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CHAPTER 1: INTRODUCTION 

 

1.1 Proteases as targets in breast cancer 
 

According to the American Cancer Society statistics, breast cancer is the second leading 

cause of cancer related deaths in women and it is estimated that 41,000 women will die from 

breast cancer in 2017. Various types of breast cancers are defined by the cellular origin of the 

malignancy, with the most common form of breast cancer being invasive ductal carcinoma 

(IDC). IDC comprises approximately 80% of all breast cancers and arises from malignancy of 

the breast ductal epithelium. For therapeutic reasons, IDC is divided into subtypes based on the 

expression of cellular markers. These subtypes include estrogen/progesterone receptor positive 

(ER/PR+), and HER2+ breast cancers. If breast tumors lack these markers then they are 

classified as triple-negative breast cancers (TNBC), which comprises ~10-20% of breast 

cancers in the United States (1).  

Due to the lack of expression of hormonal markers and HER2, TNBC lack targeted 

therapeutic options. Therefore, identification and validation of novel therapeutic targets in triple-

negative breast cancer is needed. Dysregulated proteolysis is a hallmark of cancer, and 

contributes to various events in cancer progression including angiogenesis, inflammation, 

invasion, and cell survival (2). Pericellular and secreted proteases have garnered recent 

attention due not only to their ability to degrade extracellular components to allow for invasion 

into the surrounding stroma, but also for their ability to mediate signaling pathways through 

processing of cytokines, growth factors, and adhesion molecules (3). During cancer progression 

various environmental stimuli (e.g. hypoxia and acidification), and paracrine signaling between 

tumor cells and stromal cells, induce the expression of proteases that promote tumor 

development (2). Thus, identifying novel tumor promoting proteases is pivotal to our 

understanding of the tumor/tumor-microenvironment interaction, and may translate into 

candidate proteases for targeted therapy. 
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1.2 Major classes of human proteases 

Proteolysis is a post-translational modification of proteins that is indispensable for 

normal development and is carried out by a class of protein enzymes known as proteases.  

Proteases are classified into subgroups based on their mechanism of catalysis and include: 

serine, threonine, cysteine, aspartic, glutamic, and metallo- proteases. In total, the human 

degradome (the entire set of known human proteases) consists of 569 proteases, with 34% 

being metalloproteases, 31% serine, 26% cysteine, 5% threonine, and 4% aspartic proteases. 

(4) Given the essential function of proteases, the regulation of both their expression and activity 

is critical during normal physiological processes and perturbations in their expression and 

activity is observed in many diseases, including cancer, making them attractive candidates in 

drug discovery. (2) 

1.2.1 Metalloproteases 

The most well characterized metalloproteases in humans are members of the Metzincins 

clan of metalloproteases, which include the matrix-metalloproteases (MMPs), the ‘a disintegrin 

and metalloprotease’ [ADAMs], and meprin families (5,6). All metalloproteases are 

characterized by the necessity for zinc ions to hydrolyze peptide bonds, thus the prefix of 

“metallo”-protease. The MMPs, ADAMs, and meprin families of metalloproteases are 

synthesized as zymogens, which functions as a control mechanism to prevent unintended 

proteolysis (5). In humans there are a total of 24 MMPs, 22 ADAMs, and 2 meprin proteins 

encoded within the human genome, giving rise to diverse functional roles (6,7).  

In terms of drug discovery, MMP inhibitors were one of the first class of proteolytic 

inhibitors to be tested in cancer patients. However, these protease inhibitors failed in clinical trial 

settings as a result of severe side effects and little to no anti-tumor efficacy (8-10). A main 

reason for the failure in clinical trials was due to the broad-spectrum inhibitor profile of these 

drugs towards MMPs. The drugs used included marimastat, prinomastat, and hydroxamates 

batimastat which have subsequently been shown to have a broad, rather than specific, inhibitory 
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profile against MMP family members (8). Also contributing to the disappointing outcome of the 

clinical trials was the lack of knowledge of the physiological roles and target substrates for this 

family of proteases. Since the clinical trials, many studies have identified important roles of 

these proteases in normal physiological cellular processes (8). The lessons learned from these 

studies highlight the need to identify important biological features of proteases during drug 

development, and the necessity for highly selective targeting of protease inhibitors to achieve 

optimal anti-cancer effects while ensuring few and manageable side effects. 

1.2.2 Cysteine proteases 

The catalytic triad of cysteine proteases consists of Cysteine-Histidine-Asparagine 

amino acid residues. The cysteine amino acid residue is responsible for the nucleophilic attack 

on the reactive peptide bond of the target substrate. There are several well-known families of 

cysteine proteases including cathepsins, caspases, and calpain protease families (11,12). The 

family of caspase cysteine proteases were termed ‘C’-‘aspases’ with the C representing 

cysteine of the cysteine protease family, and ‘aspase’ representing cleavage specificity after 

aspartic amino acid residues of target substrates (13,14). Since their discovery, several 

caspases have been found to play pivotal roles in mediating cell death through apoptosis (14). 

These proapoptotic cysteine proteases are further classified as either initiator or executioner 

caspases. Upon induction of apoptotic stimuli through either intrinsic or extrinsic pathways, 

initiator caspases (caspases -8, -9, -10) are activated through an allosteric mechanism where 

two inactive monomers form active dimer complexes. These activated initiator caspases then 

activate effector caspases (caspase -3, -6, -7) directly through proteolytic cleavage, which 

mediate the ‘execution’ phase of apoptosis resulting in cell death (15,16). 

Cathepsins are another class of proteases which are composed of 11 different types of 

cysteine proteases (16). Cathepsins are found primarily in lysosomal compartments and 

function in protein turnover. In addition to protein turnover, several cathepsins have been found 

to play other important roles in cellular processes, such as bone reabsorption, generation of 
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peptides for MHC II molecules, and apoptosis (17,18). In cancer, the aberrant extracellular 

localization of several cathepsin family members have been shown to cleave various 

extracellular matrix proteins, including laminin and type IV collagen (18).  Calpains are another 

well studied class of cysteine proteases with several of these proteases requiring calcium for 

their activation (19). Currently there are 14 known calpain family members which have been 

implicated in roles including cell motility and apoptosis (19).  

1.2.3 Serine proteases  

 Serine proteases represent one of the most abundant and diverse groups of proteases, 

involved in functions relating to blood coagulation, digestion, development, fibrinolysis, 

immunity, and apoptosis (20). Serine proteases mediate catalysis through a neutrophilic attack 

by a serine residue towards carbonyl moiety of the substrates peptide bond. The other amino 

acids typically involved in catalysis of serine proteases include histidine and aspartic residues, 

which form a charge-relay system to mediate hydrolysis of peptide bonds. One of the most well-

studied families of serine protease are the S1A family of the PA clan of serine proteases, 

comprised of trypsin, chymotrypsin, and thrombin protease subfamilies.  

 One of the most well characterized serine protease pathways is the coagulation cascade 

(i.e. bleeding arrest). To prevent excessive blood loss upon endothelial vessel injury, the liver 

produces fibrinogen which upon conversion to fibrin stabilizes platelet plugs as an initial barrier 

for the damaged vessel wall. A critical regulatory mechanism to prevent aberrant fibrin strand 

formation, is that fibrin is first synthesized as inactive fibrinogen that is present in its soluble 

form at high concentration in the blood at 2-5 mG/mL (21), but is incapable of producing fibrin 

strands before activation by proteolytic cleavage. Upon endothelial injury, fibrin is converted 

from fibrinogen by the protease thrombin, and thrombin is converted from prothrombin through 

the coagulation cascade (22). Several bleeding disorders are caused by mutations in individual 

components of the serine protease coagulation cascade. The most common disorders are 

Hemophilia; Hemophilia A is due to deficiency of factor VIII, and hemophilia B is due to 
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deficiency of factor IX (23). Hemophilia can be efficiently treated by replacement therapy with 

recombinant coagulation factors. 

 Another well studied serine proteolytic system, known as the fibrinolytic system, 

prevents excessive clot formation. Upon tissue occlusion during clot formation, the serine 

protease tissue-plasminogen activator (tPA) is released from the endothelium. tPA then 

converts plasminogen into its active form known as plasmin. Plasmin is then responsible for the 

breakdown of fibrin blood clots into fibrin degradation products (22). A rare congenital disease, 

known as human plasminogen deficiency, occurs in patients who have a mutation in the 

plasminogen gene. This results in loss of the ability to break down fibrin during clot formation 

and often leads to inflammation in the conjunctiva of the eye due to fibrin build-up. Plasminogen 

deficient mice also display the same defect, with lost ability to degrade fibrin, leading to 

thrombosis.  However the mice develop normally and are able to reproduce, highlighting the 

specific role of plasminogen in the fibrinolytic system (24).  

1.3 Membrane-anchored serine proteases 

Many well studied proteases are either secreted, for example plasminogen, or reside 

intracellularly, for example cathepsins and caspases. However, at the turn of the millennium as 

a result of the human genome sequencing project, a new group of serine proteases emerged 

that reside on the cell surface and are termed either Type-I, Type-II, or GPI-anchored serine 

proteases (3). The largest membrane anchored serine protease family is the Type-II 

transmembrane serine proteases (TTSP), and are attached to the cell membrane through a 

single amino- terminal hydrophobic region that signals for membrane localization. Two other 

membrane anchored serine proteases, testisin and prostasin, localize to the cell surface through 

a glycosyl-phosphatidylinositol linkage (GPI-anchored). Tryptase-γ1, also known as 

transmembrane tryptase, is the only Type-I transmembrane serine protease that contains a 

carboxy- terminal hydrophobic region that signals for membrane localization (25).  
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Tryptase-γ1 is highly expressed in the mast cells of both humans and mice (26-28). 

Mature mast cells often reside close to the host-environment interface and thus play an 

important role in the first line of defense to environmental insult and pathogens. Once mature 

mast cells are activated, degranulation occurs resulting in the release of bioactive granule 

compounds that incite an inflammatory response (29). Thus, given the high expression of 

tryptase-γ1 in mast cells suggests a role for it in host defense against pathogens and insults. 

Tryptase-γ null mice display no outwardly phenotype, however under experimentally induced 

chronic obstructive pulmonary disease (COPD), tryptase-γ1 null mice displayed reduced 

pulmonary macrophages, decreased histopathology scores, and decreased fibrosis in their 

small airways (30). Additionally, in experimentally induced colitis experiments via dextran 

sodium sulfate exposure, tryptase-γ null mice had a more positive outcome compared to WT 

mice, with reduced histopathology scores and increased weight retention (30).   

The GPI-anchored transmembrane serine proteases prostasin and testisin have been 

shown to play important roles in normal physiological development through characterization of 

knockout mouse models. Global knockout of prostasin results in embryonic lethality due to 

impaired placental labyrinth maturation, indicating an essential role of prostasin during 

embryonic development (31). Additionally, genetically engineered mice that have specific 

knockout of prostasin in the skin die within 60 hours after birth due to a severely impaired 

epidermal barrier leading to rapid dehydration, indicating an additional essential function for 

prostasin in epidermal barrier development (32). Testisin displays high expression in the testis 

in both humans and mice, and testisin knockout mice display no overt outward phenotype 

(33,34). However, testisin knockout mice to have impaired spermatozoa development, with 

decreased viable sperm counts, reduced motility, and decreased fertilization abilities, indicating 

that testisin plays an important role in sperm maturation (34).  

The type-II transmembrane serine protease (TTSP) family is the largest group of 

membrane-anchored serine proteases and consists of 17 structurally unique multi-domain 
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serine proteases (26). This family of proteases is sub-classified into four groups based off the 

phylogenetic analysis of the serine protease (SP) domain, and the protein domain structure 

within the stem region. These subfamilies include the Matriptase, Hepsin/TMPRSS, HAT/DESC, 

and Corin subfamilies (Fig. 1). Several members of the TTSP family have been intensely 

studied and it has been demonstrated that some of these membrane-anchored serine proteases 

regulate fundamental cellular and developmental processes, including tissue morphogenesis, 

epithelial barrier function, ion and water transport, and cellular iron export (35) (discussed in 

more detail in section 1.5). 

1.4 Characteristic features of Type-II transmembrane serine proteases 

TTSP’s are synthesized as “single-chain” inactive zymogens that require proteolytic 

cleavage at conserved activation sites to generate “two-chain” active proteases. Upon 

activation, the serine protease domain remains tethered to the stem-region through a di-sulfide 

bond, thus remaining surface-associated. This feature of TTSPs functions as a mechanism to 

control spatial and temporal proteolytic activity when appropriate. The physiologically relevant 

proteases responsible for proteolytic activation of TTSP family members is not known for many 

TTSPs, however several TTSP family members have been shown to be capable of auto-

activation (36). The mechanism by which auto-activation occurs is unknown, however it likely 

involves a homo-dimerization or oligomerization. (36)  

Other post-translational modifications of TTSP family members include glycosylation and 

phosphorylation. N-linked glycosylation of several TTSP family members has been shown to 

play a critical role in their activation and localization. For example, N-linked glycosylation is 

critical for both activation and ectodomain shedding of corin and matriptase-2. (37,38).  

Additionally, glycosylation of matriptase is essential for matriptase auto-activation (39). The 

intracellular domains of TTSPs vary in length from 20 to 160 amino acids, with Hepsin 

containing the shortest, and TMPRSS13 containing the longest. (25) Several TTSP family 

members contain putative consensus sequences for phosphorylation sites within the  
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Figure 1: The membrane anchored serine proteases 

 

Figure 1. Membrane anchored serine proteases. The 20 known membrane anchored 

serine proteases. Tryptase-γ is the only known type-I transmembrane serine protease, and 

contains a carboxy-terminal hydrophobic region and an N-terminal serine protease domain 

(green oval). The two GPI-anchored serine proteases prostasin and testisin attach to the 

membrane through a glycophosphatidylinositol (GPI) anchor. The stem regions of the type-II 

transmembrane serine protease (TTSP) family members are composed of ow-density 

lipoprotein receptor class A (LDLA); sea urchin sperm protein, enteropeptidase, and agrin 

(SEA); Cls/Clr, urchin embryonic growth factor, and bone morphogenic protein-1 (CUB); meprin, 

A5 antigen, and receptor protein phosphatase μ (MAM); frizzled; and group A scavenger 

receptor. The four TTSP subfamilies are known as the HAT/DESC, hepsin/TMPRSS, 

Matriptase, and corin subfamilies. 
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intracellular domains, and TMPRSS13 was the first and currently only TTSP family member 

identified to be modified by phosphorylation (discussed in detail in section 3.3) (40). 

Unlike the Type-I and GPI-anchored membrane serine proteases, where the catalytic 

domain lies adjacent to the cell surface, TTSP family members also contain several protein 

domain structures within the stem region, with the SP domain localizing at the C-terminus 

(extracellular side of the cell membrane) (See Fig. 1). These protein domain structures within 

the stem region play important roles in binding interactions, activation, and inhibition (26). The 

most common protein domain of TTSP family members is the low density lipoprotein receptor 

class A domain (LDLRA). Additional domains include: Group A scavenger receptor (SR) 

domains, frizzled domains, Cls/Clr, urchin embryonic growth factor and bone morphogenic 

protein 1 (CUB) domains, sea urchin sperm protein, enterokinase, agrin (SEA) domains, and 

meprin, A5 antigen, and receptor protein phosphatase µ (MAM) domains. Recently, it has been 

suggested that SEA domain cleavage of matriptase is required for efficient transport to the cell 

surface by inhibitor mediated stabilization by the endogenous TTSP inhibitor hepatocyte growth 

factor activator inhibitor-2 (HAI-2), highlighting the unique regulatory role of these protein 

domain structures in TTSP function (41). 

1.4.1 Inhibition of TTSP proteolytic activity by endogenous inhibitors 

As mentioned previously, TTSPs are synthesized as inactive zymogens that require 

proteolytic cleavage to generate an active “two-chain” protease. To prevent unabated 

proteolysis upon activation, TTSP family members are inhibited by the endogenous serine 

protease inhibitors, HAI-1 and HAI-2 (42). HAI-1, -2 are kunitz domain type serine protease 

inhibitors that both contain two kunitz domains (KD1 and KD2), however the KD1 domain of 

HAI-1 is responsible for the proteolytic inhibition of matriptase (43), and thus may be the primary 

kunitz domain to elicit inhibitory activity towards other TTSP family members. HAI-1 and HAI-2 

are a competitive type of inhibitor that form a tight non-covalent complex with the SP domain. 

These two inhibitors play essential roles in normal development, since genetic ablation of either 
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HAI-1 or HAI-2 results in embryonic lethality due to defects in placental labyrinth development in 

both HAI-1 and HAI-2 null mice, as well as neural tube closure in HAI-2-null mice (44-46). The 

embryonic lethality upon loss of HAI-1 or HAI-2 is rescued upon concomitant genetic loss of 

matriptase (46,47). These findings underscore the importance of precise regulation of 

matriptase proteolytic activity during embryonic development. 

A mutation in HAI-2 has been discovered in patients who suffer from a congenital 

disease known as congenital sodium diarrhea (CSD). Patients who have this mutation suffer 

from dehydration and diarrhea due to increased sodium levels in the intestinal tract (48). 

Although the exact mechanism by which electrolyte and nutrient imbalance occurs is unknown, 

it has been proposed that loss of inhibitory activity of HAI-2 towards matriptase results in 

increased amounts of prostasin activation, which in turn activates the Epithelium sodium 

channel (ENaC), causing aberrant sodium transport in these patients (49,50). An alternative 

hypothesis has also recently been proposed, where loss of proteolytic inhibition of matriptase in 

HAI-2 mutant patients results in increased matriptase mediated cleavage of EpCAM. This then 

causes dysregulated tight-junction stabilization and formation, resulting in impaired paracellular 

transport of ions (51).   Interestingly, a recent study examining the effects of this mutation in 

vitro on TTSP family members observed a complete loss of proteolytic inhibition towards 

TMPRSS13, as well as partial loss of inhibitory activity towards matriptase (52).  

It has been demonstrated that dysregulated expression level ratios of TTSP’s and the 

HAI-1, -2 inhibitors contributes in cancer progression, with decreased expression of inhibitors 

relative to TTSP family members (53).  List et al. demonstrated that transgenic expression of 

matriptase in the epidermis results in the development of squamous cell carcinoma, however 

double transgenic mice expressing matriptase with the inhibitor HAI-1 significantly reduced 

tumor development in these mice (54). Therefore, this indicates that the matriptase:HAI-1 

expression ratio may play a role in the development of cancer, and that inhibition of matriptase 

proteolytic activity effectively abrogates  matriptase mediated tumor development.  
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In addition to functioning as important inhibitors towards TTSP proteolytic activity, HAI-1, 

and -2 have garnered recent attention in their ability to stabilize and promote proper activation, 

localization, and expression of TTSP’s. Therefore it is demonstrated that the HAI-1 and HAI-2 

inhibitors interact with the inactive zymogen forms of TTSP family members, including 

matriptase (39,41,43), hepsin (55), and TMPRSS13 (40), to facilitate their activation. HAI-1, -2 

mediated transport of TMPRSS13 is discussed in more detail in chapter 3.   

1.5 TTSP’s in normal development 

Research of TTSP family members has revealed significant insight towards the 

physiological roles of many TTSP family members. However, the in vivo substrates for many 

TTSP family members remain unknown, thus limiting the knowledge of the precise mechanisms 

by which TTSP’s promote normal development. Nevertheless, numerous knock-out mouse 

studies have revealed that many of these family members play important roles in maintaining a 

normal phenotype in vivo and for a subset of TTSPs the physiological substrates have been 

identified and validated in mouse models and/or in humans harboring TTSP mutations. The 

section below covers a select number of TTSP family members that have been implicated to 

play important roles in normal human development through characterization of genetically 

engineered mouse models. 

1.5.1 Matriptase 

Matriptase is one of the most well-studied TTSP family members to date, and is critically 

involved in proper skin epidermal differentiation and development. Matriptase has a broad 

expression profile in the epithelium of tissue, and is found at highest expression in the skin, 

gastrointestinal tract, hair follicles, and kidney in adult tissue. Matriptase null mice suffer from 

severe post-natal dehydration resulting in mortality due to defects in the epidermal skin barrier, 

exemplifying the importance of matriptase in epidermal barrier development (56). Physiological 

substrates for matriptase include the GPI-anchored serine protease, prostasin, which was 

discovered by characterizing prostasin-null mice, which exhibit an identical phenotype to 
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matriptase-null mice (32,57). Furthermore, it was demonstrated that the epidermis from 

newborn matriptase null mice contained no detectable active two-chain prostasin in contrast to 

control littermate mice where active prostasin was readily detected (57). Therefore, a 

matriptase-prostasin proteolytic cascade has been hypothesized to be essential for proper 

epidermal barrier development.  

Mutations of matriptase have also been discovered in patients who suffer from a 

congenital disease known as Autosomal Recessive Ichthyosis with Hypotrichosis (ARIH). 

Patients who harbor matriptase mutations display abnormal epidermal differentiation and hair 

abnormalities (58,59) and at the molecular level, these patients also have impaired profilligrin 

processing, a key step in epidermal differentiation. Interestingly, these phenotypes are 

mimicked in matriptase hypomorphic mice that have reduced matriptase proteolytic activity.  

