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1

CHAPTER 1: INTRODUCTION AND

MOTIVATION

In this chapter we will briefly review the current state of particle physics and our motiva-

tions to look for new physics (NP). We begin with a historical overview of particle physics.

Then we introduce the Standard Model (SM) and the mechanisms it provides for lepton

flavor violating (LFV) decays. After that we introduce the topic of effective field theory

(EFT), which will be our tool chest for exploration of NP. Finally we will introduce our

specific approach to constraining NP with LFV decays of mesons. The first three sections

are included to give a complete and thorough picture, but the reader, especially if (s)he is

familiar with the topic may skip straight to Section 1.4 without loss in continuity if desired.

1.1 Historical Overview of Particle Physics

The foundations of modern particle physics that lead to the development of the Standard

Model can be traced back to turn of the 20th century [1]; a time even before physicists

discovered quantum mechanics. J. J. Thompson’s discovery of the electron in 1897 ignited a

fire of particle physics discovery that has burned for over a century. Next came Rutherford’s

scattering experiments that proved the existence of a tiny massive and positively charged

atomic core, the nucleus, which was assumed to consist of protons. An atomic model of the

hydrogen atom as a single proton orbited by a single electron in 1914 by Niels Bohr was able

to predict its spectrum and opened the door for quantum mechanics. Attempts to explain

heavier atoms in a similar fashion ran into a problem. The masses of heavier atoms were

heavier than could be accounted for by the proton mass alone. Helium is four times the

mass of Hydrogen, but should only have two protons. Chadwick solved the problem with

the discovery of the neutron in 1932.

Our understanding of the nature of light was also seeing a revolution at this time. In

1900 Planck was working on an explanation of the electromagnetic radiation emitted by a

hot object, the so-called black-body radiation, but was left baffled by the results of statistical

mechanics. It predicted that an infinite amount of power should be radiated and lead to
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what physicists called “the ultraviolet catastrophe.” Planck was able to avert disaster by

assuming the quantization of electromagnetic radiation, which lead to his empirical rule that

the energy of the emitted photons, E, equals a constant h times the radiation frequency ν.

Here h = 6.626×10−17 is Planck’s constant. The quantization of light was explained in 1905

by Einstein. Einstein put forth that when an incoming quantum of light hits a metal surface,

it gives up its energy (hν) to an electron which breaks free. This electron loses an energy

w, the work-function of the material, when breaking through the metal surface and emerges

with energy E ≤ hν−w. The implication of Einstein’s discovery was that maximum electron

energy is independent of light intensity, but depends solely on its frequency. Einstein argued

that light was quantized by nature. This view was not well received, as the particle theory

of light was widely discredited in the 19th century. In 1916 Millikan experimentally proved

Einstein’s photoelectric effect correct [2], but the issue would not be settled until 1923 when

Compton found that the wavelength of light is shifted when scattered from a particle at

rest. Compton showed that the shift was governed by λ′ = λ+ λc(1− cos θ), where λc = h
mc

is the Compton wavelength, θ is the scatering angle, λ is the incident wavelength, and λ′

is the scattered wavelength. This formula may be found by applying the conservation of

four-momentum of the photon and scattering particle before and after the interaction and

using Planck’s formula for the quantization of energy for light. This was a direct proof of

the particle nature of light.

At this point physicists still could not explain how a nucleus of positively charged protons

could stay together. The positive charges should repel each proton away from the other. It

was assumed there must be another force greater than electromagnetism that binds the

protons and neutrons together in the nucleus called the strong force (otherwise known as

the nuclear force). This force would not be as apparent at macroscopic scales like the

electromagnetic force because it has a very short range that limits its influence to the size

a nucleus. Yukawa proposed the first significant theory for the strong force in 1934. He

assumed that the proton and neutron were attracted to each other by a field and that this
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field should be quantized. He predicted that in analogy to the photon there should be

a particle that would account for the features of the strong force when exchanged. This

particle would have to be heavy because of the short range of the strong force. He calculated

that it should be about 300 times the electron mass. Yukawa’s particle would come to be

known as the meson and by 1937 a candidate fitting his description was found in cosmic ray

experiments. Further work would identify that there were not one, but two particles [3, 4].

The first was the pion π, which was indeed Yukawa’s meson and the strong force mediator

in his theory, but the second was the muon µ, which we now know is a lepton.

A quantum theory of interactions of relativistic particles is now known as quantum field

theory. It finds its roots in the 1927 work of Dirac whose famous Dirac Equation, which

describes free electrons, had a disturbing problem. For every positive energy solution of the

electron, E = +
√
~p2 +m2, there was a corresponding negative solution, E = −

√
~p2 +m2.

If a system were to evolve naturally to its lowest energy state, an electron should simply

continue on to increasingly negative energy states. Dirac rescued his equation by proposing

that there was an infinite sea of electrons occupying the negative energy states and Pauli’s

exclusion principle prevented the observed electrons from occupying the same negative energy

states. Furthermore if enough energy was imparted to a sea electron, then a hole would be

formed which might be interpreted as a positive particle. There was no candidate particle to

account for these holes, but in 1931 the positron was discovered by Anderson and it had the

properties Dirac needed [5]. The infinite electron sea interpretation of the negative energy

states eventually gave way to a simpler and more compelling interpretation by Feynman

and Stuckelberg. Their formulation interpreted the negative energy electron solutions as the

positive energy states of the positron. This dual energy solution in Dirac’s equation is an

important universal feature of quantum field theory. It means that for every particle there

exists an anti-particle with the same mass and opposite electric charge.

The discovery of neutrinos took a parallel track to that of the aforementioned pion,

muon, and anti-particles. In 1930 the study of beta decays had a problem. Beta decay is
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the transition of a nucleus to a lighter nucleus with one more unit of positive charge and an

electron. It is now known that this is actually the conversion of a neutron in the nucleus into

a proton, but in 1930 the neutron had not been discovered yet. In a two-body decay such as

this, given the rest frame of the decaying nucleus, the decay products should have equal and

opposite momenta and the energy of the emitted electrons would be constant. Experiments

showed that the electron energies were significantly variable. Pauli proposed that there must

be another particle emitted with the electron that was electrically neutral and carried away

the missing energy. Fermi presented a successful theory of beta decay that incorporated

Pauli’s particle and named it the neutrino1. We now know this beta decay process is a

neutron transitioning to a proton, an electron, and an anti-neutrino (n→ p+e−ν̄).

The neutrino also turned out to be of great importance in understanding the decays of

Yukawa’s pion π to a muon µ. In the cosmic ray experiments that discovered these two

particles Powell’s picture of the decaying pion tracks showed the muon moving away in a

direction perpendicular to the original pion momentum. This is only kinematically possible

if another particle were emitted back-to-back with the muon that would not leave a track

(electric charge neutral). It was assumed to be the neutrino and so π → µ + ν. Soon

thereafter Powell’s group announced the discovery of the decay of a muon to an electron and

what would turn out to be two neutrinos (µ→ e+νe+νµ). They were able to determine that

it must be a decay product of at least three particles due to the variability in the electron’s

momentum and by 1949 the accepted explanation was the emission of two neutrinos with

the electron.

The need for direct experimental evidence for the neutrino was still necessary to confirm

its existence and quiet skeptics. In 1950 direct evidence was found by Cowan and Reines

using nuclear reactor experiments at the Savannah River reactor in South Carolina. They

observed inverse beta decay reactions ν̄+ p+ → n+ e+ and their results provided clear proof

of the neutrino’s existence [6]. There was a question as to whether or not the neutrino was

1In modern terminology this is actually an anti-neutrino.
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its own anti-particle and if so, what was the disinguishing property? The crossed reaction

of ν + n→ p+ + e− would occur at around the same rate as the inverse beta decay reaction.

Davis looked at a similar reaction but with the anti-neutrino (ν̄ + n→ p+ + e−) and found

a null result [7] leading to the conclusion that the neutrino and anti-neutrino are distinct.

This conclusion is still under debate as Davis’s experiment does not preclude the Majorana

fermion model which allows for the neutrino ν to be its own anti-neutrino ν̄ [8].

