
Wayne State University

Wayne State University Dissertations

1-1-2018

Study Of Probabilistic Characteristics Of Local
Field Fluctuations In Isotropic Two Phase
Composites: Conductivity Type Problems
David Ostberg
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Mechanical Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Ostberg, David, "Study Of Probabilistic Characteristics Of Local Field Fluctuations In Isotropic Two Phase Composites: Conductivity
Type Problems" (2018). Wayne State University Dissertations. 1954.
https://digitalcommons.wayne.edu/oa_dissertations/1954

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1954?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages


STUDY OF PROBABILISTIC CHARACTERISTICS OF LOCAL
FIELD FLUCTUATIONS IN ISOTROPIC TWO PHASE
COMPOSITES: CONDUCTIVITY TYPE PROBLEMS

by

DAVID OSTBERG

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2018

MAJOR: MECHANICAL ENGINEERING

Approved By:

Advisor: Victor Berdichevsky Date

Xin Wu Date

Walter Bryzik Date

Golam Newaz Date

Guangzhao Mao Date



TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Homogenization of Two Phase Composites . . . . . . . . . . . . . . . . . . . 3

1.2 Electric Field Fluctuations in Conductors with Spherical Inclusions . . . . . 7

1.3 Internal Fields and Microstructure in Probabilistic Terms . . . . . . . . . . . 8

1.4 Non-Homogenous Fields: Two-Dimensional Case . . . . . . . . . . . . . . . 12

1.5 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 Electric Field Fluctuations in Conductors with Spherical Inclusions . . . 18

2.1 Setting of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Computation of Probability Densities . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Function A(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Function B(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Probability Density of Electric Potential . . . . . . . . . . . . . . . . . . . . 35

2.6 Probability Density of Electric Field Collinear with Applied Field . . . . . . 38

2.7 Probability Density of Electric Field Orthogonal to Applied Field . . . . . . 40

2.8 Asymptotics of Probability Densities . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Effective Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 3 Approximation of Local Fields in Two Phase Composites . . . . . . . . . 52

3.1 Simplified Case of One Phase having a Homogenous Field . . . . . . . . . . . 55

3.2 Compatibility of Probability Distributions . . . . . . . . . . . . . . . . . . . 57

3.3 General Solution of Field Fluctuation Correlations . . . . . . . . . . . . . . . 59

3.4 Symmetry of Internal Fields in Two Dimensional Case . . . . . . . . . . . . 61

ii



3.5 Debye Microstructural Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Selected Statistical Characteristics of the Field Fluctuation . . . . . . . . . . 62

3.7 Non-Negativity of Joint Two Point Probabilities . . . . . . . . . . . . . . . . 63

3.8 Two Dimensional Debye Material . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Number of Field Fluctuations to Satisfy Potentiality Condition . . . . . . . . 67

3.10 Three Field Fluctuations in Phase 1 with a Homogenous Field in Phase 2 . . 68

3.11 Composites with Statistically Continuous Material Characteristics . . . . . . 70

3.12 Statistically Continuous Material Characteristics: General Results . . . . . . 74

Chapter 4 Variational Principle for Homogenization in Probabilistic Terms . . . . . 78

4.1 Three Field Fluctuations: an Approximate Solution . . . . . . . . . . . . . . 78

4.2 Statistically Continuous Material Characteristics . . . . . . . . . . . . . . . . 83

4.3 Admissible values of c2 and Ω from 0 ≤ f12 (~u; |~τ | , ~u′) . . . . . . . . . . . . . 86

4.4 Admissible values of c2 and Ω from 0 ≤ f11 (~u; |~τ | , ~u′) . . . . . . . . . . . . . 89

Chapter 5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Three Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Hashin-Shtrikman Variational Principal . . . . . . . . . . . . . . . . . . . . . 94

Appendix A Probability Density of Electric Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Appendix B Electric Field for Random Distribution of Particle Radii . . . . . . . . . . . . . . . . . . . 98

Appendix C Two Vectors in Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix D General Solution of Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Autobiographical Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

iii



LIST OF FIGURES

Figure 1.1 Effective coeffi cient aeff/a1 for composite with insulative particles (solid)
and Hashin-Shtrikman bounds (point-dashed) (a2/a1 = 2/5 (a) and
a2/a1 = 10−3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.2 Effective coeffi cient aeff/a1 for composite with conductive particles (solid)
and Hashin-Shtrikman bounds (point-dashed) (a2/a1 = 104 (a) , a2/a1 =
10 (b) , and a2/a1 = 2 (c)). . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.3 New result for aeff (solid, grey) with Reuss (dashed), Voight, (dotted),
and Hashin Shtrikman (solid, black) for four levels of contrast (a2/a1 =
1/10, top left), (a2/a1 = 1/5, top right), (a2/a1 = 5, bottom left), and
(a2/a1 = 10, bottom right) . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 1.4 Points of concentration of fluctutations for the 3 vector approximation.
The blue and red vectors are points of concentration in the first phase,
and the black vector the point of concentration in the second phase.
Black dots correspond to the Reuss solution. . . . . . . . . . . . . . . . 17

Figure 2.1 Notation for single inclusion problem . . . . . . . . . . . . . . . . . . . 25

Figure 2.2 Function A(y) (solid) in composite (a) along with its asymptotic approx-
imations for small y (|y|3/2 2

√
2π/5, point-dashed) and large y (3y2/5,

dashed), and A1(y) (solid) in matrix (b) along with its asymptotic ap-
proximations for small y (|y|3/2 2

√
2π/5 − 1, point-dashed) and large y

(y2/2, dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.3 Real (a) and imaginary (b) parts of function B‖ (y) (solid) along with its
asymptotic approximations for small y (iy + 9y2/10, point-dashed) and
large y

(
−Exp (−iy) + iy/ (2π) + 2π |y| /

(
3
√

3
)
, dashed

)
. . . . . . . . 32

Figure 2.4 Real (a) and imaginary (b) parts of function B1
‖ (y) (solid) along with

its asymptotics for small y (2y2/5− 4iy3/105, point-dashed) and large y
(iy/ (2π) + 2π |y| /

(
3
√

3
)
− 1, dashed). . . . . . . . . . . . . . . . . . . 33

Figure 2.5 B⊥ (y) (solid) along with its asymptotic approximations for small y (3y2/10,
point-dashed) and large y (|y| − 1, dashed) . . . . . . . . . . . . . . . . 35

Figure 2.6 Probability density of electric potential in composite Φ(Y ) for several
values of concentration c. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.7 Probability density of electric potential in matrix Φ1 (Y ) for several val-
ues of concentration c. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



Figure 2.8 Probability density of electric potential in particles Φ2(Y ) for several
values of concentration c. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.9 Probability density of collinear electric field component in composite
f‖ (X) for several values of concentration c. . . . . . . . . . . . . . . . . 39

Figure 2.10 Probability density of collinear electric field component in matrix f 1
‖ (X)

for several values of concentration c. . . . . . . . . . . . . . . . . . . . . 40

Figure 2.11 Probability density of collinear electric field component in particles f 2
‖ (X)

for several values of concentration c. . . . . . . . . . . . . . . . . . . . . 41

Figure 2.12 Probability density of orthogonal electric field component in composite,
matrix, and particles f⊥ (X) = f 1

⊥ (X) = f 2
⊥ (X) for several values of

concentration c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 2.13 Effective coeffi cient aeff/a1 for composite with insulative particles (solid)
and Hashin-Shtrikman bounds (point-dashed) (κ = 1/4 (a) and κ ≈
1/2 (b)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 2.14 Effective coeffi cient aeff/a1 for composite with conductive particles (solid)
and Hashin-Shtrikman bounds (point-dashed) ((κ ≈ −1 (a) , κ =
−3/4 (b) , and κ = −1/4 (c)). . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 2.15 Normalized second central moment of electric field magnitude in the
composite (solid), Beran 1968 bounds (point-dashed), and Lipton bounds
(dashed) (κ = 1/4 (a) , κ = −1/4 (b) , and κ = −3/4 (c)). . . . . . . . 51

Figure 2.16 Normalized second central moment of electric field magnitude in the
matrix (solid) and Beran 1980 bounds (dashed) (κ = 1/4 (a) , κ =
−1/4 (b) , and κ = −3/4 (c)). . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 2.17 Normalized second central moment of electric field magnitude within
inclusions (solid) and Beran 1980 bounds (dashed) (κ = 1/4 (a) , κ =
−1/4 (b) , and κ = −3/4 (c)). . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.1 Diagram for Nµ = 3, three vectors in the first phase ~Rµ and one in
second ~Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.1 Typical topology of 0 ≤ f12 (~u;~τ , ~u′) and 0 ≤ f11 (~u; 0, ~u′) in R11 R22

space. Regions 0 ≤ f12 (~u;~τ , ~u′) (blue) and 0 ≤ f11 (~u; 0, ~u′) (green)
shown with iso contours of energy (black). . . . . . . . . . . . . . . . . 79

Figure 4.2 Typical topology of 0 ≤ f11 (~u; 0, ~u′) and 0 ≤ f12 (~u;~τ , ~u′) in Ω p1 space
with isocontours of energy (black) . . . . . . . . . . . . . . . . . . . . . 81

v



Figure 4.3 aeff (solid, grey) with Reuss (dashed), Voight, (dotted), and Hashin-
Shtrikman (solid, black) for four levels of contrast (a2/a1 = 1/10, top
left), (a2/a1 = 1/5, top right), (a2/a1 = 5, bottom left), and (a2/a1 =
10, bottom right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.4 Points of concentration of fluctutations for the 3 vector approximation.
The blue and red vectors are points of concentration in the first phase,
and the black vector the point of concentration in the second phase.
Black dots correspond to the Reuss solution. . . . . . . . . . . . . . . . 84

Figure 4.5 Admissible 0 ≤ f12 (~u;~τ , ~u′) in c2 Ω with 0 ≤ F1 (0) (blue) and 0 ≤
F2 (0) = F3 (0) (orange) . Upper row is the larger value of R̄1 and lower
the smaller. Left is the case of positive R′11 and the right negative R

′
11. . 87

Figure 4.6 Contours of ∂|~τ |p12 (|~τ |) at |~τ | = 0 (left) and ∂|~τ |p23 (|~τ |) at |~τ | = 0 (right)
for the case of negative α1/R

′
11. The extent of the admissible space due

to 0 ≤ f12 (~u; |~τ | , ~u′) is outlined in black. . . . . . . . . . . . . . . . . . 89

Figure 4.7 Contours of ∂|~τ |p12 (|~τ |) at |~τ | = 0 (left) and ∂|~τ |p23 (|~τ |) at |~τ | = 0 (Right)
for the case of postive α1/R

′
11. The extent of the admissible space due to

0 ≤ f12 (~u; |~τ | , ~u′) is outlined in black. Bottom shows the full remaining
admissible space of c2 Ω and the top is reduced to

√
15
4
< |Ω| < 7

4
√

2
. . . 90

vi



CHAPTER 1 INTRODUCTION

Heterogenous materials comprise a family of widely tailorable materials that are abound

in nature as well as man made products. The focus of this work is on a basic category of these

materials: composites comprised of two isotropic phases. This category retains a rich set of

widely studied materials due to their immense industrial utility. It includes materials with

periodic characteristics such as laminated structures, as well as random materials which can

only be described in statistical terms. Some examples of these random materials are fiber

and particulate reinforced materials such as polymer matrix and metal matrix composites.

This work considers the more narrow category of random composites, which can be further

decomposed into macroscopically isotropic or anisotropic cases. This work gives solutions

for the special case of macroscopically isotropic materials which provides the foundation for

expanding to the more general anisotropic case.

The local fields for problems of elasticity (e.g. stresses, strains, etc.) within composites

are the major interest in engineering since they drive critical processes such as fatigue and

fracture. A similar, but much simpler problem, arises from problems of electrical conductiv-

ity. Since the results for electrical conductivity are also mathematically equivalent to heat

conduction as well as dielectric polarization, these results are also useful for problems of

thermal and electric breakdown as well as effective conductivity of composites. Although

problems of conductivity do not have as many practical applications as those of elasticity, this

work is focused on this simpler task, electric fields, bearing in mind the methods developed

can be extended further to the case of elasticity problems.

The primary results in the field of heterogenous materials has been in methods for es-

timating the effective properties. For electrical conduction problems this is the effective

conductivity, and for elastic problems, the effective elastic constants. Here a brief discussion

is given with details given in Section 1.1. In the case we only have knowledge of the one

point material probability density functions (PDF), which for two phase composites are the

concentrations, effective properties for any two phase composite fall within the Voight and

1
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Reuss bounds. For the focus of this work, statistically isotropic composites, effective proper-

ties fall in a much more narrow band, the Hashin-Shtrikman bounds [1]. Here, statistically

isotropic composite is defined as the two material PDF depending only upon the spacing

between two points of observation but not the direction. With these two sets of bounds, we

do gain an estimate of the average field within each phase, but nothing on the distributions

within each phase. To develop improved physics based models which depend on local fields

such as fatigue, fracture, and thermal breakdown, the statistical characteristics of internal

fields is required.

With full knowledge of the statistical characteristics of the internal fields we know not

only the effective properties since they can be found through methods of homogenization

using the first and second moments of the internal fields (e.g. see 2.58), but also now have

the ability to develop the desired improved physics based models that depend on detailed

knowledge of local fields. This work is focused on first understanding the nature of the

internal field statistics within a particulate composite, then since the one and two point

distributions can be found from experimental observations, developing a method using this

additional data to not only make improvements upon the Hashin-Shtrikman bounds thereby

providing an even more accurate estimate of effective properties, but also give an expanded

level of insight into the internal fields.

In Chapter 2, probability distributions of electric field and electric potential in two-phase

particulate composite materials with randomly placed spherical inclusions are found in the

limit of small particle concentration by conducting a statistical superposition of the solution

for a single spherical inclusion. This analytical solution provides detailed insight into the full

statistics of internal fields within a composite of randomly placed spheres. Since this result

arises from a statistical superposition of the solution of a single spherical inclusion, it also

retains the feature of having a potential field.

Within this work, only steady state solutions are sought, and in the case for both con-

ductivity and elasticity problems the true solution is a potential field. For elasticity the field
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is position, and for conductivity it is temperature or electric potential. Since true solutions

have the feature of potentiality, but analytically computing the internal fields may not be

possible for other microstructures, a method of approximating internal fields which retains

the feature of potentiality is necessary to ensure a realistic estimate is developed.

In Chapter 3, a framework for considering a finite number of field fluctuations within

a random statistically isotropic two phase composite is developed. It is the major achieve-

ment of this work that suffi cient analytical simplifications of the microstructural and joint

microstructure internal field statistics, as well as the potentiality and positive definiteness

conditions, were reduced to only two unknowns in the case of three fluctuations and have

been developed to easily allow consideration of additional fluctuations. Since constraints for

potentiality were formed, the solution, probabilities and values of field fluctuations, can be

determined using the variational principle of homogenization in statistical terms.

In Chapter 4 the variational principle of homogenization in statistical terms [2] is used

to develop an approximate solution in the case of three field fluctuations in one phase and

a homogenous field in the other phase. For future work, the approach is easily extended to

additional field fluctuations, which will improve the resolution and prediction of the internal

fields.

In Chapter 5, an outline of the process necessary to generalize the solutions developed

from the two dimensional case to three is presented, and the application of the Hashin-

Shtrikman variational principle [3] briefly discussed.

1.1 Homogenization of Two Phase Composites

This section summarizes important homogenization results in the case of a two phase

composite with isotropic phases. For further details and discussion, see the reviews of this

field by Torquato [4] and Berdichevsky [3]. Homogenization is a procedure which allows

the precise description of the averaged properties of a heterogeneous media. For the case

of conductivity, effective properties by homogenization are determined from the variational
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problem

aeffij vivj ≤ min
u∈X

1

|V |

∫
V

aij (x) (vi + ui) (vj + uj) dx, (1.1)

where x is a point in space, aij are conductivities, vi average field over the composite, ui field

fluctuations within the composite, and X are some constraints (e.g. boundary conditions).

Here summation over i and j is implied and they run values from 1 to the dimensionality

of the problem (i runs 1, 2 for two dimensional problems and 1, 2, 3 for three dimensional

problems).

Considering two phase composites comprised of isotropic phases

aij (x) = a1 for x ∈ V1 and aij (x) = a2 for x ∈ V2 for any i or j,

the classical solutions are the Voight, Reuss, and the Hashin-Shtrikman [1] bounds on ef-

fective conductivity. The Voight and Reuss solutions provide an upper and lower bound on

effective conductivity, respectively, for any composite and the Hashin-Shtrikman solution pro-

vides a more narrow set of bounds in the case of a macroscopically isotropic composite. First,

the origin of the Voight and Reuss bounds will be introduced, then the Hashin-Shtrikman

bounds which originate from an alternative means will be presented.

These solutions arise from the approximation of the field fluctuations in each phase of

the composite by a homogenous field

f1 (~u) = c1δ
(
~u− ~R

)
and f2 (~u) = c2δ

(
~u− ~Q

)
.

Here, f1 (~u) is the probability of observing field value ~u within the first phase and similarly for

f2 (~u) , ~R the field fluctuation in the first phase and similarly for ~Q in the second, where δ (x)

the Kronecker delta function (δ (0) = 1 else 0). Also c1 and c2 are the volume concentrations

of phase one and two, respectively.

These solutions are all approximate since the field is not actually homogenous within each

phase for any composite, except for the trivial degenerated case of a homogenous composite
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(i.e. Reuss Bound) or laminated composites which the flux is orthogonal to the laminations

(i.e. the Voight Bound). In the case of a particulate composite this can be seen, e.g., in

Chapter 2.

Continuing with the case of homogenous field fluctuations within a two phase composite,

the field fluctuations by definition must vanish over the composite

c1
~R + c2

~Q = 0 then ~Q = −c1

c2

~R.

Without loss of generality, let the direction of the applied field ~v be in the 1-direction

aeff11v1v1 ≤ min
u∈X

a1c1 (v1 +R1)2 + a2c2

(
v1 −

c1

c2

Q1

)2

+ a1c1

dim∑
i=2

(Ri)
2 + a2c2

dim∑
i=2

(
c1

c2

Qi

)2

,

where dim is the spatial dimension of the problem, c1 is the volume concentration of the

first phase, and similarly for c2 in the second phase

c1 =
1

|V |

∫
V1

dx and c2 =
1

|V |

∫
V2

dx.

As noted the Voight solution corresponds to the special case of a homogenous field throughout

the entire composite (i.e.
∣∣∣~R∣∣∣ = 0), after dividing through by v1v1 we have

aeff11 ≤ a1c1 + a2c2,

Minimizing over the orthogonal direction (i.e. Ri = 0 for i 6= 1), dividing through by

(v1)2, and dropping of subscripts results in the simple relationship

aeff ≤ min
u∈X

a1c1

1 +

∣∣∣~R∣∣∣
|~v|

2

+ a2c2

1− c1

c2

∣∣∣~R∣∣∣
|~v|

2

. (1.2)

The Voight and Reuss solutions are the arithmetic and harmonic averages of the phase
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conductivities

aeff = a1c1 + a2c2 and aeff =

(
c1

a1

+
c2

a2

)−1

=
a1a2

a1c2 + a2c1

,

respectively. As noted the Voight solution corresponds to a homogenous field throughout

the entire composite (i.e.
∣∣∣~R∣∣∣ = 0), and the Reuss solution when minimization is executed

free from constraint. The field fluctuation by definition is zero for the Voight solution ~R = 0,

and for the Reuss ∣∣∣~R∣∣∣
|~v| = c2

a2 − a1

a1c2 + a2c1

.

The Hashin-Shtrikman bounds [1] bring the Voight and Reuss bounds tighter by the

constraint that the composite is macroscopically isotropic. To do this, they used the principal

that the energy contained within the heterogenous composite is the same as the homogenous

approximation, and then make an additional assumption that the field is homogenous within

each phase. Under these assumptions, an example of a special periodic composite consisting

of an infinite suspension of coated spheres is given to determine that for macroscopically

isotropic two phase composites, aeff has the bounds

a1 + c1

(
1

a2 − a1

+
c2

3a1

)−1

and a2 + c2

(
1

a1 − a2

+
c1

3a2

)−1

.

These same bounds can be found more rigorously though the Hashin-Shtrikman variational

principle as briefly discussed in Section 5.2.

These important solutions will be used to test the extent that the approximations devel-

oped in Chapters 2 and 3 hold.

The methods developed in Chapter 3 yield in particular cases these classical results, but

can also incorporate more subtle characteristics of microstructures like correlation functions.

The Voight, Reuss, as well as Hashin-Shtrikman bounds correspond to the case where the

field fluctuations are homogenous within each phase, and the methods developed in Chapter

3 generalize these results to the case of the field fluctuations being non-homogenous through
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an alternative method of homogenization.

1.2 Electric Field Fluctuations in Conductors with Spherical Inclusions

In Chapter 2, the probability distributions of electric field and electric potential in two-

phase particulate composite materials with randomly placed spherical inclusions are found

in the limit of small particle concentration.

The previous analytical results on the statistics of these type of internal fields arise

from the computation of electric fields from randomly placed charges (ions), dipoles, and

quadrupoles [5, 6, 7, 8], as well as similar results in related probability distributions: gravi-

tational fields within a stellar system comprised of randomly placed masses [9, 10], stresses

caused by point defects in crystallographic structures [11, 12], velocity distributions caused

by vortices, temperature field in nuclear reactors, etc. (brief summary given in [13]). These

solutions are all described by stable distributions [13] which include the special cases of

Holtsmark, Cauchy, and normal distributions. In these previous solutions, the total field

disturbance is found by summing the contribution of single defects over infinite space with

a fixed number density.

These previous analytical solutions for point size defects are generalized to finite size

particles in Chapter 2. The internal fields associated with point sized defects create a singular

field value, while for particles field values are finite. Therefore distributions for finite sized

particles are distinct from point defects due to the differing nature of the fields. Previous

efforts for approaching the issue of finite sized defects have been only through numerical

means in the two dimensional case [14, 15], but these results do not have generality; these

previous results are only applicable to the concentrations and conductivities studied. In

this work, a general analytical solution was found for particulate composites such that the

solution is applicable to any concentration and conductivities.

The probability distributions were first computed over the entire composite and then in

the matrix of the composite. Then, as a consequence, the distribution which occurs within

particles is also known. The result found is approximate in the sense that particles were
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treated as independent and identically distributed, and the solution for the composite was

simply taken as the summation of each particle’s effect on the composite.

Asymptotic analysis and statistics of these distributions was found and results are com-

pared against known bounds on effective properties and variances. Interestingly, distributions

for electric field are found to be independent of particle size distribution. By comparing this

result against the Hashin-Shtrikman bounds it was determined that this result is not valid

for concentrations over 0.26.

As the work of Holtsmark provided a motivation for the study of a diverse set of physical

issues with point sized defects, the approach given in this work can be applied further to

other cases with finite sized defects. This includes both differing physics, such as the elastic

case, as well as alternate microstructures such as the case of ellipsoidal particles in a matrix.

