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CHAPTER 1 : INTRODUCTION
1.1 Brief Background and Introduction
In [12], Christ, Nagel, Stein and Waigner studied the LP theories for the singular Radon

Transforms. They consider the following form of the operator

Tf(x) = b(x) / O/ ) K (8) d, (11)

where v,(x) = v(z,t) is a C®°(R" x RY) function defined in a neighborhood of the origin with
Yo(z) = x, ¢ is a C§° cut-off function, supported near the origin of R" and K is a standard
Calderén-Zygmund kernel on RY supported for ¢ near 0.

The key assumption on v (x) is a certain curvature condition (C), which can be stated in
a number of equivalent ways. One of those forms is in terms of a noncommutative version of
Taylor’s formula. Actually they proved that actually there exists a unique vector fields {X,}
with a = (aq,...,an) # 0, so that asymptotically v.(z) ~ exp (Ea %Xa) (x) as t — 0. The
assumption for v(x) that the Lie algebra generated by the X, should span the tangent space
to R™. Under such curvature condition, they proved
Theorem 1.1 ( [12]). Let the operator T' be defined as in and assume the vector fields X,
in the asymptotic representation of vi(x) satisfy the curvature condition (C). Then T extends to
a bounded operator from LP(R™) to LP(R™).

The methods used to prove the theorem are mainly some “lifting technique” and the Cotlar-
lemma estimates, where some techniques appeared in [9] by Christ. The first example of such
operators comes from the Hilbert transform along the parabola, r(x,t) = (z1 — t, 29 — t?)
(Fabes [17]). And some non-translation invariant cases were studied by Nagel, Stein, Wainger
in [54] for L? result in the special case of certain plane curves, Geller and Stein in |23] for the
Heisenberg group, with the various extensions by Miiller in [46-48|, and culminated with Christ

in [9]. Furthermore, Stein and Street in [64-67], and Street in [68] studied a wider class of singular



integral operators in the multi-parameter setting such as the generalized Calderén-Zygmund
operators and singular Radon transforms, and established some related theories including the
LP boundedness property.

More specifically, the LP theory of a multi-parameter version of were established by

Stein and Street in a series of papers [64-67], where the distribution kernel
K() = ZC](-Qj)(t), t=(t1,...,t,) e RN = RM x ... x R
J

is a v-parameter singular kernel with {¢;} C C§° supported in a small ball centered at the origin,
and ¢ J(-2j)(t) is a appropriate v-parameter dilation. Such kernels have equivalent representations
in terms of the growth condition and cancellation condition that people are familiar with. The
difficulty in the multi-parameter case is that if considering the Taylor’s formula for ~;(z), one
has to take care of the “non-pure” vector fields X, which do not appear in the single parameter
case. By giving additional assumptions on these vector fields, they were able to prove the LP
boundedness for such multi-parameter version of .

The above kernels have some interesting examples. For instance, Stein and Street in [64]
considered the case when K (t) is a product kernel, which satisfies some cancellation condition

and the growth condition
’ toil .. ai”K(t)‘ < Ca|t1|—N1—|a1| .. |tV|—Nu—|CU/|

for each multi-index o = (a1, ..., @, ). Another example of the multi-parameter version of ([1.1)
is the case when K (t) is a flag kernel. These operators were studied by Nagel, Ricci and Stein [53],
and it turns out flag kernels can be applied to a wider class of ~;(x).

Also, a special case for v4(x) of the above is the following operator

frvile) [ e N Kt



where K (t1,- - ,1;) is a product kernel relative to the decomposition of R =RxRx---xR and
X1, ..., X are left invariant vector fields on a nilpotent Lie group. In this case, v;(x) satisfies the
required curvature condition obviously, then one can have the LP boundedness of the operator,
see [65] for details.

In [68], Street extended the classical Calderén-Zygmund kernels to the ones in terms of
the Carnot-Carathéodory balls in both single and multi-parameter settings when working on
smooth, connected, compact manifolds. With these kernels, a more general type of Calderén-
Zygmund operators (see Section and for details), including some Radon transforms and
pseudo-differential operators can be defined, and the corresponding LP theories were estab-
lished in [68] by giving appropriate assumptions on the involved vector fields. For instance, the

following Radon transform were studied

Tf(x)= | flv(z,0)yp(y(z, ) K(z,1)dt, (1.2)

Ra

where y(z,t) = Xz = X'+ X s with XA as the list of vector fields X¥, ..., X%,
expanding the R% respectively, ¢ € C§°(Q2) and K is kernel defined the same as Proposition

In this dissertation, we will study the Hardy space H? and its dual space associated with both
the one-parameter and multi-parameter singular Radon transforms, and consider the bounded-
ness of some singular Radon transforms on such Hardy spaces H? when 0 < p < 1.

The Hardy and BMO spaces play an important role in modern harmonic analysis and
applications in partial differential equations. In [19], C. Fefferman and Stein showed that the
space of functions of bounded mean oscillation on R"™, BMO(R") , is the dual space of the
Hardy space H'(R™). They also obtained a characterization of the BMO space in terms of the
Carleson measure.

We now begin to give a brief overview on the multi-parameter singular integrals and Hardy



spaces theory. Multi-parameter analysis is an important subject in harmonic analysis. The
classical Calderén-Zygmund operators theory is an generalization of the well-known Hilbert
transform and is closely related to the Hardy-Littlewood maximal operator which commutes
with the usual dilations on R"™, ¢ - © = (dx1, ..., dxy) for § > 0. The multi-parameter Calderén-
Zygmund operators are also singular integral operators that are extension of the double Hilbert
transform and are closely associated with the strong maximal function which commutes with

the multi-parameter dilations on R", 6 - = = (8121, ..., Opxy) for 6 = (61, ...,6,) € R% [38].

For multi-parameter Calderén-Zygmund operators of the convolution form Tf = K * f,
where K is homogeneous in the sense of 0;...0,K(d - ) = K(z), or when K (x) satisfies certain
differential inequalities and cancellation conditions, such operators and their non-convolution
type analogues have been studied extensively in the literature. The LP (1 < p < 0o) boundedness
of such operators of convolution type was established by R. Fefferman and E. Stein [20]. The
non-convolution type multi-parameter singular integral operators were first studied by Journé (
[39] [40], [41]). More recent work on boundedness on multi-parameter Triebel-Lizorkin and Besov
spaces for Fourier multipliers and singular integral operators can also be found in [7,/44] and L?
estimates for multi-parameter Fourier integral operators have been established in [35/36] which
extend the works of Seeger, Sogge and Stein on the one-parameter Fourier integral operators in
[62] and others in [57H60]. LP estimates for multi-parameter and multi-linear Fourier multipliers
were established by Muscalu, Pipher, Tao and Thiele [51,/52] (see also the work of Chen and

Lu [6]).

To study the endpoint estimates, the multi-parameter Hardy spaces introduced by Gundy-
Stein ( [24]) have been extensively investigated by R. Fefferman ( [17]), Chang and R. Fef-
ferman ( [2], [3], [4]). Motivated by a counterexample of L. Carleson [1], the multi-parameter
BMO(R™ x R™) and Hardy space HP(R™ x R") theory was developed by Chang and R.
Fefferman in a series of papers ( [2], 3], [4]). As has been known, the atoms in multi-parameter

Hardy spaces are supported in arbitrary open sets rather than on cubes or rectangles, it was



difficult to establish boundedness of singular integral operators from multi-parameter Hardy
spaces H? to H? or from H? to LP. Thanks to R. Fefferman, a boundedness criterion for the

HP? to LP of a multi-parameter operator 1" was established using atomic decomposition and a

geometric lemma of Journé (see Journé [39], [40], [41]) in two-parameter setting. However, this
criterion cannot be applied to the case of three or more parameters [39], [40], [41]. The H?
to LP boundedness for Journé’s class of singular integral operators with arbitrary number of
parameters was finally obtained by J. Pipher [56]. Subsequently, Ferguson and Lacey gave a new
characterization of the product BMO(R x R) by using the Journé covering lemma in [21]. More-
over, Lacey, Petermichl, Pipher and Wick in [42] established a characterization of BMO(R"™ xR™)
using multiparameter commutators of Riesz transforms. More recently, the authors of |27, 28]
established the boundedness criterion on multiparameter Hardy spaces for Journé’s class of
singular integral operators with arbitrary number of parameters. For multi-parameter flag sin-
gular integral operators, singular integral operators on the product of Carnot-Carathéodory
spaces, the product of homogeneous spaces, the composition of two singular integral operators
with different homogeneity, etc., the Hardy space and duality theory have been established in
a series of papers [14116,129H32,43| using discrete Littlewood-Paley-Stein theory. In particular,
the multi-parameter flag Hardy spaces theory [32] extend the LP theory of Muller, Ricci and
Stein 4950 and Nagel, Ricci and Stein [53].

Inspired by these characterization of the Hardy spaces on product spaces, we will take
advantage of the discrete Littlewood-Paley analysis to define the Hardy spaces HP and the
Carleson measure spaces CMOP associated with the multi-parameter singular Radon transforms.
Moreover, we will prove the HP boundedness of those operators and thus obtain the endpoint

estimates for the LP boundedness of the multi-parameter singular Radon transforms by Stein

and Street [68].



CHAPTER 2 :HP BOUNDEDNESS OF SINGLE-PARAMETER
SINGULAR RADON TRANSFORM

2.1 Introduction

In the first place, we introduce some notations. Define w® = wq, - wq,, Wwhere a =
(a1,...,ap) is a list of elements in {1,...,7} and w = (wy,...,w,) contains r non-commuting
indeterminates. Also, we denote |a| = L, the length of the list. For instance, o = (5,1, 2), then
la| = 3 and w® = wswws.

We consider a compact, connected, smooth manifold without boundary, denoted by M and
a list of C*° vector fields Wy, ..., W, on M.

Definition 2.1. Given a list of vector fields, W7y,..., W, if the Lie algebra generated by them,

Wi, W W, Wi, W, W, W, -

..., (commutators of order m),...

can span the tangent space T, M for any x € M, then the list of vector fields satisfies Hormander’s
condition.

Actually, the commutators of the vector fields satisfying Hormander’s condition can span the
tangent space for any x € M after finite steps m, because of the compactness. In this situation,
we also say the list of the vector fields satisfies the Hormander’s condition of order m.

We say p: M x M — [0, 00] is the Carnot-Carathéodory distance if

p(z,y) =inf {5 >0 ‘ Fy:[0,1] = M, 5(0) = z,7(1) = y,7(t) =

> a0 20,y € 120,10, | el o <1
j=1 j=1 ’

where Wy, ..., W, are C* vector fields.
It’s easy to verify that p is an extended metric. Moreover, Chow proved the following theorem

for the above distance.



Theorem 2.2 ( [8]). If W1,..., W, satisfy Hormander’s condition, then p is a metric. That is,
p(x,y) < oo, for every z,y € M.

Next, let’s introduce a class of “strictly positive, smooth measures” mentioned in [68].
Definition 2.3 ( [68]). A smooth measure, p on M is a Borel measure on M such that in any
local coordinates z, we may write du = ¢,dm(z), where dm denotes Lebesgue measure, and
¢y is a C* function. We say p is a strictly positive, smooth measure if ¢, > 0 in every local
coordinate system.

We write the functional operation as the integration form. For instance, V f € C°°(M)
and A € C°(M)', X(f) = [ Afdx. We deal similarly between C*°(M x M) and C®(M x M)’
Also, we might define the distribution A by some Ll (M), C§°(U) function f, if X is given by
integration against f on some open set U € M.

Afterward, we always assume W1, ..., W, satisfy Hormander’s condition. With the Carnot-

Carathéodory distance p, we define the Carnot-Carathéodory ball as follows

Bw (x,0) :=={y € M |p(z,y) < 5},

with the radius § centered at z. Nagel, Stein, and Wainger deal with some properties of balls on
the metric space [55] and obtain the following important estimate for the Carnot-Carathéodory
balls.

Theorem 2.4 ( [68]). There are constants Q2 > Q1 > 0 such that for any x € A, 6 > 0,

291Vol(Byy (z, 8)) < Vol(Bw (x, 20)) < 292Vol(Byy (z, 6)).

From , the following property follows automatically:
Lemma 2.1 ( [68]). Vol(Bw (z, p(x, 2))) =~ Vol(Bw (z, p(z,x))).
Remark 2.5. The least possible Q)2 in Theorem [2.1]is considered as the homogeneous dimension

of (M, p, Vol).



2.2 Notations and Preliminaries

To establish the theorems, let’s firstly introduce some types of functions that will be fre-
quently used. Some are introduced in [68] and some are defined newly.
Definition 2.6 ( [68]). We say B C C*°(M) x M x (0, 1] is a bounded set of bump function if:
(i) V(¢, %,6) € B, supp(¢) C Bw (, ).

(ii) For every ordered multi-index «, there exists C, such that V(¢,z,d) € B,
sup |(§W)“¢(z)| < CVol(Bw (x,4)) ™"

Also, we introduce the space of test functions on M. The similar type of test function is intro-
duced in many articles, such as [30], [31], [32], [34].

Definition 2.7. Let 1 € M. A function f on M is said to be a test function if there exists
a constant C' > 0 such that for every m € N | and every ordered multi-index «, the following

holds

W2 (0] € Comr 2T

Mol By (11,1 + pla, 21) (2.1)

We define the norm of such functions for any || < ng and m as

HfH'T(acl,no,m) = sup inf{Cq, .} < 0o, where Cp, 1, is as in (2.1)

|| <no

Note that the definition is made to be invariant by translation. Thus, for another point xo € M,
T (x1,n0,m) and T (z2, ng, m) are equivalent in the corresponding norm. WLOG, we can denote
T (z1,n9,m) by T (ng, m) and represent the collection of all test functions by 7.

In the history of Hardy space Theory, there are lots of characterizations for Calderdn-
Zygmund operators. Here, let’s refer to the classification by Street in [68].

Definition 2.8 ( [68]). We say T' : C*°(M) — C*>°(M) is a Calderén-Zygmund operator of



order t € (—Q1,00) if

(i) (Growth Condition) For each ordered multi-indices a, 3,

—t—|al—|B|
WoWPT (x,2)] < O, o, ) ’
| (2, 2)] < ’BVol(Bw(%P(% z)))

where W, denotes the list of vector fields Wy, ..., W, thought of as partial differential operators
in the x variable and similarly for W,. In particular, the above implies that the distribution

T'(x, z) corresponds with a C*° function for = # z.

(ii) (Cancellation Condition) For each bounded set of bump function B C C°°(M)x M x (0, 1]

and each ordered multi-index «,

sup sup 5t+‘“|Vol(BW(z,5))]W“T¢(m)\ < CBa»
(¢,2,0)eBzEM

with the same estimates for T in place of T'. Here, the formal adjoint 7™ is taken in the sense
of L2(M) which is defined in terms of the chosen strictly positive, smooth measure. Namely, we
first define the transpose, T¢. The Schwartz kernel of T* is defined by T%(z,y) = T(y, x); more

precisely,

[ @0ty dady = [ T(a,)6(0.2) dod,

for ¢ € C(M x M). We define the Schwartz kernel of T* by T* = Tt where, z denotes

the complex conjugate of z. Here, for a distribution A\, we are defining the distribution \ by

Af) = A(f)-
Now, let’s introduce the tool of pre-elementary operators and elementary operators. We
write elements of (0,1] as 277, where j € [0, 00).

Definition 2.9 ( [68]). We say £ C C*°(M x M) x (0,1] is a bounded set of pre-elementary



10

operators if: Vo, 3,m, 3C = C(&,a, B,m), V(E,277) € &,

(1+2p(z,2)) "
Vol(Byy (z,277 (1 4 27 p(x, 2))))

(277 W) * (2 W,)PE(z, 2)| < C

Note by the symmetry and Lemma [2.1] it follows

(1+2p(a,2))" - (1+2p(z,2) "
Vol(Bw (2,279 (1 + 2ip(z, 2))))  Vol(Bw(z,279(1 + 27p(2,2))))’

Definition 2.10 ( [68]). We define the set of bounded sets of elementary operators, G, to be
the largest set of subsets of C°°(M x M) x (0, 1] such that for all £ € G,

(i) € is a bounded set of pre-elementary operators.

(ii) V(E,277) € &,

E = Z 2—(2—\04|—|5\)j(2—jw)aEa,5(2—jw)ﬁ
|, 81<1

where {(Ea,277)| (E,277) € £} € G.
We say £ is a bounded set of elementary operators if € € G.
In fact, the elementary operators are invariant under some transforms. The details are list
in the following properties.
Proposition 2.1 ( [68]). Let £ be a bounded set of elementary operators. Then,
(a) If b € C®(M), then {(VE,277),(Ey,277)|(E,277) € £} is a bounded set of elementary
operators. Here, we are identifying ¢ with the operator f +— 1 f.
(b) {(E*,277) | (E,277) € £} is a bounded set of elementary operators.

(¢) Fiz an ordered multi-index o.. Then

{(@W)*E,277), (EQIW)",277) | (E,277) e £}
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is a bounded family of elementary operators.

(d) For every N € N, each (E,277) € £ can be written as

E = Z 2(|a\*N)j(27jW)°‘Ea7
|| <N
where {(E‘a,Q_j) |(E,277) € 8} 18 a bounded set of elementary operators. Similarly, each

(E,277) € € can be written as

E = Z 2(|04\*N)J'EOC(Q*J'I/V)a7
la|<N

where {(Ea, Q_j) |(E,277) € 5} s a bounded set of elementary operators.
Lemma 2.2 ( [68]). Fizt € R and let {(E;,277)|j € N} be a bounded set of elementary oper-
ators. Then the sum ZjeN thEj converges in the topology of bounded convergence as operators
C*®(M) — C*®(M) (and therefore converges in distribution).

In the other hands, the Calderén-Zygmund operators have several equivalent characteriza-
tions.
Theorem 2.11 ( [68]). Let T : C°(M) — C*°(M), and fizr t € (—Q1,00). The following are
equivalent.
(i) T is a Calderdon-Zygmund operator of order t.

(ii) For every bounded set of elementary operator £,

{@'TE,277) | (E,277) € £}

is a bounded set of elementary operators.
(iii) There is a bounded set of elementary operators {(E;,277)|j € N} such that T = > jeN 2'E;
in the sense of C°(M)'.

For the multi-parameter analysis and generalizations later, let’s introduce an equivalent
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family of balls with a slightly different definition. By scaling the vector fields, we can make the
balls of any radius equal to the “balls” of unit radius, i.e. By (x,d) = Bsw(x,1). Given a list
of vector fields W = W1, ..., W,, we write the unit ball By (x,1) as By (z).

Now suppose W7, ..., W, satisfy Hormander’s condition of order m. We assign to W1q,..., W,
the formal degree 1. To vector fields of the form [W;, W;] we assign the formal degree 2.
Recursively, if Y has formal degree dp, we assign to [W;,Y] the formal degree dy + 1. Let
(X1,d1),...,(Xy,dy) be an enumeration of the above collection of vector fields with formal de-
grees, which have formal degree < m. Note that, in light of Hormander’s condition Xji,... X,
span T, M for every .

The formal degrees encapsulate the above notion of scaling. Indeed, if we replace W1,..., W,
with 6W1,...,dW, in the above, then (Xj,d;) is replaced by (6% X;,d;). Because this plays a
crucial role in the follows, we denote by 6X the list of vector fields 6X = 6% X7, ..., (5d4Xq.

We define

B(x,q)(x,6) == B(sx) ().

It’s clear that By (x,d) C B(x,q)(x,d). The converse is shown by Nagel, Stein, and Wainger [55]:
Proposition 2.2 ( [55]). There is a constant ¢ > 0 such that B(x q)(v,cd) € By (x,0), for all
6> 0.

Then one will be able to replace By (z,) with B(x,q)(x,d) throughout the previous state-

ments, and obtain equivalent definitions. One can also replace p(x, z) with the equivalent metric.

inf{6 |z € B(x,q)(v,0)}.

In this work, we still need the following properties of bounded sets of elementary operators
taken from [68]

Proposition 2.3 ( [68]). Let £ be a bounded set of elementary operators. Then, for every N,
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the set

{(@Nn=s2l gy By, 270), (2N =2l By By, 2792) (B, 2701), (B, 2792) € €}

1s a bounded set of elementary operators.

Definition 2.12. For j,k € R, we write j A k for the minimum of j and k and j V k for the
maximum. If, instead, j = (j1,...Jv), k = (k1,...,k,) € R, then j Ak = (j1 Ak1,...,J50 AN k)
and jVk=(j1Vki...,50Vk).

