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Intelligence is like hair, everyone has his/her own! Kenyan proverb. 
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CHAPTER 1 INTRODUCTION 

1.1 Cellular Stress 

      Cancer cells are susceptible to physiologic stresses such as oxidative stress1-2, nutrient stress, 

endoplasmic reticulum (ER) stress3, and proteotoxic stress4-9 because of their high metabolic rates. 

In general, cells can modify their genetic, metabolic, transcriptional and translational landscape in 

response to these stresses. Additionally, posttranslational and signaling pathways modulate 

metabolic flux to promote survival, a phenomenon called “cellular stress response”. Cancer cells 

adopt diverse mechanisms to cope with these stresses to survive and enhance proliferation10. 

Cancer cells invoke mechanisms such as Warburg effect, oxidative stress response and the 

unfolded protein response (UPR), to mitigate against impending cell death11-12,13-15.  The example 

includes the use of oncogenes in alteration of metabolism that provides cancer cells with unique 

stress response mechanisms and growth advantage over non-transformed cells16. Uncontrolled 

increase in cellular stress in cancer cells, beyond protective thresholds, leads to metabolic stress 

and induction of cell death mechanisms17. These death mechanisms include apoptosis, necrosis, 

and autophagy17-19. Importantly, use of small molecules that disrupt the altered metabolism to 

augment stress have therapeutic potential20. Arguably, small molecules that modulate reactive 

oxygen species (ROS) have potential to disrupt metabolic reprogramming in cancer20-27.  

1.1.1 Metabolic Reprogramming in Cancer 

     Metabolic reprogramming is a hallmark of cancer that provides cancer cells with a growth 

advantage over non-transformed cells28. In metabolic reprogramming, glucose modulates redox 

homeostasis control, cellular energetics and protein glycosylation28. Cancer cells are therefore 

programmed by oncogenes to increase glucose uptake. Additionally, the increased glycolytic 

metabolites, are directed to the pentose phosphate pathway (PPP) and hexosamine biosynthetic 
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pathway (HBP) (Figure 1.1), to produce NADPH and UDP-N-acetylglucosamine (UDP-GlcNAc) 

and other metabolites that promote cell proliferation29. NADPH and UDP-GlcNAc produced by 

the above pathways is essential for protection against reactive oxygen species (ROS)30-31. 

Importantly, this metabolic reprogramming is essential for maintenance of redox homeostasis, of 

which disruption can lead to cancer cell death.           

        Glucose flux into glycolysis, PPP and HBP thrive in cancer cells, partly due to mutations of 

tumor suppressors such as p53, which regulate levels of glucose transporters, glycolytic and HBP 

enzymes16, 32. In recent years, therapeutic strategies are shifting from targeting these oncogenes 

towards the glucosome33 and modulation of nutrients to disrupt altered metabolism in cancer32, 34-

36.  For example, glycolytic inhibition with 2-deoxy-D-glucose37-39 and blocking glycosylation of 

G6PD using small molecules reduced PPP flux and NADPH levels, increased ROS, disrupted 

metabolism and diminished cancer cell proliferation40. Additionally, recent connection between 

oncogenes and altered metabolism has stimulated work on various cancer cell metabolism targets 

that include glycolysis, PPP, TCA cycle and HBP (Figures 1 & 2)41.  

 
Figure 1-Metabolism of glucose for redox homeostasis, cellular energetics and protein 

glycosylation 
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1.2 Metabolic pathways involved in redox homeostasis 

1.2.1 Glycolysis 

     A common feature of cancer cells is upregulation of aerobic glycolysis due to increased 

glucose consumption; a phenotype observed by positron emission tomography (PET)42-

43. Cancer cells prefer aerobic glycolysis over mitochondrial oxidation because glucose turnover 

is increased resulting in greater ATP production. Aerobic glycolysis generates ATP at a higher 

rate but in lower ATP yields than oxidative phosphorylation44. ATP formed through glycolysis is 

sufficient for cancer growth.  

        Additionally, glycolytic enzymes that include HKII, PFKI, GAPDH and PKM2 are involved 

in redox homeostasis45-48. GAPDH catalyzes the first glycolytic step that generates NADH 

required in oxidative phosphorylation. Importantly, GAPDH can reverse flux under oxidative 

stress via the catalytic cysteine residue that when oxidized lowers GAPDH enzyme activity49-50. 

In this way, glycolytic flux is reversed towards the PPP with prolonged ROS exposure leading to 

GAPDH-induced apoptosis. In a similar way, other glycolytic enzymes such as HKII, PFK1 and 

PKM2 redirect metabolites towards PPP under oxidative stress conditions50. Indeed, inhibiting 

HKII51 and other glycolytic enzymes causes cancer cell death. Notably, non-metabolic roles of 

Nrf2-HKII are emerging as coactivators of xanthine oxidoreductase (XOR), that place HKII in 

direct ROS modulatory function in cancer cells52. The change of flux by the glycolytic enzymes 

and cancer cell reliance on the Warburg effect is a defense mechanism that promotes tumorigenesis 

and malignancy progression. Conversely, targeting these cytoprotective enzymes has therapeutic 

potential. 
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1.2.2 Warburg effect  

        Otto Warburg reported that tumor cells consume glucose at high rates compared to normal 

cells with production of lactate, a phenomenon known as the ‘‘Warburg effect’’53. In Warburg 

effect, lactate is extruded by monocarboxylate transporters to the cancer cell environment54. On 

the other hand, normal cells metabolize glucose into pyruvate that is contained within cells, partly 

because of suppression of monocarboxylate transporter 1 (MCT1) by p5354. Inhibiting MCT1 is 

therefore beneficial to normal cells55 because pyruvate is metabolized to acetyl CoA. Acetyl CoA 

enters the Krebs cycle that generate antioxidant intermediates such as citrate, malate, NADH and 

FADH2. This enhances antioxidant capacities of normal cells, while cancer cells exhibiting 

Warburg effect may be deprived of this protection, and will be more susceptible to oxidative 

stress.56 To explain this observation, Warburg proposed that tumor cells have a permanent loss of 

oxidative metabolism leading to a compensatory increase in glycolytic flux. However, various 

studies have shown that although mitochondrial dysfunction in cancer cells can disrupt energy 

metabolism, many tumor cells demonstrate normal mitochondrial function with oxidative 

phosphorylation57-58.  

          Later, it was demonstrated that the high glycolytic rate provides a growth advantage for 

rapidly proliferating cancer cells. Warburg effect allows cells to use glucose to produce ATP at 

higher rates than through oxidative phosphorylation, even though the yield of ATP per glucose 

consumed is low58. Additionally, glucose provides cells with intermediates needed for biosynthetic 

pathways, including ribose for nucleotides; citrate for lipids and, NADPH for ROS 

detoxification59-60. Furthermore, Warburg effect regenerates NAD+ during conversion of pyruvate 

to lactate61. Of note, glycolytic intermediates, G6P and F6P, are the key regulatory branch points 

in glycolysis that apportion metabolites into the PPP and HBP. 
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1.3 Pentose phosphate pathway (PPP)  

     The Warburg effect is directly involved in regulation of redox homeostasis by controlling 

glucose flux into the PPP. The PPP is involved in synthesis of NADPH that maintains cellular 

antioxidants such as glutathione (GSH) in its reduced state62-63(Figure 1.1.1). In normal cells, PPP 

is regulated partly by nutrient uptake and energy needs of the cell.  

 

Figure 2-The pentose phosphate pathway. Figure adapted with permission from Patra, K. C.; 

Hay, N., The pentose phosphate pathway and cancer. Trends in biochemical sciences 2014, 39 

(8), 347-354. 

However, in cancer cells, PPP is controlled by oncogenes that alter nutrient uptake accompanied 

by change of flux to redirect metabolites to biomass synthetic pathways64. G6PDH catalyzes the 

critical rate limiting step of the PPP by converting G6P to 6-phosphoglucono-δ-lactone and 

NADPH65 (Figure 1.1.1). High G6PDH activity results in an increase in DNA and fatty acid 

biosynthesis, necessary for cell proliferation. 6-Phosphogluconate is subsequently converted to 

ribulose-5-phosphate (Ru5P), carbon dioxide and NADPH by 6-phosphogluconate dehydrogenase 
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(6PGDH)63-64. 6PGDH, like G6PDH, controls redox homeostasis by increasing the production of 

NADPH. Additionally, genetic changes of signaling pathways affect the PPP directly and 

indirectly63.  

      Reversible enzymes in PPP, transketolase (TKT) and transaldolase (TALDO), mediate the 

nonoxidative PPP66. During oxidative stress, TKT converts ribose-5-phosphate (R5P) and 

xylulose-5-phosphate (Xu5P) to produce G3P and S7P67. Another TKT reaction occurs between 

Xu5P and E4P to generate F6P and G3P. On the other hand, TALDO truncates and transfers a 

three-carbon unit from S7P to G3P to form E4P and F6P67. F6P is then converted back to G6P to 

generate more NADPH. G3P re-enters glycolysis and eventually the TCA cycle. Overall, cancer 

cells predominantly employ the nonoxidative PPP to generate ribonucleotides required cancer cell 

division and growth68. 

1.4 TCA Cycle 

      In most cancer cells, the TCA cycle provides intermediates in the synthesis of lipids, proteins 

and nucleic acids, with reduced production of oxidizable intermediates required for ATP 

synthesis69. Importantly, the TCA cycle intricately maintains NADH and NADPH levels from 

multiple sources that are required for cellular energetics, redox homeostasis and anabolism (Figure 

1.1.2). For example, to synthesize lipids, cancer cells transfer mitochondrial citrate out to the 

cytosol to be converted to oxaloacetate (OAA) and the lipogenic precursor acetyl-CoA69-71. 

Additionally, p53 inhibition of PDK2 expression results in increased conversion of pyruvate to 

mitochondrial acetyl-CoA72. To regulate mitochondrial metabolism, p53 enhances the expression 

of SCO2 and AIF, two factors that control assembly of complexes of the electron transport chain 

(ETC)72. p53 also downregulates PDK2 and upregulates GLS(2) to facilitate entry of metabolites 

such as glutamine into the TCA cycle73. Additionally, TCA cycle intermediates such as citrate can 
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be exported into the cytosol from the mitochondrion, where ME or IDH1 use them to generate 

reducing power in the form of NADPH74-75. On the other hand, IDH1 generate NADPH in the 

mitochondrion. Equally important in redox homeostasis is the concerted roles of SHMT1/2 and 

MTHFD1/2 in maintaining NADPH in the mitochondrion and cytosol (Figure 3).  

 

 

Figure 3-NADPH & NADH generating pathways in a cancer cell. Adapted from DeBerardinis, 

R. J.; Chandel, N. S., Fundamentals of cancer metabolism. Science Advances 2016, 2 (5). 

1.5 Hexosamine biosynthetic pathway (HBP) 

     High glucose uptake in cancer cells increase flux via the HBP to induce O-GlcNAcylation and 

modulate redox homeostasis and cellular energetics76. Metabolic and glycolytic enzymes such as 

PFK177 and PKM278-79 undergo O-GlcNAcylation to promote change of flux into the PPP80 during 

oxidative stress. O-GlcNAc modification of proteins is dependent on the concentration of UDP-
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GlcNAc, which is a donor substrate of O-GlcNAc transferase (OGT). UDP-GlcNAc synthesis 

require glutamine, acetyl-coenzyme A, uridine, and ATP, making it a biomarker of cellular 

energetics31, 76. UDP-GlcNAc is used in modification of various proteins by O-GlcNAc and for 

biosynthesis of extracellular N- and O-glycans. Importantly, HBP and O-GlcNAc modification 

allow cells to link cellular metabolism to the regulation of cellular processes, such as oxidative 

stress response31. 

 1.6 ER Stress, ROS and Unfolded Protein Response (UPR) 

     Disruption of the equilibrium between protein synthesis and protein folding capacity observed 

in cells causes oxidative and ER stress15. Additionally, protein folding by disulfide bond formation 

using protein disulfide isomerase (PDI) lead to ROS generation81 (Figure 4). 

 

Figure 4-Major sources and types of ROS in the ER of mammalian cells. Adapted with permission 

from Zeeshan, H.; Lee, G.; Kim, H.-R.; Chae, H.-J., Endoplasmic Reticulum Stress and Associated 

ROS. International journal of molecular sciences 2016, 17 (3), 327. 

       PDI is maintained in its reduced form by EROα1 which require oxygen82-83. This latter 

reaction produces hydrogen peroxide in the ER83. Overall, electron transfer from PDI to molecular 

oxygen and EROα1 uses a FAD-dependent reaction. Additionally, under stressed conditions, Nox4  
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expression is increased and generate ROS84. Nox4 associated with p22phox uses NADH or 

NADPH for oxygen reduction to produce a superoxide anion. Other sources of ROS in the ER 

include NADPH-p450 reductase (NPR) and the microsomal monooxygenase system (MOO)81. 

      The capacity of the ER to respond to protein misfolding, changes in ROS and nutrient status 

makes it an effective early sensor of cellular stress. The ER can sense dramatic drops in cellular 

glucose levels using ER-resident GRP78 protein85-87. The UPR signals cellular stress through three 

distinct stress sensors located at the ER membrane, that include PERK, IRE1 and ATF687-88. 

Subsequently, to restore favorable folding of proteins, IRE1 is phosphorylated to induce ER stress 

response chaperones such as GRP7888. GRP78 dissociates from IRE1 to assist in protein folding 

and forestall cell death. However, prolonged GRP78 activation triggers apoptosis89. 

        IRE1 can also recruit ASK1 that activates JNK (Figure 5) and p38 pathways90-91. 

Phosphorylated JNK translocate to nuclei to phosphorylate and transactivate c-Jun that is involved 

in transcription of proapoptotic genes91. Additionally, IRE1-mediated activation of JNK 

contributes to cell death by phosphorylating and inactivating the anti-apoptotic regulator Bcl-292. 

Concertedly, the transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous 

protein (CHOP) down-regulates Bcl-2 expression93. Furthermore, in oxidative stress conditions, 

PERK phosphorylates Nrf2 that induce ROS detoxifying enzymes94. Lately, ROS and ER stress 

have been linked to protein glycosylation95-96 (Figure 5). Thus, the ER as a sensor of cellular stress 

is critical for maintaining cellular redox homeostasis.  

1.7 Targeting altered metabolism in cancer using carbohydrate-based small molecules 

          Broad utilization and differential rate of monosaccharide uptake in cancer cells compared to 

normal cells has been used in positron emission tomography (PET) and in cancer therapeutics. In 

PET, 2-[18F]-2-Deoxy-D-glucose (FDG) is used in imaging and locating tumor metastases. 
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Concomitantly, 2-deoxy-D-glucose is used as an anticancer agent97-99. Broad specificity and high 

monosaccharide uptake by glucose transporter 1 (GLUT-1) is used in targeting cancer cell 

metabolism59. Indeed, substitution at various positions on the glucose moiety is well tolerated by 

GLUT-1100. Anticancer drugs such as 2-deoxy-D-glucose exploit GLUT-1 substrate promiscuity 

to target cancer cells which have enhanced glucose uptake to fuel their metabolism. High 2-deoxy-

D-glucose uptake induce ROS production. Furthermore, there is an emerging interest in the roles 

of glucose-deprivation101, 2-deoxy-D-glucose and glycoconjugate anticancer agents, in ROS 

elevation, ROS-apoptosis signaling and cancer cell metabolism100.  

 

Figure 5- ROS-ER stress signaling pathways 

1.8 Sources of ROS in cancer 

      Cells maintain a constant redox internal environment to survive, partly because ROS are a 

major threat faced by cells102. Major ROS include the superoxide anion (O2
•-), and hydroxyl radical 

(OH•) that is involved in Fenton reaction103. Other ROS include hypochlorous species (HOCl), 

peroxynitrite anion (ONOO−), nitric oxide (NO•) and hydrogen peroxide (H2O2)
4,104. There are 

multiple enzyme sources of ROS that include superoxide dismutases (SODs), EROα1, nitric oxide 

synthase (NOS) and NADPH oxidase (NOX)105-106. Organelle sources of ROS include the 
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endoplasmic reticulum, peroxisomes and the mitochondria (Figure 6 and 7). The mitochondria are 

at the nexus of redox homeostasis, bioenergetics and metabolic pathways that regulate ATP 

synthesis, ROS generation, signaling and cell death.  

       Electron flow from metabolites to the ETC chain in the mitochondrion may generate the 

superoxide anion at any of the complexes I, II and III (Figure 7) under conditions that include 

nutrient deprivation and hypoxia107. The superoxide anion is the major form of ROS that is 

converted to hydrogen peroxide by SOD1, SOD2 and SOD3108. Another ROS form, nitric oxide, 

generated by nitric oxide synthase from arginine, may react with the superoxide anion to generate 

the peroxynitrite anion (ONOO−). Concomitantly, hydrogen peroxide may undergo the Fenton 

reaction to form the highly reactive hydroxyl radical. Cells endeavor to remove hydrogen peroxide 

by use of enzymes that include catalase, glutathione peroxidase (GPX) and peroxiredoxin (PRX). 

These redox enzymes convert hydrogen peroxide to harmless water. 

 

Figure 6-Major sources and types of ROS from a mammalian cell (Adapted with permission 

from Wang, K.; Zhang, T.; Dong, Q.; Nice, E. C.; Huang, C.; Wei, Y., Redox homeostasis: the 

linchpin in stem cell self-renewal and differentiation. Cell Death &Amp; Disease 2013, 4, e537.) 

 Additionally, mitochondrial dehydrogenases that include glycerol-3 phosphate dehydrogenase, 

glycerol-3 phosphate dehydrogenase, alpha ketoglutarate dehydrogenase73 and pyruvate 

dehydrogenase modulate ROS production. 
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Figure 7-Major sources and types of ROS in the mitochondrion in a mammalian cell110. Adapted 

with permission from Li, X.; Fang, P.; Mai, J.; Choi, E. T.; Wang, H.; Yang, X.-f., Targeting 

mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. 

Journal of Hematology & Oncology 2013, 6 (1), 19. 

      Cancer cells have high ROS because they have high metabolic activity than non-transformed 

cells. Oncogene-driven high sugar uptake and altered metabolism concertedly generate and 

mitigate ROS levels. Additionally, mitochondrial dysfunction and overexpression of reactive 

oxygen species modulator 1 (Romo1) has been associated with mitochondrial generation of 

ROS111-112. High levels of ROS may induce signaling and apoptotic pathways that include JNK-

ASK1 pathway, p38 pathway and AMPK-p53 pathway (Figure 8). 

 

Figure 8- ROS signaling pathways that may lead to apoptosis. 

1.8.1 ASK-1-JNK Pathway 

     Under cellular stress conditions, ASK-1 activates multiple pathways that include JNK and p38 

pathways90. JNK activation occurs through double phosphorylation of  threonine (Thr) and 

tyrosine (Tyr) residues within a Thr-Pro-Tyr motif. JNK modifies the activity of many proteins in 

https://en.wikipedia.org/wiki/Threonine
https://en.wikipedia.org/wiki/Tyrosine
https://en.wikipedia.org/wiki/Proline
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the mitochondria and nucleus113. Downstream targets include c-Jun, 

p53,  ATF2,  SMAD4, and HSF1113. Additionally, after activation by ROS, JNK translocates to 

mitochondrion and activate apoptotic proteins such as Bax and Bak114. In addition, ROS may 

activate JNK indirectly by inducing release of ASK-1 from binding TRX and GST which are ROS 

detoxifying enzymes113. In inactivated cells, TRX binds to ASK-1, but ROS convert TRX to the 

active oxidized form115. In this way, JNK activity regulates important cellular functions including 

redox homeostasis, cell growth and apoptosis. 