These results were expected as the law of lepton number conservation was previously

proposed by Konopinski and Mahmoud in 1934 [9]. This law states that there is a quantum

number L assigned to each lepton. L = +1 was for leptons: e−, µ−, and ν and L = −1

was assigned to anti-leptons: e+, µ+, and ν̄. The sum of the lepton numbers before an

interaction must equal the sum after. Thus the simplest explanation for the property that

distinguishes neutrinos from anti-neutrinos is the lepton number, L. Lepton number was

relatively successful, but it could not explain why there was no experimental observation of

µ→ eγ, which was allowed under this formulation of lepton conservation and charge conser-

vation. In the late 1950s and early 1960s it was proposed that there were actually electron

neutrinos νe and muon neutrinos νµ and that law of lepton conservation should be extended

such that there was electron number conservation Le and muon number conservation Lµ.

This allowed for an accounting of all forbidden and allowed processes.

The two neutrino hypothesis was tested in 1962 at Brookhaven. Lederman, Schwartz,

Steinberg, et. al. used the anti-neutrinos from the decay of π− → µ− + νµ to register 29

counts of the interaction νµ + p+ → µ+ + n and zero for νµ + p+ → e+ + n [10]. If there

was only one neutrino there should be equal rates for both decays and this proved there was

more than one neutrino.

The years between 1947 and 1961 also saw a great number of experimental discoveries of

both mesons (e.g. K, ρ, ω, φ, η, etc.) and baryons (e.g. Λ, Σ, Ξ, ∆, etc.). This period saw

the introduction of the conservation of baryon number B by Stückelberg. Similar to lepton

number it assigns a value of B = +1 to baryons (i.e. p, n) and B = −1 to anti-baryons (i.e.
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p̄, n̄). These heavy baryons and mesons became known as strange particles first because they

were unexpected, but also because they were produced in great numbers on the timescale

of 10−23 seconds and decayed slowly on the scale of 10−10 seconds. The difference in time

scales suggested a different mechanism of production and decay to Pais and the others [11].

We now know that their production is due the the strong force and their decay is the action

of the weak force.

In 1953 Gell-Mann [12] and Nishijima [13] proposed another conservation law to provide

a simple explanation for the production of strange particles in pairs. Each particle was

assigned a new property of strangeness, S, that was conserved in strong interactions, but

not in weak ones.

The situation for particle physics in 1960 seemed quite disorganized and physicists were

looking for a way to organize all of the particles they found. Order was achieved by Gell-

Mann and Ne’eman with the eight-fold way in 1961. They ordered baryons and mesons into

their own hexagonal arrays of eight particles based on their electric charges and strangeness.

Hexagonal arrays are only one example. Other geometric shapes were allowed such as the

triangular array for organizing the heavier baryons (∆, Σ, Ξ, and Ω) known as the bayron

decuplet. When Gell-Mann organized the decuplet it lead him to predict a missing particle,

the Ω−, which was later found in experiment and reinforced the correctness of the eight-fold

way. As more particles were discovered, they all found their place into an eight-fold way

supermultiplet.

People still wondered why hadrons2 should be organized in these geometric patterns.

The explanation would come in 1964 from Gell-Mann and Zweig independently. They each

proposed that hadrons were composed of elementary constituent particles to which Gell-

Mann gave the name quark. There were three different flavored quarks in the theory (u, d,

s) and they formed a triangular eight-fold way pattern. The u and d quarks had a strangeness

of zero and the s quark had a strangeness of one. The d and s quarks had an electric charge

2A particle that experiences strong force interactions. Baryons and mesons are hadrons.
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of Q = −1
3
, while the u quarks had charge Q = 2

3
. Each of these quarks has an anti-quark

counterpart with opposite charge and strangeness.

It is these quarks and anti-quarks that form baryons and mesons. Baryons (anti-baryons)

are constructed of three quarks (anti-quarks). Mesons consist of a quark and an anti-quark.

Using these three quarks one can generate the ten ∆, Σ, Ξ, and Ω type baryons in the baryon

decuplet or the eight baryons in the baryon octet of type n, p, Σ, Λ, and Ξ and maintain the

appropriate charge and strangeness. One can also form the eight mesons of the meson octet

of type π, η, and K plus a ninth meson, η′, to form a meson nonet. The quark model can

reproduce all of the eight-fold way supermultiplets. Despite this success the quark model

had a flaw. Experiments could not produce an individual quark, which lead to the ad hoc

assumption that quarks are confined within baryons and mesons. The mechanism of this

confinement is still an open question today.

Despite the difficulty of being confined inside hadron, quarks are not completely inac-

cessible to experiment. The interior of hadrons may be explored the same way Rutherford

explored the interior of the atom. Deep inelastic scattering experiments that fired high en-

ergy electrons, neutrinos, and eventually protons were performed in the late 1960s and early

1970s and found that hadrons were mostly empty space. Ocassionally the incident partical

would back scatter indicating they hit a small lump of matter. Protons appeared to have

three lumps, which supports the quark model hypothesis.

The last point of contention for the quark model was the appearance that quarks violated

the Pauli exclusion principle. The principle states that two identical fermions cannot occupy

the same state, but hadrons such as the ∆++ consist of three u quarks in the same state. As

u quarks are fermions and can only have spin ±1/2, this would imply a violation of the Pauli

exclusion principle. It was proposed by Greenberg in 1964 that quarks come in three “colors”

(r = red, g = green, and b =blue) in addition to three flavors [14]. The colors are an analogy

to the optical spectrum. To form a hadron, one must use a colorless combination of quarks.

This can be a combination of quarks with equal parts of color (rgb) which form baryons,
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anti-color (r̄ḡb̄) which form anti-baryons, or color and anti-color (rr̄, gḡ, bb̄) which form the

mesons. By introducing color we are able to avoid violating Pauli’s exclusion principle in

the ∆++ for example because the two u quarks are not identical due to their difference in

color. The same concept applies to the all hadrons.

Because of the seemingly thin arguments for quark confinement and color, physicists

were skeptical of the the quark model. This would begin to change with the discovery of the

extremely heavy neutral J/ψ meson in 1974 by two independent groups [15]. The first was

lead by Ting who named it J and the second was lead by Richter who called it ψ. What

made the J/ψ particularly remarkable was that its lifetime was of order 10−20; a thousand

times longer than hadrons in a similar range of mass. They had clear evidence of some new

physics.

This new physics was explained in terms of a fourth quark, the charm c quark and its anti-

quark, from which the bound state J/ψ = (cc̄) is made. The idea of a fourth quark had been

put forth in previous years by Bjorken and Glashow [16] for various reasons. One of these

reasons was the creation of an aesthetically pleasing parallel between the number of quarks

and leptons. At that time there were four known leptons: µ, νµ, e, and νe; and three known

quarks: u, d, and s. The c quark would make this four. This ready made explanation of J/ψ

and the implication that there should be other charmed hadrons did much to legitimize the

quark model. This lead to a period of new baryon and meson discoveries in the 1970s-1980s

such as the D0 and D+ in 1976 [17] and the D+
s in 1977 [18].

In 1975, the τ lepton and its associated neutrino were discovered increasing the number

of leptons to six [19]. Glashow’s lepton quark symmetry was ruined, but not for long because

the heavy neutral Υ meson was discovered in 1977 [20]. The quark model explained this as

a quark anti-quark bound state composed of a fifth quark, the beauty b quark. In 1983 the

first beauty mesons, B̄0 and B− were found by CLEO. [21]. B-physics studied at B-factories

such as Belle and BaBar has been a very rich area of study ever since and as we will see

important to our research as well.
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Finally in 1995 the much anticipated top t quark was found by the Tevatron [22] and

restored Glashow’s symmetry with a total of six quarks and six leptons. This is not the last

part of the story before we reach modern day physics and the Standard Model (SM).

The last part of our tale is the story of the intermediate vector bosons. When Fermi

first provided his theory of beta decays in 1933, he treated it as a contact interaction. He

used an effective interaction approach not dissimilar to the one we will use later. Because

this interaction occurred in the theory at a single point, no mediator particle was necessary.

