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CHAPTER 1 : INTRODUCTION

1.1 Brief Background and Introduction

In [12], Christ, Nagel, Stein and Waigner studied the Lp theories for the singular Radon

Transforms. They consider the following form of the operator

Tf(x) := ψ(x)

ˆ
f(γ(x, t))K(t) dt, (1.1)

where γt(x) = γ(x, t) is a C∞(Rn × RN ) function defined in a neighborhood of the origin with

γ0(x) ≡ x, ψ is a C∞0 cut-off function, supported near the origin of Rn and K is a standard

Calderón-Zygmund kernel on RN supported for t near 0.

The key assumption on γt(x) is a certain curvature condition (C), which can be stated in

a number of equivalent ways. One of those forms is in terms of a noncommutative version of

Taylor’s formula. Actually they proved that actually there exists a unique vector fields {Xα}

with α = (α1, . . . , αN ) 6= 0, so that asymptotically γt(x) ∼ exp
(∑

α
tα

α!Xα

)
(x) as t → 0. The

assumption for γt(x) that the Lie algebra generated by the Xα should span the tangent space

to Rn. Under such curvature condition, they proved

Theorem 1.1 ( [12]). Let the operator T be defined as in (1.1) and assume the vector fields Xα

in the asymptotic representation of γt(x) satisfy the curvature condition (C). Then T extends to

a bounded operator from Lp(Rn) to Lp(Rn).

The methods used to prove the theorem are mainly some “lifting technique” and the Cotlar-

lemma estimates, where some techniques appeared in [9] by Christ. The first example of such

operators comes from the Hilbert transform along the parabola, r(x, t) = (x1 − t, x2 − t2)

(Fabes [17]). And some non-translation invariant cases were studied by Nagel, Stein, Wainger

in [54] for L2 result in the special case of certain plane curves, Geller and Stein in [23] for the

Heisenberg group, with the various extensions by Müller in [46–48], and culminated with Christ

in [9]. Furthermore, Stein and Street in [64–67], and Street in [68] studied a wider class of singular
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integral operators in the multi-parameter setting such as the generalized Calderón-Zygmund

operators and singular Radon transforms, and established some related theories including the

Lp boundedness property.

More specifically, the Lp theory of a multi-parameter version of (1.1) were established by

Stein and Street in a series of papers [64–67], where the distribution kernel

K(t) =
∑
j

ζ
(2j)
j (t), t = (t1, . . . , tv) ∈ RN = RN1 × · · · × RNν

is a ν-parameter singular kernel with {ζj} ⊂ C∞0 supported in a small ball centered at the origin,

and ζ
(2j)
j (t) is a appropriate ν-parameter dilation. Such kernels have equivalent representations

in terms of the growth condition and cancellation condition that people are familiar with. The

difficulty in the multi-parameter case is that if considering the Taylor’s formula for γt(x), one

has to take care of the “non-pure” vector fields Xα, which do not appear in the single parameter

case. By giving additional assumptions on these vector fields, they were able to prove the Lp

boundedness for such multi-parameter version of (1.1).

The above kernels have some interesting examples. For instance, Stein and Street in [64]

considered the case when K(t) is a product kernel, which satisfies some cancellation condition

and the growth condition

∣∣∂α1
t1
· · · ∂ανtν K(t)

∣∣ ≤ Cα|t1|−N1−|α1| · · · |tν |−Nν−|αν |

for each multi-index α = (α1, . . . , αν). Another example of the multi-parameter version of (1.1)

is the case whenK(t) is a flag kernel. These operators were studied by Nagel, Ricci and Stein [53],

and it turns out flag kernels can be applied to a wider class of γt(x).

Also, a special case for γt(x) of the above is the following operator

f 7→ ψ(x)

ˆ
f(et1X1+t2X2+···+tlXlx)K(t1, . . . , tl)dt,
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where K(t1, · · · , tl) is a product kernel relative to the decomposition of Rl = R×R×· · ·×R and

X1, . . . , Xl are left invariant vector fields on a nilpotent Lie group. In this case, γt(x) satisfies the

required curvature condition obviously, then one can have the Lp boundedness of the operator,

see [65] for details.

In [68], Street extended the classical Calderón-Zygmund kernels to the ones in terms of

the Carnot-Carathéodory balls in both single and multi-parameter settings when working on

smooth, connected, compact manifolds. With these kernels, a more general type of Calderón-

Zygmund operators (see Section 2.2 and 3.6 for details), including some Radon transforms and

pseudo-differential operators can be defined, and the corresponding Lp theories were estab-

lished in [68] by giving appropriate assumptions on the involved vector fields. For instance, the

following Radon transform were studied

Tf(x) =

ˆ
Rq
f(γ(x, t))ψ(γ(x, t))K(x, t) dt, (1.2)

where γ(x, t) = et·Xx = et1·X
1+···+tν ·Xν

x with Xµ as the list of vector fields Xµ
1 , . . ., Xµ

qµ

expanding the Rqµ respectively, ψ ∈ C∞0 (Ω) and K is kernel defined the same as Proposition

3.5.

In this dissertation, we will study the Hardy spaceHp and its dual space associated with both

the one-parameter and multi-parameter singular Radon transforms, and consider the bounded-

ness of some singular Radon transforms on such Hardy spaces Hp when 0 ≤ p ≤ 1.

The Hardy and BMO spaces play an important role in modern harmonic analysis and

applications in partial differential equations. In [19], C. Fefferman and Stein showed that the

space of functions of bounded mean oscillation on Rn, BMO(Rn) , is the dual space of the

Hardy space H1(Rn). They also obtained a characterization of the BMO space in terms of the

Carleson measure.

We now begin to give a brief overview on the multi-parameter singular integrals and Hardy
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spaces theory. Multi-parameter analysis is an important subject in harmonic analysis. The

classical Calderón-Zygmund operators theory is an generalization of the well-known Hilbert

transform and is closely related to the Hardy-Littlewood maximal operator which commutes

with the usual dilations on Rn, δ · x = (δx1, ..., δxn) for δ > 0. The multi-parameter Calderón-

Zygmund operators are also singular integral operators that are extension of the double Hilbert

transform and are closely associated with the strong maximal function which commutes with

the multi-parameter dilations on Rn, δ · x = (δ1x1, ..., δnxn) for δ = (δ1, ..., δn) ∈ Rn+ [38].

For multi-parameter Calderón-Zygmund operators of the convolution form Tf = K ∗ f,

where K is homogeneous in the sense of δ1...δnK(δ · x) = K(x), or when K(x) satisfies certain

differential inequalities and cancellation conditions, such operators and their non-convolution

type analogues have been studied extensively in the literature. The Lp (1 < p <∞) boundedness

of such operators of convolution type was established by R. Fefferman and E. Stein [20]. The

non-convolution type multi-parameter singular integral operators were first studied by Journé (

[39] [40], [41]). More recent work on boundedness on multi-parameter Triebel-Lizorkin and Besov

spaces for Fourier multipliers and singular integral operators can also be found in [7,44] and Lp

estimates for multi-parameter Fourier integral operators have been established in [35,36] which

extend the works of Seeger, Sogge and Stein on the one-parameter Fourier integral operators in

[62] and others in [57–60]. Lp estimates for multi-parameter and multi-linear Fourier multipliers

were established by Muscalu, Pipher, Tao and Thiele [51, 52] (see also the work of Chen and

Lu [6]).

To study the endpoint estimates, the multi-parameter Hardy spaces introduced by Gundy-

Stein ( [24]) have been extensively investigated by R. Fefferman ( [17]), Chang and R. Fef-

ferman ( [2], [3], [4]). Motivated by a counterexample of L. Carleson [1], the multi-parameter

BMO(Rn1 × Rn2) and Hardy space Hp(Rn1 × Rn2) theory was developed by Chang and R.

Fefferman in a series of papers ( [2], [3], [4]). As has been known, the atoms in multi-parameter

Hardy spaces are supported in arbitrary open sets rather than on cubes or rectangles, it was
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difficult to establish boundedness of singular integral operators from multi-parameter Hardy

spaces Hp to Hp or from Hp to Lp. Thanks to R. Fefferman, a boundedness criterion for the

Hp to Lp of a multi-parameter operator T was established using atomic decomposition and a

geometric lemma of Journé (see Journé [39], [40], [41]) in two-parameter setting. However, this

criterion cannot be applied to the case of three or more parameters [39], [40], [41]. The Hp

to Lp boundedness for Journé’s class of singular integral operators with arbitrary number of

parameters was finally obtained by J. Pipher [56]. Subsequently, Ferguson and Lacey gave a new

characterization of the product BMO(R×R) by using the Journé covering lemma in [21]. More-

over, Lacey, Petermichl, Pipher and Wick in [42] established a characterization of BMO(Rn×Rn)

using multiparameter commutators of Riesz transforms. More recently, the authors of [27, 28]

established the boundedness criterion on multiparameter Hardy spaces for Journé’s class of

singular integral operators with arbitrary number of parameters. For multi-parameter flag sin-

gular integral operators, singular integral operators on the product of Carnot-Carathéodory

spaces, the product of homogeneous spaces, the composition of two singular integral operators

with different homogeneity, etc., the Hardy space and duality theory have been established in

a series of papers [14, 16, 29–32, 43] using discrete Littlewood-Paley-Stein theory. In particular,

the multi-parameter flag Hardy spaces theory [32] extend the Lp theory of Muller, Ricci and

Stein [49,50] and Nagel, Ricci and Stein [53].

Inspired by these characterization of the Hardy spaces on product spaces, we will take

advantage of the discrete Littlewood-Paley analysis to define the Hardy spaces Hp and the

Carleson measure spaces CMOp associated with the multi-parameter singular Radon transforms.

Moreover, we will prove the Hp boundedness of those operators and thus obtain the endpoint

estimates for the Lp boundedness of the multi-parameter singular Radon transforms by Stein

and Street [68].
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CHAPTER 2 : Hp BOUNDEDNESS OF SINGLE-PARAMETER
SINGULAR RADON TRANSFORM

2.1 Introduction

In the first place, we introduce some notations. Define wα = wα1 · · ·wαL , where α =

(α1, . . . , αL) is a list of elements in {1, . . . , r} and w = (w1, . . . , wr) contains r non-commuting

indeterminates. Also, we denote |α| = L, the length of the list. For instance, α = (5, 1, 2), then

|α| = 3 and wα = w5w1w2.

We consider a compact, connected, smooth manifold without boundary, denoted by M and

a list of C∞ vector fields W1, . . . ,Wr on M.

Definition 2.1. Given a list of vector fields, W1, . . . ,Wr, if the Lie algebra generated by them,

W1, . . . ,Wr, . . . , [Wi,Wj ], . . . , [Wi, [Wj ,Wl]], . . . ,

. . . , (commutators of order m), . . .

can span the tangent space TxM for any x ∈M , then the list of vector fields satisfies Hörmander’s

condition.

Actually, the commutators of the vector fields satisfying Hörmander’s condition can span the

tangent space for any x ∈M after finite steps m, because of the compactness. In this situation,

we also say the list of the vector fields satisfies the Hörmander’s condition of order m.

We say ρ : M ×M → [0,∞] is the Carnot-Carathéodory distance if

ρ(x, y) = inf
{
δ > 0

∣∣∣ ∃γ : [0, 1]→M,γ(0) = x, γ(1) = y, γ′(t) =

q∑
j=1

aj(t)δWj(γ(t)), aj ∈ L∞([0, 1]),
∥∥∥ r∑
j=1

|aj |2
∥∥∥
L∞([0,1])

< 1
}
.

where W1, . . . ,Wr are C∞ vector fields.

It’s easy to verify that ρ is an extended metric. Moreover, Chow proved the following theorem

for the above distance.
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Theorem 2.2 ( [8]). If W1, . . . ,Wr satisfy Hörmander’s condition, then ρ is a metric. That is,

ρ(x, y) <∞, for every x, y ∈M .

Next, let’s introduce a class of “strictly positive, smooth measures” mentioned in [68].

Definition 2.3 ( [68]). A smooth measure, µ on M is a Borel measure on M such that in any

local coordinates x, we may write dµ = φxdm(x), where dm denotes Lebesgue measure, and

φx is a C∞ function. We say µ is a strictly positive, smooth measure if φx > 0 in every local

coordinate system.

We write the functional operation as the integration form. For instance, ∀ f ∈ C∞(M)

and λ ∈ C∞(M)′, λ(f) =
´
λfdx. We deal similarly between C∞(M ×M) and C∞(M ×M)′.

Also, we might define the distribution λ by some L1
loc(M), C∞0 (U) function f , if λ is given by

integration against f on some open set U ∈M .

Afterward, we always assume W1, . . . ,Wr satisfy Hörmander’s condition. With the Carnot-

Carathéodory distance ρ, we define the Carnot-Carathéodory ball as follows

BW (x, δ) := {y ∈M | ρ(x, y) < δ},

with the radius δ centered at x. Nagel, Stein, and Wainger deal with some properties of balls on

the metric space [55] and obtain the following important estimate for the Carnot-Carathéodory

balls.

Theorem 2.4 ( [68]). There are constants Q2 ≥ Q1 > 0 such that for any x ∈ A, δ > 0,

2Q1Vol(BW (x, δ)) ≤ Vol(BW (x, 2δ)) ≤ 2Q2Vol(BW (x, δ)).

From , the following property follows automatically:

Lemma 2.1 ( [68]). Vol(BW (x, ρ(x, z))) ≈ Vol(BW (z, ρ(z, x))).

Remark 2.5. The least possible Q2 in Theorem 2.1 is considered as the homogeneous dimension

of (M,ρ,Vol).
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2.2 Notations and Preliminaries

To establish the theorems, let’s firstly introduce some types of functions that will be fre-

quently used. Some are introduced in [68] and some are defined newly.

Definition 2.6 ( [68]). We say B ⊂ C∞(M)×M × (0, 1] is a bounded set of bump function if:

(i) ∀(φ, x, δ) ∈ B, supp(φ) ⊂ BW (x, δ).

(ii) For every ordered multi-index α, there exists C, such that ∀(φ, x, δ) ∈ B,

sup
z
|(δW )αφ(z)| ≤ CVol(BW (x, δ))−1

Also, we introduce the space of test functions on M. The similar type of test function is intro-

duced in many articles, such as [30], [31], [32], [34].

Definition 2.7. Let x1 ∈ M . A function f on M is said to be a test function if there exists

a constant C ≥ 0 such that for every m ∈ N , and every ordered multi-index α, the following

holds

∣∣Wαf(x)
∣∣ ≤ Cα,m (1 + ρ(x, x1))−m

Vol(BW (x1, 1 + ρ(x, x1)))
(2.1)

We define the norm of such functions for any |α| ≤ n0 and m as

‖f‖T (x1,n0,m) = sup
|α|≤n0

inf{Cα,m} <∞,where Cn0,m is as in (2.1)

Note that the definition is made to be invariant by translation. Thus, for another point x2 ∈M ,

T (x1, n0,m) and T (x2, n0,m) are equivalent in the corresponding norm. WLOG, we can denote

T (x1, n0,m) by T (n0,m) and represent the collection of all test functions by T .

In the history of Hardy space Theory, there are lots of characterizations for Calderón-

Zygmund operators. Here, let’s refer to the classification by Street in [68].

Definition 2.8 ( [68]). We say T : C∞(M) → C∞(M) is a Calderón-Zygmund operator of
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order t ∈ (−Q1,∞) if

(i) (Growth Condition) For each ordered multi-indices α, β,

|Wα
xW

β
z T (x, z)| ≤ Cα,β

ρ(x, z)−t−|α|−|β|

Vol(BW (x, ρ(x, z)))
,

where Wx denotes the list of vector fields W1, . . . ,Wr thought of as partial differential operators

in the x variable and similarly for Wz. In particular, the above implies that the distribution

T (x, z) corresponds with a C∞ function for x 6= z.

(ii) (Cancellation Condition) For each bounded set of bump function B ⊂ C∞(M)×M×(0, 1]

and each ordered multi-index α,

sup
(φ,z,δ)∈B

sup
x∈M

δt+|α|Vol(BW (z, δ))|WαTφ(x)| ≤ CB,α,

with the same estimates for T ∗ in place of T . Here, the formal adjoint T ∗ is taken in the sense

of L2(M) which is defined in terms of the chosen strictly positive, smooth measure. Namely, we

first define the transpose, T t. The Schwartz kernel of T t is defined by T t(x, y) = T (y, x); more

precisely,

ˆ
T t(x, t)φ(x, y) dxdy =

ˆ
T (x, y)φ(y, x) dxdy,

for φ ∈ C∞0 (M × M). We define the Schwartz kernel of T ∗ by T ∗ = T t, where, z̄ denotes

the complex conjugate of z. Here, for a distribution λ, we are defining the distribution λ by

λ(f) = λ(f).

Now, let’s introduce the tool of pre-elementary operators and elementary operators. We

write elements of (0, 1] as 2−j , where j ∈ [0,∞).

Definition 2.9 ( [68]). We say E ⊂ C∞(M ×M) × (0, 1] is a bounded set of pre-elementary
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operators if: ∀α, β,m, ∃C = C(E , α, β,m), ∀(E, 2−j) ∈ E ,

∣∣(2−jWx)α(2−jWz)
βE(x, z)

∣∣ ≤ C (1 + 2jρ(x, z))
−m

Vol(BW (x, 2−j(1 + 2jρ(x, z))))

Note by the symmetry and Lemma 2.1, it follows

(1 + 2jρ(x, z))
−m

Vol(BW (x, 2−j(1 + 2jρ(x, z))))
≈ (1 + 2jρ(z, x))

−m

Vol(BW (z, 2−j(1 + 2jρ(z, x))))
.

Definition 2.10 ( [68]). We define the set of bounded sets of elementary operators, G, to be

the largest set of subsets of C∞(M ×M)× (0, 1] such that for all E ∈ G,

(i) E is a bounded set of pre-elementary operators.

(ii) ∀ (E, 2−j) ∈ E ,

E =
∑

|α|,|β|≤1

2−(2−|α|−|β|)j(2−jW )
α
Eα,β(2−jW )

β

where {(Eα,β, 2−j) | (E, 2−j) ∈ E} ∈ G.

We say E is a bounded set of elementary operators if E ∈ G.

In fact, the elementary operators are invariant under some transforms. The details are list

in the following properties.

Proposition 2.1 ( [68]). Let E be a bounded set of elementary operators. Then,

(a) If ψ ∈ C∞(M), then {(ψE, 2−j), (Eψ, 2−j) | (E, 2−j) ∈ E} is a bounded set of elementary

operators. Here, we are identifying ψ with the operator f 7→ ψf .

(b) {(E∗, 2−j) | (E, 2−j) ∈ E} is a bounded set of elementary operators.

(c) Fix an ordered multi-index α. Then

{(
(2−jW )

α
E, 2−j

)
,
(
E(2−jW )

α
, 2−j

)
| (E, 2−j) ∈ E

}
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is a bounded family of elementary operators.

(d) For every N ∈ N, each (E, 2−j) ∈ E can be written as

E =
∑
|α|≤N

2(|α|−N)j(2−jW )
α
Ẽα,

where
{(
Ẽα, 2

−j) | (E, 2−j) ∈ E} is a bounded set of elementary operators. Similarly, each

(E, 2−j) ∈ E can be written as

E =
∑
|α|≤N

2(|α|−N)jẼα(2−jW )
α
,

where
{(
Ẽα, 2

−j) | (E, 2−j) ∈ E} is a bounded set of elementary operators.

Lemma 2.2 ( [68]). Fix t ∈ R and let {(Ej , 2−j) | j ∈ N} be a bounded set of elementary oper-

ators. Then the sum
∑

j∈N 2jtEj converges in the topology of bounded convergence as operators

C∞(M)→ C∞(M) (and therefore converges in distribution).

In the other hands, the Calderón-Zygmund operators have several equivalent characteriza-

tions.

Theorem 2.11 ( [68]). Let T : C∞(M) → C∞(M), and fix t ∈ (−Q1,∞). The following are

equivalent.

(i) T is a Calderón-Zygmund operator of order t.

(ii) For every bounded set of elementary operator E,

{(2−jtTE, 2−j) | (E, 2−j) ∈ E}

is a bounded set of elementary operators.

(iii) There is a bounded set of elementary operators {(Ej , 2−j) | j ∈ N} such that T =
∑

j∈N 2jtEj

in the sense of C∞(M)′.

For the multi-parameter analysis and generalizations later, let’s introduce an equivalent
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family of balls with a slightly different definition. By scaling the vector fields, we can make the

balls of any radius equal to the “balls” of unit radius, i.e. BW (x, δ) = BδW (x, 1). Given a list

of vector fields W = W1, . . . ,Wr, we write the unit ball BW (x, 1) as BW (x).

Now suppose W1, . . . ,Wr satisfy Hörmander’s condition of order m. We assign to W1, . . . ,Wr

the formal degree 1. To vector fields of the form [Wi,Wj ] we assign the formal degree 2.

Recursively, if Y has formal degree d0, we assign to [Wj , Y ] the formal degree d0 + 1. Let

(X1, d1), . . . , (Xq, dq) be an enumeration of the above collection of vector fields with formal de-

grees, which have formal degree ≤ m. Note that, in light of Hörmander’s condition X1, . . . Xq

span TxM for every x.

The formal degrees encapsulate the above notion of scaling. Indeed, if we replace W1, . . . ,Wr

with δW1, . . . , δWr in the above, then (Xj , dj) is replaced by (δdjXj , dj). Because this plays a

crucial role in the follows, we denote by δX the list of vector fields δX = δd1X1, . . . , δ
dqXq.

We define

B(X,d)(x, δ) := B(δX)(x).

It’s clear that BW (x, δ) ⊆ B(X,d)(x, δ). The converse is shown by Nagel, Stein, and Wainger [55]:

Proposition 2.2 ( [55]). There is a constant c > 0 such that B(X,d)(x, cδ) ⊆ BW (x, δ), for all

δ > 0.

Then one will be able to replace BW (x, δ) with B(X,d)(x, δ) throughout the previous state-

ments, and obtain equivalent definitions. One can also replace ρ(x, z) with the equivalent metric.

inf{δ | z ∈ B(X,d)(x, δ)}.

In this work, we still need the following properties of bounded sets of elementary operators

taken from [68]

Proposition 2.3 ( [68]). Let E be a bounded set of elementary operators. Then, for every N,
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the set

{(
2N |j1−j2|E1E2, 2

−j1), (2N |j1−j2|E1E2, 2
−j2)|(E1, 2

−j1), (E2, 2
−j2) ∈ E

}

is a bounded set of elementary operators.

Definition 2.12. For j, k ∈ R, we write j ∧ k for the minimum of j and k and j ∨ k for the

maximum. If, instead, j = (j1, . . . jν), k = (k1, . . . , kν) ∈ Rν , then j ∧ k = (j1 ∧ k1, . . . , jν ∧ kν)

and j ∨ k = (j1 ∨ k1, . . . , jν ∨ kν).

Lemma 2.3 ( [68]). For every m > Q1, and ∀j1, j2 ∈ [0,∞),

ˆ
(1 + 2j1ρ(x, y))−m

Vol
(
B(X,d)(x, 2−j1 + ρ(x, y))

) (1 + 2j2ρ(y, z))−m

Vol
(
B(X,d)(y, 2−j2 + ρ(y, z))

) dy
.

(1 + 2j1∧j2ρ(x, z))−m

Vol
(
B(X,d)(x, 2−j1∧j2 + ρ(x, z))

)
where the implicit constant depends on m, but not on j1, j2 ∈ [0,∞).

Lemma 2.4 ( [68]). Let E be a bounded set of pre-elementary operators. Then, ∀m, ∃C,

∀(F1, 2
−j1), (F2, 2

−j2) ∈ E,

|F1F2(x, z)| ≤ C (1 + 2j1∧j2ρ(x, z))−m

Vol(B(X,d)(y, 2−j1∧j2 + ρ(x, z)))
.

Lemma 2.5 ( [68]). ∀m, ∃N , ∀j1, j2 ∈ [0,∞), ∀x, y ∈M ,

2−N |j1−j2|
(1 + 2j1ρ(x, y))−m

Vol(B(X,d)(y, 2−j1 + ρ(x, y)))
≤ (1 + 2j2ρ(x, y))−m

Vol(B(X,d)(y, 2−j2 + ρ(x, y)))

Lemma 2.6 ( [68]). Let E be a bounded set of pre-elementary operators. Then, ∀m,α, and β,

∃N,C, such that ∀(F1, 2
−j1), (F2, 2

−j2) ∈ E, and letting k = j1 or k = j2, we have

2−N |j1−j2|
∣∣∣(2−kWx)α(2−kWz)

β[F1F2](x, z)
∣∣∣ ≤ C (1 + 2kρ(x, z))−m

Vol(B(X,d)(y, 2−k + ρ(x, z)))
.
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Lemma 2.7 ( [68]). Suppose E1 is a bounded set of elementary operators and E2 is a bounded

set of pre-elementary operators. Then, for every N , the set

{(
2N |j1−j2|E1E2, 2

−j2), (2N |j1−j2|E2E1, 2
−j2)

∣∣∣ (E1, 2
−j1) ∈ E1, (E2, 2

−j2) ∈ E2, j1 ≥ j2
}

is a bounded set of pre-elementary operators.

Lemma 2.8 ( [68]). Let B be a bounded set of bump functions and E be a bounded set of

elementary operators. ∀N , m, ∃C such that ∀(E, 2−j) ∈ E, (φ, x, 2−k) ∈ B,

|Eφ(z)| . 2−N(j−j∧k)

(
1 + 2j∧kρ(x, z)

)−m
Vol
(
B(X,d)(x, 2−j∧k + ρ(x, z))

) .

Next, we introduce the continuous version of Littlewood-Paley theory adapted to the geom-

etry B(X,d)(x, δ), which is obtained by Street [68].

Since I : C∞(M) → C∞(M) (the identity operator) is a Caldenón-Zygmund operator of

order 0. By the characterization of such operators, there is a bounded set of elementary operators

{(Dj , 2
−j)|(Dj , 2

−j) ∈ D} with I =
∑

j∈NDj . For l ∈ Z\N, define Dl = 0. We have

I =
(∑
j∈Z

Dj

)(∑
j∈Z

Dj

)
= UN +RN

where UN =
∑

j∈N
|l|≤N

DjDj+l =
∑

j∈N
|l|≤N

Dj+lDj , RN =
∑

j∈N
|l|>N

DjDj+l =
∑

j∈N
|l|>N

Dj+lDj .

By [68], the following properties hold.

Lemma 2.9 ( [68]). Fix p, 1 < p <∞. limN→∞ ‖RN‖Lp→Lp = 0.

Proposition 2.4 ( [68]). Fix p, 1 < p <∞, ∃ N = N(p), s.t. UN : Lp → Lp is an isomorphism.

i.e. ∃ VN : Lp → Lp with UNVN = VNUN = I.

Consequently, we have
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Proposition 2.5 ( [68]). Fix 1 < p <∞, then

‖f‖Lp ≈

∥∥∥∥∥
(∑
j∈N
|Djf |2

) 1
2
∥∥∥∥∥
Lp

, f ∈ C∞(M),

where the implicit constants depend on p and the particular decomposition of I =
∑

j∈NDj.

Moreover, we can deduce the following continuous version of Calderón reproducing formula.

Theorem 2.13. Letting DN
j =

∑
|l|≤N Dj+l and D̃j = VND

N
j , thus f =

∑
j∈N D̃jDjf , which

converges in the topology of bounded convergence as operators Lp → Lp, and also in the topology

of bounded convergence as operators T (n0,m)→ T (n0,m) (and therefore converges in distribu-

tion).

Theorem 2.14. Letting DN
j =

∑
|l|≤N Dj+l and Dj = DN

j VN , thus f =
∑

j∈NDjDjf which

converges in the topology of bounded convergence as operators Lp → Lp, and also in the topology

of bounded convergence as operators T (n0,m)→ T (n0,m) (and therefore converges in distribu-

tion).

Remark 2.15. B. Street has proved the Lp convergence in [68], and now we will prove the part

of T (n0,m) .

Lemma 2.10. Fix N > 0 and define RN as above. For any (φ, x, δ) ∈ B, a bounded set of bump

function, we have ∀N0 > 0,

sup
z
|(δW )αRN (φ)(z)| ≤ C2−N0NVol

(
B(X,d)(x, δ)

)−1

where C is independent of φ.