1.8.2 ASK-1-p38 pathway 

     Another mitogen activated protein kinase is p38 that is equally sensitive to ROS and activates 

apoptosis. p38 is also subject to activation by ASK-1 and other upstream MAP3Ks90, 116. ROS 

oxidizes TRX to dissociate from ASK-1 for its activation, leading to the activation of both JNK 

and p38 pathways (Figure 8). Notably, ASK-1-deficient cells show reduced activations of JNK 

and p38 MAPK pathways117. p38 mechanism of apoptosis involves phosphorylation of  Bcl-2 

family of proteins, release of cytochrome c from the mitochondria, and caspase activation118. 

1.8.3 AMPK-p53 pathway 

     p53 is a tumor suppressor and transcription factor that regulates glucose metabolism, cell 

survival, DNA repair, apoptosis and senescence72. Loss of wild-type p53 and mutations occur in 

more than 50% of all human cancers with severe impact on cellular metabolism16. Normally, p53 

lowers the glycolytic rate by directly downregulating GLUT 1 and GLUT 4 and by indirectly 

inhibiting GLUT316. p53 regulates glycolytic enzymes including HKII, PFK1 and PGAM71, 119. 

p53 upregulates TIGAR which reduces F-2,6-BP and consequently PFK1 activity. This leads to 

the diversion of G6P into the PPP. Notably, p53 alters the activity of G6PD that catalyzes the rate-

limiting step of PPP, effectively limiting production of NADPH120. Importantly, p53 plays a major 

https://en.wikipedia.org/wiki/C-jun
https://en.wikipedia.org/wiki/Mothers_against_decapentaplegic_homolog_4
https://en.wikipedia.org/wiki/HSF1
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role in redox homeostasis and ROS-mediated apoptosis. Overexpression of p53 induces activation 

of p53-inducible genes (PIGS) that encode ROS producing enzymes such as NQO1 and proline 

oxidase121. Additionally, p53 suppress the expression of antioxidant enzymes such as SOD2 

leading to increase in mitochondrial ROS and apoptosis122.  

      p53 undergoes multiple posttranslational modifications under oxidative stress such as 

phosphorylation by ROS-sensitive p38. Recently,  changes in O-GlcNAcylation homeostasis was 

shown to stabilize p53123 and mediate apoptosis124. Modulation of O-GlcNAc levels triggers p53 

pathway activation in response to stress123. Indeed, p53 O-GlcNAcylation at serine 149 reduced 

its ubiquitination and abrogated its proteolysis123. 

1.9 Redox homeostasis in cancer 

          Redox homeostasis is an intricate and dynamic balance between ROS and antioxidants in 

mammalian cells (Figure 9). Previous studies have shown that ROS are often increased in cancer 

cells relative to normal cells, and they contribute to initiation, progression and metastases of 

cancer. Multiple factors cause the elevation of ROS in cancer cells, including metabolic 

reprogramming, oncogene activation, and cellular hypoxic conditions. For example, oncogene 

activation of MYC and KRAS facilitates generation of glycolytic metabolites, which flux into 

various biochemical pathways that promote cell proliferation while generating high ROS125. 

Additionally, RAS transformation activates RAC that regulates membrane-associated NADPH 

oxidase which produce O2
-.126 In addition, mitochondrial DNA mutations in cancer enhance ROS 

production and tumorigenesis. Respiratory complexes are coded by mitochondrial DNA of which 

mutation may significantly affect the respiratory activity in mitochondria127. Moreover, 

mitochondrial DNA mutation may be enhanced due to proximity to the site of ROS production 

within mitochondria, thus increasing its vulnerability to ROS-induced damage.  



15 

 

 

 

Figure 9-Redox homeostasis is a balance between ROS and antioxidants.  

Overall, multiple mechanisms contribute to the elevation of ROS in cancer cells.  

Consequently, cancer cells enhance their anti-oxidant mechanisms to maintain ROS within a 

certain threshold level (Figure 10) that affords their survival without detrimental damages. This 

suggests that the redox system in cancer cells is finely tuned, and any insult or stress that further 

increase ROS beyond a certain antioxidant protective threshold (Figure 1.6) causes cancer cell 

death. Numerous studies have characterized the increased vulnerability or sensitivity of cancer 

cells toward ROS and the consequence of ROS-induced cancer cell death128-130. For example, 

ROS-induced death has partly been attributed to loss of superoxide dismutase (SOD3), catalase 

(CAT) and glutathione peroxidase 3 (GPX3)131. SOD3, CAT and GPX3 gene expression was 

examined in 1,981 tumors covering 19 cancer types, showing that these antioxidant enzymes are 

differentially downregulated between cancer and normal cells131. It is therefore emerging that an 

elevation of ROS by using ROS-inducing compounds aggravates cancer cell vulnerability to ROS 

and could be a viable strategy of killing them132. 

1.9.1 ROS Modulation as an anticancer strategy 

     Emerging studies indicate that disruption of cancer cell metabolism and increasing ROS beyond 

cancer cell antioxidant protective threshold is an effective strategy of selective killing of cancer 

cells24, 133. A therapeutic window exists for ROS modulation using small molecules and 

combination therapies for cancer treatment134-135. Notably, cancer chemotherapeutic agents, such 
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as cisplatin, induce apoptosis partially via ROS generation by directly reacting with glutathione136, 

and thus provide vital mechanistic insights137.  

 

Figure 10-Therapeutic window for design and development of ROS-inducing anticancer drugs 

1.9.2 2-Deoxy-D-glucose as an anticancer agent 

        2-DG is a glucose analog without the C-2 hydroxyl group. 2-DG competes with glucose for 

uptake via glucose transporters such as GLUT-126. 2-DG is also a competitive inhibitor of 

hexokinase (HK). Phosphorylation of 2-DG by HK sequesters it within the cytoplasm thus 

abrogating the glycolytic pathway.  This reduces availability of PPP metabolites such as NADPH. 

NADPH is involved in generation of reducing equivalents such as glutathione. The net effect of 

2-DG is an increase in ROS. In this way, 2-DG is a ROS modulator that is cytotoxic in many 

cancer cell types138-144. 2-DG also mimics glucose-deprivation through AMPK activation, mTOR 

inactivation and cell cycle arrest26.                                                                                                                             

       Many studies have demonstrated 2-DG cytotoxicity and increase in ROS that is ablated by 

thiol anti-oxidants such as N-acetylcysteine145.  Accumulation of phosphorylated 2-DG kills the 

cancer cell because 2-DG augments generation of ROS. Of note is a new metabolic fate of 2-DG 

in cancer involving G6PD(H) within the ER and utilizing NAD+ and NADP+ that has recently been 

reported146-147. 2-deoxyglucose uptake can be regulated by nicotinamide 
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phosphoribosyltransferase (NAMPT) that synthesize NAD+146. Notably, 2-DG uptake increased 

in Nampt knockdown cells146.                                                                                                                                                          

        The mechanisms being studied to explain 2-DG cytotoxicity include increased oxidative and 

ER stress, disruption of cellular energetics, interference with N-linked glycosylation148, and 

induction of death receptor-mediated apoptosis, autophagy, necrosis and mitotic catastrophe142, 149-

154. Apoptosis is a form of cell death promoted by caspases which degrade cellular substrates 

without extracellular cytoplasmic spillage. Conversely, necrosis involves rupture of the plasma 

membrane and cell death. The use of 2-DG is however limited by high-dose systemic toxicity 

because high concentrations are required to out-compete intracellular glucose concentrations.153, 

155Additionally, 2-DG activates numerous pro-survival pathways155 and thus provides a rationale 

for alternative carbohydrate-based cancer therapies.  

1.9.3 Current dissertation work in examining carbohydrate-based inducers of cellular 

stress for targeting cancer cell metabolism 

 

     We hypothesized that carbohydrate-derivatives can be used to make a library to find ROS-

inducing small molecules that are more potent than 2-deoxy-D-glucose in cancer cell lines. 

Therapeutic design of the small molecule exploited the enhanced sugar-uptake phenotype and 

elevated ROS levels in cancer cells. A simple synthetic strategy was selected that would enable 

generation of many small molecules in a short time as well as utilizing structure-activity relations 

envisaged with GLUT-1.  

      N-aryl glycosides were favorable candidates partly because they are less prone to hydrolysis 

by glycosidases than O-glycosides156-157. Subsequently, N-aryl glycosides were synthesized from 

simple unprotected monosaccharides and aniline derivatives as described in Chapter 2. Initial 

screening revealed discovery of a N-naphthyl-β-D-xylose (K8) that induced oxidative and ER 

stress in H1299 lung cancer cell line. In this study, acetylated N-naphthyl-β-D-xylose (K8A) was 
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tested for cytotoxicity and disruption of redox homeostasis in cancer cell lines. In Chapter 3, the 

effect of K8A on redox signaling pathways that include ASK1-JNK, ASK1-p38, AMPK-p53 

pathways and ER stress signaling was evaluated. Additionally, we demonstrated using click 

chemistry in H1299 cells, that K8A interferes with glucose metabolism by disrupting global 

protein glycosylation. To delineate various forms of glycosylation, we evaluated O and N-

glycosylation with antibodies. Importantly, we used metabolomics in Chapter 4 to characterize 

changes in redox-sensitive metabolic pathways that include glycolysis, pentose phosphate pathway 

and TCA cycle. 
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CHAPTER 2 DEVELOPMENT OF CARBOHYDRATE-BASED INDUCERS OF 

CELLULAR STRESS 

2.1 Structural design of carbohydrate-based inducers of cellular stress 

     The design of the structure of the small molecule was based on studies that have demonstrated 

that cancer cells have greater cytotoxic sensitivity to 2-deoxy-D-glucose and glucose 

deprivation145, 158-159. Additionally, since absolute glucose deprivation cannot be achieved in vivo, 

it has been demonstrated that 2-deoxy-D-glucose mimics glucose deprivation to inhibit glucose 

metabolism145. Such small molecules selectively kill cancer cells by oxidative stress and metabolic 

inhibition20, 24. We therefore designed the structure of the small molecules with a sugar moiety to 

explore carbohydrate-induced-cytotoxicity in cancer cells.  

     The inclusion of a monosaccharide moiety was meant to streamline targeting cancer cells with 

phenotypes that bear enhanced sugar uptake and high intracellular ROS levels135, 160-161. Moreover, 

most cancer cells overexpress glucose transporter 1(GLUT-1) and other sugar transporters to 

facilitate enhanced cellular sugar entry162. GLUT-1 is up-regulated partly by mutant p53 and other 

oncogenes16. We therefore hypothesized that our monosaccharide-containing small molecules 

would enter cancer cells aided by sugar transporters and by simple diffusion. Moreover, 

substitution at the anomeric carbon (C1), carbon 2 (C2) and carbon 6 (C6) of glucose is tolerated 

by GLUT-1 and has been demonstrated with some glycoconjugate anticancer agents161, 163.  

Subsequently, we ensured a majority of the designed sugar-conjugated small molecules maintained 

these vital structure-activity relationships.   

         Our small molecules had a basic N-glycoside structure (Figure 11) that consists of a sugar 

building block in scheme 1 (glycone, R2), with various substituent groups (R1) covalently 

conjugated to an aromatic amine (aniline derivatives in scheme 1)164.   
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Figure 11- Carbohydrate-based small molecule scaffold (R1 & R2 as in scheme 1). 

2.2 Approach on synthesis and characterization of carbohydrate-based small molecules 

           Synthetic chemists are continuously examining sets of robust chemical reactions that can 

generate the full complement of glycoside linkages. Furthermore, synthesis of N-glycosides from 

unprotected sugars is less explored, partly because conjugation of nitrogen scaffolds at the 

anomeric position remains a difficult task. Moreover, a systematic study involving formation and 

characterization of N-glycosides using one-step synthetic strategy is yet to be fully understood. 

More importantly, biological and therapeutic potential of glycosides165 prompted us to pursue one-

step synthesis methodologies to streamline generation of a library of compounds       

      Bridiau and his coworkers synthesized β-N-aryl-glycosides from  equimolar amounts of 

unprotected sugars with aniline derivatives in aqueous media, at pH 6.5 and about 40◦C-70◦C 157 

for 5 hours. However, higher sugar equivalents and longer reaction times of up to six days were 

used without success in optimization of the reaction. The condensation reaction was however 

largely stereoselective and was partly controlled by steric effects with most compounds being β-

products. The N-aryl-glycosides were obtained in variable yields (30-50%) depending on the 

reactivity of the aniline derivatives. We modified and optimized Bridiau method to include 20% 

DMSO in phosphate buffer at pH 6.5 and higher temperature (50-70◦C) for 10-16 hours (Scheme 

1). The 20% DMSO in PBS conditions enabled solubility of aniline and heterocyclic derivatives 

thus expanding the scope of this reaction. Purification by HPLC was done after removal of 

unreacted charred starting material by filtration over cotton wool using a syringe. HPLC peaks of 

products and reactants were clearly resolved as in the example in Appendix B. Initial 
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characterization was by LC-MS (Appendix A) and therefore stereochemistry at the anomeric 

carbon could not be determined at this stage. 

 

 

Scheme 1. Chemical synthesis of carbohydrate-based small molecules. 
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2.3 Results 

2.3.1 Characterization of carbohydrate-based small molecules by LC-MS  

      After reaction of individual carbohydrate (A–L) and aniline derivatives (1–8) (Scheme 1) in a 

ratio of 16:1 in 20% DMSO/phosphate buffer (pH 6.5), the mixture was directly injected to a semi-

preparative HPLC column for purification of products. After LC-MS analysis of individual 

products, compounds that had a high purity (>90%) (Appendix A) out of 96 compounds made 

were selected for subsequent ROS screening in cancer cells. After this initial screening, 8-series 

compounds (with 1-naphthylamine aglycone) were re-synthesized, including A8, C8, H8, and K8, 

for further evaluation. After re-synthesis, we were able to determine the anomeric configuration 

of compounds by NMR analysis. HPLC (Figure 12), LC-MS (Figure 13, 14, 15, & 16) and NMR 

spectra (Figures 18-2) of the hit compound K8 and the acetylated form (K8A) is shown. 

 

Figure 12- HPLC spectrum of K8 at a detection wavelength of 214nm. 

 

 Figure 13-LC spectrum of K8 at a detection wavelength of 254nm. 

m/z+=276.00 

https://www-sciencedirect-com.proxy.lib.wayne.edu/science/article/pii/S0960894X16300634?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb&ccp=y#f0030
https://www-sciencedirect-com.proxy.lib.wayne.edu/topics/pharmacology-toxicology-and-pharmaceutical-science/phosphate
https://www-sciencedirect-com.proxy.lib.wayne.edu/topics/biochemistry-genetics-and-molecular-biology/high-performance-liquid-chromatography
https://www-sciencedirect-com.proxy.lib.wayne.edu/topics/biochemistry-genetics-and-molecular-biology/liquid-chromatographymass-spectrometry
https://www-sciencedirect-com.proxy.lib.wayne.edu/topics/biochemistry-genetics-and-molecular-biology/anomer
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Figure 14- MS spectrum of K8 

 
 

Figure 15-LC spectrum of K8A at 254nm 

 

 
 

Figure 16- MS spectrum of K8A  

 

 

 

 

 

 

 

 

 

m/z+=402.00 

m/z+=402.00 K8A 
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2.3.1.1 K8A monoisotopic mass analysis by High resolution mass spectrometry 

 
 

Figure 17-Monoisotopic mass analysis for K8A. 
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2.3.1 Characterization of K8 by NMR 

2.3.1.1-1H-NMR of K8 

 

Figure 18  1H-NMR of K8 
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2.3.1.2 H-1H COSY of K8 

 

 

Figure 19- 1H-1H COSY of K8 
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2.3.1.3 1H-13C HSQC of K8 

 

Figure 20-1H-13C HSQC of K8 
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2.3.1.4 13C NMR of K8 

13C NMR (151 MHz, CD3OD) δ 141.65, 134.39, 128.10, 125.97, 125.93, 124.04, 123.99, 123.80, 

118.55,106.74, 86.39, 77.26, 72.89, 71.99, 66.04. 

Figure 21- 13C NMR of K8 
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2.3.1.5 13C HSQC of K8 showing chemical shift of anomeric carbon and proton 

Figure 22-13C HSQC of K8 
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2.3.1.6 DEPT NMR of K8 

 

Figure 23-DEPT NMR of K8 
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2.3.2 Characterization of K8A by NMR 

2.3.2.1 1H NMR of K8A 

1H NMR  (400 MHz, CD3OD) δ 7.90 – 7.82 (m, 1H), 7.80 – 7.70 (m, 1H), 7.46 – 7.38 (m, 2H), 

7.35 – 7.26 (m, 2H), 6.89 – 6.83 (m, 1H), 5.44 (t, J = 9.5 Hz, 1H), 5.25 (t, J = 9.2 Hz, 1H), 5.05 

(ddd, J = 10.6, 9.5, 5.6 Hz, 1H), 5.00 (d, J = 8.9 Hz, 1H), 4.07 (dd, J = 11.3, 5.6 Hz, 1H), 3.63 (t, 

J = 10.9 Hz, 1H), 2.05 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H). 

 13C NMR (101 MHz, CD3OD) δ 171.05, 170.28, 170.19, 140.84, 134.36, 127.93, 125.80, 125.33, 

124.57, 120.51, 119.29, 107.52, 84.62, 72.92, 71.46, 69.47, 62.89, 19.32, 19.24, 19.16. [α]DRT-

45.9 (c,0.5, methanol). 

1H NMR (400 MHz, CD3OD)  

Figure 24-1H NMR of K8A 
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2.3.2.2 13C NMR of K8A (101 MHz, CD3OD) 

 

 

Figure 25- 13C NMR of K8A 
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2.3.2.3 1H-1H COSY of K8A 

 

 

 

Figure 26- 1H-1H COSY of K8A 
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2.3.2.4 1H-13C HSQC of K8A showing anomeric proton chemical shift 

 

Figure 27- 1H-13C HSQC of K8A 
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2.3.2.5 1H-13C HSQC of K8A showing chemical shift of anomeric carbon and proton 

 

 

Figure 28- 1H-13C HSQC of K8A showing anomeric carbon and proton 
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2.4 Result and Discussion 

     For some carbohydrate-based small molecules, HPLC chromatograms at 214 nm and 254 nm 

showed the presence of at least three peaks for each of the reaction mixtures (Figure 2.2). The first 

peak at around 8 to 14 minutes was due to elution of DMSO used to dissolve the aromatic amine 

and unreacted sugar (Figure 2.2). The second peak was due to the reaction product eluted at around 

18-35 minutes (Figure 2.2). This variation in elution time was likely due to hydrophobicity of the 

substituent groups on the aglycone and hydroxyl groups on the glycone. Some reaction products 

appeared as two peaks possibly due to presence of the alpha and beta monomers of the 

monosaccharide. The final peak was due to the unreacted aromatic amine (Appendix). The LC-

MS analysis indicated that the products corresponded to a m/z ratio of molecular ion +1 (MH+).  