This approximation approach worked well at low energies, but would need to be replaced by

a full theory at high-energies. This would require a mediator particle called an intermediate

vector boson.

The electro-weak theory of Glashow, Weinberg, and Salam also called the GWS theory

was able to predict that there are three intermediate vector bosons for the weak force (W±

and Z) with masses of mW = 82±2 GeV and mZ = 92±2 GeV [23]. These W and Z bosons

were discovered in 1983 at the European Organization for Nuclear Research (CERN) by Carlo

Rubbia’s group with measured masses of mW = 80.403±0.029 GeV and mZ = 91.188±0.002

GeV. This was a great achievement for physicists and further confirmed the validity of what

had become known as the Standard Model.

We had the photon γ as the the mediator of the electromagnetic force, the W± and Z to

mediate the weak force, but what about the strong force? In view of the quark model and

the fact that mesons are not elementary particles, but rather composite structures, Yukawa’s

pion no longer looked like the fundamental mediator candidate we needed to mediate the

strong force. Physicists instead asked what is the mediator of the strong force that binds

quarks together to form hadrons? This intermediate vector boson was the gluon, which also

carries color and therefore cannot exist as an isolated particle. Despite this they can and

have been probed indirectly via deep inelastic scattering experiments and studies of inelastic

scattering at high energies.

There was still one very important part of the SM that was missing. That was the Higgs
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mechanism and its associated Higgs boson; the only scalar particle in the Standard Model.

The Higgs mechanism was developed by Peter Higgs as well as Anderson, Brout, Englert,

Guralnik, Hagen, Kibble, Landau, and ’t Hooft between 1962 and 1971 [24, 25]. It was of

great importance in completing the SM as it is the mechanism by which the intermediate

gauge bosons and SM fermions attain their masses. Without the Higgs mechanism the SM

Lagrangian would not contain the mass terms for the gauge bosons and SM fermions, which

we know are massive from experiment and would represent a major flaw in the SM if not

present. The experimental discovery of a 125 GeV scalar particle now believed to be the

Higgs boson at CERN’s Large Hadron Collider (LHC) provided experimental verification of

the existence of the Higgs boson and completed the SM in 2012 [26].

The work of the past century has given us today’s Standard Model, which consists of

six leptons, six quarks, four mediators, and the Higgs boson from which we may build the

universe. There are clear indications that the SM is not a complete theory. It has difficulty

explaining baryonogenesis, which is the process that produced the imbalance of matter an

anti-matter in the Universe, and provides no viable candidate for dark matter. These are

a couple of reasons why we search for new physics. It is possible that the the SM is itself

an effective theory; a low-energy approximation of a more fundamental and complete theory

[27]. It is with this idea in mind that we can attempt to probe NP.

1.2 The Standard Model

The Standard Model is the culmination of particle physicists’ hard work throughout the

20th Century and is based on the SU(3)⊗SU(2)⊗U(1) gauge group. From the view of the

SM, all matter is made from three categories of particles: leptons, quarks, and mediators.

The particle content of the SM is summarized in Table 1.1. The quarks and leptons are both

separated into three generations or families. Each generation is organized by the mass of the

particles with the lowest masses in the first generation and the highest masses in the third

generation [1].

In the lepton sector we have six distinct spin-1/2 fermion particles. Each generation
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generations of fermions gauge scalar

I II III bosons bosons

quarks u c t g h

up charm top gluon Higgs

d s b γ

down strange bottom photon

leptons e µ τ Z

electron muon tauon Z-boson

νe νµ ντ W

e-neutrino µ-neutrino τ -neutrino W -boson

Table 1.1: Elementary particles of the Standard Model [1]

contains a Q = −1 electrically charged lepton (e.g. e, µ, τ) and its associated neutral

neutrino partner. The quark sector also contains six different flavored spin-1/2 fermion

particles. The quarks have electric charges of Q = −1/3 for d, s, and b; and Q = 2/3 for u,

c, and t. For each of these quarks and leptons there are antiparticles of opposite charge. In

addition to having six flavors, the quarks come with three different color charges: red, green,

and blue, which are named in analogy to the primary colors of visible light [1].

There are four mediator particles that mediate the electromagnetic, weak, and strong

forces. The electromagnetic force is mediated by the photon γ, which is an electrically

neutral massless spin one vector boson. The weak force is mediated by the massive spin

one W and Z vector bosons. The W boson can have an electric charge of Q = ±1 while

the Z boson is electrically neutral. The final spin one vector boson mediator particle is the

massless and electrically neutral gluon g, which mediates the strong force. While the gluon

is electrically neutral, it is not color neutral. It is a bi-colored particle which carries both

color and anti-color. Ultimately this means that gluons come in eight different possible color

states. The gluon makes for a more complicated (some might say more interesting) mediator

than the photon as it not only mediates the strong force, but also interacts with the strong
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force (i.e. itself).

The final piece of the SM puzzle is the scalar Higgs boson. The Higgs boson comes as a

consequence of the Higgs mechanism, the means by which the W and Z gauge bosons and all

of the SM fermions obtain mass. The SM is able to predict the masses of the W and Z gauge

bosons, but not the fermions, which must be determined empirically from experimental data.

All of the particle interactions may be mathematically described by the Lagrangian of

the Standard Model [24, 25, 28]

LSM =− 1

4

(
~W µν · ~Wµν +BµνBµν +Gµν

a G
a
µν

)
+ L̄γµ

(
i∂µ − g

1

2
~τ · ~Wµ − g′

Y

2
Bµ

)
L+ R̄γµ

(
i∂µ − g′

Y

2
Bµ

)
R

+

∣∣∣∣(i∂µ − g1

2
~τ · ~Wµ − g′

Y

2
Bµ

)
φ

∣∣∣∣2 − V (φ)

+ gsQ̄G
a
µt
aQ−G1L̄φR−G2L̄φcR + h.c. .

(1.1)

The first line of Eq. (1.1) represents the kinetic energies and self interactions of the

W , Z, γ and g mediators. Where ~W µν , Bµν , and Gµν
a are the field strength tensors for

the weak isospin, weak hypercharge, and QCD respectively. The second line of Eq. (1.1)

represents the kinetic energies of the quarks and leptons and their interactions with the W ,

Z, γ mediators. ~Wµ and Bµ are the SU(2) and U(1) gauge fields. Y is the hypercharge for

U(1), ~τ are the Pauli matrices, and g and g′ are the electroweak coupling constants. The L

and R represent the left-handed doublets and right-handed singlets for leptons and quarks

L =

(
e

νe

)
L

,

(
µ

νµ

)
L

,

(
τ

ντ

)
L

,

(
u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

,

R = eR, µR, τR, uR, dR, cR, sR, tR, bR.

(1.2)

In line three of Eq. (1.1) are the terms that represent the couplings and masses of the
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Figure 1.1: One loop diagram for the µ→ eγ decay mediated by neutrinos [30].

W , Z, γ, and the Higgs. Here φ is that Higgs scalar doublet and V (φ) is the Higgs potential.

The last line of the SM Lagrangian describes the interactions of the quarks and gluons and

the mass terms of fermions as well as their couplings to the Higgs boson. The constant gs

is the strong coupling constant, Q is the quark field spinor, and ta represents the Gell-Mann

matrices where a = 1–8. Finally, G1 and G2 represent the appropriate Yukawa couplings

and φc is another Higgs doublet constructed from φ by φc = −iτ2φ
∗. The φc Higgs doublet

is required to generate the masses of the upper members of the quark doublets.

Using this Lagrangian one may in principle calculate any physically allowed interaction

for the SM degrees of freedom. This of course is not a complete picture of particle physics

as there is much evidence for new physics. One clear and important example is neutrino

oscillations, which imply massive neutrinos [1, 29]. In a pure SM neutrinos are massless

and this leads to lepton family number conservation and therefore no neutrino oscillations

or flavor changing neutral currents (FCNCs) for charge leptons (e.g. µ → e). This is not

the case and so with a small extension of the SM to include neutrino masses, we generate

FCNCs for charged leptons at loop level, Fig. (1.1) [30, 31, 32].