Next the work of Voight, Reuss, and Hashin-Shtrikman of approximating the field fluc-

tuations within each phase as homogenous is generalized by allowing the field fluctuations

to take additional values. To do this, a second means of homogenization was conducted: ho-

mogenization in probabilistic terms using the variational principle for probabilistic measure

[2].

1.3 Internal Fields and Microstructure in Probabilistic Terms

In this Section the variational principle for homogenization in probabilistic terms for the

case of an isotropic composite comprised of two isotropic phases is summarized. For further

details and discussion on the variational principal see [3] and for discussion of the correlation

functions in two phase composites [4].

The effective characteristics and statistics of the local fields can be found from the vari-

ational principle for homogenization in probabilistic terms

aeffij vivj ≤ min
f(a,u)∈X

∫
aij (vi + ui) (vj + uj) f (a, u) da du (1.3)

where aij are conductivities, vi average electric field, ui electric field fluctuations, f (a, u) the

joint one-point probability density of conductivities, and ui electric field fluctuations, with



9

the minimization conducted subject to some constraints X (e.g. potentiality, probabilties,

etc.). Here, the composite microstructure and field fluctuations are defined statistically.

To uniquely describe a particular composite‘s microstructure, an infinite series of prob-

ability distributions describing the spacial distribution of material conductivity is required.

The first description in this infinite series is the one point probability distribution which has

been previously introduced, c1 and c2, the volume distribution of phases. Next, there are

two point characteristics f11 (~τ) , f12 (~τ) , f21 (~τ) , and f22 (~τ) , where for example, f12 (~τ) is

defined as the probability of sampling two points separated by the vector ~τ over the com-

posite and having the first point in phase one and the second point in phase two. Higher

characteristics, i.e. three, four, etc. point distributions, exist and comprise an infinite chain

of statistical descriptors. These distributions are denoted as a chain of constraints since they

are related to each other. For instance, the two point distribution must be compatible with

the one point distribution

c1 = f11 (~τ) + f12 (~τ) and c2 = f21 (~τ) + f22 (~τ) . (1.4)

Field fluctuations are also described by an additional infinite series of probabilities that

are joint with microstructural characteristics. The joint one point probabilities f1 (~u) and

f2 (~u) statistically describe the field fluctuations within each phase. For example, f1 (~u) is

the probability of sampling the composite and having an observation in phase 1 with the field

fluctuation ~u. The joint two point probabilities f11 (~u;~τ , ~u′) , f12 (~u;~τ , ~u′) , and f22 (~u;~τ , ~u′)

relate the field fluctuations and the material conductivity probabilities at two points sepa-

rated by the vector ~τ . For example, f12 (~u;~τ , ~u′) defines the probability of having two points

separated by distance ~τ with the first point in phase 1 and with field fluctuation ~u, as well as

the second point in phase 2 with field fluctuation ~u′. Again, these distributions are related

to each other, the joint two point distributions must be compatible with the joint one point
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distribution

f1 (~u) =

∫
(f11 (~u;~τ , ~u′) + f12 (~u;~τ , ~u′)) d~u′

and f2 (~u) =

∫
(f21 (~u;~τ , ~u′) + f22 (~u;~τ , ~u′)) d~u′.

Additionally, the the joint probability distributions must be compatible with the microstruc-

tural characteristics

c1 =

∫
f1 (~u) d~u, c2 =

∫
f2 (~u) d~u,

f11 (~τ) =

∫
f11 (~u;~τ , ~u′) d~ud~u′, f12 (~τ) =

∫
f12 (~u;~τ , ~u′) d~ud~u′,

f21 (~τ) =

∫
f21 (~u;~τ , ~u′) d~ud~u′, and f22 (~τ) =

∫
f22 (~u;~τ , ~u′) d~ud~u′

with similar relations for higher order correlation functions. And of course, all of these

probability distributions must be must be non-negative for all values

0 ≤ c1, 0 ≤ c2, 0 ≤ f1 (~τ) , 0 ≤ f2 (~τ) , 0 ≤ f1 (~u) , 0 ≤ f2 (~u) , (1.5)

0 ≤ f11 (~τ) , 0 ≤ f12 (~τ) , 0 ≤ f21 (~τ) , 0 ≤ f22 (~τ) ,

0 ≤ f11 (~u;~τ , ~u′) , 0 ≤ f12 (~u;~τ , ~u′) , 0 ≤ f21 (~u;~τ , ~u′) , and 0 ≤ f22 (~u;~τ , ~u′) .

There are also symmetries to probability distributions (e.g. f12 (~τ) = f21 (−~τ)).

The composite to be studied is taken to lack long range correlation

f11 (~τ) = c1c1, f12 (~τ) = c1c2, and f22 (~τ) = c2c2 as |~τ | → ∞ (1.6)

and be statistically invariant with respect to mirror image

f12 (~τ) = f12 (−~τ) then f12 (~τ) = f21 (~τ) (1.7)
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and phases separated by a surface

f11 (~τ) = c1, f12 (~τ) = 0, and f22 (~τ) = c2 as |~τ | → 0.

Then with (1.4), (1.6), and (1.7) the microstructures two point statistics can be described

by a single function

f11 (~τ) = c1c1 + c1c2ho (~τ) , f12 (~τ) = c1c2 − c1c2ho (~τ) ,

f21 (~τ) = f12 (~τ) , and f22 (~τ) = c2c2 + c1c2ho (~τ)

where

ho (~τ) = 0 as |~τ | → ∞, ho (~τ) = 1 as |~τ | → 0, and 0 ≤ ho (~τ) for all ~τ . (1.8)

While, one and two point distributions can be found from experimental observations, the

higher order probability distributions are diffi cult to determine experimentally. Therefore,

in this approximation the infinite chain of statistics will be truncated, which leads to a new

constraint to impose positive definiteness of the joint two point probability. The condition

of positive definiteness requires for any φ1,φ2

0 ≤
∫

((f11 (~u;~τ , ~u′)− f1 (~u) f1 (~u′))φ1 (~u)φ1 (~u′) (1.9)

+2 (f12 (~u;~τ , ~u′)− f1 (~u) f2 (~u′))φ1 (~u)φ2 (~u′)

+ (f22 (~u;~τ , ~u′)− f2 (~u) f2 (~u))φ2 (~u)φ2 (~u′))d~ud~u′

The solution to the conductivity problem must be potential (i.e. for any realization ∆u = 0).

In statistical terms, this leads to the requirement that a function B (~τ) exists and is related
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to probabilities by

− B (~τ)

∂τ i∂τ j
=

∫
uiu
′
j(f11 (~u;~τ , ~u′)− f1 (~u) f1 (~u′) + f12 (~u;~τ , ~u′)− f1 (~u) f2 (~u′) (1.10)

+f21 (~u;~τ , ~u′)− f2 (~u) f1 (~u′) + f22 (~u;~τ , ~u′)− f2 (~u) f2 (~u′))d~ud~u′,

and its Fourier transform is

B
(
~k
)
kikj =

∫
uiu
′
j(f11

(
~u;~k, ~u′

)
− f1 (~u) f1 (~u′) + f12

(
~u;~k, ~u′

)
− f1 (~u) f2 (~u′)(1.11)

+f21

(
~u;~k, ~u′

)
− f2 (~u) f1 (~u′) + f22

(
~u;~k, ~u′

)
− f2 (~u) f2 (~u′))d~ud~u′,

where

B
(
~k
)

=

∫
Exp

(
i ~τ · ~k

)
B (~τ) d~τ ≥ 0. (1.12)

Note that the average value of the field fluctuation ~u is zero

∫
ui (f1 (~u) + f2 (~u)) d~u = 0

and the potentiality condition is then simply

B
(
~k
)
kikj =

∫
uiu
′
j(f11

(
~u;~k, ~u′

)
+ f12

(
~u;~k, ~u′

)
+ f21

(
~u;~k, ~u′

)
+ f22

(
~u;~k, ~u′

)
)d~ud~u′.

Therefore, the solution to (1.3) with the constraints (1.4) through (1.12) is sought.

1.4 Non-Homogenous Fields: Two-Dimensional Case

As previously discussed, the classical results in homogenization for two phase composites

comprised of isotropic phases provide bounds on the effective conductivity. These include the

Voight and Reuss for all composites, as well as the more stringent Hashin-Shtrikman bounds

for isotropic composites. These solutions were noted to approximate the field fluctuations in
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the composite by a homogenous field within each phase

f1 (~u) = δ
(
~u− ~R

)
and f2 (~u) = δ

(
~u− ~Q

)
.

As shown in Chapter 2, the field for a particulate composite is not well represented by a

homogenous one within each phase. Therefore, the previous solutions can be improved upon

by making the local fields more realistic by increasing the number of allowable field fluc-

tuations within each phase. Then, as the number of admissible field fluctuations increases,

the approximation should improve and in the limit of infinite admissible values, be an exact

result. A new procedure for finding these field fluctuations and their corresponding prob-

abilities is introduced by conducting homogenization in probabilistic terms and using the

Hashin-Shtrikman variational principle. First, the problem of electrical conductivity in a

two dimensional composite is studied.

To do this, N field fluctuations are taken in phase 1 and M field fluctuations in phase 2

f1 (~u) =
∑
µ

pµδ
(
~u− ~Rµ

)
and f2 (~u) =

∑
α

qαδ
(
~u− ~Qα

)
, (1.13)

where pµ and qα are corresponding probabilities of field fluctuations, variable µ runs values

1...N, and α runs values 1...M. By taking the field fluctuations as a limited number of unique

values the integral relationships for compatibility, non-negativity of probabilities, potentiality

of electric field, and positive definiteness of joint two point probability can now be greatly

simplified. Also, the special case of having a homogenous field in one of the two phases is

considered, leading to a great deal of further analytical simplifications. As for the other

phase, it is found that a minimum of three values of field fluctuations are required to satisfy

the condition of potentiality. Since only solutions with non-homogenous fields that statisfy

potentiality are sought, the case of three field values is studied in detail.

To complete the formulation of the problem, the microstructural descriptor ho (~τ) must

be defined. In this effort, it is taken as Exp|−~τ | which satisfies the requirements of ho (~τ)
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but also is convenient for further simplifications. In order to make this problem solvable,

correlations between field fluctuations also must be defined. They are taken to be correlated

to the maximum extent that remains to allow the non-negativity of probabilities to be

satisfied.

With the assumption that the electric field takes three values in one phase and is homoge-

nous in the other, it is found that many of the constraints are collapsed and the problem

reduces to satisfaction of non-negativity of probabilities. All of the constraints except the

ones which relate the field fluctuations within the same phase can be written compactly. An

analytical solution was found that satisfies all constraints. This solution was found to fall

within the Hashin-Shtrikman bounds and, therefore is an improvement.

1.5 Discussion of Results

In Section 1.2, the methods to compute probability distributions in Chapter 2 were

summarized and similarly in Section 1.4 for the methods to compute probability distributions

in Chapter 3. In this Section the effective coeffi cients for these two methods will be compared

to the Hashin-Shtrikman bounds.

For the case of a particulate composite, the first phase has been taken to be the matrix

and the second phase the particles. For particles which are less conducting than the matrix,

aeff/a1 follows the upper Hashin-Shtrikman bound; the plots for particular values a2/a1 = 2/5

and a2/a1 = 10−3 are shown in Figs. 1.1a and 1.1b, respectively. For particles which are

more conducting than the matrix, aeff/a1 initially follows the lower Hashin-Shtrikman bound

for small concentration and remains within the bounds for particle concentrations less than

0.17; the plots for particular values a2/a1 = 104 , a2/a1 = 10 , and a2/a1 = 2 are shown in

Fig. 1.2a, 1.2b, and 1.2c.

The leading term approximation for small concentrations was found to be aeff/a1 ≈

(1− 3c∗κ) , where c∗ is particle concentration, this is consistent with previous results (see

e.g. [21]). It supports the validity of the approximation for small concentration and explains

why aeff/a1 coincides with the upper Hashin-Shtrikman bound for a2/a1 < 1, and the lower
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Hashin-Shtrikman bound for a2/a1 > 1.

Figure 1.1: Effective coeffi cient aeff/a1 for composite with insulative particles (solid) and
Hashin-Shtrikman bounds (point-dashed) (a2/a1 = 2/5 (a) and a2/a1 = 10−3).

Figure 1.2: Effective coeffi cient aeff/a1 for composite with conductive particles (solid) and
Hashin-Shtrikman bounds (point-dashed) (a2/a1 = 104 (a) , a2/a1 = 10 (b) , and a2/a1 =
2 (c)).

As for the results found in Chapter 3, they are valid over the entire range of concen-

trations. The probability distributions were computed with three field fluctuations in the

first phase and one in the second phase. The selection for selecting the first phase to have

multiple flucutations was arbritrary, the entire procedure is identical if the situation was

reversed. Therefore, the procedure of Chapter 3 actually yields two results for aeff/a1, one

corresponding to three fluctuations in the first phase and one corresponding to three in

the second phase. These new results are compared against the Voight, Reuss, and Hashin-

Shtrikman bounds in Figure 4.3 and fall within the Hashin-Shtrikman bounds for nearly all

combinations of conductivity and phase concentrations.

The minimum of these two solutions is the upper bound for conductivity for the particular

microstructure studied and it occurs when three field fluctuations are in the less conducting

phase and one field value in the more conductive phase. Then, as shown in Figure 4.3 for
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Figure 1.3: New result for aeff (solid, grey) with Reuss (dashed), Voight, (dotted), and Hashin
Shtrikman (solid, black) for four levels of contrast (a2/a1 = 1/10, top left), (a2/a1 = 1/5,
top right), (a2/a1 = 5, bottom left), and (a2/a1 = 10, bottom right)

the particular microstructure studied (ho (~τ) =Exp|−~τ |), aeff/a1 lies within a very narrow

band: it is lower bound by the Hashin-Shtrikman bounds and upper bound by this new

approximation.

Furthermore, this new result also provides what has not been previously available in ap-

proximations of this type: an understanding of field fluctuations. Since the Reuss, Voight,

and Hashin-Shtrikman approximations all are homogenous within each phase, they necessar-

ily have field fluctuations within each phase that are collinear with the applied field. How-

ever, e.g., as shown in Chapter 2 the field for a particulate composite is not well represented

by a homogenous one within each phase and there also is a component of flux orthogonal to

the applied field. In Figure 1.4 the field fluctuations for this new approximation is shown.
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Figure 1.4: Points of concentration of fluctutations for the 3 vector approximation. The
blue and red vectors are points of concentration in the first phase, and the black vector the
point of concentration in the second phase. Black dots correspond to the Reuss solution.



CHAPTER 2 ELECTRIC FIELD FLUCTUATIONS IN CONDUCTORS 
WITH SPHERICAL INCLUSIONS

The chapter aims to find electric field and electric potential fluctuations in two-phase

composites consisting of a matrix and randomly placed identically distributed spherical par-

ticles. This problem has a rich history. The study of the problem began about one hundred

years ago by J. Holtsmark [5]. He was interested to assess if spectral line broadening ob-

served in high pressure gases [6] can be explained by fluctuations of electric field, which are

due to the presence of charges (ions), dipoles or quadrupoles.

To examine this proposition, the probability density of the magnitude of the electric field

is to be computed for three cases: the random distribution of ions, dipoles and quadrupoles. This

corresponds to determining probability distributions of sums of random variables,

∑
a

rai

|ra|3
m,

∑
a

1

|ra|3
(
δij −

rairaj

|ra|2
)
mj, (2.1)

∑
a

1

|ra|5
(
rajδki + raiδkj − 3rakδij + 5

rairajrak

|ra|2
)
mjk,

where ra, a = 1, 2, ..., are points in three-dimensional space, which are distributed indepen-

dently and homogeneously over space, rai coordinates of ra, small Latin indices i, j, k run

through values 1, 2, 3, |ra| the magnitude of ra, δij Kronecker’s delta. The sums are the com-

ponents of electric field at the origin caused by ions, dipoles and quadrupoles, respectively;

m is the ion charge, mi and mij reflect intensities of dipoles and quadrupoles. Holtsmark

found that the probability density of the electric field f (∇u) has the form

f (∇u) =
1

8π3

∫
R3

e−i~ρ·∇u−bn|~ρ|
H

d~ρ, (2.2)

where variable of integration, vector −→ρ , runs through three-dimensional space R3, −→ρ ·∇u is

the scalar product of −→ρ and ∇u, |−→ρ | length of −→ρ , d−→ρ ≡ dρ1dρ2dρ3, b a constant dependent

on the charge magnitude, n is the number density of charges, and H is a constant which

18
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has the values 3/2, 1, and 3/4 for the ions, dipoles, and quadrupoles, respectively. Later on

it was found that the Holtsmark distribution (2.2) is a member of a wide class of so-called

stable distributions [13].

Writing integral (2.2) in spherical coordinates and integrating over angles one arrives at

one-dimensional integral

f (∇u) =
1

2π2 |∇u|

∞∫
0

sin [|∇u| y] ye−bny
H

dy. (2.3)

Formula (2.3) shows that probability density depends only on the magnitude of the

electric field |∇u|. Denoting by PD(X) the probability density of the magnitude of electric

field, X = |∇u| , one finds from (2.3) after integration over all possible directions ∇u/ |∇u|

that

PD(X) =
2

π
X

∞∫
0

sin [Xy] ye−bny
H

dy. (2.4)

Formula (2.2) yields also the probability distributions of components of ∇u. They are all

equal due to symmetry. For x−component of electric field ux, when the y− and z− compo-

nents are zero, probability density PD (ux) is:

PD (ux) =
1

2π

∞∫
−∞

e−iyux−bn|y|
H

dy. (2.5)

Probability density (2.5) is also a member of the family of stable distributions [13]. In the

dipole case, H = 1, formula (2.5) yields the symmetric Cauchy distribution,

PD (ux) =
1

π

bn

u2
x + (bn)2 ,

while for H = 2 formula (2.5) becomes the symmetric normal distribution,

PD (ux) =
1√

4πbn
exp

[
−u2

x

4bn

]
.
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Holtsmark applied the probability density found for quadrupoles to the broadening mech-

anism in hydrogen and nitrogen as well as to other cases. He found reasonable agreement

to available experimental data on cesium spectral line broadening in hydrogen and nitro-

gen environments. Holtsmark’s major focus was on the distribution of quadrupoles due to

the limited experimental data for dipoles and ions. Further discussions on spectral line

broadening mechanisms can be found in the review papers by Regemorter [7] and Stoneham

[8].

Not surprisingly, due to the fundamental nature of the sums (2.1), Holtsmark distribu-

tions show up in other fields. In astrophysics, Chandrasekhar [9] considered the expected

magnitude of gravitational force on point mass in a stellar system. The stars are approx-

imated by identically and independently distributed point masses. The force on a single

point mass is the sum of the first type (2.1). Chandrasekhar further showed in his review

[10], that his original assumption of equal masses for all stars, which corresponds to Holts-

mark’s assumption of uniform charge magnitude, was not essential: if masses are distributed

randomly with probability density p (M), then probability density of the force is the same

as in the case of uniform masses, with the value of the uniform mass M∗,

M∗ =

 ∞∫
0

M3/2p (M) dM

2/3

.

The case of uniform masses is the special case of the mass distribution p (M) = δ (M −M∗) .

In material science, Holtsmark distribution arises in studying of internal stresses caused

by identically and independently distributed point defects [11]. The defects were modeled by

spherical particles placed in a linear isotropic material. The displacement field ui caused by

these defects is determined then by Eshelby’s solution [16] :

ui = ±K ri

|~r|3
,

where K is a parameter characterizing the intensity of the point defect and Poisson’s ratio.
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Total displacement is the sum of the first type (2.1) , total strains and stresses are the sums of

the second type (2.1) . Zolotarev [11] found that the stresses follow the Cauchy distribution.

Later Berlyand [12] studied this case in greater detail, and found the stress distribution to

be a shifted Cauchy distribution for pressure and a symmetric Cauchy distribution for shear

components. This shift was observed experimentally [18, 19] .

Problems of the type discussed are found in diverse fields including velocity distributions

of vortices in two and three dimensions [20], temperature distributions in nuclear reactors,

radiography, etc. (brief summary was given in [13]).

Holtsmark distributions have heavy tails. This means that moments of the electric field,

i.e. the average values of |∇u|s , are infinite for s > 1. For example, the variance of electric

field (the average value of |∇u|2) is infinite for Cauchy distribution. The origin of that is that

singularities can come close to the point of observation and make the field at the point of

observation infinite. The situation is different for conductors containing particles. Though

the sums, probability of which is to be computed, are of the form (2.1), the singularities

do not come closer to the point of observation than the particle radius. This changes the

probability distributions considerably. Our goal is to find these distributions.

The major motivation for this work is that probability distributions of local fields (stresses,

strains, currents, etc.) are needed in constructing the dynamic equations for microstructure

evolution. To obtain probability distributions, some approximate methods are being devel-

oped (see, e.g. [14]) as well as in Chapters 3 and 5.2. One needs a proving ground to test

the accuracy of approximations.

The problem under consideration can serve as such a ground, because the probability

densities are computed analytically in the limit of small volume concentration. In fact,

the computation follows Holtsmark’s work with some minor deviations, which are due to

finiteness of the particle radii. As in many other asymptotic problems, one can expect that

the asymptotic results are applicable for not very small values of concentration. Therefore

we provide results up to volume concentration 0.26.
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Note that Cheng and Torquato [14] as well as Cule and Torquato [15] have found proba-

bility density of electric field fluctuations induced by an applied electric field for several two

phase microstructures in the two-dimensional case.

Cheng and Torquato [14] computed the statistics of the collinear component of electric

field by numerical approximation within a periodic unit cell for a large number of microstruc-

ture realizations. They considered composites with random non-overlapping discs, squares,

and highly elongated ellipsoids within a matrix. For the case of discs, they found a prob-

ability distribution with two peaks, one arising from the matrix and the other from the

inclusions.

Cule and Torquato [15] computed the probability distribution function of the electric

field magnitude. They first found analytically the solution for a coated cylinder composite,

similar to the coated sphere model of Hashin and Shtrikman [1]. This PDF was found to

have a finite width with singular points at the limit values. One singular point arises from

the homogenous field within the core of the cylinder, and the other from the maximum or

minimum value. Additionally two singular points existed at intermediate values. These

singular points were compared with the singularities found in calculations of the density of

states of various applications of condensed matter physics. They also computed the cases

of a grid of discs and as well a periodic composite comprised of a small unit cell of twenty

random non-overlapping discs. The grid had similar features of singular points and finite

width of the PDF, but with an additional intermediate singularity. For the periodic random

composite case, the feature of a finite width appears to have been lost, but the intermediate

singular points are subjectively retained. They state that in the limit of a random composite

of the nature considered by Cheng and Torquato [14], these "local features" of finite width

and singular points are smeared out and therefore are not expected for the case considered

in this chapter.