      Bioactive compounds K8 and K8A were fully characterized by LC-MS, 1H NMR, 13C NMR, 

HSQC, COSY and DEPT experiments (Figures 2.3-2.15). The m/z ratio for K8 (M.W. 275) was 

276.00 with LC indicating about a high purity denoted by a single peak. K8A (M.W. 401) m/z 

ratio was 402.00 and the single LC peak indicated a high purity. Importantly, K8A monoisotopic 

mass analysis was 424.1372 for m/z, was equal to the addition of one sodium atom.  The m/z ratio 

for other carbohydrate-based molecules are as in the appendix A. For K8, the proton at anomeric 

carbon (H-1) coupled to (H-2) with a chemical shift 4.67 ppm (d, J= 8.2 Hz, 1H) allowed us to 

characterize K8 with β-configuration. 1H spectra of carbohydrates enable identification of 

anomeric protons at known chemical shifts166, typically 4.4-5.5167-168. Anomeric configurations 

may also be assigned J H-H coupling that enable determination of stereochemistry.  J H1-H2 values 

of 7–9 Hz for the diaxial coupling are assigned a β-configuration169.  J H1-H2 values of 2–4 Hz due 

to equatorial–axial coupling denotes α-anomeric structure169. Exceptions exist for sugars like D-

mannose, which has an equatorial H-2, with JH1-H2 values set at about 1.6 Hz due to coupling 
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between diequatorial protons and about 0.8 Hz for the axial–equatorial coupling of the β-

anomer169.  

      The 13C NMR chemical shift of carbon atoms in sugars range between 68-77 ppm169. 

Additionally, in 13C NMR, glycosylation leads to high frequency shifts of 4-10 ppm for the carbons 

at the anomeric and linked positions169-170. The anomeric carbon and protons in K8 were identified 

using 13C NMR (86 ppm) and HSQC (1H NMR; 4.68 ppm, 13C NMR; 86.5 ppm). Additionally, 

DEPT confirmed the seven CH bonds of the aglycone (1-naphthylamine), one CH2 bond of the 

glycone (D-xylose) and its four CH bonds. In a similar way, the anomeric carbon in K8A 

(acetylated K8) was identified by 1H NMR of anomeric proton at chemical shift (4.98 d, J = 9.2 

Hz, 1H), HSQC (1H NMR; 4.98ppm, 13C NMR; 84.6ppm). The acetyl groups were identified by 

1H NMR (2.07- 1.98 (m, 9H) and 13C NMR (19.32, 19.24, 19.16). The pure compounds were 

stored in DMSO in -80oC freezer for future cell-based assays. 

2.5 Experimental procedures 

2.5.1 Reagent/Materials 

      Unless otherwise stated, all reactions were carried out under an atmosphere of dry nitrogen in 

oven dried glassware.  Indicated reaction temperatures refer to those of the reaction bath, while 

room temperature is noted as 25 °C.  All solvents were anhydrous quality purchased from Sigma-

Aldrich Chemical Co. (Saint Louis, MO) and were used as received. Commercially available 

starting materials and reagents were purchased from Sigma-Aldrich Chemical Co or TCI America 

and were used as received.  
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2.5.2 Synthesis of carbohydrate-based small molecules 

       One-step synthesis of (K8) (Scheme 2) is described here to illustrate the reaction scheme and 

protocols used in making the glycoconjugate small molecules in our library. 

        

 Scheme 2: Chemical synthesis of K8. 

 

       To react D-xylose (337.5 mg, 249.8 mmol) with 1-naphthylamine (18.9 mg, 14.67 mmol) 

(Scheme 2), a reaction mixture of 1 equivalent amine in dimethyl sulfoxide (DMSO) and 17 

equivalents of preheated carbohydrate in potassium phosphate buffer (pH=6.5) was prepared in a 

4 mL glass vial and incubated in a sand bath at 70 oC for 24 hours. The reaction-product mixture 

was filtered twice using cotton wool to remove any solid particles and charred sugar debris. 

Centrifugation at low speed ensured any solid particles are removed and only clear solution was 

drawn in a syringe. 

2.5.3 Purification method of carbohydrate-based small molecules by semi-preparative 

HPLC 

 

          Products formed were purified by using a semi-preparative high-pressure liquid 

chromatography (HPLC) system (Waters Co). A HPLC system was used with a gradient elution 

method that consists of a mobile phase composition of 95% water and 5% acetonitrile, a flow rate 

of 10 mL/min, injection volume of 3-4 mL, run time of 40-75 minutes and detection wavelengths 

of 214 nm and 254 nm. Separation of products and reactants were obtained using a C-18 reverse 

phase column. This method was used for identification of product fractions for further analysis by 

LC-MS. Product fraction elution occurred at retention times between 20-35 minutes and collected 

in 50 ml falcon tubes, flash-frozen in liquid nitrogen and lyophilized under vacuum until the 
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product appeared to be completely dry. Upon removal, the products were dissolved in 1 mL of 

50% acetonitrile/water mixture and transferred to a pre-weighed 1.5 ml Eppendorf tube and re-

lyophilized until completely dry. The products were then stored in -80 0C freezer. 

2.5.4 Protocol for characterization of carbohydrate-based small molecules by LC-MS 

       About 0.1 mg of the separated and lyophilized reaction products were dissolved in 50 µL of 

50% acetonitrile/water mixture. Samples were injected into a Shimadzu Triple-quadruple liquid 

chromatography-mass spectrometer (LC-MS) in a positive ion mode at a flow rate of 0.45 mL/min 

using a 30 mm C-18 reverse-phase column at a scan wavelength between 190-500 nm and pressure 

range of 2000-2300 psi. The LC 5-minute gradient-elution-method consisted of 95% water/5% 

acetonitrile (0-1 minute), acetonitrile gradient, 5-100% (1-4 minutes) and 100-5% acetonitrile (4-

5 minutes). LC Chromatograms were obtained using a photo diode array detector at 254 nm and 

280 nm. 

2.5.5 Chemical Synthesis of K8A 

     To prepare K8A (Scheme 3), D-xylose (500 mg, 3.33 mmol) and 1-naphthylamine (525 mg, 

3.66 mmol) was refluxed in ethanol for 8 hours to obtain brown sparkly crystalline solid (730 mg). 

The reaction was monitored by thin layer chromatography. The crystalline solid obtained (500 mg) 

was reacted with acetic anhydride (8.17 mmol) in pyridine (0.79 mL, 9.81 mmol) in an ice bath 

for 3 hours and in the cold room for another 13 hours. The reactant mixture was then quenched by 

pouring into ice/water, extracted, washed with aqueous sodium bicarbonate, water and brine, and 

purified by column chromatography (1:4 ethyl acetate/hexane solvent conditions). After 

purification, a yellow solid K8A (622 mg, 1.55 mmol) was obtained and it was further 

recrystallized from ethanol to provide the white K8A crystals.  
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2.5.6 Chemical Synthesis of K8A analogs 

 

Scheme 3: Chemical synthesis of K8A analogs with aniline derivative variation. 

       To further explore cytotoxicity of K8A, synthesis of K8A analogs (Scheme 4) of diverse 

sugars was done with 2-naphthylamine instead of 1-naphthylamine (Figure 1) to generate 9 series 

compounds that include 2-naphthylamine and L-arabinose (C9A), D-arabinose (H9A), D-xylose 

(K9A), D-galactose (L9A), D-ribose, I9A and D-fucose (Q9A). Additionally, the aniline moiety 

was varied to generate K10, K11 and K12. Other 8-series compounds C8A, H8A and L8A were 

also synthesized. A8A occurred as an inseparable mixture possibly of the α and β anomers. 

 

Scheme 4: Chemical synthesis of K8A analogs with sugar derivative variations. 
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2.6 Quantification of reactive oxygen species in mammalian cells 

2.6.1 ROS Quantification using DCF Assay 

     Oxidative stress can be quantified indirectly by measuring the products of oxidative damage, 

such as lipid peroxides171, protein carbonyl content172 and DNA adduct formation173. Additionally, 

oxidative stress can be measured by evaluating oxidative stress response in various forms that 

include thiol-redox status174, O-GlcNAcylation175, and evaluation of antioxidant enzymes. 

However, a more direct and sensitive method of oxidative stress quantification is the 

dichlorodihydroflourescein (DCF) Assay176(Figure 29). 2’7’-dichlorodihydroflourescin diacetate 

(DCFH-DA) readily cross membranes and is deacetylated by intracellular esterases to non-

fluorescent 2’7’-dichlorodihydroflourescein (DCFH). Deacetylation ensures specific labeling of 

intracellular contents, and thus excludes staining of ROS in the extracellular medium. In the 

presence of hydrogen peroxide and ROS; DCFH is oxidized into highly fluorescent 

dichloroflourescein (DCF) (Figure 29)177. DCF is detected by fluorescence spectroscopy on a plate 

reader with maximum excitation and emission wavelengths of 485 nm and 535 nm, respectively. 
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Figure 29- DCF Assay work flow. 

 

2.6.2 Results 

2.6.2.1 Optimization of DCF Assays using hydrogen peroxide and diamide 

     DCF assay was optimized using hydrogen peroxide and diamide in H1299 lung cancer cell line 

(Figure 29). Intracellular ROS levels were initially measured 5 minutes after cells were treated 

with various concentrations of hydrogen peroxide. This was repeated periodically after 30 minutes, 

1 hour and 4 hours. The fluorescence signals showed time- and concentration-dependent change. 

The fluorescence signals, generated by 500 µM hydrogen peroxide, were increased by over 2-fold 

in 4 hours (Figure 30). On the other hand, the fluorescence signals were increased by 2-fold in 3 

hours and 6-fold upon incubation of 300 µM and 1 mM diamide, respectively (Figure 31). Diamide 

concentrations beyond 2 mM did not induce further increase in ROS (Figure 30). Additionally, 
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glycolytic inhibitor 2-deoxy-D-glucose (10mM) was evaluated and compared for fluorescence 

signals generated on treatment of cells with hydrogen peroxide (25 µM), and diamide (500 µM) 

(Figure 31). These low concentrations of hydrogen peroxide and diamide induced higher ROS 

levels than 2-deoxy-D-glucose (10 mM). 

 

Figure 30-ROS levels generated in H1299 cells treated separately with hydrogen peroxide and 

diamide. 
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Figure 31-Comparison of ROS levels generated by various ROS inducers. 

2.6.3 Evaluation of carbohydrates for ROS induction in H1299 cells 

     Various carbohydrates were evaluated for ROS induction in H1299 cells using the DCF assay 

at 4 hours post treatment. Monosaccharides, including D-glucose, D-galactose, D-mannose, D-

xylose, D-arabinose and L-arabinose did not induce any significant change of ROS levels (Figure 

32-33, 36).  

 

Figure 32-ROS levels generated by D-glucose and D-galactose in H1299 cells. 
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Figure 33-ROS levels generated by L-arabinose and D-mannose in H1299 cells. 

2.6.4 Carbohydrate-based small molecule evaluation for ROS induction in H1299 cells 

     The DCF assay of the small molecule library revealed that most of these molecules did not 

induce generation of ROS at levels higher than untreated controls (Figure 34). However, 13 

molecules induced ROS generation at levels that were 50% higher than the untreated cells. Of 

note, were small molecules that contained the 1-naphthylamine moiety (denoted as 8 series) that 

induced ROS at levels 2-fold higher than the untreated controls. These 8-series molecules were 

later evaluated for ROS-induction in a concentration-dependent manner.  

Figure 34-ROS induction screening of carbohydrate-based small molecules in H1299 cells. 
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2.6.5 ROS induction with serum starvation 

     H8 and K8 was evaluated for ROS-induction with and without serum (Figure 35). Higher ROS 

levels were generated with serum starvation prior to compound treatment. Subsequently, other 

experiments were performed without serum. H8 with serum starvation showed over 3-fold increase 

in ROS, more than H8 with serum at 100 µM. On the other hand, K8 at 100 µM with serum 

starvation showed over 6-fold increase in ROS induction than K8 with serum in six hours. 

Figure 35-ROS levels generated by H8 and K8 with and without serum starvation 

 

 Fetal bovine serum (FBS) is added to mammalian cell growth media to provide key growth 

promoting ingredients needed for cell proliferation. It contains growth factors, hormones, 

attachment and spreading factors, minerals, trace elements, lipids, and various other factors that 

are necessary for cell growth, differentiation, transport, attachment, spreading, pH maintenance, 

and protease inhibition178-179. Importantly, these ingredients in serum modulate ROS180-181. The 

ROS data obtained with H8 and K8 molecules are consistent with the foregoing observations, and 

subsequently, serum was excluded in all ROS measurements. 
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2.6.6 Concentration-dependent evaluation of ROS induction by 1-naphthylamine- 

containing small molecules (8 series compounds) 

     Concentration-dependent evaluation of ROS induction was done on A8, C8, L8, H8, and K8 

(Figure 36-37). Most of these molecules (A8, C8, G8 and L8) showed a small increase of ROS 

induction. Of note is the correlation of ROS levels to the structure of compounds. For example, 

A8 (glucose conjugate) and G8 (galactose conjugate) which are epimers, differ only in sugar 

stereochemistry at carbon-4, and had similar ROS induction pattern. Of interest were H8, K8 and 

K8A, which showed up to 2-fold increase in ROS within 100 µM in H1299 cells (Figure 37). H8 

and K8 have similar structure with different stereochemistry at carbon position 2 and 3 on the 

sugar. Importantly, K8A generated higher ROS levels than glycolytic inhibitor 2-DG. 

 

Figure 36-ROS levels generated by D-arabinose (H), D-xylose (K), A8 and G8. 
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Figure 37-ROS levels generated by C8, L8, H8 and K8 in H1299 cells. 

 

Figure 38-ROS levels generated by K8A and 2-DG in H1299 cells. 
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2.6.7 Discussion on ROS evaluation 

      Glucose and other monosaccharides are major precursors of NADPH biosynthesis that is 

important for maintaining redox homeostasis in cells. NADPH is also produced by malic enzyme 

1 (ME1), isocitrate dehydrogenase 1 (IDH1), hexose-6-phosphate dehydrogenase and by one-

carbon metabolism182-184. Conversely, glucose deprivation induces ROS production and oxidative 

stress due to low levels of NADPH in a cell. Glucose and other hexoses reduce ROS and reverse 

oxidative stress induced by glucose deprivation185-187. 

     Expectedly, our data indicate that D-glucose, D-mannose, D-xylose, D-arabinose, and L-

arabinose do not disrupt redox homeostasis or induce ROS at low concentrations. Exceptionally, 

glycolytic inhibitors, such as 2-DG, deprives cells of NADPH by blocking phosphorylation of 

glucose to reduce glucose flux to NADPH-producing PPP.  Of note is the small molecule library 

screening that revealed ROS generation by N-naphthyl-D-arabinose (H8), N-naphthyl-D-xylose 

(K8) and acetylated N-naphthyl-D-xylose (K8A). Importantly, K8A induced ROS at higher levels 

than 2-DG. 

      Structurally, H8 and K8 contain a similar monosaccharide with D-arabinose (H) and D-xylose 

(K), respectively, which are pentoses with a reversed stereochemistry at 2-OH and 3-OH positions. 

Additionally, there was no increase of ROS by C8 that contain L-arabinose, showing the 

differential effect of the stereochemistry of D-arabinose in H8 versus L-arabinose in C8. On the 

other hand, A8 and C8 did not induce a significant increase of ROS level, suggesting that 

hexoses are less effective for ROS production. Additionally, C8 (L-arabinose conjugate) and L8 

(D-fucose conjugate) had identical ROS induction patterns. Together, these ROS data suggest that 

the methyl or hydroxymethyl group at the fifth position of a hexopyranose may not be important 

for ROS induction, whereas 1-naphthylamine moiety contributes to ROS induction. 

https://www-sciencedirect-com.proxy.lib.wayne.edu/topics/biochemistry-genetics-and-molecular-biology/hexose
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2.6.8 Experimental procedures 

2.6.8.1 Cell culture     

     H1299 cells were cultured as monolayers at 37 oC in a humidified incubator with 95% air and 

5% CO2 in RPMI media supplemented in 10% FBS and penicillin (mg/mL) and streptomycin 

(µg/mL). A549, LNCaP, MDA-MB 231, MDA-MB 453, and MCF7, Hela cells were separately 

cultured as monolayers at 37 oC in a humidified incubator with 95% air and 5% CO2 in DMEM 

supplemented in 10% FBS and penicillin (mg/mL) and streptomycin (µg/mL). Cells were 

maintained in sterile conditions and split in new media every 3-4 days. The cells were trypsinized, 

counted using a hemocytometer, and diluted to ensure 10,000 cells per well in a 96-well plate. The 

cells were then left overnight to attach on the bottom surface before DCF or MTT assay. 

2.6.8.2 Protocol for quantification of ROS by DCF Assay  

     The DCF assay was optimized in a series of conditions using hydrogen peroxide and diamide. 

About 10,000 cells were seeded per well and incubated at 37 oC, 5% CO2 for 24 hours for 

attachment on 96-well black plates with transparent bottom. Cells were then washed with warm 

PBS. 25 μM of DCFH-DA was then added, and cells were incubated in the same conditions for 45 

minutes. Cells were then washed with RPMI medium without phenol-red, followed by duplicate 

addition and serial dilution of small molecules. The ROS signal was compared with that of 

untreated cells. Fluorescence emission scan was done at wavelengths between 520 nm and 580 nm 

after excitation at 485 nm. This was periodically done at various time points. ROS levels were 

recorded as relative fluorescent units (RFU) and plotted as mean RFU for various concentrations 

and time points. 
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2.7 Cytotoxicity evaluation of small molecules in mammalian cells 

      Cell viability of adherent cells was measured by using the 3-(4,5-dimethylthiazol-2-yl)-

diphenyl tetrazolium bromide (MTT) assay, which is based on the conversion of MTT to formazan 

by mitochondrial and cytosolic dehydrogenases188. Solubilized formazan is detected by measuring 

ultra-violet (UV) absorbance at 490-570 nm. MTT assay is therefore effective in determining 

viable cells and is widely used in drug screening tests. Viability of suspension cells (Daudi and 

Raji) was measured using the Trypan blue assay and an automated cell counter189-190. Additionally, 

the NCI-60 human tumor cell lines screen was also used to screen the hit compound K8A in 60 

different human tumor cell lines, that include leukemia, melanoma, colon, lung, ovary, brain, 

prostrate, breast, and kidney cancer.  

2.7.1 Optimization of viability assay using MTT assay 

       Optimization of MTT assay was done using L744832, PD18352 and sulforaphane (Figure 

2.26). L744832 is a farnesyl transferase inhibitor that is highly toxic to cancer cells191. PD184352 

is an ATP non-competitive mitogen-activated protein kinase kinase (MEK1/2) inhibitor192. 

Sulforaphane [1-isothiocyanato-4-(methylsulfinyl) butane] is a highly potent inducer of phase 2 

cytoprotective enzymes with anticancer activity193. Additionally, cell viability of two ROS-

generating molecules (hydrogen peroxide and diamide) were evaluated in two lung-cancer cell 

lines, H1299 and A549. H1299 cells is an immortalized human non-small cell lung carcinoma cell 

line with a homozygous partial deletion of the TP53 gene194. H1299 cells do not express the tumor 

suppressor p53 protein. A549 cells are adenocarcinoma lung cancer cells195 that express p53.  

 

https://en.wikipedia.org/wiki/Human
https://en.wikipedia.org/wiki/Non-small_cell_lung_carcinoma
https://en.wikipedia.org/wiki/Cell_line
https://en.wikipedia.org/wiki/Cell_line
https://en.wikipedia.org/wiki/Zygosity#Homozygous
https://en.wikipedia.org/wiki/TP53
https://en.wikipedia.org/wiki/Tumor_suppressor
https://en.wikipedia.org/wiki/Tumor_suppressor
https://en.wikipedia.org/wiki/P53
https://en.wikipedia.org/wiki/Cell_(biology)
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Figure 39-Diamide and hydrogen peroxide cytotoxicity in A549 and H1299 cells. 

     L744832 (IC50 = 2.25µM), PD18352(IC50 = 3.86µM) and sulforaphane (IC50 = 10.9µM) 

potency in H1299 cells was comparable to reported IC50 values. For example, sulforaphane had an 

IC50 of 9.52±1.23µM in H1299196 cells and 10.2 ±0.12 µM in A549 cells in recent studies197. 