The branching ratio of this transition is [33]

B(µ→ eγ) ' Γ (µ→ eγ)

Γ (µ→ eνν̄)
=

(
3α

32π

)(
Uµ3U

∗
e3

∆m2
31

M2
W

+ Uµ2U
∗
e2

∆m2
21

M2
W

)2

. 10−54 (1.3)
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Here α is the electromagnetic coupling constant, U`i is a Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix element, and ∆m2
ij/m

2
W is the ratio of the difference between squared

neutrino masses, ∆m2
ij ≡ m2

νi
−m2

νj
, and the W-boson mass squared. From solar neutrino

and reactor experiments we know ∆m2
31 ' 2 × 10−3 eV2 and ∆m2

21 ' 8 × 10−5 eV2 [34].

Taking the ratio of this to m2
W , where mW = 80 GeV, reveals that ∆m2

31/m
2
W ∼ 10−25

and ∆m2
21/m

2
W ∼ 10−26. Therefore it is ultimately the ratio ∆m2

ij/m
2
W that causes this

mechanism of charged lepton flavor violation (CLFV) to be highly suppressed as shown in

Eq. (1.3). If we see CLFV, it will not be a SM process, but instead some form of new physics

(NP).

1.3 Effective Field Theory

The effective field theory (EFT) approach is a rich and interesting topic with applica-

tions throughout physics. Entire books have been written about it (e.g. [27]). Here we

summarize only the most general and relevant details required for the reader to gain a basic

understanding of its application in the following Chapters.

EFTs take advantage of the naturally occurring separation of scales that appear in

physics. One would not find it practical to describe the position and velocity of an au-

tomobile using quantum mechanics, which is best equipped to describe these observables on

the scale of particles not cars. That is not to say that quantum mechanical principles are

not present at macroscopic scales, just that their effects are averaged over so much that we

do not perceive them. EFT uses this separation of scales to its advantage [27].

The only degrees of freedom that are relevant to the problem one is attempting to under-

stand are the ones necessary to perform the calculation. For our work this means that only

fields that are below the scale of particle physics that we probe should remain in the theory.

The removed particles are said to be integrated out in reference to the formal procedure from

the path integral formulation of quantum field theory. In practical calculations, such as our

work, the formal procedure is unnecessary. The integrated out particles do not disappear in

entirety. Their participation in interactions is limited by quantum theory to creation and
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destruction on very short distance scales. A classic example of an EFT is the Fermi theory

of beta decay n→ peνe in which the W -boson is integrated out of the theory [25, 27].

Our application of effective field theory will deal with infrared or low energy degrees of

freedom. The EFT is mathematically described by an effective Lagrangian, which contains

local operators that are written in terms of the available infrared degrees of freedom. So long

as this Lagrangian contains the most general set of operators allowed under the symmetries of

the full theory, the S-matrix elements derived from it will also be the most general possible.

This would be a great number of operators (infinite in general) and so we must employ

a proper power counting scheme to organize the operators to avoid calculating an infinite

number of contributions [27].

The relevant power counting scheme for our purposes is simply to count the operator

dimension. These operators form an infinite series of increasingly higher dimension with each

term in the series associated with increasing powers of 1/Λ. Λ being the scale associated

with the UV complete theory described at low energies by the effective Lagrangian

L = Ldim 4 +
Ldim 5

Λ
+
Ldim 6

Λ2
+ · · · . (1.4)

Because the scale Λ is much larger than the low energy scale at which we are working with

the effective theory, we may neglect the higher dimension terms as corrections. Although the

series in Eq. (1.4) is infinite, the individual terms Ldim i contain a finite number of operators

of dimension i. Each of these operators would be multiplied by an unknown coefficient called

a Wilson coefficient (WC). If the complete UV theory is known, these coefficients may be

calculated by a process known as matching. This is because one sets equal or matches the

results of the full and effective theories.

In many cases the full UV complete theory is unknown and although we may not be able

to find the Wilson coefficients through matching, we do know that the higher scale physics is

encoded upon them. We can therefore learn about the UV complete theory using empirical

data from experiments to calculate or constrain the numerical values of the WCs.
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1.4 Lepton Flavor Violating Decays Using Standard

Model Effective Field Theory

Flavor-changing neutral current (FCNC) interactions serve as a powerful probe of physics

beyond the standard model (BSM). Since no operators generate FCNCs in the Standard

Model at tree level, new physics degrees of freedom can effectively compete with the SM

particles running in the loop graphs, making their discovery possible. Of course this is only

true provided the BSM models include flavor-violating interactions [35, 36]3.

The observation of charged lepton flavor violating (CLFV) transitions would provide

especially clean probes for new physics. This is because as we saw in Sect. 1.2 in the

Standard Model with massive neutrinos, the CLFV transitions are suppressed by the powers

of ∆m2
ij/m

2
W , which renders the predictions for their transition rates vanishingly small, e.g.

B(µ → eγ)νSM ∼ 10−54 [33]. There are indeed many well-established new physics models

(see, e.g. [37, 38, 39, 40, 41]) that meet this opportunity and predict charged lepton flavor

violating (CLFV) transition rates that are significantly larger than the Standard Model rates

[37].

Currently operating and future B-factories, such as LHCb and Belle-II, will be accumu-

lating significant amounts of beauty and charm decay data. These large data sets will be

quite useful in studies of the decay rates of bottomonium and charmonium and the extremely

small decay rates of B and D mesons, which could probe new physics (NP) at unprecedent-

edly high energy scales. In particular, studies of vector and pseudoscalar meson (M = V, P )

decays such as: V = Υ, J/ψ, and excited states; and P = ηb, ηc, B
0
q , D̄

0, and K0 into the

final states containing charged leptons of different flavors such as M → `1
¯̀
2 and M → γ`1

¯̀
2

could be performed.

A convenient way to describe CLFV transitions in low energy experiments is by intro-

ducing an effective Lagrangian, Leff . Such a Lagrangian is a convenient parameterization

3The remainder of this document draws directly from journal papers written with Alexey A. Petrov in
Refs. [35, 36]
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of all new physics models that include lepton flavor violation with the details of the mod-

els encoded in the Wilson coefficients of Leff , which are obtained by matching the effective

Lagrangian to a given BSM model at the new physics scale Λ [27]. This Lagrangian is

required to be invariant under the unbroken symmetry groups SU(3)c ⊗ U(1)em below the

electroweak symmetry breaking scale. At the low scale for which a given process occurs

the effective operators would exhibit the relevant Standard Model degrees of freedom with

the effective operators written completely using quarks (qi = b, c, s, u, and d) and leptons

(`i = τ, µ, and e). In what follows, we assume that top quarks are integrated out of the

theory, and we do not consider neutrinos. The effective Lagrangian Leff that involves CLFV

may be written as

Leff = L`q + LD + LG + · · ·, (1.5)

where LD is a dipole part, L`q is the part that contains four-fermion interactions, and LG

is the gluonic part. Here the ellipses denote effective operators that are not relevant for

the following analysis. We are interested in the decays of electrically-neutral vector, pseudo-

scalar, and scalar mesons to flavor-off-diagonal lepton pairs and other particles. This includes

decays of quarkonia, which are qq̄ mesons, and the pseudo-scalar mesons B0
q , D̄

0, and K0,

which are composed of one heavy quark and one light quark. The transitions for the B0
q , D̄

0,

and K0 mesons involve FCNC interactions on both quark and lepton sides, while quarkonia

only have a FCNC on the lepton side.

The dipole part of Eq. (1.5), which could contribute to two-body vector decays, V → `1
¯̀
2

and radiative decays M → γ`1
¯̀
2 is written as [42]

LD = −m2

Λ2

[(
C`1`2
DR

¯̀
1σ

µνPL`2 + C`1`2
DL

¯̀
1σ

µνPR`2

)
Fµν + h.c.

]
. (1.6)

The WCs of LD have been well constrained in leptonic LFV decays [37].