1.5.2 Hepsin 

Hepsin is a member of the Hepsin/TMPRSS subfamily of TTSP family members and 

was originally cloned from human liver cDNA libraries in 1988. Since its discovery it has been 

implicated in roles including cochlear development and hepatic structural homeostasis. The first 

study characterizing hepsin-null mice unexpectedly observed defects in normal hearing, 

resulting from defective cochlear development (60). The mechanism by which hepsin regulates 

proper cochlear development is unclear, however hepsin-null mice do display low levels of the 

thyroid hormone thyroxine, which has previously been shown to be critical in cochlear 

development. Therefore, it is suggested that the hearing defect in hepsin-null mice may be due 

to defects in thyroid hormone metabolism. (60) 

An in vivo substrate for hepsin has been identified in liver tissue. Hsu et al. characterized 

the liver architecture of hepsin null mice and observed defects in hepatocyte architecture and 

decreased activation of c-Met signaling in the liver (61). This phenotype was rescued when 

hepsin null mice were treated with active recombinant HGF, thus suggesting the defects 

observed were caused by insufficient hepsin-mediated pro-HGF processing. To test whether the 
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livers of hepsin-null mice have defects in pro-HGF processing, lysates from livers of WT or 

hepsin null mice were treated with pro-HGF to assess the ability of HGF processing in vitro. 

Liver lysates from hepsin-null mice displayed impaired pro-HGF processing compared to WT-

hepsin liver lysates (61). Therefore, hepsin plays an important role in maintaining proper liver 

architecture through pro-HGF processing.  

1.5.3 TMPRSS6 

 TMPRSS6, also known as matriptase-2, plays a vital role in iron homeostasis by 

regulating hepcidin expression. The hepatic hormone hepcidin is a negative regulator of iron 

export into the plasma since it is responsible for down-regulation of the iron exporter, ferroportin. 

TMPRSS6 null mice display a marked up-regulation of hepcidin and a corresponding decrease 

in expression of ferroportin, thus resulting in iron deficiency anemia (62). Patients with frame-

shift and missense mutations in the TMPRSS6 gene show a similar phenotype to TMPRSS6 

null mice, resulting in iron deficiency anemia (63). TMPRSS6 has been shown to regulate 

hepcidin expression by degradation of hemojuvelin, which is a co-factor of bone morphogenic 

protein that regulates hepcidin expression (64).  

1.5.4 TMPRSS13 

TMPRSS13 deficient mice were first characterized by Madsen et al. in 2014 and 

revealed that TMPRSS13 has a broad expression profile, with the strongest expression 

occurring in the skin, tongue, lip, hard palate, cornea, and bladder (65). Madsen et al. also 

observed that TMPRSS13 deficiency results in impaired epidermal skin barrier development as 

measured by an increased rate of trans-epidermal fluid loss in TMPRSS13 deficient mice, and a 

compacted stratum corneum. Interestingly however, the impaired epidermal barrier did not 

seem to be caused by abnormal tight-junction formation. In contrast to matriptase null mice that 

succumb to the severely compromised epidermal barrier function within 24-48 after birth (List et 

al.), TMPRSS13 deficient mice display a much less severe phenotype and no lethality is seen. 

At weaning age the mice are indistinguishable from control mice and no difference in overall 
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adult health and life span is observed. (65). Currently the in vivo substrates for TMPRSS13 are 

unknown, however TMPRSS13 can activate the oncogenic signaling molecule pro-HGF under 

in vitro conditions (66).  

1.6.0 TTSP’s in cancer progression 

This research (section 1.6.0 thru 1.6.4) was originally published in the journal Biological 

Chemistry. Murray AS, Varela FA, List K. Type II transmembrane serine proteases as potential 

targets for cancer therapy. DOI: 10.1515/hsz-2016-0131. 

Beyond the role that TTSPs play in normal physiological processes, TTSPs have also 

been studied extensively in disease, including cancer, where their expression is often 

dysregulated. Promotional or causal roles of several TTSPs have been demonstrated in vivo 

using genetic engineering or administration of protease inhibitors to manipulate protease levels 

and activity. As evidence continues to accumulate about their functional roles in cancer 

development and progression, TTSPs represent exciting future therapeutic targets. This section 

will focus on select TTSPs that to date have been most extensively studied in cancer.  

1.6 Matriptase 

This protease is one of the most extensively studied TTSPs with more than 300 

published articles characterizing expression profiles, gene-regulation, structural biology, 

regulation by endogenous inhibitors, identification of critical substrates, determination of 

physiological and pathophysiological functions, and development of synthetic inhibitors and 

imaging tools. Matriptase is upregulated in breast, cervical, colorectal prostate, endometrial, 

esophageal squamous cell carcinoma, gastric, head and neck, and pancreatic carcinoma; and 

in tumors of the lung, liver, and kidney among others (67-70). Increased matriptase expression 

correlates with advanced clinicopathological stages in many of these cancers, and de novo 

expression is found in ovarian and cervical carcinoma where expression levels also correlate 

with histopathological grade (71-73).  
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Matriptase activity is mainly regulated by the transmembrane serine protease inhibitors, 

HAI-1 and HAI-2 in vivo (44,46,74,75). In expression studies, an imbalance between matriptase, 

HAI-1 and HAI-2 exists in several cancer types including ovarian and colorectal cancer where 

the matriptase/ HAI-1 ratio is increased and in prostate and endometrial carcinoma where 

matriptase/HAI-2 ratios are increased (76-80). 

The role of matriptase in vivo has also been studied in detail in breast cancer. In an 

oncogene-induced mouse mammary carcinoma model, hypomorphic matriptase mice with 

reduced levels of matriptase displayed a significant delay in tumor formation and blunted tumor 

growth (81). The reduced tumor growth was associated with a profound decrease in cancer cell 

proliferation. Mechanistic studies demonstrated that the proliferation deficiency was caused by 

the impairment of carcinoma cells, in cell lines and in vivo, to initiate the activation of the c-Met 

signaling pathway in response to fibroblast-secreted pro-hepatocyte growth factor (pro-HGF). In 

primary mammary carcinoma cells and human breast cancer cell lines, addition of HAI-1 and 

HAI-2 inhibited pro-HGF mediated c-Met signaling and cell proliferation (81). Importantly, 

inhibition of matriptase catalytic activity using a selective small-molecule inhibitor efficiently 

abrogates the activation of c-Met, Gab1 and AKT, in response to pro-HGF, which functionally 

leads to attenuated cancer cell proliferation and invasion. The selective inhibitor of matriptase, 

IN-1 used in the study contains a ketobenzothiazole serine trap and was designed based on the 

auto-catalytic domain (RQAR) of matriptase (82). It still remains to be tested whether IN-1 is 

suitable as an anti-tumor drug in vivo. Other inhibitors have been developed including MCoTI-II 

(based on cyclic microproteins of the squash Momordica cochinchinensis trypsin-inhibitor 

family) which inhibits the proteolytic activation of pro-HGF by matriptase but not by hepsin, in 

both purified and cell-based system (83). 

In prostate cancer, several matriptase inhibitors have been tested in xenograft models. 

In an ectopic subcutaneous model, a small molecule inhibitor of matriptase, CVS-3983, 

significantly suppressed the growth of human prostate cancer cell lines in nude mice (84). The 
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authors propose that the effect was mainly caused by the abrogation of invasion since tumors 

remained localized to the site of injection in treated mice and failed to invade the subscapular 

area as compared to tumors in vehicle treated mice. Similarly, using matriptase inhibitors based 

on bis-basic secondary amides of sulfonylated 3-amidinophenylalanine in an orthotopic 

xenograft mouse model of prostate cancer resulted in reduced tumor growth, and tumor 

dissemination (85). Together, these findings demonstrate that matriptase is critically involved in 

cancer progression and lay the groundwork for future studies developing and testing small-

molecule matriptase inhibitors and their potential as novel targeted therapeutic drugs in cancer. 

1.6.2 Hepsin 

Hepsin/TMPRSS1 was the first serine protease characterized to contain a 

transmembrane domain, and was named based on its original identification in hepatocytes (86). 

Hepsin is also expressed in kidney, pancreas, stomach, prostate and thyroid (87,88). Studies of 

knockout mouse models of hepsin have demonstrated that this protease plays an important role 

in cochlear development, is involved in regulating levels of the thyroid secreted hormone, 

thyroxine, and is responsible for pro-HGF activation in the liver (60) (89) (61). 

Many cancers display increased expression levels of hepsin including cancer of the 

prostate, breast (90), ovary (91),  kidney (92), and endometrium (93). Several studies have 

revealed that hepsin is critically involved in prostate cancer progression. Klezovitch and 

colleagues used transgenic mice to show that the overexpression of hepsin, under the control of 

the probasin (PB) promotor, leads to a disorganized basement membrane and promotes 

prostate cancer metastasis to the liver, bone and lungs when crossed to the LPB-Tag prostate 

cancer model (94). 

The Wnt/β-Catenin signaling pathway has been shown to play an important role in 

prostate cancer progression. Dysregulation of this pathway by prostate-specific deletion of the 

adenomatous polyposis coli (Apc) gene results in high-grade prostatic intraepithelial neoplasia 

(PIN) lesions with rare occurrences of microinvasive characteristics in mice (95,96). Crossing 
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PB-Hepsin mice to the prostate-specific Apc-deletion model (APCPBKO) to generate PB-

Hepsin/APCPBKO mice results in progression from high-grade PIN lesions to large invasive 

adenocarcinomas (95). Prostate tumors from PB-Hepsin/APCPBKO mice are hyperproliferative, 

and contained significant numbers of apoptotic cells (95). 

In an orthotopic xenograft model of prostate cancer, LnCaP cells were stably transfected 

to overexpress hepsin (LnCaP-34) and injected into the anterior lobe of the prostate. Increased 

final tumor weights were observed in mice injected with LnCaP-34 cells compared to LnCaP 

cells expressing endogenous levels of hepsin (LnCaP-17 cells) (97). Additionally, metastatic 

lesions to the periaortic lymph nodes were observed in mice injected with LnCaP-34 cells and 

not found in mice injected with LnCaP-17 cells (97). To determine whether inhibition of hepsin 

decreases the tumor growth in vivo, mice injected with LnCaP-34 cells were treated with a 

PEGylated form of Kunitz domain-1, a potent hepsin active site inhibitor derived from HAI-1. 

Treatment of established orthotopic LnCaP-34 xenografts tumors with PEGylated Kunitz 

domain-1 significantly decreased contralateral prostate invasion and lymph node metastasis  

(97). 

In addition to prostate cancer, hepsin has been shown to have increased expression in 

breast cancer (90). To determine whether hepsin promotes tumor progression in breast cancer, 

Tervonen et al. performed grafting studies using primary mouse mammary epithelial cells from 

transgenic mice harboring a Whey acidic protein (Wap) promoter-controlled c-Myc transgene. 

The primary cells, that also expressed doxycyclin-inducible hepsin, were transplanted into 

cleared fat pads of syngeneic wild-type virgin hosts. Chronic doxycyclin-induced expression of 

hepsin resulted in decreased tumor latency in these mice, thus indicating a promotional role for 

hepsin in breast cancer progression (98). Interestingly, hepsin acutely downregulated its 

cognate inhibitor, HAI-1, in human MCF10A immortalized mammary epithelial cells, thereby 

further increasing the hepsin/HAI-1 ratio. Furthermore, hepsin induced cellular changes in 
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MCF10A cells commonly associated with invasive phenotypes and endowed cells with a strong 

capacity to proteolytically activate pro-HGF, leading to activation of the c-Met receptor. 

1.6.3 TMPRSS2  

TMPRSS2 and TMPRSS4 are two other members of the TMPRSS/Hepsin subfamily of 

TTSPs and remain relatively uncharacterized. Like many other TTSPs, expression of TMPRSS2 

is localized to several types of epithelial tissues, including in the colon, small intestine, lung, 

kidney, pancreas, and most notably in the prostate (99), where expression is highest. Both the 

physiological function and substrates of TMPRSS2 have yet to be identified; therefore, much of 

what is known about TMPRSS2 originates from its association with cancer. TMPRSS2 has long 

been associated with prostate cancer following the identification of the oncogenic gene fusion 

product with erythroblast transformation specific (ETS) transcription factors, such as ETS-

related gene (ERG) (100,101). Despite this, the role of the native TMPRSS2 protein and its 

proteolytic activity in cancer is vastly understudied. In normal prostate epithelia, TMPRSS2 

expression is localized to the cell membrane, however, mislocalization to the cytoplasm in 

prostate cancer has been observed (102). In addition, both primary and metastatic prostate 

tumors from patients display increases in TMPRSS2 levels, with increasing expression 

correlating with elevated Gleason score, suggesting that TMPRSS2 may play a pro-oncogenic 

and pro-metastatic role (102). Knockdown studies in human LNCaP prostate cancer cells 

demonstrated that reduction of TMPRSS2 expression in cancer cells decreased cellular 

invasion, tumor size, and incidence of metastases following xenografting in mice (103). 

Interestingly, loss of TMPRSS2 expression does not impact cellular proliferation of LnCaP cells 

in culture (103). However, a role of the tumor micro-environment is not taken into consideration 

in mono-culture, therefore, a role for TMPRSS2 for cancer cell proliferation cannot conclusively 

be excluded. It is worth noting that in a similar study, shRNA-mediated silencing of TMPRSS2 in 

LNCaP-derived, bone metastatic castration-resistant (LNCaP C4-2B) cells led to a significant 

reduction in cell proliferation and cell invasion compared with scrambled shRNA controls (104). 
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In a study employing mice with a targeted deletion of the Tmprss2 gene, it was 

demonstrated that the protease regulates cancer cell invasion and metastasis to distant organs 

in the TRansgenic Adenocarcinoma Mouse Prostate (TRAMP) model of prostate carcinogenesis 

(104). TRAMP tumors in Tmprss2−/− mice were significantly larger than those in control mice, 

however, the incidence of metastasis to distant solid organs was substantially lower in the 

TRAMP tumors arising in the Tmprss2−/− background. It was demonstrated that TMPRSS2 

activated signaling incompetent pro-HGF to active HGF in vitro and it is hypothesized that 

TMPRSS2-activated HGF consistently promotes invasion and metastasis, but differentially 

enhances or suppresses proliferation. Importantly, a TMPRSS2 chemical inhibitor (bromhexine 

hydrochloride) suppressed distant metastasis to lung and liver sites in TRAMP mice (104). 

These links to prostate malignancy makes TMPRSS2 a promising target for drug 

therapies. Of notable interest is that no phenotype affecting normal development or 

physiological function has been observed in TMPRSS2 deficient mice. This suggests that 

targeted ablation of TMPRSS2 in cancer may have minimal side effects (105). Upstream, 

TMPRSS2 expression in prostate has been shown to be driven by androgen receptor signaling; 

one notable consequence of this is the pro-oncogenic TMPRSS2-ERG fusion protein. This link 

between androgen receptor signaling and TMPRSS2 has further pushed interest in androgen 

receptor inhibitors as possible targets for inhibiting prostate cancer growth and metastasis. The 

pro-oncogenic potential of TMPRSS2 has, as mentioned above, been linked to its activity, 

specifically pertaining to its role in activating the HGF/cMET pathway (104). More recently, work 

has uncovered matriptase as a possible substrate for TMPRSS2. A recent study found that 

levels of active matriptase are increased in prostate cancer without increases in matriptase 

transcript levels (103). Furthermore, orthotopic grafts of LNCaP cells over-expressing 

TMPRSS2 exhibited increased levels of active matriptase, as well as increased metastases, 

when compared to grafts expressing a control vector or catalytically dead TMPRSS2 (103). 

Proteolytic homeostasis is important for maintaining normal tissue function, and increases in 
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TMPRSS2 expression may shift the balance between matriptase activity and cognate inhibitors. 

Additionally, beyond the HGF pathway, TMPRSS2 has been shown to activate protease-

activated receptor 2 (PAR-2) in LNCaP cells (106), inciting another pathway which may be 

involved in promoting metastasis (107). In addition to the TMPRSS2 inhibitor bromhexine 

hydrochloride mentioned above, other synthetic inhibitors based on substrate analogs have 

been developed and demonstrated to inhibit TMPRSS2 activity, as measured by cleavage of 

influenza hemagglutinin (HA) (108). TMPRSS2 in airway epithelia is important for influenza 

infection, and inhibition of TMPRSS2 with small molecule antagonists can prevent influenza 

infection (109). However, these small molecule inhibitors also have strong affinities for other 

proteases, such as matriptase, making the precise therapeutic mechanism by which these 

molecules function unclear. 

1.6.4 TMPRSS4 

The physiological role of TMPRSS4 is currently not known, however, a mutation in this 

gene has been associated with autosomal recessive cerebral atrophy (ARCA) (110). TMPRSS4 

has been demonstrated to be upregulated in pancreatic, colorectal, thyroid, lung, and several 

other cancers (111-114). Because of this broad expression profile in cancer, TMPRSS4 has 

been a focal point of anti-cancer research in recent years. TMPRSS4 has been shown to 

promote proliferative processes in lung and thyroid cancer cells, while shRNA targeting of 

TMPRSS4 transcripts causes reductions in proliferation (115-117). Work using cultured lung 

cancer cells demonstrated that TMPRSS4 promotes a mesenchymal and invasive phenotype, 

suggesting a role for epithelial to mesenchymal transition (EMT) (117). Interestingly, increases 

in markers for cancer stem cells (CSCs) such as aldehyde dehydrogenase (ALDH) and 

octamer-binding transcription factor 4 (OCT-4) are strongly positively correlated with TMPRSS4 

expression (118). Several reports have suggested that TMPRSS4 associates with poor 

prognosis and survival in a variety of different cancers (117,119-122), which may be a result of 

an increase in the CSCs population, although the factors leading to TMPRSS4 upregulation are 
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still not identified. One recent finding suggests that increased TMPRSS4 in cancer may result 

from gene-silencing of tissue factor pathway inhibitor 2 (TFPI-2), a consequence of improper 

methylation (116). However, the mechanism which connects TFPI-2 and TMPRSS4 expression 

remains unknown. 

While the physiological substrates for TMPRSS4 are not yet fully elucidated, targeting 

the activity of this protease may have benefits in the treatment of several types of cancer. With 

several studies reporting reduced invasive and proliferative potential in lung and thyroid cells 

following silencing of TMRSS4 expression (114,115), inhibitors of TMPRSS4 may provide an 

edge in cancer treatment. Also, overexpression of TMPRSS4 in cell culture causes cancer cells 

to be more resistant to several chemotherapeutics (118). A few small molecule inhibitors 

derived from 2-hydroxydairylamide have been developed with inhibitory effects on the 

proteolytic activity of TMPRSS4, with the consequence of impacting cancer cell invasiveness in 

colorectal SW480 cancer cells (123). Given that TMPRSS4 impacts signaling pathways such as 

cyclic AMP response element-binding protein (CREB)-cyclin D1 (115), inhibition of TMPRSS4 

could impact many downstream processes important for a variety pro-oncogenic processes. 

In conclusion, several TTSPs are candidate targets for cancer therapy and further 

investigations are needed to identify whether other novel TTSP family members promote 

tumor progression, thus validating them as potential therapeutic targets.  
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CHAPTER 2: THE ROLE OF TMPRSS13 IN BREAST CANCER: 
BACKGROUND AND SPECIFIC AIMS 
 

2.1 Identification of novel TTSP’s in breast cancer 

To identify novel TTSP family members that promote breast cancer progression, we 

performed a systematic in silico screening of TTSPs in human and murine breast cancers using 

the Oncomine™ microarray database. In silico analysis revealed a significant increase in the 

overall TMPRSS13 transcript levels in human invasive ductal carcinoma (IDC) patient samples 

compared to normal breast tissue (Fig. 13A). This finding was validated experimentally by 

Western blot (WB) and immunohistochemistry (IHC) analyses, where higher expression of 

TMPRSS13 was observed in human invasive ductal carcinoma patient samples and human 

breast cancer cell lines compared to non-malignant breast tissue and cell lines, respectively 

(Fig. 13).   

TMPRSS13 is a relatively uncharacterized TTSP family member and little is known 

about its basic biochemical features. TMPRSS13, also known as mosaic serine protease large-

form (MSPL), belongs to the hepsin/transmembrane protease, serine (TMPRSS) subfamily. 

TMPRSS13 contains an N-terminal intracellular domain, a transmembrane domain, a stem 

region, and a C-terminal serine protease domain (5,6). The protease was originally cloned from 

a human lung cDNA library and transcripts were detected in lung, placenta, pancreas, and 

prostate (5). Subsequent studies revealed a broad TMPRSS13 protein expression profile in 

epithelial tissue including epidermis, oral cavity, esophagus, bladder, stomach, small intestine, 

thymus, kidney, and cornea (7). A physiological role for TMPRSS13 in epidermal barrier 

development has been demonstrated in TMPRSS13-deficient mice, which display improper 

formation of the cornified layer of the epidermis (7). Furthermore, TMPRSS13 has been 

implicated in viral infection, since it proteolytically cleaves the viral hemagglutinin (HA) protein, 

thereby enabling membrane fusion of highly pathogenic avian influenza viruses and 

coronaviruses (8-10). 
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Deficiency in knowledge of important biochemical features of TMPRSS13, including 

activation and localization patterns, prompted an investigation to elucidate critical features of 

TMPRSS13 to better understand its potential biochemical mechanisms of action. Additionally, 

studies to identify whether increased expression of TMPRSS13 in breast cancer plays a causal 

or promotional role were performed to identify whether TMPRSS13 represents a potential new 

therapeutic target in breast cancer.  Hypothesis: TMPRSS13 expression is increased as 

normal cells undergo neoplastic transformation, and is critically involved in breast cancer 

progression and metastasis. 