Additionally, the decreased potency of sulforaphane (IC50=21.3±2.05µM) was shown in KRAS-

stable H1299 cells (Figure 40), and other cell lines as reported previously196, 198. Furthermore, 

cytotoxicity hydrogen peroxide and diamide in A549 and H1299 lung cancer cells was consistent 

with literature reports on similar assays199-200. Diamide is a strong thiol oxidizing agent that causes 

accumulation of ROS201-202. 
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Figure 40-Sulforaphane cytotoxicity in H1299 cells overexpressing KRAS.  

2.7.2 Cytotoxicity screening of carbohydrate-based small molecules 

     The cytotoxicity screening (Figure 41) of the carbohydrate-based small molecules revealed that 

K8 (40% viability at 100 µM) and H8 (20% viability at 100 µM) were the most potent cytotoxic 

molecules in H1299 cells that generated the highest levels of ROS and were eligible candidates 

for subsequent assays (Figure 2.29). Concentration-dependent cytotoxicity was observed with H8 

and K8 in the same cell line. 

 

 
 

Figure 41-Carbohydrate-based small molecule cytotoxicity screening in H1299 cells 
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Figure 42-K8 and H8 cytotoxicity in H1299 cells 

2.7.3 Cytotoxicity evaluation of carbohydrates in mammalian cells 

      Evaluation of various monosaccharides revealed that many sugars had no or low cytotoxicity 

in H1299 cells at the concentrations tested (Figure 43). The IC50 values of 2-DG was approximately 

0.79mM, which was the most cytotoxic monosaccharide in the H1299 lung cancer cell line. The 

observed 2-DG IC50 in H1299 cells is consistent with literature values in similar cell lines37. 



55 

 

 

 

Figure 43-D-xylose, D-arabinose, D-galactose, D-mannose, D-fructose and 2-deoxy-D-glucose 

cytotoxicity in H1299 cells. 
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2.7.4 K8A cytotoxicity evaluation in mammalian cells 

2.7.4.1 K8A is more potent than 2-DG in various mammalian cell lines 

      K8A was more potent than 2-DG in H1299, A549, MDA-MB 231 and LNCaP cell lines 

(Figure 44). The IC50 values of 2-DG were in the range of 0.7-3 mM and was more than 10-fold 

higher than the IC50 of K8A in cancer cell lines. K8A IC50 were in the range 0.05mM-0.15mM 

(50-150µM) in H1299 (IC50 = 0.045 mM), A549 (IC50 = 0.029 mM), MDA-MB 231 (IC50 = 0.137 

mM), Raji (IC50 =0.03mM) and Daudi (IC50 =0.08mM) (Figure 44). K8A IC50 was low in a prostate 

cancer cell line, LNCaP. Additionally, K8A was more potent than the acetylated form of 2-deoxy-

D-glucose (2DGA) in H1299 (Figure 45), MDA-MB 231(Figure 46), LNCaP (Figure 47), DU145 

cell lines (Figure 48), Hela cells (Figure 49) and A549 (Figure 50) (Table 1). Notably, K8A was 

more potent than 2DG8A in most cells including MCF7 (Figure 51), which is a glycoconjugate of 

acetylated 2-deoxy-D-glucose and 1-naphthylamine and is therefore structurally like K8A.  
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Figure 44-K8A cytotoxicity in A549, LNCaP, MDA-MB 231 and MDA-MB 231 cells  
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Table 1: Cytotoxicity of various carbohydrate-based small molecules in various cancer cell lines 

 

 

        ND: Not determined 

Cell line Cell type K 

(mM) 

KA 

(mM) 

K8 

(mM) 

K8A 

(mM) 

2DG 

(mM) 

2DGA 

(mM) 

2DG8A 

(mM) 

H1299 Lung ~5.54 ~2.51 0.076±0.19 0.045±0.003 0.79±0.32 0.145±0.032 0.151±0.027 

A549 Lung ~2.95 ~7.96 0.122±0.26 0.029±0.005 3.87±0.58 ND ND 

231 Breast ND  0.19.1±0.03 ND 0.138±0.019 1.01±0.11 0.146±0.026 0.205±0.047 

453 Breast ND ND ND 0.024±0.004 1.06±0.36 ND 0.019±0.003 

MCF7 Breast ND ND ND 0.049±0.01 ND ND 0.95±0.013 

DU145 Prostrate ND 0.52±0.12 ND 0.072±0.007 ND 0.228±0.037 0.12±0.014 

LNCaP Prostrate ND ND ND 0.365±0.135 0.995±0.25 ND 0.635±0.295 

Hela Cervical ND 0.86±0.25 0.103±0.02 0.104±0.013 ND ND ND 

Daudi lymphoma ND ND ND ~0.08 ND ND ND 

Raji lymphoma ND ND ND ~0.03 ND ND ND 
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Figure 45-KA, K8A, 2DGA and 2DG8A cytotoxicity in H1299 cells 
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Figure 46-KA, K8A, 2DGA and 2DG8A cytotoxicity in MDA-MB 231 cells 
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Figure 47-KA, K8A, 2DGA and 2DG8A cytotoxicity in LNCaP cells  
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Figure 48-KA, K8A, 2DGA and 2DG8A cytotoxicity in DU145 cells 
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Figure 49-K, KA, K8 and K8A cytotoxicity in Hela cells 
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Figure 50-K, KA, K8 and K8A cytotoxicity in A549 cells 

 

 

 
Figure 51-K8A and 2DG8A cytotoxicity in MCF7 cells 
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Figure 52-K8A cytotoxicity in Raji and Daudi cells 

2.8 Evaluation of K8A in NCI-60 cell lines  

       To increase the scope of cancer cells potentially targeted by K8A, the compound was 

evaluated in NCI-60 cell lines with a sulforhodamine assay, showing growth inhibition of K8A in 

various cancer cell lines at a concentration of 10 µM (Figure 53). The data include growth 

inhibition (values between 0 and 100) and lethality (values less than 0). For example, a value of 0 

means no net growth and a value of 100 means no growth inhibition over the course of the 

experiment (48 hours). NCI data revealed that K8A (10μΜ) had cytotoxicity in three cell lines, 

CCRF-CEM (Leukemia), NCI-H522 (Non-small lung cancer) and UO-31 (Renal cancer). The 

growth percent in CCRF-CEM, NCI-H522 and UO-31 was 71.71, 69.31 and 62.41 respectively at 

10μΜ of K8A. This information is available for comparative analysis on NCI website (NSC D-

793207/1). 
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Figure 53-K8A cytotoxicity in NCI-60 cancer cell lines 
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2.8.1 Cytotoxicity evaluation of K8A analogues in mammalian cells 

     We evaluated acetylated N-naphthyl-β-D-xylose (K8A) and K8A analogs cytotoxicity using 

MTT assay in p53-null H1299 lung cancer cell (Figure 54, 57), p53-mutant expressing MDA-MB 

231 breast cancer cell, and p53 wild-type expressing LNCaP prostate cancer, A549 lung cancer, 

MDA-MB 453 breast cancer, DU145 prostate cancer, and Hela cervical cancer cell lines (Figure 

56) (Table 2). Previously, K8A showed cytotoxicity in H1299 cells with p53 activation in HEK 

293 cells. (K8A) was more potent for cytotoxicity than 2-DG in all cell lines.   

Table 2: Cytotoxicity of various K8A analogues in cancer cell.  

Cell 

line 

Cell 

type 

A9A 

(mM) 

C9A 

(mM) 

C8A 

(mM) 

G9A 

(mM) 

 

K9A 

(mM) 

L8A 

(mM) 

L9A 

(mM) 

K10A 

(mM) 

K11A 

(mM) 

K12A 

(mM) 

H1299 Lung 0.443±0.053 0.430±0.094 ~1.15 0.456±0.032 0.390±0.096 ~7.41 0.140±0.039 0.118±0.019 0.0547±0.003 0.162±0.018 

231 Breast ND ND ND ND ND ND ND 0.344±0.061 0.198±0.029 ND 

453 Breast ND ND ND ND ND ND ND 0.501±0.096 0.220±0.038 0.278.4±0.043 

LNCaP Prostrate ND ND ND ND ND ND ND 0.443±0.057 0.219.7±0.038 0.222±0.037 

Hela Cervical 0.152±0.027 ND 0.352±0.114 0.352±0.114 0.235±0.066 ND ND ND ND ND 
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Figure 54-A9A, C9A, G9A and L9A cytotoxicity in H1299 cells 

 

Figure 55-C8A and L8A cytotoxicity in H1299 cells 
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Figure 56-A9A, G9A, K9A and C8A cytotoxicity in Hela cells 
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Figure 57-K9A, K10A, K11A and K12A cytotoxicity in H1299 cells 

2.9 Discussion on cytotoxicity evaluation 

    The sensitivity of cancer cells to glycolytic inhibition and glucose deprivation provides a 

therapeutic strategy for control of cancer cell proliferation158. Additionally, enhanced 

monosaccharide uptake and overexpression of glucose transporters underscore the importance of 

sugars in cancer cell growth203. Evaluation of H1299 cancer cell growth inhibition showed that D-

galactose, D-mannose, D-arabinose and D-xylose showed minimal growth inhibition at low 

concentrations. These carbohydrates did not generate appreciable levels of ROS. Of note are 

reports that show that D-galactose (>25 mM) generate ROS204 and activate p38 in lens epithelial 

cells205. In our study, D-galactose (<1 mM) showed a small increase (about 10% within 1 mM) of 

ROS levels in H1299 cells. However, D-fructose did not affect H1299 cancer cell growth at these 
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low concentrations. Notably, D-arabinose (IC50 = 0.85 mM) and 2-deoxy-D-glucose (IC50 = 0.79 

mM) showed comparable cytotoxicity. 2-deoxy-D-glucose is a ROS inducer and glycolytic 

inhibitor in clinical trials for treatment of various types of cancer206-210.  

     The cytotoxicity screening of the carbohydrate-based small molecules in H1299 cells and other 

cell lines revealed that N-naphthyl-D-xylose (K8, IC50 =0.076 mM) were among the most potent 

from the library. Importantly, K8 induced the highest levels of ROS thus drawing a correlation 

between cytotoxicity and ROS generation. Additionally, cytotoxicity data for D-arabinose (H, IC50 

= 0.85mM) and D-xylose (K, IC50~5.5 mM) underscored importance for conjugation with 1-

naphthylamine. Independently, 1-naphthylamine did not induce ROS (Figure 2.23 ) and is not 

cytotoxic nor carcinogenic211. Of note is enhanced potency with sugar acetylation (KA, IC50= 2.5 

mM) and (K8A, IC50 = 0.045 mM) in H1299 cells. A similar pattern was observed in other cell 

lines (Table 2). K8A is likely to be deacetylated by non-specific intracellular esterases to generate 

bioactive K8. K8A generated similar levels of ROS to K8, but it was more potent than K8, probably 

due to increased lipophilicity conferred by acetyl groups. Notably, xylosides have anticancer 

potential in various cancer cell lines212-214. 

     Structural modification of K8A revealed that both N-naphthyl group and β-D-xylose are 

important in maintenance of high potency (Table 2). Additionally, 2-naphthylamine conjugate 

(K9A, IC50 = 0.39 mM) had about 10-fold lower cytotoxicity in H1299 cells compared to 1-

naphthylamine conjugate (K8A), suggesting importance of 1-naphthylamine moiety. Expectedly, 

2-naphthylamine glycosides (A9A, C9A, G9A and L9A) had lower cytotoxicity in various cell 

lines tested (Table 2). Alkylated-N-Naphthyl-β-D-Xylose (K10A, IC50=0.12mM) (Figure 57) had 

2-fold lower cytotoxicity than K8A, underscoring importance of non-substituted 1-naphthylamine 

moiety in reduced cell proliferation observed in H1299 cells. The cytotoxicity observed with K8A 



72 

 

 

was lost with bigger halogens, such as bromine (K12A, IC50 = 0.17 mM). Of note is the enhanced 

potency of K8A; an N-naphthyl-conjugate of acetylated xylose in various cell lines. Importantly, 

most of the carbohydrate-based N-1-naphthyl-conjugates were more potent than 2-deoxy-D-

glucose (2-DG) and acetylated 2-deoxy-D-glucose (2-DGA) (Table 1 & 2). Furthermore, a 

conjugate of acetylated 2-deoxy-D-glucose (2DG8A, IC50=0.15mM) was less potent than K8A in 

H1299 cells and other cell lines. 

2.10 Experimental procedures 

2.11 MTT Assay    

     About 10,000 cells were seeded per well and incubated at 37 oC, 5% CO2 for 24 hours on 96 

well transparent plates for attachment. Cells were then dosed with known concentrations of the 

small molecules in triplicate and incubated for 24 hours in the same conditions. Media was then 

removed, and cells incubated with 100 µL of MTT solution (5mg/ml) for 4 hours at 37 oC. The 

MTT solution was removed, and 200 µL of DMSO was added to each well to dissolve formazan. 

The absorbance of the cultures was measured using a multi-well spectrophotometer (Hybrid H1) 

at a wavelength of 550 nm. Cell viability was expressed as OD values and calculated as the 

percentage of absorbance in the control cultures (untreated cells). 

2.12 Trypan blue assay 

     For suspension cells, Raji and Daudi cells, cytotoxicity was evaluated using the trypan blue 

assay215. Trypan blue solution was sterile filtered to remove any particles in the solution that would 

interfere with the counting process. Cells were harvested by centrifugation in a 15 mL falcon tube. 

The supernatant was removed by aspiration. The cells were resuspended in 1 mL of DMEM and 

dilution was done at 1:1 ratio with Trypan Blue dye (0.4% solution). About 10 µL was transferred 
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to fill the hemocytometer chamber before placement in the automated cell counter (TC20 

automated cell counter). 

2.13 Sulforhodamine B assay (SRB assay) 

     The hit compound K8A was evaluated by the National Cancer Institute using SRB assay216. 

K8A was dissolved in DMSO and stored frozen prior to use. The 60 human cancer cell lines were 

grown in RPMI 1640 medium with 5% FBS and 2 mM L-glutamine. The cells were inoculated 

into 96 well plates in 100 μL at plating densities ranging from 5,000 to 40,000 cells per well 

depending on the growth rates of individual cell lines. The cells were then incubated at 37° C, 5 

% CO2, 95 % air and 100 % relative humidity for 24 hours prior to dosage with K8A. During 

dosage, an aliquot of frozen K8A in DMSO was thawed and diluted to twice the desired final 

maximum test concentration (10 μM) with complete medium containing 50 μg/ml gentamicin. 

After 24 hours, two plates of each cell line were fixed in situ with trichloroacetic acid, to represent 

a measurement of the cell population for each cell line at the time of drug dosage (Tz). After drug 

dosage, the plates are incubated for an additional 48 hours at 37 °C, 5 % CO2, 95 % air, and 100 

% relative humidity. For adherent cells, the assay is terminated by the addition of cold TCA. Cells 

were fixed by addition of 50 μL of cold 50 % (w/v) TCA (final concentration, 10 % TCA) and 

incubated for 60 minutes at 4°C. For suspension cells, the assay is terminated by fixing settled 

cells at the bottom of the wells by gently adding 50 μL of 80 % TCA (final concentration, 16 % 

TCA). The supernatant was removed, and the plates washed with water. Sulforhodamine B (SRB) 

solution (100 μL) at 0.4 % (w/v) in 1 % acetic acid was added to each well and incubated for 10 

minutes at room temperature. The plates were then washed with 1% acetic acid to remove unbound 

stain. Bound stain was then dissolved in 10 mM trizma base, and the absorbance at a wavelength 

of 515 nm was read on a plate reader. Percentage growth inhibition was then computed. 
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CHAPTER 3 ROS-INDUCED SIGNALING AND OXIDATIVE STRESS RESPONSE 

3.1 Introduction 

        Cells maintain the redox environment by various mechanisms. The ROS detoxification 

systems are controlled by enzymes regulated by various antioxidant response pathways, that 

include the Nrf2-ARE pathway 217. Additionally, ROS may induce other pathways that include 

ASK1-JNK pathway90, ASK1-p38 pathway218, AMPK-p53 pathway219 and protein glycosylation 

pathways220. Glycosylation of proteins is dependent on the concentration of carbohydrate donor 

substrates, including UDP-GlcNAc  

        UDP-GlcNAc is used in enzymatic post-translational modification of many cytosolic and 

nuclear proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). Additionally, UDP-GlcNAc 

metabolite is required for the biosynthesis of extracellular N-linked and O-linked glycans221-222. 

Importantly, HBP and O-GlcNAc modification allows cells to link nutrient availability and cellular 

metabolism to the regulation of oxidative stress response and cell death220. In N-linked 

glycosylation, two N-acetyl glucosamine residues are attached to an asparagine residue of a protein 

followed by mannose residues. In O-linked glycosylation, N-acetyl galactosamine is attached to a 

serine or threonine residue of proteins followed by other glycans such as galactose and sialic 

acid222. K8A was evaluated for potential roles in ASK1-JNK pathway, ASK1-p38 pathway, 

AMPK-p53 apoptotic pathway and HBP pathway. 

 3.1.1 Nrf2-ARE pathway  

       Nrf2 is a redox-sensitive transcription factor in which Keap1 functions as Nrf2-specific 

adaptor that is crucial in redox homeostasis (Figure 58). Previously, small molecules blocked Nrf2-

antioxidant response to increase ROS levels in A549 and H1299 cell lines223-225. p53-null H1299 

cells with low basal Nrf2 levels had high ROS levels than A549 cells that have high basal Nrf2 
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levels225. Keap1 is a regulator of Nrf2, acting as a sensor of ROS. In absence of ROS, Nrf2 is 

degraded through the proteasome pathway. Keap1 has cysteine residues that require oxidation to 

detach and release Nrf2, which translocate to the nucleus. In the nucleus, Nrf2 binds to antioxidant 

response elements (ARE) leading to transcription of antioxidant and xenobiotic enzymes226. 

Transcription factors that bind to the human NQOl ARE include Nrf1, Nrf2, c-Jun, c-Fos, Jun-D, 

Jun-B, and Fral227-228. Nrf2 target genes include NQO1, HO-1, glutathione peroxidase and 

glutathione S-transferases (GSTs) such as GSTO1229. Additionally, UDP-glucuronyl transferases 

(UDPGTs) involved in conjugation of hydrophobic metabolites to D-glucuronic acid are 

considered phase II detoxification enzymes230.  

 

 

Figure 58-Nrf2-ARE response pathway in stimulated and unstimulated conditions 

      GSTs catalyze the conjugation of reduced glutathione (GSH) to xenobiotics for detoxification. 

Of note, is Nrf2 activation of genes that encode the catalytic and regulatory subunits of gamma-

glutamyl-cysteinyl-ligase (GCL), a rate-limiting enzyme of glutathione synthesis231. Additionally, 

Nrf2 activates many PPP enzymes including NADPH producing enzymes such as G6PD, TKT, 
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TALDO and ME1231-232. Thus, Nrf2 activates both the oxidative and nonoxidative PPP to increase 

NADPH and nucleotide production. Notably, Nrf2 is involved in autophagy via stabilization by 

p62; a binding partner of Keap 1.233 On the other hand, NQO1 is involved in detoxification of 

quinones to hydroquinone by utilizing NADPH to generate NADP+234.  

3. 2 Results 

3.2.2 K8A-induced NQO1 induction 

     K8A induced downstream effects on Nrf2-ARE pathway in H1299 cells without altering Nrf2 

levels. Western blot studies revealed NQO1 induction in a concentration dependent manner when 

H1299 cells were treated with K8A (Figure 59-60). The level of GSTO1, which is another Nrf2-

ARE pathway antioxidant enzyme, remained unchanged in H1299 cells.  