Note that it is known that the quark FCNC transitions, at least in the decays of down-

type quarks, are dominated by the SM contributions. For instance, the dipole operator
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describing q1 → q2γ can be written as [46]

Lpeng =
GF√

2

∑
q

λPq C7γ

√
4πα

π2

mq1

2
q̄1σµν (1 + γ5)F µνq2 + h.c. (1.7)

Here λPq = Vqq2V
∗
qq1

denotes the appropriate Cabibbo-Kobayashi-Maskawa (CKM) matrix

elements, mq1 is the heavier quark, and C7γ is the corresponding Wilson coefficient [46].

The four-fermion dimension-six lepton-quark part of the effective Lagrangian, Eq. (1.5),

takes the form [42]:

L`q = − 1

Λ2

∑
q1,q2

[ (
Cq1q2`1`2
V R

¯̀
1γ

µPR`2 + Cq1q2`1`2
V L

¯̀
1γ

µPL`2

)
q̄1γµq2

+
(
Cq1q2`1`2
AR

¯̀
1γ

µPR`2 + Cq1q2`1`2
AL

¯̀
1γ

µPL`2

)
q̄1γµγ5q2

+ m2mqHGF

(
Cq1q2`1`2
SR

¯̀
1PL`2 + Cq`1`2

SL
¯̀
1PR`2

)
q̄1q2 (1.8)

+ m2mqHGF

(
Cq1q2`1`2
PR

¯̀
1PL`2 + Cq1q2`1`2

PL
¯̀
1PR`2

)
q̄1γ5q2

+ m2mqHGF

(
Cq1q2`1`2
TR

¯̀
1σ

µνPL`2 + Cq1q2`1`2
TL

¯̀
1σ

µνPR`2

)
q̄1σµνq2 + h.c.

]
.

Here mqH is the mass of the heavier quark (mqH = max[mq1 ,mq2 ]) and PR,L = (1 ± γ5)/2

is the right (left) chiral projection operator. In general the Wilson coefficients would be

different for different lepton flavors `i and quark flavors qi. For a thorough discussion on how

to form a complete operator basis see Refs. [42, 43, 44, 45].

We note that the tensor operators (see the last line of Eq. (1.8)) are often omitted when

constraints on the Wilson coefficients in Eq. (1.8) are derived (see, e.g. [42]). It should be

clarified that those operators are no less motivated than others in Eq. (1.8). For example,

they would be induced from Fierz rearrangement of operators of the typeO ∼ (q̄`2)
(
¯̀
1q
)

that

often appear in leptoquark models. Also, as we shall see later, the experimental constraints

on those coefficients follow from studying vector meson decays, where the best information

on LFV transitions in quarkonia is available.

The dimension seven gluonic operators can be either generated by some high scale physics
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or by integrating out heavy quark degrees of freedom [42, 47],

LG = −m2GF

Λ2

βL
4αs

[(
C`1`2
GR

¯̀
1PL`2 + C`1`2

GL
¯̀
1PR`2

)
Ga
µνG

aµν

+
(
C`1`2
G̃R

¯̀
1PL`2 + C`1`2

G̃L
¯̀
1PR`2

)
Ga
µνG̃

aµν + h.c.
]
. (1.9)

Here βL = −9α2
s/(2π) is defined for the number of light active quark flavors, L, relevant to

the scale of the process, which we take µ ≈ 2 GeV. All Wilson coefficients should also be

calculated at the same scale. GF is the Fermi constant and G̃aµν = (1/2)εµναβGa
αβ is a dual

to the gluon field strength tensor [42].

The experimental constraints on the Wilson coefficients of effective operators in Leff could

be obtained from a variety of LFV decays (see e.g. [37] for a review). Deriving constraints

on those Wilson coefficients usually involves an assumption that only one of the effective

operators dominates the result. This is not necessarily so in many particular UV comple-

tions of the LFV EFTs, so certain cancellations among contributions of various operators

are possible. Nevertheless, single operator dominance is a useful theoretical assumption in

placing constraints on the parameters of Leff .

In Chapters 2 and 3 we argue that most of the Wilson coefficients of the effective La-

grangian in Eq. (1.5) for different `i could be determined from experimental data on quarko-

nium and heavy pseudoscalar meson (B0
q , D̄

0, and K0) decays. In particular, we consider

two- and three-body decays of the mesons with differing quantum numbers and with quarks

of various flavors such as Υ(nS) → `1
¯̀
2, Υ(nS) → γ`1

¯̀
2, etc. We highlight the fact that

restricted kinematics of the two-body transitions would allow us to select operators with

particular quantum numbers significantly reducing the reliance on the single operator dom-

inance assumption. Finally, we shall argue that studies of radiative lepton flavor violating

(RLFV) decays of vector quarkonia could provide important complementary access to study

Leff . Similarly RLFV decays of pseudoscalar mesons B0
q , D̄

0, and K0, can provide comple-

mentary access to operators of type O ∼
(
`1

¯̀
2

)
(q̄q), where there is only a FCNC on the
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lepton side and primary access to vector and tensor operators of type O ∼
(
`1

¯̀
2

)
(q̄1q2),

where there are FCNCs on both the quark and lepton sides.

Note that here we only consider short distance effects in kaon decays. In the SM long

distance effects on decays such as K0
L(S) → γ`¯̀ dominate the dynamics [48]. In light of this,

our kaon results may be modified by long distance effects. Unlike K0, the B0
q and D0 mesons

are not expected to be greatly modified by long distance effects as they are not known to

dominate their dynamics in rare SM decays.

We shall provide calculations of the relevant decay rates and establish constraints, where

experimental data are available, on Wilson coefficients of effective operators of the La-

grangian Leff of Eq. (1.5). In the following chapters we assume CP-conservation, which

implies that all Wilson coefficients will be treated as real numbers. We also use the conven-

tion that the subscript of “1” denotes the lighter lepton and the subscript “2” denotes the

heavier lepton. In studying branching ratios we assume that for a meson, M , the branching

fraction B(M → `1`2) = B(M → ¯̀
1`2) + B(M → `1

¯̀
2), unless specified otherwise. Finally,

it is important to note that some of the two-body and all of the three-body transitions have

yet to be experimentally studied. Numerical constraints on some Wilson coefficients of the

effective Lagrangian, Leff , from these unstudied decays are not yet available.
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CHAPTER 2: TWO-BODY LEPTON FLAVOR

VIOLATING DECAYS

2.1 Vector Quarkonium Decays V → `1`2

There is abundant experimental information on flavor off-diagonal leptonic decays of

vector quarkonia, both from the ground and excited states [34]. This information can be

effectively converted to experimental bounds on Wilson coefficients of vector and tensor

operators in Eq. (1.8), as well as on those of the dipole operators of Eq. (1.6). Those Wilson

coefficients can then be related to model parameters of explicit realizations of UV completions

of effective Lagrangian in Eq. (1.5). The examples of particular new physics models that have

been previously suggested to be constrained using vector meson decays V → `1`2 include,

e.g. [49, 50] (for Z ′ scenarios), [38, 39, 40] (for R-parity violating supersymmetric models),

and [51, 52, 53] for other approaches.

One can find a general amplitude expression for V → `1`2 by considering the initial and

final states. The presence of the vector meson in the initial state implies the amplitude must

contain an associated polarization vector εµ(p). The lepton and anti-lepton in the final state

will require ū(p1, s1) and v(p2, s2) spinors to be present in the amplitude. There is a free

index on the polarization vector that must be contracted with the matrix element between the

spinors. We therefore conclude the amplitude must be of the form ū(p1, s1)Mµv(p2, s2)εµ(p).

