessed conveniently and economically, population mean of study 

variate is obtained using two-phase sampling method. In two-phase sampling a 

large preliminary sample of size n′ is selected, known as the first-phase sample and 

then from the first-phase sample a sub-sample of size n is drawn known as the 

second-phase sample. Note the drawing of units from the population is done using 

simple random sampling without replacement (SRSWOR) scheme. 

The variance of the y̅ (usual unbiased estimator) is 

 

 ( ) 2 2

1V = yy f Y C .  (1) 

 

The two-phase sampling version of ratio and product estimators are: 

 

 Rd =
x

y y
x

 
 
 

  (2) 
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 Pd =
x

y y
x

 
  

  (3) 

 

where 

 

 

fist-phase sample mean of auxiliary variate,

second-phase sample mean of study variate,

second-phase sample mean of auxiliary variate.

x

y

x



  

 

The MSEs of y̅Rd and y̅Pd are: 

 

 ( ) ( )2 2 2

Rd 1 3MSE = 2y x yx y xy Y f C f C C C + −
 

,  (4) 

 

 ( ) ( )2 2 2

Pd 1 3MSE = 2y x yx y xy Y f C f C C C + +
 

.  (5) 

 

where 

 

 
( )

( )

( )
( )

( )
( )( )

2

2

1 2 3 1 2 2

2
2

2 2

2
1

2
2

1 1

1 1 1 1 1 1
= , = , = = , = ,

1
= , = , = ,

1

1 1
= , =

1 1

y

y

N
yxx

x yx y j

jy x

N N

x j yx j j

j j

S
f f f f f C

n N n N n n Y

SS
C S Y Y

X S S N

S X X S Y Y X X
N N


=

= =

     
− − − −           

−
−

− − −
− −



 

 

 

The two-phase sampling version of difference estimators is: 

 

 ( )D = Dy y x x+ − .  (6) 

 

The minimum MSE of y̅D is: 

 

 ( ) ( )2 2 2

D 1 3min
MSE = Y yxy Y C f f − .  (7) 

 

The two-phase sampling version of exponential ratio and product estimators (see 

Singh & Vishwakarma, 2007) are: 
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 1 = exp
x x

t y
x x

 − 
  + 

  (8) 

 

 2 = exp
x x

t y
x x

− 
 + 

  (9) 

 

The MSEs of t1 and t2 are: 

 

 ( ) 2 2 2

1 1 3

1
MSE =

4
y x yx y xt Y f C f C C C

  
+ −  

  
,  (10) 

 

 ( ) 2 2 2

2 1 3

1
MSE =

4
y x yx y xt Y f C f C C C

  
+ +  

  
.  (11) 

Proposed Estimators 

Motivated by the above two-phase sampling scheme’s estimators the following 

estimator is suggested: 

 

 
( )

( )

1
= exp

1

x x
T y

x x





  −
 

 +  

,  (12) 

 

where α is a real constant. 

Moreover, T reduces to a set of estimators {y̅, t1, t2} for different values of α 

such that y̅ for α = 0, t1 for α = 1, and t2 for α = –1. 

In order to calculate the bias and MSE of T, let us consider 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0 1 1

0 1

2 2 2 2 2 2

0 1 1 1 1 2

2

0 1 1 0 1 2 1 1 2

= 1 , = 1 , = 1

E = E = E = 0

E = , E = , E = ,

E = , E = , E =

y x x

yx y x yx y x x

y Y e x X e x X e

e e e

e f C e f C e f C

e e f C C e e f C C e e f C 

  + + +


 


 


  

  (13) 

 

Expressing Equation (12) in terms of errors up to the second degree, we obtain: 
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( ) ( )

2
2 2 2 2

0 1 1 1 1 1 0 1 0 1 1 1 1= 2 2 2 2 2
4 8

T Y

Y e e e e e e e e e e e e e
 

−

 
    + − − + + − + + − 

 

  (14) 

 

Taking the expectations in Equation (14) the bias of T obtained is: 

 

 ( ) ( )
2

2 2

3Bias = 2
8 4

X X yx Y XT f Y C C C C
 


 

+ − 
 

.  (15) 

 

Again, from Equation (14), by neglecting the error terms of second degree, we 

have: 

 

 ( )0 1 1=
2

T Y Y e e e
 

− + − 
 

.  (16) 

 

Now squaring Equation (16) and taking expectation the MSE of T is obtained as: 