Sections which follow are setting of the problem, analysis of the problem where it is shown

that computation of probability densities is reduced to calculation of two functions A(y) and
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B(y), find these functions numerically, describe the corresponding results for probability

densities, and determine asymptotics of probability densities. A simple outcome of the cal-

culations are values of effective coeffi cients and variances of electric field. Some technicalities

are moved to Appendices.

Due to mathematical equivalence the results obtained for potential and electric field apply

to electrical and heat conduction as well as dielectric polarization. Additionally, as the work

of Holtsmark provided a motivation for the study of a diverse set of physical issues with

point size defects, the approach given in this thesis can be applied further to other cases

with finite sized defects. This includes both differing physics, such as the elastic case, as

well as alternate microstructures such as the case of ellipsoidal particles in a matrix.

2.1 Setting of the Problem

Potential of electric field u is a solution of the equation

∂

∂xi
a (x)

∂u

∂xi
= 0. (2.6)

Here x is a point of three-dimensional unbounded space, xi are Cartesian coordinates of x,

summation over repeated indices is implied, a (x) is conductivity of the composite which is

assumed to be unbounded. The composite contains spherical particles in such a way that

the number of particles N in any finite region V is proportional to the volume of V , |V |,

and there is a limit

lim
|V |→∞

N

|V | = n.

Particles are placed in space randomly and independently. Radii of particles are also random

but are such that the volume concentration c is finite

c = lim
|V |→∞

N∑
a=1

4π

3

R3
a

|V | . (2.7)
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If radii of all particles are equal, then

c =
4πR3

3
n. (2.8)

Formula (2.7) assumes that particles do not overlap. When particles are placed statistically

independent they do overlap, and one can introduce the volume concentration of particle

phase c∗. Concentrations c and c∗ are linked by the relation [4]

c = − ln [1− c∗] . (2.9)

The conductivity a (x) is a piecewise function: it is equal to a1 in the matrix, and a2 inside

the particles. At particle boundaries both the potential u (x) and the normal component of

the flux a (x) ∂u/∂xi are continuous

[u] = 0, ni

[
a (x)

∂u

∂xi

]
= 0. (2.10)

Here [ϕ]means the difference of the limit values of ϕ on the two sides of the particle boundary.

The space average of the electric field is assumed to be a given constant. By space average

of function ϕ (x) we mean the limit

〈ϕ〉 = lim
|V |→∞

1

|V |

∫
V

ϕ (x) dx.

Denoting by vi the prescribed value of the average electric field, we have the condition

〈
∂u

∂xi

〉
= vi. (2.11)

The boundary value problem in unbounded space (2.6) , (2.10) , (2.11) has a unique solution

for ∂u/∂xi.

Single particle solution. Electric potential in material without a particle is a linear
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Figure 2.1: Notation for single inclusion problem

function u = vixi. An arbitrary additive constant in potential is fixed by the condition

u ({0, 0, 0}) = 0. One particle placed at the point ri causes a disturbance of the electric

potential

u = vixi + κ

 (xi − ri) vi(
R
|x−r|

)3

(xi − ri) vi

|x− r| ≤ R

R ≤ |x− r|
, (2.12)

and the disturbance of the electric field

u,i = vi + κ

 vi(
R
|x−r|

)3 (
δij − 3xi−ri|x−r|

xj−rj
|x−r|

)
vj

|x− r| ≤ R

R ≤ |x− r|
. (2.13)

Here comma in indices denotes spatial derivative, and κ is the constant

κ ≡ a1 − a2

2a1 + a2

.

The constant κ takes values in the range [−1, 1/2]. The limit cases κ = −1 and κ =

1/2 correspond to perfectly conductive particle (a2 =∞), and perfectly insulating particle

(a2 = 0), respectively. If κ = 0, the media is homogeneous and no disturbance of the external
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field occurs.

Probability distributions. We seek probability densities of the random fields u and ∂u/∂xi

at a space point x.

In case of small c, electric field can be obtained by summation of electric fields generated

by particles. Since the random fields are stationary, it is enough to consider probability

distributions at one point. As such we take x = {0, 0, 0}. Due to linearity of the problem,

u and ∂u/∂xi are proportional to the magnitude of vector vi. To simplify further relations

we set |~v| equal to unity. It is also convenient to make a shift for vi and scale u,i − vi by

the constant κ and similarly scale u by κ. Then results become independent of material

characteristics and magnitude of the applied field. So, we will seek probability densities of

random quantities

ηi =
1

κ
(u,i − vi) and ξ = − 1

κ
u. (2.14)

It is convenient also to introduce a unit vector ζ i and construct the probability density of

the random number η = ζ iηi; choosing different vectors ζ i, we obtain the probability density

of electric field in different directions.

After the probability densities of ηi and ξ are found the actual distribution of potential

and electric field are obtained by scaling (see (2.46) and (2.60)).

By definition of probability density, probability density of fξ (X) and fη (X) of random

quantities ξ and η are

fξ (X) = Mδ

(
X −

∑
a

ϕa (ra, R
a)

)
, fη (X) = Mδ

(
X −

∑
a

ψa (ra, R
a)

)
, (2.15)

where M stands for mathematical expectation, and ϕa (ra, R
a) and a (ra, R

a) are the po-
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tential and electric field disturbance at the origin caused by the a−th particle

ϕa =

 vir
a
i(
Ra
|ra|

)3

vir
a
i

|ra| ≤ Ra

Ra ≤ |ra|
, (2.16)

ψa = ζ i

 vi(
Ra
|ra|

)3 (
δij − 3

rai
|ra|

raj
|ra|

)
vj

|ra| ≤ Ra

Ra ≤ |ra|
.

By mathematical expectation for an infinite system of particles, we mean in (2.15) the limits

fξ (X) = lim
N/|V |→n,|V |→∞

Mδ

(
X −

N∑
a=1

ϕa

)
, (2.17)

fη (X) = lim
N/|V |→n,|V |→∞

Mδ

(
X −

N∑
a=1

a

)
,

where sums are taken over particles lying in the region V .

2.2 Computation of Probability Densities

Computation of the limits (2.17) follows to Lyapunov’s idea for finding probability distri-

butions of sums of independent random variables: δ−function is to be replaced by its Fourier

transform,

δ (Y ) ≡
∞∫

−∞

eiyY

2π
dy.

Then,

fξ (X) = lim
N/|V |→n,|V |→∞

∞∫
−∞

eiyXM exp

[
−iy

N∑
a=1

ϕa

]
dy

2π
(2.18)

=

∞∫
−∞

eiyX lim
N/|V |→n,|V |→∞

M
N∏
a=1

exp [−iyϕa]
dy

2π
.

Similarly,

fη (X) =

∞∫
−∞

eiyX lim
N/|V |→n,|V |→∞

M
N∏
a=1

exp [−iyψa]
dy

2π
. (2.19)
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Note that

M exp [−iyϕa] =

∫
V

exp [−iyϕa]
d3r

|V | , M exp [−iyψa] =

∫
V

exp [−iyψa]
d3r

|V | .

Let all particles have the same radius, R. Then all functions ϕa and a are the same:

ϕ1 = ϕ2... = ϕ, and 1 = ψ2... = ψ. It is shown in Appendices A and B, that the limits in

(2.18) and (2.19) can be found explicitly,

lim
N/|V |→n,|V |→∞

∫
V

exp [−iyϕ]
d3r

|V |

N

= exp [−cA (yR)] (2.20)

lim
N/|V |→n,|V |→∞

∫
V

exp [−iyψ]
d3r

|V |

N

= exp [−cB (y)] . (2.21)

Here A (y) and B (y) are the functions

A (y) = 3

(
1

y

)3
y∫

0

(
1− 1

m
sin [m]

)
m2dm+ (2.22)

+3 |y|3/2
∞∫

1/
√
|y|

(
1−m2 sin

[
1

m2

])
m2dm

B (y) =
(
1− e−iy cosα

)
(2.23)

+
1

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤|y|

(
|y| 1− cos [s |C|]

s2
− iy

(
sin [sC]

s2
− C

s

))
ds sin θdθdφ,

with

C = cosα− 3 cos θ (sinα cosφ sin θ + cosα cos θ) ,

and α defined as the included angle between vectors ζ i and external electric field vi (cosα = ζ ivi).

It is shown in Appendix B that B (y) remains the same for any distribution of particle
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radii. The only change is the replacement of volume concentration c in (2.21) by effective

volume concentration

c̄ = n
4π

3

∞∫
0

R3p (R) dR (2.24)

for random distribution of particle radii f (R). The case of uniform radii (2.8) is the special

case of the radius distribution p (R) = δ (R−R∗) .

Functions A (y) and B (y) are easily found by numerical integration. After that, compu-

tation of fξ (X) and fη (X) is reduced to another numerical integration,

fξ (X) =

∞∫
−∞

eiyX−cA(yR) dy

2π
, fη (X) =

∞∫
−∞

eiyX−cB(y) dy

2π
. (2.25)

We will compute three probability densities: probability density of the fields in matrix, in

particles, and overall probability densities in composite. Probability density of a field in

matrix is the conditional probability under the constraint that particles are not allowed to

visit the point observation; this probability density is marked with index 1. The probability

density in particles corresponds to placing the observation point inside particles; this prob-

ability density is marked with index 2. The overall probability density is the probability to

observe a value of the field at any point of the composite.

Probability distributions within the particles can be determined after the probability

distributions in the composite and matrix have been found. This can be done using an exact

relation

f = (1− c∗) f1 + c∗f2. (2.26)

From (2.26) the probability density in the particles is

f2 = f1 +
1

c∗
(f − f1) . (2.27)

First we present the results of computation for corresponding functions A (y) and B (y).
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2.3 Function A(y)

To compute integrals in (2.22) numerically we find the values of integrals for |y| 6 20

and for larger y we use asymptotics of integrals as |y| → ∞.

Figure 2.2: Function A(y) (solid) in composite (a) along with its asymptotic approximations
for small y (|y|3/2 2

√
2π/5, point-dashed) and large y (3y2/5, dashed), and A1(y) (solid)

in matrix (b) along with its asymptotic approximations for small y (|y|3/2 2
√

2π/5 − 1,
point-dashed) and large y (y2/2, dashed).

For large |y| the first term in (2.22) tends to 1, while the integral in the second term is

∞∫
1/
√
|y|

(
1−m2 sin

[
1

m2

])
m2dm (2.28)

=

∞∫
0

(
1−m2 sin

[
1

m2

])
m2dm−

1/
√
|y|∫

0

(
1−m2 sin

[
1

m2

])
m2dm.

The first integral in (2.28) is equal to 2
√

2π/15. In second integral since the upper limit goes

to zero, the integrand should be evaluated for smallm. We have in the leading approximation

(1−m2 sin [1/m2])m2 � m2, yielding the value of the value of the second integral |y|−3/2 /3.

Thus, for large |y|

A (y) � |y|3/2 2
√

2π

5
. (2.29)

For small |y| , expanding the integrand of the first integral in powers of m in (2.22) we get

for this integral y5/30. Then the first term in (2.22) is y2/10. In the second integral, since

the low limit goes to infinity, the integrand should be evaluated for large m. We have in the
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leading approximation (1−m2 sin [1/m2])m2 � 1/ (6m2) . Thus the integral is
√
y/6 and the

second term is y2/2. Finally, for small y

A (y) � 3

5
y2. (2.30)

Function A(y) along with its asymptotics for large and small |y| is shown in Fig. 2.2a.

Computing the probability distributions inside the matrix we constrain particle positions

to be outside of the origin. Then in (2.17) a sphere at the origin with radius R is excluded

from available positions of particle centers. This corresponds to dropping the first term in

(2.22) and results in

A1 (y) = 3 |y|3/2
∞∫

1/
√
|y|

(
1−m2 sin

[
1

m2

])
m2dm. (2.31)

The asymptotics of A1 (y) are found similarly to A (y) : for large |y|

A1 (y) � |y|3/2 2
√

2π

5
− 1 (2.32)

and for small y

A1 (y) � 1

2
y2. (2.33)

Function A1(y) along with its asymptotics for large and small |y| is shown in Fig. 2.2b.

2.4 Function B(y)

In calculation of probability densities, we interpolate the numerical values of B(y) for

|y| 6 30, and use the asymptotics of B(y) for larger |y|.

We give the numerical illustrations for two values of α, α = 0 (C = 3 cos2 θ − 1) and

α = π/2 (C = 3 cos θ cosφ sin θ). They correspond to consideration of the electric field

components that are collinear and orthogonal to the direction of the external field. The

corresponding functions and parameters, which arise, will be marked by symbols ‖ and ⊥,
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respectively. Function A(y) does not depend on α, while function B(y) does.

Consider first, function B(y) for composite, when α = 0. From (2.23)

B‖ (y) =
(
1− e−iy

)
+ (2.34)

1

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤|y|

(
|y| 1− cos [s |C|]

s2
− iy

(
sin [sC]

s2
− C

s

))
ds sin θdθdφ,

with C = 3 cos2 θ − 1.

Since
|y|∫

0

1− cos [s |C|]
s2

ds � π

2
|C| − 1

|y| as |y| → ∞,

the integral in (2.34) for large |y| behaves as

1

8
|y|

∫
0≤θ≤π

∫
0≤φ≤2π

|C| sin θdθdφ− 1

+
1

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤|y|

(
−iy

(
sin [sC]

s2
− C

s

))
ds sin θdθdφ.

Figure 2.3: Real (a) and imaginary (b) parts of function B‖ (y) (solid) along
with its asymptotic approximations for small y (iy + 9y2/10, point-dashed) and large y(
−Exp (−iy) + iy/ (2π) + 2π |y| /

(
3
√

3
)
, dashed

)
.

Therefore for large |y|

B‖ (y) � −e−iy + |y| 2π

3
√

3
+ yi

1

2π
. (2.35)
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It was used here that

∫
0≤θ≤π

∫
0≤φ≤2π

|C| sin θdθdφ =
16π

3
√

3
,

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤∞

sin [sC]

s2
ds sin θdθdφ ≈ −2,

and
∫

0≤θ≤π

∫
0≤φ≤2π

C sin θdθdφ = 0.

The integral in (2.34) for small y can be approximated by the leading terms of the expansion

of the integrand

1

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤|y|

(
|y| 1

s2

(s |C|)2

2
+ iy

1

s2

(sC)3

6
+ ...

)
ds sin θdθdφ,

and after integration over s the leading terms for |y| → 0 are

1

8π
|y|2

∫
0≤θ≤π

∫
0≤φ≤2π

|C|2 sin θdθdφ+ i
1

48π
y3

∫
0≤θ≤π

∫
0≤φ≤2π

C3 sin θdθdφ. (2.36)

Figure 2.4: Real (a) and imaginary (b) parts of function B1
‖ (y) (solid) along with its asymp-

totics for small y (2y2/5− 4iy3/105, point-dashed) and large y (iy/ (2π)+2π |y| /
(
3
√

3
)
−1,

dashed).

Therefore for small y

B‖ (y) � iy +
9

10
y2. (2.37)
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Here we used that

∫
0≤θ≤π

∫
0≤φ≤2π

C2 sin θdθdφ =
16π

5
,

∫
0≤θ≤π

∫
0≤φ≤2π

C3 sin θdθdφ =
64π

35
.

Real and imaginary parts of B‖(y) for composite along with its asymptotics for large and

small |y| are shown in Fig. 2.3.

The corresponding function B1
‖(y) in the matrix is

B1
‖ (y) =

1

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤|y|

(
|y| 1− cos [s |C|]

s2
− iy

(
sin [sC]

s2
− C

s

))
ds sin θdθdφ.

(2.38)

with C = 3 cos2 θ − 1.

Large |y| and small y asymptotics for B1
‖ are found similarly to that of B‖

B1
‖ (y) � |y| 2π

3
√

3
− 1 + yi

1

2π
as |y| → ∞. (2.39)

B1
‖ (y) � 2

5
y2 + iy3 4

105
as |y| → 0. (2.40)

Real and imaginary parts of B1
‖(y) for matrix along with its asymptotics for large and

small |y| are shown in Fig. 2.4.

Function B(y) for α = π/2 is a real valued function, and from (2.23)

B⊥ (y) =
1

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤|y|

(
|y| 1− cos [s |C|]

s2
− iy

(
sin [sC]

s2
− C

s

))
ds sin θdθdφ

(2.41)

with C = 3 cos θ cosφ sin θ.

For large |y|

B⊥ (y) � |y| − 1. (2.42)
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For small y, B⊥ behaves as the quadratic function

B⊥ (y) � 3

10
y2. (2.43)

In (2.42) and (2.43) we used that

∫
0≤θ≤π

∫
0≤φ≤2π

|C| sin θdθdφ = 8,

∫
0≤θ≤π

∫
0≤φ≤2π

sin sC sin θdθdφ = 0,

∫
0≤θ≤π

∫
0≤φ≤2π

C2 sin θdθ =
12π

5
, and

∫
0≤θ≤π

∫
0≤φ≤2π

C3 sin θdθ = 0.

B⊥(y) along with its asymptotics for large and small |y| are shown in Fig. 2.5 .

It is easy to see that B1
⊥ = B⊥.

Figure 2.5: B⊥ (y) (solid) along with its asymptotic approximations for small y (3y2/10,
point-dashed) and large y (|y| − 1, dashed) .

2.5 Probability Density of Electric Potential

In computation of probability density of electric potential fξ, it is convenient to make a

change of variable of integration, y → t = yR, and introduce function

Φ(Y ) =

∞∫
−∞

eitY−cA(t) dt

2π
,

then

fξ (X) =
1

R
Φ

(
X

R

)
. (2.44)
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Figure 2.6: Probability density of electric potential in composite Φ(Y ) for several values of
concentration c.

The results of calculation for Φ(Y ) are shown in Fig. 2.6, Φ1(Y ) in Fig. 2.7, and Φ2(Y ) in

Fig. 2.8 for several values of concentration c up to 0.3. Note that the corresponding volume

concentration c∗ ≈ 0.26, just below the percolation threshold found for uniform inclusion

radii, c∗ ≈ 0.29 [21] .

Because these distributions lack "heavy tails" the integrals for expected value

µ =

∫
Xf (X) dX,

variance

σ2 =

∫
(X − µ)2 f (X) dX,

and excess kurtosis

γ2 =
1

σ4

∫
(X − µ)4 f (X) dX − 3

obtained by numerical integration are fast converging.
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Figure 2.7: Probability density of electric potential in matrix Φ1 (Y ) for several values of
concentration c.

The functions Φ, Φ1, and Φ2 are even functions of Y and the corresponding expected

values are zero. The values for variances and excess kurtosis are given in Table 2.1.

c σ2 γ2 σ2
1 γ2

1 σ2
2 γ2

2

0.05 0.05887 2.9191 0.04881 2.4266 0.25508 -0.4108
0.10 0.11876 1.4566 0.09864 1.2289 0.31008 -0.1993
0.15 0.17942 0.9338 0.14943 0.7926 0.36477 -0.0997
0.20 0.23943 0.6707 0.19971 0.5805 0.41883 -0.0593
0.25 0.29881 0.5009 0.24966 0.4489 0.47190 -0.0528
0.30 0.35741 0.3735 0.29927 0.3535 0.52361 -0.0666

Table 2.1: Variances and excess kurtosis of electric potential (overall: σ2 and γ2, matrix: σ2
1

and γ2
1, particles: σ

2
2 and γ

2
2) for several values of concentration c.

Variances are fitted by the functions

σ2 ≈ 6

5
c, σ2

1 ≈ c, and σ2
2 ≈

1

5
+

10

9
c, (2.45)

with errors not exceeding 3%.
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Figure 2.8: Probability density of electric potential in particles Φ2(Y ) for several values of
concentration c.

Function (2.44) is the probability density of scaled potential u/κ for |~v| = 1. If |~v| 6= 1,

then the probability density of potential u is

f (u) =
1

κ |~v|RΦ

(
u

κ |~v|R

)
. (2.46)

2.6 Probability Density of Electric Field Collinear with Applied Field

The probability densities of the electric field fluctuation collinear and orthogonal to the

applied field are denoted by f‖ (X) and f⊥ (X), respectively.

The results of calculation for f‖ (X) for several values of concentration c are shown in

Fig. 2.9, f 1
‖ (X) in Fig. 2.10, and f 2

‖ (X) in Fig. 2.11, and the expected values, variance,

and excess kurtosis are given in Table 2.2 .

Variances are well fitted by the functions

(
σ‖
)2 ≈ 9

5
c− 1

2
c2,

(
σ1
‖
)2 ≈ 4

5
c− 1

3
c2, and

(
σ2
‖
)2 ≈ 4

3
c− 2

5
c2, (2.47)
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Figure 2.9: Probability density of collinear electric field component in composite f‖ (X) for
several values of concentration c.

c µ‖
(
σ‖
)2 (

γ‖
)2

µ1
‖

(
σ1
‖

)2 (
γ1
‖

)2

µ2
‖

(
σ2
‖

)2 (
γ2
‖

)2

0.05 0.05140 0.08864 13.853 0.00010 0.03808 11.594 1.0315 0.06625 10.842
0.10 0.10226 0.17483 4.1344 0.00257 0.07508 5.3126 1.0495 0.12955 5.3826
0.15 0.15357 0.25937 2.5926 0.00469 0.11096 3.2257 1.0723 0.19224 3.3480
0.20 0.20466 0.34134 1.7703 0.00732 0.14573 2.1944 1.0953 0.25259 2.2863
0.25 0.25516 0.41999 1.2438 0.01043 0.17940 1.5860 1.1166 0.31017 1.6379
0.30 0.30479 0.49481 0.8709 0.01399 0.21200 1.1892 1.1360 0.36473 1.2034

Table 2.2: Average values, variances, and excess kurtosis of collinear electric field component
(overall: µ‖, (σ‖)

2, and (γ‖)
2, matrix: µ1

‖, (σ1
‖)

2, and (γ1
‖)

2, particles: µ2
‖, (σ2

‖)
2, and (γ2

‖)
2 )

for several values of concentration c.

with error not exceeding 3%, while for expected values

µ‖ ≈ c, µ1
‖ ≈ 0, and µ2

‖ ≈ 1 +
1

2
c. (2.48)

Probability densities possess some interesting features. As seen in Fig. 2.9 the distribu-

tion of electric field in the composite has two strong peaks, one originating from the matrix
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Figure 2.10: Probability density of collinear electric field component in matrix f 1
‖ (X) for

several values of concentration c.

and the other from the particles. This is consistent with results for a similar microstructure

in the two dimensional case [14]. The distribution in the particles (Fig. 2.11) has two distinct

peaks. The major peak is associated with non-overlapping particles, and the peak at X = 2

results from overlapping of two particles. It is worth noting that these features hold also for

random distribution of particle sizes since the size dependence enters only through volume

concentration.