2.2 Specific Aims: 

AIM 1) Biochemical characterization of proteolytic features of TMPRSS13 

The activation, localization, regulation by inhibitors, and post-translational modifications 

of TTSP family members play an important role in determining the physiological function of 

these proteases in both normal physiological conditions and disease. These important features 

are currently unknown for TMPRSS13 and were examined to better understand the functional 

role of TMPRSS13 in breast cancer.   

AIM 2) Expression profiling and functional analysis of TMPRSS13 in breast cancer 

progression. 

Expression of TMPRSS13 in breast cancer: The expression profile of TMPRSS13 was 

assessed by in silico analysis followed by IHC and Western blotting to determine whether 

TMPRSS13 there is differential expression of TMPRSS13 in breast cancer. Expression of 

murine TMPRSS13 in the mammary cancer genetic model, MMTV-PymT, was also be 

assessed, 

Functional analysis upon loss of TMPRSS13 expression in breast cancer 

In vivo: The TMPRSS13 loss-of-function (null) genetic mouse models will be 

intercrossed with the MMTV-PymT transgenic breast cancer model to determine 

effects on tumor onset, primary tumor growth, and metastasis to the lungs.  
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AIM 3) The role of TMPRSS13 in pro-oncogenic cellular processes. 

TMPRSS13-dependent proliferation, apoptosis, invasion, and  chemosensitivity: Due to the lack 

of targeted therapeutic options, we will determine whether TMPRSS13 functions in a protective 

role to enhance tumor cell survival. The effects of RNAi-mediated silencing of TMPRSS13 will 

be examined to determine whether loss of TMPRSS13 affects breast cancer cell proliferation, 

cell death, and invasive capability. We will determine if TMPRSSS13 loss enhances 

chemosensitivity in triple-negative breast cancer cells. 
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CHAPTER 3: BIOCHEMICAL CHARACTERIZATION OF 
TMPRSS13 
 

This research (Chapter 3) was originally published in the Journal of Biological Chemistry. 

Murray AS, Varela FA, Hyland TE, Schoenbeck AJ, White JM, Tanabe LM, Todi SV, List K. 

Phosphorylation of the type II transmembrane serine protease, TMPRSS13 in Hepatocyte 

Growth Factor Activator Inhibitor-1 and 2-mediated cell surface localization. J. Biol. Chem. 

2017; 292:14867-14884. © the American Society for Biochemistry and Molecular Biology. 

3.1 Materials and Methods 

3.1.1 Cloning of full-length TMPRSS13 plasmid constructs 

The human TMPRSS13 plasmid construct was obtained from GeneCopia with 

Accession:  BC114928.1 (Rockville, MD). The full-length human TMPRSS13 was PCR amplified 

using a high-fidelity Platinum®Taq polymerase (Invitrogen, Life Technologies, Grand Island, 

NY) with the following primers: 5’-GCCACCATGGAGAGGGACAGCCACGGG-3’ and 5’-

GGATTTTCTGAATCGCACCTCGCTCTC-3’. The resulting PCR fragment was cloned into the 

pcDNA 3.1/V5-His TOPO® TA (Invitrogen, Life Technologies, Grand Island, NY) in frame with a 

C-terminal His-tag and V5 epitope using standard TA cloning techniques.  Point mutations for 

S506A-TMPRSS13 and R320Q-TMPRSS13 were generated using a QuikChange II Site-

Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA) following the manufacturers 

protocol. Primers used for S506A mutagenesis were: 5’ – 

AAGAGGCCCCCCGGCGTCTCCCTGGCAG – 3’ and 5’ – 

CTGCCAGGGAGACGCCGGGGGGCCTCTT – 3’. Primers used for R320Q mutagenesis were: 

5’ – CCATGACCGGGCAGATCGTGGGAGG – 3’ and 5’ – 

CCTCCCACGATCTGCCCGGTCATGG – 3’. Primers used for K151R mutagenesis were: 5’ - 

CGCCAGGTGAACCTGGGCAGGCTC G – 3’ and 5’ - CGAGCCTGCCCAGGTTCACCTGGCG 

– 3’. Primers used for K159R mutagenesis were 5’ - GGTAGCTGCCTCTGGCCCTCCCGCC – 

3’ and 5’ - GGCGGGAGGGCCAGAGGCAGCTACC – 3’ 
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 Untagged TMPRSS13 constructs were generated by PCR amplification of WT, S506A, 

and R320Q expression vectors using the Platinum®Taq polymerase. The primers used for PCR 

amplification were 5’ – AACCGGATCCATGGAGAGGGACAGCCACGGGAAT – 3’ and 5’ – 

AACCCTCGAGTTAGGATTTTCTGAATCGCAC – 3’ which resulted in the PCR amplified 

product encoding the native stop codon.   PCR amplified products and empty vector pcDNA 

3.1/V5-His TOPO® TA were digested using the BamHI and XhoI restriction enzymes and 

ligated using the T4 DNA Ligase (New England Biolabs, Ipswich, MA) following the 

manufacturers protocol. N-terminal HA-tagged constructs were generated by PCR amplification 

of untagged WT- and S506A-TMPRSS13 from of the pcDNA3.1 V5/His TOPO® expression 

vectors. The plasmid containing the N-terminal HA tag was a kind gift from Dr. Todi and is 

encoded in the pcDNA3.1-HA vector. PCR amplified products and the pcDNA3.1-HA plasmid 

were digested using BamHI and XhoI restriction enzymes. Digested products were ligated with 

the T4 DNA Ligase (New England Biolabs, Ipswich, MA) following the manufacturers protocol.    

Transformation of all vectors was performed in TOP-10 competent cells (Invitrogen, Life 

Technologies, Grand Island, NY) and positive clones were isolated and amplified using standard 

techniques. 

3.1.2 Transient transfections and Western blots 

Transfection of HEK293T (ATCC, Manassas, VA) was performed using Lipofectamine® 

LTX according to the manufacturer’s instructions (Invitrogen, Life Technologies, Grand Island, 

NY).    HEK293T cells were cultured in Dulbecco’s modified Eagle’s media (DMEM) (Gibco, Life 

Technologies, Grand Island, NY) supplemented with 10% fetal bovine serum (Atlanta 

Biologicals, Lawrenceville, GA).  Transfection was performed with 1 µg plasmid DNA for single 

transfections or 2 µg total plasmid DNA for co-transfections. Vectors included in transfections 

were pcDNA3.1-TMPRSS13 vectors, empty vector pcDNA3.1, pcDNA3.1-HAI-1, pcDNA3.1-

HAI-2, or pEYFP-N1-HAI-2. The HAI vectors were kindly provided by Dr. Stine Friis, University 

of Copenhagen.  To analyze samples by Western blotting using the polyclonal anti-TMPRSS13 
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antibody (α-extra-TMPRSS13)(PA5-30935 – Thermo Fisher Scientific, Life Technologies, Grand 

Island, NY), twenty-four hours post transfection cells were washed 3x with PBS and serum free 

DMEM was added for six hours when analyzing cell lysates and conditioned media from cells 

expressing untagged TMPRSS13 constructs. Cells were then washed again 3x with PBS after 

six hours and 1 ml of serum free media was added. Twenty-four hours after addition of serum 

free media, conditioned media and lysates were collected. Cells were lysed using RIPA buffer: 

50 mM, Tris, 150 mM, NaCl, 0.1% SDS, 0.5% deoxycholic-acid, 1% NP-40, pH 7.4 

supplemented with protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) and cleared by 

centrifugation at 12,000 x g at 4ºC. Protein concentrations were determined using a Pierce BCA 

Protein Assay Kit (Thermo Scientific, Waltham, MA). For stringent lysis condition, SDS lysis 

buffer (50 mM Tris-HCl pH 6.8, .25% Bromophenol Blue, 5% glycerol 1.5% SDS, and 100 mM  

DTT) was boiled for 10 mins. Cells were washed 1x with PBS and then boiling stringent lysis 

buffer was added to cells. Cells were scraped and collected and boiled for 10 minutes. After 

boiling, cell lysates were centrifuged at 16,000 x g for 10 minutes at room temperature. Samples 

were then boiled again for 5 minutes and 15 µl of each sample was loaded onto 10% SDS gels.  

Protein samples were separated by SDS-PAGE using 10% Mini-PROTEAN® TGX Precast gels 

(Bio-Rad Laboratories Hercules, CA) under reducing conditions and analyzed by Western 

blotting. Primary antibodies used in Western blotting were polyclonal rabbit anti-TMPRSS13  

raised against a recombinant protein fragment corresponding to a region within amino acids 195 

and 562 of Human TMPRSS13 (anti-extra-TMPRSS13) (PA5-30935 – Thermo Fisher Scientific, 

Life Technologies, Grand Island, NY), rabbit anti TMPRSS13 intracellular domain antibody (anti-

intra-TMPRSS13) raised against an epitope within the first (N-terminal) 60 amino acids 

(ab59862 – Abcam, Cambridge, MA), V5 mouse monoclonal antibody (R96025 - Thermo Fisher 

Scientific, Life Technologies, Grand Island, NY), HA rabbit polyclonal antibody (NB600-363 - 

Novus Biologicals, Littleton CO), rabbit anti Phospho-(Ser/Thr) Phe antibody (#9631 - Cell 

Signaling Technology, Danvers, MA) goat anti-HAI-1 (AF1048 - R&D Systems Inc., Minneapolis,  
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MN), or goat anti-HAI-2 (AF1106 - R&D Systems Inc., Minneapolis, MN). Secondary antibodies 

included goat anti-rabbit, goat anti-mouse (Millipore, Billerica, MA), and rabbit anti-goat (Dako, 

Carpinteria, CA) HRP-conjugated antibodies.  

3.1.3 Cloning and expression of the TMPRSS13 active serine protease domain in Pichia 

pastoris 

The human TMPRSS13 active serine protease domain was produced in yeast using a 

Pichia Expression Kit (Invitrogen, Life Technologies, Grand Island, NY). Human TMPRSS13 

serine protease domain was amplified and cloned into the pPIC9 vector at the XhoI and NotI 

sites, using the primers 5’-TCTCTCGAGAAAAGAATCGTGGGAGGGGCGCTGGCCTCG -3’  

and 5’-ATTCGCGGCCGCTTAGGATTTTCTGAATCGCAC -3’.  Cloning resulted in TMPRSS13 

serine protease domain sequence (Ile-Val-Gly) being inserted immediately following a Leu-Glu-

Lys-Arg KEX2 cleavage site encoded by the vector. The Leu-Glu-Lys-Arg-Ile-Val-Gly is cleaved 

between Arg and Ile by the yeast protease KEX2 which is a transmembrane protease located in 

the Golgi, rendering a secreted activated TMPRSS13 serine protease domain. The Pichia 

pastoris secreted active TMPRSS13 SP-domain contains the same domain IVG N-terminus as 

the mammalian active SP-domain. Transformation was performed in TOP-10 competent cells 

(Invitrogen, Life Technologies, Grand Island, NY) and pPIC9-TMPRSS13 positive clones were 

isolated and amplified using standard techniques. For transformation of Pichia pastoris, 20 µg of 

pPIC9-human-TMPRSS13 or pPIC9 empty vector was digested with SalI, and purified by 

phenol-chloroform extraction.  Electroporation of linearized plasmid into the GS115 yeast strain 

(Invitrogen, Life Technologies, Grand Island, NY) was performed at 1.5 kV using 0.2 cm 

cuvettes (BioRad, Hercules, CA) in a BTX-Transporator Plus (Harvard Apparatus,  Holliston, 

MA).  The expression of recombinant proteases in the conditioned media from individual yeast 

clones was analyzed by SDS-PAGE and Western blotting using anti-extra-TMPRSS13 (PA5-

30935 – Thermo Fisher Scientific, Life Technologies, Grand Island, NY) 
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3.1.4 Chromogenic Proteinase Assays  

The assays were performed in 96-well plates in a total reaction volume of 100 µl using 

50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.01% Tween-20, 0.01% BSA for dilution of all samples.  

5 nM of active recombinant TMPRSS13, matriptase, or empty vector control media was 

incubated at 37 °C for 60 min with 100 μM of the synthetic peptide L-1720 Suc-Ala-Ala-Pro-Arg-

pNA (Bachem, Bubendorf, Switzerland) in the absence or the presence (inhibitor and substrate 

added concomitantly) of recombinant soluble HAI-1 (60 nM) (R&D, Minneapolis, MN), HAI-2 (40 

nM) (R&D, Minneapolis, MN), aprotinin (2 μM), leupeptin (20 μM), or benzamidine (2 mM) 

(Thermo Scientific, Waltham, MA). Changes in absorbance at 405 nm were monitored using a 

Magellan NanoQuant Infinite M200 Pro plate reader (Tecan US, Inc., Morrisville, NC). For 

measurement of chromogenic activity in cell extracts, samples were prepared and analyzed 

according to (124).    

3.1.5 Deglycosylation of TMPRSS13     

Proteins in lysates or conditioned media prepared as indicated above were 

deglycosylated using the PNGase F deglycosylation kit according to the manufacturer’s 

instructions (New England Biolabs, Ipswich, MA).  

3.1.6 Dephosphorylation of TMPRSS13 in lysates 

For CIP treatment, 5 µg of protein lysates was added to 1x CutSmart® Buffer (New 

England Biolabs, Ipswich, MA) for a total volume of 50 µl and treated with, or without, Alkaline 

Phosphatase, Calf Intestinal (CIP) (New England Biolabs, Ipswich, MA). Lysates were incubated 

at 37ºC for 60 minutes. After 60 minutes, Laemmli Sample Buffer with 5% 2-Mercaptoethanol 

was added to the reaction and samples were boiled prior to Western blot analysis. For 

dephosphorylation of MCF-7 lysates, 40 µg of protein  was  incubated in 1X NE Buffer for 

Protein Metallo Phosphatases, 1mM MnCl2, and ddH2O for a total reaction volume of 50 µl, then 

800 units of Lambda Protein Phosphatase (New England Biolabs, Ipswich, MA) or vehicle was 

added to the sample. Reactions were incubated for 30 minutes at 30ºC. After 30 minutes, 



30 
 

 
 

Laemmli Sample Buffer with 5% 2-Mercaptoethanol was added to the reaction and samples 

were boiled prior to SDS-PAGE and Western blot analysis. 

3.1.7 Knockdown of TMPRSS13 expression in cancer cells 

MCF-7, BT20, and HCC1937 breast carcinoma cells and DLD1 colorectal 

adenocarcinoma cell line were purchased from ATCC (Manassas, VA). MCF-7 cells were 

cultured in Dulbecco’s modified Eagle’s media (DMEM) (Gibco, Life Technologies, Grand 

Island, NY) supplemented with 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA). 

BT-20 cells were grown in Eagles + NEAA media (Eagle’s MEM with 2mM L-glutamine and 

Earle’s BSS adjusted to contain 1.5 g/l sodium bicarbonate, 0.1 mM non-essential amino acids, 

1 mM sodium pyruvate, and 10% FBS), HCC 1937 cells were grown in RPMI + L-GLUT media 

(RPMI-1640 media with 2  mM L-glutamine adjusted to contain 1.5 g/l sodium bicarbonate, 4.5 

g/l glucose, 10 mM HEPES, 1 mM sodium pyruvate, and 10% FBS), DLD1 cells were grown in 

RPMI + L-GLUT media adjusted to contain 10% FBS.  Transient knockdown of TMPRSS13 

expression was performed using Lipofectamine® RNAiMAX according to the manufacturer’s 

instructions (Invitrogen, Life Technologies, Grand Island, NY). Stealth siRNATM constructs were 

obtained from Invitrogen life technologies (HSS130533 [corresponding to 33 in figure 5C], and 

HSS130531 [corresponding to 31 in figure 5C). To detect endogenous TMPRSS13 species by 

Western blotting, the polyclonal rabbit anti TMPRSS13 intracellular domain antibody was used 

(ab59862 – Abcam, Cambridge, MA) 

3.1.8 α2-Macroglobulin capture assay 

30 µl of conditioned media from cells expressing WT-TMPRSS13 were added to 30 µl 

buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, and 2.5 mM CaCl2) and treated with or without 30 

nM α2-Macroglobulin (Calbiochem, San Diego, CA). Samples were incubated at room 

temperature for 1 hour. Additionally, α2-macrogloublin was incubated with buffer alone as 

control. Samples were treated with Laemmli buffer with 5% 2-Mercaptoethanol and boiled for 5 

minutes prior to Western blot analysis. 
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3.1.9 Immunoprecipitation 

48 hours post transfection, HEK293T cells expressing either empty vector (EV), 

TMPRSS13, and/or HAI constructs were lysed with RIPA lysis buffer with protease inhibitor 

cocktail. One µl of primary mouse anti-V5 (Invitrogen, Life Technologies, Grand Island, NY) was 

added to 150 µg of protein lysates and lysis buffer was added for a total reaction volume of 250 

µl. Lysates were then rotated at 4ºC for 60 minutes. For HA immunoprecipitation, HEK293T 

cells expressing HA-S506A-TMPRSS13 were lysed with RIPA lysis buffer with protease inhibitor 

cocktail and equal amounts of lysates were separated and immunoprecipitated with either 1.0 

µg of α-HA or α- Rabbit mAb IgG (DA1E – Cell Signaling Technology, Danvers, MA) antibodies 

for 2 hours at 4ºC.  For anti-intra-TMPRSS13 immunoprecipitation, whole lysates of DLD1 cells 

were prepared with RIPA lysis buffer with protease inhibitor cocktail and 1.0 µg of anti-intra 

TMPRSS13 or α- Rabbit mAb IgG was added to equal volume of lysates and rotated at 4ºC 

overnight.  After all immunoprecipitations, 30 µl of EZviewTM Red Protein A affinity gel (Sigma-

Aldrich, St. Louis, MO) were added to the reaction per manufacturers protocol. Samples were 

then rotated at 4ºC for an additional 60 minutes at which point beads were pelleted at 4ºC and 

washed 5x with cold PBS pH 7.5. After the final wash, 60 µl of 2x Laemmli buffer with 5% 2-

Mercaptoethanol was added and samples were analyzed by SDS-PAGE and Western blotting.  

3.1.10 Immunocytochemistry 

Cell-surface imaging was performed using HEK293T cells transfected with human full-

length TMPRSS13-V5 vectors. Cells were seeded on coverslips coated with rat type-2 collagen 

(BD Biosciences, Franklin Lakes, NJ) and allowed to adhere and grow overnight. Cells were 

transiently transfected and 36 hours post transfection, media was removed and cells were fixed 

in Z-Fix (ANATECH LTD, Battle Creek, MI) for 15 min at room temperature.  In permeabilized 

samples, cells were treated with 0.05% Triton-X in PBS. Cells were then blocked with 5% BSA 

in PBS for 1 hour prior to staining. TMPRSS13-V5 was detected using a monoclonal anti-V5 

antibody (Invitrogen, Life Technologies, Grand Island, NY) or an isotype control antibody 
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(Sigma, St. Louis, MO).  HAI-1 was detected using the M19 antibody (125) kindly provided by 

Drs. Chen-Yong Lin and Michael Johnson, Georgetown University.  Secondary AlexaFlour-488-

conjugated goat-anti-mouse and AlexaFlour-647-conjugated antibodies (Invitrogen, Life 

Technologies, Grand Island, NY) were used to detect TMPRSS1-V5 and/or HAI-1. HAI-2 was 

detected using a HAI-2-EYFP fusion protein (kindly provided by Dr. Stine Friis, University of 

Copenhagen) (124). Cells were washed with PBS and mounted with Prolong gold with DAPI 

(Invitrogen, Carlsbad, CA). Confocal images were acquired on the Zeiss LSM 780 scope at the 

Microscopy Imaging and Cytometry Resources Core at Wayne State University School of 

Medicine.  

3.1.11 Biotin labeling of cell surface proteins 

HEK293T cells expressing empty vector, TMPRSS13, and/or HAI constructs were 

washed 3x with PBS 48 hours post transfection. Cells were then gently detached and re-

suspended in 1.0 ml of PBS, and EZ-Link Sulfo-NHS-SS-Biotin (Thermo Scientific, Waltham, 

MA) was added for a final concentration of 800 µM. Cells were biotin-labeled for 30 minutes at 

room temperature. After biotin labeling, cells were pelleted and washed 3x with PBS containing 

50 mM Tris, pH 8.0. Cells were then lysed in RIPA buffer supplemented with protease inhibitor 

cocktail (Sigma-Aldrich, St. Louis, MO) and protein concentrations were quantitated. 150 µg 

protein were added to 40 µl streptavidin-agarose (Sigma-Aldrich, St. Louis, MO) in a final 

reaction volume of 200 µl and rotated at 4ºC for 60 minutes. Beads were pelleted by 

centrifugation at 8,800 x g and supernatant containing non-biotinylated proteins was collected 

(wash). Beads were washed 5x with cold PBS and subsequently treated with 60 µl of Laemmli 

Sample Buffer with 5% 2-Mercaptoethanol and boiled for 5 minutes prior to SDS-PAGE. 