Lemma 2.3 ( [68]). For every m > Q1, and Yj1,j2 € [0,00),

dy

/ (14 2p(x,y))™™ (1+22p(y,2))™™
Vol(Bxa) (@, 277" + p(x,y))) Vol(B(x.a)(y, 277 + p(y, 2)))
_ (12N
~ Vol(B(x a)(x, 271172 + p(z, 2)))

where the implicit constant depends on m, but not on ji,j2 € [0, 00).
Lemma 2.4 ( [68]). Let £ be a bounded set of pre-elementary operators. Then, Ym, 3C,
V(Fy,270Y), (Fy,2772) € €,

(1427172 p(z, )™
Vol(B(x,q)(y, 27912 4 p(z, 2)))

|F1Fy(x,2)| < C

Lemma 2.5 ( [68]). Ym, IN, Vji,j2 € [0,00), Vz,y € M,

(142" p(x,y))™" < (1+272p(x,y))™"

9—Nlj1—7z| A ’
VOI(B(X,d) (y7 2701+ ,O(CU, y))) N VOI(B(X,d) (y7 2772 + P(CU, y)))

Lemma 2.6 ( [68]). Let £ be a bounded set of pre-elementary operators. Then, Vm, «, and 3,

3N, C, such that V(Fy,2771), (Fy,2792) € £, and letting k = j1 or k = ja, we have

(1+ 2¢p(a, 2) ™

o~ Nli—dal | (2=k W\ (2~ W )P F By (x, 2)| < C '
( ) ( ) [FLFs](z, 2)| < Vol(B(x.q4)(y,27% + p(z, 2)))
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Lemma 2.7 ( [68]). Suppose &1 is a bounded set of elementary operators and & is a bounded

set of pre-elementary operators. Then, for every N, the set

{ (2N\j1*j2|E1E2, 2*]'2)’ (QN\j1*j2|E2E1, 2*]'2)

|[(B1.27) € €1, (B2, 277) € &2, > o)

18 a bounded set of pre-elementary operators.
Lemma 2.8 ( [68]). Let B be a bounded set of bump functions and € be a bounded set of

elementary operators. YN, m, 3C such that V(E,277) € &, (¢,z,27%) € B,

(142" p(z, 2)) ™

E < 2—N(j_j/\k) - .
|E¢(2)] S Vol(B(x ) (w, 279"k + p(x, 2)))

Next, we introduce the continuous version of Littlewood-Paley theory adapted to the geom-
etry B(x q)(z,d), which is obtained by Street [68].

Since [ : C°(M) — C°°(M) (the identity operator) is a Caldenén-Zygmund operator of
order 0. By the characterization of such operators, there is a bounded set of elementary operators
{(D;,27)|(Dj,277) € D} with I = 5

jen Dj. For I € Z\N, define D; = 0. We have

= (S 0)(S5) = s

JEZ JEZ

where Uy = 3 jen DjDjyi =3 jen DjuDj, Ry =32 jen DjDjwi =3 jen DjuD;.
li|<N <N li|>N li|>N
By [68], the following properties hold.
Lemma 2.9 ( [68]). Fiz p, 1 < p < co. imy_y00 || RN || Lr—rr = 0.
Proposition 2.4 ( [68]). Fizp, 1 <p < oo, 3N = N(p), s.t. Uy : LP — LP is an isomorphism.

te. A Vn : LP — LP with UnVy = VyUny = 1.

Consequently, we have
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Proposition 2.5 ( [68]). Fiz 1 < p < oo, then

(Z IDjf!2>;

JEN

[fllze ~ , fel=(M),

Lp

where the implicit constants depend on p and the particular decomposition of I = ZjeN D;.
Moreover, we can deduce the following continuous version of Calderén reproducing formula.
Theorem 2.13. Letting Djv = Z\I\SN Dj4; and ﬁj = VNDév, thus f =) ien 5ijf, which
converges in the topology of bounded convergence as operators LP — LP, and also in the topology
of bounded convergence as operators T (ng, m) — T (ng,m) (and therefore converges in distribu-
tion).
Theorem 2.14. Letting Dj.v = > jy<n Dj41 and D; = D;-VVN, thus f =3 ey D;D;f which
converges in the topology of bounded convergence as operators LP — LP, and also in the topology
of bounded convergence as operators T (ng, m) — T (ng,m) (and therefore converges in distribu-
tion).
Remark 2.15. B. Street has proved the LP convergence in 68|, and now we will prove the part

of T(ng,m) .

Lemma 2.10. Fiz N > 0 and define Ry as above. For any (¢, x,d) € B, a bounded set of bump

function, we have VINg > 0,

sup |(OW)* Ry (6)(2)| < C27NNVol(Byx 4)(,8)) ™

where C' is independent of ¢.

Proof. WLOG, we consider 6 = 2% for some k € N. By the definition, we have

@ W By (@) < 3 > 20N TW) D;Ds(0)(2)

|i|>N jeN
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By using the Proposition 3, we know that {(2N0|”Dij+l, 279) | (Dj,2779), (Dj,
2*(j+l)) € D} is a bounded set of elementary operators. For the simplicity, we denote the above
new set as {(F;,277) | (E;,277) € £}.

Thus, we can rewrite the inequality as

W) Ry(9)(2)] < 3 270 S 20l 271y B (9) 2)|

[[|>N JeEN

Next, applying the Lemma VN1, m,

(142" p(z, 2)) ™™

27kW aR < 2*N0|l| 2(]7k)|a|27N1(]7.7/\k) -
(W) Ry (@) () S Yo 2Ny Vol(Boxa (@29 + p(@,2)))

ll|>N jEN

< Z 9—Noli| Z2(j*k)|a|Q*Nl(j*j/\k)vol(B(Xd)(%Q*j/\k))_l.
>N jeN

By the convergence of geometric series, it suffices to verify

> 20 Rlalg= MGl (B x 4y (a, 279N T < Vol (B gy (,27%)) 7
JEN

We separate the above sum into two parts. The first,

> 2U=Rlelvol (B x g (z,279"%)) 7.
0<j<k

Using that VOI(B(X’d) (z, 2_31))_1 < Vol(B(X’d)(x, 2_k))_1, and j < k, we obtain

Z Q(j_k”a‘VOl(B(X,d) (, 2—j/\k))—1 < VO](B(X,d) (z, Q—k))—l
0<j<k

The second term is

Z 2(]—k2)|0¢‘2—N1(]_k)V01(B(X7d) (,f? 2_k))71-
k<j
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By taking N; large, this is a geometric sum, and therefore bounded by a constant times its

largest term. We obtain

32U RIlg=MG=RIVol (B« g (x,27%)) ™ < Vol (Bixay(x,27%)) .

k<j

Combing all of the above, it follows that

(6W)* Ry (9)(2)] < 27NN Vol(By (2. 8)) "

where z is arbitrary. O

By using the similar proof approach in the above lemma, it’s easy to deduce that
Lemma 2.11. Fiz N, Ny, we have || RN (|7 (no.m) =T (nom) < C2=NNo Moreover, Ry is a bounded
operator from C™ to C™ with the norm C2~NNo,

With the above lemma, we can get

Lemma 2.12. If N is so large that

c27NNo < 1, (2.2)

then Vy = U;,l maps test function space to itself. More precisely, there exists a constant C' > 0

such that for all f € T (ng,m),

IVN (T (rom) < CNF T mo,m)

Proof. If we choose N € N such that C27VNo < 1 holds, we have that for all f € T (ng,m),

VN (7 tmoim) = I = BN) ™ ) g m)

> (RS

h=0

T(?’Lo,m)
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Z C27 NNV 7 m)

Sl mom)

which completes the proof the lemma. O

Now we are in the position to prove the part of 7T (ng, m) convergence in Theorem Let’s
restate it:
Lemma 2.13. Letting Dj-v = X< Dj+i and D; = VNDj-V, thus f = > cn ﬁijf, which

converges in T (ng, m) (and therefore converges in distribution).

Proof. Fix a large integer N such that (2.2]) holds. For L € N, we write

> DiD;f = VN(ZDﬁvDO(f)

J<L J<L

=Vn (UN - Z Dj‘VDJ)(f)

J>L

:VNUNf_VN(Z)(f)

j>L

= 7= lim (Rn)"(F) = Vi (32 DD ) ().

j>L

We now verify that

Jim ‘f - j;ﬁij(f)HT(no’m) =0

To see this, we write

|r= 3 5o, < Jim RN Dllranm + [V (3 23'D5) (1)

T b
ljl<L J>L (no,m)
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By the Lemma [2.11] we have

. h . —NNo\h
Jim I(RN)" (T (rom) < hlggo(C? ) N 17 (ro,my = 0,

We now prove that

Jm [ (o) 0, =0

j>L

To this end, by Lemma [2.12] it suffices to verify that there exists some 6 > 0 such that for

f S T(”Oam)7

-6
| S 0r D S 2 70
j>L T (no,m)

By the definition, Vo € M, we have

279 W)* D, D;(f)(x)

WSS DYD(N@) < >0 32l

j>L [l|I<KN j>L

By using the Proposition we know that {(2NollD,;D;,279)|(D;,277) € D} is a
bounded set of elementary operators. For the simplicity, we denote the above new set as
{(B;,277) | (E;,277) € €}

Thus, we can rewrite the inequality as

(27W)E;(f)()

‘Wa ZDND ’ Z 9~ Noll| ZQ]‘M

j>L [lI<KN j>L

Next, applying the similar proof as Lemma VN1, m

WS DY Dy(f)(a)

J>L
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- j —Ny1j 1+p(x17x))7m
< 9—Nolll 9dlalg—Nij (
|l|zs;v 2 Vol (Bx oy (1, 1+ pla1, 2)))

By the convergence of geometric series, it suffices to verify

Z 93 (lal—N1) <970
J>L

By taking Nj large, this is a geometric sum, and therefore bounded by a constant times its

largest term. Combing all of the above, it follows that

(1 + P(IL‘l, l‘))_m
VOI(B(X’d) (w1,1 4+ p(1, x)))

W ST DY Dy(f) ()| < 27
J>L

This implies

—0
5 2 LHfHT(nO,m)

|30y pis]

j>L T (no,m)

The lemma, is proved. O

The respective part of Theorem [2.14] can be prove similarly.

We also need the Fefferman-Stein’s vector-valued maximal function inequality.
Theorem 2.16 ( [18]). Let1 < p < 00, 1 < ¢ < 00, and let M be the Hardy-Littlewood mazimal

operator on M. Let { fi.}kez C LP(M) be a sequence of measurable funcitons on M. Then

Lp(M)

S a0} <l 5 1}

where C' is independent of { fi}rez.
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2.3 Discrete Calderéon Reproducing Formula
We will use the classical decomposition on the homogeneous space by M. Christ in [11] and
by Sawyer-Wheeden in [61]. Here, we use the statement in |11].
Lemma 2.14 ( [11]). x is the space of homogeneous type, 3 {QF C x : k € Z, 7 € I,} of open
subsets, where Iy, is some index set, § € (0,1), Cy,Cqy > 0, s.t.
(i) u(x\ Ur Q%) =0 for each fived k and Q% N Qg =0if a#p.
(i1) Qlﬁc oF orQlBﬂQ’;:@forle.
(iii) 3! B, s.t. Qf C Qf.
(iv) diam(QF) < C16%;
(v) QF contains some ball B(zF, Cy0%).
Also, we denote by Qﬁ’”, v=12...,N(k,«a), the set of all cubes okt QF and j is a

positive large integer such that

Denote by 2PV the “center” of Q%7 and by ylﬁ’” a point in ok

Now we’re ready to introduce the Discrete Calderén Reproducing Formula. Recall the dis-

crete Riemann sum operator on M,

ZZZ/ DY () dyDy(1)(41)

keNtel, v=1

where D]]CV = ZMSN Dk—l—l-
We firstly verify S is well defined and bounded on L?(M).

Lemma 2.15. There exists some constant C' > 0, such that for all yf’” € Qﬁ"j and f € L*(M),

N(k

5SS @D Y < O

keNTel, v=1
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Proof. By Proposition we have

(14 2p(z,2) !
VO](B(XA) (Z, 2k + p(Z, I)))

|DyDy(z,x)| S 27 IF1

where the implicit constant is independent of k,[,z,z. Notice that for all x € M and any
zZ,y € Qlﬁ’”, we have that p(y,z) < C127727% < C1277(27% 4 p(x,v)), where C1277 < 1. Thus,
for all z € M, any y, 2 € Q% and all k.l € Z,

(1+2%p(y, )"
VOI(B(X,d) (:Ea 27k 4 p(y7 T

| DiDi(z, @) [x g (2) S 271571 7y e (®)

From this, it follows that

DU < Y [ DDA ) g ) D1 () ) )
leN
sy / ot o D IDU@ ) g
IR S Vol(B(X; 73y P @ a8 e 1)
’ IEZN I; 2 /B(X,d) (1,2~ F N\ B x 0y (3,2~ +h—1) Vol(g;p,c(z)x(i)p)@i z)))

X|Di(f) ()] dp(z) - x ge (y)

S Y2 MDD (W)xgrr ()

leN
Therefore,

N(r,v) 2
3D WPLEEAGIEIEE o) M O E Il
keNTel, v=1 keN 1eN

/

S IDNIICTIIG S WY | DO N Y1 e

leN leN
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Also, we have

Lemma 2.16. Given a sequence {alﬁ’y ckeZyrely,v=1,...,N(k,7)} of numbers with

N(k,T)
Z Z Z a7 )? < .

keNTel, v=1

Then, the function defined by

N(k
S S 0k e ., DY@ dnty
keNrel, v=1 o

is in L2(M). Moreover,

N(k,)

17200 <C D200 D lar

keNTel, v=1
Proof. By the definition,

N(k,T)

| #@)- Fa)duta) - /M (XX X @ [ e duty)

keNTel, v=1

(> % Z 12" /Qk DY (. ) du(y) ) dpu(x)

kKeNT'el v'=1 !

WLOG, we can assume k < k’, thus by using the similar argument in Lemma VNy € N,

we have

DY (z,y) D (x,y) = Y 2M UV DN (2 ) (27F W) DY (2,0))
la|<No

Z 2k'(|04|—N0)2_|a||k—k’|D]]€V(x’ y)(2lex)aD,]€\/f’a($, Y)
la|<No

3 2k'<\a|—zvo>2—\a|\k—k'\2—k(\a|—No><2k<|a|—No> DIQV(%y)(Qk'Wz)a)Dﬁ’a(ﬂc,y')
|a|<No

= Z 2_N0‘k_k|D]]c\fa($7y)DI]g\/[,a(x7y,)
la[<No
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where {(Dﬁa,Q*k)](Dk,Q*k) € D)} and {(DY ,,27¥)|(Dw,27*) € D} are both the bounded
sets of elementary operators.

Hence, For each k, 7,v, k', 7/,1/, it follows that

/M [ o Dljcv(xyy) dﬂ(y)/gk,,yl D,]c\,f(x,y’) d/ﬁ(y’)} du(z)

S Qkk'zvo/

o M[ b
o 14 2Fp(a, y)) ™
<C mp2 k=K INO/ / ( : d
= UNg,Nm,D v [ ok VOI(B(X7d)(x, 2k 4+ p(:c,y))) )

x/ (14 2% p(x,y')—™
Q]:;’V/ VO](B(X,d) (x7 2K + p(xv y/)))

, 142k kvyy=m
< Crngnmp2 No/ {/ (1+2%p(z,y7")) ——du(y)
ar L@k Vol (Bx gy (@, 275 + p(z, =)

(1+ 2% pla g )
<o Sl ()] du()
QT/W VOI(B(X,d)(x72 —f_p(l‘7y~,-/7 )))

D) du(w) [, , DY ot/ duy)] dn(z)

k!
QT/

dpu(y)] dpu(a)

(1+25p(yr” x))~™
kv o %
xa) (W, 278+ p(yr", x)))

< Ch, ,N,m,D2_|k_k/|NO,U Qb Y Qﬁi"/ /
’ (Q7)m( Q) a Vol (B

L (2
Vol (Bx.q)(x, 27 + p(x, y "))

dp(x)

By using Lemma the last term can be controlled by

/ kv K U \\—
(14 28" (" g )™

CNO,N,m,D2_|k_k/|N°'M(Qk’”)ﬂ(gii’yl) T ; kv Ko
7 Vol (Bxa) (y=", 27k + p(y” , yi ™))

or

, Kk _
(1 26 oy )™
k/, 4 — / k'ly / kv
VOI(B(Xd) (yT, v ,2 kAK 4 P(yT/ v y Yr V)))

O, mp2 FH N0 (9B (95
Therefore,

_ _ Lt v k/, ! v k/, !
112200 < Cnovam S 27K Nogh g [1( Q) (@ )12

kv
! ’ !
kK v
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y (1 + 28 p(of” y "))
Vol(Byx gy (45", 275 + p(y”, y5)))
< Onowmp 3, 2Nl u(QE) ()
kf“ T k<h )
(1+ 25" 5 )
Vol(B(x.a)(yr” 275 + p(yi” ,y5")))

< CNO,N,m,DAl/QBl/Q

where

A= K k, Kt
E ’ak,V|227|k—k/|N0 ,U(QT, Y )(1 + ka(yT u,y it )~
T Vol( B 2 k + k,v k/ v 5
]J{;:,V/k’<k;/} ( (X,d)( p( 7. )))
k,V klvy/ k,l/
Z | k V' ’ 92— |k—K'|No ,U(QT )( ( Yor 7y7_ )) m

(it s} Vol(B(xa)(y ", 275 + plyr ™ yr™)))

With the Cauchy Schwartz inequality, it’s only left to verify,

k/ / K W '\ —m
Sy Z o—2lk—k|No Dy )L+ 26p(yr” 55 ) <C
k‘,]j v k/7Vl =
k<k' r'€l, v'=1 Vol(Bx,q) (47", 2~ ko p(yt )
and
Z Z Z +2kp( ch Y 7?/5’1/))_’” <c
kv —
k<k' el v=1 VOI B(Xd)( 27 k"'p( 7yT )))

For A, by Lemma [2.5] 3Ny, s.t.

Nk ") k:' / B
Sy Z o—lb—k|Ng_ (L7 )(1+2k (e )

k<K' Tiely V=1 Vol (B X,d( Y27k p(y ys )
N(K' ") K , k, K\
DI S S I S il
/ k / !

k<k't'€ly v'=1 VOI(B(X,d)(yT 27+ p(yr V,y / )))

k/ /)

(14 2% p(yr” g ) ="

<ZQ |k—k'|(No—N1) Z Z - )

det, oo S Vol (Buxay(yr 27 + plyr i)
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k/ l

| 1+2k’p qu_?,l/’y/ —2m
< T K 5 S [Ty
el V=1 Q/’D VOI(B(Xd)(yT ;2 +p(y7' 7y)))

Szzkk’(NONﬂ/ (1+ 2% p(yr 7y))_2;”
= a1 Vol (B(xq) (™, 27 + p(yi”,y/)))

and similarly, for B, we have

N(k,T) k 14 kwvyy—
i Q’TV +2 p(y v 73/7- V)) " 2 : —|k—k'|No <
E E E : k v kv = 2 Cm - Cm
i< req, =1 Vol(Bix,a W 278 4 py ™ ur ™)) k<K’

With the above two lemmas, it follows immediately that
Theorem 2.17. Let the notation be the same as above with j satisfying 277Cy < % Then the
discrete Riemann sum operator S is bounded on L*(M). That is, there is a constant C' > 0,

only depending on N, such that for all f € L*(M),

ISFlle2ary < ClF Nl L2 (ar

Proof. From Lemma and Lemma it follows that

1SF1200m < 13S0 Z (Q5)]1/2|ab | / DY () dyl| 2an

keZ rel, v=1

N (k7
<D0 D 1P < e

keZ rel, v=1
where a®" = [M(Qk Y2 Dy (f)(y kl/)| =

Next, we prove that S is invertible. To do this, we define R = I — S and denote by R(x,y)

for its kernel. Actually, we can prove: for any ng € N,
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Claim 1: For h € N,

Hm |R ()|l oary < lim (Cpn27 %N + Cpin,n0277) | | £oary = 0
h—oo h—o0

hli—{go HRh(f)HT(no,m) < hli—{{.lo(cp,NQ_NoN +C 7m7N7D2_jE)thH7—(”Ovm) =0

Claim 2:

H‘S_l‘|LP(M)—>LP(M) <0

1S ™M 7 (mo m)— T (ng,m) < 00

Recall that I = Uy + Ry, thus

R(f)(x) = T = S)(f)(x)

N(k,T)
I ID Y I CHLARIESARIESETES 9 DR SLATIE

keNrtel, v=1 keN |{|>M

= Gr(f)(x) + Rn(f)(x)

keN

= G(f)(z) + Rn(f)(2)

Let G(z,y) be the kernel of G. We now verify that G (z,y) and hence G(z,y) satisfies all the

desired estimates. Clearly,

N(k,T)
=% X [ DtE Dy - Dk s

keNTel, v=1
keN

For each Gg, we can prove the following,

Lemma 2.17. {(G,27%)} is a bounded set of the pre-elementary operators.
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Proof. By the construction of dyadic cubes in Lemma , for any z € Qlﬁ’y,
plz,ytv) < 271D = ¢y27927F < 01279 (27F 4 p(y, 2))

We recall that j always satisfies 277C < % Thus, we have

1 1
<
2k + p(z, ") T 27+ p(y, 2)

and

! 1
VOl(B(X,d) (y7 2_k(1 + QkP(Z, yﬂlfy)))) = CVO](B(X’d) (y7 2—k(1 + Qkp(y’ Z)))) (24)

Also by the definition of elementary operators, Vm, 3Cy, p = C(m, D), s.t.