2.7 Probability Density of Electric Field Orthogonal to Applied Field

As was previously noted B⊥ (y) = B1
⊥ (y) , thus f⊥ (X) = f 1

⊥ (X) = f 2
⊥ (X). This dis-

tribution is shown in Fig. 2.12 for several values of concentration c. The distribution f⊥

is symmetric and the corresponding expected value is zero. The values for variance and

excess kurtosis of the orthogonal component of electric field is given in Table 2.3. Again the

distributions are noticeably non Gaussian.
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Figure 2.11: Probability density of collinear electric field component in particles f 2
‖ (X) for

several values of concentration c.

Variance is fitted by the function

(σ⊥)2 =
3

5
c− 1

8
c2, (2.49)

with error not exceeding 2%.

c 0.05 0.10 0.15 0.20 0.25 0.30
(σ⊥)2 0.02984 0.05900 0.08737 0.11492 0.14156 0.16722
(γ⊥)2 13.608 6.3946 3.9638 2.7325 1.9840 1.4791

Table 2.3: Variances and excess kurtosis of orthogonal electric field component (overall,
matrix, and particles: (σ⊥)2=(σ1

⊥)2=(σ2
⊥)2 and (γ⊥)2=(γ1

⊥)2=(γ2
⊥)2) for several values of

concentration c.
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Figure 2.12: Probability density of orthogonal electric field component in composite, matrix,
and particles f⊥ (X) = f 1

⊥ (X) = f 2
⊥ (X) for several values of concentration c.

2.8 Asymptotics of Probability Densities

The distributions obtained decay like Gaussian distributions. Indeed, to find asymptotics

of Φ (X) for large X let us make the substitution

y = w/X, (2.50)

then

Φ (X) =

∞∫
−∞

eiyX−cA(y)

2π
dy =

1

X

∞∫
−∞

eiw−cA(w/X)

2π
dw. (2.51)

Since X → ∞, to evaluate integral in (2.51) we can use the asymptotics of A (y) for small

y. From (2.30) we have

Φ (X) � 1

X

∞∫
−∞

eiw−3c/5(w/X)2

2π
dw.
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Therefore, Φ (X) decays as Gaussian distribution with variance 6c/5

Φ (X) �
√

5

12πc
e−

5
12c

X2

as |X| → ∞, (2.52)

Similarly

Φ1(X) �
√

1

2πc
e−

1
2c
X2

as |X| → ∞. (2.53)

We have found in Section 6 that the variances for distributions Φ (X) and Φ1(X) are 6c/5−

c2/5 and c, respectively. Large value asymptotics (2.52) and (2.53) suggest variances 6c/5 and

c. This would seem to be an indication that Φ (X) and Φ1(X) are approximately Gaussian

for small c. However this is not the case: the excess kurtosis (Table 2.1) was found to be non

zero, and the distributions for small X are apparently non-Gaussian.

Similarly, the change of the variable of integration (2.50) in (2.25) shows that f‖ (X) ,

f 1
‖ (X) , and f⊥ (X) are determined by the asymptotics of B‖, B1

‖ , and B⊥ for small y

(2.37) , (2.40) , and (2.43) . We get the Gaussian decay

f‖ (X) �
√

5

18πc
e
−5X2
18c , f 1

‖ (X) �
√

5

8πc
e−

5X2

8c , and f⊥ (X) �
√

5

6πc
e−

5X2

6c as |X| → ∞.

(2.54)

These formulas correspond well to numerically found variances
(
σ‖
)2 ≈ 9c/5−c2/2,

(
σ1
‖

)2

≈

4c/5 − c2/3, and (σ⊥)2 ≈ 3c/5 − c2/8. Again, f‖ (X) , f 1
‖ (X) , and f⊥ (X) appear to be

nearly Gaussian for large X and non-Gaussian for finite X.

2.9 Effective Conductivity

The probability densities obtained allow us to find the effective conductivity (see, e.g. [3, 4])

aijeffv̄iv̄j =
1

|V |

∫
V

aij (r) ǔ,i (r) ǔ,j (r) d3r, (2.55)

where ǔ is the actual potential in the composite, v̄ is the average value of electric field

v̄ = 〈5ǔ〉 = (1− c∗) 〈5ǔ〉1 + c∗ 〈5ǔ〉2 , (2.56)
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and 〈 〉1 〈 〉2 are space averages over phase 1 and phase 2, respectively.

For an isotropic composite with isotropic conductivity of each phase (2.55) simplifies to

aeff 〈5ǔ〉 · 〈5ǔ〉 = a1 (1− c∗)
∫
V1

(5ǔ · 5ǔ)
d3x

|V1|
+ a2c

∗
∫
V2

(5ǔ · 5ǔ)
d3x

|V2|
. (2.57)

We can compute aeff using the statistics of the electric field obtained if we assume that the

actual field can be approximated by the sums
∑
ϕa and

∑
ψa for small concentrations. Such

calculation is instructive because it provides information on the validity of the approximation

used: apparently, the approximation fails if the values of effective coeffi cient leaves the

Hashin-Shtrikman bounds [17].

Let us show that the following relation holds:

aeff
a1

= (1− c∗)
κ2

((
σ1
‖

)2

+ 2 (σ1
⊥)

2

)
+ 1(

1 + κc∗µ2
‖

)2 (2.58)

+
a2

a1

c∗
κ2

((
σ2
‖

)2

+
(
µ2
‖

)2

+ 2 (σ2
⊥)

2

)
+ 2κµ2

‖ + 1(
1 + κc∗µ2

‖

)2 .

Indeed, due to assumed ergodicity

〈5u · 5u〉1 =

∫
(5u · 5u) f 1d3u and 〈5u · 5u〉2 =

∫
(5u · 5u) f 2d3u,

thus (2.57) is equivalent to

aeff 〈5u〉 · 〈5u〉 = a1 (1− c∗)

 ∞∫
−∞

(u1)2 f 1 (u1) du1 + 2

∞∫
−∞

(u2)2 f 1 (u2) du2

 (2.59)
+a2c

∗

 ∞∫
−∞

(u1)2 f 2 (u1) du1 + 2

∞∫
−∞

(u2)2 f 2 (u2) du2

 .
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Using the dimensional results for probability density of electric field

f (u1) =
1

κ |~v|f‖
(
u1 − |~v|
κ |~v|

)
and f (u2) =

1

κ |~v|f⊥
(

u2

κ |~v|

)
, (2.60)

we have

〈u1〉1
|~v| =

∞∫
−∞

u1

|~v|f
1 (u1) du1 =

∞∫
−∞

u1

|~v|
1

κ |~v|f
1
‖

(
u1 − |~v|
κ |~v|

)
du1 = κ

∞∫
−∞

Ψf 1
‖

(
Ψ− 1

κ

)
dΨ

= κ
∞∫

−∞

(
Ψ +

1

κ

)
f 1
‖ (Ψ) dΨ =

(
κµ1
‖ + 1

)
,

and similarly
〈u2〉1
|~v| = κµ1

⊥,
〈u1〉2
|~v| =

(
κµ2
‖ + 1

)
, and

〈u2〉2
|~v| = κµ2

⊥.

Since

〈5u〉 · 〈5u〉 = 〈u1〉2 + 2 〈u2〉2 ,

we obtain

〈5u〉 · 〈5u〉
|~v|2

=
(
1 + κµ1

‖ + κc∗
(
µ2
‖ − µ1

‖
))2

+ 2κ2
(
µ1
⊥ + c∗

(
µ2
⊥ − µ1

⊥
))2

.

Similarly

〈
(u1)2〉

1

|~v|2
=

∞∫
−∞

(
u1

|~v|

)2

f 1 (u1) du1 =

∞∫
−∞

(
u1

|~v|

)2
1

κ |~v|f
1
‖

(
u1 − |~v|
κ |~v|

)
du1

= κ2

∞∫
−∞

(
Ψ +

1

κ

)2

f 1
‖ (Ψ) dΨ

= κ2

∞∫
−∞

Ψ2f 1
‖ (Ψ) dΨ + 2κ

∞∫
−∞

Ψf 1
‖ (Ψ) dΨ +

∞∫
−∞

f 1
‖ (Ψ) dΨ

= κ2
((
σ1
‖
)2

+
(
µ1
‖
)2
)

+ 2κµ1
‖ + 1,
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〈
(u2)2〉

1

|~v|2
=

∞∫
−∞

(
u2

|~v|

)2

f 1 (u2) du2 =

∞∫
−∞

(
u2

|~v|

)2
1

κ |~v|f
1
⊥

(
u2

κ |~v|

)
du2 = κ2

∞∫
−∞

Ψ2f 1
⊥ (Ψ) dΨ

= κ2
((
σ1
⊥
)2

+
(
µ1
⊥
)2
)
,

〈
(u1)2〉

2

|~v|2
= κ2

((
σ2
‖
)2

+
(
µ2
‖
)2
)

+ 2κµ2
‖ + 1, and

〈
(u2)2〉

2

|~v|2
= κ2

((
σ2
⊥
)2

+
(
µ2
⊥
)2
)
.

The term |~v|2 is a common factor in (2.59) and can be dropped. Since µ1
⊥ = µ2

⊥ = 0 and

µ1
‖ ≈ 0, we have arrived at (2.58).

Comparison of (2.58) with the Hashin-Shtrikman bounds [17]

1 +
c∗

a1

(
1

a2 − a1

+
1− c∗

3a1

)−1

and
a2

a1

+
1− c∗
a1

(
1

a1 − a2

+
c∗

3a2

)−1

(2.61)

is shown in Figs 2.13 and 2.14.

For insulative particles κ > 0, (2.58) follows the upper Hashin-Shtrikman bound; the

plots for particular values a2/a1 = 2/5 (κ = 1/4) and a2/a1 = 10−3 (κ ≈ 1/2) are shown in

Figs. 2.13a and 2.13b, respectively.

For conducting particles κ < 0, (2.58) coincides with the lower Hashin-Shtrikman bound

for small c∗ and remains within the bounds for suffi ciently small c∗. In examples shown

in Fig. 2.14a, 2.14b, and 2.14c (a2/a1 = 104 (κ ≈ −1) , a2/a1 = 10 (κ = −3/4) , and

a2/a1 = 2 (κ = −1/4)) bounds are not violated for c∗ < .17.

For small concentration, the leading term approximation of (2.58) in c∗, aeff/a1 ≈ (1− 3c∗κ) , is

consistent with previous results (see e.g. [17]). This result supports the validity of the approx-

imation for small concentration and explains why (2.58) coincides with the upper Hashin-

Shtrikman bound for κ > 0, and the lower Hashin-Shtrikman bound for κ < 0.

Let us compare our results for variances within the composite with known bounds [22, 23] :

the second central moment of the electric field magnitude normalized to the average field
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magnitude squared can be found from the statistics in the composite

〈(∇u− 〈∇u〉) · (∇u− 〈∇u〉)〉
〈∇u〉 · 〈∇u〉 = κ2

(
σ‖
)2

+ 2 (σ⊥)2(
1 + κc∗µ2

‖

)2 (2.62)

or from statistics within each phase since

〈(∇u− 〈∇u〉) · (∇u− 〈∇u〉)〉1
〈∇u〉 · 〈∇u〉 = κ2

(
σ1
‖

)2

+
(
µ‖ − µ1

‖

)2

+ 2 (σ1
⊥)

2(
1 + κc∗µ2

‖

)2 (2.63)

〈(∇u− 〈∇u〉) · (∇u− 〈∇u〉)〉2
〈∇u〉 · 〈∇u〉 = κ2

(
σ2
‖

)2

+
(
µ‖ − µ2

‖

)2

+ 2 (σ2
⊥)

2(
1 + κc∗µ2

‖

)2 .

Note that there is less than 1.1% difference between the results computed from the composite

and the results within each phase over the range of concentrations considered.

We know that for the degenerated homogenous composite case (i.e. a1 = a2 or a1 6= a2

and c∗ = 0) variances must be zero since the PDF of electric field is delta distributed; indeed

this solution holds in this case. Additionally, a valid solution should not violate the Beran

bounds [22]

〈a〉 − aeff
a1

and
〈a〉 − aeff

a2

, (2.64)

nor the lower Lipton bound [23]

3
(
〈a〉 − a+

HS

)2

(a1 − a2)2 (1− c∗) c∗
. (2.65)

In (2.65), a+
HS denotes the greater of the two Hashin-Shtrikman bounds on effective properties

(2.61) .

These bounds (2.64, 2.65) are compared with our results (2.62) in Fig. 2.15a, 2.15b, and

2.15c for a2/a1 = 2/5 (κ = 1/4), a2/a1 = 2 (κ = −1/4), and a2/a1 = 10 (κ = −3/4) using

relation (2.58) for aeff. Fig. 2.15 shows that for insulating particles κ > 0 (Fig. 2.15a) and

for conducting particles in the high contrast case (Fig. 2.15c) these bounds do not appear
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to further constrain the validity the relations obtained. However, for conducting particles

κ < 0, in the low contrast case (Fig.2.15b) the approximation fails against the (2.64) upper

bound for values of concentration c∗ > .10.

These higher than expected variances appear to arise from the uncorrected particle to

particle interactions. With the approach of this thesis if two individual particles perfectly

overlap, which is simply a single particle, the field disturbances are double the actual. This

was noted to be apparent from the plot of f 2
‖ (X) in Fig. 2.11, and would increase the values

of
(
σ2
‖

)2

and µ2
‖. This issue also applies to f

1
‖ (X) and f⊥ (X) thereby increasing the values

of
(
σ1
‖

)2

and (σ⊥)2.

Next, let us consider the variances within each phase

〈(∇u− 〈∇u〉1) · (∇u− 〈∇u〉1)〉1
〈∇u〉1 · 〈∇u〉1

= κ2
((
σ1
‖
)2

+ 2
(
σ1
⊥
)2
)

(2.66)

〈(∇u− 〈∇u〉2) · (∇u− 〈∇u〉2)〉2
〈∇u〉2 · 〈∇u〉2

= κ2

(
σ2
‖

)2

+ 2 (σ2
⊥)

2(
κµ2
‖ + 1

)2 (2.67)

which should not violate the Beran upper bounds [24]

〈(
∇u− 〈∇u〉+

)
·
(
∇u− 〈∇u〉+

)〉
+

〈∇u〉+ · 〈∇u〉+
≤ a-
c-

1

(aeff− a−)2 (〈a〉 − aeff)
(
aeff

〈
1

a

〉
− 1

)
(2.68)

〈(
∇u− 〈∇u〉−

)
·
(
∇u− 〈∇u〉−

)〉
−

〈∇u〉− · 〈∇u〉−
≤ a+
c+

1

(aeff− a+)2 (〈a〉 − aeff)
(
aeff

〈
1

a

〉
− 1

)
.

Here a+ denotes the greater of a1 and a2 and c+ the concentration of this phase, and similarly

for a−.

These bounds (2.68) are compared with our results (2.66, 2.67) in Figs. 2.16 and 2.17 for

a2/a1 = 2/5 (κ = 1/4), a2/a1 = 2 (κ = −1/4), and a2/a1 = 10 (κ = −3/4) using relation

(2.58) for aeff.

First consider the variances within the matrix. In the insulative particle case (Fig. 2.16a)

our result (2.66) nearly coincides with the upper bound (2.68) and in the high contrast con-
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ducting particle case, this bound does not provide further constraint (Fig. 2.16c). However,

for the low contrast conducting particle case (Fig. 2.16b) the approximation fails against the

(2.68) upper bound for small values of concentration c∗ > .1.

For the variances within the particles (2.67) the insulative particle (Fig. 2.17a) and low

contrast conducting particle (Fig. 2.17b) cases the bounds (2.68) do not provide further

constraint. However, for the high contrast conductive particle case (Fig. 2.17c) variances in

the particles fail against the bounds (2.68) for very small values of concentration c∗ > .05.

The variance in the particles (2.67) enters in the effective coeffi cient (2.58) and variances in

the composite (2.62) with the factor

〈∇u〉2 · 〈∇u〉2
〈∇u〉 · 〈∇u〉 =

(
κµ2
‖ + 1

)2

(
κc∗µ2

‖ + 1
)2 ;

for the high contrast conductive particle case this factor takes very small values, and explains

why the violation of this bound was not apparent from the effective coeffi cient (Fig. 2.14b)

nor variance in the composite (Fig. 2.13c).

Our results were compared with bounds on effective coeffi cient as well as variances in the

composite, matrix, and particles. These bounds constrain the validity of this approximation

in the case of conductive particles. These results do not violate bounds in the low contrast

case a2/a1 = 2 for c∗ < .10 and for the high contrast case a2/a1 = 10 concentrations c∗ < .05.

It is expected if the particle-particle interactions were corrected, the validity of these results

could be expanded.
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Figure 2.13: Effective coeffi cient aeff/a1 for composite with insulative particles (solid) and
Hashin-Shtrikman bounds (point-dashed) (κ = 1/4 (a) and κ ≈ 1/2 (b)).

Figure 2.14: Effective coeffi cient aeff/a1 for composite with conductive particles (solid)
and Hashin-Shtrikman bounds (point-dashed) ((κ ≈ −1 (a) , κ = −3/4 (b) , and
κ = −1/4 (c)).
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Figure 2.15: Normalized second central moment of electric field magnitude in the composite
(solid), Beran 1968 bounds (point-dashed), and Lipton bounds (dashed) (κ = 1/4 (a) ,
κ = −1/4 (b) , and κ = −3/4 (c)).

Figure 2.16: Normalized second central moment of electric field magnitude in the matrix
(solid) and Beran 1980 bounds (dashed) (κ = 1/4 (a) , κ = −1/4 (b) , and κ = −3/4 (c)).

Figure 2.17: Normalized second central moment of electric field magnitude within inclusions
(solid) and Beran 1980 bounds (dashed) (κ = 1/4 (a) , κ = −1/4 (b) , and κ = −3/4 (c)).



CHAPTER 3 APPROXIMATION OF LOCAL FIELDS IN TWO PHASE COMPOSITES

The material conductivity is assumed to be statistically invariant with respect to mirror

image and translations, as well as lacking in long range correlation as described in Section

1.3. Take f (a, ~u) with N field fluctuations in phase 1 and M field fluctuations in phase 2

then

f1 (~u) =
∑
µ

pµδ
(
~u− ~Rµ

)
and f2 (~u) =

∑
α

qαδ
(
~u− ~Qα

)
, (3.1)

where pµ and qα are probabilities of the corresponding field fluctuation, variable µ runs values

1...N, and α runs values 1...M. Obviously, the field fluctuation probabilities are non-negative,

and are constrained by the volume concentration of phases

0 ≤
∑
µ

pµ ≡ c1, 0 ≤ pµ ≤ 1 for each µ, (3.2)

0 ≤
∑
α

qα ≡ c2, 0 ≤ qα ≤ 1 for each α,

and 1 = c1 + c2.

Since the average value of the field fluctuations vanish over the composite, it follows that

∑
µ

pµ ~Rµ +
∑
α

qα ~Qα = 0. (3.3)

Without a loss of generality, let the joint two point probabilities which define the correlation

between field fluctuations spatially over ~τ , be defined as the sum of the one point probabilities

52
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and some unknown functions pµν (~τ) , sµβ (~τ) , and qαβ (~τ)

f11 (~u;~τ , ~u′) = f1 (~u) f1 (~u′) +
∑
µ,ν

pµν (~τ) δ
(
~u− ~Rµ

)
δ
(
~u′ − ~Rν

)
(3.4)

=
∑
µ,ν

(pµpν + pµν (~τ)) δ
(
~u− ~Rµ

)
δ
(
~u′ − ~Rν

)
f12 (~u;~τ , ~u′) = f1 (~u) f2 (~u′) +

∑
µ,α

sµα (~τ) δ
(
~u− ~Rµ

)
δ
(
~u′ − ~Qα

)
=
∑
µ,α

(pµqα + sµα (~τ)) δ
(
~u− ~Rµ

)
δ
(
~u′ − ~Qα

)
f21 (~u;~τ , ~u′) = f12 (~u;~τ , ~u′)

f22 (~u;~τ , ~u′) = f2 (~u) f2 (~u′) +
∑
α,β

qαβ (~τ) δ
(
~u− ~Qα

)
δ
(
~u′ − ~Qβ

)
=
∑
α,β

(qαqβ + qαβ (~τ)) δ
(
~u− ~Qα

)
δ
(
~u′ − ~Qβ

)

where variable ν runs values 1...N and β runs values 1...M. Then the compatibility condition

of joint probabilities with microstructural characteristics

∫
f11 (~u;~τ , ~u′) d~ud~u′ = c1c1 +

∑
µ,ν

pµν (~τ) = f11 (~τ) = c1c1 + c1c2ho (~τ) ,∫
f12 (~u;~τ , ~u′) d~ud~u′ = c1c2 +

∑
µ,α

sµα (~τ) = f12 (~τ) = c1c2 − c1c2ho (~τ) ,

and
∫
f22 (~u;~τ , ~u′) d~ud~u′ = c2c2 +

∑
α,β

qαβ (~τ) = f22 (~τ) = c2c2 + c1c2ho (~τ) ,

leads to the relationships

∑
µ,ν

p̂µν

(
~k
)

= c1c2ĥo

(
~k
)
,
∑
µ,α

ŝµα

(
~k
)

= −c1c2ĥo

(
~k
)
, and

∑
α,β

q̂αβ

(
~k
)

= c1c2ĥo

(
~k
)
(3.5)

which are written in terms of Fourier transforms defined as

ĥo

(
~k
)

=

∫
Exp

(
i ~τ · ~k

)
ho (~τ) d~τ . (3.6)
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The inverse Fourier transform can be found by

ho (~τ) =

∫
Exp

(
−i ~τ · ~k

)
ĥo

(
~k
)
d~k. (3.7)

Here the important concept that the solutions which hold for all vectors ~τ in physical space

also hold in the transformed ~k space, and vice versa, is used.

The compatibility condition of one and two point joint distributions

∫
(f11 (~u;~τ , ~u′) + f12 (~u;~τ , ~u′)) d~u′ = f1 (~u) and

∫
(f21 (~u;~τ , ~u′) + f22 (~u;~τ , ~u′)) d~u′ = f2 (~u)

provide further constraints

∑
ν

pµν (~τ) +
∑
α

sµα (~τ) = 0 for each µ and
∑
µ

sµβ (~τ) +
∑
α

qαβ (~τ) = 0 for each β

and writing in terms of Fourier transforms

∑
ν

p̂µν

(
~k
)

+
∑
α

ŝµα

(
~k
)

= 0 for each µ and
∑
µ

ŝµβ

(
~k
)

+
∑
α

q̂αβ

(
~k
)

= 0 for each β. (3.8)

The remaining conditions for non-negativeness of probability are

0 ≤ f11 (~u;~τ , ~u′) , 0 ≤ f12 (~u;~τ , ~u′) , and 0 ≤ f22 (~u;~τ , ~u′)

which must hold for all values of ~u, ~τ , and ~u′.