Proof. WLOG, we consider δ = 2−k for some k ∈ N. By the definition, we have

|(2−kW )αRN (φ)(z)| ≤
∑
|l|>N

∑
j∈N

2(j−k)|α||(2−jW )αDjDj+l(φ)(z)|
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By using the Proposition 3, we know that {(2N0|l|DjDj+l, 2
−j) | (Dj , 2

−j), (Dj+l,

2−(j+l)) ∈ D} is a bounded set of elementary operators. For the simplicity, we denote the above

new set as {(Ej , 2−j) | (Ej , 2−j) ∈ E}.

Thus, we can rewrite the inequality as

|(2−kW )αRN (φ)(z)| ≤
∑
|l|>N

2−N0|l|
∑
j∈N

2(j−k)|α||(2−jW )αEj(φ)(z)|

Next, applying the Lemma 2.8, ∀N1,m,

|(2−kW )αRN (φ)(z)| .
∑
|l|>N

2−N0|l|
∑
j∈N

2(j−k)|α|2−N1(j−j∧k)

(
1 + 2j∧kρ(x, z)

)−m
Vol
(
B(X,d)(x, 2−j∧k + ρ(x, z))

)
.
∑
|l|>N

2−N0|l|
∑
j∈N

2(j−k)|α|2−N1(j−j∧k)Vol
(
B(X,d)(x, 2

−j∧k)
)−1

.

By the convergence of geometric series, it suffices to verify

∑
j∈N

2(j−k)|α|2−N1(j−j∧k)Vol
(
B(X,d)(x, 2

−j∧k)
)−1

. Vol
(
B(X,d)(x, 2

−k)
)−1

We separate the above sum into two parts. The first,

∑
0≤j≤k

2(j−k)|α|Vol
(
B(X,d)(x, 2

−j∧k)
)−1

.

Using that Vol
(
B(X,d)(x, 2

−j)
)−1 ≤ Vol

(
B(X,d)(x, 2

−k)
)−1

, and j ≤ k, we obtain

∑
0≤j≤k

2(j−k)|α|Vol
(
B(X,d)(x, 2

−j∧k)
)−1

. Vol
(
B(X,d)(x, 2

−k)
)−1

The second term is

∑
k≤j

2(j−k)|α|2−N1(j−k)Vol
(
B(X,d)(x, 2

−k)
)−1

.
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By taking N1 large, this is a geometric sum, and therefore bounded by a constant times its

largest term. We obtain

∑
k≤j

2(j−k)|α|2−N1(j−k)Vol
(
B(X,d)(x, 2

−k)
)−1

. Vol
(
B(X,d)(x, 2

−k)
)−1

.

Combing all of the above, it follows that

|(δW )αRN (φ)(z)| ≤ C2−N0NVol
(
B(X,d)(x, δ)

)−1

where z is arbitrary.

By using the similar proof approach in the above lemma, it’s easy to deduce that

Lemma 2.11. Fix N,N0, we have ‖RN‖T (n0,m)→T (n0,m) ≤ C2−NN0. Moreover, RN is a bounded

operator from C∞ to C∞ with the norm C2−NN0.

With the above lemma, we can get

Lemma 2.12. If N is so large that

C2−NN0 < 1, (2.2)

then VN = U−1
N maps test function space to itself. More precisely, there exists a constant C > 0

such that for all f ∈ T (n0,m),

‖VN (f)‖T (n0,m) ≤ C‖f‖T (n0,m)

Proof. If we choose N ∈ N such that C2−NN0 < 1 holds, we have that for all f ∈ T (n0,m),

‖VN (f)‖T (n0,m) = ‖(I −RN )−1(f)‖T (n0,m)

=

∥∥∥∥∥
∞∑
h=0

(RN )h(f)

∥∥∥∥∥
T (n0,m)
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≤
∞∑
h=0

(C2−NN0)h‖f‖T (n0,m)

. ‖f‖T (n0,m)

which completes the proof the lemma.

Now we are in the position to prove the part of T (n0,m) convergence in Theorem 2.13. Let’s

restate it:

Lemma 2.13. Letting DN
j =

∑
|l|≤N Dj+l and D̃j = VND

N
j , thus f =

∑
j∈N D̃jDjf , which

converges in T (n0,m) (and therefore converges in distribution).

Proof. Fix a large integer N such that (2.2) holds. For L ∈ N, we write

∑
j≤L

D̃jDjf = VN

(∑
j≤L

DN
j Dj

)
(f)

= VN

(
UN −

∑
j>L

DN
j Dj

)
(f)

= VNUNf − VN
(∑
j>L

)
(f)

= f − lim
h→∞

(RN )h(f)− VN
(∑
j>L

DN
j Dj

)
(f).

We now verify that

lim
L→∞

∥∥∥f −∑
j≤L

D̃jDj(f)
∥∥∥
T (n0,m)

= 0.

To see this, we write

∥∥∥f − ∑
|j|≤L

D̃jDj(f)
∥∥∥
T (n0,m)

≤ lim
h→∞

‖(RN )h(f)‖T (n0,m) +
∥∥∥VN(∑

j>L

DN
j Dj

)
(f)
∥∥∥
T (n0,m)
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By the Lemma 2.11, we have

lim
h→∞

‖(RN )h(f)‖T (n0,m) ≤ lim
h→∞

(C2−NN0)h‖f‖T (n0,m) = 0,

We now prove that

lim
L→∞

∥∥∥VN(∑
j>L

DN
j Dj

)
(f)
∥∥∥
T (n0,m)

= 0.

To this end, by Lemma 2.12, it suffices to verify that there exists some θ > 0 such that for

f ∈ T (n0,m),

∥∥∥∑
j>L

DN
j Dj(f)

∥∥∥
T (n0,m)

. 2−θL‖f‖T (n0,m)

By the definition, ∀x ∈M , we have

∣∣∣Wα
∑
j>L

DN
j Dj(f)(x)

∣∣∣ ≤ ∑
|l|≤N

∑
j>L

2j|α|
∣∣∣(2−jW )αDj+lDj(f)(x)

∣∣∣
By using the Proposition 2.3, we know that {(2N0|l|Dj+lDj , 2

−j) | (Dj , 2
−j) ∈ D} is a

bounded set of elementary operators. For the simplicity, we denote the above new set as

{(Ej , 2−j) | (Ej , 2−j) ∈ E}.

Thus, we can rewrite the inequality as

∣∣∣Wα
∑
j>L

DN
j Dj(f)(x)

∣∣∣ ≤ ∑
|l|≤N

2−N0|l|
∑
j>L

2j|α|
∣∣∣(2−jW )αEj(f)(x)

∣∣∣
Next, applying the similar proof as Lemma 2.8, ∀N1,m,

∣∣∣Wα
∑
j>L

DN
j Dj(f)(x)

∣∣∣
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.
∑
|l|≤N

2−N0|l|
∑
j>L

2j|α|2−N1j

(
1 + ρ(x1, x)

)−m
Vol
(
B(X,d)(x1, 1 + ρ(x1, x))

)
By the convergence of geometric series, it suffices to verify

∑
j>L

2j(|α|−N1) . 2−θL

By taking N1 large, this is a geometric sum, and therefore bounded by a constant times its

largest term. Combing all of the above, it follows that

∣∣∣Wα
∑
j>L

DN
j Dj(f)(x)

∣∣∣ ≤ C2−θL
(
1 + ρ(x1, x)

)−m
Vol
(
B(X,d)(x1, 1 + ρ(x1, x))

)
This implies

∥∥∥∑
j>L

DN
j Dj(f)

∥∥∥
T (n0,m)

. 2−θL‖f‖T (n0,m)

The lemma is proved.

The respective part of Theorem 2.14 can be prove similarly.

We also need the Fefferman-Stein’s vector-valued maximal function inequality.

Theorem 2.16 ( [18]). Let 1 < p <∞, 1 < q ≤ ∞, and letM be the Hardy-Littlewood maximal

operator on M. Let {fk}k∈Z ⊂ Lp(M) be a sequence of measurable funcitons on M. Then

∥∥∥{ ∞∑
k=−∞

|M(fk)|q
}1/q∥∥∥

Lp(M)
≤ C

∥∥∥{ ∞∑
k=−∞

|fk|q
}1/q∥∥∥

Lp(M)

where C is independent of {fk}k∈Z.
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2.3 Discrete Calderón Reproducing Formula

We will use the classical decomposition on the homogeneous space by M. Christ in [11] and

by Sawyer-Wheeden in [61]. Here, we use the statement in [11].

Lemma 2.14 ( [11]). χ is the space of homogeneous type, ∃ {Qkτ ⊂ χ : k ∈ Z, τ ∈ Ik} of open

subsets, where Ik is some index set, δ ∈ (0, 1), C1, C2 > 0, s.t.

(i) µ(χ\ ∪τ Qkτ ) = 0 for each fixed k and Qkα ∩Qkβ = ∅ if α 6= β.

(ii) Qlβ ⊂ Qkα or Qlβ ∩Qkα = ∅ for l ≥ k.

(iii) ∃ ! β, s.t. Qkα ⊂ Qlβ.

(iv) diam(Qkτ ) ≤ C1δ
k;

(v) Qkτ contains some ball B(zkτ , C2δ
k).

Also, we denote by Qk,ντ , ν = 1, 2, . . . , N(k, α), the set of all cubes Qk+j
τ ⊂ Qkτ and j is a

positive large integer such that

2−jC1 <
1

3

Denote by zk,ντ the “center” of Qk,ττ and by yk,ντ a point in Qk,ντ .

Now we’re ready to introduce the Discrete Calderón Reproducing Formula. Recall the dis-

crete Riemann sum operator on M,

S(f)(x) =
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (y) dyDk(f)(yk,ντ )

where DN
k =

∑
|l|≤N Dk+l.

We firstly verify S is well defined and bounded on L2(M).

Lemma 2.15. There exists some constant C > 0, such that for all yk,ντ ∈ Qk,ντ and f ∈ L2(M),

∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )|Dk(f)(yk,ντ )|2 ≤ C‖f‖2L2(M)
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Proof. By Proposition 2.3, we have

|DkDl(z, x)| . 2−|k−l|
(1 + 2kρ(z, x))−1

Vol(B(X,d)(z, 2−k + ρ(z, x)))

where the implicit constant is independent of k, l, z, x. Notice that for all x ∈ M and any

z, y ∈ Qk,ντ , we have that ρ(y, z) ≤ C12−j2−k ≤ C12−j(2−k + ρ(x, y)), where C12−j < 1. Thus,

for all x ∈M , any y, z ∈ Qk,ντ and all k, l ∈ Z,

|DkDl(z, x)|χQk,ντ (z) . 2−|k−l|
(1 + 2kρ(y, x))−1

Vol(B(X,d)(x, 2−k + ρ(y, x)))
χQk,ντ

(y)

From this, it follows that

|Dk(f)(yk,ντ )| ≤
∑
l∈N

ˆ
M
|DkD̃l(y

k,ν
τ , x)|χQk,ντ (yk,ντ )|Dl(f)(x)| dµ(x)

.
∑
l∈N

2−|k−l|
ˆ
M

(1 + 2kρ(y, x))−1

Vol(B(X,d)(x, 2−k + ρ(y, x)))
|Dl(f)(x)| dµ(x) · χQk,ντ (y)

.
∑
l∈N

2−|k−l|
ˆ
B(X,d)(y,2

−k)

1

Vol
(
B(X,d)(y, 2−k)

) |Dl(f)(x)| dµ(x) · χQk,ντ (y)

+
∑
l∈N

∞∑
h=1

2−|k−l|
ˆ
B(X,d)(y,2

−k+h)\B(X,d)(y,2
−k+h−1)

(2kρ(x, y))−1

Vol
(
B(X,d)(y, ρ(y, x))

)
×|Dl(f)(x)| dµ(x) · χQk,ντ (y)

.
∑
l∈N

2−|k−l|M(Dl(f))(y)χQk,ντ
(y)

Therefore,

∑
k∈N

∑
τ∈Ik

N(τ,ν)∑
ν=1

µ(Qk,ντ )|Dk(f)(yk,ντ )|2 .
∑
k∈N

ˆ
M

[∑
l∈N

2−|l−k|M(Dl(f))(y)

]2

dy

.
∥∥∥{∑

l∈N
|M(Dl(f))|2

}1/2∥∥∥2

L2(M)
.
∥∥∥{∑

l∈N
|Dl(f)|2

}1/2∥∥∥2

L2(M)
. ‖f‖2L2(M)
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Also, we have

Lemma 2.16. Given a sequence {ak,ντ : k ∈ Z, τ ∈ Ik, ν = 1, . . . , N(k, τ)} of numbers with

∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |2 <∞.

Then, the function defined by

f(x) =
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ντ )]−1/2ak,ντ

ˆ
Qk,ντ

DN
k (x, y) dµ(y)

is in L2(M). Moreover,

‖f‖2L2(M) ≤ C
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |2.

Proof. By the definition,

ˆ
M
f(x) · f̄(x) dµ(x) =

ˆ
M

(∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ντ )]−1/2ak,ντ

ˆ
Qk,ντ

DN
k (x, y) dµ(y)

)

×
(∑
k′∈N

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

[µ(Qk
′,ν′

τ ′ )]−1/2ak
′,ν′

τ ′

ˆ
Qk
′,ν′
τ ′

DN
k′ (x, y

′) dµ(y′)
)
dµ(x)

WLOG, we can assume k ≤ k′, thus by using the similar argument in Lemma 2.7, ∀N0 ∈ N,

we have

DN
k (x, y)DN

k′ (x, y
′) =

∑
|α|≤N0

2k
′(|α|−N0)DN

k (x, y)(2−k
′
Wx)αDN

k′,α(x, y′)

=
∑
|α|≤N0

2k
′(|α|−N0)2−|α||k−k

′|DN
k (x, y)(2k

′
Wx)αDN

k′,α(x, y′)

=
∑
|α|≤N0

2k
′(|α|−N0)2−|α||k−k

′|2−k(|α|−N0)
(

2k(|α|−N0)DN
k (x, y)(2k

′
Wx)α

)
DN
k′,α(x, y′)

=
∑
|α|≤N0

2−N0|k−k′|DN
k,α(x, y)DN

k′,α(x, y′)



24

where {(DN
k,α, 2

−k)|(Dk, 2
−k) ∈ D)} and {(DN

k′,α, 2
−k′)|(Dk′ , 2

−k′) ∈ D} are both the bounded

sets of elementary operators.

Hence, For each k, τ, ν, k′, τ ′, ν ′, it follows that

ˆ
M

[ ˆ
Qk,ντ

DN
k (x, y) dµ(y)

ˆ
Qk
′,ν′
τ ′

DN
k′ (x, y

′) dµ(y′)
]
dµ(x)

=
∑
|α|≤N0

2−|k−k
′|N0

ˆ
M

[ˆ
Qk,ντ

DN
k,α(x, y) dµ(y)

ˆ
Qk
′,ν′
τ ′

DN
k′,α(x, y′) dµ(y′)

]
dµ(x)

≤ CN0,N,m,D2−|k−k
′|N0

ˆ
M

[ ˆ
Qk,ντ

(1 + 2kρ(x, y))−m

Vol
(
B(X,d)(x, 2−k + ρ(x, y))

) dµ(y)

×
ˆ
Qk
′,ν′
τ ′

(1 + 2k′ρ(x, y′))−m

Vol
(
B(X,d)(x, 2−k

′ + ρ(x, y′))
) dµ(y′)

]
dµ(x)

≤ CN0,N,m,D2−|k−k
′|N0

ˆ
M

[ ˆ
Qk,ντ

(1 + 2kρ(x, yk,ντ ))−m

Vol
(
B(X,d)(x, 2−k + ρ(x, yk,ντ ))

) dµ(y)

×
ˆ
Qk
′,ν′
τ ′

(1 + 2k′ρ(x, yk
′,ν′

τ ′ ))−m

Vol
(
B(X,d)(x, 2−k

′ + ρ(x, yk
′,ν′

τ ′ ))
) dµ(y′)

]
dµ(x)

≤ CN0,N,m,D2−|k−k
′|N0µ(Qk,ντ )µ(Qk

′,ν′

τ ′ )

ˆ
M

(1 + 2kρ(yk,ντ , x))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k + ρ(yk,ντ , x))

)
×

(1 + 2k
′
ρ(x, yk

′,ν′

τ ′ ))−m

Vol
(
B(X,d)(x, 2−k

′ + ρ(x, yk
′,ν′

τ ′ ))
) dµ(x)

By using Lemma 2.3, the last term can be controlled by

CN0,N,m,D2−|k−k
′|N0 · µ(Qk,ντ )µ(Qk

′,ν′

τ ′ )
(1 + 2k∧k

′
ρ(yk,ντ , yk

′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k∧k′ + ρ(yk,ντ , yk

′,ν′

τ ′ ))
)

or

CN0,N,m,D2−|k−k
′|N0 · µ(Qk,ντ )µ(Qk

′,ν′

τ ′ )
(1 + 2k∧k

′
ρ(yk

′,ν′

τ ′ , yk,ντ ))−m

Vol
(
B(X,d)(y

k′,ν′

τ ′ , 2−k∧k′ + ρ(yk
′,ν′

τ ′ , yk,ντ ))
)

Therefore,

‖f‖2L2(M) ≤ CN0,N,m,D
∑
k,τ,ν
k′,τ ′,ν′

2−|k−k
′|N0ak,ντ ak

′,ν′

τ ′ [µ(Qk,ντ )µ(Qk
′,ν′

τ ′ )]1/2
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×
(1 + 2k∧k

′
ρ(yk,ντ , yk

′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k∧k′ + ρ(yk,ντ , yk

′,ν′

τ ′ ))
)

≤ CN0,N,m,D
∑{

k,τ,ν
k′,τ ′,ν′

:k≤k′
} 2−|k−k

′|N0ak,ντ ak
′,ν′

τ ′ [µ(Qk,ντ )µ(Qk
′,ν′

τ ′ )]1/2

×
(1 + 2kρ(yk,ντ , yk

′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k + ρ(yk,ντ , yk

′,ν′

τ ′ ))
)

≤ CN0,N,m,DA
1/2B1/2

where

A =
∑{

k,τ,ν
k′,τ ′,ν′

:k≤k′
} |ak,ντ |22−|k−k

′|N0
µ(Qk

′,ν′

τ ′ )(1 + 2kρ(yk,ντ , yk
′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k + ρ(yk,ντ , yk

′,ν′

τ ′ ))
) ,

B =
∑{

k,τ,ν
k′,τ ′,ν′

:k≤k′
} |ak′,ν′τ ′ |

22−|k−k
′|N0

µ(Qk,ντ )(1 + 2kρ(yk
′,ν′

τ ′ , yk,ντ ))−m

Vol
(
B(X,d)(y

k′,ν′

τ ′ , 2−k + ρ(yk
′,ν′

τ ′ , yk,ντ ))
)

With the Cauchy Schwartz inequality, it’s only left to verify,

∑
k≤k′

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

2−2|k−k′|N0
µ(Qk

′,ν′

τ ′ )(1 + 2kρ(yk,ντ , yk
′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k + ρ(yk,ντ , yk

′,ν′

τ ′ ))
) ≤ C

and

∑
k≤k′

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )(1 + 2kρ(yk
′,ν′

τ ′ , yk,ντ ))−m

Vol
(
B(X,d)(y

k′,ν′

τ ′ , 2−k + ρ(yk
′,ν′

τ ′ , yk,ντ ))
) ≤ C

For A, by Lemma 2.5, ∃N1, s.t.

∑
k≤k′

∑
τ ′∈Ik′

N(k′,ν′)∑
ν′=1

2−|k−k
′|N0

µ(Qk
′,ν′

τ ′ )(1 + 2kρ(yk,ντ , yk
′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k + ρ(yk,ντ , yk

′,ν′

τ ′ ))
)

≤
∑
k≤k′

∑
τ ′∈Ik′

N(k′,ν′)∑
ν′=1

2−|k−k
′|(N0−N1) µ(Qk

′,ν′

τ ′ )(1 + 2k
′
ρ(yk,ντ , yk

′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k′ + ρ(yk,ντ , yk

′,ν′

τ ′ ))
)

≤
∑
k′

2−|k−k
′|(N0−N1)

∑
τ ′∈Ik′

N(k′,ν′)∑
ν′=1

ˆ
Qk
′,ν′
τ ′

(1 + 2k
′
ρ(yk,ντ , yk

′,ν′

τ ′ ))−2m

Vol
(
B(X,d)(y

k,ν
τ , 2−k′ + ρ(yk,ντ , yk

′,ν′

τ ′ ))
) dµ(y′)
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≤
∑
k′

2−|k−k
′|(N0−N1)

∑
τ ′∈Ik′

N(k′,ν′)∑
ν′=1

ˆ
Qk
′,ν′
τ ′

(1 + 2k
′
ρ(yk,ντ , y′))−2m

Vol
(
B(X,d)(y

k,ν
τ , 2−k′ + ρ(yk,ντ , y′))

) dµ(y′)

≤
∑
k′

2−|k−k
′|(N0−N1)

ˆ
M

(1 + 2k
′
ρ(yk,ντ , y′))−2m

Vol
(
B(X,d)(y

k,ν
τ , 2−k′ + ρ(yk,ντ , y′))

) dµ(y′) ≤ Cm

and similarly, for B, we have

∑
k≤k′

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )(1 + 2kρ(yk
′,ν′

τ ′ , yk,ντ ))−m

Vol
(
B(X,d)(y

k′,ν′

τ ′ , 2−k + ρ(yk
′,ν′

τ ′ , yk,ντ ))
) ≤∑

k≤k′
2−|k−k

′|N0Cm ≤ Cm

With the above two lemmas, it follows immediately that

Theorem 2.17. Let the notation be the same as above with j satisfying 2−jC1 <
1
3 . Then the

discrete Riemann sum operator S is bounded on L2(M). That is, there is a constant C > 0,

only depending on N , such that for all f ∈ L2(M),

‖Sf‖L2(M) ≤ C‖f‖L2(M)

Proof. From Lemma 2.15 and Lemma 2.16, it follows that

‖Sf‖2L2(M) ≤ ‖
∑
k∈Z

∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ντ )]−1/2|ak,ττ |
ˆ
Qk,ντ

DN
k (x, y) dy‖L2(M)

≤
∑
k∈Z

∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |2 ≤ ‖f‖2L2(M)

where ak,ντ = [µ(Qk,ντ )]1/2|Dk(f)(yk,ντ )|.

Next, we prove that S is invertible. To do this, we define R = I − S and denote by R(x, y)

for its kernel. Actually, we can prove: for any n0 ∈ N,
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Claim 1: For h ∈ N,

lim
h→∞

‖Rh(f)‖Lp(M) ≤ lim
h→∞

(Cp,N2−ε0N + Cp,m,N,D2−jε)h‖f‖Lp(M) = 0

lim
h→∞

‖Rh(f)‖T (n0,m) ≤ lim
h→∞

(Cp,N2−N0N + Cp,m,N,D2−jε)h‖f‖T (n0,m) = 0

Claim 2:

‖S−1‖Lp(M)→Lp(M) <∞

‖S−1‖T (n0,m)→T (n0,m) <∞

Recall that I = UN +RN , thus

R(f)(x) = (I − S)(f)(x)

=
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (x, y)[Dk(f)(y)−Dk(f)(yk,ντ )] dy +

∑
k∈N

∑
|l|>M

Dk+lDk(f)(x)

≡
∑
k∈N

Gk(f)(x) +RN (f)(x)

≡ G(f)(x) +RN (f)(x)

Let Gk(x, y) be the kernel of Gk. We now verify that Gk(x, y) and hence G(x, y) satisfies all the

desired estimates. Clearly,

G(x, y) =
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (x, z)[Dk(z, y)−Dk(y

k,ν
τ , y)] dz

=
∑
k∈N

Gk(x, y)

For each Gk, we can prove the following,

Lemma 2.17. {(Gk, 2−k)} is a bounded set of the pre-elementary operators.
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Proof. By the construction of dyadic cubes in Lemma 2.14, for any z ∈ Qk,ντ ,

ρ(z, yk,ντ ) ≤ C12−(k+j) = C12−j2−k ≤ C12−j(2−k + ρ(y, z))

We recall that j always satisfies 2−jC1 <
1
3 . Thus, we have

1

2−k + ρ(z, yk,ντ )
≤ C 1

2−k + ρ(y, z)
(2.3)

and

1

Vol
(
B(X,d)(y, 2−k(1 + 2kρ(z, yk,ντ )))

) ≤ C 1

Vol
(
B(X,d)(y, 2−k(1 + 2kρ(y, z)))

) (2.4)

Also by the definition of elementary operators, ∀m, ∃Cm,D = C(m,D), s.t.

|Dk(z, y)−Dk(y
k,ν
τ , y)| ≤ max

z∗∈QN(k,ν)
τ

|γ|=1

∣∣∣(Wx)γDk(z
∗, y)

∣∣∣ρ(z, yk,ντ )

≤ Cm,D max
z∗∈Qk,ντ

2k
(1 + 2kρ(z∗, y))−m

Vol
(
B(X,d)(y, 2−k(1 + 2kρ(z∗, y)))

)ρ(z, yk,ντ )

≤ Cm,DC12−j
(1 + 2kρ(y, z))−m

Vol
(
B(X,d)(y, 2−k(1 + 2kρ(y, z)))

)
where the last inequality comes from (2.3), (2.4), ρ(z, yk,ντ ) ≤ C12−j−k and |γ| = 1.

Consequently,

|Gk(x, y)| =
∣∣∣ ∑
τ∈Ik

N(k,ν)∑
ν=1

ˆ
Qk,ντ

DN
k (x, z)[Dk(z, y)−Dk(y

k,ν
τ , y)] dµ(z)

∣∣∣
≤ Cm,N,DC12−j

∑
τ∈Ik

N(k,ν)∑
ν=1

ˆ
Qk,ντ

(1 + 2kρ(x, z))−m

Vol
(
B(X,d)(y, 2−k(1 + 2kρ(x, z)))

)
× (1 + 2kρ(z, y))−m

Vol
(
B(X,d)(y, 2−k(1 + 2kρ(z, y)))

) dµ(z)

≤ Cm,N,DC12−j
(1 + 2kρ(x, y))−m

Vol
(
B(X,d)(y, 2−k(1 + 2kρ(x, y)))

)
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where the last inequality comes from Lemma 2.3 and Cm,N,D only depends on m,N and D.

Similarly, ∀α, β,m,N , ∃ CD,α,β,m,N = C(D, α, β,m), ∀(Gk, 2−k),

∣∣(2−kWx)α(2−kWy)
βGk(x, y)

∣∣
=
∣∣∣ ∑
τ∈Ik

N(k,ν)∑
ν=1

ˆ
Qk,ντ

(2−kWx)αDN
k (x, z)[(2−kWy)

βDk(z, y)− (2−kWy)
βDk(y

k,ν
τ , y)] dµ(z)

∣∣∣

≤
∑
τ∈Ik

N(k,ν)∑
ν=1

ˆ
Qk,ντ

∣∣∣(2−kWx)αDN
k (x, z)

∣∣∣ · max
z∗∈QN(k,ν)

τ
|γ|=1

∣∣∣(Wx)γ(2−kWy)
βDk(z

∗, y)
∣∣∣ρ(z, yk,ντ ) dµ(z)

≤ CD,α,β,m,NC12−j

∣∣∣∣∣ ∑
τ∈Ik

N(k,ν)∑
ν=1

ˆ
Qk,ντ

(1 + 2kρ(x, z))−m

Vol
(
B(X,d)(x, 2−k(1 + 2kρ(x, z)))

)
× (1 + 2kρ(z, y))−m

Vol
(
B(X,d)(y, 2−k(1 + 2kρ(z, y)))

) dµ(z)

∣∣∣∣∣
≤ CD,α,β,m,NC12−j

(1 + 2kρ(x, z))
−m

Vol(BW (x, 2−k(1 + 2kρ(x, y))))

Hence, {(Gk, 2−k)|k ∈ N} is a bounded set of pre-elementary operators.

In fact, we can furthermore obtain the result as follows:

Lemma 2.18. {(Gk, 2−k)|k ∈ N} is a bounded set of the elementary operators.