De(zyy) = D"yl < max | (W) Dl )| (2,57

Z*qul_\](k,l/)

Ivl=1
k * —-m
< Cm,D max 2k (1 +2 p]gz ay))k
zreQhv VOI(B(X,d)(ya 2~ (1+2 p(Z*uy
(14 25p(y, )™
VOI(B(X,d) (y7 2_k(1 + 2kp(ya Z))))

) p(z,y5)

< Cm,DCI 2_j

where the last inequality comes from ({2.3)), (2.4), p(z, le“') < 01277 7F and |y| = 1.

Consequently,
N(k,v)
Grley)l = | > > /Q DY (@, 2)[Dy(2,9) — Dy )] dn(2)
7€l v=1 T

N(k,v) k _
—j (1+2%(z,2))™™
< CmNpC1277 /
' TEZIIC ; Qﬁ’y VOI(B(X,d)(y) 2_k(1 —|—2kp(1,‘,2’))))
(14 2%p(z,9)) ™
X du(z
Vol (Box.a (.2 (1 + 25(z, ) 07

(1+2%p(z,y)) ™
VO](B(X’d) (y, 27k(1 + 2kp($’ y))))

< CpnpCi277
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where the last inequality comes from Lemma and C,, y,p only depends on m, N and D.

Simﬂarl% Va, 67 m, N, 3 CD,a,ﬁ,m,N = C(Da «, Ba m)7 V(Gk‘a 27]6)7

‘(2ika)a(2ikWy)ﬁGk<xv y)‘

N(k,v)
SN [ W DY )W) D) — () D ) )

TGIk v=1
N(k,v)
<2 > / e DY @ )| max [0 @7 W) DA )| plz ) diz)
7€l v=1 T z 6"%7—:1
N(k,v) & _
—j (1+2%(z,2))™™
< Cp,a,pmnC1277 /
’ T;k Z::l oFv Vol(Bx g (z, 275 (1 + 2Fp(x, 2))))

) (14 20(2,9) ™
Vol(B(x ) (4, 27%(1 + 2% p(z, 1))))
(15 2 pla, 2) "
Vol(Bw (z,27%(1 + 2Fp(z, y))))

dp(z)

< CpapmnCi27?

Hence, {(Gy,27%)|k € N} is a bounded set of pre-elementary operators. O

In fact, we can furthermore obtain the result as follows:

Lemma 2.18. {(Gy,27%)|k € N} is a bounded set of the elementary operators.

Proof. We've verify that {(Gy,27%)|k € N} is a bounded set of pre-elementary operators. The
result will follow once we show for £ € N, we have GG, is a sum of derivatives of operators of the

same form, as in the definition of elementary operators. But we have, using Proposition 2.1}

N(k,v)
Gy = Z Z Z /k,y 2_(2_‘0‘"‘B‘)k(Q_kW)aD,i\fa(a:,z)

laf,|Bl<1 7€, v=1

X [Dr,s(z,y) = Dis(yr”, )27 W) dp(2)

where {(D¥_,27%), (D 5,27%)|(Dy,27%) € D} is a bounded set of elementary operators. And

k,a
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therefore,
N(k,v)
Ge= 30 et etwy{ 050 [ P
lal,|B1<1 Tel, v=1 T
X[Dip(2.y) = Di sy, y)] du(Z)}(T’“W)ﬁ
= Z 2_(2_|a|_‘6|)k(Q_kW)aGk,aﬂ@_kW)B
lal,|B|<1
This completes the proof, since Gy, o g is of the same form as Gj,. O

Lemma 2.19. G is a Calderdn-Zygmund operator of order 0. Moreover, 3¢ > 0, s.t.

Gl Lo (ry—Lo(ar) < Cmp N27°

and for any ng € N,

||G||T(no,m)—>7(no,m) < Om,D,N2_j6

Proof. According to the characterization in Theorem it follows that G = ), .Gy is a
Calderén-Zygmund operator of order 0. Hence, G is LP(M) — LP(M) bounded, i.e. Vp > 0,

3C,, such that

|Gl e (ay—rr(ar) < Cp

Also note that, for all k,! € N, we have

1GRG7 Nl 2ar) = £2(ar) < Compn27727 71,

HGZGZ‘|L2(M)_>L2(M) < Cm,D,N2_j2_|k_”
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The Colter-Stein Lemma now shows

G 2(an—r2(a) < Comp. N2

Together, by the interpolation, we have

Gl Lo (vry—s Lo a1y < Comp N27°

On the other hand, Vf € T (ng,m) and x € M,

(WG (f)(@)] < Y 2M |27 W) Gr(f) ()]
keN

By using the Proposition we know that {((27*W)*Gr(f),27%)| (G, 27%),€ D} is a
bounded set of elementary operators. For the simplicity, we denote the above new set as
{(Br,27") [ (Bx,27")
€&}

Thus, we can rewrite the inequality as

(WeG(f) (@) <> 2 By (f) ()]

keN

Again, applying the similar proof as Lemma [2.8, we have VN1, m

IWOG(f)(2)| < Crp N2~ Z oklalg—Nik (1+p(z1,2)) ™"

”fHT no,m
keN VOI(B(XJ) (1‘1, 1 + p(ml,x))) ( 0 )

By the convergence of geometric series, it suffices to verify

Z ok(lal=N) < 1

keN
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which is obviously by taking N; large. Therefore , we obtain that

(1+ p(a1, :E))_m

wea < Crp 277
\ (@) < Cnop,N Vol(Bx,q¢) (1,14 p(a1,

))) Hf”T(no,m)

O

Lemma 2.20. Let S be the discrete Riemann sum operator on M and R =1 —S. Then R is

LP(M) bounded, i.e.

”R||LP(M)—>LP(M) < Cp2_EON + Cpﬂn,lll\ﬂ_j‘E
and R is bounded on T (ng,m) for any ng € N, i.e.

RN T (rg,m)—T(moym) < C27 NN + Cry p 277
Proof. By Lemma [2.9] and Lemma it follows that

IRl Lo (ary— ey < NGllrany— ey + 1 BN | Lo (ar)— Lo (a1

< Cyn2 N 4+ Cpp N2TE

Also,

IRIT(no,m)—Tmo,m) < NGl T(rom)=Tmom) T BN (rno,m)—T(no,m)

< Cn2 NN 4 Cp N2
Since N and j are arbitrary, we can choose them large enough such that

Cp’N2_EON + C, ’m’D’NQ_jE <1
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and

Cp7N27NON + Cm,D,N27j <1

which implies our Claim 1. 0

Our Claim 2 follows from the corollary below.

Corollary 2.18. Let S be the discrete Riemann operator on M. Let N, j € N such that

Cp,N2_60N + C, ’m’D’NQ_jE <1

and

CNQ_N(JN + Cm7D7N2_j <1

hold. Then S has a bounded inverse in LP(M) for p € (1,00). Namely, there exists a constant

C > 0 depending on p such that

IS~ r(ay—Lr(ary < C

and for any ng € N,

||S_1 ||T(n0,m)—>T(n0,m) <C

To establish the discrete Calderén reproducing formula, we still need the following technical

lemma.

Lemma 2.21. Let j satisfy C1277 < % For k € Z, any fixed ylﬁ’y € % with v € I, and
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v=A{1,...,N(k,7)}, and any x € M, let

N(k,T)

(@y)=>, > /“Dk z,2) dp(2) Di (Y5 y).-

Tel, v=1
Then {(Hy,27%) | (Dg,27%) € D} is a bouded set of elementary operators.

Proof. Vo, 3,m, N, 3Cp o gm N = C(D,a, 5, m,N), V(Hk,Q_k),

(27 W) (27 W) Hy (2, )|

vy / MWD (0 2) du:) (2 D)

Tel, v=1
(14 2%p(a,2))™™
< Cp,a8m, / du(z
Doaf, Nrezlk ; kv Vol(Bx gy (x, 27 + p(x, 2))) Hz)
(14 2%p(yr" y) ™™
VOI( (X,d) (yﬁ,l/’ 27k 4 p(yﬁ,l/’ y)))
N(k,T) _
(1 + 2% p(x, 2))~™
= Cp,a,8,m,N /
T%I:k ; kv Vol(Bx gy (z,27% + p(z, 2)))
2]€ T’V, —m
(1+ k/:(y : Y)) . du(z)
Vol(Bx.ay(yr, 275 + p(yr", 1))
Note that for any z,ylﬁ’y € 0% and ye M,
(1+28p(yr” y) ™™ (1425 y)m

Vol (Bxa) (i, 2% + p(yE”,y)))  Vol(Brxay (2,275 + p(2,9)))

Hence,

(275 o) (27 W) Hi(z, )|

N(k,T)

(14 2Fp(x, 2))™™
Z Z /kVVOl B(Xd($2 k4 p(, Z)))

Tel, v=1
a2y
VOI(B(Xd) (Z, 27k + p(za y)))

< Cp.a,8,m,N

du(z)
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< CD,a,,B,m,N

/ (1+2%p(x,2)) ™™ (1+2%(2, )" ()
m VOl(Bxay (2,275 + p(, 2))) Vol(B(x a)(2,27% + p(2,y)))
(14 2%p(z, y)) ™

Vol(Bx,q)(x,27% + p(2,y)))

< Cp,a.8,m,N

Therefore, {(Hg,27 )| (Dg,27%) € D} is a bounded set of pre-elementary operators.
Next, we will show for k € N, we have H}, is a sum of derivatives of operators of the same

form, as in the definition of elementary operators. But we have, using Proposition [2.1]

-y Yy / G DY (1 2) (2

lal,|B|<1Tel, v=1

x Dy 5y y) (27 FW)P

where {(D,]Xa, 277, (Dk s, 27%)|(Dg, 27%) € D} is a bounded set of elementary operators. And

therefore,
Hy(z,y) = Z 9~ (2~lal=IBDk o {Z Z ;WD’W 2, 2) dp(2)
‘Ol|,‘ﬁ|§l Tel) v= 1 Qo
XDps(yi” ) (27 W)
= Z 9~ Clal=IBDk (o—kyye iy 5(27FW)P
e, B<1
This completes the proof, since Hy, , g is of the same form as Hy. O

Now let’s prove the Discrete Calderén Reproducing Formula.
Theorem 2.19 (Discrete Calderén Reproducing Formula). For any fized j € N, there exists a
family of linear operators {]_N)k}keN such that for any fized yf’y € QM with k € N, 7 € Iy, and

v=1,...,N(k,7), and all f € C>*(M),

>y Z/ Dl ) d) Dy 1) (4)

k=0T1€el, v=1



36

[e%s} N(kﬂ') _
=y > Dy(x,yf) Dy (f)(y) du(y)

k,v
k=07€l, v=1 Qr

- (") i, ) Di(f) (™)

where the series converges in both the norm of T (ng,m) and the dual space T'(ng,m), the the
topology of bouned convergence as operators C*°(M) — C°°(M) and the norm of LP(M) with

p € (1,00).

Proof. Fix N,j € N, where 277C; < %, Cp7N2*60N + C’p7m7]\/71)2*j‘S < 1 and Cy2 NN 4
Crm.ND277 < 1. Let DY for k € Z be as above. For k € Z, let Dy(z,y) = STLUDYN(-,y)](x). For

L € N, we write

N(k,T) B
DIDS /Q . Di(a,y) duly) De(uH)

k<L rtel; v=1
N(k,T)

= YT X [ oM dmpin o] @)

k<LTtel, v=1
N(k,T)

SR CUCED 5 I SN M {OP LT IUE0) (&

k>LTel, v=1

DY () du(y) Di () (45" ()

N(k,T)
= f(z) — lim R"(f)(z) —5‘1[2 > 2

h—o0 Qk,u
k>LTel, v=1 T

Claim 1 shows that for all f € T (ng, m) with the center x; € M,
. h . —NoN —j\h
R ()7 mg,my < i (Cp N2 7% + Cp v 027 )| fll (0 m) = 0
and for all f € LP(M) with p € (1, 00),

Hm (|R™(f)|zo(ary < Hm (Cpn27 N + Cpon.02 )| fll oary = 0
h—o0 h—o0
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To finish the proof of the theorem, we still need to verify that for all f € T (ng,m),

lim
L—oo

=0, (2.5)
T (no,m)

N(k,T)
81{ DI /k Dy (-, y) du(y)Dk(f)(y’i”’)}

lk|>LTel, v=1

and for all f € LP(M) with p € (1, 00),

lim
L—oo

=0. (2.6)
Lr(M)

s{yyy

k,v
|k|>L 7€l v=1 Qr

Dy (y) d#(y)Dk(f)(y'ﬁ’”)}

Let’s consider (2.5)) firstly. Vo € M, we have

‘ N(k,T)

DD OB D BACOT ORI IS

\k|>LTel, v=1

< 37 ol W) () ()

|k|>L

By using the Proposition we know that {((27*W)*Hy(f),27%)| (Hg,27F), € H} is
a bounded set of elementary operators. For the simplicity, we denote the above new set as
{(E/w 2_k) ’

(Ey,27%) € £}. Thus, we can rewrite the inequality as

‘ N(k,T)

weS Sy /Qk Dy () duy) Di(f) (yr")

|k|>L el v=1

< 2B () (=)

k>L

Next, applying the similar proof method as Lemma VN1, m,

‘ N(k,T)

WSS Y [ DR ) ) D))

|k|>LTel, v=1

Elalo—Nik (1+P($17$))_m
522' 27 Vol

HfH’T ng,m
k>L (Bx.a) (1,1 + p(z1, 7)) (r,m)
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Hence, it suffices to verify

Z 2k|a\2fN1k S; 1
E>L

By taking Nj large, this is a geometric sum, and therefore bounded by a constant times its

largest term. There exists some 6 > 0, such that

Z 2]€|OL‘2—N1]€ < 2—9[/.
k>L

Combing all of the above, it follows that

‘ N(k,T)

DD VD S I ENEIRERGI0S

\k|>Lrel, v=1

(1 + p(ﬁl, x))_m

VOI(B(X,d)(xla 1+ p(xla &

))) HfH'T(no,m)

This implies

N(k,r)

DD B B I SRR

|k|>L Tel}, v=1

S Q_GL H fH'T(no,m)
T(n07m)

Combing Corollary it’s easy to obtain (2.5)). Next, let’s consider ([2.6)).

For L € N, let T}, be the operator associated with the kernel

N(k,T

)
K=Y 5 Y [ DY) du=Duk" )

k>Lrel, v=1

Hence, with the above claims, it suffices to verify that for all f € LP(M) with p € (1,00),
ITL(f)l|Le(ary — 0 as L — oo. By the continuous Calderén reproducing formula, for f € LP(M)

and g € LPI(M), [ =2 en ﬁlDl(f) and g = Y ey l~)lDl(g), respectively, in LP(M) and LP/(M),
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where 51 for [ € N are as in Theorem We have the following orthogonality estimate:

(1+2"p(y,2))™™
Vol(Bix g (y: 27" (1 + 2" p(y, 2))))

(142 ply, 2)) ™ |
Vol(Bx.a)(y, 27* N (1 + 2k p(y, 2))))

| Dy Dy(yP, 2)| < 271k

(DY) Di(y, 2)] < 2715

where the implicit constant is independent of k, [, yf"’, z. Besides, we have

(1428 p(y, 2))™™
> Z /kyvol Bix.a) (1, 2 (1 + 2K p(y, ))))f(z)dﬂ(z)

Telk v=1

(1
(1 + 20N p(y, 2)) ™
N /M VO](B(X,d) (y’ kaAl(l + 2k/\lp(y’ Z)))) f(Z) dﬂ(z)

< / |
™ JBx.ay w2kt VOl(Bx a)(y, 27FM))

+Z/ (2" p(2, y)) 7!
W1 Bix,a) (5,2 AR\ B x ) (y,27 kA1) Vol(Bx.4)(y, p(y, x))

[f(2)] dp(z)

) £ (2)| dp(2)

<N 27Vl (B g (w, 27 T / |f(2)| du(z) S M(f)(y)

h—=0 B(x,a)(z,27 kAR

Hence, by using the Fefferman-Stein’s vector-valued maximal function inequality, and the duality

argument, we have

ITL(Dllrary = sup Tw(f), 9)

19017 0y <1

EZZQ%MM%WM@

”g”LP (M)<1 k>Lrel, v=1

’Z > Z /,WDk ZDzDz ”’)(Div)*(ZﬁzDz(g))(y)du(y)’
=0

k>Lrel, v=1

< o (S S}

191l 7 (ppy < E>L 1=0

<[ {3 ENWWMMﬂ

kE>L 1=

Hgan an<

Lp(M)

Lv' (M)
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<272||{ l;gwuau»n?}” |

{3 maaniepne} |

I>L/2

LP(M)

— 0,
Lp(M)

as L — oo. OJ

2.4 Plancherel-Polya inequality on M

Using discrete Calderén formula we prove the following Plancherel-Pélya inequalities on M.
Theorem 2.20. Let {(Dy,27%)|(Dy,27%) € D} and {(D},,27%)|(D},,27%) € D'} be the
bounded sets of elementary operators and both decompose the identity operator I, i.e. I =

Yoken Dk = D wen Dy For all f € C®(M),

N(k,7)

19303 METHATISISWIE)

keNTel, v=1 ZGQT
N k‘l /

H{Z Z Z 1an,’”/ ’Dél(f)(Z)FXQ’j}"’(’)}1/2‘

KeNT'el, v'=1 #€<.

Lp(M)

Lp(M)

To prove Theorem [2.20] we need the following technical lemma:
Lemma 2.22. If r < p <1, then there exists a constant C > 0 depending only on r such that

for all a" e C and z € M,

N(k,T)

1 2k/\k’ fvl’ —-m
Z Z (Qﬁ,u) ( + p(x,y )) |aic_,u|

Tel, v=1 VOl(B(X,d)(x72_kAk, + p(x’yf—),y)))
N(k,T)

<C. 2[(k/\k’)—k]Q2(1—1/1~){M< Z Z |alj,u|rxgﬁyu(‘))(x)}l/r

Tel, v=1

which M is the Hardy-Littlewood maximal function on M.

Proof. For any positive sequence {ay }ren and the positive number r < 1, we have the following
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inequality:

S a < (Z%)w

keN keN

Thus, the left hand side of the inequality in the lemma is controlled by

&Y ! k,v\\—rm
(303 w@hry U2y
Telk v=1 VOI(B(X,d)('r,Q_k/\k, _‘_p(x’qu_},lj)))r
N(k,T) / P
Z Z / le/T (Z) (1—1'2]‘3/\16 p(x,yf )) ‘akl’r (Z)}l/r
7€l v=1 T VOl(B(X7d)(l"2*k/\k/_‘_p(l"yf,l/)))

By the estimate ,u(Qﬁ’V)XQk,u(z) ~ Vol(B(x,q)(z, 2_k))XQk,u(Z) for all z € M , we have

Vol (B Xd)w BTN 4 260K p(, gy —rm

Z Z / Vol(Byx gy (, 275 + p(z, yr")))"

Tl v=1

kv |r 1r
a2 "X gr (2) du(Z)}
Moreover, by the following estimate:

VOI(B(X,d)(xu 27]6/\]6/ + p(l‘)yf—:’y))) ~ VOI(B(X,d)(I7 27]?/\’{/ + p(xa Z)))y

1+ 25 p(, yb ) ~ 14 28 p(a, 2)

for all z € Qlﬁ’y, we can obtain

Nk Vol(Bx,q4)(z, 2~ ))T71(1 + 2K (g, 2)) T

1/r
X YTy o (2) d
Z Z / VOl Xd)(l',Q_k/\k,-i-p({B,Z))) |CL.,- |XQ¢, (Z) M(Z)}

Tel, v=1

N(k,7)

§ {/M Vol(B(X,d)(Za 2—k))r—1(1 ,+ 2’6/\k'p(x’ i)) rm ( Z Z ]ak V’TXQk . )> )}1/7~

VOI(B(de)(:E’2_kAk +p(.7,‘,2))) Tel v=1

Consequently,

1

VOI(B( )( T e
S{/Bw,d)(%?“’“') Vol(B(x,4)(, 27 k““' (Z Z jar1"x g (2 )) n=)

Tel, v=1
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Vol(B(x.ay(2,27%))" " (2" p(a, 2)) =™

+Z/

By (1,2~ Y\ B x g (2,2 AR =1 Vol(B(x.a)(, pla, 2)))"
N(k,T) 1
(30D kg (=) ducz) }
7€l v=1

Next, applying the estimate Vol(B(Xyd) (z,7)) ~ Vol(B(X,d) (z,7)) for any z, z satisfying p(z, z) <

ar, we have

VOI(B( ) k .