Here, rather than the full infinite series to describe the correlations within the composite,

the description has been truncated to the one and two point statistics. This truncation

introduces a new constraint to ensure that the joint 2 point probability is positive definite

in terms of Fourier transforms; the inequality

0 ≤
∑
µ,ν

ϕµϕν p̂µν

(
~k
)

+ 2
∑
µ,α

ϕµφαŝµα

(
~k
)

+
∑
α,β

φαφβ q̂αβ

(
~k
)

(3.9)
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must hold for any vector ~ϕ and ~φ.

Lastly, there is a constraint due to the potentiality condition in terms of Fourier trans-

forms:

B̂
(
~k
)
kikj =

∑
µ,ν

RµiRνj p̂µν

(
~k
)

+
∑
µ,α

(RµiQαj +RµjQαi) ŝµα

(
~k
)

+
∑
α,β

QαiQβj q̂αβ

(
~k
)
(3.10)

where

0 ≤ B̂
(
~k
)
for all ~k.

3.1 Simplified Case of One Phase having a Homogenous Field

The constraints can be further simplified, and we will find B̂
(
~k
)
, p̂µν

(
~k
)
, ŝµ1

(
~k
)
, and

q̂11

(
~k
)
. Consider the case of a homogenous field in phase 2 and with (3.1), (3.2), and (3.3)

~Q = − 1

c2

∑
µ

pµ ~Rµ, 0 ≤
∑
µ

pµ = c1, 0 ≤ pµ ≤ 1 for each µ, (3.11)

and 0 ≤ q1 = c2 = 1− c1,

where the subscript for vector ~Q1 has been dropped. This simplifies one point probabilities

to

f1 (~u) =
∑
µ

pµδ
(
~u− ~Rµ

)
and f2 (~u) = c2δ

(
~u− ~Q

)
,

and two point probabilities to

0 ≤ f11 (~u;~τ , ~u′)

c1c2

=
∑
µ,ν

(
pµν (~τ)

c1c2

+
pµpν
c1c2

)
δ
(
~u− ~Rµ

)
δ
(
~u′ − ~Rν

)
(3.12)

0 ≤ f12 (~u;~τ , ~u′)

c1c2

=
∑
µ

(
sµ1 (~τ)

c1c2

+
pµ
c1

)
δ
(
~u− ~Rµ

)
δ
(
~u′ − ~Q

)
0 ≤ f21 (~u;~τ , ~u′)

c1c2

=
f12 (~u; 0, ~u′)

c1c2

0 ≤ f22 (~u;~τ , ~u′)

c1c2

=

(
q11 (~τ)

c1c2

+
c2

c1

)
δ
(
~u− ~Q

)
δ
(
~u′ − ~Q

)
.
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With (3.5)

∑
µ,ν

p̂µν

(
~k
)

= c1c2ĥo

(
~k
)
,
∑
µ

ŝµ1

(
~k
)

= −c1c2ĥo

(
~k
)
, and q̂11

(
~k
)

= c1c2ĥo

(
~k
)

(3.13)

and (3.8)

∑
ν

p̂µν

(
~k
)

+ ŝµ1

(
~k
)

= 0 for each µ and
∑
µ

ŝµ1

(
~k
)

+ q̂11

(
~k
)

= 0 (3.14)

q̂11

(
~k
)
is known, the second constraint in (3.13) is redundant, and the fourth term in (3.12)

is always satisfied due to the definition of 0 ≤ ho (~τ) (1.8).

Positive definiteness (3.9) takes the form

0 ≤
∑
µ,ν

ϕµϕν p̂µν

(
~k
)

+ 2
∑
µ

ϕµφ1ŝµ1

(
~k
)

+ φ2
1c1c2ĥo

(
~k
)
,

which after rearrangement is

0 ≤
∑
µ,ν

ϕµϕν p̂µν + c1c2ĥo

(
φ1 +

1

c1c2ĥo

∑
µ

ϕµŝµ1

)2

− 1

c1c2ĥo

(∑
µ

ϕµŝµ1

)2

.

By minimization of the right side over φ1 the constraint follows

0 ≤

p̂µν (~k)− 1

c1c2ĥo

(
~k
) ŝµ1

(
~k
)
ŝν1

(
~k
)ϕµϕν . (3.15)

Repeated indices implies summation.

The potentiality condition (3.10) is

B̂
(
~k
)
kikj =

(
p̂µν

(
~k
)
− 1

c2

(
pµŝν1

(
~k
)

+ pν ŝµ1

(
~k
))

+
1

(c2)2pµpνc1c2ĥo

(
~k
))

RµiRνj.

(3.16)



57

3.2 Compatibility of Probability Distributions

By introduction of vector ξµ where µ runs 1, ..., N and all components of ξµ are equal to

unity, tensors p̂µν
(
~k
)
and ŝµ

(
~k
)
can be expressed in the general bilinear form comprised

of parts orthogonal and collinear to ξµ :

p̂µν

(
~k
)

= p′µν

(
~k
)

+ p′µ

(
~k
)
ξν + ξµp

′
ν

(
~k
)

+ p̄
(
~k
)
ξµξν and ŝµ

(
~k
)

= s′µ

(
~k
)

+ s̄
(
~k
)
ξµ.

By definition, the orthogonal parts

p′µν

(
~k
)
ξµ = 0, p′µν

(
~k
)
ξν = 0, p′µ

(
~k
)
ξµ = 0, and s′µ

(
~k
)
ξµ = 0.

Since remaining constraints in (3.13) can be written

ξµξν p̂µν

(
~k
)

= N2p̄
(
~k
)

= c1c2ĥo

(
~k
)
and ξµŝµ

(
~k
)

= Ns̄
(
~k
)

= −c1c2ĥo

(
~k
)

we then know

p̄
(
~k
)

=
1

N2
c1c2ĥo

(
~k
)
and s̄

(
~k
)

= − 1

N
c1c2ĥo

(
~k
)
.

With the first constraint in (3.14)

Np′µ

(
~k
)

+Np̄
(
~k
)
ξµ = −s′µ

(
~k
)
− s̄

(
~k
)
ξµ,

we also know

p′µ

(
~k
)

= − 1

N
s′µ

(
~k
)
.

Then, p̂µν
(
~k
)
and ŝµ

(
~k
)
which comply to constraints (3.13,3.14) are written

p̂µν

(
~k
)

= p′µν

(
~k
)
− 1

N
s′µ

(
~k
)
ξν −

1

N
s′ν

(
~k
)
ξµ +

1

N2
c1c2ĥo

(
~k
)
ξµξν (3.17)

and ŝµ

(
~k
)

= s′µ

(
~k
)
− 1

N
c1c2ĥo

(
~k
)
ξµ.
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Now, consider positive definiteness (3.15) with the similar decomposition of vector ~ϕ

ϕµ = ϕ′µ + ϕξµ where ϕ′µξµ = 0,

with (3.17) , after simplifications we have

0 ≤

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
ϕ′µϕ

′
ν . (3.18)

The potentiality condition (3.16) with (3.17) is

B̂
(
~k
)
kikj =

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
RµiRνj

+

 s′µ

(
~k
)

c1c2ĥo

(
~k
) − ( 1

c2

pµ +
1

N
ξµ

)
x

 s′ν

(
~k
)

c1c2ĥo

(
~k
) − ( 1

c2

pν +
1

N
ξν

) c1c2ĥo

(
~k
)
RµiRνj

and with the similar decomposition of the field fluctuations ~Rµ

Rµi = R′µi + ξµR̄i where R̄i ≡
1

N
ξµRµi and R′µiξµ = 0 for each i,

potentiality is after simplifications

B̂
(
~k
)
kikj =

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
R′µiR

′
νj (3.19)

+

 s′µ

(
~k
)

c1c2ĥo

(
~k
)R′µi − 1

c2

(
pµR

′
µi + R̄i

)
x

 s′ν

(
~k
)

c1c2ĥo

(
~k
)R′νj − 1

c2

(
pνR

′
νj + R̄j

) c1c2ĥo

(
~k
)
.
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3.3 General Solution of Field Fluctuation Correlations

In Appendix D, the positive definiteness and potentiality conditions are shown to be

constraints between p′µν

(
~k
)
and s′µ

(
~k
)
. With these general solutions, the field realized

for any composite now is a potential one, or more compactly the potentiality condition is

achieved. These general solutions which ensure the potentiality condition is achieved are

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
R′µiR

′
νj = Ψ

(
~k
)
kikj (3.20)

and
s′µ

(
~k
)

c1c2ĥo

(
~k
)R′µi − 1

c2

(
pµR

′
µi + R̄i

)
= Φ

(
~k
)
ki

where

0 ≤ B̂
(
~k
)

= Ψ
(
~k
)

+ c1c2ĥo

(
~k
)(

Φ
(
~k
))2

.

We are after particular solutions which allow determination of sµ1 (~τ) and pµν (~τ) ; the par-

ticular solutions to (3.20) are

p′µν

(
~k
)
−
s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
) = Ψ

(
~k
)
Y i
µkiY

j
ν kj (3.21)

and s′µ

(
~k
)

= c1c2ĥo

(
~k
)(

Φ
(
~k
)
Y i
µki −Xµ

)
+ s̃µ

(
~k
)

where fulfillment of the potentiality condition (i.e. general solutions (3.20)) requiring

Y i
µR
′
µj = δij, Y i

µξµ = 0, (3.22)

XµR
′
µi = − 1

c2

(
pµR

′
µi + R̄i

)
, Xµξµ = 0,

s̃µ

(
~k
)
R′µi = 0, and s′µ

(
~k
)
ξµ = 0;

it will be shown later that s̃µ
(
~k
)

= 0, and it is assumed here.
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Then, with (3.17) and the inverse Fourier transform (3.7) of (3.21)

sµ1 (~τ)

c1c2

=
s′µ (~τ)

c1c2

− 1

N
ξµho (~τ) = Y i

µγi −
(
Xµ +

1

N
ξµ

)
ho (~τ)

and

pµν (~τ)

c1c2

=
p′µν (~τ)

c1c2

− ξν
N

s′µ (~τ)

c1c2

−
ξµ
N

s′ν (~τ)

c1c2

+
ξµξν
N2

ho (~τ)

=
(
Γij + γij

)
Y i
µY

j
ν − Y i

µγi

(
Xν +

1

N
ξν

)
−
(
Xµ +

1

N
ξµ

)
Y j
ν γj+(

Xµ +
1

N
ξµ

)(
Xν +

1

N
ξν

)
ho (~τ)

where

Γij (~τ) ≡ 1

c1c2

∫
Exp

(
−i ~τ · ~k

)
Ψ
(
~k
)
kikjdVk,

γij (~τ) ≡
∫
Exp

(
−i ~τ · ~k

)
ĥo

(
~k
)

Φ2
(
~k
)
kikjdVk,

and γi (~τ) ≡
∫
Exp

(
−i ~τ · ~k

)
ĥo

(
~k
)

Φ
(
~k
)
kidVk.

A simple case is when

Ψ
(
~k
)

= ψ c1c2ĥo

(
~k
)

Φ2
(
~k
)
then Γij (~τ) = ψ γij (~τ) ;

it corresponds the reasonable assumption that the intra phase correlations p′µν
(
~k
)
are

only functions of microstructural characteristics c1c2ĥo

(
~k
)
and the interphase correlations

s′µ

(
~k
)
. With this definition, the positive definiteness condition reduces to

0 ≤ ψ.
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From this point on we will only consider the degenerated case, of ψ = 0 which gives

p′µν

(
~k
)

=
s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
) ;

then the positive definiteness condition is always satisfied and the potentiality condition has

now been reduced to (3.22). Remaining constraints are now only related to the non-negativity

of probabilities (3.11) , (3.12) and potentiality (3.22).

3.4 Symmetry of Internal Fields in Two Dimensional Case

Motivated by the results of Chapter 2, where PD of electric field in a composite comprised

of spherical inclusions was found, we take the reasonable assumption that the PD must

be symmetric in the direction orthogonal to the applied field. Consequently we take field

fluctuations directed along or in equiprobable pairs symmetric to the applied field direction,

which provides this feature in the case of two dimensional space. Without loss of generality

we take |~v| in the 1−direction. It then a consequence that pµR′µ2 and R̄2 must be zero, which

simplifies the constraints in the second line of (3.22)

XµR
′
µ1 = − 1

c2

(
pµR

′
µ1 + R̄1

)
and XµR

′
µ2 = 0. (3.23)

3.5 Debye Microstructural Statistics

The microstructure selected for study is the Debye type, which is commonly encountered

in a wide range of engineering materials and corresponds to microstructures comprised of

randomly placed inclusions such as the particulate type microstructure studied in Chapter

2 (see e.g. [4]):

ho (~τ) = Exp[− |~τ |] and ĥo

(
~k
)

=
2π(

1 +
∣∣∣~k∣∣∣2)3/2

,

where dVk = 1
(2π)2

dk1dk2 for the two dimensional case.
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3.6 Selected Statistical Characteristics of the Field Fluctuation

Wemust also select statistical characteristics of the field fluctuation correlations f11 (~u;~τ , ~u′)

and f12 (~u;~τ , ~u′) which also defines the correlation function of the potential fieldB (~τ) . Consider

the second equation of (3.20) the right hand side of must be even based on definitions, there-

fore Φ must be an odd function. We take it as the function which has the slowest rate of

decay allowing for the convergence of the integrals of γij (~τ) and γi (~τ) :

Φ
(
~k
)

=
αi ki

1 +
∣∣∣~k∣∣∣2 .

The use of the slowest rate of decay in Fourier space was chosen because we expect that the

fluctuations should be correlated very strongly locally.Then

γj (~τ) =

∫
Exp

(
−i ~τ · ~k

) 2π(
1 + |k|2

)3/2

αi ki

1 +
∣∣∣~k∣∣∣2kjdVk (3.24)

= −αi
∂2

∂τ i∂τ j

∫ Exp
(
−i ~τ · ~k

)
(
1 + |k|2

)5/2

1

2π
dk1dk2

= −αi
∂2

∂τ i∂τ j

∫
Exp (−i |~τ | |k| Cos (θ))(

1 + |k|2
)5/2

|k| d |k| 1

2π
dθ

= −1

3
αi

∂2

∂τ i∂τ j
Exp (− |~τ |) (1 + |~τ |)

= −1

3
αi

(
τ iτ j
|~τ | − δij

)
Exp (− |~τ |)
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and by similar means we find

γij (~τ) =

∫
Exp

(
−i ~τ · ~k

) 2π(
1 + |k|2

)3/2

αi ki

1 +
∣∣∣~k∣∣∣2

αj kj

1 +
∣∣∣~k∣∣∣2dVk (3.25)

=
1

15
αmαn

∂2

∂τ i∂τ j

∂2

∂τm∂τn
Exp (− |~τ |)

(
3 + 3 |~τ |+ |~τ |2

)
=

1

15
αmαn

∂2

∂τ i∂τ j
Exp (− |~τ |) (τmτn − δmn (1 + |~τ |))

=
1

15
αmαnExp (− |~τ |) (

((
1 +

1

|~τ |

)
τmτn

|~τ |2
− δmn
|~τ |

)
τ iτ j

+ (δijδmn + δimδjn + δinδjm)− 1

|~τ | (τmτnδij + τ jτmδin + τ jτnδim + τ iτmδjn + τ iτnδjm))

The correlation function of the potential field can now be found

B (~τ)

c1c2

= α1α1
∂2

∂τ 1∂τ 1

∫ Exp
(
−i ~τ · ~k

)
(

1 +
∣∣∣~k∣∣∣2)7/2

1

2π
dk1dk2 (3.26)

= α1α1
∂2

∂τ 1∂τ 1

1

15
Exp (− |~τ |)

(
3 + 3 |~τ |+ |~τ |2

)
= α1α1

1

15
(τ 1τ 1 − |~τ | − 1)Exp (− |~τ |) .

3.7 Non-Negativity of Joint Two Point Probabilities

From (3.12) we are left with the constraints

0 ≤ f11 (~u;~τ , ~u′)

c1c2

=
∑
µ,ν

(
pµν (~τ)

c1c2

+
pµpν
c1c2

)
δ
(
~u− ~Rµ

)
δ
(
~u′ − ~Rν

)
0 ≤ f12 (~u;~τ , ~u′)

c1c2

=
∑
µ

(
sµ1 (~τ)

c1c2

+
pµ
c1

)
δ
(
~u− ~Rµ

)
δ
(
~u′ − ~Q

)
;

the last two terms have been dropped due to redundancy (f12 (~u;~τ , ~u′) = f21 (~u;~τ , ~u′) since

sµ1 (~τ) = sµ1 (−~τ)) and satisfaction of the last constraint (due to non-negativity of ho (~τ)).

For f11 (~u;~τ , ~u′) we take each of the ~Rµ as unique otherwise the problem is degenerate to

a lower number of vectors. For example if we were considering three vectors in the first
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phase, but two were identical, then this can be easily shown to be mathematically equivalent

to considering two vectors in the first phase. Therefore we must satisfy the conditions for

f11 (~u;~τ , ~u′) to ensure non negativity of probabilities

0 ≤ pµν (~τ)

c1c2

+
pµpν
c1c2

for each µ and ν. (3.27)

For f12 (~u;~τ , ~u′) to ensure non negativity of probabilities given the uniqueness of ~Rµ we have

0 ≤ sµ1 (~τ)

c1c2

+
pµ
c1

. (3.28)

The non-negativity of PD in (3.28) can be simplified further by writing ~τ in polar coordi-

nates and it will be shown that this constraint can be reduced to a constraint of |~τ | only. The

first term in (3.28) can be further simplified; consider in polar coordinates and the double

angle trigonometric identities

αiY
j
µ

τ iτ j

|~τ |2
=

1

|~τ |2
(
α1Y

1
µ (τ 1)2 +

(
α1Y

2
µ + α2Y

1
µ

)
τ 1τ 2 + α2Y

2
µ (τ 2)2)

= α1Y
1
µ

1 + cos 2θ

2
+
(
α1Y

2
µ + α2Y

1
µ

) sin 2θ

2
+ α2Y

2
µ

1− cos 2θ

2

=
1

2

(
α1Y

1
µ + α2Y

2
µ

)
+

1

2

√(
α1Y 2

µ + α2Y 1
µ

)2
+
(
α1Y 1

µ − α2Y 2
µ

)2
sin (2θ + Θ) .

Here, Θ is a phase shift which arises from the linear combination of sin 2θ and cos 2θ. Since

the constraint on probability (3.28) must hold for all ~τ , the strongest form of this constraint

is desired for any Θ and θ. Since the first term in (3.28) enters with a negative coeffi cient,

we maximize to find sin (2θ + Θ) = 1 and then

αiY
j
µ

(
τ iτ j
|~τ | − δij

)
Exp (− |~τ |) =

(
α1Y

1
µ + α2Y

2
µ

)(1

2
|~τ | − 1

)
Exp (− |~τ |)

+

√(
α1Y 2

µ + α2Y 1
µ

)2
+
(
α1Y 1

µ − α2Y 2
µ

)2 1

2
|~τ |Exp (− |~τ |) .
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Inserting this relation into (3.28) we have the constraint as a function of |~τ | only

0 ≤ −1

3

(
α1Y

1
µ + α2Y

2
µ

)(1

2
|~τ | − 1

)
Exp (− |~τ |)−

(
Xµ +

1

N
ξµ

)
Exp (− |~τ |) +

pµ
c1

(3.29)

− 1

3

√(
α1Y 2

µ + α2Y 1
µ

)2
+
(
α1Y 1

µ − α2Y 2
µ

)2 1

2
|~τ |Exp (− |~τ |)

or more compactly for the probability densities in (3.28) we have

0 ≤ Fµ (|~τ |) = Aµ +Bµ Exp (− |~τ |)− Cµ
1

2
|~τ |Exp (− |~τ |) (3.30)

where

Aµ =
pµ
c1

≥ 0 (3.31)

Bµ =
1

3

(
α1Y

1
µ + α2Y

2
µ

)
−
(
Xµ +

1

N
ξµ

)
Cµ =

1

3

√(
α1Y 2

µ + α2Y 1
µ

)2
+
(
α1Y 1

µ − α2Y 2
µ

)2
+

1

3

(
α1Y

1
µ + α2Y

2
µ

)
≥ 0.

Considering the following relationship

0 ≤
((
α1Y

2
µ + α2Y

1
µ

)2
+
(
α1Y

1
µ − α2Y

2
µ

)2
)
−
(
α1Y

1
µ + α2Y

2
µ

)2
=
(
α1Y

2
µ − α2Y

1
µ

)2
,

the first term in Cµ, which is always positive, is always equal to or greater than the absolute

value of the second term, therefore Cµ is always non-negative as noted in (3.31) .

There are three possible minimizers to Fµ (|~τ |) : 0, ∞, and depending on the values of Bµ

and Cµ possibly an intermediate point denoted τ̃µ. Let us show why these three conditions

ensure the non-negativeness in (3.30). For derivatives we have

F ′µ (|~τ |) = −
(
Bµ + Cµ

1

2
(1− |~τ |)

)
Exp (− |~τ |)

where prime indicates differentiation with respect to |~τ |. Considering values −∞ ≤ |~τ | ≤ ∞,
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the function Fµ (|~τ |) has stationary point (F ′µ (|~τ |) = 0) for finite |~τ | only at the point denoted

denoted τ̃µ,

τ̃µ = 1 + 2
Bµ

Cµ
.

The second derivative with respect to |~τ | is

F ′′µ (|~τ |) =

(
Bµ + Cµ

(
1− 1

2
|~τ |
))

Exp (− |~τ |) ,

and at τ̃µ

F ′′µ (τ̃µ) =
1

2
Cµ Exp (−τ̃µ) .

At the point τ̃µ, the first derivative is zero, so this is a stationary point and the second

derivative is non-negative since 0 ≤ Cµ; therefore, the stationary point τ̃µ corresponds to a

minimum.

In the case 0 = Fµ (0) , then Bµ = −Aµ = −pµ/c1 and the stationary point τ̃µ cannot

not have a positive value

τ̃µ = 1 + 2
Bµ

Cµ
= 1− 2

pµ
c1

1

Cµ
≤ 0 thus Cµ ≤ 2

pµ
c1

.

This conditional statement also arrises from alternative reasoning: if 0 = Fµ (0) and there

is only one stationary point for all |~τ | , to satisfy the condition 0 ≤ Fµ (|~τ |) for 0 ≤ |~τ |, the

first derivative of Fµ (|~τ |) with respect to |~τ | at |~τ | = 0 must be non-negative

0 ≤ F ′µ (0) = −
(
Bµ +

Cµ
2

)
=
pµ
c1

− Cµ
2

thus Cµ ≤ 2
pµ
c1

.

Note also shown that Cµ is non-negative, therefore

0 ≤ Cµ ≤ 2
pµ
c1

if 0 = Fµ (0) for each µ (3.32)
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3.8 Two Dimensional Debye Material

In summary for the two dimensional case with the Debye material and the correlation of

fluctuations selected, a random composite must have non-negative one point probabilities

0 ≤ c1 =
∑
µ

pµ ≤ 1, c2 = 1− c1, 0 ≤ pµ for each µ (3.33)

and two point probabilities (3.28, 3.30). The fulfillment of potentiality requires

ξµR
′
µi = 0, ξµXµ = 0, XµR

′
µ1 = − 1

c2

(
pµR

′
µ1 + R̄1

)
, (3.34)

XµR
′
µ2 = 0, Y i

µR
′
µj = δij, and ξµY

i
µ = 0;

all other required constraints have been satisfied through the structure of this solution.