Proof. We’ve verify that {(Gk, 2−k)|k ∈ N} is a bounded set of pre-elementary operators. The

result will follow once we show for k ∈ N, we have Gk is a sum of derivatives of operators of the

same form, as in the definition of elementary operators. But we have, using Proposition 2.1,

Gk =
∑

|α|,|β|≤1

∑
τ∈Ik

N(k,ν)∑
ν=1

ˆ
Qk,ντ

2−(2−|α|−|β|)k(2−kW )αDN
k,α(x, z)

×[Dk,β(z, y)−Dk,β(yk,ντ , y)](2−kW )β dµ(z)

where {(DN
k,α, 2

−k), (Dk,β, 2
−k)|(Dk, 2

−k) ∈ D} is a bounded set of elementary operators. And
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therefore,

Gk =
∑

|α|,|β|≤1

2−(2−|α|−|β|)k(2−kW )α
{∑
τ∈Ik

N(k,ν)∑
ν=1

ˆ
Qk,ντ

DN
k,α(x, z)

×[Dk,β(z, y)−Dk,β(yk,ντ , y)] dµ(z)
}

(2−kW )β

=
∑

|α|,|β|≤1

2−(2−|α|−|β|)k(2−kW )αGk,α,β(2−kW )β

This completes the proof, since Gk,α,β is of the same form as Gk.

Lemma 2.19. G is a Calderón-Zygmund operator of order 0. Moreover, ∃ε > 0, s.t.

‖G‖Lp(M)→Lp(M) ≤ Cm,D,N2−jε

and for any n0 ∈ N,

‖G‖T (n0,m)→T (n0,m) ≤ Cm,D,N2−jε

Proof. According to the characterization in Theorem 2.11, it follows that G =
∑

k∈NGk is a

Calderón-Zygmund operator of order 0. Hence, G is Lp(M) → Lp(M) bounded, i.e. ∀p > 0,

∃Cp, such that

‖G‖Lp(M)→Lp(M) ≤ Cp

Also note that, for all k, l ∈ N, we have

‖GkG∗l ‖L2(M)→L2(M) ≤ Cm,D,N2−j2−|k−l|,

‖GlG∗k‖L2(M)→L2(M) ≤ Cm,D,N2−j2−|k−l|
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The Colter-Stein Lemma now shows

‖G‖L2(M)→L2(M) ≤ Cm,D,N2−j

Together, by the interpolation, we have

‖G‖Lp(M)→Lp(M) ≤ Cp,m,D,N2−jε

On the other hand, ∀f ∈ T (n0,m) and x ∈M ,

|WαG(f)(x)| ≤
∑
k∈N

2k|α||(2−kW )αGk(f)(x)|

By using the Proposition 2.1, we know that {((2−kW )αGk(f), 2−k) | (Gk, 2−k),∈ D} is a

bounded set of elementary operators. For the simplicity, we denote the above new set as

{(Ek, 2−k) | (Ek, 2−k)

∈ E}.

Thus, we can rewrite the inequality as

|WαG(f)(x)| ≤
∑
k∈N

2k|α||Ek(f)(x)|

Again, applying the similar proof as Lemma 2.8, we have ∀N1,m,

|WαG(f)(x)| . Cm,D,N2−j
∑
k∈N

2k|α|2−N1k

(
1 + ρ(x1, x)

)−m
Vol
(
B(X,d)(x1, 1 + ρ(x1, x))

)‖f‖T (n0,m)

By the convergence of geometric series, it suffices to verify

∑
k∈N

2k(|α|−N1) . 1
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which is obviously by taking N1 large. Therefore , we obtain that

|WαG(f)(x)| ≤ Cm,D,N2−j
(
1 + ρ(x1, x)

)−m
Vol
(
B(X,d)(x1, 1 + ρ(x1, x))

)‖f‖T (n0,m)

Lemma 2.20. Let S be the discrete Riemann sum operator on M and R = I − S. Then R is

Lp(M) bounded, i.e.

‖R‖Lp(M)→Lp(M) ≤ Cp2−ε0N + Cp,m,D,N2−jε

and R is bounded on T (n0,m) for any n0 ∈ N, i.e.

‖R‖T (n0,m)→T (n0,m) ≤ C2−N0N + Cm,D,N2−j

Proof. By Lemma 2.9 and Lemma 2.19, it follows that

‖R‖Lp(M)→Lp(M) ≤ ‖G‖Lp(M)→Lp(M) + ‖RN‖Lp(M)→Lp(M)

≤ Cp,N2−ε0N + Cp,m,D,N2−jε

Also,

‖R‖T (n0,m)→T (n0,m) ≤ ‖G‖T (n0,m)→T (n0,m) + ‖RN‖T (n0,m)→T (n0,m)

≤ CN2−N0N + Cm,D,N2−j

Since N and j are arbitrary, we can choose them large enough such that

Cp,N2−ε0N + Cp,m,D,N2−jε < 1
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and

Cp,N2−N0N + Cm,D,N2−j < 1

which implies our Claim 1.

Our Claim 2 follows from the corollary below.

Corollary 2.18. Let S be the discrete Riemann operator on M. Let N, j ∈ N such that

Cp,N2−ε0N + Cp,m,D,N2−jε < 1

and

CN2−N0N + Cm,D,N2−j < 1

hold. Then S has a bounded inverse in Lp(M) for p ∈ (1,∞). Namely, there exists a constant

C > 0 depending on p such that

‖S−1‖Lp(M)→Lp(M) ≤ C

and for any n0 ∈ N,

‖S−1‖T (n0,m)→T (n0,m) ≤ C

To establish the discrete Calderón reproducing formula, we still need the following technical

lemma.

Lemma 2.21. Let j satisfy C12−j < 1
3 . For k ∈ Z, any fixed yk,ντ ∈ Qk,ντ with τ ∈ Ik and
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ν = {1, . . . , N(k, τ)}, and any x ∈M , let

Hx(x, y) =
∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (x, z) dµ(z)Dk(y

k,ν
τ , y).

Then {(Hk, 2
−k) | (Dk, 2

−k) ∈ D} is a bouded set of elementary operators.

Proof. ∀α, β,m,N , ∃CD,α,β,m,N = C(D, α, β,m,N), ∀(Hk, 2
−k),

|(2−kWx)α(2−kWy)
βHk(x, y)|

=

∣∣∣∣∣ ∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

(2−kWx)αDN
k (x, z) dµ(z)(2−kWy)

βDk(y
k,ν
τ , y)

∣∣∣∣∣
≤ CD,α,β,m,N

∣∣∣∣∣ ∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

(1 + 2kρ(x, z))−m

Vol
(
B(X,d)(x, 2−k + ρ(x, z))

) dµ(z)

× (1 + 2kρ(yk,ντ , y))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k + ρ(yk,ντ , y))

)∣∣∣∣∣
= CD,α,β,m,N

∣∣∣∣∣ ∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

(1 + 2kρ(x, z))−m

Vol
(
B(X,d)(x, 2−k + ρ(x, z))

)
× (1 + 2kρ(yk,ντ , y))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k + ρ(yk,ντ , y))

) dµ(z)

∣∣∣∣∣
Note that for any z, yk,ντ ∈ Qk,ντ and y ∈M ,

(1 + 2kρ(yk,ντ , y))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k + ρ(yk,ντ , y))

) ≈ (1 + 2kρ(z, y))−m

Vol
(
B(X,d)(z, 2−k + ρ(z, y))

)
Hence,

|(2−kWx)α(2−kWy)
βHk(x, y)|

≤ CD,α,β,m,N

∣∣∣∣∣ ∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

(1 + 2kρ(x, z))−m

Vol
(
B(X,d)(x, 2−k + ρ(x, z))

)
× (1 + 2kρ(z, y))−m

Vol
(
B(X,d)(z, 2−k + ρ(z, y))

) dµ(z)

∣∣∣∣∣
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≤ CD,α,β,m,N

∣∣∣∣∣
ˆ
M

(1 + 2kρ(x, z))−m

Vol
(
B(X,d)(x, 2−k + ρ(x, z))

) (1 + 2kρ(z, y))−m

Vol
(
B(X,d)(z, 2−k + ρ(z, y))

) dµ(z)

∣∣∣∣∣
≤ CD,α,β,m,N

(1 + 2kρ(x, y))−m

Vol
(
B(X,d)(x, 2−k + ρ(x, y))

)
Therefore, {(Hk, 2

−k) | (Dk, 2
−k) ∈ D} is a bounded set of pre-elementary operators.

Next, we will show for k ∈ N, we have Hk is a sum of derivatives of operators of the same

form, as in the definition of elementary operators. But we have, using Proposition 2.1,

Hk(x, z) =
∑

|α|,|β|≤1

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

2−(2−|α|−|β|)k(2−kW )αDN
k,α(x, z) dµ(z)

×Dk,β(yk,ντ , y)(2−kW )β

where {(DN
k,α, 2

−k), (Dk,β, 2
−k)|(Dk, 2

−k) ∈ D} is a bounded set of elementary operators. And

therefore,

Hk(x, y) =
∑

|α|,|β|≤1

2−(2−|α|−|β|)k(2−kW )α
{∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k,α(x, z) dµ(z)

×Dk,β(yk,ντ , y)
}

(2−kW )β

=
∑

|α|,|β|≤1

2−(2−|α|−|β|)k(2−kW )αHk,α,β(2−kW )β

This completes the proof, since Hk,α,β is of the same form as Hk.

Now let’s prove the Discrete Calderón Reproducing Formula.

Theorem 2.19 (Discrete Calderón Reproducing Formula). For any fixed j ∈ N, there exists a

family of linear operators {D̃k}k∈N such that for any fixed yk,ντ ∈ Qk,ντ with k ∈ N, τ ∈ Ik, and

ν = 1, . . . , N(k, τ), and all f ∈ C∞(M),

f(x) =
∞∑
k=0

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

D̃k(x, y) dµ(y)Dk(f)(yk,ντ )
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=
∞∑
k=0

∑
τ∈Ik

N(k,τ)∑
ν=1

D̃k(x, y
k,ν
τ )

ˆ
Qk,ντ

Dk(f)(y) dµ(y)

=
∞∑
k=0

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk(f)(yk,ντ )

where the series converges in both the norm of T (n0,m) and the dual space T ′(n0,m), the the

topology of bouned convergence as operators C∞(M) → C∞(M) and the norm of Lp(M) with

p ∈ (1,∞).

Proof. Fix N, j ∈ N, where 2−jC1 < 1
3 , Cp,N2−ε0N + Cp,m,N,D2−jε < 1 and CN2−N0N +

Cm,N,D2−j < 1. Let DN
k for k ∈ Z be as above. For k ∈ Z, let D̃k(x, y) = S−1[DN

k (·, y)](x). For

L ∈ N, we write

∑
k≤L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

D̃k(x, y) dµ(y)Dk(y
k,ν
τ )

= S−1
[∑
k≤L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (·, y) dµ(y)Dk(f)(yk,ντ )

]
(x)

= S−1
[
S(f)(·)−

∑
k>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (·, y) dµ(y)Dk(f)(yk,ντ )

]
(x)

= f(x)− lim
h→∞

Rh(f)(x)− S−1
[∑
k>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (·, y) dµ(y)Dk(f)(yk,ντ )

]
(x)

Claim 1 shows that for all f ∈ T (n0,m) with the center x1 ∈M ,

lim
h→∞

‖Rh(f)‖T (n0,m) ≤ lim
h→∞

(Cp,N2−N0N + Cp,m,N,D2−j)h‖f‖T (n0,m) = 0

and for all f ∈ Lp(M) with p ∈ (1,∞),

lim
h→∞

‖Rh(f)‖Lp(M) ≤ lim
h→∞

(Cp,N2−ε0N + Cp,m,N,D2−jε)h‖f‖Lp(M) = 0
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To finish the proof of the theorem, we still need to verify that for all f ∈ T (n0,m),

lim
L→∞

∥∥∥∥∥S−1

{ ∑
|k|>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (·, y) dµ(y)Dk(f)(yk,ντ )

}∥∥∥∥∥
T (n0,m)

= 0, (2.5)

and for all f ∈ Lp(M) with p ∈ (1,∞),

lim
L→∞

∥∥∥∥∥S−1

{ ∑
|k|>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (·, y) dµ(y)Dk(f)(yk,ντ )

}∥∥∥∥∥
Lp(M)

= 0. (2.6)

Let’s consider (2.5) firstly. ∀x ∈M , we have

∣∣∣∣∣Wα
∑
|k|>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (x, y) dµ(y)Dk(f)(yk,ντ )

∣∣∣∣∣
≤
∑
|k|>L

2k|α||(2−kW )αHk(f)(x)|

By using the Proposition 2.1, we know that {((2−kW )αHk(f), 2−k) | (Hk, 2
−k), ∈ H} is

a bounded set of elementary operators. For the simplicity, we denote the above new set as

{(Ek, 2−k) |

(Ek, 2
−k) ∈ E}. Thus, we can rewrite the inequality as

∣∣∣∣∣Wα
∑
|k|>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (x, y) dµ(y)Dk(f)(yk,ντ )

∣∣∣∣∣
≤
∑
k>L

2k|α||Ej(f)(z)|

Next, applying the similar proof method as Lemma 2.8, ∀N1,m,

∣∣∣∣∣Wα
∑
|k|>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (x, y) dµ(y)Dk(f)(yk,ντ )

∣∣∣∣∣
.
∑
k>L

2k|α|2−N1k

(
1 + ρ(x1, x)

)−m
Vol
(
B(X,d)(x1, 1 + ρ(x1, x))

)‖f‖T (n0,m)
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Hence, it suffices to verify

∑
k>L

2k|α|2−N1k . 1

By taking N1 large, this is a geometric sum, and therefore bounded by a constant times its

largest term. There exists some θ > 0, such that

∑
k>L

2k|α|2−N1k . 2−θL.

Combing all of the above, it follows that

∣∣∣∣∣Wα
∑
|k|>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (x, y) dµ(y)Dk(f)(yk,ντ )

∣∣∣∣∣
≤ C2−θL

(
1 + ρ(x1, x)

)−m
Vol
(
B(X,d)(x1, 1 + ρ(x1, x))

)‖f‖T (n0,m)

This implies

∥∥∥∥∥ ∑
|k|>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (·, y) dµ(y)Dk(f)(yk,ντ )

∥∥∥∥∥
T (n0,m)

. 2−θL‖f‖T (n0,m)

Combing Corollary 2.18, it’s easy to obtain (2.5). Next, let’s consider (2.6).

For L ∈ N, let TL be the operator associated with the kernel

KL(x, y) =
∑
k>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

DN
k (x, z) dµ(z)Dk(y

k,ν
τ , y)

Hence, with the above claims, it suffices to verify that for all f ∈ Lp(M) with p ∈ (1,∞),

‖TL(f)‖Lp(M) → 0 as L→∞. By the continuous Calderón reproducing formula, for f ∈ Lp(M)

and g ∈ Lp′(M), f =
∑

l∈N D̃lDl(f) and g =
∑

l∈N D̃lDl(g), respectively, in Lp(M) and Lp
′
(M),
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where D̃l for l ∈ N are as in Theorem 2.13. We have the following orthogonality estimate:

|DkD̃l(y
k,ν
τ , z)| . 2−|k−l|

(1 + 2k∧lρ(y, z))−m

Vol
(
B(X,d)(y, 2−k∧l(1 + 2k∧lρ(y, z)))

) ,
|(DN

k )∗D̃l(y, z)| . 2−|k−l|
(1 + 2k∧lρ(y, z))−m

Vol
(
B(X,d)(y, 2−k∧l(1 + 2k∧lρ(y, z)))

) .
where the implicit constant is independent of k, l, yk,ντ , z. Besides, we have

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

(1 + 2k∧lρ(y, z))−m

Vol
(
B(X,d)(y, 2−k∧l(1 + 2k∧lρ(y, z)))

)f(z) dµ(z)

.
ˆ
M

(1 + 2k∧lρ(y, z))−m

Vol
(
B(X,d)(y, 2−k∧l(1 + 2k∧lρ(y, z)))

)f(z) dµ(z)

.
ˆ
B(X,d)(y,2

−k∧l)

1

Vol
(
B(X,d)(y, 2−k∧l)

) |f(z)| dµ(z)

+
∞∑
h=1

ˆ
B(X,d)(y,2

−k∧l+h)\B(X,d)(y,2
−k∧l+h−1)

(2k∧lρ(x, y))−1

Vol
(
B(X,d)(y, ρ(y, x))

) |f(z)| dµ(z)

.
∞∑
h=0

2−hVol
(
B(X,d)(x, 2

−k∧l+h)
)−1
ˆ
B(X,d)(x,2

−k∧l+h)
|f(z)| dµ(z) .M(f)(y)

Hence, by using the Fefferman-Stein’s vector-valued maximal function inequality, and the duality

argument, we have

‖TL(f)‖Lp(M) = sup
‖g‖

Lp
′
(M)
≤1
|〈TL(f), g〉|

= sup
‖g‖

Lp
′
(M)
≤1

∣∣∣∑
k>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

Dk(f)(yk,ντ )(DN
k )∗(g)(y) dµ(y)

∣∣∣

= sup
‖g‖

Lp
′
(M)
≤1

∣∣∣∑
k>L

∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
Qk,ντ

Dk

( ∞∑
l=0

D̃lDl(f)
)
(yk,ντ )(DN

k )∗
( ∞∑
l=0

D̃lDl(g)
)
(y) dµ(y)

∣∣∣
. sup
‖g‖

Lp
′
(M)
≤1

∥∥∥{∑
k>L

[ ∞∑
l=0

2−|k−l|M(|Dl(f)|)
]2}1/2∥∥∥

Lp(M)

×
∥∥∥{∑

k>L

[ ∞∑
l=0

2−|k−l|M(|(Dl)
∗(g)|)

]2}1/2∥∥∥
Lp′ (M)
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. 2−L/2
∥∥∥{ ∑

l<L/2

[M(|Dl(f)|)]2
}1/2∥∥∥

Lp(M)

+
∥∥∥{ ∑

l≥L/2

[M(|Dl(f)|)]2
}1/2∥∥∥

Lp(M)
→ 0,

as L→∞.

2.4 Plancherel-Pôlya inequality on M

Using discrete Calderón formula we prove the following Plancherel-Pôlya inequalities on M.

Theorem 2.20. Let {(Dk, 2
−k)|(Dk, 2

−k) ∈ D} and {(D′k′ , 2−k
′
)|(D′k′ , 2−k

′
) ∈ D′} be the

bounded sets of elementary operators and both decompose the identity operator I, i.e. I =∑
k∈NDk =

∑
k′∈ND

′
k′. For all f ∈ C∞(M),

∥∥∥{∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

sup
z∈Qk,ντ

|Dk(f)(z)|2χQk,ντ (·)
}1/2∥∥∥

Lp(M)

≈
∥∥∥{∑

k′∈N

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

inf
z∈Qk

′,ν′
τ ′

|D′k′(f)(z)|2χQk′,ν′
τ ′

(·)
}1/2∥∥∥

Lp(M)

To prove Theorem 2.20, we need the following technical lemma:

Lemma 2.22. If r < p ≤ 1, then there exists a constant C > 0 depending only on r such that

for all ak,ντ ∈ C and x ∈M ,

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )
(1 + 2k∧k

′
ρ(x, yk,ντ ))−m

Vol
(
B(X,d)(x, 2−k∧k

′ + ρ(x, yk,ντ ))
) |ak,ντ |

≤ C · 2[(k∧k′)−k]Q2(1−1/r)
{
M
(∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (·)
)

(x)
}1/r

which M is the Hardy-Littlewood maximal function on M.

Proof. For any positive sequence {ak}k∈N and the positive number r ≤ 1, we have the following
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inequality:

∑
k∈N

ak ≤
(∑
k∈N

ark

)1/r

Thus, the left hand side of the inequality in the lemma is controlled by

{∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ττ )r
(1 + 2k∧k

′
ρ(x, yk,ντ ))−rm

Vol
(
B(X,d)(x, 2−k∧k

′ + ρ(x, yk,ντ ))
)r |ak,ντ |r}1/r

=
{∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
M
µ(Qk,ντ )r−1χQk,ντ

(z)
(1 + 2k∧k

′
ρ(x, yk,ντ ))−rm

Vol
(
B(X,d)(x, 2−k∧k

′ + ρ(x, yk,ντ ))
)r |ak,ντ |r dµ(z)

}1/r

By the estimate µ(Qk,ντ )χQk,ντ
(z) ∼ Vol

(
B(X,d)(z, 2

−k)
)
χQk,ντ

(z) for all z ∈M , we have

.
{∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
M

Vol
(
B(X,d)(z, 2

−k)
)r−1

(1 + 2k∧k
′
ρ(x, yk,ντ ))−rm

Vol
(
B(X,d)(x, 2−k∧k

′ + ρ(x, yk,ντ ))
)r |ak,ντ |rχQk,ντ (z) dµ(z)

}1/r

Moreover, by the following estimate:

Vol
(
B(X,d)(x, 2

−k∧k′ + ρ(x, yk,ντ ))
)
∼ Vol

(
B(X,d)(x, 2

−k∧k′ + ρ(x, z))
)
,

1 + 2k∧k
′
ρ(x, yk,ντ ) ∼ 1 + 2k∧k

′
ρ(x, z)

for all z ∈ Qk,ντ , we can obtain

.
{∑
τ∈Ik

N(k,τ)∑
ν=1

ˆ
M

Vol
(
B(X,d)(z, 2

−k)
)r−1

(1 + 2k∧k
′
ρ(x, z))−rm

Vol
(
B(X,d)(x, 2−k∧k

′ + ρ(x, z))
)r |ak,ντ |rχQk,ντ (z) dµ(z)

}1/r

.
{ˆ

M

Vol
(
B(X,d)(z, 2

−k)
)r−1

(1 + 2k∧k
′
ρ(x, z))−rm

Vol
(
B(X,d)(x, 2−k∧k

′ + ρ(x, z))
)r (∑

τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (z)
)
dµ(z)

}1/r

Consequently,

.
{ˆ

B(X,d)(x,2
−k∧k′ )

Vol
(
B(X,d)(z, 2

−k)
)r−1

Vol
(
B(X,d)(x, 2−k∧k

′)
)r(∑

τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (z)
)
dµ(z)
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+

∞∑
h=1

ˆ
B(X,d)(x,2

−k∧k′+h)\B(X,d)(x,2
−k∧k′+h−1)

Vol
(
B(X,d)(z, 2

−k)
)r−1

(2k∧k
′
ρ(x, z))−rm

Vol
(
B(X,d)(x, ρ(x, z))

)r
×
(∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (z)
)
dµ(z)

}1/r

Next, applying the estimate Vol
(
B(X,d)(x, r)

)
∼ Vol

(
B(X,d)(z, r)

)
for any x, z satisfying ρ(x, z) ≤

αr, we have

.
{ˆ

B(X,d)(x,2
−k∧k′ )

Vol
(
B(X,d)(x, 2

−k)
)r−1

Vol
(
B(X,d)(x, 2−k∧k

′)
)r(∑

τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (z)
)
dµ(z)

+

∞∑
h=1

ˆ
B(X,d)(x,2

−k∧k′+h)\B(X,d)(x,2
−k∧k′+h−1)

Vol
(
B(X,d)(x, 2

−k)
)r−1

(2k∧k
′
ρ(x, z))−rm

Vol
(
B(X,d)(x, ρ(x, z))

)r
×
(∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (z)
)
dµ(z)

}1/r

Also, by the estimate Vol
(
B(X,d)(x, 2

−k∧k′)
)
. 2[k−(k∧k′)]Q2Vol

(
B(X,d)(x, 2

−k)
)
, we can obtain

. Vol
(
B(X,d)(x, 2

−k)
)1−1/r

2[(k∧k′)−k]Q2(1−1/r)Vol
(
B(X,d)(x, 2

−k)
)1/r−1

×
{ 1

Vol
(
B(X,d)(x, 2−k∧k

′)
) ˆ

B(X,d)(x,2
−k∧k′ )

(∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (z)
)
dµ(z)

+
∞∑
h=1

2−h[rm−Q2(1−r)]

Vol
(
B(X,d)(x, ρ(x, z))

) ˆ
B(X,d)(x,2

−k∧k′+h)\B(X,d)(x,2
−k∧k′+h−1)

×
(∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (z)
)
dµ(z)

}1/r

. 2[(k∧k′)−k]Q2(1−1/r)
{ ∞∑
h=0

2−h[rm−Q2(1−r)]M
(∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (·)
)

(x)
}1/r

where the last inequality comes from the definition of the definitin of the Hardy-Littlewood

maximal funciton.

Finally, we can choose m large enough such that rm−Q2(1−r) > 0. Thus, by the convergence
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of the Geometric series, it follows immediately,

≤ 2[(k∧k′)−k]Q2(1−1/r)
{
M
(∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ (·)
)

(x)
}1/r

Now let’s prove Theorem 2.20.

Proof of Theorem 2.20. For any f ∈ C∞0 (M), by the discrete Calderón reproducing formula,

we have

f(x) =
∑
k′∈N

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

µ(Qk
′,ν′

τ ′ )D̃′k′(x, y
k′,ν′

τ ′ )D′k′(f)(yk
′,ν′

τ ′ )

By the orthogonality argument, ∀m > 0, ∃Cm,D,D′ , s.t.

|DkD̃
′
k′(x, y)| ≤ Cm,D,D′2−N0|k−k′| (1 + 2k∧k

′
ρ(x, y))−m

Vol
(
B(X,d)(x, 2−k∧k

′ + ρ(x, y))
)

From the above, for any k, k′ ∈ N, we have Thus,

∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

sup
z∈Qk,ντ

|Dk(f)(z)|2χQk,ντ (x)

≤ Cm,D,D′ ·
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

(∑
k′∈N

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

µ(Qk
′,ν′

τ ′ )2−N0|k−k′||D′k′(f)(yk
′,ν′

τ ′ )|

×
(1 + 2k∧k

′
ρ(yk,ντ , yk

′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k∧k′ + ρ(yk,ντ , yk

′,ν′

τ ′ ))
))2

χQk,ντ
(x)

Equivalently,

Cm,D,D′ ·
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

(∑
k′∈N

2−N0|k−k′|
∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

µ(Qk
′,ν′

τ ′ )|D′k′(f)(yk
′,ν′

τ ′ )|

×
(1 + 2k∧k

′
ρ(yk,ντ , yk

′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k∧k′ + ρ(yk,ντ , yk

′,ν′

τ ′ ))
))2

χQk,ντ
(x)
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We choose r such that r < p ≤ 1. Now apply Lemma 2.22. The above term is bounded by

Cm,D,D′ ·
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

(∑
k′∈N

2−N0|k−k′|2[(k∧k′)−k]Q2(1− 1
r

)

×
[
M
( ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

inf
z∈Qk

′,ν′
τ ′

|D′k′(f)(z)|rχQk′,ν′
τ ′

(·)
)
(yk,ντ )

] 1
r

)2
χQk,ντ

(x)

by Cauchy-Schwartz inequality,

≤ Cm,D,D′ ·
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

{[∑
k′∈N

2−N0|k−k′|2[(k∧k′)−k]Q2(1− 1
r

)
]1/2

×
[ ∑
k′∈N

2−N0|k−k′|2[(k∧k′)−k]Q2(1− 1
r

)

×
[
M
( ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

inf
z∈Qk

′,ν′
τ ′

|D′k′(f)(z)|rχQk′,ν′
τ ′

(·)
)
(yk,ντ )

] 2
r

]1/2}2
χQk,ντ

(x)

thus, choosing N0 large enough such that N0 +Q2(1− 1
r ) > 0, we have

≤ Cm,D,D′
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

∑
k′∈N

2−N0|k−k′|2[(k∧k′)−k]Q2(1− 1
r

)

×
[
M
( ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

inf
z∈Qk

′,ν′
τ ′

|D′k′(f)(z)|rχQk′,ν′
τ ′

(·)
)
(yk,ντ )

] 2
rχQk,ντ

(x)

Furthermore,

≤ Cm,D,D′
∑
k∈N

∑
k′∈N

2−N0|k−k′|2[(k∧k′)−k]Q2(1− 1
r

)

×
[
M
( ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

inf
z∈Qk

′,ν′
τ ′

|D′k′(f)(z)|rχQk′,ν′
τ ′

(·)
)
(x)
] 2
r

≤ Cm,D,D′
∑
k′∈N

[
M
( ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

inf
z∈Qk

′,ν′
τ ′

|D′k′(f)(z)|rχQk′,ν′
τ ′

(·)
)
(x)
] 2
r

Since p/r > 1 and 2/r > 1, thus by the Fefferman-Stein vector valued maximal inequality, we
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have

∥∥∥{∑
k′

[
M
( ∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

inf
z∈Qk

′,ν′
τ ′

|D′k′(f)(z)|rχQk′,ν′
τ ′

(·)
)
(·)
]2/r}r/2∥∥∥1/r

Lp/r(M)

≤
∥∥∥{∑

k′

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

inf
z∈Qk

′,ν′
τ ′

|D′k′(f)(z)|2χQk′,ν′
τ ′

(·)
}1/2∥∥∥

Lp(M)

The result is already proved.