Now we must consider what structures can contribute to the matrix Mµ. Our options are

the meson momentum pµ, the first lepton momentum pµ1 , the second anti-lepton momentum

pµ2 , and the Dirac bilinears: 1, γ5, γµ and γµγ5. We know that pµεµ(p) = 0 for on-shell vector

bosons, so we can drop terms associated with pµ. When writing the general amplitude we

should consider the (p2 + p1)µ and (p2 − p1)µ combinations of the final state momenta. The

terms proportional to combination (p2 +p1)µ can be dropped because it is equal to pµ due to

momentum conservation and pµεµ(p) = 0. This leads us to four possible composite structures

built from the allowed momenta and Dirac bilinears: (p2 − p1)µ, (p2 − p1)µγ5, γµ, and γµγ5.
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`1`2 µτ eτ eµ

B(Υ(1S)→ `1`2) 6.0× 10−6 · · · · · ·
B(Υ(2S)→ `1`2) 3.3× 10−6 3.2× 10−6 · · ·
B(Υ(3S)→ `1`2) 3.1× 10−6 4.2× 10−6 · · ·
B(J/ψ → `1`2) 2.0× 10−6 8.3× 10−6 1.6× 10−7

B(φ→ `1`2) FPS FPS 4.1× 10−6

B(`2 → `1γ) 4.4× 10−8 3.3× 10−8 5.7× 10−13

Table 2.1: Available experimental upper bounds on B(V → `1`2) and B(`2 → `1γ) [34, 54].
Center dots signify that no experimental constraints are available and “FPS” means that
the transition is forbidden by available phase space. Charge averages of the final states are
always assumed [35].

The most general expression for the V → `1`2 decay amplitude can be written as

A(V → `1`2) = u(p1, s1)

[
A`1`2V γµ +B`1`2

V γµγ5 +
C`1`2
V

mV

(p2 − p1)µ

+
iD`1`2

V

mV

(p2 − p1)µγ5

]
v(p2, s2)εµ(p).

(2.1)

A`1`2V , B`1`2
V , C`1`2

V , and D`1`2
V are dimensionless constants which depend on the underlying

Wilson coefficients of the effective Lagrangian of Eq. (1.5) as well as on hadronic effects

associated with meson-to-vacuum matrix elements or decay constants.

The amplitude of Eq. (2.1) leads to the branching fraction, which is convenient to repre-

sent in terms of the ratio:

B(V → `1`2)

B(V → e+e−)
=

(
mV (1− y2)

4παfVQq

)2
[(∣∣A`1`2V

∣∣2 +
∣∣B`1`2

V

∣∣2)
+

1

2

(
1− 2y2

) (∣∣C`1`2
V

∣∣2 +
∣∣D`1`2

V

∣∣2)+ y Re
(
A`1`2V C`1`2∗

V + iB`1`2
V D`1`2∗

V

) ]
.

(2.2)

Here α is the fine structure constant, we set y = m2/mV , and we neglected the mass of the

lighter of the two leptons. The form of the coefficients A`1`2V to D`1`2
V depends on the initial
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state meson. For example, for V = Υ(nS) (bb̄ states), ψ(nS) (cc̄ states), or φ (ss̄ state), the

coefficients are:

A`1`2V =
fVmV

Λ2

[
√

4πα Qqy
2
(
C`1`2
DL + C`1`2

DR

)
+ κV

(
Cq`1`2
V L + Cq`1`2

V R

)
+ 2y2κV

fTV
fV
GFmVmq

(
Cq`1`2
TL + Cq`1`2

TR

)]
,

B`1`2
V =

fVmV

Λ2

[
−
√

4πα Qqy
2
(
C`1`2
DL − C

`1`2
DR

)
− κV

(
Cq`1`2
V L − Cq`1`2

V R

)
− 2y2κV

fTV
fV
GFmVmq

(
Cq`1`2
TL − Cq`1`2

TR

)]
,

C`1`2
V =

fVmV

Λ2
y

[
√

4πα Qq

(
C`1`2
DL + C`1`2

DR

)
+ 2κV

fTV
fV
GFmVmq

(
Cq`1`2
TL + Cq`1`2

TR

)]
,

D`1`2
V = i

fVmV

Λ2
y

[
−
√

4πα Qq

(
C`1`2
DL − C

`1`2
DR

)
− 2κV

fTV
fV
GFmVmq

(
Cq`1`2
TL − Cq`1`2

TR

)]
.

(2.3)

Here Qq = (2/3,−1/3) is the charge of the quark q and κV = 1/2 is a constant for pure qq̄

states. The κ constants are introduced purely for the purpose of writing concise equations.

Different meson states have different quark flavor mixing which contribute to the different

numerical factors of κ for various initial states. It is a good approximation to drop terms

proportional to y2 in Eq. (2.3) for the heavy quarkonium states. Inspecting the ratio in

Eq. (2.2), one immediately infers that the best constraints could be placed on the four-

fermion coefficients, Cq`1`2
V L and Cq`1`2

V R , as no final state lepton mass suppression exists for

those coefficients. Yet, constraints on the the dipole coefficients, C`1`2
DL (C`1`2

DR ), are also possible

in this case. This would provide NP constraints that are complementary to the ones obtained

from the lepton decay experiments, especially for ` = τ , obtained in the radiative τ → µ(e)γ

decays.

The constraints on the Wilson coefficients of tensor operators, Cq`1`2
TL (Cq`1`2

TR ), in Eq. (2.3)
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State Υ(1S) Υ(2S) Υ(3S) J/ψ ψ(2S) φ ρ (ω)

fV , MeV 649± 31 481± 39 539± 84 418± 9 294± 5 241± 18 209.4± 1.5

Table 2.2: Vector meson decay constants used in the calculation of branching ratios B(V →
`1`2). The transverse decay constants are set fTV = fV except for J/ψ, which has fTJ/ψ =

410± 10 MeV [35, 51, 55, 56, 57, 58, 59].

also depend on the ratio of meson decay constants,

〈0|qγµq|V (p)〉 = fVmV ε
µ(p) ,

〈0|qσµνq|V (p)〉 = ifTV (εµpν − pµεν) ,
(2.4)

where εµ(p) is the V -meson polarization vector, and p is its momentum [55].

While the decay constants, fV , are known, both experimentally from leptonic decays and

theoretically from lattice or QCD sum rule calculations, for a variety of states V , the tensor

(transverse) decay constant, fTV , has only recently been calculated for the charmonium J/ψ

state with the result fTJ/ψ(2 GeV) = (410 ± 10) MeV [55]. In the absence of the estimate

for fTV , we follow the suggestion made in Ref. [60] and assume that fTV = fV . This seems to

be the case for the J/ψ state [55] to better than 10 %. We present numerical values of the

decay constants in Table 2.2. Note that the ratio of Eq. (2.2) is largely independent of the

values of the decay constants due to the choice of normalization.

Choosing other initial states would make it possible to constrain other combinations of

the Wilson coefficients in Eq. (1.5). This is important for the NP models where several LFV

operators would contribute, especially in the case where no operator gives a priori dominant
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contribution. For example, choosing V = ρ meson with ρ ∼
(
uū− dd̄

)
/
√

2 gives:

Aeµρ =
fρmρ

Λ2
y2
√

2πα (Qu −Qd)
(
C`1`2
DL + C`1`2

DR

)
,

Beµ
ρ = − fρmρ

Λ2
y2
√

2πα (Qu −Qd)
(
C`1`2
DL − C

`1`2
DR

)
,

Ceµ
ρ =

fρmρ

Λ2
y
√

2πα (Qu −Qd)
(
C`1`2
DL + C`1`2

DR

)
,

Deµ
ρ = −ifρmρ

Λ2
y
√

2πα (Qu −Qd)
(
C`1`2
DL − C

`1`2
DR

)
.

(2.5)

Here we imposed isospin symmetry on the NP operators and their coefficients, which resulted

in the cancellation of the four-fermion operator contribution. The ρ meson is kinematically

restricted to decay to µe and no other LFV products, so only µe operators can be constrained

in this channel. The corresponding results for V = ω ∼
(
uū+ dd̄

)
/
√

2 decay can be obtained

from Eq. (2.3) by substituting Qq → (Qu +Qd) /
√

2 and using κω = 1/
√

2. Again, the

restricted kinematics of the decay implies that only µe operators interacting with up and

down quarks can be constrained. Since we imposed isospin symmetry, it is convenient to use

mq = (mu +md) /2.

Contrasting Eq. (2.2) with the experimental data from Ref. [34] we can constrain the

Wilson coefficients of the Lagrangian Eq. (1.5). Assuming single operator dominance, the

results can be found in Table 2.3. The Wilson coefficients of dipole operators can be found

in Table 2.4.