3.9 Number of Field Fluctuations to Satisfy Potentiality Condition

To satisfy the potentiality condition in the two dimensional case, two values of field

fluctuation in the first phase are insuffi cient except for the degenerate case of a uniform

field for each phase. For the case of two dimensions a single vector orthogonal to ~k exists

and is denoted ~k∗ (i.e. kik∗i = 0) . Then, consider the case when ~R1 = const ~R2, where the

potentiality condition has the form

B̂
(
~k
)
kikj = T

(
~k
)
R1iR1j :

contracting with k∗i k
∗
j we have

0 = T
(
~k
)

(R1ik
∗
i )

2 ,

which must hold for all ~k. Since T
(
~k
)
is a non zero function of ~k, and this equation should

hold for arbritrary values of ~k∗, the only solution is a homogenous field, R1i = 0. It is shown

in Appendix C that when ~R1 6= const ~R2 the same conclusion occurs.

We then know R′µ1 6= const R′µ2, and with the conditions s̃µR
′
µi = 0 and s̃µξµ = 0 we

have the solution that s̃µ
(
~k
)

= 0.
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Note this same argument holds for the case of homogenous fields within each phase.

Again, the field in the second phase ~Q1 can be expressed as a function of the field in the first

phase ~R1 using (3.11).

Therefore from the perspective of fulfilling the potentiality condition in the two dimen-

sional case, more than two field fluctuations in the first phase are required for a two phase

composite; as shown in the following section, three is suffi cient.

3.10 Three Field Fluctuations in Phase 1 with a Homogenous Field in Phase 2

Figure 3.1: Diagram for Nµ = 3, three vectors in the first phase ~Rµ and one in second ~Q

In the case of three field fluctuations as shown in Fig. 3.1, the constraints relating to

potentiality and vector probabilities are fulfilled

p2 = p3 =
1

2
(c1 − p1) , R′12 = 0, R′22 = −R′32, R′21 = R′31 = −1

2
R′11,

X1 =
2

3

1

c2

(
1

2
(c1 − 3p1)− R̄1

R′11

)
, X2 = X3 = −1

2
X1,

Y 1
1 =

2

3

1

R′11

, Y 1
2 = Y 1

3 = −1

2
Y 1

1 , Y
2

1 = 0, and Y 2
2 = −Y 2

3 =
1

2

1

R′22

with unknowns p1, R′11, R′22, R̄1, and αi with only constraints remaining relating to

the non-negativeness of PD (3.27, 3.30) . The vectors ~R1 and ~R2 as well as the components

R22 and R32 must be non zero, otherwise this case degenerates to two fluctuations in the

first phase and potentiality cannot be satisfied.
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In the case of three field fluctuations in the first phase, the constraints (3.27) for |~τ | = 0

0 ≤ F1 (0) = A1 +B1 =
1

3
α1Y

1
1 +

(
p1

c1

−X1 −
1

3

)
,

0 ≤ 2F2 (0) = 2 (A2 +B2) = −1

3
α1Y

1
1 −

(
p1

c1

−X1 −
1

3

)
+

1

3
α2

1

R′22

, and

0 ≤ 2F3 (0) = 2 (A3 +B3) = −1

3
α1Y

1
1 −

(
p1

c1

−X1 −
1

3

)
− 1

3
α2

1

R′22

are collapsed upon inspection (i.e. 0 = F1 (0) = F2 (0) = F3 (0)) and the solutions follow

Bµ = −Aµ = −pµ
c1

, α1 = − 3

Y 1
1

(
p1

c1

−X1 −
1

3

)
, and α2 = 0. (3.35)

This conclusion has the rational consequence that the probability of observing two different

field fluctuations at a point on the boundary between the two phases is zero.

With (3.31) and (3.32) the constraint 0 ≤ Fµ (|~τ |) for any 0 ≤ |~τ | is reduced to to

constraints on Cµ

0 ≤ C1 =
2

9

∣∣∣∣ α1

R′11

∣∣∣∣+
2

9

α1

R′11

≤ 2
p1

c1

(3.36)

and 0 ≤ C2 = C3 =
1

9

∣∣∣∣ α1

R′11

∣∣∣∣
√

9

4

(
R′11

R′22

)2

+ 1− 1

9

α1

R′11

≤ 1− p1

c1

where | | indicates the absolute value (i.e. |x| =
√
x2 since R′11 6= 0 and R′22 6= 0).

Also it will also be helpful to write R̄1 as a function of α1 to make relationships more

compact later
R̄1

R′11

=
1

2

(
1− 3

p1

c1

)
− 3c2

α1

R′11

. (3.37)

Since α2 = 0 we have

γj (~τ) = −1

3
α1

(
τ jτ 1

|~τ | − δj1
)
Exp (− |~τ |)
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and

γij (~τ) =
1

15
α1α1Exp (− |~τ |) ((δij + 2δ1iδj1)

+

((
1 +

1

|~τ |

)
τ 1τ 1

|~τ |2
− 1

|~τ |

)
τ iτ j −

1

|~τ | (τ 1τ 1δij + 2τ jτ 1δi1 + 2τ iτ 1δj1))

then

0 ≤ sµ1 (~τ) + pµc2

c1c2

=

(
1

3
α1

(
Y 1
µ −

(
Y 1
µ τ 1 + Y 2

µ τ 2

) τ 1

|~τ |

)
−
(
Xµ +

1

N
ξµ

))
Exp (− |~τ |) +

pµ
c1

and

0 ≤ pµν (~τ) + pµpν
c1c2

=
1

15
(α1)2 Exp (− |~τ |)

(
Y i
µτ iY

j
ν τ j

((
1 +

1

|~τ |

)
τ 1τ 1

|~τ |2
− 1

|~τ |

))
+

1

15
(α1)2 Exp (− |~τ |)

((
Y k
µ Y

k
ν + 2Y 1

µ Y
1
ν

)
− τ 1

|~τ |
(
τ 1Y

k
µ Y

k
ν + 2τ jY

1
µ Y

j
ν + 2τ iY

i
µY

1
ν

))
+

1

3
α1Exp (− |~τ |)

((
Y j
µ

τ 1τ j
|~τ | − Y

1
µ

)(
Xν +

1

N
ξν

)
+

(
Xµ +

1

N
ξµ

)(
Y j
ν

τ 1τ j
|~τ | − Y

1
ν

))
+

(
Xµ +

1

N
ξµ

)(
Xν +

1

N
ξν

)
Exp (− |~τ |) +

pµpν
c1c2

.

3.11 Composites with Statistically Continuous Material Characteristics

The material statistics developed thus far do not prevent the case of two points of ob-

servation within the first phase having two different field values at the limit they approach

and coincide. In a statistical description an additional condition between the two point
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probability and the one point probability is introduced

f11 (~u, 0; ~u′) = f1 (~u) δ (~u− ~u′) , (3.38)

f12 (~u, 0; ~u′) = 0,

and f22 (~u, 0; ~u′) = f2 (~u) δ (~u− ~u′) as |~τ | → 0

and this is denoted as the condition of statistically continuous material characteristics, which

holds for all materials.

Briefly consider the case of three vectors in the preceding section. On the boundary

between the phases, (3.38) requires

0 =
f12 (~u; 0, ~u′)

c1c2

=
∑
µ

(
sµ1 (0)

c1c2

+
pµ
c1

)
δ
(
~u− ~Rµ

)
δ
(
~u′ − ~Q

)

which was achieved due to the collapsed constraints at zero

0 =
sµ1 (0)

c1c2

+
pµ
c1

for each µ.

The new conditions which arise only from (3.38) are correlations within the first phase

which ensure a point of observation cannot have two different field values which forces the

probability of having an observed field value to be the probability of that same field value

occurring:

p12 (0) + p1p2

c1c2

=
p13 (0) + p1p3

c1c2

= 0, (3.39)

p23 (0) + p2p3

c1c2

=
p32 (0) + p3p2

c1c2

= 0,

p11 (0) + p1p1

c1c2

=
p1

c1c2

,

and
p22 (0) + p2p2

c1c2

=
p33 (0) + p3p3

c1c2

=
p2

c1c2

.

Returning to general solutions independent of problem dimension and number of vectors
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in the first phase, from (3.20) we have

sµ1 (~τ)

c1c2

= Y i
µγi (~τ)−

(
Xµ +

1

N
ξµ

)
ho (~τ) and (3.40)

pµν (~τ)

c1c2

= γij (~τ)Y i
µY

j
ν − Y i

µγi (~τ)

(
Xν +

1

N
ξν

)
−
(
Xµ +

1

N
ξµ

)
Y j
ν γj (~τ)

+

(
Xµ +

1

N
ξµ

)(
Xν +

1

N
ξν

)
ho (~τ)

where γij (~τ) and γi (~τ) are unknown functions of ĥo microstructure and Φ field fluctuation

correlation

γij (~τ) ≡
∫
Exp

(
−i ~τ · ~k

)
ĥo

(
~k
)

Φ2
(
~k
)
kikjdVk

and γi (~τ) ≡
∫
Exp

(
−i ~τ · ~k

)
ĥo

(
~k
)

Φ
(
~k
)
kidVk.

Only constraints due to potentiality

XµR
′
µi = − 1

c2

(
pµR

′
µi + R̄i

)
, Xµξµ = 0, Y i

µR
′
µj = δij, and Y i

µξµ = 0 (3.41)

as well as non-negativity of probabilities

0 ≤ pµ
c1

+
sµ1 (~τ)

c1c2

and 0 ≤ pµpν
c1c2

+
pµν (~τ)

c1c2

(3.42)

remain.

The second constraint in (3.38) f12 (~u, 0; ~u′) = 0 requires

0 =
pµ
c1

+
sµ1 (0)

c1c2

for any µ

giving a general solution of Xµ

Xµ = Y i
µγi (0) +

1

c1

pµ −
1

N
ξµ (3.43)
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and simplifications in (3.40) arise at the limit |~τ | → 0,

pµν (0)

c1c2

=
pµpν
c1c1

+
(
γij (0)− γi (0) γj (0)

)
Y i
µY

j
ν

since ho (0) = 1.

Constraint f11 (~u, 0; ~u′) = f1 (~u) δ (~u− ~u′) requires

pµξν
c1c2

=
pµpν
c1c2

+
pµν (0)

c1c2

=
1

c2

pµpν
c1c1

+
(
γij (0)− γi (0) γj (0)

)
Y i
µY

j
ν if µ = ν

0 =
pµpν
c1c2

+
pµν (0)

c1c2

=
1

c2

pµpν
c1c1

+
(
γij (0)− γi (0) γj (0)

)
Y i
µY

j
ν if µ 6= ν

or upon rearrangement

γij (0)Y i
µY

j
ν = γi (0) γj (0)Y i

µY
j
ν −

1

c2

pµpν
c1c1

+
pµξν
c1c2

if µ = ν

γij (0)Y i
µY

j
ν = γi (0) γj (0)Y i

µY
j
ν −

1

c2

pµpν
c1c1

if µ 6= ν.

Contracting γij (0)Y i
µY

j
ν with R

′
µkR

′
νl

γij (0)Y i
µY

j
ν R
′
µkR

′
νl = γi (0) γj (0)Y i

µY
j
ν R
′
µkR

′
νl −

1

c2

pµ
c1

R′µk
pν
c1

R′νl +
∑
µ

pµ
c1c2

R′µkR
′
µl

gives γij (0) since Y i
µR
′
µk = δik

γij (0) = γi (0) γj (0)− 1

c2

pµ
c1

R′µi
pν
c1

R′νj +
∑
µ

pµ
c1c2

R′µiR
′
µj. (3.44)

Without loss of generality we can specify the average field value in the first phase to be

in the 1-dir and if we also introduce the requirement of symmetry of field fluctuations and

probabilities about the applied field direction we have

pµR
′
µi = R̄i = 0 for i 6= 1. (3.45)



74

Combining the first term in potentiality condition (3.41) with the contraction of Xµ (3.43)

and R′µi

− 1

c2

(
pµR

′
µi + R̄i

)
= XµR

′
µi = γj (0)Y j

µR
′
µi +

pµ
c1

R′µi −
1

N
R′µiξµ

allows for the solution of γi (0) since R′µiξµ = 0 and Y j
µR
′
µi = δji

γi (0) = − 1

c2

(
1

c1

pµR
′
µi + R̄i

)

and with (3.45)

γ1 (0) = − 1

c2

(
1

c1

pµR
′
µ1 + R̄1

)
and γi (0) = 0 for i 6= 1.

3.12 Statistically Continuous Material Characteristics: General Results

By specifying the condition of material characteristics being statistically continuous and

introducing the requirement of symmetry of field fluctuations and probabilities about the

applied field direction (assumed to be the 1−dir) we have reduced the entire problem to

some simple constraints independent of dimensions and number of vectors. We know from

the problem specification for large values of |~τ |

γi (~τ) = γij (~τ) = 0 as |~τ | → ∞

and conditions have been developed in the limit |~τ | → 0 from (3.38)

γ1 (0) = − 1

c2

(
1

c1

pµR
′
µ1 + R̄1

)
, γi (0) = 0 for i 6= 1, (3.46)

γ11 (0) = γ1 (0) γ1 (0)− 1

c2

pµ
c1

R′µ1

pν
c1

R′ν1 +
∑
µ

pµ
c1c2

R′µ1R
′
µ1

and γij (0) =
∑
µ

pµ
c1c2

R′µiR
′
µj for i 6= 1 or j 6= 1.
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where

γij (~τ) ≡
∫
Exp

(
−i ~τ · ~k

)
ĥo

(
~k
)

Φ2
(
~k
)
kikjdVk

and γi (~τ) ≡
∫
Exp

(
−i ~τ · ~k

)
ĥo

(
~k
)

Φ
(
~k
)
kidVk.

The first two conditions in potentiality constraints (3.41) are satisfied due to (3.45) and

(3.43) leaving

Y i
µR
′
µj = δij and ξµY

i
µ = 0.

We also have non-negativity of probabilities now just for positive |~τ |

0 ≤ pµ
c1

+
sµ1 (~τ)

c1c2

and 0 ≤ pµpν
c1c2

+
pµν (~τ)

c1c2

for 0 < |~τ | . (3.47)

By introduction of the condition of material characteristics being statistically continuous,

unknown parametersXµ have been eliminated and functions sµ1 (~τ) and pµν (~τ) are simplified

sµ1 (~τ)

c1c2

= Y i
µγi (~τ)−

(
Y 1
µ γ1 (0) +

1

c1

pµ

)
ho (~τ) and (3.48)

pµν (~τ)

c1c2

= γij (~τ)Y i
µY

j
ν − Y i

µγi (~τ)

(
Y 1
µ γ1 (0) +

1

c1

pµ

)
−
(
Y 1
µ γ1 (0) +

1

c1

pµ

)
Y j
ν γj (~τ)

+

(
Y 1
µ γ1 (0) +

1

c1

pµ

)(
Y 1
µ γ1 (0) +

1

c1

pµ

)
ho (~τ) .

3.12.1 Statistically Continuous Material Characteristics: Two Di-

mensional Debye

Again taking a Debye material with

ho (~τ) = Exp[− |~τ |] and ĥo

(
~k
)

=
2π(

1 +
∣∣∣~k∣∣∣2)3/2
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with

Φ
(
~k
)

=
αi ki

1 +
∣∣∣~k∣∣∣2

and considering the two dimensional case, i, j = 1..2, γi (~τ) and γij (~τ) were simplified at the

limit |~τ | → 0

γi (0) =
1

3
αi and γij (0) =

1

15
αmαn (δijδmn + δimδjn + δinδjm) . (3.49)

With the two terms γi (0) in (3.46) we can solve for αi

α1 = − 3

c2

(
1

c1

pµR
′
µ1 + R̄1

)
and αi = 0 for i 6= 1

and αi known, γij (0) in (3.49) and (3.46) are

1

5
α1α1 = γ11 (0) =

1

9
α1α1 −

1

c2

pµ
c1

R′µ1

pν
c1

R′ν1 +
∑
µ

pµ
c1c2

R′µ1R
′
µ1

0 = γ12 (0) = γ21 (0) =
∑
µ

pµ
c1c2

R′µ1R
′
µ2

0 = γ21 (0) = γ12 (0)

1

15
α1α1 = γ22 (0) =

∑
µ

pµ
c1c2

R′µ2R
′
µ2.

Summary

Upon simplifications the problem is reduced to pµ, R′µi, and Y
i
µ subject to the constraints

0 ≤ c1 =
∑
µ

pµ ≤ 1, c2 = 1− c1, 0 < pµ for each µ, (3.50)

ξµR
′
µi = 0, pµR

′
µi = R̄i = 0 for i 6= 1, Y i

µR
′
µj = δij, ξµY

i
µ = 0,∑

µ

pµR
′
µ2R

′
µ2 =

3

4

(∑
µ

pµR
′
µ1R

′
µ1 −

1

c1

pµR
′
µ1pνR

′
ν1

)
,

∑
µ

pµR
′
µ2R

′
µ2 =

3

5

c1

c2

(
1

c1

pµR
′
µ1 + R̄1

)2

, and 0 =
∑
µ

pµR
′
µ1R

′
µ2

where non-negativity of probabilities for 0 ≤ f12 (~u;~τ , ~u′) since 0 = Fµ (0) are reduced to
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(3.32)

0 ≤ Cµ =
1

3

√(
α1Y 2

µ

)2
+
(
α1Y 1

µ

)2
+

1

3
α1Y

1
µ ≤ 2

pµ
c1

and (3.51)

0 ≤ pµpν
c1c2

+
pµν (~τ)

c1c2

for 0 < |~τ | .



CHAPTER 4 VARIATIONAL PRINCIPLE FOR HOMOGENIZATION IN 
PROBABILISTIC TERMS

With the variational principle for homogenization in probabilistic terms a composite

with isotropic phases we can find the effective properties aeff as well as field fluctuations and

their probabilities through minimization under constraints (3.5) through (3.10) . For the two

dimensional case

aeff = Min(3.11),(3.12),(3.22)
1

|~v|2
a1

∑
µ

pµ
(
(v1 +Rµ1)2 + (v2 +Rµ2)2)

+
1

|~v|2
a2

∑
ν

qν
(
(v1 +Qν1)2 + (v2 +Qν2)2)

where ~v is the applied field and a1, a2 phase conductivities. It is clear that ~Rµ and ~Q1 are

proportional to |~v| and without loss of generality we take |~v| to be of unit intensity in the

1−direction. After dividing through by a1 and using introduced notations, we have

aeff
a1

= Min(3.11),(3.12),(3.22)

∑
µ

pµ

((
1 +R′µ1 + ξµR̄1

)2
+
(
R′µ2

)2
)

+
a2

a1

c2

(
1− 1

c2

(
pµR

′
µ1 + c1R̄1

))2

(4.1)

for two dimensional problems.

4.1 Three Field Fluctuations: an Approximate Solution

Iso contours of energy along with the regions where 0 ≤ f12 (~u;~τ , ~u′) and 0 ≤ f11 (~u; 0, ~u′)

are satisfied are shown as a function of R′11 and R′22 in Figure 4.1 for an example case

of p1/c1 = 3/7 and a1/a2 = 1/10. Similar results are found for other p1/c1 and a1/a2We

seek low values of energy, and it is observed that energy decays for larger values of α1/R
′
11

up to the limit due to the upper limit due to the first constraint in (3.36) . With this fact,

let us take α1/R
′
11 as proportional to p1/c1 :

α1

R′11

= Z
p1

c1

.
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Figure 4.1: Typical topology of 0 ≤ f12 (~u;~τ , ~u′) and 0 ≤ f11 (~u; 0, ~u′) in R11 R22 space.
Regions 0 ≤ f12 (~u;~τ , ~u′) (blue) and 0 ≤ f11 (~u; 0, ~u′) (green) shown with iso contours of
energy (black).

where Z ≤ 9
2
from (3.36). This proportionality has the consequence of mean field fluctuation

R̄1 being simply proportional to the first phase field fluctuation R′11

X1 =

(
1 +

2

9
Z

)
p1

c1

− 1

3
and then

R̄1

R′11

=
1

2
(1− 3

p1

c1

)− 1

3
Z
p1

c1

(1− c1).

Taking the largest admissible value, Z = 9
2
then α1 = 9

2
p1
c1
R′11 and constraints pµν at τµ = 0

can be written compactly

0 ≤ p11 (0) + p1p1

c1c2

= 3

(
p1

c1

)2

, (4.2)

0 ≤ p12 (0) + p1p2

c1c2

=
p1

c1

(
1− 7

5

p1

c1

)
,

0 ≤ p22 (0) + p2p2

c1c2

=
1

10

(
2 +

27

8

(
R′11

R′22

)2
)(

p1

c1

)2

+
1

2

(
p1

c1

− 1

)2

and 0 ≤ p23 (0) + p2p3

c1c2

=
1

10

(
2− 27

8

(
R′11

R′22

)2
)(

p1

c1

)2

+
1

2

(
p1

c1

− 1

)2

,



80

where

p12 (0) = p13 (0) = p21 (0) = p31 (0) , p22 (0) = p33 (0) , and p23 (0) = p32 (0) .

Since the constraints in Figure 4.1 form straight lines in R′11 and R
′
22 space and levels of

constant energy are ellipses, the solution for aeff will then inherently be found at the tangent

point intersecting straight lines of constraints and ellipses of energy. To find this point,

introduce a constant of proportionality Ω between components R′11 and R
′
22

R′22 = ΩR′11

and then constraints 0 ≤ F2 (|~τ |) and 0 ≤ F3 (|~τ |) can be written compactly

√
9

4

(
1

Ω

)2

+ 1 ≤ 2
c1

p1

− 1 alternatively |Ω| ≤ 3

4

1√
c1
p1

(
c1
p1
− 1
) . (4.3)

The constraint line normals are in the {−ω,Ωω} direction

∂

∂R′22

aeff = −ω and
∂

∂R′11

aeff = Ωω,

where here, ω is an unknown constant of proportionality between the normal to the constraint

line and the gradient of energy. With these two equations R′11 can be determined

R′11 =
6 (a2 − a1)− 6 (a2 − a1) c1

4a1Ω2
(

1− c1
p1

)
+ 9a1 (p1 − 1) + 9 (a1 − a2) p1 − 9 (a1 − a2) c1p1

.