) rel, v=1
_ r—1 / —rm
+ OO/ VOI(B(X,d)($72 )) (2k/\k p(x,z))
he1 Y Bx,a) (@2 FAK TR\ B ) (2,27 kAR R-T) Vol (B(Xd) (z, p(x, Z)))
N(k,T) 1/r
(30D lab T xgre(2)) dulz) }
7€l v=1

Also, by the estimate Vol(B(Xd) (z, 2"““‘3/)) < Q[k_(kAk/)]QQVol(B(X’d) (x, 2"“)), we can obtain

< Vol (B(x 4y, 27%))' ™ ’”2[(’”’“')—’4@2(1—1/7")\/01(B(X o (2,275

X{VOI(B(X’d):EQj',Q_k‘/\kJ/)) /B(Xd)(x,2k ) (Z Z ]ak”|7"XQkV )) 10(2)

Tel, v=1

b 9—hlrm—Q2(1-7)]
_|_

he1 VO] )(l‘, p(w, z))) /B(X,d) (%ka/\kurh)\B(Xyd) (x’Q—k/\k’Jrhfl)
N(k,T)

x ( S Y g () dn2)}

7€l v=1

o N(k,T)
< 2[(k/\k’)—k:]Q2(1—1/7“){ 22—h[rm—Q2(1—’“)}M< >N |alﬁ’y\r><g’“”('))(x)}w

h=0 Tel, v=1

where the last inequality comes from the definition of the definitin of the Hardy-Littlewood
maximal funciton.

Finally, we can choose m large enough such that rm—Q2(1—r) > 0. Thus, by the convergence
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of the Geometric series, it follows immediately,

< ol(kAR)—KIQ2 (1~ 1/7“{ (Z Z ’akVVXQkV ))( )}1/T

7€l v=1

Now let’s prove Theorem [2.20)

Proof of Theorem [2.20, For any f € C§°(M), by the discrete Calderén reproducing formula,

we have

N(k/ /)

=33 3 W@ Dl (.l Dy (H ()

k'eNt'el, v'=1

By the orthogonality argument, Vm > 0, 3C), p pr, s.t.

(1+ 25 p(a, y)) ™™
VOI(B(X,d) (‘,177 2_k/\k/ + p(xa y)))

| Dy Dy (2,y)| < Cyppppr2~ Vol

From the above, for any k, k¥’ € N, we have Thus,

N(k,T)
> 2. 2 swp IDDE) g (@)
kENTEIk v=1 ZEQT
k/ l

SCm,D,DI~ZZ Z (Z Z Z k’ ’2 Nolk=Kl| pt(f )(yf/’,z/’ﬂ

keNrel, v=1 k'eNT/el,

(1 +2W“ pE” i)

2
X v /I/, X k,u(l‘)
Vol(B(x.ay (yr", 27FM 4 p(y oty )))> o

Equivalently,
N(k,T) N(K' ")
_ / %
CAEY20 3D DD DN O DL AL DD DRIl I IAs]
keNTel, v=1 k'eN el v'=1

x (1 + 28 p(ye v ))—m
Vol (Bx g (ye", 27N 4 p(” yly

- ,»))ZXQg,u(x)
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We choose 7 such that < p < 1. Now apply Lemma [2.22] The above term is bounded by

N(k,T)

Cin,D,D" - ZZ Z <22 Nolk—Kk'|9[(kAK")~k]Q2(1~7)

keNTel, v=1 k'eN
N ")

MY X it DL D g ()W) xgre 0)

el V=1 *€

by Cauchy-Schwartz inequality,

N(k,T)
< Cnpp - Z Z Z { { Z 9= Nolk—k'|o[(kAK")~K]Q2(1—1) 1/2

keNtel, v=1 k’'eN

% [ Z 9~ Nolk—K'|o[(kAK)~k]Q2(1~7)

k’eN
N ') 211/25 2
MY Y t LD (NEI X e W] ]} X (@)
Telk/ v'=1 z€ !

thus, choosing Ny large enough such that No + Q2(1 — %) > 0, we have

N(k,T)
/ n_ 1
<Cnpp > D Y ST o Nl kgl (k) —HQa (1)
keNTel, v=1 k’eN
N k/ /)

My St inf [Djo(1)(2) X gurar () (04)] g (2)

T'ely lle/

Furthermore,
< Cpupp Z Z 9—Nolk—Fk'|9[(kAK)~K]Q2(1-7)
keN k’eN
N(k' ;') ,
M( Y Z inf | | D3 (£ x grrr () (@)] 7
rely V=1 z2€Q7, T
k/ I 2
< Cmpp Z Z Z inf » | Dy (f )(ZWXQk:,u’(‘))(CU)] j
k'eN el v=1 %€ T/ T

Since p/r > 1 and 2/r > 1, thus by the Fefferman-Stein vector valued maximal inequality, we
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have
NK'T) , , 2/ryT/21/r
H{Z[ (2 Z DL X OO s
T'el, v
N, , N 1/2
H{; > Z L GICTENTI0) S
T/ k! V= !
The result is already proved. O

2.5 The Littlewood-Paley-Stein square function and the Hardy spaces on M
We now introduce the Littlewood-Paley-Stein square function.

Definition 2.21. Let the bounded sets of elementary operators {(Dy,27%)|(Dy,27%) € D} be

an approximation to the identity on M, i.e. I = Y, - Dy. For f € T, the Littlewood-Paley-

Stein function of f, is defined by

1/2
S(f)(x) = {Z \Dk<f><m>\2}

keN

Street has proved the following result
Theorem 2.22 ( [68]). If f € LP(M), 1 < p < oo, then ||[S(f)llzo(ar) = [If | Loany

We, however, point out that the following discrete Littlewood-Paley-Stein square function
is more convenient for the study of the Hardy space HP when p < 1.
Definition 2.23. Let the bounded sets of elementary operator {(Dy, 27 %)|(Dg,27%) € D} be
an approximation to the identity on M, i.e. I =3, .y Di. For f € T’, the discrete Littlewood-

Paley-Stein square function of f, is defined by

(XY S I @)

keNTel, v=1

By the Plancherel-Pélya inequalities, it’s not difficult to see that the LP norm of these two

kinds of square functions are equivalent. More precisely, we have
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Proposition 2.6. For all f € T', 0 < p < 0o, then Hg(f)HLp(M) ~ Hgd(f)HLp(M).
We are ready to introduce the Hardy space on M.
Definition 2.24.

HP(M)={f €T :8;€LP(M)},

and if f € HP(M), the norm of f is defined by || f|| gr(ar) = ||§d(f)HLp(M).

Obviously, by the Plancherel-Polya inequalities inequalities, the Hardy space HP(M) is well
defined. Before ending this section, we prove the following general result which will be used
to provide the H? — LP boundedness later. We also would like to mention that the proof of
this general result does not use atomic decomposition, and thus Journé’s covering lemma is not
required.

Theorem 2.25. Let 0 < p < 1. If f € L*(M) N HP(M), then f € LP(M) and there exists a

constant Cp, > 0 which is independent of the L*> norm of f such that

| flleary < Cpll fll e (ary-

Proof. Set
N(k,T) 1/2
0, = {m e M: [Z Z Z |Dk(f)(m)|2xgi,u(m)] > 2’}.
keNTely v=1
Denote

u(@t) .

N =

1
By = {(k, Q) : (@5 N ©) > Q7). 1(Q7" N Qi) <

where OF" is the dyadic cubes on M. Since f € L?(M), by the discrete Calderén formula, we



47

have

N(k,T)

=330 ST w(QE) Dl B D) (5E)

keNTel, v=1

=Z ST u(Q8) Dy i) D) (E),

Z (k,Q¥")eB;

where the series converges in the L? norm, and hence almost everywhere.

We claim

p
< C2%p(SY),
Lp(M)

Z 1 (Q8) Dy (-, y2" ) D () (y5)

(k,0%")eB;

which, together with the fact 0 < p < 1, yields

11y < C Y 2Pu(4) < CILFI,

€L

Thus, it suffices to verify claim ([2.7)).

Set

Q; :{:UGM M(xa,)(z) > ﬁ}

By the Holder inequality,

p

> () Dy yr ) Dr(f)(yE")

(k,Q5")eB; Lp(M)
p
~ _Pp
<u(@)7EH YD (@) Dil g DR )
(k,QF")€EB; L2(M)
p
HDD (@) Di( g Di(f) (yE) _——3
(k,QF")EB; Lp(M\S;)
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Firstly consider }. By the duality argument, for all g € L*(M) with ||g[| 2. < 1,

‘< > M(Q’i’”)Dk(wy'ﬁ’”)Dk(f)(y'f’”),g(~)>‘

u(QF") Di(f)(yr") Di(9) (y5")

Note that

7

1/2
< pu(QEY) IDk(g)(y’ﬁ’”)F)
(k, Q" )eB

) 1/2
inf M(Dk(g))(Z)‘ ng,u(:ﬂ)>

zeQkv

- ( a0
(k,Q5")eB;

1/2
2
< (%/M’M(Dk(g))(ﬂ?)‘ d#($)> < Cllgllz2an-

This implies that

ST (@) Dyl D) ()

L2(M)

1/2
<C u(Q’i’”)IDk(f)(y’ﬁ’”)F) :

Note also that

N(k,T)
() [ {ZZ 3 \Dk<f><x>|2xQ¢,u<w>} du(z)
Q:\ Qi1 keNrel, v=1

> Y DAHEE)P(QE N (\Qin))

(k,QF")EB;
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>0 (@)D

(k,QF")eB;

where the fact that u( kv A (QZ\QZH)) > ﬁu( ]T”) when (k, Qlﬁ’”) € B; is used in the last

inequality. Also note that ,U(Qz) <Cu (Qz) Hence, we can obtain

Next, consider x2. Note that if (k, Qﬁ’y) € B;, then OF" c Q. Fix k € N, we have

p( Q") D, y&" ) Di(f) (yE")
(k,QF")eB;

N(k,7) (1 + 2k: kv —m
p(wvyT )) EaY k
<c u(Qb D))
Tezzk ; ( )Vol(B(X,d>(f’%2"“ +plz,y7"))) | |

N(k,7) 1r
SC{M(Z 3 \m(f)(yf’")ngﬁ,um@ic))<x>} |

7€l v=1

where C' is independent of f. Consequently, by choosing r small enough such that p/r > 1, also

applying the Fefferman-Stein vector valued maximal inequality, we have

/ M\

> w(QF) Dilw, yE)Di(f)(ye)| dpl)

(k,QF")eB;

N (k,7) 1/rp
<c /| > {M > IDk(f)(yf”’)W@»@C)) (x)} dp(x)
MA\Q: | keN Tl v=1
N(k,7) p
<C 13D DN xgreng, (@)| dulz) =0.
MA\$; keNTel, v=1
The claim is proved and hence the boundedness follows. O

We would like to point out that the subset L?(M) N HP(M) is dense in HP(M). Indeed, we

have the following.
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Proposition 2.7. T is dense in HP(M).
The proof of this proposition is similar to the proof of the Plancherel-Pélya inequalities.

More precisely, suppose that J is any set of indexes of indices of k, 7, v. Then we have

>~ 1(Q5") Dl yE ) D )W) - f
J

HP (M)
(Q5) D,y ) D () (™)
Hr(M)
1/2
< {Z |Dk<f><->|2><g¢,u<~>} ,
Je Lr(M)
where J°€ is the complement of 7.
2.6 Carleson measure space and duality
Let’s define CMOP(M), f € T/,
N(k,T) 1/2
I Flleasonary = sup { 2/p Y Y D@ P )} <

QpeNrel, v=1

where (2 ranges over all open sets in M with finite measures and where for each k, Qf’” range

over dyadic cubes in M.

Theorem 2.26. Let all the notation be the same as above. Let {Dy}ren and {D}, }ien be two

approzimations to the identity on M. Then for all f € CMOP(M),

N(k,T)

sp (e [ 250 2 IDUN@ P gpe o dute)}

keNTel, v=1
N(k/ /

W/ S5 S g @)

KeNT/el, V=1
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Proof. For any f € CMOP(M), by the discrete reproducing formula,

sup | Di(f)(2)]?
ZEQ:C—’U
k/ /

/ kv K. \\—
’ k/ / (1 +2k/\k p(y LY )) m K
SDIEAREDY Z Q, e D (N W)
k'eN el v=1 VOI(B(X,d)(yT ,2 AR CTARTARL

/

, . k,v di ki‘yl / . . !
Note that 2-1k—|  diam(Qz*) \ diam(Qy") o kak) diam(QF") v diam(Q""") and

diam(Q¥”") " diam(QF")

Pyt ") > dist(Q5, Q5Y). Hence,

sup [Dy(f)(2)[?
zeQh
Nk ') ) . W
< k’ / diam(Q7") A diam(Q;,"" )1 No
> 2 Z [dlam(gky) dlam(QE”)}

KeNt'el, v'=1

[1+ (diam(Q") v diam(Q¥"")) ~Ldist(QE, %"y~

T

Vol(B (X’d)(y., ,dlam(QT )V dlam(Qk v )+ di st(Qf v gk )

T

1Dl () ()2

Applying the above estimate with any arbitrary point yf,/’yl in in’”l, and the fact ab = (a Vv

b)Q(% A g) for any a,b > 0, we obtain that for any open set 2 C M with finite measure,

ST ST @) swp Dk

p(Q)r e Q’;’”CQ eQr”
Q) [ diam(QF) - diam(Q5* ) %
N v v v : Y
(€2) 5_1 %Q’;Qk’ze;\]g;/ [ k n(QF") } [dlam(Qk, ) diam(Q") }

p(QF) v (QE)
Vol(B(x.a)(yr”, diam(Qp") v diam(QF ") + dist(QF", %))

;
inf g [ D (£

1+ (diam( Q5 diam (@577 it (57, Q5]

x [u(QE") v u(Q5")]

For convenience, set

k K v
Q=0 Q" =Q.",
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u(Q%") u(Qﬁi’”’)] [ diam(Q5")  diam(Q""’ )}No
Y /\ /\ 5

p(Q5)  p(Qr) I Ldiam(QE")  diam(QF")
v(Q. Q) = (@) v u(@E),

[1(QF") v u(QE")] 11+ (diam(QFY) v diam(QL"")) " dist(Q5", Q5 )] ™
Vol(B(X,d) (yT ,dlam(QT )V dlam(Qk v )+ dlst(Qlﬁ Y, Qﬁ, v )

P(Q,Q) =

)

Sq = sup |Dp(f)(2),
zeQh

Ty = 1nkf/ y |D§€/(f)(2)|2~

z€Q’)
Thus, it can be rewritten as
1
—— = > wQ)Se S ——5 ¥ > r(@,QNWQ,QNP(Q.Q)PQ,Q"NTy  (28)
w()r " Gca M Q)P QCQ @'

To complete the proof of the theorem, we need to prove that the right-hand side can be
controlled by

Z Q)Ty,
Q'CQ

T _—_ 2 1
Q (QP

where € ranges over all open sets in M with finite measures.

Similar as before, we point out that the estimates of v(Q, Q") and P(Q, Q') are based on
the geometrical properties between @ and @Q’. More precisely, when the difference of the sizes
and the distance of @ and Q' get larger, then v(Q,Q’) and P(Q, Q') then become smaller,
respectively. Therefore, to estimate v(Q, Q') and P(Q,Q’), for each @ C Q, we group all subsets
Q' in M according to the distances and sizes of @ and Q' as follows:

Define

Q0= | J 3@

QCQ
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Then, for any @ C €, let

Ap(Q) ={Q' + dist(Q, Q') < diam(Q) V diam(Q') };

Aj(Q) ={Q' : 277! [diam(Q) V diam(Q’)] < dist(Q, Q') < 27 [diam(Q) V diam(Q")] }.

where j > 1.
Note that for each subset @', we have lim;j_, 2/Q" = M. Hence, for any subset Q C ,
there exists some j such that Q" € 4;(Q).

Consequently, we have

— > Y @ Q@ Q)PQ.QIPQ.Q )Ty
Q)F QCNQeA
3 3 Y HR@)0(Q.Q)PQ.QVPQ.Q) Ty

1M Q)" QCRQen,

=:14+1I

We first consider I. Define

By = {Q' :3Q'nQ° +#0}.

Then we claim that

—— > > (@QwQ,Q)PQ,Q)PQ,Q)Ty
p(E)* " ey {0:0c,
Q'cA(Q)}

In fact, for each Q' ¢ By, according to the definition of By, we have 3Q' N Q° = (). Hence,
for any Q C ©, we have 3Q' N 3Q = (), which implies that Q' ¢ Ay(Q). Therefore, we have
Ugca Ao(Q) C Bo. As a consequence, we can obtain that claim holds.

We make a further decomposition of By. First, for each h > 1, we define F) = {Q’ :
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wQ N QO) sri(3Q") 1, 1) = Jro\f}? 1 Le. I}? ={Q": 7ru(3Q") < (@' N QO) < th ru(3Q)}

and FJ =0, and Q) = Ug er? Q'. From the above definitions, we have

=z

h>1

Therefore, can be rewritten as

——=>. > > r(Q,QWwQ,Q)PQ,Q)PQ,Q)Ty.
( p h>1Qe1) {Q:QCL,
Q'eAn(Q)}

From the definition of I,? we can see that for any ' and any Q satisfying Q' € Ap(Q), we have

P(Q,Q") < 1. Hence, to estimate (2.6)), we only need to consider the following:

> (@ QMNQ,Q).

{Q:QCQ,
Q'eAo(Q)}

In what follows, we use a simple geometrical argument, which is a generalization of Chang
and R. Fefferman’s idea in [2].
Note that Q" € Ap(Q) we have 3Q N3Q’ # (). We split into two cases:

Case 1. diam(Q') > diam(Q). First, it is easy to se that u(Q) < u(3Q N3Q’). So we have

1

p@Q) S HB3RN3Q) S pBQ 1Y) S 5 o

which yields that 2" =1 < u(3Q")/u(Q), i.e. 2"1(Q) < u(Q"). Since Q and @’ are all with measure
equivalent to 27 for some a € Z and 272792 ,(Q) ~ p(Q') for some nonnegative integer n. Also,
for each fixed n, the numbers of such Q’s must be < 2792,

Denote by zg and z¢y the center of @ and @', respectively. Since 3Q N3Q’ # (), we have that

p(2q, zqr) < 6diam(Q’), and hence Vol(B(x 4)(zq, 6diam(Q")) ~ Vol(B(x 4)(zq, 6diam(Q")) ~
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w(6Q) =~ p(6Q"). Thus,

@) _ Vol(Bix,a(zq, 6diam(Q)) _ (diam(Q’)>Q2

1(Q) "~ Vol(Bx 4 (2q, 6diam(Q)) diam(Q)
It follows that for each fix n > 0,
dlam(Q) < (M(Q) )1/Q2 < 2—h/Q2—n
diam(Q) ~ \u(Q") ~ '
Thus
> r(Q.QN(Q.Q)
Q€eCase 1
Qctme 1 Q") \diam(Q')
g Z 2—(h+nQ2)2—N0 [n+h/Q2}'u(Q’>
n>0

< Q—h(1+No/Q2),u(Q’)
Case 2. diam(Q’) < diam(Q). We have

p(@) S HB3Q 1) < s n(3Q)

hence there exists a constant hg > 0 independent of Q and @’ such that 0 < h < hg. We obtain
that p(Q) ~ 2M"Q2,(Q’) for some n > 0 and that for each fixed n, the number of such Q"’s is

less than a constant independent of n. Since 3Q N 3Q’ # (), we have

nQ) (diam(Q))Q2
p(Q) ~ \diam(Q")/
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Thus,
diam(Q') _ (u(@Q)\ds — oo
@ = () 572
Therefore,
S Q@@ Q) S Y2 SN S 27 (@),
QeCase 2 n>0

Now let us turn to Ij:

,_122( > o+ Y ) x Q@@

(Q P h>1 Q/eIO QeCase 1 QeCase 2

= Iy + I.

Obviously, combing the fact that u(Q9) < h2hu(Q) for h > 1, u(99) < w(Q), we have

h(14+52) oy2-1 1

URSins D DERRENC Alievne sl DRI CRL
( Pop>1 (h) Q'cY
_ 2_ 1
< S 2 A (2t () ! sup—— 3 u(Q) Ty
p(2)r " > Q p()r o'ca
1
< sup ———— (@ Ty
Q M(Qp Q'cQ

For I, observing that

Y Y re@nea)s,

Q ;_l h=0 O’ 0
Q'e1? QeCase 2

we have



57

Similarly, we can deal with II. This completes the proof of Theorem O

Thus, the space CM PP is well defined, and moreover, we have the following duality results.
Theorem 2.27. (H?(M)) = CMOP(M), (H'(M))' = CMO'(M) = BMO.