2.5 The Littlewood-Paley-Stein square function and the Hardy spaces on M

We now introduce the Littlewood-Paley-Stein square function.

Definition 2.21. Let the bounded sets of elementary operators {(Dk, 2
−k)|(Dk, 2

−k) ∈ D} be

an approximation to the identity on M, i.e. I =
∑

k∈NDk. For f ∈ T ′, the Littlewood-Paley-

Stein function of f , is defined by

S̃(f)(x) =

{∑
k∈N

∣∣Dk(f)(x)
∣∣2}1/2

Street has proved the following result

Theorem 2.22 ( [68]). If f ∈ Lp(M), 1 < p <∞, then ‖S̃(f)‖Lp(M) ≈ ‖f‖Lp(M)

We, however, point out that the following discrete Littlewood-Paley-Stein square function

is more convenient for the study of the Hardy space Hp when p ≤ 1.

Definition 2.23. Let the bounded sets of elementary operator {(Dk, 2
−k)|(Dk, 2

−k) ∈ D} be

an approximation to the identity on M, i.e. I =
∑

k∈NDk. For f ∈ T ′, the discrete Littlewood-

Paley-Stein square function of f , is defined by

S̃d(f)(x) =
{∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

|Dk(f)(x)|2χQk,ντ (x)
}1/2

By the Plancherel-Pôlya inequalities, it’s not difficult to see that the Lp norm of these two

kinds of square functions are equivalent. More precisely, we have
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Proposition 2.6. For all f ∈ T ′, 0 < p <∞, then ‖S̃(f)‖Lp(M) ≈ ‖S̃d(f)‖Lp(M).

We are ready to introduce the Hardy space on M.

Definition 2.24.

Hp(M) = {f ∈ T ′ : S̃d ∈ Lp(M)},

and if f ∈ Hp(M), the norm of f is defined by ‖f‖Hp(M) = ‖S̃d(f)‖Lp(M).

Obviously, by the Plancherel-Pôlya inequalities inequalities, the Hardy space Hp(M) is well

defined. Before ending this section, we prove the following general result which will be used

to provide the Hp − Lp boundedness later. We also would like to mention that the proof of

this general result does not use atomic decomposition, and thus Journé’s covering lemma is not

required.

Theorem 2.25. Let 0 < p ≤ 1. If f ∈ L2(M) ∩ Hp(M), then f ∈ Lp(M) and there exists a

constant Cp > 0 which is independent of the L2 norm of f such that

‖f‖Lp(M) ≤ Cp‖f‖Hp(M).

Proof. Set

Ωi =

{
x ∈M :

[∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

|Dk(f)(x)|2χQk,ντ (x)

]1/2

> 2i

}
.

Denote

Bi =
{

(k,Qk,ντ ) : µ
(
Qk,ντ ∩ Ωi

)
>

1

2
µ
(
Qk,ντ

)
, µ
(
Qk,ντ ∩ Ωi+1

)
≤ 1

2
µ
(
Qk,ντ

)}
,

where Qk,ντ is the dyadic cubes on M. Since f ∈ L2(M), by the discrete Calderón formula, we
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have

f(x) =
∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

µ
(
Qk,ντ

)
Dk(x, y

k,ν
τ )Dk(f)(yk,ντ )

=
∑
i∈Z

∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(x, y

k,ν
τ )Dk(f)(yk,ντ ),

where the series converges in the L2 norm, and hence almost everywhere.

We claim

∥∥∥∥∥ ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(·, yk,ντ )Dk(f)(yk,ντ )

∥∥∥∥∥
p

Lp(M)

≤ C2ipµ
(
Ωi

)
, (2.7)

which, together with the fact 0 < p ≤ 1, yields

‖f‖pLp(M) ≤ C
∑
i∈Z

2ipµ
(
Ωi

)
≤ C‖f‖pHp(M).

Thus, it suffices to verify claim (2.7).

Set

Ω̃i =
{
x ∈M :M

(
χΩi

)
(x) >

1

100

}
.

By the Hölder inequality,

∥∥∥∥∥ ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(·, yk,ντ )Dk(f)(yk,ντ )

∥∥∥∥∥
p

Lp(M)

≤ µ
(
Ω̃i

)1− p
2

∥∥∥∥∥ ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(·, yk,ντ )Dk(f)(yk,ντ )

∥∥∥∥∥
p

L2(M)

+

∥∥∥∥∥ ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(·, yk,ντ )Dk(f)(yk,ντ )

∥∥∥∥∥
p

Lp(M\Ω̃i)

= κ1
i + κ2

i .
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Firstly consider κ1
i . By the duality argument, for all g ∈ L2(M) with ‖g‖L2(M) ≤ 1,

∣∣∣∣∣
〈 ∑

(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(·, yk,ντ )Dk(f)(yk,ντ ), g(·)

〉∣∣∣∣∣
≤

∣∣∣∣∣ ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(f)(yk,ντ )Dk(g)(yk,ντ )

∣∣∣∣∣
≤

( ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
|Dk(f)(yk,ντ )|2

)1/2

×

( ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
|Dk(g)(yk,ντ )|2

)1/2

.

Note that

( ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
|Dk(g)(yk,ντ )|2

)1/2

≤

( ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)∣∣∣ inf
z∈Qk,ντ

M
(
Dk(g)

)
(z)
∣∣∣2χQk,ντ (x)

)1/2

≤

(∑
k∈N

ˆ
M

∣∣M(Dk(g)
)
(x)
∣∣2 dµ(x)

)1/2

≤ C‖g‖L2(M).

This implies that

∥∥∥∥∥ ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(·, yk,ντ )Dk(f)(yk,ντ )

∥∥∥∥∥
L2(M)

≤ C

( ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
|Dk(f)(yk,ντ )|2

)1/2

.

Note also that

C22iµ
(
Ωi

)
≥
ˆ

Ω̃i\Ωi+1

∣∣∣∣∣
{∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

|Dk(f)(x)|2χQk,ντ (x)

}∣∣∣∣∣ dµ(x)

≥
∑

(k,Qk,ντ )∈Bi

|Dk(f)(yk,ντ )|2µ
(
Qk,ντ ∩ (Ω̃i\Ωi+1)

)
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≥ 1

2

∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
|Dk(f)(yk,ντ )|2

where the fact that µ
(
Qk,ντ ∩ (Ω̃i\Ωi+1)

)
> 1

2Aµ
(
Qk,ντ

)
when (k,Qk,ντ ) ∈ Bi is used in the last

inequality. Also note that µ
(
Ω̃i

)
≤ Cµ

(
Ωi

)
. Hence, we can obtain

κ1
i ≤ Cµ

(
Ω̃i

)1− p
2 · 2ipµ

(
Ω̃i

) p
2 ≤ C2ipµ

(
Ωi

)

Next, consider κ2
i . Note that if (k,Qk,ντ ) ∈ Bi, then Qk,ντ ⊂ Ω̃i. Fix k ∈ N, we have

∣∣∣∣∣ ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(x, y

k,ν
τ )Dk(f)(yk,ντ )

∣∣∣∣∣
≤ C

∑
τ∈Ik

N(k,τ)∑
ν=1

µ
(
Qk,ντ

) (
1 + 2kρ(x, yk,ντ )

)−m
Vol
(
B(X,d)(x, 2−k + ρ(x, yk,ντ ))

)∣∣Dk(f)(yk,ντ )
∣∣

≤ C

{
M

(∑
τ∈Ik

N(k,τ)∑
ν=1

∣∣Dk(f)(yk,ντ )
∣∣rχQk,ντ ∩Ω̃i

(·)

)
(x)

}1/r

,

where C is independent of f . Consequently, by choosing r small enough such that p/r > 1, also

applying the Fefferman-Stein vector valued maximal inequality, we have

ˆ
M\Ω̃i

∣∣∣∣∣ ∑
(k,Qk,ντ )∈Bi

µ
(
Qk,ντ

)
Dk(x, y

k,ν
τ )Dk(f)(yk,ντ )

∣∣∣∣∣
p

dµ(x)

≤ C
ˆ
M\Ω̃i

∣∣∣∣∣∑
k∈N

{
M

(∑
τ∈Ik

N(k,τ)∑
ν=1

∣∣Dk(f)(yk,ντ )
∣∣rχQk,ντ ∩Ω̃i

(·)

)
(x)

}1/r∣∣∣∣∣
p

dµ(x)

≤ C
ˆ
M\Ω̃i

∣∣∣∣∣∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

∣∣Dk(f)(yk,ντ )
∣∣χQk,ντ ∩Ω̃i

(x)

∣∣∣∣∣
p

dµ(x) = 0.

The claim is proved and hence the boundedness follows.

We would like to point out that the subset L2(M)∩Hp(M) is dense in Hp(M). Indeed, we

have the following.
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Proposition 2.7. T is dense in Hp(M).

The proof of this proposition is similar to the proof of the Plancherel-Pôlya inequalities.

More precisely, suppose that J is any set of indexes of indices of k, τ, ν. Then we have

∥∥∥∥∥∑
J
µ
(
Qk,ντ

)
D̃k(·, yk,ντ )Dk(f)(yk,ντ )− f

∥∥∥∥∥
Hp(M)

.

∥∥∥∥∥∑
J c

µ
(
Qk,ντ

)
D̃k(·, yk,ντ )Dk(f)(yk,ντ )

∥∥∥∥∥
Hp(M)

.

∥∥∥∥∥
{∑
J c
|Dk(f)(·)|2χQk,ντ (·)

}1/2∥∥∥∥∥
Lp(M)

,

where J c is the complement of J .

2.6 Carleson measure space and duality

Let’s define CMOp(M), f ∈ T ′,

‖f‖CMOp(M) = sup
Ω

{ 1

µ(Ω)2/p−1

ˆ
Ω

∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

|Dk(f)(x)|2χI(x) dµ(x)
}1/2

<∞

where Ω ranges over all open sets in M with finite measures and where for each k, Qk,ντ range

over dyadic cubes in M.

Theorem 2.26. Let all the notation be the same as above. Let {Dk}k∈N and {D′k′}k′∈N be two

approximations to the identity on M. Then for all f ∈ CMOp(M),

sup
Ω

{ 1

µ(Ω)2/p−1

ˆ
Ω

∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

|Dk(f)(x)|2χQk,ντ (x) dµ(x)
}1/2

. sup
Ω

{ 1

µ(Ω)2/p−1

ˆ
Ω

∑
k′∈N

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

|D′k′(f)(x)|2χQk′,ν′
τ ′

(x) dµ(x)
}1/2
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Proof. For any f ∈ CMOp(M), by the discrete reproducing formula,

sup
z∈Qk,ντ

|Dk(f)(z)|2

.
∑
k′∈N

2−|k−k
′|N0

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

µ(Qk
′,ν′

τ ′ )
(1 + 2k∧k

′
ρ(yk,ντ , yk

′,ν′

τ ′ ))−m

Vol
(
B(X,d)(y

k,ν
τ , 2−k∧k′ + ρ(yk,ντ , yk

′,ν′

τ ′ )
) |D′k′(f)(yk

′,ν′

τ ′ )|2

Note that 2−|k−k
′| ≈ diam(Qk,ντ )

diam(Qk
′,ν′
τ ′ )

∧ diam(Qk
′,ν′
τ ′ )

diam(Qk,ντ )
, 2−(k∧k′) ≈ diam(Qk,ντ ) ∨ diam(Qk

′,ν′

τ ′ ) and

ρ(yk,ντ , yk
′,ν′

τ ′ ) ≥ dist(Qk,ντ ,Qk
′,ν′

τ ′ ). Hence,

sup
z∈Qk,ντ

|Dk(f)(z)|2

.
∑
k′∈N

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

µ(Qk
′,ν′

τ ′ )
[ diam(Qk,ντ )

diam(Qk
′,ν′

τ ′ )
∧

diam(Qk
′,ν′

τ ′ )

diam(Qk,ντ )

]N0

×
[1 + (diam(Qk,ντ ) ∨ diam(Qk

′,ν′

τ ′ ))−1dist(Qk,ντ ,Qk
′,ν′

τ ′ )]−m

Vol
(
B(X,d)(y

k,ν
τ , diam(Qk,ντ ) ∨ diam(Qk

′,ν′

τ ′ ) + dist(Qk,ντ ,Qk
′,ν′

τ ′ )
) |D′k′(f)(yk

′,ν′

τ ′ )|2

Applying the above estimate with any arbitrary point yk
′,ν′

τ ′ in Qk
′,ν′

τ ′ , and the fact ab = (a ∨

b)2
(
a
b ∧

b
a

)
for any a, b > 0, we obtain that for any open set Ω ⊂M with finite measure,

1

µ(Ω)
2
p
−1

∑
k∈N

∑
Qk,ντ ⊂Ω

µ(Qk,ντ ) sup
z∈Qk,ντ

|Dk(f)(z)|2

.
1

µ(Ω)
2
p
−1

∑
k∈N

∑
Qk,ντ ⊂Ω

∑
k′∈N

∑
Qk
′,ν′
τ ′

[ µ(Qk,ντ )

µ(Qk
′,ν′

τ ′ )
∧
µ(Qk

′,ν′

τ ′ )

µ(Qk,ντ )

][ diam(Qk,ντ )

diam(Qk
′,ν′

τ ′ )
∧

diam(Qk
′,ν′

τ ′ )

diam(Qk,ντ )

]N0

×
[
µ(Qk,ντ ) ∨ µ(Qk

′,ν′

τ ′ )
] µ(Qk,ντ ) ∨ µ(Qk

′,ν′

τ ′ )

Vol
(
B(X,d)(y

k,ν
τ ,diam(Qk,ντ ) ∨ diam(Qk

′,ν′

τ ′ ) + dist(Qk,ντ ,Qk
′,ν′

τ ′ )
)

×
inf

z∈Qk
′,ν′
τ ′
|D′k′(f)(yk

′,ν′

τ ′ )|2

[1 + (diam(Qk,ντ ) ∨ diam(Qk
′,ν′

τ ′ ))−1dist(Qk,ντ ,Qk
′,ν′

τ ′ )]m

For convenience, set

Q = Qk,ντ , Q′ = Qk
′,ν′

τ ′ ,
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r(Q,Q′) =
[ µ(Qk,ντ )

µ(Qk
′,ν′

τ ′ )
∧
µ(Qk

′,ν′

τ ′ )

µ(Qk,ντ )

][ diam(Qk,ντ )

diam(Qk
′,ν′

τ ′ )
∧

diam(Qk
′,ν′

τ ′ )

diam(Qk,ντ )

]N0

,

v(Q,Q′) = µ(Qk,ντ ) ∨ µ(Qk
′,ν′

τ ′ ),

P (Q,Q′) =

[
µ(Qk,ντ ) ∨ µ(Qk

′,ν′

τ ′ )
]
[1 + (diam(Qk,ντ ) ∨ diam(Qk

′,ν′

τ ′ ))−1dist(Qk,ντ ,Qk
′,ν′

τ ′ )]−m

Vol
(
B(X,d)(y

k,ν
τ , diam(Qk,ντ ) ∨ diam(Qk

′,ν′

τ ′ ) + dist(Qk,ντ ,Qk
′,ν′

τ ′ )
) ,

SQ = sup
z∈Qk,ντ

|Dk(f)(z)|2,

TQ′ = inf
z∈Qk

′,ν′
τ ′

|D′k′(f)(z)|2.

Thus, it can be rewritten as

1

µ(Ω)
2
p
−1

∑
Q⊂Ω

µ(Q)SQ .
1

µ(Ω)
2
p
−1

∑
Q⊂Ω

∑
Q′

r(Q,Q′)v(Q,Q′)P (Q,Q′)P (Q,Q′)TQ′ (2.8)

To complete the proof of the theorem, we need to prove that the right-hand side can be

controlled by

sup
Ω

1

µ(Ω)
2
p
−1

∑
Q′⊂Ω

µ(Q′)TQ′ ,

where Ω ranges over all open sets in M with finite measures.

Similar as before, we point out that the estimates of v(Q,Q′) and P (Q,Q′) are based on

the geometrical properties between Q and Q′. More precisely, when the difference of the sizes

and the distance of Q and Q′ get larger, then v(Q,Q′) and P (Q,Q′) then become smaller,

respectively. Therefore, to estimate v(Q,Q′) and P (Q,Q′), for each Q ⊂ Ω, we group all subsets

Q′ in M according to the distances and sizes of Q and Q′ as follows:

Define

Ω0 =:
⋃
Q⊂Ω

3Q.
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Then, for any Q ⊂ Ω, let

A0(Q) = {Q′ : dist(Q,Q′) ≤ diam(Q) ∨ diam(Q′)};

Aj(Q) = {Q′ : 2j−1
[
diam(Q) ∨ diam(Q′)

]
< dist(Q,Q′) ≤ 2j

[
diam(Q) ∨ diam(Q′)

]
}.

where j ≥ 1.

Note that for each subset Q′, we have limj→∞ 2jQ′ = M . Hence, for any subset Q ⊂ Ω,

there exists some j such that Q′ ∈ Aj(Q).

Consequently, we have

≤ 1

µ(Ω)
2
p
−1

∑
Q⊂Ω

∑
Q′∈A0

r(Q,Q′)v(Q,Q′)P (Q,Q′)P (Q,Q′)TQ′

+
∑
j≥1

1

µ(Ω)
2
p
−1

∑
Q⊂Ω

∑
Q′∈Aj

r(Q,Q′)v(Q,Q′)P (Q,Q′)P (Q,Q′)TQ′

=: I + II

We first consider I. Define

B0 = {Q′ : 3Q′ ∩ Ω0 6= 0}.

Then we claim that

I ≤ 1

µ(Ω)
2
p
−1

∑
Q′∈B0

∑
{Q:Q⊂Ω,
Q′∈A0(Q)}

r(Q,Q′)v(Q,Q′)P (Q,Q′)P (Q,Q′)TQ′

In fact, for each Q′ /∈ B0, according to the definition of B0, we have 3Q′ ∩ Ω0 = ∅. Hence,

for any Q ⊂ Ω, we have 3Q′ ∩ 3Q = ∅, which implies that Q′ /∈ A0(Q). Therefore, we have⋃
Q⊂ΩA0(Q) ⊂ B0. As a consequence, we can obtain that claim holds.

We make a further decomposition of B0. First, for each h ≥ 1, we define F0
h = {Q′ :
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µ(Q′ ∩ Ω0) > 1
2h
µ(3Q′)}, I0

h = F0
h\F0

h−1, i.e. I0
h = {Q′ : 1

2h
µ(3Q′) ≤ µ(Q′ ∩ Ω0) ≤ 1

2h−1µ(3Q′)}

and F0
0 = ∅, and Ω0

h =
⋃
Q′∈I0

h
Q′. From the above definitions, we have

B0 =
⋃
h≥1

I0
h.

Therefore, can be rewritten as

I ≤ 1

µ(Ω)
2
p
−1

∑
h≥1

∑
Q′∈I0

h

∑
{Q:Q⊂Ω,
Q′∈A0(Q)}

r(Q,Q′)v(Q,Q′)P (Q,Q′)P (Q,Q′)TQ′ .

From the definition of I0
h we can see that for any Q′ and any Q satisfying Q′ ∈ A0(Q), we have

P (Q,Q′) ≤ 1. Hence, to estimate (2.6), we only need to consider the following:

∑
{Q:Q⊂Ω,
Q′∈A0(Q)}

r(Q,Q′)v(Q,Q′).

In what follows, we use a simple geometrical argument, which is a generalization of Chang

and R. Fefferman’s idea in [2].

Note that Q′ ∈ A0(Q) we have 3Q ∩ 3Q′ 6= ∅. We split into two cases:

Case 1. diam(Q′) ≥ diam(Q). First, it is easy to se that µ(Q) . µ(3Q ∩ 3Q′). So we have

µ(Q) . µ(3Q ∩ 3Q′) . µ(3Q′ ∩ Ω0) .
1

2h−1µ(3Q′)
,

which yields that 2h−1 . µ(3Q′)/µ(Q), i.e. 2hµ(Q) . µ(Q′). Since Q and Q′ are all with measure

equivalent to 2−a for some a ∈ Z and 2h2nQ2µ(Q) ≈ µ(Q′) for some nonnegative integer n. Also,

for each fixed n, the numbers of such Q’s must be . 2nQ2 .

Denote by zQ and xQ′ the center of Q and Q′, respectively. Since 3Q∩3Q′ 6= ∅, we have that

ρ(zQ, zQ′) ≤ 6diam(Q′), and hence Vol
(
B(X,d)(zQ, 6diam(Q′)

)
≈ Vol

(
B(X,d)(zQ′ , 6diam(Q′)

)
≈
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µ(6Q) ≈ µ(6Q′). Thus,

µ(Q′)

µ(Q)
≈

Vol
(
B(X,d)(zQ, 6diam(Q′)

)
Vol
(
B(X,d)(zQ, 6diam(Q)

) .
(diam(Q′)

diam(Q)

)Q2

It follows that for each fix n > 0,

diam(Q)

diam(Q)
.
( µ(Q)

µ(Q′)

)1/Q2

. 2−h/Q2−n.

Thus

∑
Q∈Case 1

r(Q,Q′)v(Q,Q′)

=
∑

Q∈Case 1

µ(Q)

µ(Q′)

( diam(Q)

diam(Q′)

)N0

µ(Q′)

.
∑
n≥0

2−(h+nQ2)2−N0[n+h/Q2]µ(Q′)

. 2−h(1+N0/Q2)µ(Q′)

Case 2. diam(Q′) ≤ diam(Q). We have

µ(Q′) . µ(3Q′ ∩ Ω0) ≤ 1

2h−1
µ(3Q′)

hence there exists a constant h0 > 0 independent of Q and Q′ such that 0 ≤ h ≤ h0. We obtain

that µ(Q) ≈ 2h+nQ2µ(Q′) for some n > 0 and that for each fixed n, the number of such Q′’s is

less than a constant independent of n. Since 3Q ∩ 3Q′ 6= ∅, we have

µ(Q)

µ(Q′)
.
( diam(Q)

diam(Q′)

)Q2

.
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Thus,

diam(Q′)

diam(Q)
.
(µ(Q′)

µ(Q)

) 1
Q2 . 2

− h
Q2 2−n

Therefore,

∑
Q∈Case 2

r(Q,Q′)v(Q,Q′) .
∑
n≥0

2
− h
Q2 2−nN0µ(Q′) . 2

−hN0
Q2 µ(Q′).

Now let us turn to I1:

I =
1

µ(Ω)
2
p
−1

∑
h≥1

∑
Q′∈I0

h

( ∑
Q∈Case 1

+
∑

Q∈Case 2

)
× r(Q,Q′)v(Q,Q′)TQ′

= I2 + I2.

Obviously, combing the fact that µ(Ω0
h) . h2hµ(Ω) for h > 1, µ(Ω0

0) . µ(Ω), we have

I1 .
1

µ(Ω)
2
p
−1

∑
h≥1

2
−h(1+

N0
Q2

)
µ(Ω0

h)
2
p
−1 1

µ(Ω0
h)

2
p
−1

∑
Q′⊂Ω0

h

µ(Q′)TQ′

.
1

µ(Ω)
2
p
−1

∑
h≥1

2
−h(1+

N0
Q2

)
(h2h)

2
p
−1
µ(Ω)

2
p
−1 × sup

Ω

1

µ(Ω)
2
p
−1

∑
Q′⊂Ω

µ(Q′)TQ′

. sup
Ω

1

µ(Ω)
2
p
−1

∑
Q′⊂Ω

µ(Q′)TQ′ .

For I2, observing that

I2 =
1

µ(Ω)
2
p
−1

h0∑
h=0

∑
Q′∈I0

h

∑
Q∈Case 2

r(Q,Q′)v(Q,Q′)TQ′ ,

we have

I2 .
1

µ(Ω)
2
p
−1

h0∑
h=0

2
−hN0

Q2 µ(Ω0
h)

2
p
−1 1

µ(Ω0
h)

2
p
−1

∑
Q′⊂Ω0

h

µ(Q′)TQ′
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.
1

µ(Q)
2
p
−1

h0∑
h=0

2
−hN0

Q2 h
2
p
−1

2
h( 2
p
−1)

µ(Ω)
2
p
−1 × sup

Ω

∑
Q′⊂Ω

µ(Q′)TQ′

. sup
Ω

1

µ(Ω)
2
p
−1

∑
Q′⊂Ω

µ(Q′)TQ′

Similarly, we can deal with II. This completes the proof of Theorem 2.26.

Thus, the space CMP p is well defined, and moreover, we have the following duality results.

Theorem 2.27.
(
Hp(M)

)′
= CMOp(M),

(
H1(M)

)′
= CMO1(M) = BMO.

To show that the dual of Hp(M) is CMOp(M) for 0 < p ≤ 1, we first introduce sequence

spaces sp and cp as follows.

Definition 2.28. Let χ̃Q(x) = µ(Q)−1/2χQ(x) for any dyadic cube Q ⊂M . For 0 < p ≤ 1, the

sequence space sp is defined by the collection of all complex-valued sequences s = {sR}R such

that

‖s‖sp =
∥∥∥{∑

Q

(
|sQ| · χ̃Q(x)

)2}1/2∥∥∥
Lp

(2.9)

Similarly, for 0 < p ≤ 1, the sequence space cp is defined by the collection of all complex-

valued sequences t = {tQ}Q such that

‖t‖cp = sup
Ω

( 1

µ(Ω)2/p−1

∑
Q⊆Ω

|tQ|2
)1/2

(2.10)

where the sup is taken over all open sets Ω ⊂M with finite measure and R ranges over all the

dyadic rectangles in M.

The duality theorem of these sequence spaces is the following:

Theorem 2.29. (sp)′ = cp.
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Proof. First, we prove that for all t ∈ cp, if

L(s) =
∑
Q

sQ · t̄Q, ∀ s ∈ sp,

then |L(s)| . ‖s‖sp‖t‖cp . To see this, set

Ωk = {x ∈M : [
∑
Q

(|sQ|χ̃Q(x))2]1/2 > 2k},

Bk = {Q : µ(Ωk ∩Q) >
1

2A
µ(Q), µ(Ωk+1 ∩Q) ≤ 1

2A
µ(Q)}

and

Ω̃k = {x ∈M : M(χΩk) >
1

2A
},

where M is the Hardy-Littlewood maximal function on M. By the Hölder inequality,

|L(s)| ≤
(∑

k

( ∑
Q∈Bk

|sQ|2
) p

2
( ∑
Q∈Bk

|tQ|2
) p

2

) 1
p

≤
(∑

k

µ(Ω̃k)
1− p

2
( ∑
Q∈Bk

|sQ|2
) p

2
( 1

µ(Ω̃k)
2
p
−1

∑
Q⊂Ω̃k

|tQ|2
) p

2

) 1
p

≤
(∑

k

µ(Ω̃k)
1− p

2
( ∑
Q∈Bk

|sQ|2
) p

2

) 1
p ‖t‖cp , (2.11)

where we have used the fact that if Q ∈ Bk, then Q is contained in Ω̃k. Observing that

ˆ
Ω̃k\Ωk+1

∑
Q∈Bk

(
|sQ|χ̃Q(x)

)2
dx ≤ 22(k+1)µ(Ω̃k\Ωk+1) ≤ C22kµ(Ωk)

and

ˆ
Ω̃k\Ωk+1

∑
Q∈Bk

(
|sQ|χ̃Q(x)

)2
dx ≥

∑
Q∈Bk

|sQ|2µ(Q)−1µ(Ω̃k\Ωk+1 ∩Q)
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≥
∑
Q∈Bk

|sQ|2µ(Q)−1 1

2A
µ(Q)

∑
Q∈Bk

|sQ|2,

we obtain
(∑

Q∈Bk |sQ|
2
) p

2 ≤ 2kpµ(Ωk)
p
2 . Substituting this back into (2.11) and noting µ(Ω̃k) .