We wish to determine the values of p1, R
′
11, and R

′
22 which minimize energy for a given

problem definition c1, a1, and a2 under the constraints for positiveness of probabilities with

the problem reduced to determination of Ω and p1. The general topology of the problem is

shown in Figure 4.2, and it is observed that energy is minimized for large p1 and small Ω
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Figure 4.2: Typical topology of 0 ≤ f11 (~u; 0, ~u′) and 0 ≤ f12 (~u;~τ , ~u′) in Ω p1 space with
isocontours of energy (black)

The constraints relating to correlations between the first and second phases (0 ≤ F1 (|~τ |) , 0 ≤

F2 (|~τ |) , and 0 ≤ F3 (|~τ |)) as well as 0 ≤ f11 (~u; 0, ~u′) have been reduced to very simple

conditions, only 0 ≤ f11 (~u;~τ , ~u′) for 0 < |~τ | could not be simplified. First minimization (4.1)

for all constraints except 0 ≤ f11 (~u;~τ , ~u′) for 0 < |~τ | was conducted and yielded a very

simple result

p1

c1

=
5

7
, Ω =

5

4

√
3

2
, aeff = a1

59a1c1 + 119a2c2

60a2c1c2 + a1

(
59 + 60 (c2)2) ;

this solution at ~τ = 0 does have the desired feature p12 (0) + p1p2 = p23 (0) + p2p3 = 0,

however it leads to negative probabilities for nonzero ~τ .

Considering the case of considering all constraints directly to study the admissible space

was found to be at the time not possible due to the lengthy minimization procedure required

on each considered configuration of pµν (~τ) over ~τ . For this reason, instead the constraints
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on f11 (~u;~τ , ~u′) at |~τ | = 0 were strengthened by a small value δ

0 ≤ δ ≤ pµν (0) + pµpν
c1c2

which was suffi ciently large to ensure for all ~τ

0 ≤ pµν (~τ) + pµpν
c1c2

.

The case of δ = 0.0664 was found to be suitable and led to the approximate solution which

satisfies all constraints on probabilities but p12 (0) + p1p2 6= 0 and p23 (0) + p2p3 6= 0:

p1

c1

=
5√
61
, Ω =

5

4
, and aeff = a1

(
125 + 11

√
61
)
a1c1 +

(
305 + 11

√
61
)
a2c2

180a2c1c2 + a1

(
125 + 11

√
61 + 180 (c2)2) .

Thus far it has been assumed that there are three points of concentration the first phase

and one point in the second phase. However this was for clarity, the entire procedure is

identical if the situation was reversed. Therefore a1 and c1 can be swapped with a2 and c2,

vice-versa, giving a second result for effective coeffi cient

aeff = a2

(
125 + 11

√
61
)
a2c2 +

(
305 + 11

√
61
)
a1c1

180a1c1c2 + a2

(
125 + 11

√
61 + 180 (c1)2) .

These new results are compared against the Voight, Reuss, and Hashin-Shtrikman bounds

in Figure 4.3.The lower of the two predictions fall within the Hashin-Shtrikman bounds for

nearly all combinations of conductivity and phase concentrations. The essential difference

is that this new result the field is not homogenous in each phase. This is shown in Figure

4.4 and the fluctuations can be computed for any case giving an improved estimate of the

orthogonal component of heat flux for a particulate composite.

While this approximate solution ensures non-negative probabilities, it has the very un-

desirable and unrealistic feature of the two point probability not collapsing to the one point

probability. In the next section the case of a composite with statistically continuous material
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Figure 4.3: aeff (solid, grey) with Reuss (dashed), Voight, (dotted), and Hashin-Shtrikman
(solid, black) for four levels of contrast (a2/a1 = 1/10, top left), (a2/a1 = 1/5, top right),
(a2/a1 = 5, bottom left), and (a2/a1 = 10, bottom right)

characteristics is considered.

4.2 Statistically Continuous Material Characteristics

Let us again consider the case when N = 3 and setting conditions of symmetry as

previously shown

p2 = p3, R
′
12 = 0, R′31 = R′21, R

′
32 = −R′22

but this time using the simplifications given in (3.50) and (3.51) .

Solution of p3 is found from c1 =
∑
µ

pµ and R′21 from ξµR
′
µ1 = 0. Then from ξµY

i
µ = 0,

Y 1
3 and Y 2

3 are found, and with Y i
µR
′
µj = δij solutions to Y

1
1 , Y

1
2 , Y

2
1 and Y 2

2 arise. With∑
µ

pµR
′
µ2R

′
µ2 = 3

4

(∑
µ

pµR
′
µ1R

′
µ1 − 1

c1
pµR

′
µ1pνR

′
ν1

)
, the solution to p3 is found.

We are strictly concerned with non degenerated cases, which are a homogenous mate-

rial and the degeneracy of the number of fluctuations. These constraints made explicit,

degeneracy of the solution is excluded by

c1 6= 1, c2 6= 1, R′11 6= 0, and R′22 6= 0. (4.4)
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Figure 4.4: Points of concentration of fluctutations for the 3 vector approximation. The
blue and red vectors are points of concentration in the first phase, and the black vector the
point of concentration in the second phase. Black dots correspond to the Reuss solution.

Without a loss of generality use the notation previously introduced

R′22 = ΩR′11

and due to the symmetry of the problem, again without loss of generality, let

0 < R′22 = ΩR′11. (4.5)

Then, the condition c1 =
∑
µ

pµ is satisfied only in the case

−3
√

3

4
< Ω <

3
√

3

4
. (4.6)

Finally, R̄1 is found from
∑
µ

pµR
′
µ2R

′
µ2 = 3

5
c1
c2

(
1
c1
pµR

′
µ1 + R̄1

)2

and it has two possible values.
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where R̄1 has two possible values. Denote these two cases as the larger R̄1

R̄1 =
1

2
R′11

(
1− 16

9
Ω2

)
+
√
c2

√
5

3
(R′22)2

(
1− 16

27
Ω2

)
(4.7)

where
α1

R′11

= −Ω
3
√
c2

√
5

3

(
1− 16

27
Ω2

)

and the smaller R̄1

R̄1 =
1

2
R′11

(
1− 16

9
Ω2

)
−√c2

√
5

3
(R′22)2

(
1− 16

27
Ω2

)
(4.8)

where
α1

R′11

= Ω
3
√
c2

√
5

3

(
1− 16

27
Ω2

)

For a given problem definition with 0 < c1 < 1 and c2 = 1 − c1, the problem of three

fluctuations is reduced to unknowns Ω and R′11

p1 = c1
16

27
Ω2, p3 =

1

2
(c1 − p1) , R′21 = −1

2
R′11, (4.9)

Y 1
1 =

2

3

1

R′11

, Y 2
1 = 0, Y 1

2 = Y 1
3 = −1

2
Y 1

1 , and Y 2
2 = −Y 2

3 =
1

2

1

R′22

where R̄1 can take one of two possible values, (4.7) or (4.8) , some simple constraints remain

(4.4), (4.5) , and (4.6) and let us now make simplifications to non negativity of probabilities

for positive |~τ |

0 ≤ pµ
c1

+
sµ1 (~τ)

c1c2

and 0 ≤ pµpν
c1c2

+
pµν (~τ)

c1c2

for 0 < |~τ | .

As previously shown, the constraints for 0 ≤ f12 (~u;~τ , ~u′) are

0 ≤ pµ
c1

+
sµ1 (~τ)

c1c2

and since they are collapsed at |~τ | = 0 (0 = f12 (~u; 0, ~u′)) the derivative of probabilities

with respect to |~τ | must be non-negative requiring 0 ≤ ∂|~τ |f12 (~u; |~τ | , ~u′) as |~τ | → 0. This
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condition was previously shown to reduce to the simple conditions

0 ≤ 2

9

∣∣∣∣ α1

R′11

∣∣∣∣+
2

9

α1

R′11

≤ 2
p1

c1

(4.10)

and 0 ≤ 1

9

∣∣∣∣ α1

R′11

∣∣∣∣
√

9

4

1

Ω2
+ 1− 1

9

α1

R′11

≤ 2
p2

c1

.

Similarly for 0 ≤ f11 (~u; 0, ~u′) if ~u 6= ~u′ the constraints are again collapsed

p12 (0) + p1p2

c1c2

=
p13 (0) + p1p3

c1c2

= 0 and
p23 (0) + p2p3

c1c2

=
p32 (0) + p3p2

c1c2

= 0

requiring 0 ≤ ∂|~τ |f11 (~u; |~τ | , ~u′) if ~u 6= ~u′ as |~τ | → 0 which are

0 ≤ ∂

∂ |~τ |p12 (|~τ |) and 0 ≤ ∂

∂ |~τ |p23 (|~τ |) as |~τ | → 0. (4.11)

Both (4.10) and (4.11) lack dependence on the magnitude of R′11, they only depend on the

sign. Therefore we can study admissible space easily.

4.3 Admissible values of c2 and Ω from 0 ≤ f12 (~u; |~τ | , ~u′)

Let us first consider the admissible space of (4.10) . Since we have two admissible values

of R̄1, and R′11 can be either positive or negative, there are four cases to consider. These are

shown graphically in Figure 4.5 with the top row corresponding to the larger value of R̄1,

lower the smaller value of R̄1, the left set the case of positive R′11 and the right negative R
′
11.

Negative α1/R
′
11

As evident from Figure 4.5, the case of large R̄1 with positive R′11 has the same admissible

space for 0 ≤ f12 (~u;~τ , ~u′) as small R̄1 with negative R′11 and vice versa on the sign of R
′
11.

Reviewing both cases of R̄1 (4.7) and (4.8) with the constraint 0 < ΩR′11 (4.5) both of these

cases have the same result

α1

R′11

= − 3
√
c2

|Ω|

√
5

3

(
1− 16

27
Ω2

)
.
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Figure 4.5: Admissible 0 ≤ f12 (~u;~τ , ~u′) in c2 Ω with 0 ≤ F1 (0) (blue) and 0 ≤ F2 (0) = F3 (0)
(orange) . Upper row is the larger value of R̄1 and lower the smaller. Left is the case of
positive R′11 and the right negative R

′
11.

The first constraint in (4.10) is satisfied upon inspection since α1/R
′
11 is negative.

The second constraint in (4.10) provides a minimum value of c2 of 5/12, however this

case occurs at Ω = 0, therefore the minimum admissible range of c2 is reduced to

5

12
< c2 < 1.
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The second constraint further reduces the admissible space to

45

108− 64Ω2

(
1 +

8

9
+

4

3
|Ω|
√

1− 4

9
Ω2

)
< c2 < 1.

The lower bound is unchanged c2 = 5/12 for the degenerate case Ω = 0.

Positive α1/R
′
11

Similarly, as evident from Figure 4.5, the case of large R̄1 with negative R′11 has the same

admissible space for 0 ≤ f12 (~u;~τ , ~u′) as small R̄1 with positive R′11 and vice versa on the

sign of R′11, here

α1

R′11

=
3
√
c2

|Ω|

√
5

3

(
1− 16

27
Ω2

)
.

The first constraint in (4.10) provides a lower limit of the magnitude of Ω

√
15

4
< |Ω| < 3

√
3

4

and the second constraint reduces the maximum magnitude of Ω, leaving

√
15

4
< |Ω| < 7

4
√

2
.

As seen in Figure 4.5 the constraint which is limiting depends on the value of |Ω| . The first

constraint in (4.10) shown in blue limits the lower value of |Ω| and the second the upper

value of |Ω|, with the intersection at |Ω| = 9/8. The solution of the admissible space of

0 ≤ f12 (~u;~τ , ~u′) for positive α1/R
′
11 is

135

64Ω2
− 5

4
≤ c2 for

9

8
≤ |Ω| < 7

4
√

2
and

5
9 + 8Ω2

108− 64Ω2
− 5

√
Ω2 (9 + 4Ω2)

27− 16Ω2
≤ c2 for

√
15

4
< |Ω| ≤ 9

8
.

Note at at |Ω| = 9/8 provides the same minimum value of c2, 5/12, therefore values of c2

less than 5/12 can be excluded from any further consideration.
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4.4 Admissible values of c2 and Ω from 0 ≤ f11 (~u; |~τ | , ~u′)

The constraints 0 ≤ ∂|~τ |f11 (~u; |~τ | , ~u′) at |~τ | = 0 if ~u 6= ~u′ also have a dependence on

the sign of α1/R
′
11 only. However, unlike the previous case, no analytical simplifications

could be found. For this reason, the admissible space was studied by computing contour

plots of the value of ∂|~τ |p12 (|~τ |) at |~τ | = 0 and ∂|~τ |p23 (|~τ |) at |~τ | = 0, both of which must be

non-negative.

For the case of negative α1/R
′
11, fitted contours of the values of ∂|~τ |p12 (|~τ |) at |~τ | = 0 and

∂|~τ |p12 (|~τ |) at |~τ | = 0 are shown in Figure 4.6 with the outline of 0 ≤ f12 (~u; |~τ | , ~u′) shown

in black.

Figure 4.6: Contours of ∂|~τ |p12 (|~τ |) at |~τ | = 0 (left) and ∂|~τ |p23 (|~τ |) at |~τ | = 0 (right) for
the case of negative α1/R

′
11. The extent of the admissible space due to 0 ≤ f12 (~u; |~τ | , ~u′) is

outlined in black.

Since both ∂|~τ |p12 (|~τ |) at |~τ | = 0 and ∂|~τ |p12 (|~τ |) at |~τ | = 0 must be non-negative, but

this does not hold for any combination of c2 and Ω = 0 within the admissible space of 0 ≤

f12 (~u; |~τ | , ~u′) , it has bene shown that negative α1/R
′
11 will always result in non physical

negative probabilities. It is excluded from further consideration.

Next, for the case of positive α1/R
′
11, fitted contours of the values of ∂|~τ |p12 (|~τ |) at |~τ | = 0

and ∂|~τ |p12 (|~τ |) at |~τ | = 0 are shown in Figure 4.7 with the outline of 0 ≤ f12 (~u; |~τ | , ~u′) shown
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in black.

Figure 4.7: Contours of ∂|~τ |p12 (|~τ |) at |~τ | = 0 (left) and ∂|~τ |p23 (|~τ |) at |~τ | = 0 (Right) for
the case of postive α1/R

′
11. The extent of the admissible space due to 0 ≤ f12 (~u; |~τ | , ~u′) is

outlined in black. Bottom shows the full remaining admissible space of c2 Ω and the top is
reduced to

√
15
4
< |Ω| < 7

4
√

2

With Figure 4.7 we can now see that there is no admissible space which has the desired

feature of a statistically continuous material without causing negative probabilities.



CHAPTER 5  FUTURE WORK

5.1 Three Dimensional Case

This section outlines future work required to apply the results derived in this thesis to the

problem of three dimensions. As with the two dimensional case, for a statistically isotropic

material the field fluctuation statistics should be invariant to rotations about the applied

field direction.

For two dimensions this was satisfied by allowing field fluctuations to enter as independent

field fluctuations directed along or in equiprobable pairs symmetric to the applied field

direction. In the case of three dimensions, the first case can remain. However for any case

where the field fluctuations are not collinear with the applied field, this requires an infinite

set of pairs to satisfy symmetry for all directions orthogonal to the applied field. This is the

fundamental difference which must be addressed to enable a solution for three dimensions.

In the case of three dimensions, field fluctuations can occur in the applied field direction

or with field values equiprobable concentrated on a circle which exists on a plane orthogonal

and having the average value aligned with, the applied field direction.

Building upon the previous results, again take one field fluctuation in the second phase

and assume the applied field is in the 1 direction. Then the generalization of the previous

results to three dimensions for many sets of vectors is

f1 (~u) =
∑
µ

pµδ
(
~u− ~Rµ

)
+
∑
γ

1

2πrγ
pγoδ (u1 − xγ) δ

(√
(u2)2 + (u3)2 − rγ

)
and f2 (~u) =

∑
α

qαδ
(
~u− ~Qα

)
,

where pµ, pµo/2πrµ, and qα are probabilities of the corresponding field fluctuation, µ runs

values 1...N, γ runs values 1...L, and α runs values 1...M.

If we limit to only one vector collinear with the applied field and one vector set which

has some orthogonal component, this is the generalization of the three vector case to three

91
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dimensions

f1 (~u) = p1δ (u1 −R) δ (u2) δ (u3)

+
1

2πr
poδ (u1 − x) δ

(√
(u2)2 + (u3)2 − r

)
and f2 (~u) = c2δ (u1 −Q) δ (u2) δ (u3) .

Similar constraints on probabilities arise

0 ≤ p1 + po ≡ c1 ≤ 1, 0 ≤ p1 ≤ 1, 0 ≤ po ≤ 1,

0 ≤ c2 ≤ 1, and 1 = c1 + c2

and as before field fluctuations by definition vanish

p1R + pox+ c2Q = 0.

It is the two point probabilities which will introduce a challenge for the three dimensional

case. Since realistic composites must have the feature of two points of observation at the

limit of coinciding resulting in the one point statistics

f11 (~u, 0; ~u′) = f1 (~u) δ (~u− ~u′) ,

f12 (~u, 0; ~u′) = 0,

and f22 (~u, 0; ~u′) = f2 (~u) δ (~u− ~u′) as |~τ | → 0

the field fluctuation correlations are not independent like they were in the two dimensional

case. The correlation is denoted below by poo (~τ , u2, u3, u
′
2, u
′
3) and lacks an equivalent for

the two dimensional case.

The functions which relate each of the field fluctuations spatially over ~τ can be expressed
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in a general form as

f11 (~u;~τ , ~u′) = p11 (~τ) δ (u1 −R) δ (u2) δ (u3) δ (u′1 −R) δ (u′2) δ (u′3)

+ po1 (~τ)
1

2πr
δ (u1 − x) δ

(√
(u2)2 + (u3)2 − r

)
δ (u′1 −R) δ (u′2) δ (u′3)

+ p1o (~τ) δ (u1 −R) δ (u2) δ (u3)
1

2πr
δ (u′1 − x) δ

(√
(u′2)2 + (u′3)2 − r

)
+ poo (~τ , u2, u3, u

′
2, u
′
3)

1

2πr
δ (u1 − x) δ

(√
(u2)2 + (u3)2 − r

)
x

1

2πr
δ (u′1 − x) δ

(√
(u′2)2 + (u′3)2 − r

)
+ f1 (~u) f1 (~u′)

f12 (~u;~τ , ~u′) = s11 (~τ) δ (u1 −R) δ (u2) δ (u3) δ (u′1 −Q) δ (u′2) δ (u′3)

+ so1 (~τ)
1

2πr
δ (u1 − x) δ

(√
(u2)2 + (u3)2 − r

)
δ (u′1 −Q) δ (u′2) δ (u′3)

+ f1 (~u) f2 (~u′)

f22 (~u;~τ , ~u′) = q11 (~τ) δ (u1 −Q) δ (u2) δ (u3) δ (u′1 −Q) δ (u′2) δ (u′3) + f2 (~u) f2 (~u′)

where due to symmetry

po1 (~τ) = p1o (~τ) and f21 (~u;~τ , ~u′) = f12 (~u′;~τ , ~u) .

Compatibility conditions of joint probabilities with microstructural characteristics

∫
f11 (~u;~τ , ~u′) d~ud~u′ = f11 (~τ)∫
f12 (~u;~τ , ~u′) d~ud~u′ = f12 (~τ)

and
∫
f22 (~u;~τ , ~u′) d~ud~u′ = f22 (~τ) ,
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compatibility condition of one and two point joint distributions

∫
(f11 (~u;~τ , ~u′) + f12 (~u;~τ , ~u′)) d~u′ = f1 (~u) and

∫
(f21 (~u;~τ , ~u′) + f22 (~u;~τ , ~u′)) d~u′ = f2 (~u)

and the remaining conditions for non-negativeness of probability remain

0 ≤ f11 (~u;~τ , ~u′) , 0 ≤ f12 (~u;~τ , ~u′) , and 0 ≤ f22 (~u;~τ , ~u′)

As before the positive definiteness of joint 2 point probability must be satisfied and the

solution of any conductivity problem must be potential (i.e. for any realization ∆u = 0)

which in statistical terms requires the existence of the correlation function of field potential

B
(
~k
)
kikj =

∫
uiu
′
j(f11

(
~u;~k, ~u′

)
− f1 (~u) f1 (~u′) + f12

(
~u;~k, ~u′

)
− f1 (~u) f2 (~u′)

+f21

(
~u;~k, ~u′

)
− f2 (~u) f1 (~u′) + f22

(
~u;~k, ~u′

)
− f2 (~u) f2 (~u′))d~ud~u′

where

0 ≤ B
(
~k
)
for all ~k.

For three dimensions, a large amount of the methods utilized apply directly, however the

addition of the correlation function poo (~τ , u2, u3, u
′
2, u
′
3) introduces additional complexities.

5.2 Hashin-Shtrikman Variational Principal

An additional opportunity for future work, is using the simplified expressions developed in

this thesis is to develop new bounds for problems of conductivity using the Hashin-Shtrikman

variational principle for probabilistic measure [see e.g. 3]. The statistically anisotropic case

can also be considered.

This variational principle enables determination of the effective conductivity from the

true probability densities f (a) , f (a, p) , and f (a;~τ , a′) limited to only the constraints of
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satisfying the non-negativity of probabilities and compatibility conditions (3.1− 3.9)

1

2
aeffij vivj = max

f,ao∈(3.1−3.9)
I− (f) =

∫ (
vipi −

1

2
b−ij (a, ao) pipj

)
f (a, p) dadp+

1

2
aovivi(5.1)

−
∫
kikj

|k|2
(pi − p̄i)

(
p′j − p̄′j

)
(f (a;~τ , a′)− f (a) f (a′)) da dp da′dp′dVk

where p is known as the polarization field

pi =
(
aij − aoδ′ij

)
uj

p̄i average polarization

p̄i =

∫
pif (a, p) dadp

b−ij is inverse to conductivities

(aij − aoδij) b−jk = δik

f (a, p) is the joint probability of conductivities and polarizations, and ao and unknown

parameter.

In the classical bounds it was taken that the correlation function of fluctuations are

isotropic which stands in contrast to both the analytically determined correlations for Debye

materials (3.26) as well as the results for particulate composites (Chapter 2).

For this reason, using the simplified relationships developed in 3.11 and the probability

densities determined for Debye type materials which can be used a trial functions, it seems

improvements upon the classical Hashin-Shtrikman bounds for isotopic materials can now

be developed using the Hashin-Shtrikman variational principle for probabilistic measure.



APPENDIX A PROBABILTIY DENSITY OF ELECTRIC POTENTIAL

To find probability density of electric potential (2.18) for particles of equal radii, one has

to find the limit

lim
N/V→n,V→∞

∫
V

e−iyϕ
d3r

|V |

N

. (A.1)

This limit can be rewritten as

lim
N/V→n,V→∞

1−
∫
V

(
1− e−iyϕ

) d3r

|V |

N

= lim
N/V→n,V→∞

e
N ln

[
1− 1
|V |

4πR3

3
A(y,R)

]
(A.2)

A (y,R) ≡ 3

4πR3
lim
V→∞

∫
V

(
1− e−iyϕ

)
d3r, (A.3)

where ϕ (r) is given by (2.16). In (A.2) the value within the logarithm tends to 1 as the

integration volume |V | tends to infinity; approximating the logarithm by the first nonzero

term of the Taylor series expansion of the logarithm results in (2.20) .