To show that the dual of HP(M) is CMOP(M) for 0 < p < 1, we first introduce sequence
spaces sP and P as follows.
Definition 2.28. Let Xo(z) = u(Q)™"/?x¢(z) for any dyadic cube Q C M. For 0 < p < 1, the
sequence space sP is defined by the collection of all complex-valued sequences s = {sr}r such

that

. (2.9)

sl = {32 (el 5ot} ]
Q

Similarly, for 0 < p < 1, the sequence space ¢ is defined by the collection of all complex-

valued sequences t = {tg}¢g such that

1 %
[tller = s <M<Q>Q/QZ% tol?) (2.10)

where the sup is taken over all open sets {2 C M with finite measure and R ranges over all the
dyadic rectangles in M.
The duality theorem of these sequence spaces is the following:

Theorem 2.29. (sP) = cP.
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Proof. First, we prove that for all t € P, if

L(s) :ZSQ-t_Q, Vs e sP,
Q

then |L(s)| < ||s]lse|/t]|er- To see this, set

Y ={eeM : [} (sqlxe)’]"/? > 2},
Q

Br={Q : (N Q) > 5 on(Q) m(he1 NQ) < 5 (@)

and

1

Q,={reM: M(xa,) > ﬂ}v

where M is the Hardy-Littlewood maximal function on M. By the Holder inequality,

QEBy, QeBy,
b 5 1 2 7
< (@) ECY 5P (= Y HeP)E)
p QeBy )P oca,
1
< (S u@0ECY Isa)E) el
k Q€eBy

where we have used the fact that if Q) € By, then @ is contained in §~2k Observing that

/~ 3 (selRe@))” de < 220D @\ Qe 41) < C2% ()
Q%41 e,

and

L3 (salte)*de> 3 lsqPu(@ u@\ 2 1 Q)

2\ i1 Qe QEBy,

(2.11)



99

> > selPu(@ 2AM(Q) > lsql
QeBy, QEB;
5 P 0O
we obtain (ZQeBk ISQP) < 2kP1(Qy,) 2. Substituting this back into (2.11)) and noting () <
w(Q) yield that |L(s)| < ||s]lse|lt]|cr-
Conversely, we need to verify that for any L € (sP)’, there exists ¢t € ¢ with [|t|l < ||L]|
such that for all s € s?, L(s) = 3" sqtq-

For any L € (sP)’, then L(s) = }_, sqtq- It suffices to show that [[t]|» < [|L||. To do this,

Q)
@)

for any open set Q C M with finite measure, let 1 be a new measure such that o(Q) =
when Q@ C Q and 1(Q) = 0 when Q € Q. Also, let [?(ji) be a sequence space such that when

1/2
{sq} € 1*(n), (ZQcQ lsq Q(MTL) /? < 0. Observe

{M 2 lal} = @72 el

QCQ

= su -1/2y . 3 M
si)s ||lzi)<1‘%2(tw(@) )% n(€2)2 ‘

Q) sq
< sup(L{xece(Q) = Cr
5:||5||12(ﬁ)§1 ’ ( /J/(Q) 1 )‘

Q) |sq]
ps!

< s I |xecn(@)

s:||s||l2(m§1 sP

By (2.9) and the Hélder, we have

o= (2 lsal “ B_l)”?

N(Q)B_l QCO

Therefore,

[tller < sup L[| - |[sllzay < IIL1]-
5:||3||12(ﬁ)§1
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Definition 2.30. For any f € T, define the lifting operator S by

{(She} = {m@* D0},

where @ is ‘dyadic cube’ in M, with length 1(Q) = 27577, and 2@ is the center of @, respectively.
Definition 2.31. For any complex-valued sequence A = {\g}, where @ are all dyadic cubes in

M. Define the projection operator 1" by

T(AQ)(x) = > > @) Di(x, 2q) - Mg,

keN Q

By discrete Calderén formula, we immediately obtain

ToS(f)(w) =Y > mQ)Dr(x,20)Di(f)(zq) = f(x).

keN Q

This means that T o S is the identity operator. Moreover,

Proposition 2.8. Vf € HP(M), we have

1S Hallse S N ee(any-
Conversely, for any s € P,

1T (sQ) e (ary < llsqllse

Also,

Proposition 2.9. Vf € CMOP(M),

1(5H)aller S I llerror(ary
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Conversely, for any t € P,

IT(tQ)lcrror ) < lltQller

Proof. For 0 < p<1andany g€ Band f € CMOP(M), by the discrete Calderén reproducing

formula, for any g € T,

(f,9) = O_> Q) Dkl 2Q) Di(f)(2q), 9)
P

= S0(f)Sq(9),
Q

where §Q(g) = {M(Q)%ﬁk(f)(ZQ)}kQ

By Theorem and Definition [2.28] we obtain

[(F,9)] < US(£), SN S If lomoran gl mmary-

Since T (ng, m) is dense in HP(M), it follows that CMOP(M) C (HP(M))/.
/ , .
Conversely, suppose | € (HP(M)) . Then [y = 1o T € (sP)’ by Proposition So by the
duality argument, there exists ¢t € ¢ such that I1(s) = (¢, s) forall s € sP, and [|t|| ~ [|l1]| < 1],

since T is bounded. We have [y 0 S =[loT oS =1, hence

(g) =1oT(S(g9)) = (t. S(9)) = (T'(t), 9)-

By the definition of sP and P, also applying the min-max comparison theorem, we obtain that

1T llervorary S Mltller < NI

Hence, (Hp(M))I CCMOP(M). O
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As a consequence of the facts that (hl(M))/ = BMO(M), HY(M) N L* ¢ L*(M) and
HY(M) N L? is dense in H'(M), we obtain
Proposition 2.10. L*°(M) C BMO(M).

2.7 The Boundedness of singular integral operator on M

An important model case for a manifold endowed with vector fields satisfying Hérmander’s
condition comes from that of a (stratified) nilpotent Lie group. Let g be a Lie algebra. Define
g = g and recursively, g*+1) = [g, g*)].

Definition 2.32. We say g is nilpotent of step k, if g*t1) = {0}. We say g is nilpotent if it’s
nilpotent of step k for some k.

We say G is a nilpotent Lie group, whose Lie algebra is nilpotent, if G is Lie group. It is
well known that if g is a nilpotent Lie algebra and if G is the corresponding connected, simply
connected, Lie group, then the exponential map exp : g — G is a diffeomorphism. In particular,
as a manifold G = RdiamG,

Definition 2.33. We say a nilpotent Lie algebra g is graded if g = @}, _,V}, with [V}, V,,,] =
Vii+ps, Where we take V,, = {0} for y > v. We say a connected, simply connected, nilpotent
Lie group is a graded Lie group if its Lie algebra is graded.

Definition 2.34. We say a nilpotent Lie algebra g = @},_, V), is stratified if [Vi, V)] = V41
We say a connected, simply connected, nilpotent Lie group is a stratified Lie group if its Lie
algebra is stratified.

Suppose g is stratified, and suppose Wi,...,W, are a basis for Vi. We may think of
Wi, ..., W, are left invariant vector fields on G. By the definition of a stratified Lie group,
Wi, ..., W, satisfy Hormander’s condition. This is an important model case for general vector
fields which satisfy Hérmander’s condition.

Definition 2.35. Let g be a nilpotent Lie algebra. A family of dilations §; : g — g, ¢t > 0 is
a family of automorphism defined by 6; X; = t4 X j» when Xi,..., Xgjamg is a basis for g, and

O#dj S (0,00).
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Definition 2.36. A connected, simply connected, nilpotent Lie group whose Lie algebra is
endowed with a family of dilations is called a homogeneous Lie group.

Definition 2.37. Let G be a homogeneous group. A homogeneous norm |- | : G — [0,00) is a
continuous function, smooth away from the identity, whose |z| = 0 < x = 0, and |§;z| = t|x|
for t > 0.

With a fixed choice of homogeneous norm on a homogeneous group G, there is a natural left
invariant metric on G, namely the distance between x,y € G is given by p(z,y) := |~ 'y|. This
metric is also homogeneous: p(dyz, 6y) = tp(x,y). For r > 0, z € G, let B(z,r) = {y|p(z,y) <
r}.

Fix a graded group G, g = ®y=1Vy, and let ¢ = dimG; decompose RY = RIMV1 5 RdimVe
For 7 > 0 we define dilations on R? by r(t1,...,r,) = (rt1,7%ts,...,7"t,). Notice, if we identify
G = g with R? (as a manifold) by identifying V,, with R4mVe these are the dilations given by
8-, though now we have suppressed the §. With these dilations d(rt)/dt = r%, where d(rt)/dt
denotes the Radon-Nikodym derivative, and ) = Zzzl pdimV), is the so-called “homogeneous
dimension”. Furthermore, we use this identification with G to define |t| for ¢ € R?, where
| - | denotes a homogeneous norm. With the above notations, we have |rz| = r|z|, for r > 0.
Finally, in the above identification, Lebesgue measure on R? corresponds with the two-sided
Haar measure on G. Henceforth, integration on G will always be with respect to this measure.

Using these dilations, we can generalize the Calderén-Zygmund kernels of Definition [2.8] For
a multi-index a = (a1,...,q,) € N = NdamVi .. NdiamVy “wwe define deg(a) = > =1 Ml
where || denotes the usual length of the multi-index, i.e. £ norm.

Definition 2.38. K € C§°(R?)’ is a Calderén-Zygmund kernel of order s € (—Q, c0) if

(i) (Growth Condition) For every multi-index o, |98 K (t)| < C|t]|~@—s—degle),

(ii) (Cancellation Condition) For every bounded set B C C§°(R?), we assume

sup R™° < 00
beB
R>0

/ K (t)(Rt) dt
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Given K € C§°(R?) = C§°(G)' we may define a left invariant operator Op(K) : C§°(G) —
C>®(G) by Op(K) f(z) = f*xK(z) = [ f(zy ') K (y) dy. For a funciton f € C*(R%) and R > 0,
we define f(®)(t) = RQf(Rt), where Rt is defined by the above dilations, and therefore f(?) is
defined to preserve the L! norm: [ fU(t)dt = [ f(t)dt.

Theorem 2.39 ( [68]). Fiz s € (—Q,00), and let K € Sy(R?)". The following are equivalent:
(i) K is a Calderdn-Zygmund kernel of order s.

(ii) Op(K) : So — So(R?) and for any bounded set B C Sp(R?), the set
{9 € SoRY[FR >0, f € B,g'™ = R™*Op(K) fH} C So(RY)

s a bounded set.
(iit) For each j € Z, there is a function ¢; € So(R?) with {s;|j € Z} C So(R?) a bounded set

and such that

_ s _(27)
K-Zstgj .
JEL

The above sum converges in distribution, and the equality is taken in the sense of elements of
So(RY)'.
Furthermore, (i) and (i) are equivalent for any s € R.

Next, we need modify the construction of vector fields (X, d) a little. Suppose W1y, ..., W,
satisfy Hormander’s condition of order k, and let ny , be free nilpotent Lie algebra of step k£ on
r generators, and we denote /V[71, . ,/WT r generators for ny .. As in the previous section, let
)?1, ey )?q be a basis for ny , with

)?j = ad(Wl{)ad<W\lg) ---ad(ﬁ/\lj )/W?J

l
dj—1 d;

for some choice of l{, cee l‘éj. Note that X’j is homogeneous of degree d;. On M, we define the
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corresponding vector fields

X; = ad(Wy )ad(Wy ) - ad(W,, )W,

I
;- d;

and we assign to X; the formal degree d;. Because ny, is the free nilpotent Lie group of step

k on r generators. It follows that every commutator of Wi, ..., W, of order < k can be written
as a linear combination, with constants coefficient of Xy,..., X,. Thus, X1,..., X, span the
tangent space at any point of M, since Wy, ..., W, satisfy Hormander’s condition of order k.

We let (X, d) = (Xl, dl), ceey (Xq, dq)
On R?, we define dilations as in the previous section, for 6 > 0, 6(t1,...,t;) = (6%t ..., (5dqtq).
Let K € C§°(R7) be a Calderén-Zygmund kernel of order s > —(Q as in Definition Consider

the operator T': C*°(M) — C°°(M). Consider the operator T"

Tf(z) = / FE XK (b) dt

In the proof, we need the following two results. The first one is proved by B.Street [6§].
Theorem 2.40 ( [68]). If K is supported on a sufficiently small neighborhood of 0, then T is
a Calerdén-Zygmund operator of order s, as in Definition [2.38,

Proposition 2.11. Given two bounded set of elementary operator £ and &, Ym, N, 3C =
C(m,N,&,&), s.t. V(D;.279) € & and (D, 27%) € &, we have

(1 + 2" p(z,y))™™
Vol(B(x 4 (x, 279"k (1 4 207 p(, y)))

|DjTDk(x,y)] < CQiNU*kI

We assume the proposition for the moment and now show the H? boundedness of T' as

follows.
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Theorem 2.41. For 0 < p <1 and s =0, we have

T fllee < C|f|lze

Proof. For f € L?> N HP, we have

(xy S DT e or ()}

keNTel, v=1

1T flle <

Lp

Applying the L? boundedness of T' and the discrete Calderén reproducing formula,

SIS o LT > ol T

keNtel, v=1 k'eN 1/ el v'=1

1
2 2
XQ&»V(')}

According to the above proposition and the similar procedure while proving the Plancherel-

XDy e D (N (W) ) ()

Lp

Polya inequality, we can obtain

S 1w
Lr

M) :
{Z 2 Z ’D’“' | Qki*”’(.)}

KeNtel,, v=1

We now return to the proof of Proposition [2.11

Proof. Note that T' is the Calderén-Zygmund operator of order 0. Hence, by the characterization
in Definition {(TDy,27%)|Dy, € &} is also a bounded set of elementary operators.

Furthermore, note that for every NV, the set

{(2NI=H D, T Dy, 2797 (2NI=kT D D5, 277)(D;.277) € &1, (Dy, 27%) € &}

is a bounded set of pre-elementary operators.
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Therefore, by the definition of pre-elementary operators, we have

)| s (1+2p(,y)) ™
™~ Vol(Bxa)(x, 273" + p(z,y)))

(2797, (2797 W,) 2V 4 DT (o,

or equivalently,

(1+ 20" p(z, y))fm

—jnk a(o—jNk B, < 9—Nlj—k|
)" () (DT D) )| £ 2 Vol (B(x ay(x, 279" + p(x,y)))
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CHAPTER 3 :HP BOUNDEDNESS OF MULTI-PARAMETER
RADON TRANSFORM

3.1 Assumptions for multi-parameter vector fields on product space M =
My x -+ x M,

Now we assume M takes the form of product spaces. More precisely, for 1 < p < v, let M,
be a smooth, connected, and compact manifold as in the single parameter setting, and define
the product space M = My X My X -+ X M,,.

Now we state our assumptions for our vector fields on the product space M. On each piece
M,(1 < p < v), we assume there are vector fields W/, ..., W#ﬁ satisfying the Hormander’s
condition, i.e spanning the tangent space to M, at each point. From their iterated com-
mutators, as in the single parameter case, we can create a list of vector fields (X “,cz“) =
(Xt dh, ..., (X4, CZ’;#) that span the tangent space to M, at each point. Then, on each M*,
we have the Carnot-Carathéodory balls B(de%)(xu, d,) as before, and each B(Xuﬂu)(xu, dy) on
M,, induces a Carnot-Carathéodory metric p,(z,, 2,) = inf{d, > 0: 2, € B(Xu,ciu)(xuv du)} on

M,,. Then on M we define the corresponding metric having the vector form

p((x1,...,2), (21, ..y 20)) == (p(z1,21), - - -, p(T0, 20)).

We can extend each single-parameter formal degree cié‘ into a v-parameter dé-‘ as in the
beginning of this section, and then combine these pieces of vector fields (X*, cf“) for1<pu<v
together as a list of vector fields (X,d) = (X1,d1),...,(Xy,dy) on M. Based on (X,d), we
define the v-parameter balls B(x 4)(, ), and naturally, we hope such balls are “almost” in the
product form. Actually, if we denote by B((z1,...,z,), (01,...,0,)) := B(del)(xl,ch) X e X
B( xv, CZV)(J:V, d0,) and give M the strictly positive smooth density corresponding to the product

measure on My X --- x M,, then the following properties hold

Vol(B((w1,. .+, 20), (81, +,6,))) = [ VOB xu gy (@, 6)),
p=1
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B(z,6/C) € Bx,a)(x,6) € B(z,6C), =€ M,de€l0,00)",

for some C' > 0. In other words, the balls B(x 4 (x,d) are comparable to the “product balls”.

3.2 Discrete Calderén Reproducing Formula on product space M

In this section we will introduce the discrete Caldero6n Reproducing formula on the product
space M. For simplicity, we just consider the case v = 2, and the case when v > 2 follows in
the same way. First we introduce the bump functions.
Definition 3.1. We say B C C®(M) x M x (0,1]? is a bounded set of bump functions if Vm,
AC,, Y(¢, x,0) € B,
e supp(¢) C B(z,9),
e sup, |(6X)%(2)| < O Vol(B(z,5))~ .
Also, we introduce the space of test functions on M.
Definition 3.2. Let (z1,y1) € M. A function f defined on M is said to be a test function of
type (z1,y1) if for fixed y, f(z,y) is a test function of type (z1) and for fixed z, f(x,y) is a test
function of type (y1). More precisely, a function f on M is said to be a test function of type
(ng, m,ng, m') if for fixed y, f(z,y) is a test function of type (ng, m) centered at x; and satisfies

that

/ 1 + ’ 7m/
15" o 9) |y gy < € (1+p(y: 1)

" Nol(Bx, (y1, 1+ p(y,91))) 3.1)

Similarly, for a fixed z, f(x,y) is a test function of type (n(,m’) centered at y; and satisfies

that

« (1 p(l,l’l))
X T. - <
H z f( ’ )H/ (ylvnfpm/) - Ca’mV()l(B)(l (.171, 1+ p(l‘, .’El)))

(3.2)

Moreover, for each (ng, m,n(, m’), we denote by T (z1,no, m; y1, nj, m') the set of test functions
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of type (ng, m,nf, m") with the norm

HfHT(m’nom;yl%’m/) = sup inf{Cy v, Cam}, where Co s, Com is taken from (3.1)),(3.2)

|| <no
lo|<ng,

It’s easy to see that for another point (z2,y2) € M, T (x1, ng, m; y1,ngy, m’) and T (z2, no, m; y2, ng,
m/) are equivalent in the corresponding norm. We can denote T (z1, no, m; y1, ng, m') by T (no, m; ny,
m’) and represent the test functions of all types by T.

Theorem 3.3. Let Dy, and ﬁkz be given in Theorem on each M;, i = 1,2, respectively.

Then

N(k1,m1) N(k2,m2)
ZZ Yoo D > m(@ (@)

k1=0 ko= OT1EIk1 7261k2 vi=1 vo=1

Dy (2, Y5 ) Diy (9, Y22"2) Doy Dy () (W5, ™)

where the series converges in the norm of T (ng, m;ng, m'), the topology of bounded convergence

as operators C°(M) — C*°(M) and the norm of LP(My x Ms), 1 < p < co.

Proof. The proof of this theorem is based on the method of iteration and some known estimates

on one single factor M. We first show the LP, 1 < p < oo, convergence. Denote

N(k1,m1) N(k2,72)

= D D D > > Y m(@E (@Rt

|k1|<Ly |k2|<Lo T1€Ik1 T2€Ik2 v1=1 vo=1

Dy, (z, y¥1"1) Dy, (y, y£272) Dy, Dy, (f) (yF071 yf272) — f(2,y)

= gi(z,y) + g2(z,y)

where

N(k1,m1)

=2 2 > mepm

k1 |<Lymi€ly,  v1=1
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N(ka,m2)

X Dpy (@, D (D D0 D #a(Q) Dk ) Dy (F oy ™)) ) (i)

|[k2|<Lg T2€lg, ve=1
N(k:g,’rz

= > > > pa(QE2) Diy (y, yE2 ) Diy (f) (2, yE2)

‘k2|SL2 T2€Ik2 vo=1

and

N(k2,m2)
ka,vo

= > > > (9B Diy(y, yl2) Diy (), y5272) — f(x,y).

‘leSLQ ’T2€Ik2 =1

We now need the following estimates from the single parameter setting: There exists a

constant C' such that for f € LP(M), 1 < p < oo, and any integer L,

1> > Z (Q5") Da(, v ) D (D) W5 | poary < Cl Lo

|k|<LTel, v=1

and

N(k,T)

1230 > w(@")Dila, g )D(N W) = Fllwany < O Y IDRAPY 2 lawas
|k|<LT€el, v=1 |k|>L
Using the above two estimates, we have
Hgl(x7y)|’LP(M
N(kz,T2)
SOLY Pa( X X X ma(e™)
‘klle‘ |k‘2|§L2TQEIk:2 vo=1

2
Y2 oy

% Diy (4,452) Dy (/- 952)) ) (w7)

<C|I{ Z Z | Dy, Diy (F)2}2 e (a1)s

|k1|>L1 |k2|<La

where the last term goes to zeros as L; goes to infinity. ||g2(z, y)||L»(ar) can be handled similarly.

This implies the convergence in LP(M), 1 < p < oo.