3.1.12 USP2 deubiquitination assay 

HEK293T cells transfected with S506A-TMPRSS13-V5 were lysed 48 hours post 

transfection in 450 µl RIPA buffer: 150 mM NaCl, 50 mM Tris/HCl, pH 7.4, 0.1% SDS, 1% NP-

40, supplemented with protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO). Lysates were 
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aliquoted into separate 1.5 ml microcentrifuge tubes and USP2 catalytic domain 

(BostonBiochem, Cambridge, MA) (final concentration of 2 µM) or vehicle was added. At  10, 

30, 120, and 240 minutes after incubation, aliquots of the reaction were removed and treated 

with Laemmli buffer supplemented with 5% 2-Mercaptoethanol and boiled for 5 minutes prior to 

SDS-PAGE and Western blot analysis. Samples were run in parallel and TMPRSS13 was 

detected using mouse anti-V5 (Invitrogen, Life Technologies, Grand Island, NY) and ubiquitin 

was detected using rabbit anti-ubiquitin (Dako, Carpinteria, CA)  

3.1.13 Glycosylation, intrinsic disorder, and phosphorylation predictions 

NetNGlyc 1.0 Server was used for glycosylation prediction 

(http://www.cbs.dtu.dk/services/NetNGlyc/). To predict the disorder disposition we utilized the 

PONDR-FIT analysis tool (http://disorder.compbio.iupui.edu/pondr-fit.php). The full-length 

FASTA sequence for each corresponding protein was analyzed and the intracellular domains 

were plotted on a single graph. Kinase Predictions. Three separate kinase prediction tools were 

used to identify potential kinases responsible for TMPRSS13 phosphorylation. NetPhospho3.1 

(http://www.cbs.dtu.dk/services/NetPhos/), GPS 3.0 (http://gps.biocuckoo.org/online.php) and 

PhosphoNet (http://www.phosphonet.ca/).  For NetPhospho3.1 and GPS 3.0, the FASTA 

sequences of the intracellular domains were analyzed.   

3.2 Biochemical characterization of TMPRSS13 – Introduction  

TMPRSS13 belongs to the type-II transmembrane serine protease (TTSP) family that 

was discovered at the turn of the millennium (3,35,36,126). In humans, the family consists of 17 

proteases divided into four subfamilies, based on phylogenetic analyses of their serine protease 

domains and the domain structure of their extracellular stem regions (3,35,36,126). TMPRSS13, 

also known as mosaic serine protease large-form (MSPL), belongs to the 

hepsin/transmembrane protease, serine (TMPRSS) subfamily. TMPRSS13 contains an N-

terminal intracellular domain, a transmembrane domain, a stem region, and a C-terminal serine 

protease domain (127,128). The protease was originally cloned from a human lung cDNA library 

http://www.cbs.dtu.dk/services/NetNGlyc/
http://disorder.compbio.iupui.edu/pondr-fit.php
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and transcripts were detected in lung, placenta, pancreas, and prostate (127). Subsequent 

studies revealed a broad TMPRSS13 protein expression profile in epithelial tissue including 

epidermis, oral cavity, esophagus, bladder, stomach, small intestine, thymus, kidney, and 

cornea (65). A physiological role for TMPRSS13 in epidermal barrier development has been 

demonstrated in TMPRSS13-deficient mice, which display improper formation of the cornified 

layer of the epidermis (65). Furthermore, TMPRSS13 has been implicated in viral infection, 

since it proteolytically cleaves the viral hemagglutinin (HA) protein, thereby enabling membrane 

fusion of highly pathogenic avian influenza viruses and coronaviruses (129-131). 

A defining characteristic of TTSPs is that they are synthesized as single-chain zymogens 

that require proteolytic cleavage to generate the two-chain active proteases.  Upon activation, 

catalytic activity of several TTSPs, including matriptase, matriptase-2, hepsin, human airway 

trypsin-like protease (HAT), and HAT-like 5, are inhibited by the endogenous, transmembrane, 

Kunitz-type serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI-1) -1 and 

-2 (55,132-134).   A distinctive feature of TMPRSS13 is that it possesses the largest intracellular 

domain of all the TTSP family members, consisting of 160 amino acids. Upon analysis of the 

intracellular domain sequence, we  identified regions rich in proline, serine, and threonine 

residues that are predicted to be intrinsically disordered regions (IDRs), which are natively 

unfolded and do not adopt typical tertiary structures (135).  IDRs are frequently subjected to 

post-translational modifications, such as phosphorylation, that increase the functional state in 

which a protein can exist in the cell (136).  Here we describe a comprehensive study on the 

biochemical and cell-biological properties of TMPRSS13 and report for the first time that 

TMPRSS13 is a phosphorylated TTSP. Importantly, our results show that HAI-1 and HAI-2 

enhance TMPRSS13 phosphorylation and facilitate cell surface localization. 
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3.3 Biochemical characterization of TMPRSS13 – Results 

3.3.1 TMPRSS13 is expressed as a 70 kDa glycosylated active protease in mammalian 

cells 

Like other TTSPs, TMPRSS13 contains a C-terminal catalytic serine protease (SP) 

domain, an N-terminal intracellular domain, a transmembrane signal anchor, and a stem region. 

The stem region in TMPRSS13 is composed of a group A scavenger cysteine-rich receptor 

(SRCR) domain, preceded by a single, low-density lipoprotein receptor class A domain (LDLA) 

(Fig. 1A, panel I).  The catalytic domain of human TMPRSS13 contains the essential serine 

protease catalytic triad residues, H361, D409, S506, and the substrate binding pocket 

residues, D500, S525 and G527(129).  TTSP’s are universally synthesized as inactive zymogens 

that are activated by cleavage at a conserved activation site motif, predicted to be R320IVGG in 

TMPRSS13 (indicated with an arrow in Fig. 2A, panel I) (127,129). Upon activation, the catalytic 

domain remains tethered via a disulfide bond to the stem region of the protease. Therefore, the 

active SP-domain can be visualized by SDS-PAGE and Western blotting under reducing 

conditions. In a previous study, using recombinant TMPRSS13 in which the putative activation 

cleavage sequence was replaced with the enterokinase recognition sequence (DDDDK), 

activation with enterokinase under cell-free conditions was achieved and TMPRSS13 displayed 

proteolytic activity towards synthetic peptide substrates (66).  However, this earlier work did not 

examine whether this phenomenon applies in a cellular environment. To determine whether 

TMPRSS13, containing its native activation sequence, is expressed as an active protease in 

mammalian cells, we expressed full-length human TMPRSS13 in HEK293T cells and analyzed 

whole cell lysates by Western blotting (Fig. 2B) using an anti-TMPRSS13 polyclonal antibody 

raised against the extracellular part of the TMPRSS13 antibody (α-extra-TMPRSS13, indicated 

in 2A, panel I). The predicted molecular weights of the 586 amino acid full-length protease and 

the 266 amino acid SP-domain are 61 kDa and 27 kDa, respectively. Two major proteins of 

approximately 70 kDa and 32 kDa were detected in lysates (Fig. 2B).  These species migrated  
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Figure 2: TMPRSS13 is a 70-kDa active glycoprotein in 
human cells. 

 

Figure 2. (A) Schematic representation of the four different recombinant TMPRSS13 proteins 
generated for this study. (I) Full-length human TMPRSS13 (WT-TMPRSS13); 
TM=Transmembrane domain, L=lipoprotein receptor class A domain, SRCR= group A 
scavenger cysteine-rich receptor, N=predicted N-glycosylation sites, the activation cleavage site 
is indicated with an arrow, and S-S represents the disulfide bridge linking the stem region to the 
serine protease (SP) domain. The epitopes for the two anti-TMPRSS13 antibodies used are 
indicated. A polyclonal antibody raised against a recombinant protein fragment corresponding to 
a region within amino acids 195 and 562 of Human TMPRSS13, (α-extra-TMPRSS13), that 
recognizes the extracellular part of the protease. An additional polyclonal antibody, (α-
TMPRSS13-intra), was raised against a peptide within residues 1-60 which recognizes the N-
terminal intracellular domain. (II) C-terminally tagged full-length human TMPRSS13 (WT-
TMPRSS13-V5); V5-H=V5-His epitope. (III) Active soluble TMPRSS13 serine protease domain 
protein generated in Pichia Pastoris. (IV) N-terminally HA-tagged full-length human TMPRSS13 
(HA-WT-TMPRSS13); HA=Human influenza hemagglutinin tag. (B) Whole cell protein lysates 
from HEK293T cells, expressing non-tagged full-length human TMPRSS13 were separated by 
SDS-PAGE under reducing conditions. TMPRSS13 was detected by Western blotting using the 
rabbit α-extra-TMPRSS13 antibody against the extracellular part of TMPRSS13. Non-
transfected cells (NT) and cells transfected with empty vector (EV) were included as controls. 
The full-length TMPRSS13 and SP-domain are indicated with black arrowheads and full-length 
glycosylation and cleavage variants are indicated with open arrowheads. (C-D) Proteins were 
separated by SDS-PAGE and analyzed by Western blotting using α-extra-TMPRSS13 (C) and 
α-intra-TMPRSS13 (D), respectively. Lanes with protein extracts treated with PNGaseF prior to 
SDS-PAGE are indicated with “+”, and control extracts treated and incubated in parallel without 
PNGaseF with “-“, NT=No treatment. The white arrowheads connected to black arrowheads 
indicate the reduction in apparent molecular weight of the glycosylated forms of TMPRSS13. 
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Figure 3: Detection of TMPRSS13 under different expression 
concentrations and sample collection methods 

Figure 3. (A)  HEK293T cells transfected were transfected with WT, - or S506A-TMPRSS13-V5 

at the plasmid concentrations indicated resulting in different expression levels of recombinant 

TMPRSS13. Lysates were made in stringent lysis buffer (1.5% SDS and 100 mM DTT) that had 

been pre-boiled for 10 minutes prior to addition to cells. Lysates were separated by SDS-PAGE 

under reducing conditions followed by Western blot analysis using an α-V5 antibody. (B) Whole 

lysates from HEK293T cells transfected with WT, - or S506A-TMPRSS13-V5 were prepared 

using RIPA buffer  with protease inhibitor cocktail at 4oC, or stringent SDS buffer, and analyzed 

as described in  (A). 
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at higher molecular weights than predicted for the full-length and SP-domain, suggesting that 

TMPRSS13 could be post-translationally modified. Analysis of the amino acid sequence of 

human TMPRSS13 using the NetNGlyc 1.0 Server revealed four potential N-glycosylation sites, 

two of which are located in the serine protease domain (Fig. 2A).  In addition to the 70 kDa and 

32 kDa species, two forms of approximately 60 kDa and 50 kDa were recognized by the α-extra-

TMPRSS13 antibody in whole cell lysates (Fig. 2B). To minimize the risk of cleavage events 

occurring as a result of cell lysate preparation, or due to high levels of recombinant TMPRSS13 

expression, we analyzed cell lysates with low expression levels and lysates prepared using 

highly stringent conditions (boiling in 1.5% SDS with 100 mM DTT; Fig. 4A and B). We did not 

observe any discernible differences in protein band pattering by Western blotting between 

TMPRSS13 low- and high-expressing cells (Fig. 3A). Furthermore, no noticeable differences 

were observed when cell lysis was performed in RIPA buffer versus stringent SDS buffer (Fig. 

3B). 

 To examine whether TMPRSS13 is post-translationally modified by glycosylation in 

mammalian cells, protein extracts from transfected HEK293T cells were subjected to enzymatic 

deglycosylation by PNGaseF prior to Western blot analysis and probed with α-extra-TMPRSS13 

(Fig. 2C). Upon deglycosylation and probing with α-extra-TMPRSS13, we observed a reduction 

in the molecular weight of the proposed full-length 70 kDa form, to a form closer to the predicted 

lower molecular weight (∼60 kDa); this band coincides with the 60 kDa species seen before 

deglycosylation. These results indicate that the full-length form of TMPRSS13 exists as two 

different glycosylation variants (Fig. 2C). The presumed SP-domain shifted to the predicted 

molecular weight upon deglycosylation, indicating that one or both of the potential N-linked 

glycosylation sites in the SP-domain are utilized (Fig. 2C).  The 50 kDa band migrated at 

approximately 40 kDa and may represent an ectodomain cleavage product generated upon 

cleavage in the LDLA domain of the stem region. Several TTSPs have been shown to be 

cleaved in the stem region including corin, where two fragments result from corin autocleavage 

http://www.biochemj.org/bj/390/0231/bj3900231f01.htm
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in the frizzled 1 domain and LDLA 5 domain, respectively (137). The cleavage event generating 

the 50 kDa TMPRSS13 species appears to be dependent on TMPRSS13 proteolytic activity 

since the fragment is not detected in cells transfected with a catalytically inactive from of 

TMPRSS13 and may result from autocleavage (Fig. 3B). Deglycosylated lysates were also 

analyzed using an antibody raised against a peptide localized within the first 60 (N-terminal) 

amino acids (α-intra-TMPRSS13) as indicated in the schematic representation of TMPRSS13 in 

Figure 2A. Similarly to α-extra-TMPRSS13, we observed the 70 kDa form drop to 60 kDa upon 

deglycosylation (Fig. 2D). In addition, other N-terminal processed forms of approximately 43 

kDa and 22 kDa are observed. The latter may result from cleavage within the LDLA domain, i.e. 

represent the N-terminal half of the C-terminal 50 kDa half detected with α-extra-TMPRSS13 in 

Fig. 2C.  

In addition to whole cell lysates, conditioned media (CM) samples collected from the 

same cells were analyzed. One band corresponding to the predicted SP-domain was detected 

in cells transfected with full-length TMPRSS13 (Fig. 4A) suggesting that TMPRSS13 is shed 

mainly in its active form. To validate that the SP-domain is in fact a catalytically active serine 

protease, we performed an α2-macroglobulin (α2M) capture assay (Fig. 4B). Incubation of α2M 

with CM from cells expressing full-length TMPRSS13 resulted in the formation of a TMPRSS13 

high molecular weight complex, consisting of TMPRSS13 SP-domain covalently linked to α2M 

subunits, indicating that expression of TMPRSS13 in mammalian cells produces a catalytically 

active serine protease (Fig. 4B).   

 To further confirm the enzymatic activity of the TMPRSS13 SP-domain, the Pichia 

pastoris expression system which utilizes the intracellular yeast protease KEX2 was employed. 

The KEX2 transmembrane serine protease belongs to the subtilisin-like, pro-protein convertase 

family with specificity for cleavage after paired basic amino acids and is localized in the late 

Golgi compartment. By cloning the TMPRSS13 SP-domain into the PIC9 vector with the 

TMPRSS13 active serine protease domain sequence (321IVG) immediately following the LGKR  
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Figure 4. (A) Conditioned media from untreated cells (NT), or cells transfected EV or non-

tagged full-length human TMPRSS13 were analyzed by Western blotting. Only the SP-domain 

is detected. (B) To determine whether the TMPRSS13 SP-domain is secreted into conditioned 

medium as an active protease, an α2-M capture experiment was performed and samples were 

separated by SDS-PAGE under reducing conditions, and detected by Western blotting using α-

extra-TMPRSS13. The positions of the non-complexed TMPRSS13 SP-domain (black 

arrowhead) and the SP-domain/α2-M complex (open arrowhead) are indicated.  (C)  Detection 

of the SP-domain in conditioned media from Pichia pastoris expressing cleaved, active 

TMPRSS13 with (+) and without (-) PNGaseF treatment by reducing SDS-PAGE and Western 

blotting (left panel).  The white arrowheads connected to black arrowheads indicate the 

reduction in molecular mass of the glycosylated form of the SP-domain. Bar graph, right panel; 

Conditioned media samples from Pichia pastoris clones transfected with either the expression 

vector without protease insert (EV),TMPRSS13 SP-domain, or matriptase SP-domain were 

incubated at 37 °C for 60 min with the synthetic chromogenic peptide Suc-Ala-Ala-Pro-Arg-pNA 

(100 μm) and the absorbance at 405 nm was recorded. Negative control (Neg. control) lane 

contains buffer and peptide with no media added. 

  

Figure 4: Proteolytic activity of TMPRSS13 serine protease 
domain 
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KEX2 cleavage site encoded by the vector, a novel fusion cleavage site was generated  (Fig. 2, 

panel III, see arrow indicating cleavage site). The new LGKR|IVG sequence is cleaved between 

R and I by KEX2, generating a secreted active TMPRSS13 SP-domain with the same IVG N-

terminus as mammalian active SP-domain (Fig. 2, panels I and III). The presence of 

TMPRSS13 serine protease in conditioned media from Pichia pastoris clones transfected with 

the PIC9-TMPRSS13 vector was confirmed by Western blotting using the polyclonal α-extra-

TMPRSS13 antibody (Fig. 4C, left panel). Deglycosylation of the untagged, cleaved, active form 

of the TMPRSS13 SP-domain, secreted by transfected Pichia pastoris, results in a form with an 

apparent molecular weight of ∼29 kDa (Fig. 4C, left panel). This indicates that both human and 

yeast-expressed active serine protease domain migrate at the same approximate molecular 

weight upon deglycosylation. The catalytic activity of TMPRSS13 SP-domain was confirmed 

using the serine protease chromogenic peptidolytic substrate Suc-Ala-Ala-Pro-Arg-pNA (Fig. 

4C, right panel). Conditioned media from cells transfected with empty PIC9 vector was included 

as a negative control to ensure the absence of interfering secreted yeast proteases, and the 

well-characterized TTSP, matriptase, which was produced in parallel in Pichia pastoris, was 

included as positive control. Collectively, these data demonstrate that TMPRSS13 is a 

glycosylated protease with peptidolytic activity.  

3.3.2 Catalytic inactivation of TMPRSS13 promotes TMPRSS13 cell surface localization  

Analysis of the TMPRSS13 protein sequence using the TMHMM Server v. 2.0 reveals 

the presence of a single transmembrane domain, predicting that the TMPRSS13 protein, similar 

to previously characterized members of the TTSP family, will localize on the cell surface 

(3,36,126,129). To investigate the cellular localization of TMPRSS13, HEK293T cells transiently 

expressing the wild type (WT) full-length protease with a C-terminal V5-tag (WT-TMPRSS13-

V5) (Fig 1A, panel II) were analyzed by fluorescent immunocytochemistry. To detect the 

localization of WT-TMPRSS13-V5, an anti-V5 antibody was used on non-permeabilized cells in 

combination with a FITC-conjugated secondary antibody to visualize cell surface TMPRSS13. 
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Interestingly, little to no WT-TMPRSS13-V5 was detected under non-permeabilized conditions 

(Fig.5A, top left panel).  In contrast, intense green fluorescent signal confined to the cytoplasm 

in permeabilized cells was observed, indicating that the majority of WT-TMPRSS13-V5 is 

retained within the cells (Fig. 5A, bottom left panel). When primary antibodies were substituted 

with non-immune IgG, no detectable staining was observed (Fig. 5A right panels).  Since 

untagged, WT-TMPRSS13 appeared to be present in its active form in lysates and CM as 

demonstrated by Western blotting above (Figs. 2B and 3A), we speculated that the active 

protease fails to properly localize to the cell surface due to the deleterious effects of unopposed 

proteolytic activity. To test this possibility, we utilized a catalytically inactive form of TMPRSS13 

(S506A-TMPRSS13-V5) where the serine in the catalytic triad is mutated to an alanine (Fig. 

5B). In addition, we also generated a “zymogen-locked” form (R320Q-TMPRSS13-V5) in which 

the conserved activation site is mutated to prohibit activation cleavage. Upon transfection, both 

S506A- and R320Q- TMPRSS13-V5 clearly localized to the cell surface in both permeablilized 

and non-permeabilized cells (Fig. 5B and 5C). This observation is in agreement with the 

expected distribution of the predicted membrane anchored topology of TMPRSS13, indicating 

that catalytically incompetent TMPRSS13 primarily localizes to the cell surface.  

Lysates of transfected cells were then examined by Western blotting to analyze the state 

of WT-TMPRSS13-V5 compared to the two mutant versions.  To ensure that WT-TMPRSS13-

V5 exists in its intact full-length form with both the N- and C-terminus present, we probed with α-

intra-TMPRSS13 and α- -V5 (Fig. 5D).   The two full-length glycosylation variant forms (~65 and 

~75 kDa, which include the ~5 kDa V5-tag) were detected in WT-TMPRSS13, as well as in 

S506A- and R320Q- TMPRSS13-V5 with both antibodies.  Thus, the C-terminal V5 tag appears 

intact and the N-terminus is most likely intact since the α-intra-TMPRSS13 antibody was raised 

against an N-terminal peptide. Surprisingly, in lysates from cells expressing S506A- or R320Q-

TMPRSS13-V5 (Fig. 5D) an additional, prominent and higher molecular weight (HMW) 

TMPRSS13 form of ~95 kDa was observed. This HMW species was resistant to extraction in  
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Figure 5: Catalytic inactivation of TMPRSS13 promotes its 
cell surface localization and produces a higher molecular 

weight TMPRSS13 species 

 

Figure 5.    HEK293T cells were transiently transfected with full-length human WT-TMPRSS13-

V5 (A), S506A-TMPRSS13-V5 (B), or R320Q-TMPRSS13-V5 (C) expression plasmids.  Non-

permeabilized cells (upper panels) or permeabilized cells (lower panels) were incubated with an 

anti-V5 antibody, followed by incubation with FITC-labeled secondary antibodies and DAPI 

staining to visualize nuclei. The cells were visualized by confocal fluorescence microscopy at 

351– 364 nm excitation wavelength (DAPI) or 488 nm (FITC). Merged images obtained at the 
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two excitation wavelengths are shown. Non-immune IgG was included instead of anti-V5 as 

negative controls. (D) Protein lysates from HEK293T cells expressing empty vector (EV), WT-

TMPRSS13-V5, S506A-TMPRSS13-V5, or R320Q-TMPRSS13-V5 were analyzed by Western 

blotting using the α-intra-TMPRSS13 antibody recognizing the N-terminus, or α-V5 recognizing 

the C-terminus. The higher molecular weight (HMW) species is indicated with grey arrowhead. 