Due to spherical symmetry of the integral in (A.3), without loss of generality vector vi

can be directed along x3−axis, using (2.16)

A (y,R) =
3

4πR3

 ∫
0≤|r|≤R

(
1− eiyr3

)
d3r +

∫
R≤|r|≤∞

(
1− eiyr3(

R
|r|)

3
)
d3r

 .

Scaling of coordinates ri → ρi, shows that A (y,R) is, in fact, a function of one argument

t = yR, ρi = ri/R,

A(t) =
3

4π

 ∫
0≤|ρ|≤1

(
1− eit|ρ| cos θ

)
d3ρ+

∫
1≤|ρ|≤∞

(
1− eit(

1
|ρ|)

2
cos θ

)
d3ρ

 .

Integration over spherical coordinates θ and φ, can be done explicitly. We get for the first
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integral

3

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤|ρ|≤1

(
1− eit|ρ| cos θ

)
|ρ|2 d |ρ| sin θdθdφ

= 3

1∫
0

(
1− 1

t |ρ| sin [t |ρ|]
)
|ρ|2 d |ρ| = 3

(
1

t

)3
t∫

0

(
1− 1

m
sin [m]

)
m2dm,

and for the second integral

3

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
1≤|ρ|≤∞

(
1− eit(

1
|ρ|)

2
cos θ

)
|ρ|2 d |ρ| sin θdθdφ

= 3

∞∫
1

(
1− |ρ|

2

t
sin

[
t

|ρ|2
])
|ρ|2 d |ρ| = 3 |t|3/2

∞∫
1/
√
|t|

(
1−m2 sin

[
1

m2

])
m2dm.

We have arrived at (2.20).



APPENDIX B ELECTRIC FIELD FOR RANDOM DISTRIBUTION OF PARTICLE RADII

Consider a distribution of particle radii, with k1 particles of radius R1 number density

n1, k2 particles of radius R2 number density n2, and so on, such that k1 + k2 + ...km = N

and n1 + n2 + ...nm = n. Then the following limit is to be found

lim
N/V→n,V→∞

 1

|V |

∫
V

e−iyψ1d3r

k1 1

|V |

∫
V

e−iyψ2d3r

k2

...

 1

|V |

∫
V

e−iyψmd3r

km

. (B.1)

The first member of the product (B.1) can be written as

lim
k1/V→n1,V→∞

 1

|V |

∫
V

e−iyψ1d3r

k1

= lim
k1/V→n1 ,V→∞

e
k1 ln

(
1− 1
|V |

4πR1
3

3
B(y)

)
(B.2)

where

B (y) ≡ 3

4π (R1)3 lim
V→∞

∫
V

(
1− e−iyψ1

)
d3r, (B.3)

and ψ is given by (2.16) .

Due to spherical symmetry of the integral in (B.3), without loss of generality vector vi

again can be directed along x3−axis. Using (2.16) we have

B (y) =
3

4π (R1)3

 ∫
0≤|r|≤R1

(
1− e−iyζ3

)
d3r +

∫
R1≤|r|≤∞

(
1− e−iy(

R1
|r| )

3(
δi3−3

rir3
|r|2

)
ζi

)
d3r

 .

After scaling of coordinates ρi = ri/R1, B (y) takes the form

B (y) =
3

4π

 ∫
0≤|ρ|≤1

(
1− e−iyζ3

)
d3ρ+

∫
1≤|ρ|≤∞

(
1− e−iy(

1
|ρ|)

3
(
δi3−3

ρiρ3
|ρ|2

)
ζi

)
d3ρ

 , (B.4)

which shows that B (y) does not depend on the particle size.
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Therefore the limit (B.1) simplifies to

lim
k1/V→n1,V→∞

e
k1 ln

(
1− 1
|V |

4πR1
3

3
B(y)

)
lim

k2/V→n2,V→∞
e
k2 ln

(
1− 1
|V |

4πR2
3

3
B(y)

)

... lim
km/V→nm,V→∞

e
km ln

(
1− 1
|V |

4πRm
3

3
B(y)

)

where B (y) is the function (B.4). Replacing the logarithms by the first nonzero terms of

the Taylor expansion gives the value of the limit

e−c̄B(y),

where c̄, for any size distribution of particle radii f (R) , is

c̄ = n
4π

3

∞∫
0

R3f (R) dR.

To obtain (2.20) we note that due to spherical symmetry in (B.4) one can choose ζ as

ζ =

{
sinα, 0, cosα

}
. (B.5)

Then

B (y) =
(
1− e−iy cosα

)
+

3

4π

∫
1≤|ρ|≤∞

(
1− e−iy/|ρ|

3C
)
|ρ|2 d |ρ| sin θdθdφ, (B.6)

where C = cosα − 3 cos θ (sinα cosφ sin θ + cosα cos θ) . The second integral in (B.6), is

simplified by the substitution |ρ|3 = y/s, which gives the expression

1

4π
y

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤y

(
1− eisC

) 1

s2
ds sin θdθdφ.
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Let us break the integrand into even and odd parts:

1

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤|y|

(
|y| 1− cos [s |C|]

s2
− iy sin [sC]

s2

)
ds sin θdθdφ. (B.7)

The second term in (B.7) causes issues in numerical integration for small values of y. We

modify the integrand by adding the term sC, integral of which is zero over θ and φ for the

two cases considered (α = 0 and α = π/2):

1

4π

∫
0≤θ≤π

∫
0≤φ≤2π

∫
0≤s≤|y|

(
|y| 1− cos [s |C|]

s2
− iy

(
sin [sC]

s2
− C

s

))
ds sin θdθdφ. (B.8)

Integrand in (B.8) is not singular at s = 0 and (B.8) is easily evaluated numerically.



APPENDIX C TWO VECTORS IN PHASE 1

Two vectors in the first phase is insuffi  cient to satisfy the condition of potentiality.

B̂
(
~k
)
kikj =

(
p̂µν

(
~k
)
− 1

c2

(
pµŝν1

(
~k
)

+ pν ŝµ1

(
~k
))

+
1

(c2)2pµpνc1c2ĥo

(
~k
))

RµiRνj.

To find B̂
(
~k
)
introduce inverse to Rµ

1 (i.e. RµiR
νi = δνµ) then

Rµν
(
~k
)

= B̂
(
~k
)
kikjR

µiRνj,

and solve for p̂µν
(
~k
)

p̂µν

(
~k
)

= B̂
(
~k
)
kikjR

µiRνj +
1

c2

(
pµŝν1

(
~k
)

+ pν ŝµ1

(
~k
))
− 1

(c2)2pµpν q̂11

(
~k
)
.

Then make sum over µ, ν

∑
µ,ν

p̂µν

(
~k
)

= B̂
(
~k
)∑
µ,ν

kikjR
µiRνj −

(
2
c1

c2

+

(
c1

c2

)2
)
c1c2ĥo

(
~k
)

= c1c2ĥo

(
~k
)
,

and

B̂
(
~k
)

=

(
c2

∑
µ

kiR
µi

)−2

c1c2ĥo

(
~k
)
. (C.1)

Next, to solve for ŝµ1

(
~k
)
insert solution of B̂

(
~k
)
, then

∑
ν

p̂µν

(
~k
)

=

(
kiR

µi

(∑
ν

kjR
νj

)−1(
1

c2

)2

− pµ
c2

(
1

c2

))
c1c2ĥo

(
~k
)

+
c1

c2

ŝµ1

(
~k
)

= −ŝµ1

(
~k
)
.

After simplifications

ŝµ1

(
~k
)

=
1

c2

(
pµ − kiRµi

(∑
ν

kjR
νj

)−1
)
c1c2ĥo

(
~k
)
. (C.2)

1this is possible only for N = 2 in the 2-dimensional case when ~R1 6= const ~R2. If ~R1 is proportional to
~R2 then this constraint can only hold for the trivial case of a uniform field.
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Also, with this relation p̂µν
(
~k
)
can be further simplified to

p̂µν =

(
1

c2

)2
(
pµ − kiRµi

(∑
a

kiR
ai

)−1
)(

pν − kjRνj

(∑
a

kiR
ai

)−1
)
c1c2ĥo

(
~k
)
. (C.3)

Using (C.2, C.3) positive definiteness always holds.

We will find sµ1 (~τ) from ŝµ1

(
~k
)
directly

sµ1 (~τ) = c1pµho (~τ)− c1

∫
Exp

(
−i ~τ · ~k

)
~Rµ · ~k

(∑
ν

~Rν · ~k
)−1

ĥo

(
~k
)
dVk. (C.4)

To find the second term, define ∑
ν

~Rν = ~R

and consider 2 dimensional space with R2 = 0 and R1 6= 0, then the integral in (3.16) is

Rµ1

R1 ho (~τ) +
Rµ2

R1

∫
Exp (−i τ 1k1)Exp (−i τ 2k2)

k2

k1

ĥo

(
~k
) dk1dk2

(2π)2 . (C.5)

Consider the integral in (2.27) and denote this integral by Φ; break the integrand into even

and odd parts, and since ĥo
(
~k
)
is even over k1 and k2 and integration is over all space the

cosine terms evaluate to zero simplifying to

Φ (~τ) =

∫
k2

k1

Sin (τ 1k1)Sin (τ 2k2) ĥo

(
~k
) dk1dk2

(2π)2 .

Thus

pµc2 +

(
pµ −

Rµ1

R1

)
c1ho (~τ)− Rµ2

R1 c1Φ (τ 1, τ 2) ≥ 0.

Express the two equations explicitly

p1c2 +

(
p1 −

R11

R1

)
c1ho (~τ)− R12

R1 c1Φ (τ 1, τ 2) ≥ 0

p2c2 +

(
p2 −

R21

R1

)
c1ho (~τ)− R22

R1 c1Φ (τ 1, τ 2) ≥ 0
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and add the first equation to the second giving an upper bound to the first relation

c2c1 (1− ho (~τ)) ≥ p1c2 +

(
p1 −

R11

R1

)
c1ho (~τ)− R12

R1 c1Φ (τ 1, τ 2) ≥ 0

here it was used that
R12

R1 +
R22

R1 = 0 and
R11

R1 +
R21

R1 = 1.

Since ho (~τ) = 1 and Φ (τ 1, τ 2) = 0 at |~τ | = 0, the upper and lower bounds collapse and the

equality follows

pµ =
Rµ1

R1 c1,

and after rearrangement

1 ≥ pµ
c1

− Rµ2

R1

1

c2

Φ (τ 1, τ 2)

(1− ho (~τ))
≥ 0.

Numerically it was found
2

3
>

Φ (τ 1, τ 2)

(1− ho (~τ))
> −2

3

then

1 ≥ pµ
c1

± 2

3

1

c2

Rµ2

R1 ≥ 0.

We also must find pµν (~τ) from p̂µν

(
~k
)
. It is clear that

p̂µν

(
~k
)

=

(
pµpν −

(
pµkiR

νi + pνkjR
µj
)(∑

a

kiR
ai

)−1

+ kiR
µikjR

νj

(∑
a

kiR
ai

)−2
)
c1

c2

ĥo

(
~k
)

using the previous results, assumption that R2 = 0, and notation used for sµ1 (~τ)

pµν (~τ) =

(
pµpν − pµ

Rν1

R1 − pν
Rµ1

R1

)
c1

c2

ho (~τ)−
(
pµ
Rν2

R1 + pν
Rµ2

R1

)
c1

c2

Φ (τ 1, τ 2)

+
c1

c2

∫
Exp

(
−i ~τ · ~k

) ~Rµ · ~k
~R · ~k

~Rν · ~k
~R · ~k

ĥo

(
~k
)
dVk.
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The integral is

Rµ1Rµ1

R1R1 ho (~τ) +

(
Rµ1Rν2

R1R1 +
Rµ2Rν1

R1R1

)
Φ (τ 1, τ 2) +

Rµ2Rν2

R1R1 Ψ (τ 1, τ 2)

where

Ψ (τ 1, τ 2) =

∫ (
k2

k1

)2

Exp
(
−i ~τ · ~k

)
ĥo

(
~k
)
dVk,

simplifying to

pµν (~τ) =
Rµ1

R1

Rν1

R1 c1c2ho (~τ)−
(
Rµ1

R1

Rν2

R1 +
Rµ2

R1

Rν1

R1

)
c1Φ (τ 1, τ 2) +

Rµ2Rν2

R1R1

c1

c2

Ψ (τ 1, τ 2) .

here we used

pµ =
Rµ1

R1 c1.

Break into even odd parts and make scaling of coordinate k2 = (1 + k2
1)

1/2
y

Ψ (τ 1, τ 2) =

∫ (
k2

k1

)2 Cos (τ 2k2)Cos (τ 1k1)

(1 + k2
1 + k2

2)
3/2

dk1dk2

2π

=

∫ (
k2

k1

)2 Cos (τ 2k2)Cos (τ 1k1)

(1 + k2
1)

3/2
(

1 +
k22

1+k21

)3/2

dk1dk2

2π

=

∫
Cos (τ 1k1)

k2
1

y2Cos
(
τ 2 (1 + k2

1)
1/2
y
)

(1 + y2)3/2

dk1dy

2π

and introduce function

ϕ =
Cos (ty)

(1 + y2)3/2

where

t = τ 2

(
1 + k2

1

)1/2
.

Then

Ψ (τ 1, τ 2) = −
∫
Cos (τ 1k1)

k2
1

(
d2

dt2
ϕ

)
dk1dy

2π
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Function Ψ can take values from negative to positive infinity. Considering the constraint

must hold for any ~τ

pµν (~τ) + pµpν ≥ 0(
c1

c2

+ ho (~τ)

)
Rµ1

R1

Rν1

R1 c1c2 −
(
Rµ1

R1

Rν2

R1 +
Rµ2

R1

Rν1

R1

)
c1Φ (τ 1, τ 2) +

Rµ2Rν2

R1R1

c1

c2

Ψ (τ 1, τ 2) ≥ 0

then it follows that Rµ2 = 0; the vectors Rµ must be collinear.

As noted previously, the case of collinear vectors cannot satisfy potentiality for N = 2.

Therefore this result cannot satisfy all required constraints.



APPENDIX D GENERAL SOLUTION OF CORRELATIONS

In this section the positive definiteness and potentiality conditions will be shown to be

constraints between intra phase correlations p′µν
(
~k
)
and inter phase correlations s′µ

(
~k
)
.

Beginning from the relationship

B̂
(
~k
)
kikj =

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
R′µiR

′
νj (D.1)

+

 s′µ

(
~k
)

c1c2ĥo

(
~k
)R′µi − 1

c2

(
pµR

′
µi + R̄i

)
x

 s′ν

(
~k
)

c1c2ĥo

(
~k
)R′νj − 1

c2

(
pνR

′
νj + R̄j

) c1c2ĥo

(
~k
)
, (D.2)

define a vector ~k∗ orthogonal to ~k (i.e. kik∗i = 0) with the magnitude of k∗l
(
~k
)
such that

k∗lR
′
γl = εlmklR

′
γm. Here, εlm is the Levi-Chivita symbol. In the case of two dimensions a

single vector orthogonal to ~k exists and for the case of three dimensions this vector lies in a

plane orthogonal to ~k.

Then, after contracting (D.1) with ~k∗~k∗ we have

0 = k∗i k
∗
j

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
R′µiR

′
νj

+

k∗i
 s′µ

(
~k
)

c1c2ĥo

(
~k
)R′µi − 1

c2

(
pµR

′
µi + R̄i

)2

c1c2ĥo

(
~k
)
.

Since the positive definiteness condition (3.18) requires the first term to be non-negative and
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by definition c1c2ĥo

(
~k
)
is non-negative, then it follows that

k∗i k
∗
j

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
R′µiR

′
νj = 0 (D.3)

and k∗i

 s′µ

(
~k
)

c1c2ĥo

(
~k
)R′µi − 1

c2

(
pµR

′
µi + R̄i

) = 0.

After contracting (D.1) with ~k~k∗ we have

0 = k∗i kj

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
R′µiR

′
νj

+ k∗i kj

 s′µ

(
~k
)

c1c2ĥo

(
~k
)R′µi − 1

c2

(
pµR

′
µi + R̄i

) s′ν

(
~k
)

c1c2ĥo

(
~k
)R′νj − 1

c2

(
pνR

′
νj + R̄j

) c1c2ĥo

(
~k
)

and the additional constraint follows

k∗i kj

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
R′µiR

′
νj = 0.

Introducing notations

p′µν

(
~k
)
−
s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
) = P′µν , k∗iR

′
µi = R∗µ, and kjR

′
νj = Rν (D.4)

we can then write the unknown tensor P′µν in the ξµ,Rµ,R∗µ basis, assuming that ξµ,Rµ,R∗µ

are linearly independent and we have

P′µνR∗µR∗ν = P′µνRµR∗ν = 0. (D.5)

Alternatively if we introduce a new vector S which is orthogonal to ξµ and R∗µ with compo-
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nents

Sµ = εµνλξνR∗λ (D.6)

we can then express P′µν in the orthogonal basis of ξµ,Sµ,R∗µ, which in the general bilinear

form is

P′µν = P1ξµξν+P2SµSν+P3R∗µR∗ν+P4

(
Sµξν + ξµSν

)
+P5

(
R∗µξν + ξµR∗ν

)
+P6

(
R∗µSν + SµR∗ν

)
.

Since P′µνξµξν = 0, ξµSµ = 0, and ξµR∗µ = 0 we find P1 = 0 since the number of vectors N is

not zero. Next, due to the constraints P′µνξν = 0 and P′µνξµ = 0

P4Sµ + P5R∗µ = 0.

By definition Sµ and R∗µ are orthogonal and non zero and we find

P4 = P5 = 0.

Since P′µνR∗µR∗ν = 0 (D.5) we have

P′µνR∗µR∗ν = P3R∗µR∗µR∗νR∗ν = 0 thus P3 = 0

and similarly with the second condition in (D.4)

P′µνRµR∗ν = P6SµRµR∗νR∗ν = 0.

Here we have the result that at least P6 or SµRµ must be zero. Since both SµRµ = SµkiR′µi = 0

and SµR∗µ = Sµk∗iR′µi = 0 can only be satisfied in the case of a zero length ~k vector due to

the orthogonality of ki and k∗i , it follows P6 must be zero. We now have the result that the
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general solution of P′µν with (D.4) and (D.6) is

P′µν = P2SµSν = P2

(
εµλγξλk

∗
lR
′
γl

)
(ενστξσk

∗
nR
′
τn) = P2

(
εµλγξλεlmklR

′
γm

)
(ενστξσεpnkpR

′
τn) .

If we introduce notation

∆ εim = R′µiεµλγξλR
′
γm

where ∆ is an unknown scalar function of R′µi. Upon contraction of P′µν with R′µiR′νj we find

the relation

P′µνR′µiR′νj = P2 (∆εimεlmkl) (∆εjnεpnkp) = P2∆2kikj = Ψ
(
~k
)
kikj (D.7)

where the unknown function P2∆2 is now denoted by Ψ
(
~k
)
. Here the relationship εimεlm =

δil for the two dimensional case was used.

The positive definiteness condition (3.18) requires that

0 ≤ P2

(
Sµϕ′µ

)2
therefore 0 ≤ Ψ

(
~k
)
. (D.8)

The second term in (D.3) shows the value within the brackets is orthogonal to k∗i , thus it

must be collinear to ki up to a constant.

Solutions of (D.1) are then

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
R′µiR

′
νj = Ψ

(
~k
)
kikj and (D.9)

R′µis
′
µ

(
~k
)

c1c2ĥo

(
~k
) − 1

c2

(
pµR

′
µi + R̄i

)
= Φ

(
~k
)
ki.
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Contracting (D.1) with ~k~k we have

B̂
(
~k
)(

~k · ~k
)2

= kikj

p′µν (~k)− s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
)
R′µiR

′
νj

+

ki
 s′µ

(
~k
)

c1c2ĥo

(
~k
)R′µi − 1

c2

(
pµR

′
µi + R̄i

)2

c1c2ĥo

(
~k
)

and similarly contracting the terms in (D.9) with ~k~k, yields the value of B̂
(
~k
)
in terms of

Ψ
(
~k
)
and Φ

(
~k
)
:

B̂
(
~k
)

= Ψ
(
~k
)

+ c1c2ĥo

(
~k
)(

Φ
(
~k
))2

. (D.10)

The constraint on potentiality (D.10) is always satisfied due to the non negativity of Ψ
(
~k
)

from the positive definiteness condition and definitions of c1c2ĥo

(
~k
)
.

The general solution (D.9) can be written

p′µν

(
~k
)
−
s′µ

(
~k
)
s′ν

(
~k
)

c1c2ĥo

(
~k
) = Ψ

(
~k
)
Y i
µkiY

j
ν kj + P̃µν

(
~k
)

(D.11)

where

Y i
µR
′
µj = δij and P̃µν

(
~k
)
R′µiR

′
νj = 0 for each i and j

P̃µν = 0.

After contraction of (D.11) with ξµξν we have

0 = Ψ
(
~k
) (
ξµY

i
µki
)2
. (D.12)

Consider the decomposition of Y i
µ

Y i
µ = Y ′iµ + Ȳ i

µξµ;

since Y i
µR
′
µj = δij the term Ȳ i

µ must be zero due to the definition ξµR
′
µj = 0. We then have
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the condition

Y i
µξµ = 0,

and (D.12) is satisfied for any Ψ
(
~k
)
and ki.

The solution of s′µ
(
~k
)
in (D.9) can also be written in terms of the particular and ho-

mogenous solutions

s′µ

(
~k
)

= c1c2ĥo

(
Φ
(
~k
)
Y i
µki −Xµ

)
+ s̃µ (D.13)

where

XµR
′
µi = − 1

c2

(
pµR

′
µi + R̄i

)
, and s̃µ

(
~k
)
R′µi = 0 for each i. (D.14)

In this solution we have the freedom to select an additional constraint on Xµ since s̃µ is also

an unknown. Let us take the case that ξµXµ = 0. Since ξµs
′
µ

(
~k
)

= 0 we then have the

constraint
1

c1c2ĥo

(
~k
)ξµs̃µ (~k) = ξµXµ = 0. (D.15)
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ABSTRACT

STUDY OF PROBABILISTIC CHARACTERISTICS OF LOCAL
FIELD FLUCTUATIONS IN ISOTROPIC TWO PHASE
COMPOSITES: CONDUCTIVITY TYPE PROBLEMS

by

DAVID OSTBERG

May 2018

Advisor: Dr. Victor Berdichevsky

Major: Mechanical Engineering

Degree: Doctor of Philosophy

Probability distributions of electric field and electric potential in two-phase particulate

composite materials with spherical inclusions are found in the limit of small particle con-

centration. Additionally, a method for the approximation of local fields within random

statistically isotropic composites with a finite number of parameters is presented and an

approximate solution is found using the variational principle for probabilistic measure.
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