To see the convergence in the space of test functions, we need the following estimates on
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one single factor M: for f € T(ng,m) and any integers L,

N(k,7)

1Y > > w@E)Dix, g ) Di( ) e ) I mom) < CII 7 mo.m)

|k|<LTel, v=1

and

1> > Z (Q8") Di(a, i) Di(H) W) = Fr(aam) < €2 b7 agam)

|k|<LTel, v=1

where C' is a constant.
We observe that if f € T (no, m;ng, m’), then ||f(,4)[|7(ny,m) as a function of the variable

y, is in T (ng, m’) and

HHf H’T(no, HT(n m) = HfHT (no,m;ng,m’):

Similarly,

£ Co T my

Ttnom) S | £ 117 (ro.msng mry- Therefore, we obtain

||gl('ay)||T(no,m)

N(k2,7m2)

< 3T DT 3 na( @)Dk, (4,0 Diy (G 0 o)

|k2| <L m2€ly, v2=1

Iy (1+ply,y1) ™ [
"omINol(Bx, (y1,1 + ply, y1))) ' (nom)

(1+ply,y) ™
Vol(Bx, (y1,1 + p(y,y1)))

<C.2° OILIHHf

< C 2B £, g )

Similarly,

||92(',y)||7'(n0,m)

1+ ply, )™
Vol(Bx, (y1,1 + p(y,41)))

< C27" 52| 1l 7 sy )
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Note that this implies

—0 —0
Hg(xay)”T(no,mm{),m’) < C(2 1 +2 2LQ)Hf‘‘’7—(710,'n%;rz&,nz’)7

which yields the convergence in T (ng, m;ng, m'). O

3.3 Plancherel-Polya inequality on M
Theorem 3.4. Let { Dy, }k,ez and {Dj, }ycz be two bounded sets of elementary operators and
decompose the identity map I, i.e. I = EkieN Dy, => D;ﬁ,_ on M;,1=1,2. For all distribution

of test function f,i=1,2,

k‘l ,T1) N k‘Q,Tg)

> > 20 > X

klengeN‘rleIkl T2€Ik2 vi=1 vo=1

1
sup |Dk1Dk2 (f)(zla 22)|2XQ§LV1 ()XQ&Q*VQ ()}2 ||LP(M)
(21722)€Q71 1 ><Q]€2 2 ! 2
N(ky,71) N(k3,73)

(OIS DD IEDD

k{ eN k! GNTlelk’l T2€Ik’2 V=1 vh=1

inf | Dy Dy (f)(21, 22)|*x kg o ()X g()} | e (0
R Qe
(21722)69% XQTé g

Proof. For any f € T (ng, m;ng, m'), we rewrite Theorem by

N(ki,m) N(kj,75)

YY Y Y Y Z i (QL ) a(QF™)

k1=0k, OTIEIk/ TQGIk/ V=1 vh=

k. , k , kl7 / k'/, /
Dl (e, o) Dy (w5 Dl Dl (1 W )

)
T2

By the orthogonality argument we obtain

(1 + 28" p(a, )~
Vol (B(X,d) (:E7 2_1%/\% + p(xu y)))

| Dy, Dy (2, )| < Cop,pr 2~ Vol =Kl
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From the above, for any ki, ks € N, we have

| Dy, D, (f)(,y)]
N(kY,m) N(kb,75)

S535 55 I Db S DI CEIE LD

ki =0k,=0 TIEIk/ TQGIk/ vi=1 vh=1

= k, k7 k,7l
DmkAxy,>m¢%@y%%> Dl (N o3

T2

(k1,71) N(ky,75)

<CmDD/- Z Z Z Z Z Z e k1,u1 (ijuz)

ki eNEkLEN Tlelk, TQGIk/ vi=1 vh=1

><2 No 1|]€1 k |2 Noglkz le’Dk k/ (f)(ykl,lyyi yklgﬂ/é)‘

kv

k1, — 4 k1, ) ka2, _ ko,
Vol(Bx,a)(yr ™, 279" + p(yr ™ 0 ™)) Vol (Bix.a) (yrs ™, 2 RaARy 4 p(yr2™?y

9 !
T2

! !
k5 ,v5

T 97
(1+ 28K pyfi s, 1))~ (1+ 282K p(y2, %))~
X .
k1, _ k1, Ky ko, _ ko, kg v
Vol (Bx ) (ym ", 27 k1M + p(yz! "y ) Vol(Bxa)(yr2"?, 27k 4 p(yz2 Y )
Therefore,
N(k1,m1) N(k2,72)
)PV DD DD sup |Di Dy () (21, 22)|
k1€NkeeNT €l To€ly, vi=1 o=l (21,22)€ Q01" x Q722
XXQf_llvVl (z)XQﬁgvVQ (y)
N(k1,m1) N(k2,7m2)
SCHE2 30 3 Vb S S (
k1€Nk2€N’rl€Ikl 7261k2 vi=1 vo=1
N(ky,m) N(ky,m3)
k/, /
SY Y Y Y Y we Ju2(Q")
k/l—Ok’Q—OTlelkxl TQEIk/ vi=1 vh=1
_ Kk o— —k ARV WA
ol Kl Noalha— i . Dl (1), 4259
’ AR / kL V!
(L+ 287K p(yr ™y )~ (14 2521k p(yrz ™,y 22)) ~m )2
X
)

XX gl (SU)XQ';;VQ (y)-

Equivalently,

LRI DIDID VD IED VDD

N(kl,T1)N(k2,T2)<
k1€Nk2€NTl€Ik17‘2€Ik2 vi=1 vo=1



75

N(ky,m1) N(k5,75)

D B P YD M S SICA SITHE

k=0 k,=0 Tlelk/ TQGIk/ vi=1 vh=1

k' v kb
x| Dy Dy (F) (772

) /
T T2

? 7—1 I Ty

X

k2,u2

(14 29K plyr ™ g~ (14 25" plyr™ g ) >
k101 o AN k2,2 oo Nl ka2,
Vol (Bx a(yr ", 271/ (Y, 1)) Vol(Bix,a) (yr2"?, 27k e 4 p(yz2"2 ; )

XXQ_Jﬁll,Vl (JJ)XQ%JQ (y)

We choose 7 such that < p < 1. Now apply Lemma [2.22] The above term is bounded by

LRI DIDID VD IED VDY

k1€Nk2€NTl€Ik1 TQGI}CQ v1=1 vo=1

N(k:1,7'1 N(k:g,’rz (

Z Z o= No1lIn =k | (ki AR ) —k1]Qa (1= 1) 9= No,o ka—k} | [(h2Aks) —k]Qa(1- 1)

k’—Ok' =0
N(K; ™) N(kb,75)
(T X el x
T{GIk/I vi=1 Tée]ké vh=1
1y 2
. k: k
inf 1Dy f(f)(Zh22)!TXQM2,U§('))(yrf’w)xgkg,ug('))(ynl’”l)] )
(21,22)€Q VX Q72 7 I
1 2

XX gk (:U)XQ%,UQ (y)

By the Cauchy-Schwartz inequality, the last term above is dominated by

N(k1,71) N(k2,72)
SERY 5 2 b 3 o o
k1€Nk2€NT1EIk1 TQEIkZ v1=1 vo=1
oo oo 1/2
[ Z Z 2—N0,1kl—ki|2[(k)1/\ki)—k}1]@2(l—i)2—N072|k2—k,22[(’62/\k"2)—k2]Q2(1—71.)]
ki:OkéZO
o [o.¢]
% [ Z Z 27N0,1|]€1*k’1‘2[(’61/\]{’1)7]&’1}622(17%)27N0,2|k‘27ké|2[(1{2/\]{25)7]62}622(17%)
k1 =0 k=0
N(kluTl) N(k/277—é)

(X X (X X

! / ! e
’Tlelkll v1=1 T2€]k/2 vy=1
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,71/2y 2
. k k T
inf, D Dl (D)1 2 X g () W)X gt () () ] }
(21722)697_{1’ 1x0Q ,2 ™ T{

xXQf%,Vl (w)Xgﬁgm (v)

Thus, choosing Ny and Ny large enough such that No; + Q2,(1 — %) > 0, we have

N(k1,m1) N(k2,72)

L DIDID VD IED VDY

klENk‘QEN71€Ik1 7261k2 v1=1 vo=1

o0 oo
Z Z 27N0,1|k17/€/1|2[(k1/\k/1)*k1]Q2(1*%)2 No.2lk2— k2|2[(k2/\k) kQ]QQ(lii)
k1 =0 k=0
Nk}, 7)) N(k,75)
(XY me( XS
T{GIk/l vi=1 7—26114/2 vp=1
2
. k k '
g/lfl/ y |D/'Dk’ (f)(zl’Zz)‘rxgké’ué(,))(%22»1/2)XQK,1’U1(.))(yﬂl»l’l)}
(21,22)€Q 1 1xQ ;2 "2 K
1 72
XXQE%’Vl ($)XQ1;§1V2 (y)
Furthermore,

o0 oo
<Crpr 33 S S 2 Noalla—iIgllhi k) —alQa(1=1) 9= Noalka—k ol(kary)—kalQz(1—)
k1€N koeN ki:o k’2:0

N kllaTl) N(k 7T2)
M X me( XX
T{GIk/l vi=1 TQGIk/2 vh=1
2
inf D Diy (A1 22)"X it () X g () @)
(21,22)€Q }" ' x 72 2 ™ it
1 2
oo 00 N(k7,71) N(ky,75)
SCm,D,D’Z Z [Ml( Z Z M2< Z Z
k’1=0k’2=0 T{GIk/l I/i=1 Téelké Z/é=1
2
it DR Dh (DG )X s () WX g 0) @]

k! v
(21,22)697,1 1x0Q , ™ 1
1
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Since p/r > 1 and 2/r > 1, thus by the Fefferman-Stein vector valued maximal inequality, we

have
N(ki,m) N(kb,75)
3 MY X Mo X Z
klfoklfo Tlefk/l l/l—l T2EIk/2 l/2—1
1
inf D Dy (D12 g () X gyt () (@ D] B s
(21722)69 1 Q 272 ) 1
N(k,m) N(kb,75)
SO IS DD DD
K eN K, eerelk/l T2€Ik/2 vi=1 =1
. 1
inf 1Dy Digy ()21, 22)1°X 0t (X i, (Y2 Loy
K11, oFarva v Q Q;
(21,22)697_{ XQTé el TS
The result is already proved. O

3.4 The Littlewood-Paley-Stein square function and the Hardy spaces on
M

We now introduce the Littlewood-Paley-Stein square function.
Definition 3.5. Let the bounded sets of elementary operator {(Dy,,2%)|(Dy,,27%) € D;} be
an approximation to the identity on M;, i = 1,2. For f € T', S(f), the Littlewood-Paley-Stein

square function of f, is defined by

SN ={ Y 3 IbuDu(@nP}

k1€N koeN

By the results on each M;, ¢+ = 1,2, and iteration, we immediately obtain
Theorem 3.6. If f € LP(M), 1 < p < oo, then ||§(f)||p ~ | fllp-

We, however, point out that the following discrete Littlewood-Paley-Stein square function
is more convenient for the study of the Hardy space HP when p < 1.
Definition 3.7. Let the bounded sets of elementary operator {(Dy,,2%)|(Dy,,27%) € D;} be

an approximation to the identity on M;, i.e. [ =) kien D, For f € T, the discrete Littlewood-
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Paley-Stein square function of f, is defined by

N(k1,m1) N(k2,72)

=H{EX X X X X eyl

k1€Nk2€NT1€Ik1 TQGIkQ v=1 v=2

1/2
XXQ’;ll w1 (x)XQ%JQ (y> }

By the Plancherel-Pélya inequalities, it’s not difficult to see that the LP norm of these two
kinds of square functions are equivalent. More precisely, we have
Proposition 3.1. Forall f € T', 0 < p < oo, then H§<f)HLP(M) = Hgd(f)HLp(M

We are ready to introduce the Hardy space on M.

Definition 3.8.
HP(M) = {f € T': Sa(f) € LP(M)}

and if f € HP(M), the norm of f is defined by [|f||zr(ar) = |1S()|| o (ar)-

Obviously, by the Plancherel-Polya inequalities inequalities, the Hardy space HP(M) is well
defined. Before ending this section, we prove the following general result which will be used
to provide the H? — LP boundedness later. We also would like to mention that the proof of
this general result does not use atomic decomposition, and thus Journé’s covering lemma is not
required.

Theorem 3.9. Let 0 < p < 1. If f € L*(M) N HP(M), then f € LP(M) and there exists a

constant C, > 0 which is independent of the L? norm of f such that

1 flleary < Cpll fll e (any
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Proof. Set

N(k1,m1) N(k2,72)
ai:{<x7y>eM:[zzz Y S S BuDuhe )l

klengeNneIh TQGIkQ vi=1 vo=1

1/2
XXQﬁllﬂjl (x)XQﬁgﬁ’Q (y)] > 21 } :

Denote

By = { (k1 ko, Q1 Q)
1
H1 X ,U2(Q£117V1 X Qﬁ;’m ﬂQZ‘) > 5/“ X MQ(QfllvVl % QE;’V2)7

1
M1 X uz(Qkhl/l X ka,ug OQH-l) < 2,“«1 % M?(Qkhyl % ng,l/g)}’

where Qlﬁf i is the dyadic cubes on M;. Since f € L2(M), by the discrete Calderén formula, we

have

N(k1,m1) N(k2,72)
EY T T Y Y ml@ @k

k1=0 ko= 07—16[’“1 72€[k2 v1=1 vo=1

Dkl (x’ yf—:lljyl)DkQ (y7 ygg V2)Dklﬁ/€2 (f)(yflhyl ) y7k—;227y2)

=> > pr (QF 1) g (QF272)

I (k1 k2, Q71,022 E B

Dy, (2, yF"") Dy, (y, y22"2) Dy Diy (f) (yE2 1, yk2v2)

2 Z fi(x7y)7

€7

where the series converges in the L? norm, and hence almost everywhere.

We claim

1 fill7 ) S C27 - iy X iz (), (3.3)
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which, together with the fact 0 < p < 1, yields

1y < C 3227 a1 x 12(9) < ClF Bpoan

€L

This completes the proof of Theorem. Thus, it suffices to verify claim ({3.3]).

Set

Q; = {x €M : M(xa,)(z) > ﬁ}

By the Holder’s inequality,
-Z 2
il < % 2 (@) T E NS gy + 152, ) 2 ik

Firstly consider }. By the duality argument, for all g € L?(M) with l9ll 2y < 1,

[(fi 9())| < > pa( Q" ) (Q52)

k
(k17k27Q7-11 M Q2 2YeB;

ﬁklﬁkQ (f)(qu—:lhyl ) y7]?227y2 )Dkl Dkz( )(yklhyl ) y71?22,1/2)

1/2
< > 1(9511’”1)m(Q’;;’VZ)mlekQ(f)(y’ﬁf’”l,yﬁg’”2>l2>
(k1,k2, Q51" Q2 2)e B,
1/2
X > p1 () g (QF22)| D, Dy, (g )(yff’”%yff’”)F) :
(k1,k2, Q5171 QF22)e B,
Note that
1/2
Z 1(Qﬁll’yl),UJz(QE;’”QHDlekQ (9)(3/1;11 Vlyyﬁf’y2)|2>
(1,k2,Q71 ", Q722 ) e B;
< > i (Q 2 (Q72)

(k1,k2, Q511 QF22)e B,
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X

inf M(Dlekg (9))(2)

‘
kq,v ko ,v:
ZGQ 11 1><Q 2,V2

1/2
XQ’%M (x)XQ’%,VQ (y)>

1/2
(Z /!M Dy, D, (g (xvy)\zdm(w)duz(y)> < Cligllze(m
k1,k2eN

This implies that

1/2
I fill 2(ary < C( Z 1(9511"/1)/i2(Qf-§’V2)’Dk1Dk2(f)(yff’yla3/522’”2)’2> :

(k1,k2,Q51"1 QF22)e B,

Note also that

' N(k1,m1) N(k2,72)
SCRTRCTEY SRR 5D VB 31 oib S S R NG
Qi\Qip1 k1EN k2N T €l T2€], 11=1 va=1
XX g1 (T)X gha.va (y)} dpa (z)dpa(y)

Tl 7'2
> Z ’bklﬁkz (f)(yﬁhm?yf;’yz)’z

(k1,k2, Q51" Q52 2)e B;
1 % ((QE x Q272) M (2:\ Qi)

>

N =

S (@@ Dl Dy (N )

(k1,k2, Q5171 QF22)e B,

where the fact that p; x ug(( 713'11#1 X QkQ’”Q) ((NZZ\QHl)) < 2/“ X ug( kl Y1 QkQ’”Q) when

(K1, k2, 71?11’”1 QkQ’VZ) € B; is used in the last inequality. Also note that p; x s (Qz) < Cuy x

2 (Ql) Hence, we can obtain

[SiS)

Kb < O x (€)' i<

2Ty X g (§~2 )2 < C2%p1 X po(8)

Next, consider k7. Note that if (ki, k2, kl’yl QkQ’VQ) € B;, then le"jl X Qﬁg’l’z c Q,. Fix
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ki1, ko € N, we have

> pa (QE ) g (QE272)

(k1.k2, Q51" Q2 2)e B,

Dy, (z, y¥11) Dy, (y, 4522 Dy, Di, () (g7 yh22)

<c Y Z 3 Z 1( Q" )2 (Q7™)

T€ly;, vi=1 m€ly, v2=1

(L+ 2% p(a,yr ) "
Vol (B(x,a)(@, 275 + p(a, yi ™))

L (r2Rp )"
Vol(B(x,a)(z, 2752 + p(y, yr"™)))

cofu © ey Y

n€l, =1 T2€l, 2=l

‘Elﬂﬁk’z (f) (yflhyl ) y7]?22 Vz)’

1/r
‘Eklﬁkz(f)(yflhul ) y7’?227y2 ‘TXQ%J’Q ()) (y)XgﬁllaVl ()) (‘T})}

where C'is independent of f. Consequently, by choosing r small enough such that p/r > 1, also
applying the Fefferman-Stein vector valued maximal inequality, we have

/ M\Q;

> pn (QE1 ) (Q272)

(k1,k2,Q51"1 QF22)e B,

P
Dkl (:L' le? Vl)Dkz (y y7]?227y2)Dk15k2 (f)(yﬁll Vl’y7k_3227V2) d'u(l')
N(k1,71) N (k2,72)

cof Iy du(x Yy s
M\ | (k) ka)eB; nel, n=1 T2€ly, 2=l

p

1/r
Do Dia (DA 52 Xty n () WX gty <->) <x>} )

N(ki,m1) N(k2,72)

Yod D > PuDi(Nry)|

k1EN7'1€]k vi=1 vo=1
k2eN T2€Ik

M\

p

X(Qf_llvl’l XQES’VQ)QQ_L_ (.’E, y) d/"’(x) = O
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The claim is proved and hence the boundedness follows. O

3.5 Product Carleson Measure Space and Duality

To characterize the dual space of HP(M), we introduce the Carleson measure space CMOP
on M, which is motivated by ideas of Chang and R.Fefferman|2].
Definition 3.10. Let ¢ = 1,2, {Dy, },ez be an approximation to the identity. The Carleson

measure space CMOP (M) is defined to the set of all f € (Sps)" such that

N(k1,m1) N(k2,m2)

HfHCMOP(M):Sup _1/ Z Z PRI DY

k1=0 ko= 0T1€]k1 T2€Ik2 v1=1 vo=1
2
XX{le VIXQ2V2CQ}(k17k2-7-177—27y17VQ)‘Dlekgf(xl7x2)’

1/2
Xka(xl)kawz(fﬂz)dm(fﬂl)duz(M)) < 00,
T1 T2

where the sup is taken over all open sets 2 in M with finite measures.

In order to verify that the definition of CMOP(M) is independent of the choice of the
approximations to identity, we establish the Min-Max comparison principle involving the CMOP
norm. To this end and for the sake of simplicity, we first give some notation as follows.

k ) k I
We write R = Ofi" x Q2" R = QL™ x @™,
1

N(kl,Tl) N kQ,Tz)

0o oo
Z Z Z Z Z Z X{le ”1><Qk2 ”ZCQ}(klak%TlaTQaV17V2);
ACO ricTh, Tacln,

kl OkQ 0 V1= 1 Vo= 1
N (K 7{) N (b 8)

o o0
Il 1Ty,
§ E g E § X LIRVA (K1, k3, 71, 9, 11, 1)
xQ 7 2CQ}
RCQ el "

2
k1=0ko=0 7/ ’ TéEIk/Q l/i—l 1/2—1 2

oo oo N(ky,m) N(ky,73)
=202 2 X

R’ k1=0 k2=0 T{GIk’l TéEIk/Z vi=1 vh=1

p(R) = p(QEr 1 )u(Qk22); Ry = (@ u(Q@™);

1 T2
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R4 . k! vl N,
2 ki,v; 1208 . ki Vi Y 0
(R R’>—H<”(Q” ) 19 )>(dlam<9ﬁ ) ), (@ >) .
’ N7 kivi . " . kivi )
i=1 M(Qij’ 1) N( Ti ) dlam(Q];} ’) dlam( ™ )
v AR74 v kLWL
o(R,R) = (p(QE) v (@) (n(Qk) v Q™))
i,y T PO Y @Ol (G @) v o Q) (@8, @D
ST Vol(Brxay Wi, diam(Q5) v diam(Q25") + dist(@4, ©5)))

SR: sup ’Dlekz(f)(xth)‘Q;

kqi,v ko,v
1'1€Q711’ 1,$2€QT§7 2

Tr = inf !Dklek/Q(f)(fE,hxé)‘Q-

SANA v,
71 T2

Now we state the main theorem of this section as follows.

Theorem 3.11. Let all the notations be the same as above. For p <1 all f € CMOP(M),

1/2 1 1/2
7 < sup (72_1 Z M(R/)TR’) ) (3.4)
Q@ u(Q)r " rco Q@ u(Q)r T pico

where ) ranges over the open sets in M with finite measures.