(E) Cell surface proteins of HEK293T cells expressing either HA-WT-TMPRSS13, or HA-

S506A-TMPRSS13 were biotin labeled at room temperature for 30 minutes.  Biotin labeled cell 

surface proteins were separated from non-labeled proteins by incubation with streptavidin 

agarose for 60 minutes at 4ºC. The streptavidin agarose beads were then pelleted and the 

supernatant containing proteins not precipitated by streptavidin agarose was collected (wash 

lane). Biotin labeled proteins were eluted from the beads by addition of Laemmli sample buffer 

with 5% 2-Mercaptoethanol. Samples were separated by SDS-PAGE and analyzed by Western 

blot using an α-HA antibody. 
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RIPA buffer followed by boiling in Laemmli sample buffer with 5% 2-Mercaptoethanol (Fig. 5D) 

and to extraction under stringent conditions (1.5% SDS with 100 mM DTT) (Fig. 3B), suggesting 

the possibility of covalent post-translational modifications, in addition to glycosylation, in two 

different catalytically incompetent forms of TMPRSS13. To further validate these findings, we 

analyzed lysates from cells expressing TMPRSS13 with an N-terminal HA-tag (depicted in Fig. 

1, Panel IV, HA-WT-TMPRSS13) in combination with cell-surface biotinylation analysis using a 

membrane-impermeable biotinylation reagent (Fig. 5E). Cell surface biotinylated proteins were 

pulled down using streptavidin agarose.  In accordance with the observations above, the full-

length HA-WT-TMPRSS13 species (~65 and~75 kDa) were detected with an α-HA antibody in 

whole lysates confirming that the ~65 and ~75 kDa species both contain an intact N-terminus. 

The HMW form of TMPRSS13 was also detected with the α-HA antibody in lysates expressing 

the HA-tagged S506A mutant (Fig. 5E, right panel) thereby confirming that the ~65, ~75 kDa 

and ~95 kDa are all full-length proteins that contain both the N- and C-termini. The biotinylation 

assay confirmed that WT-TMPRSS13 is not present in detectable amounts in the cell surface 

fraction (Fig. 5E, left panel) while S506A -TMPRSS13 is readily detected on the cell surface 

(Fig. 5E, right panel), mainly it its HMW form. Detailed characterization of the HMW form is 

described below in the section “TMPRSS13 is phosphorylated”.   

3.3.3 TMPRSS13 is capable of auto-activation  

We consistently observed decreased detection of the cleaved active SP-domain in 

S506A-TMPRSS13 expressing cells in comparison to the levels of the active species seen in 

cells transfected with WT-TMPRSS13 (Fig. 6A). Quantitative ratio comparisons of the active 

(SP-domain) versus inactive full-length forms of TMPRSS13 confirmed that the majority of 

TMPRSS13 in S506A-TMPRSS13 expressing cells is in its inactive full-length forms (Fig. 6B).  

These data indicate that TMPRSS13 proteolytic activity is important for its own activation and 

that TMPRSS13, like several other TTSPs, is likely capable of auto-activation. To further 

explore the possibility of auto-activation, intact cells transfected with S506A-TMPRSS13-V5  
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Figure 6: TMPRSS13 is proteolytic activity promotes its own 
activation 

 

Figure 6. (A) Protein lysates from HEK293T cells expressing empty vector (EV), WT-

TMPRSS13, or S506A-TMPRSS13 were analyzed by reducing SDS-PAGE and Western using 

the α-extra-TMPRSS13 antibody. (B) Graph depicting the relative ratios of staining intensity 

after Western development of active TMPRSS13 (SP-domain) compared to the inactive (full-

length) species from three separate experiments.  P < 0.05,  student's t test (C) Cells 

expressing S506A-TMPRSS13-V5 were mechanically lifted from the plates by gentle pipetting in 

PBS, pelleted by centrifugation at 1,000 x g and re-suspended in PBS pH 7.4 (57). Cells were 

then incubated with 100 nM active recombinant matriptase, prostasin, or TMPRSS13 or left 

untreated (no treatment lane), and incubated  at 37ºC for 30 minutes. After incubation, cells 

were pelleted by centrifugation at 1,000 x g and supernatant was collected. Cells were then 

washed 5 times with PBS. After the last wash cells were lysed with RIPA lysis buffer with 

protease inhibitor cocktail and analyzed by Western blotting under reducing conditions. 
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were treated with soluble recombinant SP-domain of TMPRSS13, prostasin, or matriptase (Fig. 

6C).  After protease treatment, cells were pelleted by centrifugation and the supernatant was 

collected to detect TMPRSS13 released by shedding. Treatment of cells with exogenous, active 

TMPRSS13 SP-domain led to robust activation as evidenced by detection of the SP-domain in 

lysates and supernatant. The TMPRSS13 SP-domain is the result of cleavage and activation of 

full-length, S506A-TMPRSS13-V5 and not detection of the exogenous Pichia Pistoris active SP-

domain since the recombinant Pichia Pistoris active SP-domain lacks the V5 epitope. The 

active, recombinant SP-domain from prostasin, a non-TTSP, GPI-anchored cell surface serine 

protease, had no effect whereas a low level of TMPRSS13 SP-domain was detected upon 

treatment with the TTSP, matriptase, in lysates with abundant SP-domain in the supernatant. 

Interestingly, the HMW form of TMPRSS13 appears to be preferentially cleaved by both 

TMPRSS13 and matriptase, which indicates that this form is likely accessible on the cell surface 

to exogenously added protease. This is in agreement with the biotinylation assay using HA-

S506A-TMPRSS13 which demonstrates that the HMW species is the primary species observed 

at the cell surface (Fig. 5E).  

3.3.4 TMPRSS13 is phosphorylated   

To characterize the HMW form of TMPRSS13, we first performed deglycosylation of 

lysates from cells expressing untagged S506A- or R320Q-TMPRSS13, which resulted in the 

HMW species to migrate at ~73 kDa, which is ~13 kDa greater than the full-length 

deglycosylated TMPRSS13 (Fig. 7A). This confirms that the HMW form is subject to additional 

post-translational modification(s). Initial tests were conducted to determine whether the HMW 

form represents a ubiquitinated species of TMPRSS13, since mono-ubiquitination is a common 

covalent post-translational modification of cell surface proteins that results in the attachment of 

the ~8.5 kDa ubiquitin protein (138).  Deubiquitination of whole cell lysates using the 

recombinant catalytic domain of deubiquitinase USP2 (139-141) did not result in a mobility shift 

of the HMW species (Fig.8A). Only two lysine residues exist in the intracellular domain of  
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Figure 7: TMPRSS13 is a phosphorylated TTSP family 
member 
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Figure 7. (A) Protein lysates from cells expressing S506A- or R320Q-TMPRSS13 were either 
untreated (NT) or treated with PNGaseF (+) or without (-) (incubated in deglycosylation buffer 
minus PNGaseF) for 60 min at 37oC prior to reducing SDS-PAGE and Western blotting using α-
extra-TMPRSS13. The white arrowheads connected to black arrowheads indicate the reduction 
in apparent molecular weight of the glycosylated forms of TMPRSS13. (B) Graph representing 
the intrinsic disorder of Hepsin/TMPRSS family member’s intracellular domains. Full-length 
FASTA sequences of hepsin, TMPRSS2, TMPRSS3, TMPRSS4, spinesin, and TMPRSS13 
were analyzed using PONDR-FIT (142) and the intracellular domains were plotted on a single 
graph for comparison. The blue line represents TMPRSS3 overlaying TMPRSS4 (turquoise line) 
since the profiles of the two are virtually identical. The final X-axis data point for each protein 
indicates the last amino acid of the intracellular domain. (C) Amino acid sequence of the 160 
amino acid proline (26 residues, red) and serine rich (30 residues, blue) intracellular domain of 
TMPRSS13.  (D) Two different exposures of Western blot analysis of lysates from cells 
expressing WT-TMPRSS13, S506A-TMPRSS13-V5, or R320Q-TMPRSS13-V5 that were 
treated with or without CIP and incubated at 37ºC for 60 minutes. (E) Lysates from HEK293T 
cells expressing HA-S506A-TMPRSS13 were immunoprecipitated using an α-HA or an α-IgG 
control antibody. Samples were separated in parallel and analyzed by Western by probing with 
α-phospho-serine/threonine or α-HA antibodies.  
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Figure 8: TMPRSS13 is not ubiquitinated 

 

Figure 8. (A) Lysates from cells expressing S506A-TMPRSS13-V5 were treated (+) with the 

deubiquitinase USP2 or vehicle (-) for 0, 10, 30, or 240 minutes. At each time point the samples 

were boiled in Laemmli sample buffer with 5% 2-Mercaptoethanol for 5 minutes prior to Western 

blot analysis. A parallel Western blot was probed using anti-ubiquitin to ensure USP2 activity.  

Efficient deubiquitination is observed after 10 min (lower right panel) but no shift of the ~95 kDa 

is observed. (B) The two lysine residues within the intracellular domain of TMPRSS13 were 

mutated in S506A-TMPRSS13-V5 to arginine (K151R-K159R-S506A-13-V5) to prevent 

potential ubiquitination of TMPRSS13. Mutant constructs were expressed in HEK293T cells and 

protein lysates were analyzed by Western blotting. No change in the migration or expression 

level of the ~95 kDa species is observed. 
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TMPRSS13 and upon mutation to prevent ubiquitin modification (K151R and K159R) no effect on 

the abundance or size of the HMW species was observed (Fig. 8B). Taken together, these 

observations strongly indicate that ubiquitination does not contribute to the HMW form of 

TMPRSS13.     

Currently, the only reported post-translational modifications of other Hepsin/TMPRSS 

family members are glycosylation and proteolytic cleavage (3). Other types of post-translational 

modifications, including phosphorylation, are often found in transmembrane proteins that 

contain IDRs (143,144). Intrinsic disorder occurs in ~50% of transmembrane proteins and 

proteins with IDRs are more likely to be phosphorylated than proteins that lack them (143). 

Therefore, we conducted computational prediction of IDRs within the intracellular domain of 

TMPRSS13 and four additional TMPRSS/Hepsin family members using PONDR-FIT (142) to 

determine whether there is a higher degree of disorder in the intracellular domain of TMPRSS13 

compared to the other family members (Fig. 7B). The comparative analysis revealed that a large 

segment of TMPRSS13, the first 125 amino acids, displays a high degree of disorder followed 

by a sharp decline to a lower disorder disposition before the beginning of the transmembrane 

domain (Fig. 7B).  In comparison, the intracellular domain of TMPRSS2, which contains the 

second longest intracellular domain of the Hepsin/TMPRSS family, contains a short segment of 

only 10 amino acids with a high degree of disorder before a sharp decline (Fig. 7B). IDRs are 

also often enriched in disorder promoting amino acid residues such as proline (P), and serine 

(S) (24); the intracellular domain of TMPRSS13 contains 15% proline and 19% serine residues 

(Fig. 7C).  In sum, TMPRSS13 contains the largest intracellular domain with a higher degree of 

intrinsic disorder compared to other Hepsin/TMPRSS family members. Based on this 

observation and on the fact that transmembrane proteins that contain IDRs are frequently 

phosphorylated (3,143,144), we investigated whether the HMW species represents a 

phosphorylated form of full-length TMPRSS13.  
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Phosphorylation of proteins occasionally causes mobility shifts in Western blot analysis 

due to the negative charge of the covalently attached phosphate group, thereby reducing 

negatively charged SDS from interacting with the phosphorylated protein (145). Whole lysates 

from cells expressing WT, - R320Q, - or S506A-TMPRSS13-V5 were dephosphorylated by 

treatment with calf intestinal alkaline phosphatase (CIP) and separated by SDS-PAGE. Western 

blot analysis of the CIP-treated samples revealed a mobility shift of the HMW form (Fig. 7D) 

indicating that the higher molecular weight product is a full-length phosphorylated and 

glycosylated TMPRSS13 species. Of note, dephosphorylation did not reduce the HMW species 

to the identical molecular weight of the non-phosphorylated V5-tagged full-length species of ~75 

kDa. A possible reason for this may be that the phosphorylated species is differentially 

glycosylated compared to the non-phosphorylated full-length, or that dephosphorylation of 

lysates results in incomplete removal of total phosphorylated residues of the intracellular 

domain. 

The intracellular domain of TMPRSS13 contains a total of 30 serine, 12 threonine, and 1 

tyrosine residue(s).  Previous reports indicate that transmembrane proteins that contain IDRs, 

like TMPRSS13, are more likely to have greater than 10 phosphorylation sites than proteins that 

lack IDRs (143). Since it is likely that one or more serine or threonine residues are 

phosphorylated, and to confirm the phosphorylation of the HMW TMPRSS13 species, 

immunoprecipitation of lysates from cells expressing HA-S506A-TMPRSS13 was performed. 

Affinity pull-downs of HA-S506A-TMPRSS13 with α-HA followed by immunoblotting with an α-

HA antibody, and an antibody specifically recognizing phospho-serine/threonine residues, 

confirmed that the HMW species is phosphorylated. (Fig. 7E). As expected, probing with α-HA 

reveals both full-length TMPRSS13 and phosphorylated TMPRSS13 (Fig. 7E, left panel). When 

α-Phospho-Ser/Thr was used for detection, a single band corresponding to HMW TMPRSS13 

was detected (Fig. 7E, right panel). Together, these data show that HMW TMPRSS13 

represents a phosphorylated form of the protease.  
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3.3.5 Endogenous TMPRSS13 is phosphorylated and glycosylated 

To determine whether endogenous TMPRSS13 is present in a phosphorylated form, the 

human breast cancer cell lines HCC1937, MCF-7, and BT-20, as well as the colorectal 

adenocarcinoma cell line DLD1 were screened for expression of TMPRSS13 by Western 

blotting. Lysates were analyzed side-by-side with untagged WT- or S506A-TMPRSS13 for 

comparison and detected with the α-intra-TMPRSS13 (Fig. 9A and Supplementary 1) We 

observed bands corresponding in size to the glycosylated full-length (~70 kDa), a non-

glycosylated full-length (~60 kDa), as well as a HMW TMPRSS13 (~90 kDa) in all four cell lines, 

with varying amounts of HMW TMPRSS13 relative to total TMPRSS13 among the different cell 

lines (Fig. 5A).We also analyzed the expression of the endogenous Kunitz-type serine protease 

inhibitors, HAI-1 and HAI-2 in these cell lines, which are critical regulators of proteolytic activity 

of several TTSP family members (3,36,126). Lysates of cell lines were analyzed by Western 

blotting and probed for TMPRSS13, HAI-1, and HAI-2. Both inhibitors were detected in all four 

cell lines (Fig. 9B). To ensure α-intra-TMPRSS13 antibody specificity, TMPRSS13 was knocked 

down in the MCF-7 (Fig. 9C, left) and DLD1 cells lines (Fig. 9C, right) using two different non-

overlapping siRNAs targeting the TMPRSS13 transcript.  At 72 hours after siRNA transfection, 

cells lysates were analyzed by Western blotting. Levels of endogenous, full-length TMPRSS13 

and the HMW species of ~90kDa TMPRSS13 were significantly reduced upon TMPRSS13 

silencing, confirming that the antibody is suitable to study endogenous TMPRSS13 (Fig. 9C).  

To determine whether the ~90kDa product of the endogenous form of TMPRSS13 is a 

phosphorylated species in MCF-7  and DLD1 cells, whole cell lysates were dephosphorylated 

with Lambda Protein Phosphatase (lambda PP) (Fig. 9D).  Dephosphorylation of lysates 

resulted in a mobility shift of the ~90kDa band, indicating that the HMW species is a 

phosphorylated endogenous TMPRSS13 species.  To additionally validate that endogenous 

HMW TMPRSS13 represents the phosphorylated form of the protease, immunoprecipitation of 

whole lysates from DLD1 cells using the α-intra-TMPRSS13 was performed. Isolated proteins  
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Figure 9: Endogenous TMPRSS13 is phosphorylated 

 

Figure 9. (A) Lysates from HEK293T cells expressing untagged WT-TMPRSS13 or 
S506A-TMPRSS13 were analyzed side by side with lysates from the breast cancer cell lines 
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MCF7, BT20, and HCC1937, and the colorectal carcinoma cell lines DLD1. The figure shows a 
short exposure (left) for the exogenously expressed TMPRSS13, and a long exposure (right) for 
the endogenously expressed TMPRSS13 to compare sizes. Original Western blot exposures 
can be found in supplementary Fig. 21A. Asterisk indicates non-specific bands (B) Lysates from 
the indicated cell lines were analyzed for expression of TMPRSS13, HAI-1, and HAI-2. Asterisk 
indicates non-specific bands.  (C)  MCF-7 and DLD-1 cells were treated with two non-
overlapping RNA duplexes (siRNA 31 and 33) targeting the TMPRSS13 transcript or a 
scrambled GC-matched control (SCRM). After 72 hours post-treatment, cells were lysed and 
analyzed by Western blotting to analyze decreased expression of TMPRSS13. Asterisk 
indicates non-specific bands. (D) MCF-7 and DLD-1 cell lysates treated with (+) or without (-) 
lambda phosphatase and analyzed by Western blotting to detect endogenous TMPRSS13 using 
the α-intra-TMPRSS13 antibody under reducing conditions. (E) DLD-1 cell lysates were 
immunoprecipitated with either α-intra-TMPRSS13 or α-IgG control. Precipitated samples were 
separated in parallel and analyzed by Western by probing for either α-phospho-serine/threonine 
or α-intra-TMPRSS13. Input lane contains samples from lysates prior to immunoprecipitation. 
(F) Lysates from DLD1 or MCF-7 cells were treated with (+) or without (-) PNGaseF and 
analyzed by Western under reducing conditions 
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were analyzed by Western blotting and upon probing with anti-Phospho-Ser/Thr, a band 

corresponding to HMW TMPRSS13 was detected (Fig. 9E, right panel). Taken together these 

data indicate that the ~90 kDa species is representative of an endogenous phosphorylated 

TMPRSS13 species. 

To assess the glycosylation status of endogenous TMPRSS13, lysates from MCF and 

DLD1 cells were deglycosylated with PNGaseF for 60 minutes (Fig. 9F). In the control lane (-) 

two bands of ~70 kDa and ~60 kDa are observed; upon deglycosylation (+ lane) two bands of 

~60 kDa and 58 kDa are observed.  It is likely that the ~70 kDa band is reduced to the ~60 kDa 

species since similar observations are seen upon deglycosylation of TMPRSS13 in HEK293T 

cells (Fig. 2D). Notable, upon deglycosylation is the presence of two bands, which may 

represent two different TMPRSS13 isoforms rather than two different glycosylated full-length 

species. Currently there are two known TMPRSS13 isoforms that have been identified in lung, 

placenta, pancreas, prostate and testis (5).  Deglycosylation of lysates that expressed high 

levels of detectable endogenous phosphorylated TMPRSS13 revealed that the phosphorylated 

species shifts from ~90 kDa to ~73 kDa (Supplementary Fig. 21B) which is similar to what we 

observed upon deglycosylation of S506A-TMPRSS13 (Fig. 7A). Collectively, these results 

demonstrate that endogenous TMPRSS13 is post-translationally modified by glycosylation and 

phosphorylation.   