It is important to note that some of the bounds presented in Tables 2.3 and 2.4 are

rather weak and might not even look physically meaningful, especially the ones coming from

φ decays. In fact, assuming Wilson coefficients C ∼ 1 seems to imply that new physics scale

Λ/
√
C only extends to several MeVs, clearly breaking the EFT paradigm that assumes local

operators up to the scales of several TeVs! A correct interpretation of those entries in Tables

2.3 and 2.4 is that existing data simply does not allow to place strong constraints on the

combination Wilson coefficients. This is rather common in EFT analyses of new physics

phenomena, see e.g. [61].
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Wilson

coefficient Leptons Initial state (quark)

(GeV−2) `1`2 Υ(1S) (b) Υ(2S) (b) Υ(3S) (b) J/ψ (c) φ (s)

µτ 5.6× 10−6 4.1× 10−6 3.5× 10−6 5.5× 10−5 FPS

|Cq`1`2
V L /Λ2| eτ · · · 4.1× 10−6 4.1× 10−6 1.1× 10−4 FPS

eµ · · · · · · · · · 1.0× 10−5 2× 10−3

µτ 5.6× 10−6 4.1× 10−6 3.5× 10−6 5.5× 10−5 FPS

|Cq`1`2
V R /Λ2| eτ · · · 4.1× 10−6 4.1× 10−6 1.1× 10−4 FPS

eµ · · · · · · · · · 1.0× 10−5 2× 10−3

µτ 4.4× 10−2 3.2× 10−2 2.8× 10−2 1.2 FPS

|Cq`1`2
TL /Λ2| eτ · · · 3.3× 10−2 3.2× 10−2 2.4 FPS

eµ · · · · · · · · · 4.8 1× 104

µτ 4.4× 10−2 3.2× 10−2 2.8× 10−2 1.2 FPS

|Cq`1`2
TR /Λ2| eτ · · · 3.3× 10−2 3.2× 10−2 2.4 FPS

eµ · · · · · · · · · 4.8 1× 104

Table 2.3: Constraints on the Wilson coefficients of four-fermion operators. Center dots
signify that no experimental data are available to produce a constraint; “FPS” means that the
transition is forbidden by phase space. The vector operators will always be better constrained
relative to the tensor operators via this decay channel due to the chiral suppression of the
tensor operators. Note that no experimental data is available for higher excitations of ψ [35].

Wilson

coefficient Leptons Initial state

(GeV−2) `1`2 Υ(1S) Υ(2S) Υ(3S) J/ψ φ `2 → `1γ

µτ 2.0× 10−4 1.6× 10−4 1.4× 10−4 2.5× 10−4 FPS 2.6× 10−10

|C`1`2
DL /Λ

2| eτ · · · 1.6× 10−4 1.6× 10−4 5.3× 10−4 FPS 2.7× 10−10

eµ · · · · · · · · · 1.1× 10−3 0.2 3.1× 10−7

µτ 2.0× 10−4 1.6× 10−4 1.4× 10−4 2.5× 10−4 FPS 2.6× 10−10

|C`1`2
DR /Λ

2| eτ · · · 1.6× 10−4 1.6× 10−4 5.3× 10−4 FPS 2.7× 10−10

eµ · · · · · · · · · 1.1× 10−3 0.2 3.1× 10−7

Table 2.4: Constraints on the dipole Wilson coefficients from the 1−− quarkonium decays
and radiative lepton transitions `2 → `1γ. Center dots signify that no experimental data are
available to produce a constraint; “FPS” means that the transition is forbidden by phase
space [35].
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`1`2 eµ

B(η → `1`2) 6.0× 10−6

B(η′ → `1`2) 4.7× 10−4

B(π0 → `1`2) 3.6× 10−10

Table 2.5: Available experimental limits on B(P → `1`2) [34]. Note that no constraints for
the heavy quark pseudoscalar states such as ηb(c) are available. Only phase space allowed
transitions are shown [35].

Looking at Eq. (2.3) one sees that there is a practical limitation on the two-body vector

meson decays. Only a subset of the Wilson coefficients is selected by the quantum numbers

of the initial state and can be probed. This fact can be turned into virtue if experimental

information on LFV decays of quarkonium states with other quantum numbers is available.

2.2 Pseudo-scalar Quarkonium Decays P → `1`2

Constraints on other Wilson coefficients of the effective Lagrangian in Eq. (1.5) could be

obtained by considering decays of pseudoscalar mesons with quantum numbers JPC = 0−+,

which include states like ηb(c), η
(′), and their excitations. These decays would be sensitive

to axial and pseudoscalar operators without flavor changes in the quark currents, providing

information about Cq`1`2
PL (Cq`1`2

PR ) and/or Cq`1`2
AL (Cq`1`2

AR ) in Eq. (1.8) as well as to gluonic op-

erators of Eq. (1.9). The ηb(c) states could be abundantly produced at the LHCb experiment

directly in gluon-gluon fusion interactions [62]. In case of the ηc and its excitations, another

production mechanism would include non-leptonic B-decays, as the corresponding branching

ratios for non-leptonic B decays into ηc and kaons are reasonably large, of order of per mille

[34].

Following a similar method to the decays of vector mesons considered in Sect. 2.1, one

can write the most general expression for the P → `1`2 decay. In the case of the decay of a

pseudoscalar, there is no polarization vector, but we still have the two spinors ū(p1, s1) and

v(p2, s2) for the leptons `1,2. This leads to a general amplitude of ū(p1, s1)Mv(p2, s2). The

matrix M has no Lorentz indices because there is nothing to contract with a free index. It
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therefore can only depend on the Dirac bilinears 1 and γ5 and some constants. One can then

write the most general expression for the P → `1`2 decay amplitude as

A(P → `1`2) = u(p1, s1)
[
E`1`2
P + iF `1`2

P γ5

]
v(p2, s2) (2.6)

with E`1`2
P and F `1`2

P being dimensionless constants which depend on the Wilson coefficients

of operators in Eq. (1.5) and various decay constants.

The amplitude of Eq. (2.6) leads to the branching ratio for decays of pseudoscalar mesons

to flavor off-diagonal lepton products:

B(P → `1`2) =
mP

8πΓP

(
1− y2

)2
[∣∣E`1`2

P

∣∣2 +
∣∣F `1`2

P

∣∣2] . (2.7)

Here ΓP is the total width of the pseudoscalar state. We have once again neglected the mass

of the lighter lepton and set y = m2/mP . Calculating E`1`2
P and F `1`2

P for P = ηb (bb̄ state)

and ηc (cc̄ state), the coefficients are

E`1`2
P =

ymP

4Λ2

[
− ifP

(
2
(
Cq`1`2
AL + Cq`1`2

AR

)
−m2

PGF

(
Cq`1`2
PL + Cq`1`2

PR

))
+ 9GFaP

(
C`1`2
G̃L

+ C`1`2
G̃R

) ]
,

F `1`2
P = −iymP

4Λ2

[
− ifP

(
2
(
Cq`1`2
AL − Cq`1`2

AR

)
−m2

PGF

(
Cq`1`2
PL − Cq`1`2

PR

))
+ 9GFaP

(
C`1`2
G̃L
− C`1`2

G̃R

) ]
.

(2.8)

The hadronic matrix elements in Eq. (2.11) are defined as [47]

〈0|q̄1γ
µγ5q2|P (p)〉 = −ifPpµ ,

〈0|αs
4π
GaµνG̃a

µν |P (p)〉 = aP .
(2.9)

Here p is the momentum of the meson. For heavy quarks q = c, b one expects the matrix

elements of gluonic operators in Eq. (2.9) to be quite small. This can be visualized by noting

that in the heavy quark limit ηb(c) is a small state of size (mb(c)v)−1 and has a small overlap
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State ηb ηc η, u(d) η, s η′, u(d) η′, s π

f qP , MeV 667± 6 387± 7 108± 3 −111± 6 89± 3 136± 6 130.41± 0.20

Table 2.6: Pseudoscalar meson decay constants used in the calculation of branching ratios
B(P → `1`2) [35, 34, 55, 63, 64].

with soft gluons, whose Compton wavelength is of the order of Λ−1
QCD, as mb(c)v � ΛQCD.