Proof. First, for each p satisfying p < 1 and any f € CMOP(M), it is easy to see that the
right-hand side of (3.4) is finite and can be controlled by C|| f|lcnmor (ar)-
To prove (3.4)), we need to show that for any open set 2 € M with finite measure, the

following inequality holds,

1

1
— 3 Z W(R)Sr < sup jM(R,)TR/, (3.5)
n(2)» " rca Q p()r

where Q ranges over all open sets in M with finite measures.
To begin with, for each fix €2, we first consider the estimate of the term Sg in the left-hand

side of (3.5) for every R = Q1" x QF#"2 — . To estimate this, we recall the almost orthogonal
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property of Dkiﬁk; for ¢ = 1,2, namely, for any 0 < Ny < m

(1 + 25 i p(a, )™
Vol(Bx ) (z, 275"k + p(z,y)))

~ TR
| Dy, Dy, (2, y)| < Cn,p,pr2” Fi—HilNo

(see the property of the elementary operators for more details).
Now for any (x1,x2) € R, using the discrete Calderén reproducing formula, the above almost

orthogonal property and the Hélder’s inequality, we can obtain that

N(ky,73)

|D1€1Dk2f 331,:E2 Z Z Z Z Z Z k17V1 (Qf;27ué)

k’l—Ok’Q—OTlelk/ TQEIk/ vi=1 vh=1
2
N oD 1o ro
X Dy, Dy, Dy Dy (1, 2, Y1, Y2) Dyt Dy, (f) (915 92)

N(ki,m)

Y Y Y Y

k1=0 ko= Orlekal TQEIk/Q vi=1

N (k5. 75)

—|k1—K | Noo—|ka—kL| N kyv) KLVl

Do 2 kNl kN (@7
vh=1

(L4 25 plyr ™y~

k , . / k , k‘l, /
Vol (Bxa)(yr ™ 27M 4 p(ysl ™y 1)

)
T

X

(L 250yl ™))

: T ’Dk'Dk’ (f)(yivyé)ﬁ
Ko o AR kava
Vol(Bx ) (yr2"?, 27 MM 4 p(yrz™®,y 7))

I Ty

(3.6)

where Nj is chosen to satisfy ¢ < Ng < m, and for ¢ = 1,2, yk”"l is the center of Qk”v’ and

/ /

. . kil .
Y. }’ i s any point 1n QT?’ ‘, respectlvely.
1

From Lemma we know that each dyadic cube QF satisfies that

diam(QF™") diam(Q_;™)
diam(Q"")  diam(QF"")

diam(Q¥") ~ 27 which yields 2~ %l ~

and 27 (Firk) diam(Qﬁf’”") \Y diam(Qié’V’{) fori=1,2.

i
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Also note that p(yr Y ko Z) > dist(QF ", Qf?yl) Since the last inequality of (3.6) is indepen-

7

dent of (x1,z2), then combining the above estimates, it follows that

N(kl’Tl) N(kzﬂ'z)

2330 S Db DD S SINICA LMLy

ki =0 k/Q—OTIEIk/ TQEIk/ V=1 vh=1

. k' v N,
diam(Q-]ﬁ%’yl) dlam(QT{I D\
X k1,11

diam(Qiil’yi) diam(Qr ™)

[1+(d1am( kl’ul)\/diam(gké’ )) 1d18t( k1,l/1 lev’ﬁﬂ

: p p T (3.7)
Vol(B(Xd)(yT1 71 diam(Q7) leam(Q ; )—i—dlst( . Q a 1)))

. kL Wl N,
k2v2y diam(Q777%)\
y (dlam(Q ) A ! )

dlam(Qf_?’ 2y diam( %27”2)
2

[1+ (diam( kz’”)\/dwm(Qk,?’ 2))~ ldISt( a1 kam

VO]( (X )(yT2 V2 d1am< ka, VQ) \/dlam(Q 25V )+ dlSt(QlT? V2 Qk2’l/2)))

T

Now combining (3.7)) and the following equality

k! V!
2 2 [ Vi
o\ 2 ©e H(Q / )

I I (Qﬁ;ﬂjl I I ( Q,’f_jﬂjl <QT?,VZ>) (Iu( ;l’ 1/() A ZZ, v; )’
i=1 i=1 ! M(QTZ’ Nou(Q)

we obtain the left-hand side (3.5)), namely, %_1 > rcao M(R)SR, is bounded by
()P
- Z > w(R,R)r(R,R)P(R, R)Tg. (3.8)
Q P RCQ R

Thus, to finish the proof the theorem, we need to prove that (3.8) can be controlled by

1
Sup ———7 > wWR)Tg, (3.9)
Q pu(@)r " pcg

where Q ranges over the open sets in M with finite measures.
We first point out that the terms r(R, R') and P(R, R’) characterize the geometrical prop-

erties between R and R’. Namely, when the difference of the sizes of R and R’ grows bigger,
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r(R, R') becomes smaller; when the distance between R and R’ grows bigger, P(R, R’) becomes
smaller. Hence, what we should do next is to that, for each R, decompose the set of all dyadic
rectangles { R’} into annuli according to the distance between R and R’. Next, for each annuli,
we give a precise estimate by considering the difference of the sizes of R and R'. Finally, we add
up all the estimates on each annuli and then finish our proof.

Now let’s go into the details. For the sake of simplicity, we denote Qlﬁf v I:f’yl{ by Q;, Q,
respectively, for ¢ = 1, 2. Define

Qv = U 3(Q1 x Qa).

R=0Q1x95C2

And for each R, let

Apo(R) ={R' : dist(Q1, Q) < diam(Q;) V diam(Q}),
dist(Qs, Q5) < diam(Qy) V diam(Q5)}:
Ajo(R) ={R' : 27" (diam(Q;) Vv diam(Q})) < dist(Q1, Q) < 2/ (diam(Q;) V diam(Q})),
dist(Qs, Q) < diam(Qy) V diam(Q5)};
Ao (R) ={R' : dist(Q, Q)) < diam(Qy) V diam(Q})
2571 (diam(Qs) V diam(Q5)) < dist(Qz, Qb) < 2" (diam(Q2) V diam(Q%)) };
Ajie(R) ={R’: 277" (diam(Q:) V diam(Q})) < dist(Q1, Q1) < 2/ (diam(Qy) V diam(Q})),

gk—1 (diam(Qz) V diam(Q5)) < dist(Qz, Q5) < ok (diam(Qz) V diam(Q5))},

where j,k > 1.
Since for each R = Q) x Qf, lim, 00 3(27Q) x 28Q,) = M, we can see that for any
R C , there must be some j and k such that R’ € A;;(R). This implies that for each R C €,

{R'} C Uji>04;k(R).
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Then, we have

1
- Y Y w(RR)r(RR)P(RR)Tp
=1 ()P RCQ R'eAjo(R)

1
+ > > u(R,R)r(RR)P(R,R)Ty
k>1/~L(Q)” RCQ R'€Ag 1 (R)

£ LS S (R R)A(R,R)P(R, R)Th

2
—1
ik21 )P RCQ ReA, (R)

=0+ 1T+ 1T+ 1V.
We first estimate term I. Define
Boo={R :3R' N Q° # 0}.
Then we claim that

1
I<——— > > v(R, R')r(R, RP(R, R) T (3.10)
()P RIEBy o {RRCOR'EAoo(R)}

To show this claim, we only need to point out that for any R’ ¢ Bgo, we have 3R’ N Q° = 0.
Thus, for any R C 2, we can see that 3R’ N 3R = (), which implies that R’ ¢ Ay o(R). Hence,
we can obtain that UrcqAoo(R) C Bpo. This yields that the claim holds.

Now we continue to decompose By . Let ]-",?’O = {R": n(3R' N Q%) > 2%(3]%’)}, D?L’O -

]:2’0\}'281, h>1, J’:g’o = (), and Q%O = UR’EDSL’OR,’ h > 1. From these definitions, we can see
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that

0,0
Boo = | Dy’
h>1

Then (3.10) can be rewritten as

I< % > > v(R, R)r(R,R)P(R, R)Tr (3.11)

PE)? " 121 prep® (RRCQRE Ao o(R))

To estimate the right-hand side of (3.11)) we only need to consider

> v(R, R)r(R, R') (3.12)
{R:RCQ,R'€A0,0(R)}

since P(R,R") <1 for any R € Dg,o and R satisfying R’ € Ago(R). In what follows, we use
a simple geometrical argument, which is a generalization of Chang and R.Fefferman’s idea, see
more details in [2].

Since 3R N 3R’ ¢ (), we can split into four cases:
Case 1: diam(Q}) > diam(Q;), diam(Q}) < diam(Qs).

First, it is easy to see that u(Q1 x 39%) < u(3RN3R'). So we have

1

1(Q1)
= PLGER)

p(3)

(3R < w(3RN3R') < w(3R' N Q)

which yield that 27 14(Q1) < u(39)) < u(Q)). Since all the Q; and Q! (i = 1,2) are dyadic
cubes with measures equivalent to 29912 for some a € Z, then we have u(Q}) ~ 2"+mQu2;,(Qy),
for some n; > 0. For each fixed ny, the numbers of such Q;’s must be < % . 2“1Q1»2, where C1,
(5 are the constants in Christ’s construction Lemma.

Denote by g, and xg, the centers of Q1 and O, respectively. Since 3RN3R’ # (), we have

3Q1N3Q] # (), which implies that d(zg,, 7o) < 6diam(Q]), and hence Vol(B(x q)(zo,,6diam(Q}))) ~
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Vol (Bx o) (wg;, 6diam(Q})) ~ u(6Q}) ~ u(Q}). Thus,

w(Q)) ~ VOI(B(X,d)(fL“Qp6diam(g/1))) < <diam(Q’1))Q1,z
w(Q1)  Vol(B(xa)(xe,,diam(Q;))) ~ \diam(Q1) '

It follows that for each fix nq > 0,

As for Qo, p(Q2) ~ 2”2Q2’2M(Q'2) for some ny > 0. For each fixed ng, the number of such 9O5’s
is less than a constant independent of ng, since 3Q2 N 39, # () and ©(Q2) 2 u(Qh). Moreover,

we have

diam(Q%)

D) < g,
diam(Qs) ™~

Thus,

> r(R,RW(R,R)

Case 1
No
ﬂ Q) [ diam(Qy) diam(Q}) /
= Z wQ z) ’ <d1am(Q’1)> <d1am(Q§)> p(Q1)(Q2)

Case 1

< Z h+n1Q12 (Q12+n1)N02 "2N02n1Q1>2M(Q/1)M(Q/2)

n1,n2>0

<o "),

Case 2: diam(Q)) < diam(Q;), diam(Q)) > diam(Qs).

This can be handled in a similar way to that of Case 1. We have

_ _No_
S HRR)(R,R) S 2" (R,

Case 2
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Case 3: diam(Q)) > diam(Q;), diam(Q)) > diam(Qs).
Since

1
p(R) S w(BR'N3R) < p(BR' N Q%) < S u(3R),

we have 2/ 1j(R) < u(R'). Using the same idea as in Case 1, we can obtain that u(R') ~

2h+"1Q172+”2Q2»2,u(R) for some n1,n9 > 0. For each fixed n; and ns, the number of such R’s is

< 9n1Q129n2Q22

. : / wey) < (diam@a))c?m wQh)
Similar to Case 1, since 3R N 3R # (), we have w05 < | damioy and 5% <
. h n1Q1,2+tn2@2,2
diam(Q%) Q2,2 diam(Q1 )diam(Q2) w(R) \ Q1,2VQ22 ke 0 T 0, 5V055
(diam(Qz)) . Hence, Tam(Q] ) diam(Q)) < () < 2 Qrav@a2) 12VQ22  Com-

bining these results, we can get

Y r(R,RW(R,R)

Case 3
B u(R). diam(Q;)diam(Q3)
B Z p(R') <diam(Q’1)diam(Q’2)

No
) 1(Q1)1(Q5)

Case 3

_ n1Q1,2+n2QR2 2

h
—(h+n +n - v No v Noon +n /
< E 9= (h+n1Q1,2412Q2,2)90” Q1 2VQ22" 09"~ Q1,2VQ22 91 Q1,2 2Q2,2M(R)

n1,m2>0

N
S 27h(1+ Q1’2\/0Q272 ),U/(R/) .

Case 4: diam(Q}) < diam(Q;), diam(Q)) < diam(Qa).

From

1
p(R) S p(3R N3R) < p(3R'NO°) < 7 u(3R),

we have that u(R') < 02,},1#(}2’), where C' is a constant depending on only Q) 2, Q22, C; and
Cy. This yields that h < hg = [logy(2C)] + 1. Thus we can see that in this case, there are at
most hg terms in in nonzero.

Since u(R) > p(R'), we obtain that u(R) ~ 2m@2tn2@22,(R’) for some ny,ny > 0. For

each fixed n, the number of such R’s is less than a constant independent of n; and no. Also, by
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n1Q1,2+n2Q2 2

using the same skills as in Case 3, we have glzzgglﬁzzggﬁ <27 Q2V@22  Therefore

n1Q1,2+n2Q2 2 No

<ZQ @1,2VQ2,2 (R’)

Now we have finished the estimate of (3.12). Then from (3.11]), we have

=D 3l (DD S

P h>1 gre DO 0 \ ReCase 1l ReCase?2

+ >+ > wRR)(RR)Tw

ReCase 3 ReCase 4

= L+L+I3+ 14

We first consider the terms Iy, I and I3. Noting that we have chosen € and Ny satisfying that

o Qj\vf(’QQ . and combining with the fact that N(QO 0y < h2"u(Q) for h > 1, we have
1 —h(14+ 50 2_ 1
I, I, I3 S — 3 Z 2 ( Q1,2VQ2,2)M(Q%O)P 1ﬁ Z M(R/)TR’
n(2)» h>1 M(Qh7 )P RcQd?
S L Yo e ) ()
p()r " h=1
X sup —— 2_1 Z IU‘(R )TR’
§ “(Q)p R'CQ
1
< sup S u(R) T

As for I, from the estimate in Case 4 we can see that

,,ZZ > (R, R)W(R,R)Tx.

Q P h=1 R’G'DO ,0 ReCase 4
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Thus, we have

1 0.0,2—1 1

Iy S 2_1 Z//’(Qh7 )p 0021 Z :U’(R/)TR’
B3P p=1 (€2,7) Rc)?
& 1 21
rg 2_4 Z(th)pi M(Q);i X sup —— 2_4 Z M(R/)TR’
p()r " oy Q@ p@)r " g
1
Ssup ——5— > u(R)Tw.
o p)r " pca

Similarly, we can dealt with II, II] and IV with only minor modifications. The proof of the

Min-Max comparison principle for CMO? (M) is complete. O

We will establish the following duality result in the multi-parameter setting for M.
Theorem 3.12. (H?(M))' = CMOP(M), (H'(M))' = CMO*(M) = BMO.

We introduce the product sequence spaces sP and P as follows.
Definition 3.13. Let Yo = ;L(Q)_%XQ(SL'). The product sequence space sP, 0 < p < 1, is

defined as the collection of all complex-value sequences

)\ — {A ki,v1 k2,l/2}
Q‘rl ><Q7'2 kl,kQGN;Tlelkl,T2€Ik2;V1=17~--,N(k1771),1/2:17~--,N(k‘2~72)

such that ||A||sp

H{ 00 o N(k1,m1)
k1=0 k2=0 T1€Ik1 TQEI]CQ v1=1
N(k2,m2)

L) 12
Z (|>\Qf%’”1><Q'ﬁ§’”2| 'XQ’%’H(')XQ%w(')) }

vo=1

< 00.

Lp
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Similarly, ¢?, 0 < p < 1, is defined as the collection of all complex-value sequences

t - { k1,vq k2,u2}
Qry" *XxQry kl,kzeN;nelkl,TzEIkQ;V1:1,~~1N(k177'1),V2:17~-~1N(k2~7'2)

such that ||¢]|

(s [Ty ¥

Q k1=0 k‘2=07'161k1 T261k2
N(ki,m1) N(k2,72)
' E E X{Qfll,ulxggg,uzcﬂ}(khk2,71772,V1,1/2)

vi=1 vo=1

1/2
2
X (’tgf}’"l XQES’""" Xghim (xl)XQ%,VQ (m2)> d,u(a:l)du(xg)) < 0.

For simplicity, Vs € sP, we rewrite s = {sp}r, and

. (3.13)

Is||lsr = H{ Z |sR>~<R(x1,x2)|2}1/2‘
R

similarly, Vt € P, rewrite t = {tg}, and

1/2
1
[[tller = sup <21§ \tR\2> : (3.14)
@ \u(Q)r " rca

where R runs over all the dyadic rectangles in M. The main result in this section is the following
duality theorem.

Theorem 3.14. (s?)) =cP for 0 <p < 1.

Proof. First, we prove that for all ¢ € cP, let

L(s):ZSR-fR, Vs € sP, (3.15)
R

then [L(s)[ S [|slsv[[#]]cr-
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To see this, let

= {(1’1,1’2) €M: {Z(‘SRWR(M,@))Q}I/Q > 2’“}.
R

And define

Be={R: u(@ N R) > Ju(R), (@ NR) < Ju(R))},

1
Q. :{(1‘1,552) € M : Ms(xq,) > 5},

where M is the strong maximal function on M. By (3.15) and the Hélder’s inequality,

IL(s) s(Z( S lseP)E(Y rtRP)’Q’)p

k ReBy, ReBy,

g(zu@k)l—’é( L G |tR|2)§> (3.16)
k (€2 > C
S(Zu RS Jsnl )g>putucp

k

ReBy,

Combining the fact that [ Y pcp (IsrIXg(z))*du(z) < 22640 1 (Q\ Q1) < C2% ()
U\
and that

/Q Z (IsrlXR(z Z |srI*u(R) ™ (% \ Qa1 N R)

\Qk+1 ReB, REB;,

Since R € By, then R is contained in €. It follows that

/Q S (IsalTals > 3 lsnPu(R) u(R)

\Qk+1 ReBy, ReBy,
1

25 Z |8R’27

ReBy,

ya
2

[S4S]

we obtain (3_rcp, Isgr|?)2 < 2P (Qy)2. Substituting this back into the last term of (3.16]) and

noting () < u(Q) yields that |L(s)| < ||s/|sv ||t
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We point out that an idea similar to the one used in the above proof was used earlier to get
an atomic decomposition from a wavelet expansion by Meyer in [45].

Conversely, we need to verify that for any L € (sP)’, there exists t € ¢? with ||t]|l < ||L]|
such that for all s € sP, L(s) = > srtr. Here we adapt a similar idea in one-parameter case
of Frazier and Jawerth in [9] to our multi-parameter situation.

Now define szﬁ = 1 when R = R; and szﬁ = 0 for all other R. Then is is easy to see that
|si|lse = 1. Now for all s € sP, s = {sg} = >, sRis’E, the limit holds in the norm of sP,
here we index all dyadic rectangles in M by {R;}icz. For any L € (sP)/, let tg, = L(s'), then
L(s) = L(Y.; sr,s") = Y_; Sritr, = Y_p Srlr- Let t = {tg}. Then we only need to check that
[tller < [IL]]-

For any open set 2 C M with finite measure, let i be a new measure such that a(R) = %
when R C Q, R =0 when R Q. And let I2(u) be a sequence space such that when s € ?(ji),
(X realsrl? il ,)_1)1/2 < 0o. It is easy to see that (I?(j1))" = I2(f1). Then,

(€)%

{ QIZW} =l (R 21t 2o

w(2)? " rca

= s |3 (talu(R) ) sy LT

1_
slsllz <t /S p()r !
w(R 1/2 SR
< sup )L<XRQQ(R)L£’,1|>‘
sillsllyz (<1 p(€2)2
1(R)'?|sg

< sw LI [Xaca(R)

3:||5||12(ﬂ)§1 sP

p(Q)5?

By (3.13)) and the Holder inequality, we have

p(R)Y/? ( Z o8 £_1)1/2.

A e
p(§2)2 ! RCQ

HXRQQ(R)

Hence,

[tller < sup LI - [[s]li2 (@) < [IL]-

s:fIsllj2 (7 <1
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O]

In this section, we prove Theorem [3.12] First, we define the lifting and projection operators
as follows.
Definition 3.15. Let {Dy, }x,eny be an approximation to the identity, for ¢« = 1,2. For any

f € T’ define the lifting operator Sp by

Sp(f) = { Q8 ) 2 Q) 2 Dy Diy (1) (™l (3.17)

)}erl vy ka ,vo )

where ylff"z is the center of Qlﬁf’yi, ki e N, €Iy,,v;=1,...,N(ki,7;) for i =1,2.
Definition 3.16. Let all the notation be the same as above. For any sequence s, define the

projection operator T by

N(ki,m1) N(k2,72)
TD 331,1’2 Z Z Z Z Z Z S k:l Y1y k2,u2 (318)

k1=0 ko= 07‘1€Ikl T2€]k2 vi=1 vo=1

Q) 2 Q73 2) 2 Dy Dy (w1, w2,y ™),

ki, v; kivi

where yr,"" is the center of Q7" and Dki is the same operator as in the Calderén reproducing
formula associated with Dy, for i =1, 2.
To work at the level of product sequence spaces, we still need the following two propositions.