3.3.6 HAI-1 and HAI-2 mediate TMPRSS13 cell-surface localization and phosphorylation 

The data above indicate that loss of TMPRSS13 proteolytic activity, either directly by 

mutation of a residue within the catalytic triad, or indirectly, by mutation of the activation site, 

results in a detectable, phosphorylated, full-length form of TMPRSS13 and its cell surface 

localization. The Kunitz-type serine protease inhibitors, HAI-1 and HAI-2, are critical regulators 

of proteolytic activity of several TTSP family members (3,36,126) and play a role in proper cell-

surface localization (124,146,147). As shown in Fig. 9B, the cancer cell lines DLD1, BT20, 

HCC1937, and MCF7 all express endogenous HAI-1 and HAI-2. Therefore, we reasoned that 
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HAI-1 and/or HAI-2 could facilitate TMPRSS13 phosphorylation and cell surface localization. To 

test the inhibitory activity of HAI-1 and HAI-2 towards TMPRSS13, we performed a peptidolytic 

assay using active recombinant TMPRSS13 SP-domain, generated in Pichia Pastoris, with 

known inhibitors of TTSP family members including HAI-1, HAI-2, aprotinin, leupeptin, and 

benzamidine. The test was performed in parallel with active matriptase SP-domain, generated in 

the same expression system, for comparison with a well-characterized reference protease and 

to ensure inhibitor activity (132) (Fig. 10A).  Active TMPRSS13 or matriptase were incubated 

with the chromogenic peptide Suc-Ala-Ala-Pro-Arg-pNA in the absence or presence of the 

indicated serine protease inhibitors (inhibitor and substrate added concomitantly) and changes 

in absorbance were analyzed. Similar to previous reports, recombinant HAI-1 and HAI-2 both 

inhibit matriptase activity (132,148,149). HAI-1 appeared to be a poor inhibitor of TMPRSS13 

activity in this in vitro setting, whereas incubation with HAI-2 resulted in nearly complete loss of 

measurable proteolytic activity. This is similar to previous reports where HAI-1, containing both 

Kunitz inhibitory domains, displayed weak inhibitory activity towards recombinant TMPRSS13 

compared to HAI-2 in a cell-free assay (66).   We also observed TMPRSS13 inhibition with the 

globular polypeptide, Kunitz-type serine protease inhibitor, aprotinin (bovine pancreatic trypsin 

inhibitor) and leupeptin, whereas benzamidine was a poor inhibitor of TMPRSS13 in this assay.   

To validate the HAI-1/HAI-2 inhibitor observations in a cellular setting, we conducted 

peptidolytic activity assays utilizing whole cell extracts of cells expressing untagged TMPRSS13 

either alone or together with HAI-1 or HAI-2 (Fig. 10B).  No significant inhibition of activity, as 

measured by decreased absorbance compared to lysates of cells expressing WT-TMPRSS13 

alone, was observed upon TMPRSS13/HAI-1 co-expression, whereas significant TMPRSS13 

inhibition was seen when co-expressed with HAI-2.  As expected, no substrate conversion 

above mock background levels was observed when HAI-1 or HAI-2 was expressed without 

TMPRSS13, or when catalytically inactive S506A-TMPRSS13 was expressed. Taken together,  
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Figure 10: HAI-1 and HAI-2 mediate TMPRSS13 
phosphorylation. 
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Figure 10.  (A) Recombinant protease (5 nM) from Pichia pastoris clones transfected with either 

TMPRSS13 (black bars) or matriptase (white bars) was incubated at 37 °C for 60 min with the 

synthetic chromogenic peptide Suc-Ala-Ala-Pro-Arg-pNA (100 μm) in the absence or presence 

of the inhibitor indicated (inhibitor and substrate added concomitantly). The absorbance at 405 

nm was recorded and enzyme activities for each enzyme are depicted relative to activity when 

no inhibitor was added. Asterisks indicate significant inhibition (ANOVA multiple comparisons: p 

< 0.0001) compared to “no inhibitor” measurements. (B) 200 μg of whole cell protein lysates 

from HEK293T cells transfected with the plasmids indicated were incubated with the 

chromogenic peptide Suc-Ala-Ala-Pro-Arg-pNA (100 μm) at 37 °C for 60 min and absorbance at 

405 nm was recorded. Asterisks indicate significant decrease in proteolytic activity compared to 

WT-TMPRSS13+EV measurement (ANOVA multiple comparisons (p < 0.01)). n.s. = no 

significance. (C) Lysates from HEK293T cells that were transiently transfected with full-length 

human HAI-1 alone, HAI-2 alone, or together with WT-TMPRSS13 or either empty vector (EV), 

were separated by SDS-PAGE and analyzed by Western blotting. (D) Protein lysates (5 µg) 

from cells expressing WT-TMPRSS13-V5 with HAI-2 were treated with CIP for 60 minutes at 

37ºC and analyzed by Western blotting under reducing conditions. WT-13-V5 = WT-

TMPRSS13-V5. (E) Cells expressing empty vector (EV), WT-TMPRSS13-V5/EV, HAI-1/EV, 

HAI-2/EV or WT-TMPRSS13-V5 with either HAI-1 or HAI-2 were immunoprecipitated with α-V5 

antibody and analyzed by Western blotting (right panels). Whole cell lysates were analyzed by 

Western to verify expression before precipitation (input) (left panels). (F) Conditioned media 

from HEK293T cells expressing the indicated proteins were collected 24 hours after addition of 

serum free media and analyzed by Western blotting under reducing conditions. 
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these data are in concordance with the results from cell-free assays above (Fig. 10A) and 

further indicate that HAI-2 is a more efficient inhibitor of TMPRSS13 proteolytic activity than 

HAI-1.   

To determine whether there is a functional link between TMPRSS13 activation, 

phosphorylation, and HAI, lysates from HEK293T cells co-expressing either HAI-1 or HAI-2, and 

WT-TMPRSS13 were analyzed by Western blotting (Fig. 10C). Co-expression of HAI-2 and WT-

TMPRSS13 resulted in the appearance of a HMW species that corresponds in size to the 

phosphorylated form of TMPRSS13. This species was verified to be phosphorylated 

TMPRSS13 by CIP treatment, which led to the expected shift in mobility (Fig. 10D).  Co-

expression of WT-TMPRSS13 with HAI-1 resulted in no or weak signal of the phosphorylated 

TMPRSS13 species in whole cell lysates by Western blotting (Fig. 10C).  We suspected this 

could, at least in part, be due to limited detection capability of the α-extra-TMPRSS13 antibody, 

since a signal was detected in whole cell lysates of cells expressing WT-TMPRSS13-V5 and 

HAI-1 at longer exposure (Fig. 10E, input, and Fig. 12A, whole lysate). When WT-TMPRSS13-

V5 was immunoprecipitated from lysates of cells co-expressing either HAI-1 or HAI-2, 

phosphorylated TMPRSS13-V5 was detected in both samples, albeit at lower relative levels for 

HAI-1 (Fig. 10E, IP:V5), indicating that both HAI-1 and HAI-2 lead to increased TMPRSS13 

phosphorylation. Additionally, the co-immunoprecipitation of TMPRSS13-V5 with HAI-1 and 

HAI-2, respectively, indicates association between each of the inhibitors and TMPRSS13 (Fig. 

10E). Taken together, these data indicate that co-expression of HAI-1 or HAI-2 with TMPRSS13 

promotes TMPRSS13 phosphorylation.  

We consistently observed lower levels of both total and phosphorylated TMPRSS13 

when expressed with HAI-1 compared to HAI-2 (Fig. 10C and 10E), which could be due to 

enhanced activation and shedding of TMPRSS13 from the cell surface when co-expressed with 

HAI-1. Conditioned media analyzed from cells co-expressing untagged WT-TMPRSS13 with 

either HAI-1 or HAI-2 revealed that co-expression of TMPRSS13 with either inhibitor results in 
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increased shedding of the TMPRSS13 active SP-domain into the media compared to WT-

TMPRSS13 without HAI expression (Fig. 10F). A greater relative amount of the shed SP-

domain is observed upon HAI-1 co-expression compared to HAI-2 co-expression alongside 

TMPRSS13. Similar observations were previously described for the TTSP family member, 

matriptase. When matriptase was co-expressed with either HAI-1 or HAI-2, more shed 

matriptase was detected in the presence of HAI-1 in MDCK cells (124).  These data suggest that 

the lower levels of the phosphorylated TMPRSS13 observed in cells co-expressing HAI-1 

compared with HAI-2 may have resulted from increased activation and shedding of TMPRSS13 

due to lower inhibitory potential of HAI-1 towards TMPRSS13 compared to HAI-2 (Figs. 10A-B, 

F).  

To further study the role of HAI-1 and HAI-2 in regulating cell surface localization of 

TMPRSS13, HEK293T cells were co-transfected with WT-TMPRSS13-V5 and either empty 

vector, HAI-1, or HAI-2, followed by immunocytochemical analysis (Fig. 11). Visualization of 

HAI-1 was accomplished using the M19 antibody (125) and HAI-2 was visualized using a vector 

expressing a HAI-2-EYFP fusion protein (124). As expected, transfection with WT-TMPRSS13-

V5 alone resulted in intracellular, perinuclear accumulation of the protease (Fig. 11A).  In 

contrast, co-expression with HAI-1, which itself mainly localizes to the cell surface, led to cell-

surface localization of TMPRSS13 as well as some intracellular staining (Fig.11B). In cells co-

expressing HAI-2-EYFP and WT-TMPRSS13-V5, HAI-2 localizes mostly intracellularly (Fig. 

11C), in accordance with previous observations in MDCK cells (124). TMPRSS13 appears to 

co-localize with HAI-2 intracellularly as well as at the cell surface (also refer to the surface 

biotinylation data below). It is plausible that interactions between TMPRSS13 and HAI-2 take 

place along the secretory pathway since co-localization of HAI-2 with endoplasmic reticulum 

and cis-Golgi markers has been previously reported (124,150).  

To verify that TMPRSS13 is localizing to the cell surface, and to identify which form(s) of 

TMPRSS13 is(are) surface-associated, we performed biotin-labeling of cell surface proteins on  
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Figure 11: HAI-1 and HAI-2 mediate TMPRSS13 cell-surface 
localization 

 

 

Figure 11.  Permeabilized cells transfected with WT-TMPRSS13-V5 alone (A) or co-transfected 
with HAI-1 (B), or HAI-2-EYFP (C) were stained with anti-V5 (A and C), or anti-V5 and the anti-
HAI-1 M19 antibody (B).  The cells were visualized by confocal fluorescence microscopy. Nuclei 
(DAPI) (blue, A, B, C), WT-TMPRSS13-V5 (red, A, B, C), HAI-1 (green, B), and HAI-2-EYFP 
(green, C).  Merged images are shown in panels on the right.   
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Figure 12: Localization of phosphorylated TMPRSS13 on the 
cell surface 

 

 

Figure 12. Cell surface proteins of HEK293T cells expressing WT-TMPRSS13-V5 or HA-WT-
TMPRSS13 (C) with either empty vector (EV) (A, left), HAI-1 (A, right), or HAI-2 (B) were biotin 
labeled at room temperature for 30 minutes. Biotin-labeled proteins were precipitated with 
streptavidin agarose for 60 minutes at 4ºC.  Streptavidin-agarose beads were then pelleted and 
the supernatant containing proteins that were not precipitated with streptavidin agarose were 
collected (wash). Biotin-labeled proteins were eluted from beads by treatment with Laemmli 
sample buffer with 5% 2-Mercaptoethanol and run side-by-side with non-labeled proteins and 
whole lysates prior to streptavidin treatment. Different exposures for V5 Western blot 
membranes are displayed. 



64 
 

 
 

intact HEK293T cells expressing WT-TMPRSS13-V5 with either empty vector, HAI-1, or HAI-2 

(Fig. 12A and 12B). As expected, when WT-TMPRSS13-V5 was expressed without HAI-1 or 

HAI-2, no or very low levels of cell-surface biotin-labeled protease were detected by Western 

blotting (Fig. 8A, left) in accordance with the immunocytochemistry data in figures 5A and 11A.  

In contrast, co-expression with HAI-1 or HAI-2 resulted in surface-associated TMPRSS13 (Figs. 

12A, right and 12B). Interestingly, the V5-tagged phosphorylated, full-length inactive (~95 kDa) 

and active protease (~38 kDa) SP-domain species appeared to be predominantly localized at 

the cell surface, since those TMPRSS13 species were readily detected in the biotin labeled 

samples, and little to no phosphorylated or active TMPRSS13 was observed in the 

corresponding, non-biotinylated fractions (wash lanes). Correspondingly, the non-

phosphorylated, full-length inactive TMPRSS13 species (~75 kDa) was detected in the wash 

lanes (Fig. 12A and 12B). This experiment was repeated with co-transfection of N-terminal HA-

tagged (HA-WT-TMPRSS13) and HAI-2 with similar results (Fig. 12C).  According to these data, 

the non-phosphorylated, inactive full-length species localizes primarily intracellularly. Notably, 

cells expressing TMPRSS13 with HAI-1 display the highest active SP-domain to total 

TMPRSS13 ratio comparatively to TMPRSS13 with HAI-2 on the cell surface. It is possible that 

this could, at least in part, be attributed to the poor inhibitory capability of HAI-1 towards 

TMPRSS13, which may lead to increased auto-activation of TMPRSS13. Importantly, both HAI-

1 and HAI-2 are detected in the biotinylated samples indicating that they both localize to the cell 

surface. Collectively, these data indicate that HAI-1 and HAI-2 promote TMPRSS13 

phosphorylation and cell surface localization of the protease, and that phosphorylated 

TMPRSS13 is the predominant form present at the cell surface.    

3.3 Biochemical Characterization Discussion 

As an effort to characterize the hepsin/TMPRSS subfamily member, TMPRSS13, we 

performed biochemical and cell biological analyses. Expression of human, full-length 

TMPRSS13 cDNA in mammalian cells led to the production of a recombinant glycoprotein that 



65 
 

 
 

could be detected in both cell lysates and as a shed form in conditioned media.  Full-length 

TMPRSS13 displayed proteolytic activity both in whole cell extracts and in conditioned media. 

Like various other TTSPs, including matriptase, matriptase-2, hepsin, TMPRSS2, TMPRSS3, 

and TMPRSS4 that  are capable of auto-activation (36), the proteolytic activity of TMPRSS13 

also appears to be involved in its own activation.  Mutation of the active site serine residue led 

to decreased levels of detectable active SP-domain by Western blotting. Addition of active, 

recombinant TMPRSS13 to cell surface catalytically deficient TMPRSS13 (S506A-TMPRSS13-

V5) also led to TMPRSS13 two-chain conversion. Intriguingly, the well-studied TTSP family 

member, matriptase, is also capable of cleaving TMPRSS13 at its activation site. Therefore, 

matriptase may function as an activator of TMPRSS13 in certain conditions; however the 

physiological relevance of this phenomenon awaits further study.  

Cell imaging studies revealed that catalytic inactivation of TMPRSS13 by either mutation 

of the catalytic serine, or of the arginine residue in the zymogen activation site, results in 

efficient cell surface localization of TMPRSS13. WT-TMPRSS13 failed to localize at the cell 

surface and was largely detected intracellularly. However, when TMPRSS13 is expressed with 

either HAI-1 or HAI-2, efficient cell surface localization is observed using both 

immunocytochemistry and cell surface protein biotinylation assays. Therefore, the cognate 

inhibitors HAI-1 and HAI-2 may facilitate TMPRSS13 localization by preventing aberrant 

intracellular activation. In this regard, it is interesting to note that HAI-1 displays weak inhibitory 

activity towards TMPRSS13. Previous reports examining the transport of the TTSP family 

member matriptase to the cell surface have proposed that HAI-1 interacts with the zymogen 

form of matriptase, thus preventing intracellular activation and to aid in its transport to the cell 

surface (124,146,147,151). Therefore HAI-1 may function in a similar manner by interacting with 

the zymogen form of TMPRSS13 to prevent artificial intracellular activation of TMPRSS13.  

One of the most intriguing findings of our studies is the presence of a phosphorylated 

form of TMPRSS13. To our knowledge, this is the first time a TTSP, or any other membrane 
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serine protease, has been demonstrated to be modified by phosphorylation. Biotinylation 

studies revealed that the phosphorylated species primarily localizes at the cell surface, 

presenting the possibility that phosphorylation of TMPRSS13 promotes its translocation to the 

cell surface. Additionally, in the experiments designed to determine whether TMPRSS13 is 

capable of auto-activation, the full-length phosphorylated species is the predominate species to 

be converted into the two-chain form. The mechanism of TTSP auto-activation is not known, 

however it is thought to involve oligomerization (36). Therefore, one possibility is that 

phosphorylation of TMPRSS13 promotes oligomerization and cleavage into the two-chain 

species, thus linking phosphorylation events to zymogen conversion of TMPRSS13. Indeed, 

previous reports on proteins that contain IDR’s have demonstrated that phosphorylation of 

disordered regions allows for tight control over protein-protein interactions (152,153). Additional 

studies are needed to gain a better understanding of the consequences of TMPRSS13 

phosphorylation. 

Previous studies of protease phosphorylation mainly focused on intracellular proteases 

including caspases and deubiquitinating enzymes  (DUBs) (154).  ADAM (A Disintegrin And 

Metalloproteinase) proteases have also been shown to be phosphorylated (155). The C-terminal 

domain of the transmembrane ADAM17 undergoes phosphorylation at different sites including 

Thr735 and Ser819 and phosphorylation at Thr735 was found to be necessary for ADAM17-

catalysed shedding of TGF-alpha. With ADAM15, phosphorylation of the cytoplasmic domain 

resulted in interaction with several potential signaling proteins, including the Src kinases, Hck 

and Lek (156).  It is plausible that phosphorylation of TMPRSS13 regulates similar and/or 

additional processes including localization, protein-protein interactions, and activation. 

Currently, the kinases responsible for TMPRSSS13 phosphorylation are unknown. 

Phosphorylation software tools predict potential candidates for multiple serine residues within 

the intracellular domain, including the stress activated kinases JNK and p38MAPK, the cyclin 

dependent kinases (CDK) 2 and 5, and ERK1. Other candidates have been suggested including 
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CaM kinase II and protein kinase C (128,129). Future studies to identify the kinase(s) 

responsible for TMPRSS13 phosphorylation may reveal novel insights into the cellular pathways 

in which TMPRSS13 is involved.  

TMPRSS13, HAI-1, and HAI-2 are co-expressed in many developing and adult 

mammalian epithelia including simple, transitional, and multi-layered squamous epithelia 

(65,149,157). The current study provides novel information about the regulation of TMPRSS13 

activity, HAI-mediated cell surface localization, and phosphorylation, and may represent a new 

post-translational mechanism critical for cellular regulation and function of TMPRSS13 and 

other, similar proteases.  
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CHAPTER 4: TMPRSS13 IN BREAST CANCER 

 

4.1 Materials and methods 
 

4.1.1 Animals 

All procedures involving live animals were performed in an Association for Assessment 

and Accreditation of Laboratory Animal Care International-accredited vivarium following 

institutional guidelines and standard operating procedures. Tmprss13 deficient mice 

(Tmprss13tm1Dgen) were generated by Deltagen Inc. and acquired from Jackson Laboratories 

(Bar Harbor, ME). The mice were generated by homologous gene recombination using a gene 

targeting vector containing a promoterless LacZ-Neo fusion gene (β-galactosidase reporter) in 

129P2 OlaHsd-derived E14 embryonic stem cells. Recombination resulted in an in-frame 

insertion and deletion of exon 10 and 92 bp of exon 9 encoding the Asp residue of the catalytic 

triad. Expression results in a fusion protein consisting of the first 377 amino acids of TMPRSS13 

fused to β-galactosidase (65). Genotyping was performed using the following primer sets for 

Tmprss13: moIMR0012 (5’-GGGTGGGATTAGATAAATGCCTGCTCT-3’), oIMR6316 (5’-

AAATGACCCACCTAATTAGCTGTAG-3’), and oIMR6318 (5’-

GCCTCAATGAGACCTGTTGGATCAC-3’).  

Mice transgenic for the MMTV-Polyoma virus middle T oncogene (PyVT) in the FVB/N 

background (strain: FVB/N-Tg (MMTV-PyVT)634Mul) were obtained from The Jackson 

Laboratory and crossed with Tmprss13-/- mice to generate F1 PyVT/Tmprss13+/- mice. Male F1 

PyVT/Tmprss13+/- mice were then crossed with Tmprss13-/- mice to generate F2 study cohorts 

of PyVT/Tmprss13+/- (hereafter referred as PymT/Tmprss13-control mice) and PyVT/Tmprss13-/- 

(hereafter referred as PymT/Tmprss13-/- mice) female littermates. Genotyping for the PymT 

allele was performed with the following primer sets: PymT up: (5’- 

CGGCGGAGCGAGGAACTGAGGAGAG-3’), and PymT down: (5’- 

TCAGAAGACTCGGCAGTCTTAGGCG-3’) 
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4.1.2 Western blotting 

Cultured human cells were lysed using RIPA buffer: 50 mM, Tris, 150 mM, NaCl, 0.1% 

SDS, 0.5% deoxycholic-acid, 1% NP-40, pH 7.4 supplemented with protease inhibitor cocktail 

(Sigma-Aldrich, St. Louis, MO) and cleared by centrifugation at 12,000 x g at 4ºC. Protein 

concentrations were determined using a Pierce BCA Protein Assay Kit (Thermo Scientific, 

Waltham, MA). Lysates were separated under reducing conditions on 10% SDS-page gels and 

blotted onto PVDF membranes.  Breast cancer lysates for cell line expression panel were a kind 

gift from Dr. Julie Boerner (Karmanos Cancer Institute, Detroit M). Antibodies used in western 

blot detection were:  rabbit anti-TMPRSS13 (ab59862 – Abcam, Cambridge, MA), rabbit anti-

PARP (9532S – Cell Signaling Technologies, Danvers, MA), rabbit anti-Bcl-xL (2764 – Cell 

Signaling Technologies, Danvers, MA), and mouse anti-beta-actin (Sigma St. Louis, MO). 