 

 ( )
2

2 2 2

1 3 3MSE =
4

Y yx Y X XT Y f C f C C f C


 
 

− + 
 

  (17) 

Optimal Value of α 

The optimal values of α, for which the MSE of the T gets minimized, is calculated 

by using the following conditions: 

 

 ( )MSE = 0T





.  (18) 

 

On solving Equation (18), we have 

 

 = 2 Y
yx

X

C

C
  ,  (19) 

 

where α* denote the optimal values of α. Thus, putting optimal values of α in 

Equation (17), we get: 
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 ( ) ( )2 2 2

1 3min
MSE = Y yxT Y C f f − .  (20) 

 

Note: MSE(T)min = MSE(y̅D)min. 

Proposed Generalized Estimator 

The proposed estimator is generalized so that, in the process, the proposed 

generalized estimator improves on the proposed estimator T or difference estimator 

yD (or regression estimator in two-phase sampling). Thus, our proposed generalized 

estimator is 

 

 
( )

( )
g

1
= exp

1

x x
T ky

x x





  −
 

 +  

,  (21) 

 

where k is again constant so that it can be minimized further. 

Now, expressing Equation (21) in terms of errors up to the second degree, we 

obtain 

 

 

( ) ( )

( )

2 2

g 0 1 1 1 1 1 0 1 0

2
2 2

1 1 1 1

= 1 2 2 2 2
4

2
8

T Y k Y kY e e e e e e e e e

e e e e






  − − + + − − + + −




 + + − 



  (22) 

 

Squaring Equation (22), 

 

 

( ) ( ) ( )

( ) ( )

( )

2
2 2 2 2 2

g 0 1 1

2 2 2

0 1 1 1 1 1 0 1 0

2
2 2

1 1 1 1

= 1
2

2 1 2 2 2 2
4

2
8

T Y k Y k Y e e e

k k Y e e e e e e e e e

e e e e







 
− − + + − 

 


  + − + − − + + −




 + + − 



  (23) 

and taking the expectation of Equation (23), the MSE of Tg is obtained as: 

 

 ( ) ( ) ( ) ( ) ( )
2 2 2

gMSE = 1 MSE 2 1 BiasT k Y k T k k Y T− + + − .  (24) 
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Minimizing MSE(Tg), the optimum value of k is found by differentiating (24) with 

respect to k and equating the resultant equation with zero: 

 

 
( )

( ) ( )

2

opt 2

Bias

MSE 2 Bias

Y Y T
K

Y T Y T

+
=

+ +
.  (25) 

 

Using (25) in (24), 

 

 ( )
( ) ( )( )
( ) ( )

22

g 2min

MSE Bias
MSE =

MSE 2 Bias

Y T T
T

Y T Y T

−

+ +
.  (26) 

 

The MSE(Tg) depends upon MSE(T) and Bias(T). Now for α* = 2ρyxCY / CX 

we know that MSE(T) will further attain minimum. Hence, the final minimum MSE 

using α* will turn out to be 

 

 ( )
( ) ( ) 

( ) ( ) 

2
2

min

g 2min

min

MSE Bias |

MSE | =
MSE 2 Bias |

Y T T

T
Y T Y T












 −
  

+ +
,  (27) 

 

where Bias(T) | α* is the value of Bias(T) at α* = 2ρyxCY / CX. 

 

Theorem 1. The relative efficiency of the proposed generalized estimator Tg with 

respect to MSEs of estimator T and regression estimator in two-phase sampling or 

difference estimator ydd under SRSWOR, is inversely proportional to the sample 

size n′ and n. In other words, as n′ → N and n → N the value of relative efficiency 

(RE) tends to 1, i.e. RE → 1. 

 

Proof. From the definition of relative efficiency RE, we get 

 

 
( )

( )g min

MSE

MSE |
RE

T  
= ,  

where MSE(∙) stands for MSE(T)min or MSE(ydd). On simplifying we get 
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( )

( )

( ) ( )( )2

2

1
MSE 2 Bias |

Bias |
1

MSE

RE Y Y T
T

Y







= + +

 
−  

 

.  

 

Now as n′ → N and n → N we have f1 → 0, f2 → 0, and f3 → 0. As a result, 

Bias(T) | α* / MSE(∙) → 0, MSE(∙) → 0, and therefore RE → 1. 