µ(Ωk) yield that |L(s)| . ‖s‖sp‖t‖cp .

Conversely, we need to verify that for any L ∈ (sp)′, there exists t ∈ cp with ‖t‖cp . ‖L‖

such that for all s ∈ sp, L(s) =
∑

Q sQt̄Q.

For any L ∈ (sp)′, then L(s) =
∑

Q sQt̄Q. It suffices to show that ‖t‖cp ≤ ‖L‖. To do this,

for any open set Ω ⊂M with finite measure, let µ̄ be a new measure such that µ̄(Q) = µ(Q)

µ(Ω)
p
2−1

when Q ⊂ Ω and µ̄(Q) = 0 when Q 6⊆ Ω. Also, let l2(µ̄) be a sequence space such that when

{sQ} ∈ l2(µ̄),
(∑

Q⊂Ω |sQ|2
µ(Q)

µ(Ω)
p
2−1

)1/2
<∞. Observe

{ 1

µ(Ω)
p
2
−1

∑
Q⊂Ω

|tQ|2
}1/2

=
∥∥µ(Q)−1/2 · |tQ|

∥∥
l2(µ̄)

= sup
s:‖s‖l2(µ̄)≤1

∣∣∣ ∑
Q⊆Ω

(tQµ(Q)−1/2) · s̄Q ·
µ(Q)

µ(Ω)
p
2
−1

∣∣∣
≤ sup

s:‖s‖l2(µ̄)≤1

∣∣∣L(χQ⊆Ω(Q) ·
µ(Q)1/2|sQ|
µ(Ω)

p
2
−1

)∣∣∣
≤ sup

s:‖s‖l2(µ̄)≤1
‖L‖ ·

∥∥∥χQ⊆Ω(Q) ·
µ(Q)1/2|sQ|
µ(Ω)

p
2
−1

∥∥∥
sp
.

By (2.9) and the Hölder, we have

∥∥∥χQ⊆Ω(Q) ·
µ(Q)1/2|sQ|
µ(Ω)

p
2
−1

∥∥∥
sp
≤
( ∑
Q⊆Ω

|sQ|2
µ(Q)

µ(Ω)
p
2
−1

)1/2
.

Therefore,

‖t‖cp ≤ sup
s:‖s‖l2(µ̄)≤1

‖L‖ · ‖s‖l2(µ̄) ≤ ‖L‖.
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Definition 2.30. For any f ∈ T , define the lifting operator S by

{(Sf)Q} =
{
µ(Q)

1
2Dk(f)(zQ)

}
,

where Q is ‘dyadic cube’ in M, with length l(Q) = 2−k−j , and zQ is the center of Q, respectively.

Definition 2.31. For any complex-valued sequence λ = {λQ}, where Q are all dyadic cubes in

M. Define the projection operator T by

T (λQ)(x) =
∑
k∈N

∑
Q

µ(Q)1/2D̃k(x, zQ) · λQ,

By discrete Calderón formula, we immediately obtain

T ◦ S(f)(x) =
∑
k∈N

∑
Q

µ(Q)D̃k(x, zQ)Dk(f)(zQ) = f(x).

This means that T ◦ S is the identity operator. Moreover,

Proposition 2.8. ∀f ∈ Hp(M), we have

‖(Sf)Q‖sp . ‖f‖Hp(M).

Conversely, for any s ∈ cp,

‖T (sQ)‖Hp(M) ≤ ‖sQ‖sp

Also,

Proposition 2.9. ∀f ∈ CMOp(M),

‖(Sf)Q‖cp . ‖f‖CMOp(M)
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Conversely, for any t ∈ cp,

‖T (tQ)‖CMOp(M) ≤ ‖tQ‖cp

Proof. For 0 < p ≤ 1 and any g ∈ B and f ∈ CMOp(M), by the discrete Calderón reproducing

formula, for any g ∈ T ,

〈f, g〉 = 〈
∑
k

∑
Q

µ(Q)D̃k(·, zQ)Dk(f)(zQ), g〉

=
∑
Q

SQ(f)S̃Q(g),

where S̃Q(g) = {µ(Q)
1
2 D̃k(f)(zQ)}k,Q.

By Theorem 2.20 and Definition 2.28, we obtain

|〈f, g〉| ≤ |〈S(f), S̃(g)〉| . ‖f‖CMOp(M)‖g‖Hp(M).

Since T (n0,m) is dense in Hp(M), it follows that CMOp(M) ⊂
(
Hp(M)

)′
.

Conversely, suppose l ∈
(
Hp(M)

)′
. Then l1 = l ◦ T ∈ (sp)′ by Proposition 2.8. So by the

duality argument, there exists t ∈ cp such that l1(s) = 〈t, s〉 for all s ∈ sp, and ‖t‖cp ≈ ‖l1‖ . ‖l‖,

since T is bounded. We have l1 ◦ S = l ◦ T ◦ S = l, hence

l(g) = l ◦ T (S(g)) = 〈t, S(g)〉 = 〈T (t), g〉.

By the definition of sp and cp, also applying the min-max comparison theorem, we obtain that

‖T (t)‖CMOp(M) . ‖t‖cp . ‖l‖.

Hence,
(
Hp(M)

)′ ⊆ CMOp(M).
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As a consequence of the facts that
(
h1(M)

)′
= BMO(M), H1(M) ∩ L2 ⊂ L1(M) and

H1(M) ∩ L2 is dense in H1(M), we obtain

Proposition 2.10. L∞(M) ⊂ BMO(M).

2.7 The Boundedness of singular integral operator on M

An important model case for a manifold endowed with vector fields satisfying Hörmander’s

condition comes from that of a (stratified) nilpotent Lie group. Let g be a Lie algebra. Define

g(0) = g and recursively, g(k+1) = [g, g(k)].

Definition 2.32. We say g is nilpotent of step k, if g(k+1) = {0}. We say g is nilpotent if it’s

nilpotent of step k for some k.

We say G is a nilpotent Lie group, whose Lie algebra is nilpotent, if G is Lie group. It is

well known that if g is a nilpotent Lie algebra and if G is the corresponding connected, simply

connected, Lie group, then the exponential map exp : g→ G is a diffeomorphism. In particular,

as a manifold G ∼= RdiamG.

Definition 2.33. We say a nilpotent Lie algebra g is graded if g = ⊕νµ=1Vµ with [Vµ1 , Vµ2 ] =

Vµ1+µ2 , where we take Vµ = {0} for µ > ν. We say a connected, simply connected, nilpotent

Lie group is a graded Lie group if its Lie algebra is graded.

Definition 2.34. We say a nilpotent Lie algebra g = ⊕νµ=1Vµ is stratified if [V1, Vµ] = Vµ+1.

We say a connected, simply connected, nilpotent Lie group is a stratified Lie group if its Lie

algebra is stratified.

Suppose g is stratified, and suppose W1, . . . ,Wr are a basis for V1. We may think of

W1, . . . ,Wr are left invariant vector fields on G. By the definition of a stratified Lie group,

W1, . . . ,Wr satisfy Hörmander’s condition. This is an important model case for general vector

fields which satisfy Hörmander’s condition.

Definition 2.35. Let g be a nilpotent Lie algebra. A family of dilations δt : g → g, t > 0 is

a family of automorphism defined by δtXj = tdjXj , when X1, . . . , Xdiam g is a basis for g, and

0 6= dj ∈ (0,∞).
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Definition 2.36. A connected, simply connected, nilpotent Lie group whose Lie algebra is

endowed with a family of dilations is called a homogeneous Lie group.

Definition 2.37. Let G be a homogeneous group. A homogeneous norm | · | : G→ [0,∞) is a

continuous function, smooth away from the identity, whose |x| = 0 ⇔ x = 0, and |δtx| = t|x|

for t > 0.

With a fixed choice of homogeneous norm on a homogeneous group G, there is a natural left

invariant metric on G, namely the distance between x, y ∈ G is given by ρ(x, y) := |x−1y|. This

metric is also homogeneous: ρ(δtx, δty) = tρ(x, y). For r > 0, x ∈ G, let B(x, r) = {y|ρ(x, y) <

r}.

Fix a graded group G, g = ⊕νµ=1Vµ, and let q = dimG; decompose Rq = RdimV1 × RdimVν .

For r > 0 we define dilations on Rq by r(t1, . . . , rν) = (rt1, r
2t2, . . . , r

νtν). Notice, if we identify

G ∼= g with Rq (as a manifold) by identifying Vµ with RdimVµ , these are the dilations given by

δr, though now we have suppressed the δ. With these dilations d(rt)/dt = rQ, where d(rt)/dt

denotes the Radon-Nikodym derivative, and Q =
∑ν

µ=1 µdimVµ is the so-called “homogeneous

dimension”. Furthermore, we use this identification with G to define |t| for t ∈ Rq, where

| · | denotes a homogeneous norm. With the above notations, we have |rx| = r|x|, for r > 0.

Finally, in the above identification, Lebesgue measure on Rq corresponds with the two-sided

Haar measure on G. Henceforth, integration on G will always be with respect to this measure.

Using these dilations, we can generalize the Calderón-Zygmund kernels of Definition 2.8. For

a multi-index α = (α1, . . . , αν) ∈ Nq = NdiamV1 ×· · ·×NdiamVν , we define deg(α) =
∑ν

µ=1 µ|αµ|,

where |αµ| denotes the usual length of the multi-index, i.e. `1 norm.

Definition 2.38. K ∈ C∞0 (Rq)′ is a Calderón-Zygmund kernel of order s ∈ (−Q,∞) if

(i) (Growth Condition) For every multi-index α,
∣∣∂αt K(t)

∣∣ ≤ Cα|t|−Q−s−deg(α);

(ii) (Cancellation Condition) For every bounded set B ⊂ C∞0 (Rq), we assume

sup
φ∈B
R>0

R−s

∣∣∣∣∣
ˆ
K(t)φ(Rt) dt

∣∣∣∣∣ <∞
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Given K ∈ C∞0 (Rq)′ = C∞0 (G)′ we may define a left invariant operator Op(K) : C∞0 (G)→

C∞(G) by Op(K)f(x) = f ∗K(x) =
´
f(xy−1)K(y) dy. For a funciton f ∈ C∞(Rq) and R > 0,

we define f (R)(t) = RQf(Rt), where Rt is defined by the above dilations, and therefore f (R) is

defined to preserve the L1 norm:
´
f (R)(t) dt =

´
f(t) dt.

Theorem 2.39 ( [68]). Fix s ∈ (−Q,∞), and let K ∈ S0(Rq)′. The following are equivalent:

(i) K is a Calderón-Zygmund kernel of order s.

(ii) Op(K) : S0 → S0(Rq) and for any bounded set B ⊂ S0(Rq), the set

{
g ∈ S0(Rq)|∃R > 0, f ∈ B, g(R) = R−sOp(K)f (R)

}
⊂ S0(Rq)

is a bounded set.

(iii) For each j ∈ Z, there is a function ςj ∈ S0(Rq) with {ςj |j ∈ Z} ⊂ S0(Rq) a bounded set

and such that

K =
∑
j∈Z

2jsς
(2j)
j .

The above sum converges in distribution, and the equality is taken in the sense of elements of

S0(Rq)′.

Furthermore, (ii) and (iii) are equivalent for any s ∈ R.

Next, we need modify the construction of vector fields (X, d) a little. Suppose W1, . . . ,Wr

satisfy Hörmander’s condition of order k, and let nk,r be free nilpotent Lie algebra of step k on

r generators, and we denote Ŵ1, . . . , Ŵr r generators for nk,r. As in the previous section, let

X̂1, . . . , X̂q be a basis for nk,r with

X̂j = ad
(
Ŵ
lj1

)
ad
(
Ŵ
lj2

)
· · · ad

(
Ŵ
ljdj−1

)
Ŵ
ljdj

for some choice of lj1, . . . , l
j
dj

. Note that X̂j is homogeneous of degree dj . On M, we define the
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corresponding vector fields

Xj = ad
(
W
lj1

)
ad
(
W
lj2

)
· · · ad

(
W
ljdj−1

)
W
ljdj

and we assign to Xj the formal degree dj . Because nk,r is the free nilpotent Lie group of step

k on r generators. It follows that every commutator of W1, . . . ,Wr of order ≤ k can be written

as a linear combination, with constants coefficient of X1, . . . , Xq. Thus, X1, . . . , Xq span the

tangent space at any point of M, since W1, . . . ,Wr satisfy Hörmander’s condition of order k.

We let (X, d) = (X1, d1), . . . , (Xq, dq).

On Rq, we define dilations as in the previous section, for δ > 0, δ(t1, . . . , tq) = (δd1t1, . . . , δ
dq tq).

Let K ∈ C∞0 (Rq) be a Calderón-Zygmund kernel of order s > −Q as in Definition 2.38. Consider

the operator T : C∞(M)→ C∞(M). Consider the operator T :

Tf(x) =

ˆ
f(et·Xx)K(t) dt

In the proof, we need the following two results. The first one is proved by B.Street [68].

Theorem 2.40 ( [68]). If K is supported on a sufficiently small neighborhood of 0, then T is

a Calerón-Zygmund operator of order s, as in Definition 2.38.

Proposition 2.11. Given two bounded set of elementary operator E1 and E2, ∀m,N , ∃C =

C(m,N, E1, E2), s.t. ∀(Dj .2
−j) ∈ E1 and (Dk, 2

−k) ∈ E2, we have

|DjTDk(x, y)| ≤ C2−N |j−k|
(1 + 2j∧kρ(x, y))−m

Vol(B(X,d)(x, 2−j∧k(1 + 2j∧kρ(x, y)))

We assume the proposition for the moment and now show the Hp boundedness of T as

follows.
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Theorem 2.41. For 0 < p ≤ 1 and s = 0, we have

‖Tf‖Hp ≤ C‖f‖Hp

Proof. For f ∈ L2 ∩Hp, we have

‖Tf‖Hp .

∥∥∥∥∥{∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

|Dk(Tf)(yk,ντ )|2χQk,ντ (·)
} 1

2

∥∥∥∥∥
Lp

Applying the L2 boundedness of T and the discrete Calderón reproducing formula,

.

∥∥∥∥∥
{∑
k∈N

∑
τ∈Ik

N(k,τ)∑
ν=1

∣∣∣Dk

(
T
∑
k′∈N

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

µ(Qk
′,τ ′

τ ′ )

×Dk′(·, yk
′,ν′

τ ′ )Dk′(f)(yk
′,ν′

τ ′ )
)

(yk,ντ )
∣∣∣2χQk,ντ (·)

} 1
2
∥∥∥∥∥
Lp

According to the above proposition and the similar procedure while proving the Plancherel-

Pôlya inequality, we can obtain

.

∥∥∥∥∥
{∑
k′∈N

∑
τ ′∈Ik′

N(k′,τ ′)∑
ν′=1

∣∣∣Dk′(f)(yk
′,ν′

τ ′ )
∣∣∣2χQk′,ν′

τ ′
(·)

} 1
2
∥∥∥∥∥
Lp

. ‖f‖Hp

We now return to the proof of Proposition 2.11.

Proof. Note that T is the Calderón-Zygmund operator of order 0. Hence, by the characterization

in Definition 2.39, {(TDk, 2
−k)|Dk ∈ E2} is also a bounded set of elementary operators.

Furthermore, note that for every N , the set

{(2N |j−k|DjTDk, 2
−j∧k), (2N |j−k|TDkDj , 2

−j∧k)|(Dj .2
−j) ∈ E1, (Dk, 2

−k) ∈ E2}

is a bounded set of pre-elementary operators.
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Therefore, by the definition of pre-elementary operators, we have

∣∣∣(2−j∧kWx

)α(
2−j∧kWy

)β(
2N |j−k|DjTDk

)
(x, y)

∣∣∣ . (
1 + 2j∧kρ(x, y)

)−m
Vol
(
B(X,d)(x, 2−j∧k + ρ(x, y))

)
or equivalently,

∣∣∣(2−j∧kWx

)α(
2−j∧kWy

)β(
DjTDk

)
(x, y)

∣∣∣ . 2−N |j−k|
(
1 + 2j∧kρ(x, y)

)−m
Vol
(
B(X,d)(x, 2−j∧k + ρ(x, y))

)
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CHAPTER 3 : Hp BOUNDEDNESS OF MULTI-PARAMETER
RADON TRANSFORM

3.1 Assumptions for multi-parameter vector fields on product space M =
M1 × · · · ×Mν

Now we assume M takes the form of product spaces. More precisely, for 1 ≤ µ ≤ ν, let Mµ

be a smooth, connected, and compact manifold as in the single parameter setting, and define

the product space M = M1 ×M2 × · · · ×Mν .

Now we state our assumptions for our vector fields on the product space M . On each piece

Mµ(1 ≤ µ ≤ ν), we assume there are vector fields Wµ
1 , . . . ,W

µ
rµ satisfying the Hörmander’s

condition, i.e spanning the tangent space to Mµ at each point. From their iterated com-

mutators, as in the single parameter case, we can create a list of vector fields (Xµ, d̂µ) =

(Xµ
1 , d̂

µ
1 ), . . . , (Xµ

qµ , d̂
µ
qµ) that span the tangent space to Mµ at each point. Then, on each Mµ,

we have the Carnot-Carathéodory balls B(Xµ,d̂µ)(xµ, δµ) as before, and each B(Xµ,d̂µ)(xµ, δµ) on

Mµ induces a Carnot-Carathéodory metric ρµ(xµ, zµ) := inf{δµ > 0 : zµ ∈ B(Xµ,d̂µ)(xµ, δµ)} on

Mu. Then on M we define the corresponding metric having the vector form

ρ((x1, . . . , xν), (z1, . . . , zν)) := (ρ(x1, z1), . . . , ρ(xν , zν)).

We can extend each single-parameter formal degree d̂µj into a ν-parameter dµj as in the

beginning of this section, and then combine these pieces of vector fields (Xµ, d̂µ) for 1 ≤ µ ≤ ν

together as a list of vector fields (X, d) = (X1, d1), . . . , (Xq, dq) on M . Based on (X, d), we

define the ν-parameter balls B(X,d)(x, δ), and naturally, we hope such balls are “almost” in the

product form. Actually, if we denote by B((x1, . . . , xν), (δ1, . . . , δν)) := B(X1,d̂1)(x1, δ1) × · · · ×

B(Xν ,d̂ν)(xν , δν) and give M the strictly positive smooth density corresponding to the product

measure on M1 × · · · ×Mµ, then the following properties hold

Vol(B((x1, . . . , xν), (δ1, . . . , δν))) =

ν∏
µ=1

Vol(B(Xµ,d̂µ)(xν , δν)),
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B(x, δ/C) ⊆ B(X,d)(x, δ) ⊆ B(x, δC), x ∈M, δ ∈ [0,∞)ν ,

for some C > 0. In other words, the balls B(X,d)(x, δ) are comparable to the “product balls”.

3.2 Discrete Calderón Reproducing Formula on product space M

In this section we will introduce the discrete Calderoón Reproducing formula on the product

space M . For simplicity, we just consider the case ν = 2, and the case when ν > 2 follows in

the same way. First we introduce the bump functions.

Definition 3.1. We say B ⊂ C∞(M)×M × (0, 1]2 is a bounded set of bump functions if ∀m,

∃Cm, ∀(φ, x, δ) ∈ B,

• supp(φ) ⊂ B(x, δ),

• supz |(δX)αφ(z)| ≤ CmVol(B(x, δ))−1.

Also, we introduce the space of test functions on M.

Definition 3.2. Let (x1, y1) ∈ M . A function f defined on M is said to be a test function of

type (x1, y1) if for fixed y, f(x, y) is a test function of type (x1) and for fixed x, f(x, y) is a test

function of type (y1). More precisely, a function f on M is said to be a test function of type

(n0,m, n
′
0,m

′) if for fixed y, f(x, y) is a test function of type (n0,m) centered at x1 and satisfies

that

∥∥Xα′
y f(·, y)

∥∥
T (x1,n0,m)

≤ Cα′,m′
(1 + ρ(y, y1))−m

′

Vol(BXy(y1, 1 + ρ(y, y1)))
(3.1)

Similarly, for a fixed x, f(x, y) is a test function of type (n′0,m
′) centered at y1 and satisfies

that

∥∥Xα
x f(x, ·)

∥∥
T (y1,n′0,m

′)
≤ Cα,m

(1 + ρ(x, x1))−m

Vol(BXx(x1, 1 + ρ(x, x1)))
(3.2)

Moreover, for each (n0,m, n
′
0,m

′), we denote by T (x1, n0,m; y1, n
′
0,m

′) the set of test functions
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of type (n0,m, n
′
0,m

′) with the norm

‖f‖T (x1,n0,m;y1,n′0,m
′) = sup

|α|≤n0

|α′|≤n′0

inf{Cα′,m′ , Cα,m}, where Cα′,m′ , Cα,m is taken from (3.1),(3.2)

It’s easy to see that for another point (x2, y2) ∈M , T (x1, n0,m; y1, n
′
0,m

′) and T (x2, n0,m; y2, n
′
0,

m′) are equivalent in the corresponding norm. We can denote T (x1, n0,m; y1, n
′
0,m

′) by T (n0,m;n′0,

m′) and represent the test functions of all types by T .

Theorem 3.3. Let Dki and D̃ki be given in Theorem 2.19 on each Mi, i = 1, 2, respectively.

Then

f(x, y) =
∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )

D̃k1(x, yk1,ν1
τ1 )D̃k2(y, yk2,ν2

τ2 )Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )

where the series converges in the norm of T (n0,m;n′0,m
′), the topology of bounded convergence

as operators C∞(M)→ C∞(M) and the norm of Lp(M1 ×M2), 1 < p <∞.

Proof. The proof of this theorem is based on the method of iteration and some known estimates

on one single factor M. We first show the Lp, 1 < p <∞, convergence. Denote

g(x, y) =
∑
|k1|≤L1

∑
|k2|≤L2

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )

D̃k1(x, yk1,ν1
τ1 )D̃k2(y, yk2,ν2

τ2 )Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )− f(x, y)

=: g1(x, y) + g2(x, y)

where

g1(x, y) =
∑
|k1|≤L1

∑
τ1∈Ik1

N(k1,τ1)∑
ν1=1

µ1(Qk1,ν1
τ1 )
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×D̃k1(x, yk1,ν1
τ1 )Dk1

( ∑
|k2|≤L2

∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

µ2(Qk2,ν2
τ2 )D̃k2(y, yk2,ν2

τ2 )Dk2(f(·, yk2,ν2
τ2 ))

)
(yk1,ν1
τ1 )

−
∑
|k2|≤L2

∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

µ2(Qk2,ν2
τ2 )D̃k2(y, yk2,ν2

τ2 )Dk2(f)(x, yk2,ν2
τ2 )

and

g2(x, y) =
∑
|k2|≤L2

∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

µ2(Qk2,ν2
τ2 )D̃k2(y, yk2,ν2

τ2 )Dk2(f)(x, yk2,ν2
τ2 )− f(x, y).

We now need the following estimates from the single parameter setting: There exists a

constant C such that for f ∈ Lp(M), 1 < p <∞, and any integer L,

∥∥ ∑
|k|≤L

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk(f)(yk,ντ )

∥∥
Lp(M)

≤ C‖f‖Lp(M)

and

∥∥ ∑
|k|≤L

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk(f)(yk,ντ )− f

∥∥
Lp(M)

≤ C‖{
∑
|k|≥L

|Dk(f)|2}
1
2 ‖Lp(M)

Using the above two estimates, we have

‖g1(x, y)‖Lp(M)

≤ C‖{
∑
|k1≥L1|

∣∣∣Dk1

( ∑
|k2|≤L2

∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

µ2(Qk2,ν2
τ2 )

×D̃k2(y, yk2,ν2
τ2 )Dk2(f(·, yk2,ν2

τ2 ))
)

(yk1,ν1
τ1 )

∣∣∣2}1/2‖Lp(M)

≤ C‖{
∑
|k1|≥L1

∑
|k2|≤L2

|Dk1Dk2(f)|2}
1
2 ‖Lp(M),

where the last term goes to zeros as L1 goes to infinity. ‖g2(x, y)‖Lp(M) can be handled similarly.

This implies the convergence in Lp(M), 1 < p <∞.

To see the convergence in the space of test functions, we need the following estimates on
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one single factor M : for f ∈ T (n0,m) and any integers L,

‖
∑
|k|≤L

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk(f)(yk,ντ )‖T (n0,m) ≤ C‖f‖T (n0,m)

and

‖
∑
|k|≤L

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk(f)(yk,ντ )− f‖T (n0,m) ≤ C2−θL‖f‖T (n0,m)

where C is a constant.

We observe that if f ∈ T (n0,m;n′0,m
′), then ‖f(·, y)‖T (n0,m) as a function of the variable

y, is in T (n′0,m
′) and

∥∥‖f(·, ·)‖T (n0,m)

∥∥
T (n′0,m

′)
≤ ‖f‖T (n0,m;n′0,m

′).

Similarly,
∥∥‖f(·, ·)‖T (n′0,m

′)

∥∥
T (n0,m)

≤ ‖f‖T (n0,m;n′0,m
′). Therefore, we obtain

‖g1(·, y)‖T (n0,m)

≤ C · 2−θ1L1‖
∑
|k2|≤L2

∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

µ2(Qk2,ν2
τ2 )D̃k2(y, yk2,ν2

τ2 )Dk2(f(·, yk2,ν2
τ2 ))‖T (n0,m)

≤ C · 2−θ1L1
∥∥‖f(·, ·)‖T (n′0,m

′)
(1 + ρ(y, y1))−m

′

Vol(BXy(y1, 1 + ρ(y, y1)))

∥∥
T (n0,m)

≤ C · 2−θ1L1‖f(·, ·)‖T (n0,m;n′0,m
′)

(1 + ρ(y, y1))−m
′

Vol(BXy(y1, 1 + ρ(y, y1)))
.

Similarly,

‖g2(·, y)‖T (n0,m)

≤ C2−θ2L2‖f‖T (n0,m;n′0,m
′)

(1 + ρ(y, y1))−m
′

Vol(BXy(y1, 1 + ρ(y, y1)))
.
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Note that this implies

‖g(x, y)‖T (n0,m;n′0,m
′) ≤ C(2−θ1L1 + 2−θ2L2)‖f‖T (n0,m;n′0,m

′),

which yields the convergence in T (n0,m;n′0,m
′).