Secondary antibodies were goat anti-rabbit or goat anti-mouse HRP-linked (Millipore, Billerica, 

MA). For detection, secondary antibodies conjugated with horseradish peroxidase (Chemicon, 

Temecula, CA) in combination with Super-SignalWest Femto or ECL Chemiluminescent 

Substrate (Pierce, Rockford, IL) were used. 

4.1.3 Cell culture of human breast cancer cell lines 

MCF7 cells were cultured in Dulbecco’s modified Eagle’s media (DMEM) (Gibco, Life 

Technologies, Grand Island, NY) supplemented with 10% fetal bovine serum (Atlanta 

Biologicals, Lawrenceville, GA).  BT-20 cells were grown in Eagles + NEAA media (Eagle’s 

MEM with 2 mM L-glutamine and Earle’s BSS adjusted to contain 1.5g/L sodium bicarbonate, 

0.1 mM non-essential amino acids, 1mM sodium pyruvate, and 10% FBS). HCC1937 cells were 

grown in RPMI + L-GLUT media (RPMI-1640 media with 2 mM L-glutamine adjusted to contain 

1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM HEPES, 1 mM sodium pyruvate, and 10% 

FBS). Transient knockdown of TMPRSS13 expression was performed using 

Lipofectamine® RNAiMAX according to the manufacturer’s instructions (Invitrogen, Life 

Technologies, Grand Island, NY). Stealth siRNATM constructs were obtained from Invitrogen life 
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technologies (HSS130532 [corresponding to siRNA-32], and HSS130531 [corresponding to 

siRNA-31]).  

4.1.4 X-gal staining of mouse tissue 

 Resected mouse tissue was stained with BetaBlue reaction Millipore Burlington, MA) 

buffer overnight at 37ºC. Tissues were then fixed for 24 hours in 10% neutral-buffered zinc 

formalin (Z-fix, Anatech, Battle Creek, MI), processed and embedded into paraffin and 

sectioned. 

4.1.5 Immunohistochemistry analyses of mouse tissue  

Tissues were fixed for 24 hours in 10% neutral-buffered zinc formalin (Z-fix, Anatech, 

Battle Creek, MI), processed into paraffin and sectioned. Antigens were retrieved by heating in 

epitope retrieval buffer-reduced pH (Bethyl Laboratories, Montgomery, TX). The sections were 

blocked for 1 hour at room temperature with 2.5% normal horse serum in PBS prior to 

incubation overnight at 4°C with primary antibody. Primary antibodies used were rabbit anti-

matriptase (1:100) and goat anti-c-Met (1:100)(R&D Systems, Minneapolis, MN). Cell 

proliferation was visualized by intraperitoneal injection of 100 μg/g bromodeoxyuridine (BrdU) 

(Sigma Chemical Co, St. Louis, MO) 2 h before euthanasia. BrdU incorporation was detected 

with a rat anti-BrdU antibody (Accurate Chemical and Scientific Corporation, Westbury, NY, 

1:10). Macrophages were detected by a rat anti-F4/80 antibody (1:50) (Invitrogen, Life 

Technologies, Grand Island, NY). As negative controls for macrophage staining, IHC samples 

were treated with biotinylated anti-rat IgG (Vector Laboratories Burlingame, CA) and labeled 

with vectastain ABC Kit (Vector laboratories Burlingame, CA).  Apoptotic cells were detected 

with rat anti-cleaved caspase-3 (Cell Signaling Technologies, Danvers, MA). Negative controls 

were treated with non-immune rabbit IgG(adjusted to same final concentration as specific 

primary antibodies). Primary antibody labeling was then performed using ImmPRESS Reagent 

Kit anti-rabbit Ig kit (Vector laboratories Burlingame, CA). All staining was performed with 

SIGMAFAST™ 3,3′-Diaminobenzidine tablets (Sigma-Aldrich St. Louis, MO). 



71 
 

 
 

4.1.6 Breast cancer tissue array 

The use of human tissue paraffin embedded samples was approved according to the 

Institutional Review Board Administration. The “BR723 and T088A” breast cancer tissue arrays 

with pathology grading were obtained from US Biomax, Inc. (Rockville, MD). Tissue arrays were 

deparaffinized with xylene and hydrated with graded ethanol solutions. Antigen retrieval was 

performed using heated citrate buffer, reduced pH (Bethyl Laboratories, Montgomery, TX). The 

arrays were blocked with 2 % bovine serum albumin in PBS, and immunostained overnight at 

4°C5. Primary antibodies were rabbit anti-TMPRSS13 (PA5-30935 1:250) (Thermo Scientific, 

Waltham, MA). As negative control rabbit IgG was used (Sigma, St. Louis, MO) (adjusted to 

same final concentration as specific primary antibodies). Primary antibody labeling was then 

performed using ImmPRESS Reagent Kit anti-rabbit Ig kit (Vector laboratories Burlingame, CA). 

All staining was performed with SIGMAFAST™ 3,3′-Diaminobenzidine tablets (Sigma-Aldrich St. 

Louis, MO). 

4.1.7 Proliferation assays in human breast cancer cell lines 

Breast cancer cell lines were seeded in 12-well plates at 50,000 cells/well. Simultaneous 

reverse transfection with siRNA targeting TMPRSS13, or GC-matched control, was performed 

upon seeding using RNAiMAX according to the manufacturer’s instructions (Invitrogen, Life 

Technologies, Grand Island, NY). Cells were counted using a hemocytometer at the indicated 

days post knockdown and adjusted to number of cells originally seeded. Necrotic cells were 

labeled with 0.4% trypan blue stain (Life Techonologies (Grand Island, NY) prior to counting.  

4.1.8 Invasion assays 

Cells were first seeded in 6-well plates while performing simultaneous reverse 

transfection with either siRNA targeting TMPRSS13 or GC-matched control using RNAiMAX 

according to the manufacturer’s instructions (Invitrogen, Life Technologies, Grand Island, NY). 

Fourty-eight hours post silencing, cells were seeded in 8.0uM pore size chambers (Corning 

Corning, NY) pre-treated with MatrigelTM matrix at 1mG/mL concentration in reduced serum 
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media. Full-serum media was placed underneath chambers to act as chemoattractant. Cells 

were allowed to invade overnight and the number of cells that had invaded were stained with 

Diff-Quik Stain Set (Siemens Newark, DE) per manufacturer’s protocol and counted using 

ImageJ software. 

4.1.9 Cell viability assays 

Cells were first seeded in 6-well plates while performing simultaneous reverse 

transfection with either siRNA targeting TMPRSS13 or GC-matched control using RNAiMAX 

according to the manufacturer’s instructions (Invitrogen, Life Technologies, Grand Island, NY). 

Forty-eight hours post silencing cells were counted and 12,000 cells/well were added to 96-well 

black, clear bottom plates (Corning Corning, NY). Twenty-four hours post seeding cells were 

treated with vehicle control or Paclitaxel (T7402 - Sigma-Aldrich St. Louis, MO). Forty-eight 

hours after treatment cell viability was analyzed Calcein AM Cell Viability Assay per 

manufacturers protocol (Trevigen Gaithersburg, MD) 

4.2 TMPRSS13 in breast cancer - Introduction 

Breast cancer progression is accompanied by increased expression of extracellular and 

cell-surface proteases that are capable of degrading the extracellular matrix as well as cleaving 

and activating downstream targets. Traditionally, proteolytic processes were thought to 

exclusively be involved in modifying the tissue microenvironment within the breast to allow for 

cancer cell invasion and dissemination to other organs. However, more recently, proteases 

have gained attention for also playing a role in the promotion of cancer progression via the 

regulation of pro-oncogenic signaling pathways. These proteolytic pathways have been shown 

to be significantly involved in the relationship between the proliferating tumor and its 

surrounding stroma to mediate various aspects of tumor progression including proliferation, 

angiogenesis, inflammation, and survival (2,158,159). 

The vast majority of studied proteases involved in cancer progression are secreted 

proteases expressed in the stroma of breast tumors by fibroblasts or inflammatory cells. 
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However, a new protease family of 17 structurally unique multi-domain serine proteases that are 

anchored directly to the plasma membrane, termed the type II transmembrane serine proteases 

(TTSPs), was discovered at the turn of the millennium (36). Since their discovery, this family of 

proteases has been shown to play critical and essential roles in normal development, tissue 

homeostasis, and disease, including cancer (126,160). The expression of TTSP’s in cancer is 

often dysregulated, and various TTSP’s, cancer including matriptase, hepsin, TMPRSS2, and 

TMPRSS4, have been shown to play important tumor promoting roles (159).  

To identify novel TTSP family members that may play a role in breast cancer 

progression, we performed a systematic screening of the expression profiles of TTSP family 

members in both normal and invasive ductal carcinoma (IDC) patient samples. A candidate 

family member known as Transmembrane Protease, Serine 13 (TMPRSS13) showed 

significantly increased mRNA expression in IDC compared to normal breast tissue. Currently, 

no published study has examined the expression or function of TMPRSS13 in cancer.  Several 

studies have been published indicating a role for TMPRSS13 in influenza infection due to its 

ability to proteolytically modify the viral protein hemagglutinin, thereby mediating membrane 

fusion of the pathogenic avian influenza viruses (130,131). Additionally, a physiological role has 

been implicated for TMPRSS13 through characterization of TMRPSS13-deficient mice, which 

display a defect in skin development with impaired epidermal barrier acquisition (65). Several 

biochemical studies have also been published on TMPRSS13, one of which demonstrated that 

the serine protease domain of TMPRSS13 is capable of activating the pro-oncogenic signaling 

molecule hepatocyte growth factor (HGF) in vitro (66), and it is currently the only known TTSP 

family member to be phosphorylated, which may play a role in its cell surface localization (40).  

In the current study, in vivo “loss-of-function” strategies using novel genetic mouse 

models along with complementary human cell culture models were performed to determine 

whether TMPRSS13 plays a role in breast cancer. We demonstrate here that TMPRSS13 

expression is increased in both human and murine breast cancer, and that genetic ablation of 
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TMPRSS13 impairs mammary cancer progression resulting from decreased proliferation and 

increased apoptosis in vivo. Additionally, we demonstrate that loss of TMPRSS13 in human 

triple negative breast cancer (TNBC) cell lines increases chemosensitivity to paclitaxel 

treatment, suggesting a pro-survival role of TMPRSS13 in breast cancer. 

4.3 TMPRSS13 in breast cancer - Results 

4.3.1 Increased expression of TMPRSS13 in breast cancer 

As part of ongoing efforts to determine the expression and function of the type-II 

transmembrane serine protease (TTSP) family members in breast cancer, a systematic 

expression analysis using the OncomineTM database was performed. The in sillico analysis 

revealed that TMPRSS13 transcript levels are significantly increased in invasive ductal 

carcinoma (IDC) patient samples compared to normal breast tissue using The Cancer Genome 

Atlas (TCGA) dataset (Fig. 13A). To verify the increased expression at the protein level a panel 

of breast epithelial cell lines were screened for expression by Western blotting, and patient 

tumor samples were stained for TMPRSS13 expression by immunohistochemistry (IHC). 

Western blotting results demonstrate that TMPRSS13 has increased expression in several 

breast cancer cell lines of a diverse origin compared to the non-malignant breast epithelial cell 

lines, MCF10a and hTERT-HME1, which show little to no expression of TMPRSS13 (Fig. 13B). 

IHC analysis of TMPRSS13 expression from 24 patient samples displayed an increase in 

TMPRSS13 protein expression in the IDC samples compared to the normal and benign breast 

lesions (Fig.13D). Additionally, TMPRSS13 expression is specifically localized to the malignant 

epithelial cells and not the surrounding stroma, whereas little to no detection of TMPRSS13 is 

observed in the non-malignant samples (Fig. 13C). Taken together these data indicate that 

TMPRSS13 expression is increased in breast cancer at both the transcript and protein levels. 

4.3.2 Increased TMPRSS13 expression in the MMTV-PymT model of breast cancer 

To examine the effects of TMPRSS13 on breast cancer progression in vivo, the mouse 

mammary tumor virus (MMTV) Polyoma middle T (PymT) transgenic mammary tumor model  



75 
 

 
 

Figure 13: TMPRSS13 expression in breast cancer 

 

Fig. 13. (A) Box and whisker plot representing TMPRSS13 mRNA expression data for normal 
breast (N=60, median= -0.8) and IDC (N=468, median= 0.3) from the OncomineTM microarray 
database (TCGA data). Boxes show interquartile range, and medians are indicated by 
horizontal lines (B) Elevated TMPRSS13 expression in seven breast cancer lines compared to 
two non-malignant breast epithelial lines assessed by Western blotting. (C) IHC analysis of 
human patient samples  reveals very low to no detectable TMPRSS13 in normal mammary 
glands (duct indicated with arrow) and pronounced TMPRSS13 staining in carcinoma cells 
(brown) with no detectable expression in the stroma (yellow asterisk). (D) Staining intensity was 
assessed using defined scoring criteria by two different investigators unaware of sample 
identity. Dots represent samples from individual patients. Significant differences are observed 
between normal versus IDC (P<0.05) and benign (adenosis and fibroadenoma) versus IDC 
(P<0.05). Blue horizontal line=median. 

  



76 
 

 
 

was utilized. These transgenic mice express the Polyoma middle-T antigen under the 

transcriptional control of the mouse mammary tumor virus promoter, thus resulting in the 

expression of the PymT oncoprotein in mammary epithelial cells. Due to the expression of the 

PymT oncoprotein in mammary epithelial cells, mice develop mammary tumors approximately 1 

to 6 months after birth (50). Furthermore, the MMTV-PymT model of breast cancer is further 

characterized by having a 100 percent penetrance of primary tumors, with a high occurrence of 

lung metastasis, and closely resembles the progression of human breast cancer. (161-163) 

In order to ensure that the MMTV-PymT mouse mammary cancer model mimics the 

observations described above in human breast cancer and the normal breast, we assessed the 

expression and localization of murine TMPRSS13 protein. We took advantage of the 

promoterless β-galactosidase reporter gene cassette being under the transcriptional control of 

the endogenous Tmprss13 promoter in TMPRSS13+/- mice. Therefore, X-gal staining of tissue 

followed by whole mount or histological examination allows for precise detection of TMPRSS13 

expression in mouse tissue. Glands from heterozygous TMPRSS13+/- mice with or without the 

MMTV-PymT transgene were examined and revealed that TMPRSS13 expression is not 

detected in the normal mammary gland (Fig. 14C), whereas it is readily detected in mammary 

carcinomas (Figs. 14A and D). Additionally, the expression of TMPRSS13 is specifically 

expressed in the malignant epithelial cells and not the surrounding stroma, corresponding to the 

expression pattern observed in human patient samples (Figs. 13C and 14D). Furthermore, 

whole mount staining of resected lungs from 170-day old mice reveals that TMPRSS13 is also 

expressed at the metastatic lung lesions (Fig. 14B).  

4.3.3 TMPRSS13 deficiency delays tumor development and decreases tumor burden, 

growth rate, and metastasis in vivo 

 To test the effects of genetic ablation of TMPRSS13 in vivo on breast cancer 

progression, comparative analyses were performed on TMPRSS13-deficient and control mice 

harboring the MMTV-PymT transgene. Prospective littermate cohorts were established by  
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Figure 14: TMPRSS13 is expressed in cancer cells of murine 
mammary carcinomas 

 

Fig. 14. Endogenous TMPRSS13 visualized by X-gal staining (blue). (A) TMPRSS13 is 
expressed in MMTV-PymT mammary carcinomas (arrows) and (B) in lung lesions (arrows) in 
whole mounts. (C-D) Histological analysis: no detectable TMPRSS13 in normal mammary ducts 
(arrow in C) (C) whereas TMPRSS13 is readily detected (blue, arrows in D) in carcinoma cells 
in tumors from MMTV-PymT transgenic mice (D). No detectable expression of TMPRSS13 in 
the stroma (asterisk). LN=lymph node. You probably  need to include tumor WT without blue too 
as E. 
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crossing TMPRSS13+/-/MMTV-PymT with TMPRSS13-/- mice to generate TMPRSS13-

deficient/MMTV-PymT and control mice (TMPRSS13-/-/MMTV-PymT and TMPRSS13+/-/MMTV-

PymT respectively). Established littermate-controlled cohorts were monitored weekly for 

detection of the first palpable mammary mass (tumor latency). A 129-day end-point was 

established where total mammary tumor burden was assessed and calculated by the total 

weight of the postmortem excised mammary glands of each individual mouse, and total tumor 

area was calculated by caliper measurements. In addition, the presence of lung metastasis was 

determined at the termination of the cohort experiment (day 129). TMPRSS13 deficiency 

affected all tumorigenic parameters measured (Fig. 15). Thus genetic ablation of TMPRSS13 

resulted in a significant delay in the formation of palpable mammary tumors in TMPRSS13-

deficient mice (Fig. 15A).  Additionally, a significant decrease in the overall final tumor burden 

was observed in TMPRSS13-deficient mice compared to control, with a 62% overall reduction in 

the final tumor burden in TMPRSS13-/-/MMTV-PymT mice (median tumor burden of 

TMPRSS13+/-/MMTV-PymT, 3.03 g, TMPRSS13-/-/MMTV-PymT, 1.16 g) (Fig. 15B). The growth 

rate was also significantly reduced in TMPRSS13-deficient mice with a median growth rate of 

1.53 mm2/day in TMPRSS13-deficient mice, compared to TMPRSS13 control mice that 

displayed a growth rate of 2.67mm2/day (Fig. 15C). Furthermore, TMPRSS13-deficient mice had 

a decreased incidence of lung metastasis (Fig. 15D) (P=0.052, Chi-square test). Taken together 

these data indicate that TMPRSS13 deficiency impairs mammary cancer progression. 

4.3.4 TMPRSS13 deficiency decreases tumor cell proliferation and increases apoptotic 

cell death in vivo 

 TMPRSS13 deficiency results in a decreased final tumor burden and tumor growth rate 

in vivo (Fig. 15B and C). To determine whether the decreased tumor growth in TMPRSS13-/- 

mice were due to either decreased proliferative abilities and/or increased programmed cell 

death rates in TMPRSS13-/-/PymT tumors, tumor tissues were stained for either BrdU or the 

cleaved form of caspase-3 as a marker for cells undergoing apoptosis. Adult 129-day old cohort  
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Figure 15: Delayed tumor development, smaller tumors, 
decreased growth rate and metastasis in TMPRSS13

-/-
 mice 

 

 
 
Fig. 15. (A) Kaplan-Meier plot of prospective cohort of littermate TMPRSS13+/MMTV-PymT 
(N=15) and TMPRSS13-/-/MMTV-PymT mice (N=21). Mice were palpated weekly to detect time 
of tumor formation. All control mice had palpable tumors at 84 days and TMPRSS13-/- mice at 
127 days (P<0.001).  (B) Tumor burden at 129 days. Mice were euthanized, mammary tumors 
were resected and the total tumor weight was recorded. Median values; 3.03 g (control, N=14) 
and 1.16 g (-/-, N=18) P<0.004.  (C) Growth rate of mammary tumors in TMPRSS13+ (blue 
circles) and TMPRSS13-/- (red circles) mice, P<0.05. (D) Presence of lung metastasis was 
determined at the termination of the cohort experiment (day 129). Lung lesions were detected 
using a dissection microscope and in H&E slides; Control mice 8/12 (67%) and TMPRSS-/- mice 
4/14 (29%) P=0.052.   
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mice were injected with the BrdU nucleotide analog 2 hours prior to sacrifice. Tumors were then 

removed, fixed and paraffin embedded, and histological staining was performed for BrdU 

positive cells. TMPRSS13-/- mice displayed a decrease in proliferation with a 47% reduction in 

the number of proliferating cells compared to control mice (Fig. 16A and B). TMPRSS13-/- mice 

also displayed a marked increase in apoptotic cell death compared to the control littermate 

mice, with a six-fold increase in the number of apoptotic cells in TMPRSS13-/- mice. (Fig. 16C 

and D)  

4.3.5 Silencing TMPRSS13 expression in human breast cancer cells decreases 

proliferation and induces apoptosis 

To test whether loss of TMPRSS13 effects cancer cell proliferation in human mammary 

epithelial cells, TMPRSS13 expression was silenced in three separate breast cancer cell lines. 

The BT20, HCC1937, and MCF-7 cell lines were chosen for these analyses because they, in 

addition to expressing endogenous TMPRSS13, represent different breast cancer subtypes; the 

highly invasive, TNBC, basal-like subtype (HCC1937 and BT20) and the poorly invasive, ER+, 

PR+ Luminal A subtype (MCF-7). TMPRSS13 was silenced using two non-overlapping synthetic 

RNA duplexes and scrambled GC-matched duplexes were used as controls. Cells were plated 

in serum containing media, trypsinized, and counted on the days indicated (Fig. 17A). MCF-7 

cells displayed a loss of cells at day 3 after TMPRSS13 silencing, indicative of cell death. In 

HCC1937 and BT-20 significantly lower cell numbers were detected in TMPRSS13 silenced 

cells (decrease in the slopes, siRNA vs. control). This indicates decreased proliferation and/or 

cell survival. Taken together these data indicate that loss of TMPRSS13 expression reduces the 

proliferation potential in breast cancer. 