 

 

Figure 59-K8A effect on Nrf2-ARE pathway in H1299 and LNCaP cells 

H1299 
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Figure 60-K8A and 2-DG effect on Nrf2-ARE pathway in H1299 cells 

3.2.3 K8A effect on ASK1-JNK and ASK1-p38 pathways 

     ASK1 is a serine-threonine kinase in the c-Jun N-terminal kinase/stress-activated protein kinase 

(JNK) and p38 MAPK signaling cascades. ASK1 cysteine 250 is oxidized by ROS to facilitate 

JNK activation235. Additionally, ROS-induced activation of ASK1 may involve phosphorylation 

of its threonine 838 leading to activation of downstream JNK114, 235 and p38 pathways. K8A did 

not induce concentration-dependent ASK1 activation within 100 µM in both ASK1-transfected 

and non-transfected H1299 cells (Figure 61). Additionally, p38 was not activated by K8A in 

H1299 and LNCaP cell lines (Figure 63)  

 

 

 

 

Figure 61-K8A and 2-DG effect on ASK1-JNK pathway in H1299 cells transfected with ASK1  
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Figure 62-K8A and 2-DG effect on JNK expression in H1299 cells 

 

Figure 63-K8A effect on p38 expression in H1299 and LNCaP cells 

3.2.3 K8A induced AMPK-p53 apoptosis pathway 

     AMPK is sensitive to changes in the cellular AMP/ADP to ATP ratio236. The increase of the 

cellular ADP/ATP ratio denotes an imbalance between ATP production and ATP utilization 

processes237. Additionally, AMPK may sense changes in intracellular glucose levels independent 

of adenine nucleotide levels such as ATP237. Cellular energetic changes lead to accumulation of 

AMP and ADP levels, resulting in the binding of AMP and ADP to AMPK. K8A induced AMPK 

activation within 100 µM in H1299 and HEK 293 cells (Figure 64). Under oxidative stress, AMPK 

induce phosphorylation of tumor suppressor protein p53 at serine 15, which mediates AMPK-

dependent cell cycle arrest238. 
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Figure 64-K8A and 2-DG effect on AMPK-p53 pathway in HEK 293 and H1299 cells  

3.2.5 K8A induced ER stress in H1299, LNCaP and MDA-MB 231 cancer cells 

     ER stress occurs when misfolded and unfolded proteins accumulate in cells239. Prolonged 

accumulation of misfolded proteins activates the UPR. UPR involves formation of disulfide bonds 

between cysteine residues of misfolded and unfolded proteins. This disulfide bond formation is 

catalyzed by various enzymes that include PDI240. ROS generation occurs when endoplasmic 

reticulum oxidoreductin 1(EROα1) reduce oxidized PDI by electron transfer to molecular 

oxygen241.  

      Additionally, ER-stress activate molecular chaperones that include grp78242. Grp78 is 

considered a gate-keeper of UPR. Notably, grp78 is a cellular stress sensor that responds to 

dramatic decreases of glucose and increases of ROS in the ER243. In this study, K8A induced 

increase of grp78 expression in H1299, LNCaP and MDA-MB 231 cells (Figure 65). 
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Figure 65-K8A and 2-DG effect on ER-stress induced grp78 in H1299, LNCaP and MDA-MB 

231 cells. 

3.2.6 Click chemistry reveals that K8A interferes with global glycosylation of proteins 

     Protein glycosylation may be monitored by metabolic labelling by use of unnatural sugars 

containing bioorthogonal azide or alkyne groups244-246. Metabolic labelling occurs because N-

acetylglucosamine (GlcNAc) can be installed on proteins via an alternative HBP called salvage 

HBP247. This salvage pathway is initiated by GlcNAc kinase and facilitates delivery of abiotic 

moieties that contain clickable handles on the N-acyl group of GlcNAc248. We therefore labelled 

glycoproteins in H1299 cells using N-(4-pentynoyl)-glucosamine tetraacylated (Ac4GlcNAl). 

Ac4GlcNAl provides a robust two-step technique that enabled us monitor glycosylation of proteins, 

known to be elevated in H1299 cells. The alkyne-modified proteins from cell lysate were 

chemoselectively labeled by click chemistry and detected with fluorescent Cy5 azide after running 

on SDS PAGE gels. 

     We incubated Ac4GlcNAI or Ac4GalNAI to label glycosylated proteins, while examining the 

effect of K8A on the glycosylation. Upon addition of Ac4GlcNAl or Ac4GalNAI, there were many 
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bands that correspond to glycosylated proteins after click reaction with Cy5-azide. When K8A was 

co-incubated, protein glycosylation was decreased significantly (Figure 66) with Ac4GlcNAl 

protein labelling, but not with Ac4GalNAl protein labelling. In comparison to K8A, neither 2-DG 

(50 μM) nor acetylated 2-DG (100 μM) effectively interfered with global protein glycosylation 

(Figure 66-67).   

 

 

Figure 66-Concentration-dependent K8A-induced disruption of global protein glycosylation in 

H1299 cells monitored with GlcNAI vs GalNAI. 
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Figure 67-Comparison of 2-DG, 2DGA and K8A-induced disruption of global protein 

glycosylation in H1299 cells monitored with GlcNAI. 

3.3 Characterization and delineation of K8A glycosylation interference 

        To characterize K8A glycosylation interference in vitro, OGT enzyme249 was cloned, 

expressed and purified. Additionally, OGT substrates250-252 (OGT-peptide  and Hsp 90) were 

synthesized and purified respectively. The peptide sequence was YSESPSTST and varied slightly 

with the OGT peptide YSDSPSTST253 that is widely used in glycosylation experiments. Previously 

replacement of aspartic acid with acidic amino acid residues did not change glycosylation of this 

peptide.253 Additionally, the peptide sequence is based on the common amino acid sequence at 

glycosylation site of Nup62 protein that is glycosylated in vivo254. Mass spectrometry and gel-

based assays were then used to evaluate K8A glycosylation interference of the peptide and Hsp90 

protein, respectively. 
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3.3.1 OGT protein expression and purification 

     Truncated OGT(sOGT)255 was cloned and expressed in bacteria and purified on a His-tag 

column (Figure 68). sOGT was used because purification of full length OGT is difficult with low 

yields. Additionally, the catalytic domains are preserved in Sogt 

 that retains enzyme activity as full-length OGT. 

 

Figure 68-SDS-PAGE for purified His-tagged Hsp-90. 

3.3.2 K8 does not interfere with protein O-GlcNAcylation in vitro. 

     OGT enzyme activity was validated using Hsp90, a molecular chaperone that is known to be 

glycosylated246. Incubation of UDP-GlcNAc with OGT and Hsp90 yielded glycosylated Hsp90 

that was monitored by O-GlcNAc specific antibody known as CTD 110.6256. The Coomassie 

stained SDS PAGE gel was used to monitor the protein levels. The purified OGT enzyme was 

found to be active because O-GlcNAc modification on Hsp 90 was detected by Western blot 

(Figure 69).  

 

Figure 69-sOGT-catalyzed in vitro Hsp-90 O-GlcNAcylation. 
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K8 did not inhibit OGT since O-GlcNAc modification on Hsp 90 (Figure 70). Additionally, 

autoglycosylation of OGT was observed (Figure 70). 

 

Figure 70-K8 effect of Hsp-90 O-GlcNAcylation  

3.3.3 OGT peptide synthesis 

     OGT peptide (YSDSPSTST) from Nup62 glycosylation site studies253 was synthesized on 

Wang resin using Fmoc-solid phase peptide chemistry257. The mass of the peptide was confirmed 

using ESI mass spectrometry and the 9-mer peptide mass confirmed as in the spectrum below 

(Figure 71). The spectrum shows m/z+ values of the 9-mer peptide fragments;857.47, 669.19,485, 

238.97 and 195.94 (Figure 71). 
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Figure 71-Mass spectrum of OGT peptide. 

3.3.4 Mass spectrometry-based OGT assay reveal K8 does not interfere with peptide O-

GlcNAcylation. 

     Protein glycosylation was monitored in vitro (Figure 71,73) using a synthetic peptide and 

purified His-tag OGT enzyme. The mass of glycosylated peptide was monitored by LC-MS after 

removal of the protein using a molecular weight cutter. Incubation of the peptide in presence of 

K8 did not inhibit OGT and the peak of the glycosylated peptide was still observed (Figure 73). In 

this assay, after injection of the sample to LC-MS, the O-GlcNAc modification of peptide was 

evaluated. We did not observe any difference in intensity of the extracted mass peak 

(m/z2+=589.00) corresponding to the modified peptide between K8 treated samples and untreated 

samples. Additionally, K8 mass peak (m/z+= 276.00) remained unchanged. This suggests that K8A 

does not inhibit OGT, and that it possibly acts through a different mechanism. UDP-GlcNAc 

substrate, UDP and GlcNAc products being highly hydrophilic eluted early as shown in the LC 

data.  
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Figure 72-Work flow for mass-spectrometry based glycosylation assay 
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Figure 73-Monitoring peptide glycosylation by mass spectrometry in various conditions(a-d). 

(a) Mass spectrum of control experiment without OGT and K8 (b) Mass spectrum of K8 

(inhibitor) (c) Mass spectrum of glycosylation experiment without K8. (d) Mass spectrum of 

glycosylation experiment in presence of K8. 

3.3.5 K8A induced O-GlcNAcylation in H1299 cells                                                                                        

     O-GlcNAcylation is increased in response to many stresses that include oxidative and ER 

stress258. In this study, K8A induced O-GlcNAcylation of global proteins in H1299 cells 

comparable to induction by 2-DG (Figure 74). Of note is the high level of OGT expression induced 
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by 2-DG treatment to H1299 cells (Figure 74). Additionally, metabolomics revealed a huge 

increase in free UDP-GlcNAc in the same cell type.  

 

Figure 74-K8A and 2-DG induced O-GlcNAcylation in H1299 cells. 

       Validation of K8A-induced O-GlcNAcylation was done by checking expression levels in 

Flag-tagged OGT transfected cells (Figure 75). OGT transfected cells showed higher levels of O-

GlcNAc modification of global proteins compared to non-transfected ones. 

 

Figure 75- K8A induced O-GlcNAcylation in H1299 cells transfected with full-length Flag-

tagged OGT. 
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3.4 Discussion 

     K8A induced NQO1 expression in H1299 and LNCaP cells. However, Nrf2 which is upstream 

of NQO1 remained unaltered in H1299 cells. Nrf2 is stabilized by Keap1 that promotes Nrf2 

degradation when O-GlcNAcylated259. Notably, K8A induced global O-GlcNAcylation and likely 

is responsible for low Nrf2 levels. 

      NQO1 is a phase II detoxifying enzyme that require NADPH to catalyze the  two-electron 

reduction of quinones, quinone imines and nitrogen oxides234. Phase II enzymes promote the 

conjugation of phase I products with endogenous cofactors such as glutathione and glucuronic acid 

to produce water soluble products which are easily excreted. Glutathione is generated by GST and 

glucuronic acid by UDP-glucuronosyltransferases (UGT)260-261. Additionally, NQO1 regulate the 

stability of p53 and directly influence apoptosis262. p53 is a tumor suppressor gene that regulates 

cellular growth and cause cell cycle arrest (Figure 76). Additionally, prolonged increase in NQO1 

expression consume large amounts of NADPH to generate lethal ROS263. Interestingly, 

overexpression of p53 may lead to upregulation of p53-induced genes that include NQO1 and 

proline oxidase (POX) which generate ROS that cause apoptosis264. Additionally, p53 suppress 

expression of antioxidant enzymes such as manganese superoxide dismutase (Mn SOD)265.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/nad-p-h-dehydrogenase-quinone-1
https://www.sciencedirect.com/topics/medicine-and-dentistry/quinone
https://www.sciencedirect.com/topics/medicine-and-dentistry/imine
https://www.sciencedirect.com/topics/medicine-and-dentistry/nitrogen-oxide
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Figure 76-AMPK-p53 pathway  

      In addition, p53 may be stabilized by AMPK266 and by O-GlcNAcylation124.  In response to 

cellular energetic stress and increase in the ratio of ADP to ATP, adenylate kinase converts two 

molecules of ADP into ATP and AMP238. From a metabolic standpoint, AMPK promotes ATP 

conservation under conditions of metabolic stress. Notably, AMPK is activated in cells in response 

to ROS generation, glucose withdrawal and 2-DG treatment. ROS induce AMPK activity to 

regulate glucose metabolism. ROS also directly oxidize AMPK on cysteine 299 and 304 to activate 

it in a process that involves S-glutathionylation267. Other ROS-sensitive metabolic pathways such 

as ASK1-JNK-apoptosis and p38 pathways were not activated, albeit existence of AMPK-p38-

PGC-1α pathway268. Previously, O-GlcNAcylation impaired JNK activation in cancer cells and 

stabilized p53124, 269. 

       In response to low ATP levels, AMP binds to AMPK to activate its phosphorylation and 

downstream signaling that include p53 activation and apoptosis. Additionally, AMPK 

phosphorylate and regulate expression of metabolic enzymes involved in various pathways that 

include glycolysis and lipid synthesis270. Once AMPK activity increases, energy-consuming 
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pathways such as lipogenesis are inhibited, while energy-producing pathways such as glucose 

uptake and fatty acid oxidation are upregulated. AMPK suppresses expression of lipogenesis-

associated genes such as fatty acid synthase, pyruvate kinase and acetyl CoA carboxylase (ACC). 

Interestingly, our metabolomics data in Chapter 4 reveal that fatty acid levels were unaltered and 

corroborate AMPK inhibition of fatty acid synthesis. Additionally, AMPK phosphorylates PFK2 

to increase the glycolytic rate268. 

       ER stress sensor grp78 induces signaling effects that involve UPR. In response to ER stresses, 

the unfolded protein response (UPR) is activated. UPR activate the HBP through X-box binding 

protein 1 (Xbp1)-dependent transcriptional induction of GFAT1, ATF4 and other key enzymes 

involved in the HBP, glycosylation and carbohydrate metabolism271. GFAT1 upregulation lead to 

increase in UDP-GlcNAc levels and increase in O-GlcNAcylation. To detect O-GlcNAc 

modification, CTD 110.6 antibody was used247. CTD 110.6 was used because it recognizes a wider 

range of O‐GlcNAcylated proteins than RL-2. CTD 110.6 antibody is less dependent on protein 

structure than RL-2. CTD 110.6 is raised against the epitope of an O-GlcNAc–modified C‐terminal 

domain of the RNA polymerase II large subunit and RL2 is raised against the epitope of an O‐

GlcNAc–modified nuclear pore (NP62) protein.   

        O-GlcNAcylation protects cells from oxidative stress. Metabolic enzymes of glycolysis, PPP 

and TCA are glycosylated to promote ROS detoxification. Interestingly, HKII, PFK1 and PKM2 

are regulated by O-GlcNAcylation to promote glycolytic change of flux to PPP and HBP.  

Previously, PFK1 was O-GlcNAcylated at serine 529 to inactivate it leading to accumulation of 

F6P that is directed to HBP and PPP50. Additionally, PKM2 was O-GlcNAcylated at two residues 

(threonine 405 and serine 406) to reduce its activity, leading to accumulation of PEP272. Western 

blot data and metabolomics data indicated that O-GlcNAcylation of proteins was induced by K8A 
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in p53 null H1299 cells (Figure 77). Importantly, O-GlcNAcylation protects cells from oxidative, 

ER and other forms of cellular stress. Remarkably, O-GlcNAcylation is high in p53 null cells than 

wild-type expressing cells124 further suggesting a prominent role of this modification in 

cytoprotection. Of note are reports of the decrease in ATP levels in H1299 cells overexpressing 

OGT273 which partly corroborates our findings on effects of K8A-induced O-GlcNAcylation in 

the same cell line. 

Figure 77-O-GlcNAcylation in glycolysis, PPP, TCA pathways274 (Adopted with permission from 

reference 207) 
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3.5 Experimental procedures 

3.5.1 PEI Max mammalian cell OGT1 transfection 

     Transfection of PRK5-Flag OGT1 plasmid into H1299 cells (Figure 78) was done at 80-90% 

confluency at 37 °C by using PEI Max (Life Technologies, Grand Island, NY) according to 

manufacturer’s protocol. PEI-Max stock solution consisted of 100 mg PEI Max dissolved in 10 

mL of deionized water and slightly vortexed. The working solution was sterile filtered and kept at 

a concentration of 1 mg/mL. 9 µg of PEI ‘Max’ and 3 µg of DNA were diluted separately into 250 

µL of serum free DMEM medium without antibiotics and kept at room temperature for 15 minutes 

in the biosafety hood. The diluted PEI ‘Max’ was then added to the diluted DNA and incubated at 

room temperature for another 15 minutes. The mixture was added to cells pre-washed with PBS 

and incubated at 37 °C. The medium was changed at 6 hours after transfection, and cell lysates 

were prepared 48 hours after transfection. Transformation efficiency was checked by Western blot. 

Figure 78-Workflow for OGT transfection in H1299 cells  

3.5.2 Mammalian cell lysis 

     Mammalian cells were lysed with 350 µL RIPA buffer following removal of medium and 

washing with ice-cold PBS. The cells were scrapped off the 6 cm dishes, transferred to an 

eppendorf tube, and rotated in the cold room. The lysates were centrifuged at 13,000 rpm for 20 

minutes to remove cell debris. The supernatant protein concentration was estimated by using 

Bradford assay.  
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3.5.3 Determination of protein concentration using Bradford assay 

     200 µL of Bradford reagent was added to each well on a 96-well plate containing various 

concentrations of BSA (1, 0.5, 0.25, 0.125 mg/mL) to make a standard curve. BSA was serially 

diluted from a 10 mg/mL stock solution. 10 µL of the BSA dilutions were added to the Bradford 

reagent. UV absorbance was read at 595 nm. Separately, 10 µL of appropriate protein or cell lysate 

was added separately and to the 200 µL of 1X Bradford reagent and absorbance determined at 595 

nm. A standard calibration curve of BSA was constructed and used to compute the protein 

concentration of cell lysate or pure His/GST-tagged protein. 

 3.5.4 SDS-PAGE 

     SDS-PAGE gel consists of a separating layer and a stacking layer. The SDS-PAGE separating 

buffer was made for different types of gel by mixing the components from stock solutions as in 

the table below.  

Table 3: SDS-PAGE separating layer recipe 

Stock Solution 7% 10% 12% 

1M Tris pH 8.8 3.75ml 3.75ml 3.75ml 

20% SDS 0.05ml 0.05ml 0.05ml 

40% Acrylamide (Biorad 37:1) 1.73ml 2.50ml 3ml 

H2O 4.40ml 3.73ml 3.2ml 

10% Ammonium persulfate 100 μL 100 μL 100 μL 

TEMED (Sigma) 10 μL 10 μL 10 μL 

Table 4: SDS-PAGE stacking layer recipe 

The SDS-PAGE stacking buffer was made by 

mixing the following components from stock 

solutions. SDS-PAGE stacking buffer recipe 

1M Tris pH 6.8 0.63ml 

20% SDS 0.05ml 

40% Acrylamide 0.83ml 

H2O 3.4ml 

10% Ammonium persulfate 50 μL 

TEMED 5 μL 
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The SDS-PAGE separating layer was made by adding onto glass plates mounted on a Biorad gel 

making rack. A drop of isopropanol was added over the separating layer to ensure complete 

removal of bubbles and facilitate formation of an even surface. Upon solidification, the 

isopropanol was removed, and the stacking layer added using a pipetteman with a 10-well or 15-

well comb slid between the glass plates. Upon solidification, the comb was removed and 

transferred to the SDS-PAGE running container with SDS-running buffer (1x; 0.025M Tris; 0.05M 

glycine, 0.5% SDS). The SDS-PAGE was run for 1-2 hours at 150-200 V. The gel was then 

removed, washed with water before imaging, staining or transfer to Western blot. 