3.3 Plancherel-Pôlya inequality on M

Theorem 3.4. Let {Dki}ki∈Z and {D′k′i}k′i∈Z be two bounded sets of elementary operators and

decompose the identity map I, i.e. I =
∑

ki∈NDki =
∑

k′i
D′k′i

on Mi, i = 1, 2. For all distribution

of test function f , i = 1, 2,

‖{
∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

sup
(z1,z2)∈Qk1,ν1

τ1
×Qk2,ν2

τ2

|Dk1Dk2(f)(z1, z2)|2χQk1,ν1
τ1

(·)χQk2,ν2
τ2

(·)}
1
2 ‖Lp(M)

≈ ‖{
∑
k′1∈N

∑
k′2∈N

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

inf
(z1,z2)∈Q

k′1,ν
′
1

τ ′1
×Q

k′2,ν
′
2

τ ′2

|D′k′1D
′
k′2

(f)(z1, z2)|2χ
Q
k′1,ν
′
1

τ ′1

(·)χ
Q
k′2,ν
′
2

τ ′2

(·)}
1
2 ‖Lp(M)

Proof. For any f ∈ T (n0,m;n′0,m
′), we rewrite Theorem 3.3 by

f(x, y) =
∞∑
k′1=0

∞∑
k′2=0

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

µ1(Qk
′
1,ν
′
1

τ ′1
)µ2(Qk

′
2,ν
′
2

τ ′2
)

D̃′k′1
(x, y

k′1,ν
′
1

τ ′1
)D̃′k′2

(y, y
k′2,ν

′
2

τ ′2
)D′k′1

D′k′2
(f)(y

k′1,ν
′
1

τ ′1
, y
k′2,ν

′
2

τ ′2
)

By the orthogonality argument we obtain

|DkiD̃
′
k′i

(x, y)| ≤ Cm,D,D′2−N0|ki−k′i|
(1 + 2ki∧k

′
iρ(x, y))−m

Vol
(
B(X,d)(x, 2

−ki∧k′i + ρ(x, y))
)
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From the above, for any k1, k2 ∈ N, we have

|Dk1Dk2(f)(x, y)|

=
∣∣∣ ∞∑
k′1=0

∞∑
k′2=0

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

µ1(Qk
′
1,ν
′
1

τ ′1
)µ2(Qk

′
2,ν
′
2

τ ′2
)

Dk1D̃
′
k′1

(x, y
k′1,ν

′
1

τ ′1
)Dk2D̃

′
k′2

(y, y
k′2,ν

′
2

τ ′2
)D′k′1

D′k′2
(f)(y

k′1,ν
′
1

τ ′1
, y
k′2,ν

′
2

τ ′2
)
∣∣∣

≤ Cm,D,D′ ·
∑
k′1∈N

∑
k′2∈N

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

µ1(Qk
′
1,ν
′
1

τ ′1
)µ2(Qk

′
2,ν
′
2

τ ′2
)

×2−N0,1|k1−k′1|2−N0,2|k2−k′2||D′k′1D
′
k′2

(f)(y
k′1,ν

′
1

τ ′1
, y
k′2,ν

′
2

τ ′2
)|

×
(1 + 2k1∧k′1ρ(yk1,ν1

τ1 , y
k′1,ν

′
1

τ ′1
))−m

Vol
(
B(X,d)(y

k1,ν1
τ1 , 2−k1∧k′1 + ρ(yk1,ν1

τ1 , y
k′1,ν

′
1

τ ′1
))
) · (1 + 2k2∧k′2ρ(yk2,ν2

τ2 , y
k′2,ν

′
2

τ ′2
))−m

Vol
(
B(X,d)(y

k2,ν2
τ2 , 2−k2∧k′2 + ρ(yk2,ν2

τ2 , y
k′2,ν

′
2

τ ′2
))
)

Therefore,

∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

sup
(z1,z2)∈Qk1,ν1

τ1
×Qk2,ν2

τ2

|Dk1Dk2(f)(z1, z2)|

×χQk1,ν1
τ1

(x)χQk2,ν2
τ2

(y)

≤ Cm,D,D′
∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

(
∞∑
k′1=0

∞∑
k′2=0

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

µ1(Qk
′
1,ν
′
1

τ ′1
)µ2(Qk

′
2,ν
′
2

τ ′2
)

×2−N0,1|k1−k′1|2−N0,2|k2−k′2||D′k′1D
′
k′2

(f)(y
k′1,ν

′
1

τ ′1
, y
k′2,ν

′
2

τ ′2
)|

×
(1 + 2k1∧k′1ρ(yk1,ν1

τ1 , y
k′1,ν

′
1

τ ′1
))−m

Vol
(
B(X,d)(y

k1,ν1
τ1 , 2−k1∧k′1 + ρ(yk1,ν1

τ1 , y
k′1,ν

′
1

τ ′1
))
) · (1 + 2k2∧k′2ρ(yk2,ν2

τ2 , y
k′2,ν

′
2

τ ′2
))−m

Vol
(
B(X,d)(y

k2,ν2
τ2 , 2−k2∧k′2 + ρ(yk2,ν2

τ2 , y
k′2,ν

′
2

τ ′2
))
)
)2

×χQk1,ν1
τ1

(x)χQk2,ν2
τ2

(y).

Equivalently,

≤ Cm,D,D′
∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

(
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∞∑
k′1=0

∞∑
k′2=0

2−N0,1|k1−k′1|2−N0,2|k2−k′2|
∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

µ1(Qk
′
1,ν
′
1

τ ′1
)µ2(Qk

′
2,ν
′
2

τ ′2
)

×|D′k′1D
′
k′2

(f)(y
k′1,ν

′
1

τ ′1
, y
k′2,ν

′
2

τ ′2
)|

×
(1 + 2k1∧k′1ρ(yk1,ν1

τ1 , y
k′1,ν

′
1

τ ′1
))−m

Vol
(
B(X,d)(y

k1,ν1
τ1 , 2−k1∧k′1 + ρ(x, y

k′1,ν
′
1

τ ′1
))
) · (1 + 2k2∧k′2ρ(yk2,ν2

τ2 , y
k′2,ν

′
2

τ ′2
))−m

Vol
(
B(X,d)(y

k2,ν2
τ2 , 2−k2∧k′2 + ρ(yk2,ν2

τ2 , y
k′2,ν

′
2

τ ′2
))
)
)2

×χQk1,ν1
τ1

(x)χQk2,ν2
τ2

(y)

We choose r such that r < p ≤ 1. Now apply Lemma 2.22. The above term is bounded by

≤ Cm,D,D′
∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

(
∞∑
k′1=0

∞∑
k′2=0

2−N0,1|k1−k′1|2[(k1∧k′1)−k1]Q2(1− 1
r

)2−N0,2|k2−k′2|2[(k2∧k′2)−k2]Q2(1− 1
r

)

×

[
M1

( ∑
τ ′1∈Ik′1

N(k′1,τ
′
1)∑

ν′1=1

M2

( ∑
τ ′2∈Ik′2

N(k′2,τ
′
2)∑

ν′2=1

inf
(z1,z2)∈Q

k′1,ν
′
1

τ ′1
×Q

k2,ν
′
2

τ ′2

|D′k′1D
′
k′2

(f)(z1, z2)|rχ
Q
k′2,ν
′
2

τ ′2

(·)
)

(yk2,ν2
τ2 )χ

Q
k′1,ν
′
1

τ ′1

(·)

)
(yk1,ν1
τ1 )

] 1
r
)2

×χQk1,ν1
τ1

(x)χQk2,ν2
τ2

(y)

By the Cauchy-Schwartz inequality, the last term above is dominated by

≤ Cm,D,D′
∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

{
[ ∞∑
k′1=0

∞∑
k′2=0

2−N0,1|k1−k′1|2[(k1∧k′1)−k1]Q2(1− 1
r

)2−N0,2|k2−k′2|2[(k2∧k′2)−k2]Q2(1− 1
r

)

]1/2

×

[ ∞∑
k′1=0

∞∑
k′2=0

2−N0,1|k1−k′1|2[(k1∧k′1)−k1]Q2(1− 1
r

)2−N0,2|k2−k′2|2[(k2∧k′2)−k2]Q2(1− 1
r

)

×
[
M1

( ∑
τ ′1∈Ik′1

N(k′1,τ
′
1)∑

ν′1=1

M2

( ∑
τ ′2∈Ik′2

N(k′2,τ
′
2)∑

ν′2=1
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inf
(z1,z2)∈Q

k′1,ν
′
1

τ ′1
×Q

k2,ν
′
2

τ ′2

|D′k′1D
′
k′2

(f)(z1, z2)|rχ
Q
k′2,ν
′
2

τ ′2

(·)
)

(yk2,ν2
τ2 )χ

Q
k′1,ν
′
1

τ ′1

(·)
)

(yk1,ν1
τ1 )

] 2
r

]1/2}2

×χQk1,ν1
τ1

(x)χQk2,ν2
τ2

(y)

Thus, choosing N0,1 and N0,2 large enough such that N0,i +Q2,i(1− 1
r ) > 0, we have

≤ Cm,D,D′
∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

∞∑
k′1=0

∞∑
k′2=0

2−N0,1|k1−k′1|2[(k1∧k′1)−k1]Q2(1− 1
r

)2−N0,2|k2−k′2|2[(k2∧k′2)−k2]Q2(1− 1
r

)

×
[
M1

( ∑
τ ′1∈Ik′1

N(k′1,τ
′
1)∑

ν′1=1

M2

( ∑
τ ′2∈Ik′2

N(k′2,τ
′
2)∑

ν′2=1

inf
(z1,z2)∈Q

k′1,ν
′
1

τ ′1
×Q

k2,ν
′
2

τ ′2

|D′k′1D
′
k′2

(f)(z1, z2)|rχ
Q
k′2,ν
′
2

τ ′2

(·)
)

(yk2,ν2
τ2 )χ

Q
k′1,ν
′
1

τ ′1

(·)
)

(yk1,ν1
τ1 )

] 2
r

×χQk1,ν1
τ1

(x)χQk2,ν2
τ2

(y)

Furthermore,

≤ Cm,D,D′
∑
k1∈N

∑
k2∈N

∞∑
k′1=0

∞∑
k′2=0

2−N0,1|k1−k′1|2[(k1∧k′1)−k1]Q2(1− 1
r

)2−N0,2|k2−k′2|2[(k2∧k′2)−k2]Q2(1− 1
r

)

×
[
M1

( ∑
τ ′1∈Ik′1

N(k′1,τ
′
1)∑

ν′1=1

M2

( ∑
τ ′2∈Ik′2

N(k′2,τ
′
2)∑

ν′2=1

inf
(z1,z2)∈Q

k′1,ν
′
1

τ ′1
×Q

k2,ν
′
2

τ ′2

|D′k′1D
′
k′2

(f)(z1, z2)|rχ
Q
k′2,ν
′
2

τ ′2

(·)
)

(y)χ
Q
k′1,ν
′
1

τ ′1

(·)
)

(x)
] 2
r

≤ Cm,D,D′
∞∑
k′1=0

∞∑
k′2=0

[
M1

( ∑
τ ′1∈Ik′1

N(k′1,τ
′
1)∑

ν′1=1

M2

( ∑
τ ′2∈Ik′2

N(k′2,τ
′
2)∑

ν′2=1

inf
(z1,z2)∈Q

k′1,ν
′
1

τ ′1
×Q

k2,ν
′
2

τ ′2

|D′k′1D
′
k′2

(f)(z1, z2)|rχ
Q
k′2,ν
′
2

τ ′2

(·)
)

(y)χ
Q
k′1,ν
′
1

τ ′1

(·)
)

(x)
] 2
r
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Since p/r > 1 and 2/r > 1, thus by the Fefferman-Stein vector valued maximal inequality, we

have

‖{
∞∑
k′1=0

∞∑
k′2=0

[
M1

( ∑
τ ′1∈Ik′1

N(k′1,τ
′
1)∑

ν′1=1

M2

( ∑
τ ′2∈Ik′2

N(k′2,τ
′
2)∑

ν′2=1

inf
(z1,z2)∈Q

k′1,ν
′
1

τ ′1
×Q

k2,ν
′
2

τ ′2

|D′k′1D
′
k′2

(f)(z1, z2)|rχ
Q
k′2,ν
′
2

τ ′2

(·)
)

(y)χ
Q
k′1,ν
′
1

τ ′1

(·)
)

(x)
] 2
r }

r
2 ‖1/r
Lp/r(M)

≤ ‖{
∑
k′1∈N

∑
k′2∈N

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

inf
(z1,z2)∈Q

k′1,ν
′
1

τ ′1
×Q

k′2,ν
′
2

τ ′2

|D′k′1D
′
k′2

(f)(z1, z2)|2χ
Q
k′1,ν
′
1

τ ′1

(·)χ
Q
k′2,ν
′
2

τ ′2

(·)}
1
2 ‖Lp(M)

The result is already proved.

3.4 The Littlewood-Paley-Stein square function and the Hardy spaces on
M

We now introduce the Littlewood-Paley-Stein square function.

Definition 3.5. Let the bounded sets of elementary operator {(Dki , 2
ki)|(Dki , 2

−ki) ∈ Di} be

an approximation to the identity on Mi, i = 1, 2. For f ∈ T ′, S̃(f), the Littlewood-Paley-Stein

square function of f , is defined by

S̃(f)(x, y) =
{ ∑
k1∈N

∑
k2∈N
|Dk1Dk2(f)(x, y)|2

}1/2
.

By the results on each Mi, i = 1, 2, and iteration, we immediately obtain

Theorem 3.6. If f ∈ Lp(M), 1 < p <∞, then ‖S̃(f)‖p ≈ ‖f‖p.

We, however, point out that the following discrete Littlewood-Paley-Stein square function

is more convenient for the study of the Hardy space Hp when p ≤ 1.

Definition 3.7. Let the bounded sets of elementary operator {(Dki , 2
ki)|(Dki , 2

−ki) ∈ Di} be

an approximation to the identity on Mi, i.e. I =
∑

ki∈NDki . For f ∈ T ′, the discrete Littlewood-
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Paley-Stein square function of f, is defined by

S̃d(f)(x) =
{ ∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν=1

N(k2,τ2)∑
ν=2

|Dk1Dk2(f)(x, y)|2

×χQk1,ν1
τ1

(x)χQk2,ν2
τ2

(y)
}1/2

By the Plancherel-Pôlya inequalities, it’s not difficult to see that the Lp norm of these two

kinds of square functions are equivalent. More precisely, we have

Proposition 3.1. For all f ∈ T ′, 0 < p <∞, then ‖S̃(f)‖Lp(M) ≈ ‖S̃d(f)‖Lp(M).

We are ready to introduce the Hardy space on M .

Definition 3.8.

Hp(M) = {f ∈ T ′ : S̃d(f) ∈ Lp(M)}

and if f ∈ Hp(M), the norm of f is defined by ‖f‖Hp(M) = ‖S̃(f)‖Lp(M).

Obviously, by the Plancherel-Pôlya inequalities inequalities, the Hardy space Hp(M) is well

defined. Before ending this section, we prove the following general result which will be used

to provide the Hp − Lp boundedness later. We also would like to mention that the proof of

this general result does not use atomic decomposition, and thus Journé’s covering lemma is not

required.

Theorem 3.9. Let 0 < p ≤ 1. If f ∈ L2(M) ∩ Hp(M), then f ∈ Lp(M) and there exists a

constant Cp > 0 which is independent of the L2 norm of f such that

‖f‖Lp(M) ≤ Cp‖f‖Hp(M)
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Proof. Set

Ωi =

{
(x, y) ∈M :

[ ∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

|Dk1Dk2(f)(x, y)|2

×χQk1,ν1
τ1

(x)χQk2,ν2
τ2

(y)

]1/2

> 2i

}
.

Denote

Bi =
{

(k1, k2,Qk1,ν1
τ1 ,Qk2,ν2

τ2 ) :

µ1 × µ2

(
Qk1,ν1
τ1 ×Qk2,ν2

τ2 ∩ Ωi

)
>

1

2
µ1 × µ2

(
Qk1,ν1
τ1 ×Qk2,ν2

τ2

)
,

µ1 × µ2

(
Qk1,ν1
τ1 ×Qk2,ν2

τ2 ∩ Ωi+1

)
≤ 1

2
µ1 × µ2

(
Qk1,ν1
τ1 ×Qk2,ν2

τ2

)}
,

where Qki,νiτi is the dyadic cubes on Mi. Since f ∈ L2(M), by the discrete Calderón formula, we

have

f(x, y) =
∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )

Dk1(x, yk1,ν1
τ1 )Dk2(y, yk2,ν2

τ2 )Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )

=
∑
i∈Z

∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )

Dk1(x, yk1,ν1
τ1 )Dk2(y, yk2,ν2

τ2 )Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )

,
∑
i∈Z

fi(x, y),

where the series converges in the L2 norm, and hence almost everywhere.

We claim

‖fi‖pLp(M) ≤ C2ip · µ1 × µ2

(
Ωi

)
, (3.3)
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which, together with the fact 0 < p ≤ 1, yields

‖f‖pLp(M) ≤ C
∑
i∈Z

2ip · µ1 × µ2

(
Ωi

)
≤ C‖f‖pHp(M).

This completes the proof of Theorem. Thus, it suffices to verify claim (3.3).

Set

Ω̃i =
{
x ∈M :M

(
χΩi

)
(x) >

1

100

}
.

By the Hölder’s inequality,

‖fi‖pLp(M) ≤ µ1 × µ2

(
Ω̃i

)1− p
2 ‖fi‖pL2(M)

+ ‖fi‖p
Lp(M\Ω̃i)

, κ1
i + κ2

i .

Firstly consider κ1
i . By the duality argument, for all g ∈ L2(M) with ‖g‖L2(M) ≤ 1,

|〈fi, g(·)〉| ≤

∣∣∣∣∣ ∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )

Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )Dk1Dk2(g)(yk1,ν1
τ1 , yk2,ν2

τ2 )

∣∣∣∣∣
≤

( ∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )|Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )|2
)1/2

×

( ∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )|Dk1Dk2(g)(yk1,ν1
τ1 , yk2,ν2

τ2 )|2
)1/2

.

Note that

( ∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )|Dk1Dk2(g)(yk1,ν1
τ1 , yk2,ν2

τ2 )|2
)1/2

≤

( ∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )
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×
∣∣∣ inf
z∈Qk1,ν1

τ1
×Qk2,ν2

τ2

M
(
Dk1Dk2(g)

)
(z)
∣∣∣2χQk1,ν1

τ1

(x)χQk2,ν2
τ2

(y)

)1/2

≤

( ∑
k1,k2∈N

ˆ
M

∣∣M(Dk1Dk2(g)
)
(x, y)

∣∣2 dµ1(x)dµ2(y)

)1/2

≤ C‖g‖L2(M).

This implies that

‖fi‖L2(M) ≤ C

( ∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )|Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )|2
)1/2

.

Note also that

C22iµ1 × µ2

(
Ωi

)
≥
ˆ

Ω̃i\Ωi+1

∣∣∣∣∣
{ ∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

|Dk1Dk2(f)(x, y)|2

×χQk1,ν1
τ1

(x)χQk2,ν2
τ2

(y)

}∣∣∣∣∣ dµ1(x)dµ2(y)

≥
∑

(k1,k2,Q
k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

|Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )|2

·µ1 × µ2

(
(Qk1,ν1

τ1 ×Qk2,ν2
τ2 ) ∩ (Ω̃i\Ωi+1)

)
≥ 1

2

∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1(Qk1,ν1
τ1 )µ2(Qk2,ν2

τ2 )|Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )|2

where the fact that µ1 × µ2

(
(Qk1,ν1

τ1 × Qk2,ν2
τ2 ) ∩ (Ω̃i\Ωi+1)

)
≤ 1

2µ1 × µ2

(
Qk1,ν1
τ1 × Qk2,ν2

τ2

)
when

(k1, k2,Qk1,ν1
τ1 ,Qk2,ν2

τ2 ) ∈ Bi is used in the last inequality. Also note that µ1 × µ2

(
Ω̃i

)
≤ Cµ1 ×

µ2

(
Ωi

)
. Hence, we can obtain

κ1
i ≤ Cµ1 × µ2

(
Ω̃i

)1− p
2 · 2ipµ1 × µ2

(
Ω̃i

) p
2 ≤ C2ipµ1 × µ2

(
Ωi

)

Next, consider κ2
i . Note that if (k1, k2,Qk1,ν1

τ1 ,Qk2,ν2
τ2 ) ∈ Bi, then Qk1,ν1

τ1 × Qk2,ν2
τ2 ⊂ Ω̃i. Fix
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k1, k2 ∈ N, we have

∣∣∣∣∣ ∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1

(
Qk1,ν1
τ1

)
µ2

(
Qk2,ν2
τ2

)

Dk1(x, yk1,ν1
τ1 )Dk2(y, yk2,ν2

τ2 )Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )

∣∣∣∣∣
≤ C

∑
τ1∈Ik1

N(k1,τ1)∑
ν1=1

∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

µ1

(
Qk1,ν1
τ1

)
µ2

(
Qk2,ν2
τ2

)
×

(
1 + 2k1ρ(x, yk1,ν1

τ1 )
)−m

Vol
(
B(X,d)(x, 2−k1 + ρ(x, yk1,ν1

τ1 ))
)

×
(
1 + 2k2ρ(y, yk2,ν2

τ2 )
)−m

Vol
(
B(X,d)(x, 2−k2 + ρ(y, yk2,ν2

τ2 ))
)∣∣Dk1Dk2(f)(yk1,ν1

τ1 , yk2,ν2
τ2 )

∣∣
≤ C

{
M1

( ∑
τ1∈Ik1

N(k1,τ1)∑
ν1=1

M2

( ∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

∣∣Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )
∣∣rχQk2,ν2

τ2

(·)
)

(y)χQk1,ν1
τ1

(·)

)
(x)

}1/r

where C is independent of f . Consequently, by choosing r small enough such that p/r > 1, also

applying the Fefferman-Stein vector valued maximal inequality, we have

ˆ
M\Ω̃i

∣∣∣∣∣ ∑
(k1,k2,Q

k1,ν1
τ1

,Qk2,ν2
τ2

)∈Bi

µ1

(
Qk1,ν1
τ1

)
µ2

(
Qk2,ν2
τ2

)

Dk1(x, yk1,ν1
τ1 )Dk2(y, yk2,ν2

τ2 )Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )

∣∣∣∣∣
p

dµ(x)

≤ C
ˆ
M\Ω̃i

∣∣∣∣∣ ∑
(k1,k2)∈Bi

{
M1

( ∑
τ1∈Ik1

N(k1,τ1)∑
ν1=1

M2

( ∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

∣∣Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )
∣∣rχQk2,ν2

τ2

(·)
)

(y)χQk1,ν1
τ1

(·)

)
(x)

}1/r∣∣∣∣∣
p

dµ(x)

≤ C
ˆ
M\Ω̃i

∣∣∣∣∣ ∑
k1∈N
k2∈N

∑
τ1∈Ik1
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

∣∣Dk1Dk2(f)(yk1,ν1
τ1 , yk2,ν2

τ2 )
∣∣

χ
(Qk1,ν1

τ1
×Qk2,ν2

τ2
)∩Ω̃i

(x, y)

∣∣∣∣∣
p

dµ(x) = 0.
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The claim is proved and hence the boundedness follows.

3.5 Product Carleson Measure Space and Duality

To characterize the dual space of Hp(M), we introduce the Carleson measure space CMOp

on M , which is motivated by ideas of Chang and R.Fefferman[2].

Definition 3.10. Let i = 1, 2, {Dki}ki∈Z be an approximation to the identity. The Carleson

measure space CMOp(M) is defined to the set of all f ∈ (SM )′ such that

‖f‖CMOp(M) = sup
( 1

µ(Ω)
2
p
−1

ˆ
Ω

∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

× χ{Qk1,ν1
τ1

×Qk2,ν2
τ2

⊂Ω}(k1, k2.τ1, τ2, ν1, ν2)|Dk1Dk2f(x1, x2)|2

χQk1,ν1
τ1

(x1)χQk2,ν2
τ2

(x2)dµ1(x1)dµ2(x2)
)1/2

<∞,

where the sup is taken over all open sets Ω in M with finite measures.

In order to verify that the definition of CMOp(M) is independent of the choice of the

approximations to identity, we establish the Min-Max comparison principle involving the CMOp

norm. To this end and for the sake of simplicity, we first give some notation as follows.

We write R = Qk1,ν1
τ1 ×Qk2,ν2

τ2 , R′ = Qk
′
1,ν
′
1

τ ′1
×Qk

′
2,ν
′
2

τ ′2
,

∑
R⊆Ω

=
∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

χ{Qk1,ν1
τ1

×Qk2,ν2
τ2

⊂Ω}(k1, k2, τ1, τ2, ν1, ν2);

∑
R′⊆Ω

=

∞∑
k1=0

∞∑
k2=0

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

χ
{Q

k′1,ν
′
1

τ ′1
×Q

k′2,ν
′
2

τ ′2
⊂Ω}

(k′1, k
′
2, τ
′
1, τ
′
2, ν
′
1, ν
′
2);

∑
R′

=

∞∑
k1=0

∞∑
k2=0

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

;

µ(R) = µ(Qk1,ν1
τ1 )µ(Qk2,ν2

τ2 ); µ(R′) = µ(Qk
′
1,ν
′
1

τ ′1
)µ(Qk

′
2,ν
′
2

τ ′2
);
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r(R,R′) =

2∏
i=1

(
µ(Qki,νiτi )

µ(Qk
′
i,ν
′
i

τ ′i
)
∧
µ(Qk

′
i,ν
′
i

τ ′i
)

µ(Qki,νiτi )

)(
diam(Qki,νiτi )

diam(Qk
′
i,ν
′
i

τ ′i
)
∧

diam(Qk
′
i,ν
′
i

τ ′i
)

diam(Qki,νiτi )

)N0

;

v(R,R′) =
(
µ(Qk1,ν1

τ1 ) ∨ µ(Qk
′
1,ν
′
1

τ ′1
)
)(
µ(Qk2,ν2

τ2 ) ∨ µ(Qk
′
2,ν
′
2

τ ′2
)
)

;

P (R,R′) =
2∏
i=1

[µ(Qki,νiτi ) ∨ µ(Qk
′
i,ν
′
i

τ ′i
)][1 + (diam(Qki,νiτi ) ∨ diam(Qk

′
i,ν
′
i

τ ′i
))−1dist(Qki,νiτi ,Qk

′
i,ν
′
i

τ ′i
)]−m

Vol
(
B(X,d)(y

ki,νi
τi ,diam(Qki,νiτi ) ∨ diam(Qk

′
i,ν
′
i

τ ′i
) + dist(Qki,νiτi ,Qk

′
i,ν
′
i

τ ′i
))
)

SR = sup
x1∈Q

k1,ν1
τ1

,x2∈Q
k2,ν2
τ2

|Dk1Dk2(f)(x1, x2)|2;

TR′ = inf
x′1∈Q

k′1,ν
′
1

τ ′1
,x′2∈Q

k′2,ν
′
2

τ ′2

|Dk′1
Dk′2

(f)(x′1, x
′
2)|2.

Now we state the main theorem of this section as follows.

Theorem 3.11. Let all the notations be the same as above. For p ≤ 1 all f ∈ CMOp(M),

sup
Ω

( 1

µ(Ω)
2
p
−1

∑
R⊆Ω

µ(R)SR

)1/2
. sup

Ω

( 1

µ(Ω)
2
p
−1

∑
R′⊆Ω

µ(R′)TR′
)1/2

, (3.4)

where Ω ranges over the open sets in M with finite measures.

Proof. First, for each p satisfying p ≤ 1 and any f ∈ CMOp(M), it is easy to see that the

right-hand side of (3.4) is finite and can be controlled by C‖f‖CMOp(M).

To prove (3.4), we need to show that for any open set Ω ∈ M with finite measure, the

following inequality holds,

1

µ(Ω)
2
p
−1

∑
R⊆Ω

µ(R)SR . sup
Ω

1

µ(Ω)
2
p
−1
µ(R′)TR′ , (3.5)

where Ω̄ ranges over all open sets in M with finite measures.

To begin with, for each fix Ω, we first consider the estimate of the term SR in the left-hand

side of (3.5) for every R = Qk1,ν1
τ1 ×Qk2,ν2

τ2 ⊂ Ω. To estimate this, we recall the almost orthogonal
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property of DkiD̃k′i
for i = 1, 2, namely, for any 0 < N0 < m

|DkiD̃ki(x, y)| ≤ CN0,D,D′2
−|ki−k′i|N0

(1 + 2ki∧k
′
iρ(x, y))−m

Vol
(
B(X,d)(x, 2

−ki∧k′i + ρ(x, y))
)

(see the property of the elementary operators for more details).

Now for any (x1, x2) ∈ R, using the discrete Calderón reproducing formula, the above almost

orthogonal property and the Hölder’s inequality, we can obtain that

|Dk1Dk2f(x1, x2)|2 .

∣∣∣∣∣
∞∑
k′1=0

∞∑
k′2=0

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

µ(Qk
′
1,ν
′
1

τ ′1
)µ(Qk

′
2,ν
′
2

τ ′2
)

×Dk1Dk2D̃k′1
D̃k′2

(x1, x2, y
′
1, y
′
2)Dk′1

Dk′2
(f)(y′1, y

′
2)

∣∣∣∣∣
2

.
∞∑
k1=0

∞∑
k2=0

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

2−|k1−k′1|N02−|k2−k′2|N0µ(Qk
′
1,ν
′
1

τ ′1
)µ(Qk

′
2,ν
′
2

τ ′2
)

×
(1 + 2ki∧k

′
iρ(yk1,ν1

τ1 , y
k′1,ν

′
1

τ ′1
))−m

Vol
(
B(X,d)(y

k1,ν1
τ1 , 2−ki∧k

′
i + ρ(yk1,ν1

τ1 , y
k′1,ν

′
1

τ ′1
))
)

·
(1 + 2ki∧k

′
iρ(yk2,ν2

τ2 , y
k′2,ν

′
2

τ ′2
))−m

Vol
(
B(X,d)(y

k2,ν2
τ2 , 2−ki∧k

′
i + ρ(yk2,ν2

τ2 , y
k′2,ν

′
2

τ ′2
))
) |Dk′1

Dk′2
(f)(y′1, y

′
2)|2.