 Loss of TMPRSS13 expression in the luminal like MCF7 breast cancer cell line results in 

an overall decrease in cell numbers. To test whether the decrease in cell numbers is due to 

increased apoptosis, lysates were collected at the indicated days for all three cell lines. The 

levels of cleaved Poly (ADP-ribose) polymerase (PARP), a marker for apoptosis, in breast  
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Figure 16: Decreased proliferation and increased apoptosis 
in TMPRSS13

-/-
 mice 

 

 
 
Fig. 16 (A) Quantification of the number of BrdU positive proliferating cells in mammary tumors 
from 129 day old TMPRSS13+/PymT (N=3) and TMPRSS13-/-/PymT (N=3) mice. Means: 
TMPRSS13+ = 16.5% TMPRSS13-/- = 9.2% p<0.05 (B) Representative staining for the number 
of BrdU positive cells in TMPRSS13+/PymT (left) and TMPRSS13-/-/PymT (right) mice. (C) 
Quantification of the number of apoptotic cells in 129 day old TMPRSS13+/PymT (N=4) and 
TMPRSS13-/-/PymT (N=4) mouse tumors. Means: TMPRSS13+ = 0.59% TMPRSS13-/- = 3.55% 
p<0.05. Positive cells were counted by an investigator who was unaware of genotypes. 
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Figure 17: TMPRSS13 silencing decreases human TNBC cell 
proliferation and induces apoptosis 

 

 
Fig. 17 (A) Relative mean cell numbers by hemocytometer counting following siRNA-mediated 
knockdown of TMPRSS13 were assessed over time in serum containing media in three breast 
cancer cell lines (MCF-7, BT20, and HCC1937). Each experimental condition was done in 
triplicate. Error bars represent SD. Graphs are representative of three independent experiments. 
Asterisks indicate significant difference from scrambled GC-matched control, *p <0.01. 
**p<0.001,***p<0.0001. Black lines=control, red lines=TMPRSS13 knockdown. (B) Western blot 
analysis of TMPRSS13, PARP and β-actin upon silencing with two different RNA duplexes 
targeting TMPRSS13. (C) Western blot analysis of TMPRSS13, Bcl-xL, and β-actin upon 
silencing with two different RNA duplexes targeting TMPRSS13 in HCC1937 cells (D) 
Quantification of Bcl-xL protein normalized to β-actin. 
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cancer cell lysates were detected by Western blot analysis. Loss of TMPRSS13 expression led 

to increased PARP cleavage, in both the luminal like MCF7 and the TNBC cancer cell lines 

BT20 and HCC1937 (Figs. 17B and 19D, right panel), indicative of enhanced apoptosis. 

Additionally, Western blot analysis for the pro-survival marker BCL-xL in HCC1937 cells 

revealed a decrease in expression (Fig. 17C and D), suggesting that loss of TMPRSS13 results 

in decreased expression of pro-survival proteins.  

4.3.6 TMPRSS13 deficiency reduces tumor cell invasive potential 

 TMPRSS13-/- mice display decreased incidence of metastatic lesions compared to 

control mice. Therefore, we next analyzed whether TMPRSS13 may directly affect tumor cell 

invasion potential – an important determinant for metastatic ability. The invasion potential of 

breast cancer cells was studied using a transwell Matrigel® assay in which cells were seeded 

on top of the matrix in serum free media and allowed to invade overnight towards serum 

containing media in the bottom chamber (Fig. 18). Upon silencing of TMPRSS13 using two non-

overlapping synthetic RNA duplexes, a significant decrease in invasive potential was observed 

in BT20 cells.  Importantly, the experiment was carried out at day 2 after siRNA transfection 

when no difference in cell number is observed between control and TMPRSS13 silenced cells 

(Fig. 17A). This eliminates interference from differences in cell proliferation/survival with the 

invasion assay results. Taken together, these data suggest that TMPRSS13 is critical for breast 

cancer cell survival and invasion. 

4.3.7 Loss of TMPRSS13 enhances chemosensitivity in triple negative breast cancer cell 

lines 

Silencing TMPRSS13 expression results in apoptotic cell death in human cell culture 

models as well as reduced expression of the pro-survival marker Bcl-xL. Additionally, increased 

spontaneous apoptotic cell death is observed in vivo. Taken together these data suggest that 

TMPRSS13 may play a role in mediating tumor cell survival. TNBC is typically treated with a 

combination of radiation therapy and chemotherapy; yet, patients with TNBC have a significantly  



84 
 

 
 

Figure 18: TMPRSS13 silencing decreases human TNBC cell 
proliferation and induces apoptosis 

 

 
Fig. 18 Forty-eight hours post silencing, BT20 cells were serum starved in Transwell chambers 
with polycarbonate filters coated with Matrigel®. Using serum containing media in the lower 
chambers as chemoattractant, cells were allowed to invade through the matrix for 12 hours. 
Cells that had invaded were stained with crystal violet and counted. Error bars=SD ,** P<0.01.  
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lower 5-year survival than patients with other breast cancer subtypes. The major reason for low 

response rates in TNBC patients is chemoresistance and there is an urgent need to identify new 

targets that can be used as monotherapy or in combination therapy with established drugs. To 

specifically explore expression of this protease in TNBC, we analyzed IDC data sets stratified 

into TNBC versus non-TNBC (other hormone receptor status/hormone receptor positive). Two 

representative data sets reveal significantly higher levels of TMPRSS13 in TNBC (red) 

compared to receptor positive breast cancers (blue) (Fig. 19A). Thus, our data presented above 

point to TMPRSS13 as a promising target in TNBC treatment. 

To test whether TMPRSS13 promotes tumor survival under chemotherapeutic stress 

conditions, preliminary experiments were performed to determine TMPRSS13-dependent 

sensitivity to the chemotherapeutic agent paclitaxel. The two TNBC cancer cell lines BT20 (WT 

PTEN and BRCA1 (164,165)) and HCC1937 (mutated PTEN and BRCA1 (164,165)) were 

chosen to perform these experiments. Currently, taxanes (e.g. paclitaxel) are commonly used 

as adjuvant and neoadjuvant therapies in TNBC patients (166). Taxanes are microtubule 

targeting agents that prevent microtubule formation, resulting in cell cycle arrest. Additionally, 

HCC1937 cells have been shown to be the most resistant to taxane and anthracycline treatment 

since BRCA1 mutations are critical for chemotherapeutic sensitivity, and reconstitution of WT-

BRCA1 restores chemosensitivity to both taxanes and anthracycline resistance in HCC1937 

cells (167).  

The effects of silencing TMPRSS13 alone, drug treatment alone, or combination were 

analyzed by both Western blot analysis of lysates from treated cells, and cell viability was 

measured by Calcein AM treatment. Combination therapy results in a significant decrease in cell 

viability compared to either treatment alone for both cell types (Fig. 19 B and C). Additionally, 

analysis of lysates reveals increased amounts of PARP cleavage in combination treatment 

compared to either treatment alone, indicative of increased apoptotic cell death (Fig. 19D).   
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Figure 19: Increased chemosensitivity upon TMPRSS13 
silencing in TNBC cell lines 

 

 
Fig. 19 (A) Box and whisker plots representing TMPRSS13 mRNA expression data for (A) Non-
TNBC (N=250, median= -0.01) and TNBC (N=46, median= 0.9) (TCGA) and (B) Non-TNBC 
(N=129, median= -0.9) and TNBC (N=39, median= 0.4)(Bittner) from the OncomineTM 
microarray database. Boxes show interquartile range and medians are indicated by horizontal 
lines. p<0.0001 for both A and B..  (B) BT-20 cells were treated with increasing concentrations 
of paclitaxel in TMPRSS13 silenced cells or control cells treated with GC matched siRNA. 
Percent decrease in viability was compared to no treatment control group for each cell type 
(GC-matched control, siRNA1, siRNA2) (C) RNAi Knock-down (KD) cells or control cells were 
treated with vehicle or 1 µM paclitaxel for 48h. Cell survival was measured using Calcein AM. 
The combination treatment (purple bar) reduced cell survival by 91% compared to 31% with 
paclitaxel alone (red bar). Negative control=no cells. Error bars=SD. **p<0.001. ***p<0.0001 
compared to control/vehicle, ***p<0.0001, combination treatment compared to each mono-
treatment. (D) Corresponding lysates of BT-20 (treated with [100nM] paclitaxel or vehicle 
control] or HCC1937 (treated with [100µM] paclitaxel or vehicle control) cells probed for 
TMPRSS13, PARP, and beta-actin 
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Taken together, these experiments indicate that loss of TMPRSS13 expression increases 

chemosensitivity in breast cancer.  

4.4 Discussion 

 In the current study, we report for the first time that TMPRSS13 expression is increased 

in breast cancer, and that TMPRSS13 deficiency impairs breast cancer progression in vivo. 

Additionally, loss of TMPRSS13 decreased proliferation and increased apoptotic cell death both 

in human cell culture models and in tumors from the genetic MMTV-PymT model of breast 

cancer. Furthermore, reduced number of lung metastasis is observed in TMPRSS13-/- mice 

compared to control mice, and decreased invasion potential is observed upon TMPRSS13 

silencing in the TNBC BT20 cell line. Together the data provides a comprehensive analysis of 

the promotional role of TMPRSS13 in breast cancer. 

To the best of our knowledge, this is the first study examining the biological role of 

TMPRSS13 in cancer. A few other TTSP family members have been studied in breast cancer, 

including both matriptase and hepsin, and both have been shown to promote tumor progression. 

Matriptase was shown to be essential for the proteolytic conversion of pro-HGF into active HGF 

to induce c-Met signaling and proliferation (81,168). Using both human cell culture models and 

genetic in vivo models, it was demonstrated that reduced matriptase expression prevents 

conversion of pro-HGF into active HGF, identifying pro-HGF as a physiological substrate for 

matriptase in breast cancer and that matriptase is the primary pro-HGF activator in the models 

used (which included the cells lines HCC1937 and BT20). Even though, TMPRSS13 has been 

reported to cleave and activate pro-HGF in vitro, it is therefore unlikely that loss of TMPRSS13-

mediated activation critically impairs of pro-HGF activation and subsequent c-Met activation. 

However, it cannot not be formally excluded that TMPRSS13 could contribute to pro-HGF 

activation under conditions not tested in the previous (81,168) or present study.  Additionally, 

hepsin was shown to have increased expression levels in breast cancer, and that hepsin 

overexpression in the non-transformed basal-like MCF10a cell line results in reduced 
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expression of the desmosomal protein desmoglein 2, along with disruption of apical polarity and 

cellular cohesion (98). The TTSP family member matriptase-2 has also been studied in breast 

cancer, where lost expression of matriptase-2 expression occurs, and its re-expression results 

in suppressed tumorigenic properties of breast cancer cells, suggesting tumor suppressive 

functions of matriptase-2 in breast cancer (169).  A previous study examining the TTSP family 

member TMPRSS4 found that TMPRSS4 expression regulates the EMT transcription factor 

slug in prostate cancer.  

 Interestingly, this study reports for the first time that loss of a TTSP family member 

results in increased spontaneous apoptosis in cancer in vivo, as well as increased breast cancer 

chemosensitivity. Therefore, this suggests that TMPRSS13 plays a pro-survival role in breast 

cancer progression by promoting tumor cell survival and proliferation. The mechanism by which 

TMPRSS13 exerts pro-survival effects is currently unknown and future studies examining 

potential proteolytic substrates of TMPRSS13 may provide key insights. Additionally, TMPRS13 

is currently the only TTSP family member known to be modified by phosphorylation, and that its 

phosphorylation may result in its translocation to the cell surface (170). Kinase software 

prediction tools have predicted that the c-jun n-terminal kinases, JNK1 and JNK2, may be 

responsible for TMPRSS13 phosphorylation (170). During times of cellular stress various 

signaling pathways are activated, and it is currently unknown whether TMPRSS13 is 

phosphorylated during certain stress conditions. Therefore identifying the kinase(s) responsible 

for TMPRSS13 phosphorylation, as well as the signaling pathways involved in TMPRSS13 

phosphorylation may yield interesting insights into TMPRSS13 pro-survival mechanisms. 

 In conclusion, this study demonstrates that TMPRSS13 plays a promotional role in 

breast cancer, and that loss of TMPRSS13 expression impairs breast cancer progression in 

vivo. Additionally, we indicate that TMPRSS13 deficiency results in increased chemosensitivity, 

suggesting that TMPRSS13 functions in a pro-survival manner during breast cancer progression 

to support tumor growth.  
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CHAPTER 5: FUTURE DIRECTIONS 

The data above indicate that TMPRSS13 plays a pro-survival role in breast cancer, 

however the mechanism by which it promotes cell survival remains unknown. During times of 

cellular stress various signaling pathways are activated to either promote cell survival, or induce 

cell death, depending on the duration and strength of the stress signaling (171,172). Therefore, 

it is interesting to note that while characterizing TMPRSS13 it was revealed that TMPRSS13 is 

phosphorylated, and that the stress activated protein kinases, Jun N-terminal kinase-1, -2 (JNK1 

and JNK2), were predicted to be responsible for phosphorylation of TMPRSS13. JNK1 and 

JNK2 are activated under various stress conditions, including oxidative stress (173). Therefore, 

in preliminary experiments to test whether TMPRSS13 is phosphorylated under oxidative stress 

conditions, MCF7 cells were treated with H2O2 or vehicle control and lysates were collected and 

analyzed by Western blotting. Interestingly, TMPRSS13 appears to be phosphorylated in a time 

dependent manner under H2O2 treatment (Fig. 20). The kinases directly responsible for 

phosphorylating TMPRSS13 after H2O2 treatment remains unknown, and it is important to note 

that other kinases, including JNK1 and JNK2, are activated under oxidative stress (173,174). 

Therefore, future studies using RNAi, or inhibitors targeting specific kinases, will provide novel 

insights into the kinases directly responsible for TMPRSS13 phosphorylation. 

To further identify TMPRSS13 specific kinases, and to examine whether other types of 

stimulation may induce TMPRSS13 phosphorylation, MCF7 cells were treated with the PKC 

activator Phorbol 12-myristate 13-acetate (PMA). PMA and vehicle control treated cells were 

lysed and protein extracts were collected at 15 minutes, 4 hours, or 16 hours after treatment. 

Interestingly, no increase in TMPRSS13 phosphorylation was observed at any timepoint 

compared to vehicle control group (data not shown). Therefore, this suggests that TMPRSS13 

phosphorylation is not mediated by PKC, and that phosphorylation may be specific to increases 

in reactive oxygen species (ROS) levels. Various stressors have been shown to increase ROS  
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Figure 20: Oxidative stress induced phosphorylation of 
TMPRSS13 

 

 
Fig. 20 (A) MCF7 cells were treated with H2O2 (2mM) or vehicle control for the indicated times 
and analyzed by Western blotting for the detection of the phosphorylated species. Western 
analysis reveals that TMPRSS13 is increasingly phosphorylated under hydrogen peroxide 
treatment over time. 
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levels, including UV irradiation and chemotherapeutic stress (175,176), and future studies 

examining the role of ROS levels in mediating TMPRSS13 phosphorylation may provide further 

insights into TMPRSS13’s function in breast cancer. Additionally, the effect of phosphorylation 

on TMPRSS13 is currently unknown, but it is speculated that it promotes its localization to the 

cell surface (170). Therefore, it is interesting to speculate that under cellular stress, TMPRSS13 

is phosphorylated resulting in TMPRSS13 translocation to the cell surface, however future 

studies are needed to confirm this.  

Future studies examining candidate proteolytic substrates of TMPRSS13 will provide 

further key insights into the role of TMPRSS13 in breast cancer. Ongoing investigations into 

identifying physiologically relevant substrates for TTSP family members is currently underway, 

and only a handful of known substrates for a select few TTSP family members are known (159). 

It has previously been reported that the TTSP family member matriptase is responsible for the 

conversion of the oncogenic signaling molecule pro-HGF into active HGF to induce c-MET 

signaling in breast cancer (168). However, currently no physiological substrates have been 

validated for TMPRSS13. Therefore, future studies using both biased (in vitro co-incubation 

studies), and unbiased proteomics approaches are being developed. Candidate substrates will 

then be validated using both in vivo and cell culture models to assess whether decreased 

proteolytic processing of candidate substrates is observed of upon loss of TMPRSS13 

expression. 

Additionally, the findings outlined above indicate that targeting TMPRSS13 in TNBC 

cancer cell lines impairs cell survival/proliferation and invasion. Additionally, targeting 

TMPRSS13 increases the sensitivity of breast cancer cells to chemotherapy. Based on these 

findings, future studies to validate TMPRSS13 as a viable, druggable target in breast cancer 

have been initiated. It is important to note that in characterizing TMPRSS13-/- mice, TMPRSS13 

deficiency has no discernible consequences on adult mouse health (65), thereby indicating 

limited adverse side effects would be observed with therapeutic TMPRSS13 inhibition. In early 
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investigations into the development of TMPRSS13 specific small molecule inhibitors a 

collaboration has been established with Drs. Leduc, Marsault and Richter at the Universitѐ De 

Sherbrooke in Québec, Canada. After development of TMPRSS13 specific inhibitors, future 

studies examining the effects of TMPRSS13 inhibition both alone, or in combination therapy 

with established chemotherapeutics, will be performed.  

Of the 17 TTSP family members, TMPRSS13 has been relatively uncharacterized in 

both normal physiological development and disease. Characterization of TMPRSS13 deficient 

mice yielded insights into a physiological role in epidermal barrier acquisition, however the 

mechanism through which it mediates that effect remains unknown. Through biochemical 

characterization, and investigations into a role of TMPRSS13 in breast cancer, thoughtful 

insights into the functional role of TMPRSS13 in cancer progression have been elucidated. 

Future studies in developing TMPRSS13 specific inhibitors, identification of TMPRSS13 specific 

substrates, and identifying signaling pathways involved in TMPRSS13 phosphorylation will yield 

fruitful answers to understanding the functional role of TMPRSS13 in both normal development 

and disease.   
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APPENDIX: SUPPLEMENTARY FIGURE 

Supplementary Figure 21: Endogenous TMPRSS13 species 
size and glycosylation status 

 

Figure 21. (A) Lysates from HEK293T cells expressing WT-TMPRSS13 or S506A-TMPRSS13 
were separated side-by-side with lysates from the indicated cell lines. Samples of lysates 
expressing exogenous TMPRSS13 and lysates from samples containing endogenous 
TMPRSS13 were separated by a ladder. (B) DLD1 cell lysates were treated with or without 
PNGaseF and analyzed by Western blotting under reducing conditions using the α-intra-
TMPRSS13 antibody. The white arrowheads connected to black arrowheads indicate the 
reduction in apparent molecular weight of the glycosylated forms of TMPRSS13. 
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Breast cancer is the most frequently diagnosed cancer and the second leading cause of 

cancer death in women in the United States. Breast cancer progression is accompanied by 

increased expression of extracellular and cell surface proteases that are capable of degrading 

the extracellular matrix as well as cleaving and activating downstream targets. These proteolytic 

processes are critically involved in modifying the tissue microenvironment of the breast, which is 

necessary for cancer cell invasion and eventual dissemination of cancer cells to other organs. 

Therefore, identifying novel proteases that promote tumor progression is critical to create new 

approaches for developing improved breast cancer therapeutics. Systematic in silico data 

analysis followed by experimental validation identified increased expression of the type-II 

transmembrane serine protease (TTSP) family member, TMPRSS13 (transmembrane protease, 

serine 13), in invasive ductal carcinoma (IDC) patient tissue samples compared to normal 

breast tissue. Immunohistochemical analysis revealed that the expression of TMPRSS13 is 

strictly confined to the malignant epithelial cells and not the surrounding tumor stroma. 

Currently, no studies have examined the role of TMPRSS13 in any cancer type. Additionally, the 

basic biochemical properties (i.e. activation, localization, and post translational modifications) 

have not yet been explored. Therefore to understand the potential role of TMPRSS13 in breast 
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cancer, biochemical studies as well as thorough and comprehensive in vivo “loss-of-function” 

studies complemented by human cell culture models were performed. Biochemical 

characterization of TMPRSS13 show that TMPRSS13 is a glycosylated, active protease and 

that its own proteolytic activity mediates zymogen cleavage. Full-length, active TMPRSS13 

exhibits impaired cell-surface expression in the absence of the cognate Kunitz-type serine 

protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 or HAI-2. Concomitant 

presence of TMPRSS13 with either HAI-1 or -2 mediates phosphorylation of residues in the 

intracellular domain of the protease, and it coincides with efficient transport of the protease to 

the cell surface and its subsequent shedding. Cell-surface labeling experiments indicate that the 

dominant form of TMPRSS13 on the cell surface is phosphorylated, whereas intracellular 

TMPRSS13 is predominantly non-phosphorylated. 

Additionally, results from the breast cancer study indicates that genetic deletion of 

TMPRSS13 results in a significant decrease in overall tumor burden, growth rate, and a delayed 

detection of palpable mammary tumors (tumor latency), thereby indicating that TMPRSS13 

plays a promotional role in breast cancer progression. Complementary studies using human cell 

culture models revealed that silencing TMPRSS13 expression decreases proliferation and 

induces apoptosis. Furthermore, silencing of TMPRSS13 in the invasive human breast cancer 

cell line BT20 attenuates its invasive potential. These studies are important to our 

understanding of novel proteolytic events that occur within the tumor microenvironment, and in 

determining whether TMPRSS13 may translate into a novel therapeutic target. 
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