Efficiency Comparisons 

For making efficiency comparisons of the estimators which are developed with the 

existing estimators discussed above in the article, we have from (1), (4), (5), (7), 

(10), (11), and (20): 

 

 ( ) ( )MSE V iff 4 Y
xy

X

C
T y

C
   ,  (28) 

 

 ( ) ( )RdMSE MSE iff 4 2Y
xy

X

C
T y

C
   − ,  (29) 

 

 ( ) ( )PdMSE MSE iff 4 2Y
xy

X

C
T y

C
   + ,  (30) 

 

 ( ) ( )1MSE MSE iff 4 1Y
xy

X

C
T t

C
   − ,  (31) 

 

 ( ) ( )2MSE MSE iff 4 1Y
xy

X

C
T t

C
   + .  (32) 

 

Now, in case of comparison study between MSE(Tg)min | α
* and MSE(T) we get that 

MSE(T) ≤ MSE(Tg)min | α
* only if 

 

 ( ) ( )
2

min
MSE Bias | 0T Y T   +   .  (33) 

 

Thus, MSE(T) will be always smaller than MSE(Tg). Therefore, Tg will be more 

efficient than T because Equation (33) will always be satisfied. 
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Determination of n′ and n (for Fixed Cost c) 

Suppose c is the total cost spent in the survey to obtain information. Total cost of 

the survey (expected) is given as: 

 

 1 2=c c n c n + ,  (34) 

 

where 

 

 
1

2

cost per unit spent to obtain information on first-phase sample

cost per unit spent to obtain information on second-phase sample

c

c

=

=
  

 

The expressions for the MSEs of y̅Rd, y̅Pd, y̅dd, t1, t2, and T can be expressed or 

rewritten by 

 

 ( ) 1 2

1 1
MSE = A A

n n

 
+  

,  (35) 

 

where 

 

 

2
2 2 2

1

2
2 2

2

=
4

=
4

Y X yx Y X

yx Y X X

A Y C C C C

A Y C C C







 
+ − 

 

 
− 

 

  

 

MSE(∙) stands for MSE of y̅Rd, y̅Pd, y̅dd, t1, t2, and T, and A1 and A2 are coefficients 

of n–1 and n′–1. Note: For α = 2, –2, 2ρxy(CY / CX), 1, and –1 become coefficients for 

MSE for y̅Rd, y̅Pd, y̅D = T, t1, and t2, respectively. 

Let us define functions ϕ as 

 

 ( ) ( )1 2= MSE c n c n c  + + − ,  (36) 

 

where λ is the Lagrange’s multiplier. 

Partially differentiating (36) with respect to n′ and n, equating it to zero, and 

using (33), we get the optimum n′ and optimum n for the proposed estimator T as 

 



VISHWAKARMA & ZEESHAN 

11 

 2 2

opt

1 2 2 2 1 1

=
c A c

n
c A c c A c


+

  (37) 

 

and 

 

 1 1

opt

1 2 2 2 1 1

=
c A c

n
c A c c A c+

.  (38) 

 

Hence, on substituting (37) and (38) in (35), the optimum MSE of T is 

 

 ( ) 1 2 2 2 1 1 1 2 2 2 1 1

1 2opt

1 1 2 2

MSE =
c A c c Ac c A c c Ac

T A A
c A c c A c

   + +
+   

   
   

.  (39) 

 

Using it for MSE of Tg we get 

 

 ( )
( ) ( )( )
( ) ( )

22

opt opt

g 2opt
opt opt

MSE Bias |
MSE | =

MSE 2 Bias |

Y T T
T

Y T Y T












−

+ +
,  (40) 

 

where Bias(T)opt | α
* is the value of Bias(T) at α* = 2ρyxCY / CX and 

 

 3

opt opt

1 1
f

n n

 
= −   

.  

Empirical Study 

In order to check or confirm the gain in the efficiency of the recommended 

estimators, five data sets were used: 

Data Set I 

The source of this datasets is Dobson (1990, p. 47). The auxiliary variate X is taken 

as initial white blood cell count and the study variate Y is taken as survival time of 

a leukemia patient. The parameters given are: 
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 0.7493; 0.2017; 0.54709; 0.6860; 30; 12; 4X Y xyC C Y N n n = = = − = = = =   

Data Set II 

The source of this datasets is Steel and Torrie (1960, p. 282). The auxiliary variate 

X is taken as percentage of chlorine and the study variate Y is taken as log of leaf 

burn in sacs. The parameters given are: 