Proposition 3.2. Let all the notation be the same as above. Then for any f € HP(M),

ISp(F)llse S WS lpeany- (3.19)

Conversely, for any s € sP,

1T () e ary S Nsllsr

Moreover, T o Sp is the identity on HP(M).
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Proposition 3.3. Let all the notation be the same as above. Then for any f € CMOP(M),

1Sp(Nler S 11 lentorany- (3.20)

Conwversely, for any t € cP,

1T () llomorary S Ntller- (3.21)

Moreover, T o Sp is the identity on CMOP(M).

Assume the above two propositions first, then we give the proof of Theorem with pg.

Proof. First, let {Dy, }x,en be an approximation to the identity, for ¢ = 1,2. For any ¢ €
T(n()um; n6)

m’) and f € CMOP(M), from the two propositions above, we have

(f,9) = (TpoSp(f),9) = (Sp(f),Sp(9)),

k1, ka, = k1, ka,
where Sp(g) = {(Qr") 2 (Q73 )2 Dy o (9) (yri ™y ety g

~

By Deﬁnitionand the Min-Max comparison principle in Lemma we obtain |[Sp(g)[|s» S
9]l 2e(ary- Henee |(£, )] < [6Sn(f), S5 S Ifllcor(an 19llms(ary, where the Tast inequality
follows from the two propositions above. Since 7 is dense in HP(M), it follows from a standard
density argument that CMOP(M) C (HP(M))'.

Conversely, suppose | € (HP(M))'. Then Iy = loTp € (s?)" by Proposition So by
Theorem [3.14] there exists ¢ € ¢ such that l1(s) = (¢, s) for all s € s?, and ||t|[e» = [|l1]| S ||,

since T’ is bounded. We have Iy o Sp =1 0T 0 Sp = [, hence

I(g) =10Tp(Sp(9)) = (t.Sp(g)) = (Tp(t), 9),
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where

N(kl,‘r1 N(kz,‘l‘z

Z Z DD D DD tghn g () u(Q):

k1=0 ko= Onelkl TQGIkQ v1=1 vo=1

X Dkl DkQ <$17 Z2, yT117V1 ) y‘;’?;’w)
By Definition and the Min-Max comparison principle in Theorem we obtain that

7o () lemor(ary < [ltller < (2] Hence (HP(M))" € CMOP(M). 0
Now we give brief proofs to the above propositions.

Proof of Proposition[3.9. To show this proposition, we first point out that the proof is closely
related to the Min-Max comparison principle for HP (M), namely, Lemma is a direct
consequence of Lemma and the proof of follows the same routine as the proof of Lemma
5.4

Now let us go into the details. We first prove . By Definition and we can see

that for any f € HP(M),

15D (F)ls»

N(k1,m1) N(k2,m2)

{ZZ DD YD sup Dy Diy(f)(w,0)]?

k.
k1=0 ko= 0T1€Ik1 7261k2 vi=1 v=2 UEQT} M1 GQQVQ

1

2
X ngllaul Xgﬁgm ()}

Lr

N(k1,m1) N(k2,m2)

S 1555 S DD D SHE RN N AT (O
v=2 2

k1,v1
k1=0 ko= 07’1€Ikl 7261k2 vi=1 ue Q YWELr

2
X ngll’ul (')XQ%#Q ()}
p

{ > > |Dk1Dk2(f)('7')|2}

k1=0k2=0

Lp
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S I f -

Now let us turn to (3.2). For simplicity, we only need to work with the dyadic cubes of form
{QFi i ki eN,7; € Ijyy g} fori =1,2.

To simplify our notation, let Mgkt gk (21, 72) = M(Qﬁ;)l/Qu(Qlﬁll)l/zbkl (z1,y5)
- Dy, (22, yk2). Now we first estimate D, D, (mQJ;11 ngg)(xl’ x3).

From Definition and we have

175 (s) (@1, 22) o ary = 19T (Do (ary

Sz + >+ x o 5 |

<

~

Ji,J2 ki>j1,k2e>j2  ki>j1,k2<jo  ki<gi,ke>j2  k1<j1,k2<j2
25 1/2)1p
x > |SQ§11XQ§§HDlejz(me_%xggg)(ﬂflaﬂ?z)o}
T1E€ gy 40y T2€ kg4 LP(M)

ST+ I+ I+ 1V.

We now first estimate I. Note that

> Do D lsgngullDiDi(mgs g, 2)]

k1>j1,ka>j2 T1 €1k 45 T2€Iky 41y

SO

k1>j1,ka>j2 T1€1K, 4.0y

D, ATl g qra ()Pl @)™

T2€ kg +,

1 1
(14 27t p(w, yrb )+ (1+ 22 p(9, y52)) 1+

< Z 2(h—l~u)<1+a’—1)2(j2—k2)(1+s’—i)<M1[ Z

k1>j1,k2>j2 T1€l6 4

X
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3=

k1\— ko\— r
XMZ( 2. 150t otz Q) V(@) XQ’i%U] ($1)> |

T261k2+J

where ﬁ < r < pand M;, i = 1,2, is the Hardy-Littlewood Maximal function with respect
to the first and the second variable, respectively. The last inequality follows from an iteration
of the result which can be found in [22], for R and [34], for spaces of homogeneous type.

Let k = (k1,k2), j = (j1,72), = = (z1,72) and

:<M1[ 2 M2< 2 |ngixg’:3“(955>1/2M<95§>1/2|TXQ’:3<~>>
1€k, 47 T2€lKy 4

T

'(962)XQ§_%(')] (fﬁ)) ;
b= {bk}k = {2k1(1+£ —*)2762(1—1—8 _7)Xk1<0(k1)Xk2<0(k2)(k2)}k;

(axb)j = arbjs.
k

By the Young inequality and an iterative application of the Fefferman and Stein vector-valued

maximal function inequality in [18] on L+ (M), we have

IV<H{Z\a*b A < bl 0
<l I8l |20 0

SH ||aHl2H:2p(M)

Slisllse
Using the same skill, we can get that II, ITI, IV S ||s|[,. Thus

1T (s) (@1, 22) |l rary S llsllse-
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Finally, it is easy to check that from the Calderén reproducing formula, T o Sp equals identity

on HP(M). The proof of proposition is complete.

related to the Min-Max comparison principle for CMOP(

Proof of Proposition 3.3 This proposition is similar as the above one since its proof is closely

M), namely, Theorem (13.20)) is a

direct consequence of Theorem and the proof of (3.21]) follows the same routine as the proof

of Theorem [3.41

Now we give the details of the proof. We first prove (3.20]). According to Definition and

for any f € CMOP(M), we have

1Sp(f)ller
N(k1,m1)
cp(- L[Sy » Y
Q P k1,ko= OTlelkl T2€[k2 v=1
N(k2,72)
Z Xle”l Qk2u2(k1,k27T1,T2,V17V2)
vo=1
1/2
x sup | Dty Dy () (11, 0) X gy (21) X g ($2)du($1)/~b(%’2)>
uGQﬁ%’Vl,UEQ%’UQ ! 2

S Yy oy
(e

k1,ko= OT1€Ik1 T2€Ik2 v1=1
N(kz,T2)
§ ngl V1><Qk2 V2CQ(klak277—177_27V17V2)

vo=1

1/2
x inf | Dty Dy (£) (1, 0) X gy 1 (71)X g v (mz)du(l‘l)u(iﬂz)>

k k
u€Q " weQ 22

sw(s[ S T ¥

@ k1 k=0 711}, 2E,
N(ki,m1) N(k2,72)

Z Z ngl VIXQkQ VZCQ(klak277_177—27V17V2)

vi=1 vo=1

1/2
% | Diy Dy () (@1, 22) P X gy 1 (1) X gz 2 (xz)du(xl)ﬂ(@))

< I fllemor-
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Now let us prove (3.21)). For any ¢ € ¢, by the definition of norm of CMOP, we have

N(k1,m1)

= YY Y Yoy

1T () |l evor (ar) Ssup
@ le =0 ko= 07'1€Ik1 T2€Ik2 vi=1

N(k2,m2)

Z Xle ig! (xl)XQ’Q v2 ($2)

vo=1

X Xgﬁ%vl’l XQES’VQCQ(kb k27 71,72, V1, VQ)

=

2
| Dty D (T (0) (1, 22) | dpa(er ()
From the definition of T (t) and the same skill as in the estimate of (3.7)), we can obtain that

sup |Dlek2 (TD(t)) (1’1,1‘2)‘2
21€QN M 3y Q22

N(k},m)

SIDIDIDIDS

kll—oké—OT1€Ik/1 Tzelk/z 111—1
N(k5,73)

Z K g kel QM) () (3.22)

T2

9— (k1K )e’ 9—(k2Aky)e’

% (2—(k1/\k’1)+p(y1,y1))1+s/ (2—(k2/\k§)+p(yzvyé))1+5'

klviy—1/2 ky,vp\—1/2)2
x ytgg,yixg,:g,uéu<gfg D12l )y,

kuV'L

where y; is the center of Q7" and y{ is the center of Qi}"yi fori=1, 2.

Comparing (3.22) with (3.7), we can that the only thing different is that the last term
in the right-hand side of (3.7)) is T/, while the last term in the right-hand side of (3.22)) is
[t gttt gt

T{k,/ / Té k/ / 2
H(QT/I’VI)_UQ,U(QT?’VQ)_1/2| . However, when proving the Theorem we can see the term

1 2

Tr is fixed throughout the whole proof. This implies that we can prove this proposition just

following the proof of Theorem [3.4) without any changes.
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Thus, we can obtain that

00 o) N(k1,m1)
T3 ) llemor(ary S sup <1_1 S >
e \p(©Q) =

2
P k1:0k2:071€lk17‘261k2 vi=1
N (k2,72)
' 21 XQI;%,HXQ%,VQCQUCLk?277'177'2,V17V2)
Vo=

1/2
V V E Kb _ 2
X (@B (@Bt gt (@) (@) T2 )

Qll‘lxgl Tl
1 72

Slitller-

Finally, we can easily get that form the Calderén reproducing formula 75 0 Sp is the identity

operator on CMOP. We finish the proof of the proposition. ]

3.6 The Boundedness of singular integral operator on M

Before we give the proof of the theorem, let’s review some known results stated in [6§].
Definition 3.17. We say T : C*°(M) — C°°(M) is a product singular integral operator of
order t = (t1,...,t,) € (—Q},00) x -+ x (—Q¥,00) C RY if

(i) (Growth Condition) For each ordered multi-indices «, 3,

—t—deg () —deg (B)
XO‘XBT < p<m7 Z>
| XSXPT(z,2)| < Cap Vol(B(z, p(x, 2)))

where X, denotes the list of vector fields X1,..., X, thought of as partial differential operators
in the x variable and similarly for X,. In particular, the above implies that the distribution

T(x, z) corresponds with a C°° function on the set x1 # 21,..., 2, # z,.

(ii) (Cancellation Condition) For each bounded set of bump function B C C*°(M) x M x
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(0,1]” and each ordered multi-index «,

sup  sup 67T (Vol(B(z,0))| X To(x)| < CB,a;
(¢,2,0)eBxzeM

with the same estimates for 7™ in place of T'. Here, the formal adjoint 7™ is taken in the sense
of L?(M) which is defined in terms of the chosen strictly positive, smooth measure.

If we consider topology on the space of product singular integral operators, we can have the
following equivalent definition of these operators.
Definition 3.18. When v = 0, we define the space of product singular integral operators to be
C with the usual topology. For v > 1 the space of product singular integral operators of order
t=(t1,...,ty) € (—Q1,0) x -+ x (—=QY,0) C R if

(i) (Growth Condition) For each ordered multi-indices «, 3,

P(% Z)*t*deg (c)—deg (8)
BTNO(B(x, pl, 2))

XS XIT(2,2)] < Ca

In particular we assume T'((z1,...,2y), (21,...,2,)) agree with a C* function on the set x; #
21y ey Ty F 2

(ii) (Cancellation Condition) For each v, 1 < p < v, we assume that following holds. For
every bounded set of bump functions B, and M,, we have the following. For every z, € M,
(p» 24y 0) € By, we define the function x, — T2k M, — C°(My X -+ X M1 X My 41 ¥

"‘XMy)lby

(T(1 @ @), h1 @+ D thy)

- /M <T¢Mwu(®u’7ﬁu¢u’)v®u’¢uwu’>¢u(l’u)dl’u

T%%u ig a priori only defined as a distribution in the z, variable, but we assume it to agree

with a C* function in that variable. Furthermore, we assume that for every ordered multi-index
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«, the operator

VOl (B xiu gy (@as ) 04t (8, X1 )T P2 ([ M) = €= ( T] Myw)

W FEu WAE
is a product singular integral operator of order (¢1,...t,—1,tu+1,...,t,) on the v—1 factor space
My x - X M1 x Myy1x---x M,. Finally for every continuous semi-norm, || - ||, for product
kernels of order (t1,... ¢ —1,tuy1,-..,ty) on My X --- X M1 X M1 % ---x M,, every ordered

multi-index «, and every bounded set of bump functions B, on M, we define a semi-norm

| - lla,5,, on product singular integrals of order t by

t a T
HTHa,Bu = " Sup)eB |V01(B(X”,Cz“)(xl“6/1))511«”(5/1)(5“) TPus u‘
s "

which we assume to be finite. We do the same for the transpose of T in the p variable, where
we define z,, — T#-%u reversing the roles of Zy, 2y and ¢y, 1,; thereby obtaining another semi-
norm.

Definition 3.19. We say & C C*°(M x M) x (0, 1] is a bounded set of pre-elementary operators
if: Vo, B,m, 3C = C(€,a, B,m), ¥Y(E,277) € &,

(1+2p(x,2)) "

’(Q_ij)a@—sz)ﬁE(x, z)’ < CVO](BX(xa 277 + p(x,2)))

Definition 3.20. We define the set of bounded sets of elementary operators, G, to be the largest
set of subsets of C>°(M x M) x (0,1)" such that for all £ € G,

(i) € is a bounded set of pre-elementary operators.

(ii) Let e = (1,...,1) € N”. We write deg(a) < e to denote the inequality holding coordinate-

wise. We assume V (E,277) € &,

FE = Z 2—(2e—deg(a)—deg(ﬂ))j(2—jX)aEa 5(2_jX)B,
deg(a),deg(B)<e
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where {(En5,277)| (E,277) € £} € G.

We call elements £ € G bounded set of elementary operators.

Theorem 3.21 ( [68]). Fiz t € (—Q},00) x -+ x (=QY,00), and let T : C®°(M) — C>®(M).
The following are equivalent:

(i) T is a product singular integral operator of order t as in Definition

(ii) T is a product singular integral operator of order t as in Definition

(iii) For every bounded set of elementary operator &,

{7 TE,27)|(E,277) € £}

is a bounded set of elementary operators.

(iv) There is a bounded set of elementary operators {(E;,277)|j € N"} such that T = > jenv 20tE;.
(Every such sum converges in the topology of bounded convergence as operators C°(M) —
C(M); this can be seen just as in Lemma 2.0.28.)

Furthermore, (iii) and (iv) are equivalent for any t € RY.

Lemma 3.1 ( [68]). For each p, let £, C C*° (M, x M,) x (0,1]" be a bounded set of elementary

operators as in the single parameter case. Then, the set

{(By®---QE,, (271,...,27)|(E,2") € &,...,(E,,2") € &}

is a bounded set of elementary operators as in Definition [3.20

Corollary 3.22 ( |68]). There is a bounded set of elementary operators

{(E;,277)]j € N}

such that I =3, v Ej, where I : C°°(M) — C°°(M) is the identity operators.
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Proposition 3.4. Let £ be a bounded set of elementary operators. Then, for every N, the set

{(2N|j1*j2\ElE27 Q*jl)7 (2N|J'1*J'2\E1E27 Q*J'Q)7 (21\7|J'1*J'2\E1E27 2*j1/\j2)|

(B1,27), (B, 27) € €}

18 a bounded set of elementary operators.

The following results in [68] are related to the multi-parameter singular operators and the
pseudo-differential operators. Now for each point in M, we need to work on a small neighborhood
of this point, so that one can apply the Frobenius Theorem (see |68] for details).

Definition 3.23. Fix s € RV and T : C*°(M) — C*°(M). We say T € A® if for each j € N”
there is Ej € C§°(M x M) such that {(F;,277)|j € N} is a bounded set of elementary operators

and

T=) 2°E,

jENv

where the sum taken in the sense of distribution. We will (Remark 5.3.3) that every such sum
converges in the sense of distribution. In fact, every such sum converges in the topology of
bounded convergence as operators C>°(M) — C*®(M) .

Definition 3.24. For a distribution K € C§°(R?)’, s € R”, and a > 0, we say K € PK(s,a) if

there is n € C§°(B%(a)) and a bounded set {g;|j € N} C (S7) with ¢; € SSLU“#O such that

K=n Z gj@j).

JjeNv

Proposition 3.5. Let K € C*°(M x RY) be supported in M x B(a) and let m € (—Q1,00) X
oo X (=Qy, 00). If K is a product kernel of order m, then K € C®°(M)QPK(m,a).
Definition 3.25. Let a > 0 be a small number to be chosen later. We say T' : C*°(M) —

C*>(M) is a pseudo-differential operator of order m € RY if there is K € C®(M)®PK(m, a)



109

such that

Tf(x) = / /(a0 K (1) dt,

v is given by either of the following formulas:

’)’(:L’,tl, ... 775”) - et1-X1 o et”'XVx,
’Y(aj',t) — et.X[]j — etl.X1+...+tV,XVx.
where X denotes the list of vector fields X%, -+, X} and X denotes the list of vector fields

X1,...,Xg.

Theorem 3.26 ( [68]). If a > 0 is sufficiently small, and if T is a pseudo-differential operator
of order s € R”, then T € A°.

Theorem 3.27 ( [68]). If T € A®, then T is a product singular integral operator of order s in
the sense of Definition |3.21].

And from the above, if we can prove the product singular operator T satisfies the HP
boundedness, then the boundedness of T' € A® follows immediately. In other words, the multi-
parameter pseudo-differential operator defined above also the HP boundedness. Hence, let’s
prove the HP boundedness of the product singular operator T' right now. And for the simplicity,
we still consider the two parameter cases. The multi-parameter cases proof follows the similar
steps. To achieve this target, we also need the next proposition.

Proposition 3.6. Given two bounded set of elementary operator & and E on M, Ym, N,
3C = C(m, N, &1, &), s.t. V(D;.277) € & and (Dy,27%) € &, we have

(1+2"p(z, y)) ™
Vol(B(x a (2, 279" (1 + 20" p(, )

|DI DIT DYDY (2, )| < 2~ NI—H

where D; = D{ ® D% and Dy, = D¥ @ D5.
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We assume the proposition for the moment and now show the HP boundedness of T as

follows.

Theorem 3.28. For 0 <p <1 and s =0, we have

1T\l e ary < I f e cany

where T is defined as Theorem [3.21].

Proof. For f € L?> N HP, we have

N(k1,m1) N(k2,m2)

Do 2 > > 2

k1€Nk2€NT1€Ik1 T261k2 vi=1 vo=1

1T fllme S

1
|Dk1Dk2 (Tf)(yfll’ylay7]?227u2)‘2XQ’:117”1 ('>XQI;§’V2 ()}2

Lp

Applying the L? boundedness of T' and the discrete Calderén reproducing formula,

N(k1,m1) N(k2,72)
S 2 2 2 > X IDkDbe(T)) Y
klengeNnelkl T2€Ik2 v1=1 vo=1 k/GNkIEN

N(ky,m) N(k3,73)

IS Ml(Qﬁé’ui)uz(ka’yz’)Dk/Dk,

! ! /! y
Tlelkll 7'26119/2 vi=1 vy=1

N|=

- R k./7 k/./7 /
Dk’le’Q (f)(y h VlayTj VQ))(yfll7V17y7’?22’y2)|2XQ’:117V1 (')XQ%,UZ ()}

Le(M)

According to the above proposition and the similar procedure while proving the Plancherel-

Polya inequality, we can obtain

! ! ! !
N(Ky,71) N(kb,75)

SHEY X X Y X Dybunel e

k{eNELeN Tlelk/l T2€Ik/2 vi=1 vh=1

N|=

XQk’l,ui(')X K, ’()}

Sl aean

Lp
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We now return to the proof of Proposition.

Proof of Proposition. Note that T is the product singular operator of order 0. Hence, by the sec-
ond equivalent definition, {(T'Dy,27%)|Dy € &} is also a bounded set of elementary operators.

Furthermore, note that for every N, the set
{(2NV=H D, T Dy, 279 (2NI=klT Dy D5, 2797)|(D;.279) € &, (D, 27%) € &}

is a bounded set of pre-elementary operators.

Therefore, by the definition of pre-elementary operators, we have

g o (2 plr)
~ Vol(B(X,d) (z, 2-INk 4 p(z, y)))

(M) (27X,) (2N DTy

or equivalently,

(1+ 2" p(z,y) "
VOI(B(X,d) (.ﬁU, 2_j/\k + p(LU, y)))

(2797 X)" (2794 ,) (DD ()| € 270
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