3.5.5 Coomassie staining 

    SDS-PAGE gels were stained in staining solution (0.1% Coomassie Brilliant Blue R-250 in 50% 

methanol and 10% glacial acetic acid) for 2 hours with shaking. Destaining was done by draining 

off the stain, followed by destaining solution (40% methanol and 10% glacial acetic acid) for 10-

20 hours. The gel was then scanned.  

3.5.6 Western blot  

     Western blot evaluation was done with different concentrations of K8A. After washing cells 

with PBS, cells were lysed with RIPA buffer (50 mM Tris, pH 7.4, 1% NP-40, 0.25% sodium 

deoxycholate, 150 mM NaCl) containing protease inhibitors (Roche). Lysates were centrifuged at 

13,000 rpm for 15 minutes, and supernatant was collected. Protein concentrations were determined 

with Bradford assay. Cell lysate (50 μg) was resolved in 10% SDS-PAGE gel, transferred to PVDF 

membrane and immunoblotted with the indicated antibodies. All antibodies used in this study were 

obtained from Cell signaling Technologies. After transferring to PVDF membrane, the membrane 

was blocked with 5% BSA in TBST (50 mM Tris-HCl, 150 mM NaCl, 0.1% Tween) and incubated 

with primary antibodies (1:1000 dilution) in 5% BSA in TBST at 4 oC overnight. After washing 
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with TBST, the blot was incubated with secondary antibody for 2 hours at room temperature. After 

washing, chemiluminescence was used to visualize expression levels of p53, ASK1, JNK, OGT, 

β-tubulin, GRP78, Nrf2, NQO1, CTD110.6 in H1299, MDA-MB 231 and LNCaP cells upon 

incubation with various concentrations of 2-DG, and K8A. 

3.5.7 Monitoring glycosylation by click chemistry 

     For glycosylation competition experiments, cells were incubated with different concentrations 

of K8A, Ac4GlcNAl or both for 20 hours. After washing with PBS, cells were then lysed with 

RIPA buffer (50 mM Tris, pH 7.4, 1% NP-40, 0.25% sodium deoxycholate, 150 mM NaCl) 

containing protease inhibitors (Roche). Lysates were centrifuged at 13,000 rpm for 15 minutes, 

and supernatant was collected. Protein concentrations were determined with Bradford assay. Cell 

lysates (0.2 ml, 2 mg/mL protein concentration) were treated with stock solutions of rhodamine 

azide (final 200 µM) and tris(2-carboxyethylphosphine) (TCEP) (final 2 mM) prepared in water, 

TBTA (final 1mM) prepared in t-butanol/DMSO (4/1, vol/vol), and CuSO4 (final 2 mM) prepared 

in water. After incubation at 37 oC for 1 hour, cell lysates were diluted with a loading buffer and 

separated on SDS-PAGE gel. Resolved proteins were imaged for fluorescence. 

3.5.8 Monitoring glycosylation by mass spectrometry  

     In a reaction buffer (50 mM Tris–HCl, pH 7.4, 1 mM DTT, and 12.5 mM MgCl2), 6 μg OGT 

(0.85 μg/μL), 0.25 mM OGT peptide, 0.5 mM UDP GlcNAc were added and incubated for 30 

minutes at room temperature. The reaction was quenched by boiling. The proteins were removed 

by filtration with 30, 000 MW protein column and centrifuged at 13,000 rpm for 20 minutes. The 

supernatant was collected and injected to LC-MS (SHIMADZU 8040 Triple Quadrupole). The 

enzyme assay was repeated in the presence of K8 inhibitor at 100 µΜ. 
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3.5.9 OGT Peptide Synthesis 

     OGT peptide YSESPSTST, was synthesized using Fmoc chemistry and purified by reverse 

phase HPLC and dissolved in water at a stock solution of 10 mM. To sythesize the 9-mer peptide, 

100 mg (0.087 mmol) of Wang resin was weighed and transferred to a column and washed with 1 

column volume of DMF. After draining, the bottom was capped. Separately, Fmoc-Thr(tBu)-OH 

and 140 mg HBTU (0.37 mmol/g) was weighed and transferred to a vial containing 2 mL of base 

(5% DIPEA in DMF) and slightly vortexed. The mixture was transferred to the column which was 

inverted severally with occasional release of pressure. The column was rotated in a 3-hour coupling 

reaction. The column was then drained and washed with 5 column volumes DMF, 5 column 

volumes DCM and another 5 column volumes of DMF. After draining, a second coupling with the 

same Fmoc-Thr(tBu)-OH and HBTU was repeated and with washing in a similar way. 

Deprotection was done using 3 mL of deprotection solution (20% piperidine in DMF) in a rotator 

for 45 minutes, followed by washing in a similar way. The coupling, washing and deprotection 

steps were repeated for all the amino acids as in the table below. The remaining protection groups 

were cleaved off with a cleavage cocktail (90% TFA, 5% phenol, 2.5% water, 2.5% thioanisole). 

The supernatant was drained, concentrated in liquid nitrogen and precipitated with ether solution. 

The crude peptide was dissolved in 3 mL of water and purified in a reverse phase HPLC column. 

Characterization was done by LC-MS and ESI mass spectrometry.  
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Table 5: Mass of protected amino acids used for 9-mer OGT-peptide synthesis 

 Name and sequence of peptide 

OGT Peptide (TSTSPSESY) 

Name of resin [loading level] 

Amount of 

resin [mmol] 

Wang 0.87 mmol/g 100 mg 0.087 

Amino acids 

 AA MW mmol mg  

Thr 1 397.5 0.348 138.33  

Ser 2 383.4 0.348 133.4232  

Thr 3 397.5 0.348 138.33  

Ser 4 383.4 0.348 133.4232  

Pro 5 337.4 0.348 117.4152  

Ser 6 383.4 0.348 133.4232  

Glu 7 425.5 0.348 148.074  
Ser 8 383.4 0.348 133.4232  

Tyr 9 459.6 0.348 159.9408  

3.5.10 OGT isoforms 

     There are three known isoforms of OGT, all of which share an identical catalytic domain, but 

differ in the number of tetratricopeptide repeat motifs found at the N-terminus (Figure 79)250, 275. 

The longest form of OGT is found in the nucleus and cytoplasm (ncOGT; 116 kD), with the next 

longest isoform found in the mitochondria (mOGT; 103 kD). The shortest form of OGT (sOGT; 

70 kD) is both nuclear and cytoplasmic. sOGT shares common carboxy-terminal catalytic domains 

with full length ncOGT, but they differ in length owing to variable numbers of amino-terminal 

tetratricopeptide repeats (TPRs).  
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Figure 79-Overall structure of human OGT complexed to UDP (a), Schematic of OGT domain 

architecture with the TPR units shown in gray, the transitional helix (H3) in purple, the N-Cat 

domain in blue, the Int-D domain in green, and the C-Cat domain in red. The native isoforms of 

OGT (sOGT, mOGT, and ncOGT) and the crystallization construct differ only in the number of 

TPRs, as shown. (b), Overall fold of OGT from the OGT-UDP complex in a ribbon representation. 

The coloring is the same as the schematic in a. The UDP is shown in cyan. The N-Cat domain 

helices unique to OGT are indicated as H1 and H2.275 Adapted with permission from Lazarus, M. 

B.; Nam, Y.; Jiang, J.; Sliz, P.; Walker, S., Structure of human O-GlcNAc transferase and its 

complex with a peptide substrate. Nature 2011, 469, 564. 

 

3.5.11 Bacterial cell stock storage 

     A single colony was picked by a sterile tip and inoculated in 5 mL of LB media and incubated 

for 20 hours in a shaker with a rotator at 37οC. 750 µL of this solution was then mixed with 250 

µL of autoclaved 60% glycerol in a 1.5 mL eppendorf tube, flash frozen in liquid nitrogen and 

stored at -80 οC freezer. 

3.5.12 Bacterial cell transformation 

     A 50 μL aliquot of DH5α glycerol stock was thawed in ice for 10 minutes after which 50 ng of 

plasmid DNA was added and left on ice for about 20 minutes. The cells were then heat-shocked 

for 45 seconds at 42 οC and quickly transferred on ice for another 2 minutes. The cells were then 
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mixed with 450 μL of super optimal (SOC) medium and incubated for 1 hour with rotation shaking 

at 37 οC. The bacterial cells were then evenly spread on agar plates containing appropriate 

antibiotic and incubated at 37 οC for 20 hours.  

3.5.13 DNA plasmid extraction with Miniprep Kit 

     About 1 µL of bacterial cell stock containing appropriate plasmid was inoculated in 5 mL of 

LB media with appropriate antibiotic and incubated at 37 οC with rotation for 20 hours. The DNA 

was extracted using the QIAGEN miniprep kit. The overnight culture solution was centrifuged at 

5,000 rpm for 10 minutes and the supernatant was disposed. The cell pellet was resuspended in 

250 μL of buffer P1 (50mM Tris-HCl, pH 8.0, 10 mM EDTA, 100 µg/mL RNAse). 250 μL of a 

lysis buffer P2 (200 mM sodium hydroxide, 1% SDS) was then added and the tube was gently 

shaken 6 times, followed by 350 μL neutralization buffer N3 (3.0 M potassium acetate, pH 5.5) 

with gentle shaking 6 times. The mixture was then centrifuged at 13,000 rpm for 10 minutes. The 

supernatant was transferred to a spin column that allows DNA binding, followed by centrifugation 

at 13,000 rpm twice. The flow through was discarded and the spin column with bound DNA 

washed twice with 500 µL of a wash buffer. Bound DNA was eluted with 30 µL water by 

centrifugation at 13,000rpm for 2 minutes. The DNA concentration was determined by UV at 260 

and 280 nm. 

3.5.14 Polymerase chain reaction (PCR) 

   OGT gene encoding short OGT was amplified from PRK5-OGT vector by PCR using a 

thermocycler (Eppendorf Master Cycler Gradient). The PCR reaction mixture consisted of 50 ng 

of a template plasmid with OGT gene, 1 µL each of forward and reverse primers from 10 µM stock 

solution, 5 µL of ultra pfu buffer and 2 µL of dNTPs from a 10 mM stock of nitrogen bases. The 

final reaction mixture was 50 µL with addition of deionized water and 1 µL of pfu enzyme. The 
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thermocycler was programmed as in the table below.  The PCR product was checked by agarose 

gel electrophoresis.  

Table 6: PCR cycles program for OGT gene amplification 

Cycle type Temperature (ο C) Time Number of cycles 

Initial denaturation 95 5minutes 1 

Denaturation 95 1minute 35 

Annealing 55 1minute 35 

Extension 72 1minute 35 

Final extension 72 10minutes 1 

3.5.15 Restriction digestion 

      A construct encoding short human OGT1 cDNA was cloned into PET28a vector (Novagen 

Catalogue number-698643) after double restriction digestion with BamH1 and Not1. PCR product 

was digested by incubating in 1 µL BamH1 enzyme and 1 µL Not1 enzyme and 5µL 10x Cutsmart 

NEB buffer and 1 µL of BSA (from 10 mg/ml BSA stock) in a 50 µL aqueous solution. Digestion 

was done in an incubator at 37oC for 2 hours. The digested PCR product size was checked by 

running an agarose gel (90 V for 40 minutes). 

3.5.16 Ligation 

     Ligation was carried out at 16 oC for 20 hours in 20 µL volume. The ligation mixture consisted 

of double digested pET28a vector and OGT1 gene in 1:5 ratio, 1 µL from T4 DNA ligase enzyme 

(400,000 units/mL) and deionized water. The PCR clean-up protocol was performed on the ligation 

mixture after which it was put on ice for 20 minutes (PCR cleanup is not necessary). 

Transformation was carried out as described above and plated on agar plates with Kanamycin (50 

μg/mL). After 20 hours, a single colony was picked from the plate and used to inoculate 5 mL LB 
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culture media with 50 μg/mL Kanamycin. DNA extraction was done as above, and concentration 

determined by the Nanodrop UV absorbance meter. The gene construct was confirmed by DNA 

sequencing.  

3.5.17 Bacterial protein expression and purification of sOGT 

     pET28a containing sOGT gene construct was transformed into E. coli BL21(DE3) bacterial 

strain. BL21 cells were grown at 37 oC in Luria broth containing Kanamycin (50 µg/mL) to an 

OD600 of 0.8 and induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were 

further grown at 18 oC for 20 hours, then harvested by centrifugation for 20 minutes at 5,000 rpm 

and resuspended in a lysis buffer (100 mM Tris-HCl pH 7.4, 125 mM NaCl, 10 mM imidazole, 

250 µM DTT). Lysates were prepared by passing cell suspension through a chilled French press 

twice at 1,500 psi. The cell lysates were centrifuged at 14,000 rpm and the supernatant was loaded 

on and incubated with prewashed nickel beads for 3 hours. After draining the flow through, the 

nickel beads were washed with a wash buffer (pH 7.4, 125 mM NaCl, 50 mM imidazole, 250 μM 

DTT) and the protein was eluted with an elution buffer (100 mM Tris-HCl, pH 7.4, 125 mM NaCl, 

250 mM imidazole, 250 μM DTT. The fractions containing pure His-tagged protein were 

determined from SDS PAGE, combined and dialyzed with a dialysis buffer (100 mM Tris-HCl 

pH=7.4, 125 mM NaCl, 12 mM MgCl2). The protein was concentrated, and the concentration was 

determined by Bradford Assay (Bio-Rad) 
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CHAPTER 4 METABOLOMIC STUDIES IN K8A-TREATED H1299 CANCER CELLS 

4.1 Introduction 

     The fate of glucose in cancer cells include cellular energetic pathways such as glycolysis, 

tricarboxylic acid cycle and mitochondrial electron transport chain. Glucose is also the major 

source of NADPH generated by the pentose phosphate pathway (PPP).  NADPH maintains redox 

homeostasis by maintaining antioxidants such as glutathione in their reduced state. Additionally, 

the hexosamine biosynthetic pathway (HBP) contributes to redox homeostasis by generation of 

UDP-GlcNAc that is important for O-GlcNAcylation of proteins. Protein modifications such as 

glutathionylation and O-GlcNAcylation protect proteins from oxidative stress. Metabolite flux in 

glycolysis, the PPP, TCA and HBP are intricately controlled in cancer cells for survival, 

proliferation and ROS detoxification. For these reasons, cancer cells have evolved coping 

mechanisms that include metabolic reprogramming and alternative signaling cascades to regulate 

levels of ROS that are elevated in most cancer cells. 

      Small molecules that disrupt glucose metabolism elevate ROS and cause cancer cell death. The 

glucose metabolism inhibitors, such as 2-deoxy-D-glucose, bromopyruvate276 and lonidamine277, 

induce ROS and selectively target cancer cells. Additionally, glucose deprivation induced ROS 

and cell death of diverse cancer types158. Of note is the disruption of cellular energetics by 

reduction of energy storage compounds, such as ATP with elevation of AMP by these glycolytic 

inhibitors26. Elevation of AMP activates AMPK that acts as the energy sensor of the cell266. AMPK 

has multiple targets, including p53. Wild type p53 is a tumor suppressor protein that regulates cell 

cycle growth and induce apoptosis266, 278. 

      Importantly, the PPP and HBP enzymes respond to elevation of ROS generated by glycolytic 

inhibitors to protect the cell. Under oxidative stress, glycolytic flux reverses to feed the PPP and 
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HBP that provide NADPH and UDP-GlcNAc29, 63. NADPH and UDP-GlcNAc are precursors to 

glutathione and O-GlcNAcylation. Additionally, oxidative stress induces ER stress and the UPR 

to maintain proteostasis9. Glycolytic inhibitors such as 2-DG induce ER stress, block N-

glycosylation and elevate O-GlcNAcylation. ER stress is detected initially by elevation of 

grp78279. grp78 is an ER resident protein that senses a dramatic drop in glucose levels in a cell and 

provide the direct link between nutrient status of a cell, oxidative stress and protein folding280.  

     Targeting cancer cell metabolism provides a multipronged approach of induction of metabolic 

stress that lead to overall cellular stress. Carbohydrate-based molecules that target cell metabolism 

hold therapeutic potential because cancer cells show phenotypes that enhance selectivity. Elevated 

sugar-uptake and high ROS in cancer cells is a dual phenotype that was exploited to target cancer 

cell metabolism. To test this hypothesis, an N-aryl glycoside (K8A) was first evaluated for ROS 

induction in H1299 cells and found to generate 2-fold ROS levels compared to the control. 

Additionally, K8A activated AMPK in both HEK 293 and H1299 cells, compelling this work to 

evaluate metabolite levels involved in cellular metabolism in glycolysis, PPP and TCA cycles via 

the metabolomics approach. 

4.2 Metabolomics Approach  

       To investigate whether K8A disrupted metabolism, a metabolomics approach281-282 was used 

to quantify metabolites at a fixed metabolic state in H1299 lung cancer cells. The goal of 

metabolomics studies was to identify significantly altered metabolite levels and altered 

biochemical pathways upon treatment of K8A. The cells were grown to about 80% confluency 

before treatment with 100 µΜ K8A for 20 hours. Metabolomics involved metabolites of various 

pathways that include glycolysis, PPP and TCA cycle using a method previously optimized283. 

LC-MS detection involved a one-step liquid-liquid organic solvent extraction of cultured H1299 
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cells and separation on a 1 mm x150 mm HILIC specific column in a 35-minute separation cycle. 

The metabolite detection was compared with untreated controls with the same protein 

concentration. All metabolites with the internal standards were measured by ESI ionization on a 

LC-QTOF mass spectrometer. 

 

Figure 80-Metabolomics work flow. 
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4.3 Results 

4.3.1 Optimization of metabolite extraction  

      H1299 cell metabolism was quenched using liquid nitrogen in ice conditions and stored in -80 

0C freezer. Metabolites were extracted using 80% methanol without cell lysis from cells pretreated 

with C-12 and C-13 glucose. Previously, trypsinization, physical removal, centrifugation and 

filtration prior to quenching significantly altered the metabolite profile284-285. The mixture of 

metabolite solution was injected into a LC-MS (SHIMADZU 8040) with an optimized multiple 

reaction monitoring for glucose. The sodium adducts for C-12 and C-13 were then extracted from 

the mass spectrum (Figure 81). The data revealed that the metabolite extraction method was 

reliable and robust. Additionally, the LC/MS/MS instrument was optimized to run on negative ion 

mode at a collision energy of 15.0 volts and the C-13 glucose molecular transition 185 to 91 was 

observed (Figure 82). The cells were then lysed with PBS and protein concentration quantified by 

Bradford assay. To quantify metabolites, a LC-QTOF mass spectrometer was used as previously 

described. 

 

Figure 81-Mass spectrum for C12-C13-glucose from cell extract showing M/ZNa+ =203, 209 peaks 



107 

 

 

Figure 82-Optimization of collision energies for LC/MSMS molecular transition of C-13 glucose. 

 

Figure 83-Protein levels of metabolite extracts from H1299 cells 

4.3.2 Metabolomics data analysis  

     The protocol and data analysis were done at the University of Michigan Metabolomics core and 

contained two different forms of data:  one is Gly-TCA-quantitative, the other is TCA-plus.  The 

difference between them is that for the quantitative report, there was a full calibration curve, so 
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the values were reported as μM or μmol/μg protein, depending on the normalization to the protein 

content of the H1299 cells (Figure 83). These data set was converted to picomoles.  