 

 = 0.7493; = 0.4803; = 0.4996; = 0.6860; = 30; =12; = 4X Y xyC C Y N n n −   

Data Set III 

The source of this datasets is Das (1988). The auxiliary variate X is taken as number 

of laborers in agricultural farms for 1961 and the study variate Y is taken as number 

of laborers in agricultural farms for 1971. The parameters given are: 

 

 =1.6198; =1.4451; = 0.7213; = 39.0680; = 278; = 70; = 30X Y xyC C Y N n n    

Data Set IV 

The source of this datasets is Murthy (1967, p. 228). The auxiliary variate X is taken 

as number of workers and the study variate Y is taken as output. The parameters 

given are: 

 

 = 0.9484; = 0.3542; = 0.9150; = 5182.64; = 80; = 30; =10X Y xyC C Y N n n    

 
 
Table 1. Percentage relative efficiencies of various estimators of Y̅ 
 

 Data Sets 

Estimators I II III IV V 

y̅ 100.00 100.00 100.00 100.00 100.00 

y̅Rd * * 130.03 36.64 72.33 

y̅Pd 14.11 59.77 * * * 

t1 * * 146.34 200.42 297.97 

t2 53.02 115.14 * * * 

T = y̅D 123.00 123.76 149.98 276.15 307.77 

Tg 123.02 125.08 158.04 284.23 313.62 
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Data Set V 

The source of this datasets is Murthy (1967, p. 228). The auxiliary variate X is taken 

as fixed capital and the study variate Y is taken as output. The parameters given are: 

 

 = 0.7507; = 0.3542; = 0.9413; = 5182.64; = 80; = 30; =10X Y xyC C Y N n n    

 

In order to check whether the suggested estimators are effective even when 

cost is fixed we consider two data sets. 

Data Set 1 

The data frame consists of as many as 70 villages (known as Tehsil) which are 

located in some province of India. The number of people living there, 

corresponding to each Tehsil, are considered as the auxiliary variate and the area 

under cultivation (in acres) is taken as the study variate. The parameters required 

are (Srivastava, 1993): 

 

 
0.8009; 0.6253; 0.7780; 1755.53; 981.29;

70; 25; 40

X Y xyC C X Y

N n n

= = = = =

= = =
  

 
 
Table 2. Mean square error of various estimators of Y̅ 
 
  

c2 = 10, c2 = 50, c0 = 1025 (fixed) 

Data set Estimators nopt n′opt MSE(∙) 

1 
ˆ
Rd

Y  24.81 40.93 7690.23 

 ˆ
ReMd

Y  21.53 57.32 5705.54 

 T 21.23 58.80 5494.97 
 Tg 21.23 58.80 5433.86 
     

2 
ˆ
Pd

Y  5.00 6.50 0.3598 

 ˆ
PeMd

Y  5.57 5.06 0.3674 

 T 4.77 7.05 0.3491 

 Tg 4.77 7.05 0.3478 
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Data Set 2 

For demonstrating the performance in the case when correlation is negative, the 

data set is sourced from Maddala (1977, p. 282). The auxiliary variate X is taken as 

the deflated prices of veal and the study variate Y is taken as the consumption per 

capita. The parameters required of the data set are: 

 

 
0.1645; 0.3901; 0.508; 75.79; 61.59;

56; 15; 25

X Y xyC C X Y

N n n

= = = − = =

= = =
  

 

From Table 2, it can be concluded that T and Tg perform better than other estimators 

with novelty. 

Conclusion 

The present study deals with the estimation of unknown mean Y̅ under SRSWOR 

in two-phase sampling scheme. From Table 1, it is observed that for all the 

populations, the PREs of T and Tg are more than that of y̅, y̅Rd, y̅Pd, y̅dd, t1, and t2. In 

addition, T and Tg increase efficiency in comparison to y̅, y̅Rd, y̅Pd, y̅dd, t1, and t2 for 

fixed cost c < c0. Hence, T and Tg should be preferred in practice. It can be seen that 

Tg is more efficient than the difference estimator or two-phase regression estimator. 

It can also be extended to stratified sampling, two-stage sampling and other 

sampling designs or sampling scheme when study variate is contaminated with non-

response. Also, this idea can be extended to multi-auxiliary variate for any sampling 

design. So, the proposed estimators T and Tg outperform the other existing 

estimators of the sampling literature, and hence can be preferred for practical 

applications. 
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