(3.6)

where N0 is chosen to satisfy ε < N0 < m, and for i = 1, 2, yki,νiτi is the center of Qki,viτi and

y
k′i,ν
′
i

τ ′i
is any point in Qk

′
i,ν
′
i

τ ′i
, respectively.

From Lemma 2.14, we know that each dyadic cube Qkα satisfies that

diam(Qk,ντ ) ∼ 2−k, which yields 2−|ki−k
′
i| ∼ diam(Qki,νiτi )

diam(Qk
′
i,ν
′
i

τ ′i
)
∧

diam(Qk
′
i,ν
′
i

τ ′i
)

diam(Qki,νiτi )

and 2−(ki∧k′i) ∼ diam(Qki,νiτi ) ∨ diam(Qk
′
i,ν
′
i

τ ′i
) for i = 1, 2.
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Also note that ρ(yki,νiτi , y
k′i,ν
′
i

τ ′i
) ≥ dist(Qki,νiτi ,Qk

′
i,ν
′
i

τ ′i
). Since the last inequality of (3.6) is indepen-

dent of (x1, x2), then combining the above estimates, it follows that

SR .
∞∑
k′1=0

∞∑
k′2=0

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

µ(Qk
′
1,ν
′
1

τ ′1
)µ(Qk

′
2,ν
′
2

τ ′2
)

×

(
diam(Qk1,ν1

τ1 )

diam(Qk
′
1,ν
′
1

τ ′1
)
∧

diam(Qk
′
1,ν
′
1

τ ′1
)

diam(Qk1,ν1
τ1 )

)N0

·
[1 + (diam(Qk1,ν1

τ1 ) ∨ diam(Qk
′
1,ν
′
1

τ ′1
))−1dist(Qk1,ν1

τ1 ,Qk
′
1,ν
′
1

τ ′1
)]−m

Vol
(
B(X,d)(y

k1,ν1
τ1 ,diam(Qk1,ν1

τ1 ) ∨ diam(Qk
′
1,ν
′
1

τ ′1
) + dist(Qk1,ν1

τ1 ,Qk
′
1,ν
′
1

τ ′1
))
) (3.7)

×

(
diam(Qk2,ν2

τ2 )

diam(Qk
′
2,ν
′
2

τ ′2
)
∧

diam(Qk
′
2,ν
′
2

τ ′2
)

diam(Qk2,ν2
τ2 )

)N0

·
[1 + (diam(Qk2,ν2

τ2 ) ∨ diam(Qk
′
2,ν
′
2

τ ′2
))−1dist(Qk2,ν2

τ2 ,Qk
′
2,ν
′
2

τ ′2
)]−m

Vol
(
B(X,d)(y

k2,ν2
τ2 ,diam(Qk2,ν2

τ2 ) ∨ diam(Qk
′
2,ν
′
2

τ ′2
) + dist(Qk2,ν2

τ2 ,Qk
′
2,ν
′
2

τ ′2
))
) · TR′ .

Now combining (3.7) and the following equality

2∏
i=1

µ(Qki,νiτi )µ(Qk
′
i,ν
′
i

τ ′i
) =

2∏
i=1

(
µ(Qki,νiτi ) ∨ µ(Qk

′
i,ν
′
i

τ ′i
)
)2
(
µ(Qki,νiτi )

µ(Qk
′
i,ν
′
i

τ ′i
)
∧
µ(Qk

′
i,ν
′
i

τ ′i
)

µ(Qki,νiτi )

)
,

we obtain the left-hand side (3.5), namely, 1

µ(Ω)
2
p−1

∑
R⊂Ω µ(R)SR, is bounded by

1

µ(Ω)
2
p
−1

∑
R⊂Ω

∑
R′

v(R,R′)r(R,R′)P (R,R′)TR′ . (3.8)

Thus, to finish the proof the theorem, we need to prove that (3.8) can be controlled by

sup
Ω̄

1

µ(Ω̄)
2
p
−1

∑
R′⊂Ω̄

µ(R′)TR′ , (3.9)

where Ω̄ ranges over the open sets in M with finite measures.

We first point out that the terms r(R,R′) and P (R,R′) characterize the geometrical prop-

erties between R and R′. Namely, when the difference of the sizes of R and R′ grows bigger,
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r(R,R′) becomes smaller; when the distance between R and R′ grows bigger, P (R,R′) becomes

smaller. Hence, what we should do next is to that, for each R, decompose the set of all dyadic

rectangles {R′} into annuli according to the distance between R and R′. Next, for each annuli,

we give a precise estimate by considering the difference of the sizes of R and R′. Finally, we add

up all the estimates on each annuli and then finish our proof.

Now let’s go into the details. For the sake of simplicity, we denote Qki,νiτi , Qk
′
i,ν
′
i

τ ′i
by Qi, Q,

respectively, for i = 1, 2. Define

Ω0 =:
⋃

R=Q1×Q2⊂Ω

3(Q1 ×Q2).

And for each R, let

A0,0(R) ={R′ : dist(Q1,Q′1) ≤ diam(Q1) ∨ diam(Q′1),

dist(Q2,Q′2) ≤ diam(Q2) ∨ diam(Q′2)};

Aj,0(R) ={R′ : 2j−1
(
diam(Q1) ∨ diam(Q′1)

)
< dist(Q1,Q′1) ≤ 2j

(
diam(Q1) ∨ diam(Q′1)

)
,

dist(Q2,Q′2) ≤ diam(Q2) ∨ diam(Q′2)};

A0,k(R) ={R′ : dist(Q1,Q′1) ≤ diam(Q1) ∨ diam(Q′1)

2k−1
(
diam(Q2) ∨ diam(Q′2)

)
< dist(Q2,Q′2) ≤ 2k

(
diam(Q2) ∨ diam(Q′2)

)
};

Aj,k(R) ={R′ : 2j−1
(
diam(Q1) ∨ diam(Q′1)

)
< dist(Q1,Q′1) ≤ 2j

(
diam(Q1) ∨ diam(Q′1)

)
,

2k−1
(
diam(Q2) ∨ diam(Q′2)

)
< dist(Q2,Q′2) ≤ 2k

(
diam(Q2) ∨ diam(Q′2)

)
},

where j, k ≥ 1.

Since for each R′ = Q′1 × Q′2, limj,k→∞ 3(2jQ′1 × 2kQ′2) = M , we can see that for any

R ⊂ Ω, there must be some j and k such that R′ ∈ Aj,k(R). This implies that for each R ⊂ Ω,

{R′} ⊂ ∪j,k≥0Aj,k(R).
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Then, we have

(3.8) ≤ 1

µ(Ω)
2
p
−1

∑
R⊂Ω

∑
R′∈A0,0(R)

v(R,R′)r(R,R′)P (R,R′)TR′

+
∑
j≥1

1

µ(Ω)
2
p
−1

∑
R⊂Ω

∑
R′∈Aj,0(R)

v(R,R′)r(R,R′)P (R,R′)TR′

+
∑
k≥1

1

µ(Ω)
2
p
−1

∑
R⊂Ω

∑
R′∈A0,k(R)

v(R,R′)r(R,R′)P (R,R′)TR′

+
∑
j,k≥1

1

µ(Ω)
2
p
−1

∑
R⊂Ω

∑
R′∈Aj,k(R)

v(R,R′)r(R,R′)P (R,R′)TR′

=:I + II + III + IV.

We first estimate term I. Define

B0,0 = {R′ : 3R′ ∩ Ω0 6= ∅}.

Then we claim that

I ≤ 1

µ(Ω)
2
p
−1

∑
R′∈B0,0

∑
{R:R⊂Ω,R′∈A0,0(R)}

v(R,R′)r(R,R′)P (R,R′)TR′ (3.10)

To show this claim, we only need to point out that for any R′ /∈ B0,0, we have 3R′ ∩ Ω0 = ∅.

Thus, for any R ⊂ Ω, we can see that 3R′ ∩ 3R = ∅, which implies that R′ /∈ A0,0(R). Hence,

we can obtain that ∪R⊂ΩA0,0(R) ⊂ B0,0. This yields that the claim (3.10) holds.

Now we continue to decompose B0,0. Let F0,0
h = {R′ : µ(3R′ ∩ Ω0) > 1

2h
(3R′)}, D0,0

h =

F0,0
h \F

0,0
h−1, h ≥ 1, F0,0

0 = ∅, and Ω0,0
h = ∪

R′∈D0,0
h
R′, h ≥ 1. From these definitions, we can see
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that

B0,0 =
⋃
h≥1

D0,0
h .

Then (3.10) can be rewritten as

I ≤ 1

µ(Ω)
2
p
−1

∑
h≥1

∑
R′∈D0,0

h

∑
{R:R⊂Ω,R′∈A0,0(R)}

v(R,R′)r(R,R′)P (R,R′)TR′ (3.11)

To estimate the right-hand side of (3.11) we only need to consider

∑
{R:R⊂Ω,R′∈A0,0(R)}

v(R,R′)r(R,R′) (3.12)

since P (R,R′) ≤ 1 for any R′ ∈ D0,0
h and R satisfying R′ ∈ A0,0(R). In what follows, we use

a simple geometrical argument, which is a generalization of Chang and R.Fefferman’s idea, see

more details in [2].

Since 3R ∩ 3R′ /∈ ∅, we can split (3.12) into four cases:

Case 1: diam(Q′1) ≥ diam(Q1), diam(Q′2) ≤ diam(Q2).

First, it is easy to see that µ(Q1 × 3Q′2) . µ(3R ∩ 3R′). So we have

µ(Q1)

µ(3Q′1)
µ(3R′) . µ(3R ∩ 3R′) ≤ µ(3R′ ∩ Ω0) ≤ 1

2h−1µ(3R′)
,

which yield that 2h−1µ(Q1) . µ(3Q′1) . µ(Q′1). Since all the Qi and Q′i (i = 1, 2) are dyadic

cubes with measures equivalent to 2aQ1,2 for some a ∈ Z, then we have µ(Q′1) ∼ 2h+n1Q1,2µ(Q1),

for some n1 ≥ 0. For each fixed n1, the numbers of such Q1’s must be . C1
C2
· 2n1Q1,2 , where C1,

C2 are the constants in Christ’s construction Lemma.

Denote by xQ1 and xQ′1 the centers of Q1 and Q′1, respectively. Since 3R∩ 3R′ 6= ∅, we have

3Q1∩3Q′1 6= ∅, which implies that d(xQ1 , xQ′1) ≤ 6diam(Q′1), and hence Vol
(
B(X,d)(xQ1 , 6diam(Q′1))

)
≈
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Vol
(
B(X,d)(xQ′1 , 6diam(Q′1)

)
≈ µ(6Q′1) ≈ µ(Q′1). Thus,

µ(Q′1)

µ(Q1)
≈

Vol
(
B(X,d)(xQ1 , 6diam(Q′1))

)
Vol
(
B(X,d)(xQ1 ,diam(Q1))

) .
(diam(Q′1)

diam(Q1)

)Q1,2

.

It follows that for each fix n1 > 0,

diam(Q1)

diam(Q′1)
.
(µ(Q1)

µ(Q′1)

) 1
Q1,2 . 2

− h
Q1,2

−n1
.

As for Q2, µ(Q2) ∼ 2n2Q2,2µ(Q′2) for some n2 ≥ 0. For each fixed n2, the number of such Q2’s

is less than a constant independent of n2, since 3Q2 ∩ 3Q′2 6= ∅ and µ(Q2) & µ(Q′2). Moreover,

we have

diam(Q′2)

diam(Q2)
. 2−n2 .

Thus,

∑
Case 1

r(R,R′)v(R,R′)

=
∑

Case 1

µ(Q1)

µ(Q′1)
· µ(Q′2)

µ(Q2)
·

(
diam(Q1)

diam(Q′1)

)N0
(

diam(Q′2)

diam(Q2)

)N0

µ(Q′1)µ(Q2)

.
∑

n1,n2≥0

2−(h+n1Q1,2)2
−( h

Q1,2
+n1)N0

2−n2N02n1Q1,2µ(Q′1)µ(Q′2)

. 2
−h(1+

N0
Q1,2

)
µ(R′).

Case 2: diam(Q′1) ≤ diam(Q1), diam(Q′2) ≥ diam(Q2).

This can be handled in a similar way to that of Case 1. We have

∑
Case 2

r(R,R′)v(R,R′) . 2
−h(1+

N0
Q2,2

)
µ(R′).
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Case 3: diam(Q′1) ≥ diam(Q1), diam(Q′2) ≥ diam(Q2).

Since

µ(R) . µ(3R′ ∩ 3R) ≤ µ(3R′ ∩ Ω0) ≤ 1

2h−1
µ(3R′),

we have 2h−1µ(R) . µ(R′). Using the same idea as in Case 1, we can obtain that µ(R′) ∼

2h+n1Q1,2+n2Q2,2µ(R) for some n1, n2 ≥ 0. For each fixed n1 and n2, the number of such R’s is

. 2n1Q1,22n2Q2,2 .

Similar to Case 1, since 3R ∩ 3R′ 6= ∅, we have
µ(Q′1)
µ(Q1) .

(
diam(Q′1)
diam(Q1)

)Q1,2

and
µ(Q′2)
µ(Q2) .(

diam(Q′2)
diam(Q2)

)Q2,2

. Hence, diam(Q1)diam(Q2)
diam(Q′1)diam(Q′2)

.
(
µ(R)
µ(R′)

) 1
Q1,2∨Q2,2 . 2

− h
Q1,2∨Q2,2 2

−
n1Q1,2+n2Q2,2
Q1,2∨Q2,2 . Com-

bining these results, we can get

∑
Case 3

r(R,R′)v(R,R′)

=
∑

Case 3

µ(R)

µ(R′)
·

(
diam(Q1)diam(Q2)

diam(Q′1)diam(Q′2)

)N0

µ(Q′1)µ(Q′2)

.
∑

n1,n2≥0

2−(h+n1Q1,2+n2Q2,2)2
− h
Q1,2∨Q2,2

N0
2
−
n1Q1,2+n2Q2,2
Q1,2∨Q2,2

N0
2n1Q1,2+n2Q2,2µ(R′)

. 2
−h(1+

N0
Q1,2∨Q2,2

)
µ(R′).

Case 4: diam(Q′1) ≤ diam(Q1), diam(Q′2) ≤ diam(Q2).

From

µ(R′) . µ(3R′ ∩ 3R) ≤ µ(3R′ ∩ Ω0) ≤ 1

2h−1
µ(3R′),

we have that µ(R′) ≤ C 1
2h−1µ(R′), where C is a constant depending on only Q1,2, Q2,2, C1 and

C2. This yields that h ≤ h0 = [log2(2C)] + 1. Thus we can see that in this case, there are at

most h0 terms in (3.11) in nonzero.

Since µ(R) ≥ µ(R′), we obtain that µ(R) ∼ 2n1Q1,2+n2Q2,2µ(R′) for some n1, n2 ≥ 0. For

each fixed n, the number of such R’s is less than a constant independent of n1 and n2. Also, by
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using the same skills as in Case 3, we have
diam(Q′1)diam(Q′2)
diam(Q1)diam(Q2) . 2

−
n1Q1,2+n2Q2,2
Q1,2∨Q2,2 . Therefore

∑
Case 4

r(R,R′)v(R,R′) =
∑

Case 4

µ(R′)

µ(R)
·

(
diam(Q′1)diam(Q′2)

diam(Q1)diam(Q2)

)N0

µ(Q1)µ(Q2)

.
∑
n≥0

2
−
n1Q1,2+n2Q2,2
Q1,2∨Q2,2

N0
µ(R′)

. µ(R′).

Now we have finished the estimate of (3.12). Then from (3.11), we have

I ≤ 1

µ(Ω)
2
p
−1

∑
h≥1

∑
R′∈D0,0

h

( ∑
R∈Case 1

+
∑

R∈Case 2

+

+
∑

R∈Case 3

+
∑

R∈Case 4

v(R,R′)r(R,R′)TR′

=: I1 + I2 + I3 + I4.

We first consider the terms I1, I2 and I3. Noting that we have chosen ε and N0 satisfying that

N0
Q1,2∨Q2,2

> 2
p and combining with the fact that µ(Ω0,0

h ) . h2hµ(Ω) for h ≥ 1, we have

I1, I2, I3 .
1

µ(Ω)
2
p
−1

∑
h≥1

2
−h(1+

N0
Q1,2∨Q2,2

)
µ(Ω0,0

h )
2
p
−1 1

µ(Ω0,0
h )

2
p
−1

∑
R′⊂Ω0,0

h

µ(R′)TR′

.
1

µ(Ω)
2
p
−1

∑
h≥1

2
−h(1+

N0
Q1,2∨Q2,2

)
(h2h)

2
p
−1
µ(Ω)

2
p
−1

× sup
Ω

1

µ(Ω)
2
p
−1

∑
R′⊂Ω

µ(R′)TR′

. sup
Ω

1

µ(Ω)
2
p
−1

∑
R′⊂Ω

µ(R′)TR′ .

As for I4, from the estimate in Case 4 we can see that

I4 ≤
1

µ(Ω)
2
p
−1

h0∑
h=1

∑
R′∈D0,0

h

∑
R∈Case 4

r(R,R′)v(R,R′)TR′ .
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Thus, we have

I4 .
1

µ(Ω)
2
p
−1

h0∑
h=1

µ(Ω0,0
h )

2
p
−1 1

µ(Ω0,0
h )

2
p
−1

∑
R′⊂Ω0,0

h

µ(R′)TR′

.
1

µ(Ω)
2
p
−1

h0∑
h=1

(h2h)
2
p
−1
µ(Ω)

2
p
−1 × sup

Ω

1

µ(Ω)
2
p
−1

∑
R′⊂Ω

µ(R′)TR′

. sup
Ω

1

µ(Ω)
2
p
−1

∑
R′⊂Ω

µ(R′)TR′ .

Combining the estimates from I1 to I4, we can get

I . sup
Ω

1

µ(Ω)
2
p
−1

∑
R′⊂Ω

µ(R′)TR′ .

Similarly, we can dealt with II, III and IV with only minor modifications. The proof of the

Min-Max comparison principle for CMOp(M) is complete.

We will establish the following duality result in the multi-parameter setting for M̃ .

Theorem 3.12.
(
Hp(M̃)

)′
= CMOp(M̃),

(
H1(M̃)

)′
= CMO1(M̃) = BMO.

We introduce the product sequence spaces sp and cp as follows.

Definition 3.13. Let χ̃Q = µ(Q)−
1
2χQ(x). The product sequence space sp, 0 < p ≤ 1, is

defined as the collection of all complex-value sequences

λ =
{
λQk1,ν1

τ1
×Qk2,ν2

τ2

}
k1,k2∈N;τ1∈Ik1

,τ2∈Ik2
;ν1=1,...,N(k1,τ1),ν2=1,...,N(k2.τ2)

such that ‖λ‖sp

=

∥∥∥∥∥
{ ∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

·
N(k2,τ2)∑
ν2=1

(
|λQk1,ν1

τ1
×Qk2,ν2

τ2

| · χ̃Qk1,ν1
τ1

(·)χ̃Qk2,ν2
τ2

(·)
)2
}1/2∥∥∥∥∥

Lp

<∞.
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Similarly, cp, 0 < p ≤ 1, is defined as the collection of all complex-value sequences

t =
{
tQk1,ν1

τ1
×Qk2,ν2

τ2

}
k1,k2∈N;τ1∈Ik1

,τ2∈Ik2
;ν1=1,...,N(k1,τ1),ν2=1,...,N(k2.τ2)

such that ‖t‖cp

= sup
Ω

(
1

µ(Ω)
2
p
−1

ˆ
Ω

∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

·
N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

χ{Qk1,ν1
τ1

×Qk2,ν2
τ2

⊂Ω}(k1, k2, τ1, τ2, ν1, ν2)

×
(
|tQk1,ν1

τ1
×Qk2,ν2

τ2

| · χ̃Qk1,ν1
τ1

(x1)χ̃Qk2,ν2
τ2

(x2)
)2
dµ(x1)dµ(x2)

)1/2

<∞.

For simplicity, ∀s ∈ sp, we rewrite s = {sR}R, and

‖s‖sp =
∥∥∥{∑

R

|sRχ̃R(x1, x2)|2
}1/2∥∥∥

Lp
, (3.13)

similarly, ∀t ∈ cp, rewrite t = {tR}, and

‖t‖cp = sup
Ω

(
1

µ(Ω)
2
p
−1

∑
R⊆Ω

|tR|2
)1/2

, (3.14)

where R runs over all the dyadic rectangles in M . The main result in this section is the following

duality theorem.

Theorem 3.14. (sp)′ = cp for 0 < p ≤ 1.

Proof. First, we prove that for all t ∈ cp, let

L(s) =
∑
R

sR · t̄R, ∀s ∈ sp, (3.15)

then |L(s)| . ‖s‖sp‖t‖cp .



95

To see this, let

Ωk =
{

(x1, x2) ∈M :
{∑

R

(|sR|χ̃R(x1, x2))2
}1/2

> 2k
}
.

And define

Bk =
{
R : µ(Ωk ∩R) >

1

2
µ(R), µ(Ωk+1 ∩R) ≤ 1

2
µ(R)

}
,

Ω̃k =
{

(x1, x2) ∈M :Ms(χΩk
) >

1

2

}
,

where Ms is the strong maximal function on M . By (3.15) and the Hölder’s inequality,

|L(s)| ≤

(∑
k

( ∑
R∈Bk

|sR|2
) p

2
( ∑
R∈Bk

|tR|2
) p

2

) 1
p

≤

(∑
k

µ(Ω̃k)
1− p

2
( ∑
R∈Bk

|sR|2
) p

2

( 1

µ(Ω̃)
2
p
−1

∑
R⊂Ω̃k

|tR|2
) p

2

)
(3.16)

≤

(∑
k

µ(Ω̃k)
1− p

2

( ∑
R∈Bk

|sR|2
) p

2

) 1
p

‖t‖cp .

Combining the fact that
´

Ω̃k\Ωk+1

∑
R∈Bk(|sR|χ̃R(x))2dµ(x) ≤ 22(k+1)µ(Ω̃\Ωk+1) ≤ C22kµ(Ωk)

and that
ˆ

Ω̃\Ωk+1

∑
R∈Bk

(|sR|χ̃R(x))2dµ(x) ≥
∑
R∈Bk

|sR|2µ(R)−1µ(Ω̃k\Ωk+1 ∩R)

Since R ∈ Bk, then R is contained in Ω̃k. It follows that

ˆ
Ω̃\Ωk+1

∑
R∈Bk

(|sR|χ̃R(x))2dµ(x) ≥
∑
R∈Bk

|sR|2µ(R)−1 1

2
µ(R)

≥1

2

∑
R∈Bk

|sR|2,

we obtain (
∑

R∈Bk |sR|
2)

p
2 . 2kpµ(Ωk)

p
2 . Substituting this back into the last term of (3.16) and

noting µ(Ω̃k) . µ(Ω) yields that |L(s)| . ‖s‖sp‖t‖tp .
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We point out that an idea similar to the one used in the above proof was used earlier to get

an atomic decomposition from a wavelet expansion by Meyer in [45].

Conversely, we need to verify that for any L ∈ (sp)′, there exists t ∈ cp with ‖t‖cp ≤ ‖L‖

such that for all s ∈ sp, L(s) =
∑

R sRt̄R. Here we adapt a similar idea in one-parameter case

of Frazier and Jawerth in [9] to our multi-parameter situation.

Now define siR = 1 when R = Ri and siR = 0 for all other R. Then is is easy to see that

‖siR‖sp = 1. Now for all s ∈ sp, s = {sR} =
∑

i sRis
i
Ri

, the limit holds in the norm of sp,

here we index all dyadic rectangles in M by {Ri}i∈Z. For any L ∈ (sp)′, let t̄Ri = L(si), then

L(s) = L(
∑

i sRis
i) =

∑
i sRi t̄Ri =

∑
R sRt̄R. Let t = {tR}. Then we only need to check that

‖t‖cp ≤ ‖L‖.

For any open set Ω ⊂M with finite measure, let µ̄ be a new measure such that µ̄(R) = µ(R)
µ(Ω)

when R ⊂ Ω, R̄ = 0 when R 6⊆ Ω. And let l2(µ) be a sequence space such that when s ∈ l2(µ̄),

(
∑

R⊂Ω |sR|2
µ(R)

µ(Ω)
p
2−1

)1/2 <∞. It is easy to see that (l2(µ̄))′ = l2(µ̄). Then,

{ 1

µ(Ω)
2
p
−1

∑
R⊂Ω

|tR|2
}1/2

=
∥∥µ(R)−1/2|tR|

∥∥
l2(µ̄)

= sup
s:‖s‖l2(µ̄)≤1

∣∣∣ ∑
R⊆Ω

(|tR|µ(R)−1/2) · sR ·
µ(R)

µ(Ω)
1
p
−1

∣∣∣
≤ sup
s:‖s‖l2(µ̄)≤1

∣∣∣L(χR⊆Ω(R)
µ(R)1/2|sR|
µ(Ω)

p
2
−1

)∣∣∣
≤ sup
s:‖s‖l2(µ̄)≤1

‖L‖ ·
∥∥∥χR⊆Ω(R)

µ(R)1/2|sR|
µ(Ω)

p
2
−1

∥∥∥
sp
.

By (3.13) and the Hölder inequality, we have

∥∥∥χR⊆Ω(R)
µ(R)1/2|sR|
µ(Ω)

p
2
−1

∥∥∥
sp
≤
( ∑
R⊆Ω

|sR|2
µ(R)

µ(Ω)
p
2
−1

)1/2
.

Hence,

‖t‖cp ≤ sup
s:‖s‖l2(µ̄)≤1

‖L‖ · ‖s‖l2(µ̄) ≤ ‖L‖.
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In this section, we prove Theorem 3.12. First, we define the lifting and projection operators

as follows.

Definition 3.15. Let {Dki}ki∈N be an approximation to the identity, for i = 1, 2. For any

f ∈ T ′ define the lifting operator SD by

SD(f) =
{
µ(Qk1,ν1

τ1 )1/2µ(Qk2,ν2
τ2 )1/2Dk1Dk2(f)(yk1,ν1

τ1 , yk2,ν2
τ2 )

}
Qk1,ν1
τ1

,Qk2,ν2
τ2

, (3.17)

where yki,νiτi is the center of Qki,νiτi , ki ∈ N, τi ∈ Iki , νi = 1, . . . , N(ki, τi) for i = 1, 2.

Definition 3.16. Let all the notation be the same as above. For any sequence s, define the

projection operator TD̃ by

TD̃(s)(x1, x2) =
∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

sQk1,ν1
τ1

×Qk2,ν2
τ2

(3.18)

× µ(Qk1,ν1
τ1 )1/2µ(Qk2,ν2

τ2 )1/2D̃k1D̃k2(x1, x2, y
k1,ν1
τ1 , yk2,ν2

τ2 ),

where yki,νiτi is the center of Qki,νiτi and D̃ki is the same operator as in the Calderón reproducing

formula associated with Dki for i = 1, 2.

To work at the level of product sequence spaces, we still need the following two propositions.

Proposition 3.2. Let all the notation be the same as above. Then for any f ∈ Hp(M),

‖SD(f)‖sp . ‖f‖Hp(M). (3.19)

Conversely, for any s ∈ sp,

‖TD̃(s)‖Hp(M) . ‖s‖sp

Moreover, TD̃ ◦ SD is the identity on Hp(M).
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Proposition 3.3. Let all the notation be the same as above. Then for any f ∈ CMOp(M),

‖SD(f)‖cp . ‖f‖CMOp(M). (3.20)

Conversely, for any t ∈ cp,

‖TD̃(t)‖CMOp(M) . ‖t‖cp . (3.21)

Moreover, TD̃ ◦ SD is the identity on CMOp(M).

Assume the above two propositions first, then we give the proof of Theorem 3.12 with p0.