        For the TCA-plus, the data is semi-quantitative, so the areas normalized to an internal 

standard were used. Additionally, although it is important to normalize when there are large 

differences in the number of cells produced under control and treatment conditions, we used the 

non-normalized data because the protein content of the treated and untreated samples showed very 

minimal cell number differences. In terms of data quality, the pools served as the primary quality 

check.  of the pool indicates the extract from each of our samples.  This pool is injected multiple 

times over the course of the analysis.  Thus, if the data for the pools looks consistent, this tells us 

not only that the instrument is running well, but that the data quality (peak shape and area) are 

good enough that the data analysis software can successfully integrate them.  The data for the pools 

for each compound can be found on the Raw data appendix. The RSDs for the pools averaged 

around 2-5%. The quantitative and semiquantitative metabolite data was grouped and graphed into 

various metabolic pathways. 

4.3.3 Glycolytic metabolite levels in K8A-treated H1299 cells 

       Glycolytic metabolites were evaluated at 100 μM K8A treatment with untreated controls in 

triplicate. Although glycolysis is a step-wise sequence of ten enzyme-catalyzed reactions, the 

intermediates provide entry points to glycolysis286. The first five phases constitute the investment 

phase because ATP is consumed, whereas the final five steps constitute the payoff phase because 

ATP is produced282. We determined levels of G6P, F6P, FBP, 2PG, 3PG, DHAP, G3P and PEP. 

Glucose is converted to glucose-6-phosphate by hexokinase and then isomerized to F6P by hexose 

phosphate isomerase. In the third step, PFK1 expends ATP energy to phosphorylate F6P to FBP. 
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FBP is then cleaved by an aldolase into DHAP, and G3P. In the fifth step, triose phosphate 

isomerase interconverts DHAP and G3P.  

          In the payoff phase, G3P is converted to 1,3BPG with production of NADH. In the next 

step, 1,3BPG provide a phosphate to ADP that generate ATP and 3PG. 3PG is converted to 2PG 

which produce PEP. PEP provides the second ATP with release of pyruvate. DHAP when 

converted to G3P, is processed by the glycolytic enzymes in a similar way. 

      Metabolomics revealed that G6P/F6P pair of metabolites increased more than 2-fold with 

treatment of 100 µM K8A compared to untreated controls (Figure 84). G6P and F6P being isomers 

had similar molecular transitions during MRM in the metabolomics analysis. There was an 

insignificant decrease in FBP levels with K8A treatment. DHAP and G3P levels were however 

unchanged with this treatment (Figure 85, 86). There was no significant difference in metabolite 

levels 2PG/3PG between treated and untreated controls. 2PG and 3PG are isomers and had the 

same indistinguishable product ion masses. G6P and F6P are at the branch points of PPP and HBP 

respectively and elevation of these metabolites point to oxidative response induced by K8A. 

Notably, K8A induced a five-fold increase in PEP (Figure 87) consistent with ROS induced 

elevation of PEP recently reported282.  
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Figure 84-Glycolytic metabolite levels in K8A-treated H1299 cells  

 

Figure 85-Glycerol-3-phosphate levels in K8A-treated H1299 cells 
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Figure 86-Dihydroxy-acetone phosphate levels in K8A-treated H1299 cells 

 

Figure 87-Phosphoenol pyruvate levels in K8A-treated H1299 cells; unsure of what is the 

statistical analysis in these data. 

4.3.4 Pentose phosphate pathway metabolite levels in K8A-treated H1299 cells 

     The PPP generates NADPH in the oxidative phase and pentoses in the non-oxidative phase. 

NADPH utility includes ROS detoxification and fatty acid synthesis. R5P is used in nucleotide 

synthesis and E4P is used in synthesis of aromatic amino acids. The glycolysis-PPP branchpoint 
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metabolite G6P was increased with K8A treatment as mentioned above. Further metabolomics 

revealed about fivefold increase in R5P and E4P with 100 μM treatment of H1299 cells (Figure 

88). Additionally, a non-significant increase of 6PG and NADP was observed with unchanged 

NADPH levels (Figure 88, 89). Overall, the PPP was elevated but notably the NADPH/NADP 

ratio was dramatically reduced in K8A treated cells compared to the untreated controls (Figure 

89). 

Figure 88- Pentose Phosphate pathway metabolite levels in K8A-treated H1299 cells 
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Figure 89-NADPH/NADP ratio in K8A-treated H1299 cells 

4.3.5 Hexosamine biosynthetic pathway metabolite levels in H1299 cells 

     HBP relies on multiple substrates to synthesize UDP-GlcNAc that include glucose, glutamine, 

acetyl CoA and UTP. The glycolytic-HBP branchpoint F6P requires glutamine for conversion to 

glucosamine-6-phosphate. GlcN-6P is then acetylated by acetyl CoA to form GlcNAc-6P. 

GlcNAc-6P is isomerized to GlcNAc-1P which is then activated by UTP to generate UDP-

GlcNAc.                                                                                                                                                        

    Metabolomics revealed 10-fold increase in UDP-GlcNAc levels indicating dramatic 

upregulation of HBP by K8A (Figure 90). HBP substrate analysis revealed unchanged levels of 

hexoses and acetyl CoA and marginal increase in glutamine uptake with 100 µM K8A treatment 

of H1299 cells. Of note is 2-fold reduction of UTP levels and 2-fold increase of UDP levels (Figure 

91). These changes are likely reflected by the final step of UDP-GlcNAc synthesis. Additionally, 

there was a 2-fold increase in N-acetyl glucosamine-1-phosphate levels (GlcNAc-1P) that is 

activated by UTP at this stage to produce UDP-GlcNAc. UDP-glucose and UDP-glucuronate 

levels (Figure 92) also increased 2-fold with K8A treatment in H1299 cells. UDP-glucose and 

NAD+ are substrates for UDP-glucose dehydrogenase that generate UDP-glucuronate. UDP-
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glucuronate are precursors for synthesis of various polysaccharides that include glycogen, 

glycosaminoglycans and proteoglycans. 

Figure 90-Hexosamine biosynthetic pathway metabolites in K8A-treated H1299 cells 

Figure 91-UTP, UDP and N-acetyl-glucosamine-1-phosphate levels in H1299 cells 
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Figure 92-UDP-glucose and UDP-D-glucuronate levels in K8A-treated H1299 cells 

4.3.6 Validation of HBP elevation by Western blot studies 

     Metabolomics revealed elevation of various HBP metabolites including UDP-glucose, UDP-

glucuronate, N-acetyl glucosamine-1-phosphate and UDP-N-acetyl glucosamine (UDP-GlcNAc). 

UDP-GlcNAc is used for O-GlcNAcylation of proteins by OGT enzyme. Validation of UDP-

elevation was done in OGT transfected and non-transfected H1299 cells by O-GlcNAc specific 

antibody (CTD 110.6). An increase in O-GlcNAcylation was observed within 100 µM K8A that 

was further increased with OGT transfection. OGT levels were unchanged but were higher in 2-

DG treated cells. 

4.3.7 Tricarboxylic Acid metabolite levels in H1299 cells treated with K8A 

     The TCA cycle is directly involved in cellular energetics. TCA cycle is a series of chemical 

reactions that release energy by oxidation of acetyl CoA. In the TCA cycle, three equivalents of 

NAD+ are converted into three equivalents of NADH. One equivalent of GDP converts to GTP 

and then to ATP. Additionally, one equivalent of FAD produces one equivalent of FADH2. 
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Importantly, NADH and FADH2 are used as reducing agents in oxidative phosphorylation to 

generate ATP. Levels of NAD+ and NADH were determined in this metabolomics analysis. 

Figure 93-TCA metabolite levels in K8A-treated H1299 cells  

 

Figure 94-NAD+/NADH levels in K8A-treated cells 

      Acetyl CoA levels remained unchanged with K8A treatment in H1299 cells consistent with 

recent metabolomics data on ROS induction282. Metabolomics analysis further revealed that 

citrate, isocitrate, and malate were increased 2-fold with 100 µM K8A treatment (Figure 93). Of 

note is the 4-fold increase of NAD+ and 2-fold decrease of NADH (Figure 94).  Notably, a ratio of 
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NAD+ to NADH was increased 10-fold pointing to depletion of reducing equivalents necessary for 

ATP synthesis. Supporting AMPK activation shown by Western blot data in chapter 3, I observed 

an increase of ATP hydrolysis products, such as ADP and AMP (Figure 94). Other energy storage 

compounds such as UTP was equally decreased (Figure 95). Concomitantly, other cellular energy 

hydrolytic metabolites, such as UDP, UMP and GMP were disrupted. 

     AMP binds to energy sensing AMPK. AMPK consist of α, β, and γ subunits. Each of these 

subunits are involved in stabilization and activity of AMPK. Specifically, the γ subunit has ability 

to sense changes in the ratio of AMP to ATP. AMP binding to the γ subunit invokes a 

conformational change that exposes the phosphorylation site on the catalytic domain located on 

the α subunit. AMPK activation mitigates against dramatic losses of ATP in a cell282. K8A induced 

this activation at lower concentrations than 2-DG in HEK 293 and H1299 cells.  

 

Figure 95-ADP and AMP levels in K8A-treated H1299 cells 
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Figure 96-UTP, UDP, UMP, GDP and GMP levels in K8A-treated H1299 cells. 

4.4 Amino acid levels in H1299 cells treated with K8A 

     Amino acid carbon backbones are generated from intermediates of glycolysis, PPP and TCA. 

Glycolytic 3-phosphoglycerate for example is the precursor for serine biosynthesis287. Serine is 

used in glycine, cysteine and NADPH biosynthesis that are important for glutathione 

homeostasis288. E4P from the PPP is used in synthesis of aromatic amino acids that include 

phenylalanine, tyrosine and tryptophan289. On the other hand, α-ketoglutarate from the TCA cycle 

is the precursor for many amino acids that include glutamate and glutamine290. We observed 

marginal (10%) increase of glutamate and glutamine with K8A incubation (Figure 99). Glutamine 

is required in HBP synthesis and ROS detoxification. 

       Conversely, there was a 2-fold increase in aspartate levels with K8A treatment at 100 µM 

(Figure 97). Aspartate may be used to generate oxaloacetate that is important in the TCA cycle. In 

addition, asparagine synthetase synthesizes asparagine from aspartate. This enzymatic reaction 

requires glutamine and ATP and generate glutamate. There was no significant difference in other 
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amino acid levels with K8A treatment in H1299 cells (Figure 96). Glycine and cysteine was not 

detected in this metabolomics study. Of note is the 2-fold increase of citrulline levels (Figure 99) 

with similar reduction of arginine which is the precursor molecule for citrulline biosynthesis. Nitric 

oxide synthase catalyzes this reaction that also require NADPH and oxygen to generate nitric 

oxide, NADP+ and citrulline. 

 

 

Figure 97-Amino acid levels in K8A-treated H1299 cells 
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Figure 98-Aspartate levels in K8A-treated H1299 cells 

 

Figure 99-Arginine and citrulline levels in K8A-treated H1299 cells 

4.5 Fatty acid levels in cells treated with K8A 

     Fatty acids are synthesized from acetyl CoA generated from glycolytic substrate pyruvate. Fatty 

acid synthesis also require NADPH generated from the PPP. Importantly, fatty acids are sources 
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of energy and a major component of cell membranes. Metabolomics revealed no change in levels 

of oleic acid, palmitic acid and stearic acid with treatment of K8A (Figure 99). 

 

 Figure 100-Oleic acid, palmitic acid and stearic acid levels in K8A-treated cells 

4.6 Purine and Pyrimidine synthesis metabolite levels in H1299 cells treated with K8A 

     Purine and pyrimidine synthesis is important for generation of nucleotides, TCA metabolites 

such as fumarate and reducing equivalents such as NADH. IMP is a purine and a precursor for 

GMP and AMP synthesis. IMP levels were increased 2-fold upon K8A treatment in H1299 cells. 

Xanthine is a purine and an intermediate in the degradation of adenosine. Xanthine may be 

generated from hypoxanthine in a reaction catalyzed by xanthine oxidase that generate reactive 

oxygen species in form of the superoxide anion. In this metabolomics study, the levels of 

hypoxanthine and xanthine remained unchanged with treatment of 100 µM K8A in H1299 cells 

(Figure 101). Unchanged xanthine levels with unaltered Nrf2 expression warrants further study 

considering recent reports of coactivation of Nrf2-HKII complex in XOR expression52. 



122 

 

 

 

Figure 101-Inosine and IMP levels in H1299 cells 

 

Figure 102-Hypoxanthine and xanthine levels in H1299 cells 

4.7 Discussion 

    Glycolytic enzymes, such as hexokinase II (HKII), glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) and pyruvate kinase isoform (PKM2) are involved in redox homeostasis. Importantly, 

GAPDH acts as a reversible metabolic switch under oxidative stress. Additionally, mitochondrial 

superoxide overproduction inhibits GAPDH and activates the HBP to increase cellular O-

GlcNAcylation. The activation of the HBP is presumably due to inhibition of GAPDH, thus 
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redirecting F6P from glycolysis to UDP-GlcNAc formation. We observed an increase in K8A-

induced ROS production and G6P/F6P elevation in our metabolomics studies consistent with 

recent findings282. Hexose levels remained unaltered suggesting that the increased levels of G6P 

and F6P were due to activity of glycolytic enzymes. 

      Of note is the oxidation of one single cysteine residue in GAPDH catalytic site inactivates 

GAPDH to reverse glycolytic flux towards the PPP. Other ROS-sensitive glycolytic enzymes are 

PFK1 and PKM2 that redirect metabolites towards HBP and PPP. Additionally, metabolomics 

revealed a five-fold increase of PEP upon treatment of K8A to H1299 cells. Conversely, G6PD 

that catalyzes the rate limiting step in PPP is activated by O-GlcNAcylation at serine 84. G6PD 

converts G6P to 6-PG and NADPH40. Metabolic profiling showed the relative increase of 6-PG 

and R-5-P/X-5-P with K8A treatment in H1299 cells. Additionally, there was a dramatic increase 

of E-4-P which is a major indicator of elevated PPP and oxidative stress response induced by K8A. 

Of note, OGT overexpression increased NADPH and reduced glutathione levels (GSH) in A549 

cells291. In this study, we observed elevated levels of O-GlcNAcylation, PPP and GSH upon 

treatment of H1299 cells with K8A.  Overall, the NADPH/NADP+ levels were attenuated, 

corroborating K8A-induced ROS increase in H1299 cells. 

     O-GlcNAcylation is a ubiquitous protein modification that occurs in over 4,000 nuclear, 

cytoplasmic, and mitochondrial proteins. Cycling of this carbohydrate modification regulates 

many cellular functions that include cellular stress response. Stress induced O-GlcNAcylation is 

involved in redox homeostasis by regulating activity of enzymes in various pathways that include 

glycolysis, fatty acid synthesis292-293, PPP and TCA enzymes30. Importantly, O-GlcNAcylation 

responds to intracellular and extracellular changes that include glucose and glutamine deprivation, 

2-DG treatment, and ROS induction by small molecules249, 294. For example, 2-DG increased O-
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GlcNAcylation and disrupted cellular energetics in various cell lines294-296. Augmenting O-

GlcNAc levels by OGT overexpression has been shown to attenuate oxidative stress. 

        O-GlcNAc precursor molecules, UDP-GlcNAc and N-acetyl-glucosamine-1-phosphate, were 

elevated by K8A with consumption of UTP. Additionally, K8A induced generation of UDP-

glucose and UDP-D-glucuronate which are involved in detoxification297-298. UDP-D-glucuronic 

acid is involved in glucuronide conjugation with lipophilic xenobiotics in phase II drug 

metabolism. Glucuronide conjugation involves glycosidic bonds with thiol, amine and hydroxyl 

groups, or esterification with the hydroxyl and carboxyl groups298.  
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Figure 103-TCA cycle shift under oxidative stress conditions 
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  The metabolomics study also revealed the relative increase of key metabolites that 

generate reducing equivalents, including citrate, isocitrate and malate. Under oxidative stress 

conditions, NADPH is generated by the TCA cycle from various metabolites that include isocitrate 

and malate. Isocitrate dehydrogenase 1 (IDH1)184 catalyzes conversion of isocitrate to α-

ketoglutarate. Malic enzyme 1 (ME1) catalyzes conversion of malate to pyruvate with production 

of NADPH183 (Figure 102). In this way, ME1 contributes to the cytosolic NADPH pool and ROS 

detoxification. Of note is decreased cell growth in ME1-deficient cells in glucose-deprived cells299. 

Additionally, the NAD+/NADH ratio was increased 10-fold with K8A treatment, suggesting 

deficiency in reducing equivalents necessary for ATP synthesis and ROS detoxification.  

     K8A had little interference on metabolism of other pathways that included amino acid, fatty 

acid, purine and pyrimidine synthesis. Minimal increase in glutamate levels was observed with 

K8A treatment and could be important in glutamine synthesis. Additionally, arginine levels 

decreased. Arginine is used by nitric oxide synthase to produce citrulline and nitric oxide300-301. 

Notably, this could potentially be the source of K8A-induced ROS. 

         The metabolomics studies also revealed that fatty acid synthesis of oleic, stearic and palmitic 

acid was halted. On lipid synthesis, AMPK activation observed in this study may lead to inhibition 

of the sterol regulatory element binding protein 1 (SREBP-1), which is a major regulator of fatty 

acid synthesis. Additionally, K8A-induced increase in AMP, ADP, UDP, and UMP and decrease 

in UTP levels corroborated our AMPK activation Western blot findings. UTP is consumed in the 

HBP in UDP-GlcNAc synthesis. Overall, K8A disrupted glycolysis, PPP and TCA with 

implications in variations in metabolite levels that affected cellular energetics and redox 

homeostasis in H1299 cancer cells. 
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4.8 Experimental procedure 

4.8.1 Sample preparation and metabolic profiling  

     The H1299 adherent cells were cultured in 10 cm dishes in 5% CO2 and 37 oC in DMEM to 

about 80% confluency before treatment with 100 µΜ K8A for 20 hours in triplicate dishes with 

separate triplicate controls. The medium was then aspirated out. The cells were then quickly 

washed with 150 mM ammonium acetate. The cells were frozen by pouring liquid nitrogen over 

the cells and evaporation allowed to take place with dishes placed on ice. The cells were stored in 

-80oC freezer before metabolomics analysis. LCMS detection involved a one-step liquid-liquid 

organic solvent extraction (methanol: chloroform 9:1) of cultured H1299 cells and separation on a 

1 mm x150 mm HILIC specific column in a 35-minute separation cycle. The quantitative multiple-

reaction monitoring transition of each particular metabolite was as follows: m/z 259 to 97 for 

G6P/F6P, m/z 259 to 79 for F16BP, m/z 169 to 97 for DHAP/GAPDH, m/z 185 to 79 for 2PG/3PG, 

m/z 167 to 79 for PEP, m/z 808 to 79 for acetyl-CoA, m/z 191 to 111 for citrate/Isocitrate, m/z 117 

to 73 for succinate, m/z 133 to 115 for malate, m/z 275 to 79 for 6-PG, m/z 229 to 97 for R-5-

P/X5P,  and m/z 199 to 97 for E4P. Data analyzed by Mass Lynx software and Graph pad Prism 

are presented as the mean ± standard deviation of triplicate cell culture experiments with and 

without treatment of K8A. 

Conclusion and future directions 

     This study has provided insights to the potential use of carbohydrate-based small molecules in 

cancer therapeutics in comparison to clinically tested 2-deoxy-D-glucose. This work widened the 

scope of synthesis of N-aryl glycosides from unprotected monosaccharides and aniline derivatives 

with formation of mostly β-N-aryl glycosides in pure form. This work also developed a HPLC 

method of separating the α and β anomers. Characterization was done by LC-MS and NMR. 
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Reactive oxygen species levels induced by our molecules revealed correlation between ROS levels 

and cytotoxicity in H1299 lung cancer model. These ROS and cytotoxicity screening assays 

revealed two hit compounds H8 and K8. Acetylated form K8A had improved lipophilicity and 

cytotoxicity in several cancer cell lines that include lung, breast and prostate among others. 

        Preliminary mechanistic studies revealed that our hit compound K8A induces ROS and ER 

stress in similar fashion to 2-DG in H1299 cells. Additionally, K8A activates AMPK and p53 

which are involved in tumor suppression. Importantly, K8A disrupts global protein glycosylation 

in cancer cells. Western blot studies revealed increase in O-GlcNAcylation known to activate p53 

and modulate redox homeostasis and cellular energetics. Additionally, metabolic labelling and 

click chemistry revealed potential role of K8A to block N-glycosylation with Lectin pull down 

studies with biotinylated Concanavalin A revealing N-glycosylation inhibition as potential 

mechanism of action. Furthermore, the metabolomics study corroborated our initial findings of 

K8A role in cellular energy disruption with increase in AMP, indicative of decrease in ATP. 

Overall, I think K8A is disrupting the glucosome33 and it will be interesting how future work will 

dissect this observation against a backdrop of O-GlcNAcylation of glycolytic enzymes. Remotely, 

K8 being a xyloside could also act as a precursor in proteoglycan synthesis which utilize xyloside 

residues attached to proteins as building blocks. I therefore propose a model based on my findings 

to act as a basis for future work in pursuit of finding a carbohydrate-based inducer of cellular stress 

for targeting cancer cell metabolism.  
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Figure 104-K8A mechanism of action model 

Further studies are required to investigate upstream and downstream signaling effects of AMPK 

as well as a more elaborate biochemical and metabolomics study to delineate effects of K8A as an 

ER stress inducer, ROS modulator versus cellular energy disruptor. Of note is the possible role of 

K8A as an inhibitor of N-glycosylation as shown in this work in a pulldown study with lectins. 

The preliminary data of using biotinylated concanavalin A showed that K8A reduced N-

glycosylation in H1299 cells (Figure in the appendix). Future work is likely to involve thorough 

investigation in comparison to N-glycosylation inhibitors such as tunicamycin. Furthermore, K8A 

selectivity of cancer versus normal cells is likely to provide greater insights on the mechanism of 

action that may be exploited in cancer therapeutics. 
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APPENDIX A: LC-MS Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 N-aryl-glycoside Purity (%) Exact mass Found mass 

1 A1a 95 313.13 314.00 

2 A1b 100 313.13 314.00 

3 A3 100 337.11 338.00 

4 A4 90 323.1 324.00 

5 A5a 100 295.14 296.00 

6 A5b 100 295.14 296.00 

7 A6 100 307.12 308.00 

8 A7 100 255.11 256.00 

9 A8 95 305.13 306.00 

10 B1 100 297.12 298.00 

11 B2 100 273.08 274.00 

12 B3a 90 321.13 322.00 

13 B3b 100 321.13 322.00 

14 B7a 100 239.12 240.00 

15 B7b 100 239.12 240.00 

16 B8 90 289.13 290.00 

17 C1 90 283.11 284.00 

18 C2 90 259.06 260.00 

19 C4a 90 293.09 294.00 

20 C4b 100 293.09 294.00 

21 C5 100 265.13 266.00 

22 C7 100 225.1 226.00 

23 D1 100 355.13 356.00 

24 D2 100 315.11 316.00 

25 E1 90 267.11 268.00 

26 E2 90 243.07 244.00 

27 E5 90 249.14 250.00 

28 E6 90 261.11 262.00 

29 F1 90 354.14 355.00 

30 F6 100 348.14 349.00 

31 G5 90 295.14 296.00 

32 G8 100 305.13 306.00 

33 H1 90 283.11 284.00 

34 H3 90 283.11 284.00 

35 H5 90 265.13 266.00 

36 H7a 90 225.11 250.00 

37 H7b 90 225.11 250.00 

38 H8 90 275.13 276.00 

39 I4a 90 293.09 294.00 

40 I4b 100 293.09 294.00 

41 I7 100 225.1 226.00 

42 I8 90 275.12 276.00 

43 J5 100 295.14 296.00 

44 J7 95 255.11 256.00 

45 K8 98 275.13 276.00 

46 L8 100 289.13 290.00 
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APPENDIX A (continued): LC-MS Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 N-aryl-glycoside Purity (%) Exact mass Found mass 

47 K8A 100 401.15 402.00 

48 K9A 100 401.15 402.00 

49 K10A ~90 415.16 416.00 

50 K11A ~90 436.10 437.00 

51 K12A ~90 480.05 481.00 

52 Q9A 100 415.16 416.00 

53 Q8A 100 415.16 416.00 

54 H9A 100 401.15 402.00 

55 H8A ~90 401.15 402.00 

56 C9A 100 401.15 402.00 

57 C8A 100 401.15 402.00 

58 L9A 95 473.17 474.00 

59 L8A 100 473.17 474.00 

60 2DGA 100 332.1 333.00 

61 KA ~50 318.10 319.00 

62 2DG8A ~90 415.16 416.00 
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APPENDIX B: HPLC CHROMATOGRAMS OF A1 & A2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 product peaks 

A2 product peaks 

DMSO peak 

Starting material peak 

DMSO peak Starting material peak 

β-product 

α-product 
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APPENDIX C: NMR Data 

1H-NMR of A8 

1H NMR (600 MHz, d2o) δ 7.96 (dd, J = 6.3, 3.3 Hz, 1H), 7.78 (dd, J = 6.2, 3.2 Hz, 1H), 7.43 (dd, 

J = 6.3, 3.2 Hz, 2H), 7.37 – 7.27 (m, 2H), 6.87 (d, J = 7.3 Hz, 1H), 4.80 (d, J = 8.1 Hz, 1H), 3.78 

(d, J = 10.5 Hz, 1H), 3.61 (dd, J = 12.2, 5.6 Hz, 1H), 3.56 – 3.49 (m, 2H), 3.41 – 3.34 (m, 1H). 
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C8 1H NMR 

1H NMR (600 MHz, DMSO-d6) δ 8.06 (d, J = 7.9 Hz, 1H), 7.80 – 7.74 (m, 1H), 7.47 – 7.38 (m, 3H), 7.31 

– 7.25 (m, 1H), 7.19 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 7.6 Hz, 1H), 6.62 (d, J = 7.7 Hz, 1H), 5.04 – 4.96 (m, 

1H), 4.58 (t, J = 7.2 Hz, 2H), 3.79 (q, J = 7.2 Hz, 1H), 3.62 (dd, J = 11.7, 4.4 Hz, 1H), 3.57 (td, J = 9.1, 8.2, 

2.6 Hz, 1H), 3.48 (dd, J = 11.9, 2.3 Hz, 1H). 
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G8 1H NMR 

1H NMR (600 MHz, DMSO-d6) δ 8.19 (dd, J = 8.4, 1.5 Hz, 1H), 7.80 – 7.72 (m, 1H), 7.46 – 7.35 

(m, 2H), 7.32 – 7.24 (m, 1H), 7.18 (d, J = 8.1 Hz, 1H), 6.78 – 6.72 (m, 1H), 6.40 (d, J = 7.1 Hz, 

1H), 4.84 (d, J = 5.2 Hz, 1H), 4.79 (d, J = 5.3 Hz, 1H), 4.56 (t, J = 5.2 Hz, 1H), 4.43 (s, 1H), 4.38 

(d, J = 4.2 Hz, 1H), 3.76 – 3.70 (m, 2H), 3.55 – 3.49 (m, 2H), 3.46 – 3.39 (m, 2H). 

 
 

 

 
 

 

 

 

 

 

 

 

 



136 

 

 

H8 1H NMR  

1H NMR (600 MHz, Chloroform-d) δ 7.91 – 7.86 (m, 1H), 7.85 – 7.76 (m, 2H), 7.47 – 7.43 (m, 

3H), 7.37 – 7.33 (m, 2H), 5.32 (s, 2H), 4.70 (d, J = 8.0 Hz, 1H), 4.08 – 3.99 (m, 3H), 3.91 (t, J = 

8.3 Hz, 1H), 3.81 (d, J = 8.6 Hz, 1H), 3.72 – 3.68 (m, 1H). 
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J8 1H NMR  

1H NMR (600 MHz, DMSO-d6) δ 7.95 – 7.88 (m, 1H), 7.80 – 7.72 (m, 1H), 7.46 – 7.40 (m, 2H), 

7.29 (t, J = 7.9 Hz, 1H), 7.24 (s, 1H), 6.80 (d, J = 7.5 Hz, 1H), 5.95 (d, J = 9.4 Hz, 1H), 5.22 (d, 

J = 4.9 Hz, 1H), 4.89 (d, J = 9.3 Hz, 1H), 4.75 (d, J = 5.0 Hz, 1H), 4.71 (d, J = 5.7 Hz, 1H), 4.34 

(t, J = 5.8 Hz, 1H), 3.85 (t, J = 3.9 Hz, 1H), 3.46 – 3.36 (m, 2H), 3.20 (td, J = 6.1, 2.9 Hz, 1H). 
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K8 1H NMR 

1H NMR (600 MHz, cd3od) δ 8.07 (dd, J = 6.6, 2.9 Hz, 1H), 7.80 – 7.67 (m, 1H), 7.44 – 7.35 (m, 

2H), 7.32 – 7.23 (m, J = 14.4, 7.9 Hz, 2H), 6.84 (d, J = 7.1 Hz, 1H), 4.67 (d, J = 8.2 Hz, 1H), 3.93 

– 3.85 (m, 1H), 3.62 – 3.58 (m, 1H), 3.57 – 3.54 (m, 1H), 3.49 (t, J = 8.7 Hz, 1H), 3.39 (t, J = 10.7 

Hz, 1H).  
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K9A 1H NMR 

1H NMR (400 MHz, Methanol-d4) δ 7.64 (q, J = 9.2, 8.4 Hz, 3H), 7.37 – 7.28 (m, 1H), 7.19 (ddd, 

J = 8.2, 6.8, 1.3 Hz, 1H), 7.12 – 6.97 (m, 2H), 5.49 – 5.21 (m, 3H), 5.05 (d, J = 5.9, 4.1 Hz, 1H), 

4.04 – 3.74 (m, 2H), 2.15 – 2.12 (m, 3H), 2.06 – 1.91 (m, 6H). 
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K9A 13C NMR 

13C NMR (101 MHz, Methanol-d4) δ 170.78, 170.55, 170.18, 143.37, 134.86, 128.43, 127.15, 

125.87, 125.81,125.79,125.76, 122.19, 117.56, 106.86, 83.74, 71.54, 68.4, 64.25, 19.27, 19.34, 

19.38. 
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Q9A 1H NMR 

1H NMR (400 MHz, Methanol-d4) δ 7.64 (q, J = 8.1 Hz, 3H), 7.37 – 7.28 (m, 1H), 7.23 – 7.14 (m, 

1H), 7.07 – 6.97 (m, 2H), 5.34 – 5.19 (m, 3H), 5.08 (d, J = 7.8 Hz, 1H), 4.13 – 4.08 (m, 1H), 2.19 

– 2.15 (m, 3H), 2.01 – 1.97 (m, 6H), 1.19 – 1.15 (m, 3H). 
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Q8A 

1H NMR (400 MHz, Methanol-d4) δ 7.87 – 7.82 (m, 1H), 7.77 (t, J = 4.8 Hz, 1H), 7.46 – 7.39 (m, 

2H), 7.32 (d, J = 3.9 Hz, 2H), 6.92 – 6.86 (m, 1H), 5.43 – 5.28 (m, 3H), 5.04 (d, J = 8.5 Hz, 1H), 

4.16 (d, J = 6.5 Hz, 1H), 2.18 (s, 4H), 2.00 (t, J = 1.9 Hz, 6H), 1.21 (d, J = 6.4 Hz, 3H). 
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H9A
1

H NMR 

1

H NMR (400 MHz, Methanol-d
4
) δ 7.64 (q, J = 7.8 Hz, 3H), 7.33 (t, J = 7.7 Hz, 1H), 7.19 (t, J = 

7.5 Hz, 1H), 7.06 – 6.96 (m, 2H), 5.39 (t, J = 8.7 Hz, 1H), 5.11 – 4.97 (m, 3H), 4.13 – 4.00 (m, 

1H), 3.63 (t, J = 10.9 Hz, 1H), 2.03 – 1.80 (m, 9H). 
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C9A 1H NMR 

1H NMR (700 MHz, Methanol-d4) δ 7.70 – 7.63 (m, 3H), 7.44 – 7.32 (m, 1H), 7.25 – 7.17 (m, 

1H), 7.14 – 7.03 (m, 2H), 5.60 – 5.46 (m, 1H), 5.31 – 5.21 (m, 2H), 4.11 (dd, J = 14.5, 7.1 Hz, 

1H), 4.08 – 3.81 (m, 1H), 2.18 – 2.13 (m, 3H), 2.10 – 2.00 (m, 6H). 
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L9A 

1H NMR (400 MHz, Methanol-d4) δ 7.80 – 7.75 (m, 1H), 7.69 – 7.61 (m, 2H), 7.47 – 7.29 (m, 

2H), 7.23 – 7.16 (m, 1H), 7.02 (dd, J = 8.8, 2.3 Hz, 1H), 5.60 – 5.45 (m, 1H), 5.38 – 5.21 (m, 2H), 

4.37 – 4.26 (m, 1H), 4.40 – 3.82 (m, 3H), 2.16 (d, J = 1.5 Hz, 3H), 2.03 – 1.92 (m, 9H). 
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H8A 
1

H NMR (400 MHz, Methanol-d
4
) δ 7.45 – 7.39 (m, 3H), 7.30 (td, J = 6.3, 3.5 Hz, 3H), 6.86 (dt, 

J = 6.1, 2.7 Hz, 1H), 5.47 – 5.24 (m, 4H), 4.96 (dd, J = 8.8, 3.2 Hz, 1H), 4.12 – 4.04 (m, 1H), 2.06 

– 1.96 (m, 9H). 
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L8A 1H NMR 

1H NMR (400 MHz, Methanol-d4) δ 7.87 – 7.82 (m, 1H), 7.77 (t, J = 4.8 Hz, 1H), 7.46 – 7.39 (m, 

2H), 7.32 (d, J = 3.9 Hz, 2H), 6.92 – 6.86 (m, 1H), 5.43 – 5.28 (m, 3H), 5.04 (d, J = 8.5 Hz, 1H), 

4.16 (d, J = 6.5 Hz, 1H), 2.18 (s, 4H), 2.00 (t, J = 1.9 Hz, 6H), 1.21 (d, J = 6.4 Hz, 3H). 
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C8A 1H NMR 

1H NMR (700 MHz, Methanol-d4) δ 7.87 (s, 1H), 7.79 (s, 1H), 7.45 (s, 2H), 7.34 (s, 2H), 6.90 (s, 

1H), 5.44 (s, 1H), 5.41 (s, 1H), 5.35 (s, 1H), 4.12 (s, 1H), 4.00 (s, 2H), 2.03 (d, J = 8.9 Hz, 9H). 
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2DG8A 1H NMR 

 1H NMR (400 MHz, Methanol-d4) δ 8.09 – 8.05 (m, 0H), 7.98 (d, J = 7.7 Hz, 1H), 7.89 (d, J = 

7.6 Hz, 1H), 7.79 – 7.74 (m, 1H), 7.53 – 7.50 (m, 1H), 7.43 – 7.39 (m, 1H), 7.32 – 7.28 (m, 1H), 

5.33 – 5.20 (m, 1H), 5.20 – 5.10 (m, 1H), 5.00 (dt, J = 19.3, 9.8 Hz, 1H), 4.36 – 4.23 (m, 1H), 4.11 

– 4.04 (m, 1H), 2.28 (s, 1H), 2.12 (s, 1H), 2.02 (ddd, J = 12.4, 5.4, 3.1 Hz, 9H). 
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K10A 1H NMR  

1H NMR (400 MHz, Methanol-d4) δ 8.23 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 9.2 Hz, 2H), 7.45 (s, 

2H), 7.27 (d, J = 9.0 Hz, 1H), 5.27 (dt, J = 17.3, 9.0 Hz, 1H), 4.59 (d, J = 9.1 Hz, 1H), 4.09 (q, J 

= 7.2 Hz, 2H), 3.90 (s, 1H), 2.04 – 2.02 (m, 9H), 1.23 (t, J = 7.2 Hz, 3H). 
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K12A 1H NMR  

1H NMR (400 MHz, Methanol-d4) δ 9.36 (s, 1H), 8.43 (d, J = 6.0 Hz, 1H), 8.18 – 7.99 (m, 1H), 

7.96 – 7.83 (m, 1H), 7.81 – 7.64 (m, 1H), 5.26 (d, J = 8.4 Hz, 1H), 5.01 (dd, J = 9.9, 3.0 Hz, 1H), 

4.10 (dd, J = 11.9, 5.0 Hz, 1H), 3.98 – 3.86 (m, 1H), 3.73 (s, 1H), 3.63 – 3.52 (m, 1H), 2.42 – 

1.83 (m, 9H). 
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APPENDIX D: OGT Cloning and bacterial expression 

Forward primer 5’-GCGCGGATCCATGTTTGCTGATGCCTACTC-3’ 

Reverse primer 5’-GAGAGCGGCCGCTGACTCAGTGACTTCAACAG-3’ 
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APPENDIX E: K8A potentially blocks N-glycosylation of proteins 

 

Cell lysate from H1299 cells pretreated with K8A and 2-DG were run on an SDS-PAGE gel. After 

protein transfer the PVDF membrane was incubated with Biotinylated Concanavalin A and probed 

with Streptavidin HRP. The SDS-PAGE gel after transfer was stained to monitor loading levels. 
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APPENDIX F: COPYRIGHT PERMISSIONS: NRF2-ARE PATHWAY 
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APPENDIX G: COPYRIGHT PERMISSIONS: PENTOSE PHOSPHATE PATHWAY 
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APPENDIX H: COPYRIGHT PERMISSIONS: CANCER METABOLISM 
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APPENDIX F: COPYRIGHT PERMISSIONS: REDOX HOMEOSTASIS 
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ABSTRACT 

CARBOHYDRATE-BASED INDUCERS OF CELLULAR STRESS FOR TARGETING 

CANCER CELL METABOLISM 

 

by 
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Degree: Doctor of Philosophy 

       Metabolic reprogramming and redox control of cancer cells is vital for their proliferation, but 

also provides selective strategies for treating cancer. Increased generation of reactive oxygen 

species (ROS) and an intricate control of redox status in cancer cells relative to normal cells 

provide a basis for designing ROS-inducing anticancer agents.  In my work, I designed, 

synthesized and evaluated carbohydrate-based small molecules for ROS-generation, cytotoxicity 

and redox signaling and stress response. Our data from assays, including cell viability assays, 

enzyme inhibition studies, Western blot studies, click chemistry, and metabolomics, reveal that 

our compound (K8A) is more potent than 2-DG, a well-known carbohydrate-derived inhibitor of 

glycolysis. We reported discovery of carbohydrate-based small molecules with the property of 

blocking altered metabolic activity and enhancing ROS with potential therapeutic benefits for 

targeting cancer cells. Importantly, we investigated the mechanism of action of our potent 

compound that involve disruption of protein glycosylation in cancer with downstream effects on 

cancer metabolism. 
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