Proof. First, let {Dki}ki∈N be an approximation to the identity, for i = 1, 2. For any g ∈

T (n0,m;n′0,

m′) and f ∈ CMOp(M), from the two propositions above, we have

〈f, g〉 = 〈TD̃ ◦ SD(f), g〉 = 〈SD(f), SD̃(g)〉,

where SD̃(g) = {µ(Qk1,ν1
τ1 )1/2µ(Qk2,ν2

τ2 )1/2D̃k1,k2(g)(yk1,ν1
τ1 , yk2,ν2

τ2 )}Qk1,ν1
τ1

,Qk2,ν2
τ2

.

By Definition 3.13 and the Min-Max comparison principle in Lemma 3.4, we obtain ‖SD̃(g)‖sp .

‖g‖Hp(M). Hence |〈f, g〉| ≤ |〈SD(f), SD̃(g)〉| . ‖f‖CMOp(M)‖g‖Hp(M), where the last inequality

follows from the two propositions above. Since T is dense in Hp(M), it follows from a standard

density argument that CMOp(M) ⊆ (Hp(M))′.

Conversely, suppose l ∈ (Hp(M))′. Then l1 ≡ l ◦ TD̃ ∈ (sp)′ by Proposition 3.2. So by

Theorem 3.14, there exists t ∈ cp such that l1(s) = 〈t, s〉 for all s ∈ sp, and ‖t‖cp ≈ ‖l1‖ . ‖l‖,

since TD̃ is bounded. We have l1 ◦ SD = l ◦ TD̃ ◦ SD = l, hence

l(g) = l ◦ TD̃(SD(g)) = 〈t, SD(g)〉 = 〈TD(t), g〉,
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where

TD(t) =
∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

tQk1,ν1
τ1

×Qk2,ν2
τ2

µ(Qk1,ν1
τ1 )

1
2µ(Qk2,ν2

τ2 )
1
2

×Dk1Dk2(x1, x2, y
k1,ν1
τ1 , yk2,ν2

τ2 ).

By Definition 3.13 and the Min-Max comparison principle in Theorem 3.4, we obtain that

‖TD(t)‖CMOp(M) ≤ ‖t‖cp ≤ ‖l‖. Hence (Hp(M))′ ⊆ CMOp(M).

Now we give brief proofs to the above propositions.

Proof of Proposition 3.2. To show this proposition, we first point out that the proof is closely

related to the Min-Max comparison principle for Hp(M), namely, Lemma 3.4. (3.19) is a direct

consequence of Lemma 3.4 and the proof of (3.2) follows the same routine as the proof of Lemma

3.4.

Now let us go into the details. We first prove (3.19). By Definition 3.13 and 3.15, we can see

that for any f ∈ Hp(M),

‖SD(f)‖sp

≤

∥∥∥∥∥{
∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν=2

sup
u∈Qk1,ν1

τ1
,v∈Qk2,ν2

τ2

|Dk1Dk2(f)(u, v)|2

× χQk1,ν1
τ1

χQk2,ν2
τ2

(·)

} 1
2
∥∥∥∥∥
Lp

.

∥∥∥∥∥{
∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν=2

inf
u∈Qk1,ν1

τ1
,v∈Qk2,ν2

τ2

|Dk1Dk2(f)(u, v)|2

× χQk1,ν1
τ1

(·)χQk2,ν2
τ2

(·)

} 1
2
∥∥∥∥∥
Lp

≤

∥∥∥∥∥
{ ∞∑
k1=0

∞∑
k2=0

|Dk1Dk2(f)(·, ·)|2
} 1

2
∥∥∥∥∥
Lp
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. ‖f‖Hp .

Now let us turn to (3.2). For simplicity, we only need to work with the dyadic cubes of form

{Qkiτi : ki ∈ N, τi ∈ Iki+J} for i = 1, 2.

To simplify our notation, let mQk1
τ1
×Qk2

τ2

(x1, x2) = µ(Qk2
τ2 )1/2µ(Qk1

τ1 )1/2D̃k1(x1, y
k1
τ1 )

· D̃k2(x2, y
k2
τ2 ). Now we first estimate Dj1Dj2(mQk1

τ1
×Qk2

τ2

)(x1, x2).

From Definition 3.8 and 3.16, we have

‖TD̃(s)(x1, x2)‖pHp(M) = ‖g(TD̃(s))‖pLp(M)

.

∥∥∥∥∥
{∑
j1,j2

([ ∑
k1>j1,k2>j2

+
∑

k1>j1,k2≤j2

+
∑

k1≤j1,k2>j2

+
∑

k1≤j1,k2≤j2

]

×
∑

τ1∈Ik1+J1

∑
τ2∈Ik2+J2

|sQk1
τ1
×Qk2

τ2

||Dj1Dj2(mQk1
τ1
×Qk2

τ2

)(x1, x2)|

)2}1/2∥∥∥∥∥
p

Lp(M)

. I + II + III + IV.

We now first estimate I. Note that

∑
k1>j1,k2>j2

∑
τ1∈Ik1+J1

∑
τ2∈Ik2+J2

|sQk1
τ1
×Qk2

τ2

||Dj1Dj2(mQk1
τ1
×Qk2

τ2

)(x1, x2)|

.
∑

k1>j1,k2>j2

∑
τ1∈Ik1+J1

·
∑

τ2∈Ik2+J2

2(j1−k1)(1+ε′)2(j2−k2)(1+ε′)|sQk1
τ1
×Qk2

τ2

|µ(Qk1
τ1 )−1/2µ(Qk2

τ2 )−1/2

× 1

(1 + 2j1ρ(x1, y
k1
τ1 ))1+ε′

1

(1 + 2j2ρ(x2, y
k2
τ2 ))1+ε′

.
∑

k1>j1,k2>j2

2(j1−k1)(1+ε′− 1
r

)2(j2−k2)(1+ε′− 1
r

)

(
M1

[ ∑
τ1∈Ik1+J
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×M2

( ∑
τ2∈Ik2+J

|sQk1
τ1
×Qk2

τ2

µ(Qk1
τ1 )−1/2µ(Qk2

τ2 )−1/2|rχQk1
τ1

(·)

]
(x1)

) 1
r

,

where 2
2+θ < r < p and Mi, i = 1, 2, is the Hardy-Littlewood Maximal function with respect

to the first and the second variable, respectively. The last inequality follows from an iteration

of the result which can be found in [22], for Rn and [34], for spaces of homogeneous type.

Let k = (k1, k2), j = (j1, j2), x = (x1, x2) and

a(x) = {ak(x)}k

=

(
M1

[ ∑
τ1∈Ik1+J

M2

( ∑
τ2∈Ik2+J

|sQk1
τ1
×Qk2

τ2

µ(Qk1
τ1 )−1/2µ(Qk2

τ2 )−1/2|rχQk2
τ2

(·)

)

· (x2)χQk1
τ1

(·)

]
(x1)

) 1
r

;

b = {bk}k =
{

2k1(1+ε′− 1
r

)2k2(1+ε′− 1
r

)χk1<0(k1)χk2<0(k2)(k2)
}
k
;

(a ∗ b)j =
∑
k

akbj−k.

By the Young inequality and an iterative application of the Fefferman and Stein vector-valued

maximal function inequality in [18] on L
p
r (M), we have

IV .
∥∥∥{∑

j

|(a ∗ b)j |2
}1/2∥∥∥ .

∥∥‖a ∗ b‖l2∥∥pLp(M)

.
∥∥‖a‖l2‖b‖l1∥∥pLp(M)

.
∥∥‖a‖l2∥∥pLp(M)

.‖s‖psp

Using the same skill, we can get that II, III, IV. ‖s‖psp . Thus

‖TD̃(s)(x1, x2)‖Hp(M) . ‖s‖sp .
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Finally, it is easy to check that from the Calderón reproducing formula, TD̃ ◦SD equals identity

on Hp(M). The proof of proposition is complete.

Proof of Proposition 3.3. This proposition is similar as the above one since its proof is closely

related to the Min-Max comparison principle for CMOp(M), namely, Theorem 3.4. (3.20) is a

direct consequence of Theorem 3.4 and the proof of (3.21) follows the same routine as the proof

of Theorem 3.4.

Now we give the details of the proof. We first prove (3.20). According to Definition 3.13 and

3.15, for any f ∈ CMOp(M), we have

‖SD(f)‖cp

. sup
Ω

(
1

µ(Ω)
2
p
−1

ˆ
Ω

∞∑
k1,k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν=1

·
N(k2,τ2)∑
ν2=1

χQk1,ν1
τ1

×Qk2,ν2
τ2

(k1, k2, τ1, τ2, ν1, ν2)

× sup
u∈Qk1,ν1

τ1
,v∈Qk2,ν2

τ2

|Dk1Dk2(f)(u, v)|2χQk1,ν1
τ1

(x1)χQk2,ν2
τ2

(x2)dµ(x1)µ(x2)

)1/2

. sup
Ω

(
1

µ(Ω)
2
p
−1

ˆ
Ω

∞∑
k1,k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

·
N(k2,τ2)∑
ν2=1

χQk1,ν1
τ1

×Qk2,ν2
τ2

⊂Ω
(k1, k2, τ1, τ2, ν1, ν2)

× inf
u∈Qk1,ν1

τ1
,v∈Qk2,ν2

τ2

|Dk1Dk2(f)(u, v)|2χQk1,ν1
τ1

(x1)χQk2,ν2
τ2

(x2)dµ(x1)µ(x2)

)1/2

. sup
Ω

(
1

µ(Ω)
2
p
−1

ˆ
Ω

∞∑
k1,k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

·
N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

χQk1,ν1
τ1

×Qk2,ν2
τ2

⊂Ω
(k1, k2, τ1, τ2, ν1, ν2)

× |Dk1Dk2(f)(x1, x2)|2χQk1,ν1
τ1

(x1)χQk2,ν2
τ2

(x2)dµ(x1)µ(x2)

)1/2

≤ ‖f‖CMOp .
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Now let us prove (3.21). For any t ∈ cp, by the definition of norm of CMOp, we have

‖TD̃(t)‖CMOp(M) . sup
Ω

( 1

µ(Ω)
2
p
−1

ˆ
Ω

∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

·
N(k2,τ2)∑
ν2=1

χQk1,ν1
τ1

(x1)χQk2,ν2
τ2

(x2)

× χQk1,ν1
τ1

×Qk2,ν2
τ2

⊂Ω
(k1, k2, τ1, τ2, ν1, ν2)

·
∣∣Dk1Dk2

(
TD̃(t)

)
(x1, x2)

∣∣2dµ(x1)dµ(x2)
) 1

2
.

From the definition of TD̃(t) and the same skill as in the estimate of (3.7), we can obtain that

sup
x1∈Q

k1,ν1
τ1

,x2∈Q
k2,ν2
τ2

|Dk1Dk2

(
TD̃(t)

)
(x1, x2)|2

.
∞∑
k′1=0

∞∑
k′2=0

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

·
N(k′2,τ

′
2)∑

ν′2=1

2−|k1−k′1|ε′2−|k2−k′2|ε′µ(Qk
′
1,ν
′
1

τ ′1
)µ(Qk

′
2,ν
′
2

τ ′2
) (3.22)

× 2−(k1∧k′1)ε′

(2−(k1∧k′1)+ρ(y1,y′1))1+ε′

2−(k2∧k′2)ε′

(2−(k2∧k′2)+ρ(y2,y′2))1+ε′

×
∣∣t
Q
k′1,ν
′
1

τ ′1
×Q

k′2,ν
′
2

τ ′2

µ(Qk
′
1,ν
′
1

τ ′1
)−1/2µ(Qk

′
2,ν
′
2

τ ′2
)−1/2

∣∣2,
where yi is the center of Qki,νiτi and y′i is the center of Qk

′
i,ν
′
i

τ ′i
for i = 1, 2.

Comparing (3.22) with (3.7), we can that the only thing different is that the last term

in the right-hand side of (3.7) is TR′ , while the last term in the right-hand side of (3.22) is∣∣t
Q
k′1,ν
′
1

τ ′1
×Q

k′2,ν
′
2

τ ′2

·

µ(Qk
′
1,ν
′
1

τ ′1
)−1/2µ(Qk

′
2,ν
′
2

τ ′2
)−1/2

∣∣2. However, when proving the Theorem 3.4, we can see the term

TR′ is fixed throughout the whole proof. This implies that we can prove this proposition just

following the proof of Theorem 3.4 without any changes.
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Thus, we can obtain that

‖TD̃(t)‖CMOp(M) . sup
Ω

(
1

µ(Ω)
2
p
−1

∞∑
k1=0

∞∑
k2=0

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

·
N(k2,τ2)∑
ν2=1

χQk1,ν1
τ1

×Qk2,ν2
τ2

⊂Ω
(k1, k2, τ1, τ2, ν1, ν2)

× µ(Qk1,ν1
τ1 )µ(Qk1,ν1

τ1 )
∣∣∣t
Q
k′1,ν
′
1

τ ′1
×Q

k′2,ν
′
2

τ ′2

µ(Qk
′
1,ν
′
1

τ ′1
)−1/2µ(Qk

′
2,ν
′
2

τ ′2
)−1/2

∣∣∣2)1/2

.‖t‖cp .

Finally, we can easily get that form the Calderón reproducing formula TD̃ ◦SD is the identity

operator on CMOp. We finish the proof of the proposition.

3.6 The Boundedness of singular integral operator on M

Before we give the proof of the theorem, let’s review some known results stated in [68].

Definition 3.17. We say T : C∞(M) → C∞(M) is a product singular integral operator of

order t = (t1, . . . , tν) ∈ (−Q1
1,∞)× · · · × (−Qν1 ,∞) ⊆ Rν if

(i) (Growth Condition) For each ordered multi-indices α, β,

|Xα
xX

β
z T (x, z)| ≤ Cα,β

ρ(x, z)−t−deg (α)−deg (β)

Vol(B(x, ρ(x, z)))
,

where Xx denotes the list of vector fields X1, . . . , Xq thought of as partial differential operators

in the x variable and similarly for Xz. In particular, the above implies that the distribution

T (x, z) corresponds with a C∞ function on the set x1 6= z1, . . . , xν 6= zν .

(ii) (Cancellation Condition) For each bounded set of bump function B ⊂ C∞(M) ×M ×
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(0, 1]ν and each ordered multi-index α,

sup
(φ,z,δ)∈B

sup
x∈M

δt+deg (α)Vol(B(z, δ))|XαTφ(x)| ≤ CB,α,

with the same estimates for T ∗ in place of T . Here, the formal adjoint T ∗ is taken in the sense

of L2(M) which is defined in terms of the chosen strictly positive, smooth measure.

If we consider topology on the space of product singular integral operators, we can have the

following equivalent definition of these operators.

Definition 3.18. When ν = 0, we define the space of product singular integral operators to be

C with the usual topology. For ν ≥ 1 the space of product singular integral operators of order

t = (t1, . . . , tν) ∈ (−Q1
1,∞)× · · · × (−Qν1 ,∞) ⊆ Rν if

(i) (Growth Condition) For each ordered multi-indices α, β,

|Xα
xX

β
z T (x, z)| ≤ Cα,β

ρ(x, z)−t−deg (α)−deg (β)

Vol(B(x, ρ(x, z)))
,

In particular we assume T ((x1, . . . , xν), (z1, . . . , zν)) agree with a C∞ function on the set x1 6=

z1, . . . , xν 6= zν .

(ii) (Cancellation Condition) For each ν, 1 ≤ µ ≤ ν, we assume that following holds. For

every bounded set of bump functions Bµ and Mµ, we have the following. For every xµ ∈ Mµ,

(φµ, zµ, δµ) ∈ Bµ, we define the function xµ 7→ T φµ,xµ , Mµ → C∞(M1 × · · · ×Mµ−1 ×Mµ+1 ×

· · · ×Mν)′ by

〈T (φ1 ⊗ · · · ⊗ φν), ψ1 ⊗ · · · ⊗ ψν〉

=

ˆ
Mµ

〈T φµ,xµ(⊗µ′ 6=µφµ′),⊗µ′ 6=µψµ′〉ψµ(xµ)dxµ

T φµ,xµ is a priori only defined as a distribution in the xν variable, but we assume it to agree

with a C∞ function in that variable. Furthermore, we assume that for every ordered multi-index
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α, the operator

Vol
(
B(Xµ,d̂µ)(xµ, δµ)

)
δ
tµ
µ (δµX

µ
xµ)αT φµ,xµ : C∞

( ∏
µ′ 6=µ

Mµ′
)
→ C∞

( ∏
µ′ 6=µ

Mµ′
)

is a product singular integral operator of order (t1, . . . tµ−1, tµ+1, . . . , tν) on the ν−1 factor space

M1 × · · · ×Mµ−1 ×Mµ+1 × · · · ×Mν . Finally for every continuous semi-norm, ‖ · ‖, for product

kernels of order (t1, . . . tµ−1, tµ+1, . . . , tν) on M1× · · ·×Mµ−1×Mµ+1× · · ·×Mν , every ordered

multi-index α, and every bounded set of bump functions Bµ on Mµ, we define a semi-norm

‖ · ‖α,Bµ , on product singular integrals of order t by

‖T‖α,Bµ := sup
(φµ,zµ,xµ)∈Bµ

∣∣Vol
(
B(Xµ,d̂µ)(xµ, δµ)

)
δ
tµ
µ (δµX

µ
xµ)αT φµ,xµ

∣∣

which we assume to be finite. We do the same for the transpose of T in the µ variable, where

we define zµ 7→ T zµ,ψµ reversing the roles of xµ, zµ and φµ, ψµ; thereby obtaining another semi-

norm.

Definition 3.19. We say E ⊂ C∞(M×M)×(0, 1]ν is a bounded set of pre-elementary operators

if: ∀α, β,m, ∃C = C(E , α, β,m), ∀(E, 2−j) ∈ E ,

∣∣(2−jXx)α(2−jXz)
βE(x, z)

∣∣ ≤ C (1 + 2jρ(x, z))
−m

Vol(BX(x, 2−j + ρ(x, z)))
.

Definition 3.20. We define the set of bounded sets of elementary operators, G, to be the largest

set of subsets of C∞(M ×M)× (0, 1)ν such that for all E ∈ G,

(i) E is a bounded set of pre-elementary operators.

(ii) Let e = (1, . . . , 1) ∈ Nν . We write deg(α) ≤ e to denote the inequality holding coordinate-

wise. We assume ∀ (E, 2−j) ∈ E ,

E =
∑

deg(α),deg(β)≤e

2−(2e−deg(α)−deg(β))j(2−jX)
α
Eα,β(2−jX)

β
,
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where {(Eα,β, 2−j) | (E, 2−j) ∈ E} ∈ G.

We call elements E ∈ G bounded set of elementary operators.

Theorem 3.21 ( [68]). Fix t ∈ (−Q1
1,∞) × · · · × (−Qν1 ,∞), and let T : C∞(M) → C∞(M).

The following are equivalent:

(i) T is a product singular integral operator of order t as in Definition 3.17

(ii) T is a product singular integral operator of order t as in Definition 3.18

(iii) For every bounded set of elementary operator E,

{(2−j·tTE, 2−j)|(E, 2−j) ∈ E}

is a bounded set of elementary operators.

(iv) There is a bounded set of elementary operators {(Ej , 2−j)|j ∈ Nν} such that T =
∑

j∈Nν 2j·tEj.

(Every such sum converges in the topology of bounded convergence as operators C∞(M) →

C∞(M); this can be seen just as in Lemma 2.0.28.)

Furthermore, (iii) and (iv) are equivalent for any t ∈ Rν .

Lemma 3.1 ( [68]). For each µ, let Eµ ⊂ C∞(Mµ×Mµ)×(0, 1]ν be a bounded set of elementary

operators as in the single parameter case. Then, the set

{(E1 ⊗ · · · ⊗ Eν , (2−j1 , . . . , 2−jν ))|(E1, 2
j1) ∈ E1, . . . , (Eν , 2

jµ) ∈ Eν}

is a bounded set of elementary operators as in Definition 3.20

Corollary 3.22 ( [68]). There is a bounded set of elementary operators

{(Ej , 2−j)|j ∈ Nν}

such that I =
∑

j∈Nν Ej , where I : C∞(M)→ C∞(M) is the identity operators.
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Proposition 3.4. Let E be a bounded set of elementary operators. Then, for every N , the set

{(
2N |j1−j2|E1E2, 2

−j1), (2N |j1−j2|E1E2, 2
−j2), (2N |j1−j2|E1E2, 2

−j1∧j2)|
(E1, 2

−j1), (E2, 2
−j2) ∈ E

}

is a bounded set of elementary operators.

The following results in [68] are related to the multi-parameter singular operators and the

pseudo-differential operators. Now for each point in M , we need to work on a small neighborhood

of this point, so that one can apply the Frobenius Theorem (see [68] for details).

Definition 3.23. Fix s ∈ Rν and T : C∞(M) → C∞(M). We say T ∈ As if for each j ∈ Nν

there is Ej ∈ C∞0 (M×M) such that {(Ej , 2−j)|j ∈ Nν} is a bounded set of elementary operators

and

T =
∑
j∈Nν

2j·sEj ,

where the sum taken in the sense of distribution. We will (Remark 5.3.3) that every such sum

converges in the sense of distribution. In fact, every such sum converges in the topology of

bounded convergence as operators C∞(M)→ C∞(M) .

Definition 3.24. For a distribution K ∈ C∞0 (Rq)′, s ∈ Rν , and a > 0, we say K ∈ PK(s, a) if

there is η ∈ C∞0 (Bq(a)) and a bounded set {ςj |j ∈ Nν} ⊂ (Sq) with ςj ∈ S
µ|jµ 6=0
0 such that

K = η
∑
j∈Nν

ς
(2j)
j .

Proposition 3.5. Let K ∈ C∞(M ×Rq)′ be supported in M ×Bq(a) and let m ∈ (−Q1,∞)×

· · · × (−Qν ,∞). If K is a product kernel of order m, then K ∈ C∞(M)⊗̂PK(m, a).

Definition 3.25. Let a > 0 be a small number to be chosen later. We say T : C∞(M) →

C∞(M) is a pseudo-differential operator of order m ∈ Rν if there is K ∈ C∞(M)⊗̂PK(m, a)
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such that

Tf(x) =

ˆ
f(γ(x, t))K(x, t) dt,

γ is given by either of the following formulas:

γ(x, t1, . . . , tν) = et1·X
1 · · · etν ·Xν

x,

γ(x, t) = et·Xx = et1·X
1+···+tν ·Xν

x.

where Xν denotes the list of vector fields Xµ
1 , · · · , X

µ
qµ and X denotes the list of vector fields

X1, . . . , Xq.

Theorem 3.26 ( [68]). If a > 0 is sufficiently small, and if T is a pseudo-differential operator

of order s ∈ Rν , then T ∈ As.

Theorem 3.27 ( [68]). If T ∈ As, then T is a product singular integral operator of order s in

the sense of Definition 3.21.

And from the above, if we can prove the product singular operator T satisfies the Hp

boundedness, then the boundedness of T ∈ As follows immediately. In other words, the multi-

parameter pseudo-differential operator defined above also the Hp boundedness. Hence, let’s

prove the Hp boundedness of the product singular operator T right now. And for the simplicity,

we still consider the two parameter cases. The multi-parameter cases proof follows the similar

steps. To achieve this target, we also need the next proposition.

Proposition 3.6. Given two bounded set of elementary operator E1 and E2 on M , ∀m,N ,

∃C = C(m,N, E1, E2), s.t. ∀(Dj .2
−j) ∈ E1 and (Dk, 2

−k) ∈ E2, we have

|Dj
1D

j
2TD

k
1D

k
2(x, y)| ≤ C2−N |j−k|

(1 + 2j∧kρ(x, y))−m

Vol(B(X,d)(x, 2−j∧k(1 + 2j∧kρ(x, y)))

where Dj = Dj
1 ⊗D

j
2 and Dk = Dk

1 ⊗Dk
2 .
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We assume the proposition for the moment and now show the Hp boundedness of T as

follows.

Theorem 3.28. For 0 < p ≤ 1 and s = 0, we have

‖Tf‖Hp(M) ≤ ‖f‖Hp(M)

where T is defined as Theorem 3.21.

Proof. For f ∈ L2 ∩Hp, we have

‖Tf‖Hp .

∥∥∥∥∥{∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

|Dk1Dk2(Tf)(yk1,ν1
τ1 , yk2,ν2

τ2 )|2χQk1,ν1
τ1

(·)χQk2,ν2
τ2

(·)}
1
2

∥∥∥∥∥
Lp

Applying the L2 boundedness of T and the discrete Calderón reproducing formula,

.

∥∥∥∥∥{∑
k1∈N

∑
k2∈N

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
ν1=1

N(k2,τ2)∑
ν2=1

|Dk1Dk2

(
T
∑
k′1∈N

∑
k′2∈N∑

τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

µ1(Qk
′
1,ν
′
1

τ ′1
)µ2(Qk

′
2,ν
′
2

τ ′2
)Dk′1

Dk′2

Dk′1
Dk′2

(f)(y
k′1,ν

′
1

τ ′1
, y
k′2,ν

′
2

τ ′2
)
)
(yk1,ν1
τ1 , yk2,ν2

τ2 )|2χQk1,ν1
τ1

(·)χQk2,ν2
τ2

(·)}
1
2

∥∥∥∥∥
Lp(M)

According to the above proposition and the similar procedure while proving the Plancherel-

Pôlya inequality, we can obtain

.

∥∥∥∥∥{∑
k′1∈N

∑
k′2∈N

∑
τ ′1∈Ik′1

∑
τ ′2∈Ik′2

N(k′1,τ
′
1)∑

ν′1=1

N(k′2,τ
′
2)∑

ν′2=1

|Dk′1
Dk′2

(f)(y
k′1,ν

′
1

τ ′1
, y
k′2,ν

′
2

τ ′2
)|2

χ
Q
k′1,ν
′
1

τ ′1

(·)χ
Q
k′2,ν
′
2

τ ′2

(·)}
1
2

∥∥∥∥∥
Lp

. ‖f‖Hp(M)



111

We now return to the proof of Proposition.

Proof of Proposition. Note that T is the product singular operator of order 0. Hence, by the sec-

ond equivalent definition, {(TDk, 2
−k)|Dk ∈ E2} is also a bounded set of elementary operators.

Furthermore, note that for every N , the set

{(2N |j−k|DjTDk, 2
−j∧k), (2N |j−k|TDkDj , 2

−j∧k)|(Dj .2
−j) ∈ E1, (Dk, 2

−k) ∈ E2}

is a bounded set of pre-elementary operators.

Therefore, by the definition of pre-elementary operators, we have

∣∣∣(2−j∧kXx

)α(
2−j∧kXy

)β(
2N |j−k|DjTDk

)
(x, y)

∣∣∣ . (
1 + 2j∧kρ(x, y)

)−m
Vol
(
B(X,d)(x, 2−j∧k + ρ(x, y))

)
or equivalently,

∣∣∣(2−j∧kXx

)α(
2−j∧kXy

)β(
DjTDk

)
(x, y)

∣∣∣ . 2−N |j−k|
(
1 + 2j∧kρ(x, y)

)−m
Vol
(
B(X,d)(x, 2−j∧k + ρ(x, y))

)
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[56] J. Pipher, Journé’s covering lemma and its extension to higher dimensions. Duke Math. J.

53 (1986), no. 3, 683-690.
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In [12], Christ, Nagel, Stein and Waigner studied the Lp theories for the singular Radon

Transforms. Furthermore, B. Street in [68], and Stein and Street in [64–67] extended the theories

of the Lp boundedness for multi-parameter singular integral operators, such as the Calderón

Zygmund operators and singular Radon transforms. In this dissertation, we will study the

Hardy space Hp and its dual space associated with both the one-parameter and multi-parameter

singular Radon transforms, and consider the boundedness of the singular Radon transforms on

such Hardy spaces Hp when 0 ≤ p ≤ 1.

Inspired by recent characterization of the Hardy spaces on product spaces, we will take

advantage of the discrete Littlewood-Paley analysis [14, 32, 43] to define the Hardy spaces Hp

and the Carleson measure spaces CMOp associated with the multi-parameter singular Radon

transforms. Moreover, we will prove the Hp boundedness of those operators and thus obtain

the endpoint estimates for the Lp boundedness of the singular Radon transforms by Christ,

Nagel, Wainger and Stein [12] and for multi-parameter singular Radon transforms by Street

and Stein [65–68].
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