Here v is the velocity of heavy quarks. Thus, for the remainder of this chapter, we shall

set aηb(c) = 0. The constraints on the Wilson coefficients of gluonic operators could be

obtained either from studying lepton flavor violating η′ decays (for µe currents) or from the

corresponding tau decays. We use aη = −0.022±0.002 GeV3 and aη′ = −0.057±0.002 GeV3

[64]. The numerical values of the other pseudoscalar decay constants used in the calculations

can be found in Table 2.6. For the light quark states, such as η and η′ the corresponding

expressions are a bit more involved:

E`1`2
P = y

mP

4Λ2

[
− if qPκ

P
1

(
2
(
Cq`1`2
AL + Cq`1`2

AR

)
−GFm

2
P

(
Cq`1`2
PL + Cq`1`2

PR

))
− if sPκ

P
2

(
2
(
Cs`1`2
AL + Cs`1`2

AR

)
−GFm

2
P

(
Cs`1`2
PL + Cs`1`2

PR

))
+ 9 GFaP

(
C`1`2
G̃L

+ C`1`2
G̃R

)]
,

F `1`2
P = y

mP

4Λ2

[
− f qPκ

P
1

(
2
(
Cq`1`2
AL − Cq`1`2

AR

)
−GFm

2
P

(
Cq`1`2
PL − Cq`1`2

PR

))
− f sPκ

P
2

(
2
(
Cs`1`2
AL − Cs`1`2

AR

)
−GFm

2
P

(
Cs`1`2
PL − Cs`1`2

PR

))
− 9iGFaP

(
C`1`2
G̃L
− C`1`2

G̃R

) ]
,

(2.10)

where the index q = u/d, κη1 = 1/
√

3, κη2 = −
√

2/3, κη
′

1 =
√

2/3, and κη
′

2 = 1/
√

3. It

is important to note that, if observed, simultaneous fit to several light quark meson decays

could independently constrain Wilson coefficients of effective operators in Eq. (1.5), as follows

from Eq. (2.10).

The resulting constraints on the WCs could be found in Tables 2.7 and 2.8. Note that

no experimental constraints on the b and c currents are available, as the corresponding



30

Wilson

coefficient Leptons Initial state

(GeV−2) `1`2 ηb ηc η(u/d) η(s) η′(u/d) η′(s)

µτ · · · · · · FPS FPS FPS FPS

|Cq`1`2
AL /Λ2| eτ · · · · · · FPS FPS FPS FPS

eµ · · · · · · 3× 10−3 2× 10−3 2.1× 10−1 1.9× 10−1

µτ · · · · · · FPS FPS FPS FPS

|Cq`1`2
AR /Λ2| eτ · · · · · · FPS FPS FPS FPS

eµ · · · · · · 3× 10−3 2× 10−3 2.1× 10−1 1.9× 10−1

µτ · · · · · · FPS FPS FPS FPS

|Cq`1`2
PL /Λ2| eτ · · · · · · FPS FPS FPS FPS

eµ · · · · · · 2× 103 1× 103 3.9× 104 3.6× 104

µτ · · · · · · FPS FPS FPS FPS

|Cq`1`2
PR /Λ2| eτ · · · · · · FPS FPS FPS FPS

eµ · · · · · · 2× 103 1× 103 3.9× 104 3.6× 104

Table 2.7: Constraints on the Wilson coefficients from pseudoscalar meson decays. Center
dots signify that no experimental data is available to produce a constraint; “FPS” means
that the transition is forbidden by available phase space [35].

Wilson

coefficient Leptons Initial state

(GeV−2) `1`2 ηb ηc η η′

|C`1`2
GL /Λ

2| eµ · · · · · · 2× 102 5.0× 103

|C`1`2
GR /Λ

2| eµ · · · · · · 2× 102 5.0× 103

Table 2.8: Constraints on the pseudoscalar gluonic Wilson coefficients. Center dots signify
that no experimental data is available to produce a constraint. No data for other lepton
species is available [35].
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`1`2 µτ eτ eµ

B(B0
d → `1`2) 2.2× 10−5 2.8× 10−5 1.0× 10−9

B(B0
s → `1`2) · · · · · · 5.4× 10−9

B(D̄0 → `1`2) FPS · · · 1.3× 10−8

B(K0
L → `1`2) FPS FPS 4.7× 10−12

Table 2.9: Available experimental limits on B(P → `1`2) [34, 65, 66, 67, 68]. Center dots
signify that no experimental data are available; “FPS” means that the transition is forbidden
by phase space [36].

State B0
d B0

s D̄0 K0
L

fP , MeV 186± 4 224± 4 207.4± 3.8 155.0± 1.9

ΓP , 10−14 MeV 4330± 11 4374± 15 16050± 60 1.287± 0.005

mP , GeV 5.28 5.37 1.86 0.498

Table 2.10: Pseudoscalar meson decay constants [75, 76], total decay widths, and meson
masses [34] used in the calculation of branching ratios B(P → `1`2) [36].

transitions ηb(c) → `1`2 have not yet been experimentally studied. Also, constraints on the

WCs of gluonic operators in Table 2.8 are significantly weaker than those available from tau

decays [47]. Again, just as in Section 2.1, large entries in the Tables 2.7 and 2.8 do not imply

a breakdown of the EFT description of LFV decays, but signify that existing data does not

allow us to place strong constraints on the combination of relevant Wilson coefficients.

2.3 Pseudo-scalar B0
q , D

0, and K0 Decays P → `1`2

Many studies have focused on rare leptonic decays of B0
q mesons, Bq → `¯̀, as both

precision tests of the SM and as an opportunity to search for new physics (e.g. [69, 70, 71,

72, 73]). The abundance of produced B0
q and D̄0 states at the LHCb, Belle II, and BESIII

experiments also allows for studies of lepton-flavor violating decays at these experiments

[74, 34]. Such decays were discussed at length previously, mainly in the context of particular

models. Here we shall review these transitions emphasizing the possibility to constrain

Wilson coefficients of the axial and pseudoscalar operators of the effective Lagrangian in
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Wilson

coefficient Leptons Initial state

GeV−2 `1`2 B0
d

(
db̄
)

B0
s

(
sb̄
)

D̄0 (uc̄) K0
L

((
ds̄− sd̄

)
/
√

2
)

µτ 2.3× 10−8 · · · FPS FPS

|Cq1q2`1`2
AL /Λ2| eτ 2.6× 10−8 · · · · · · FPS

eµ 2.3× 10−9 4.4× 10−9 2.4× 10−8 5.0× 10−12

µτ 2.3× 10−8 · · · FPS FPS

|Cq1q2`1`2
AR /Λ2| eτ 2.6× 10−8 · · · · · · FPS

eµ 2.3× 10−9 4.4× 10−9 2.4× 10−8 5.0× 10−12

µτ 7.1× 10−5 · · · FPS FPS

|Cq1q2`1`2
PL /Λ2| eτ 8.0× 10−5 · · · · · · FPS

eµ 7.1× 10−6 1.3× 10−5 5.9× 10−4 1.7× 10−6

µτ 7.1× 10−5 · · · FPS FPS

|Cq1q2`1`2
PR /Λ2| eτ 8.0× 10−5 · · · · · · FPS

eµ 7.1× 10−6 1.3× 10−5 5.9× 10−4 1.7× 10−6

Table 2.11: Constraints on the Wilson coefficients from pseudoscalar meson decays. Note
the K0

L results only include short distance effects. Center dots signify that no experimental
data are available to produce a constraint; “FPS” means that the transition is forbidden by
phase space. Particle masses and other input parameters are from [36, 34, 65, 66, 67, 68].

Eq. (1.5). Note that these studies are complementtary to those discussed in Sect. 2.2, as

here we allow for flavor changes in the quark currents as well. These decays would provide

information about Cq1q2`1`2
PL (Cq1q2`1`2

PR ) and/or Cq1q2`1`2
AL (Cq1q2`1`2

AR ) in Eq. (1.8).

Here the most general expression for the P → `1`2 decay amplitude is the same as Eq.

(2.6) of Sect. 2.2, which leads to the same form for the branching ratio found in Eq. (2.7)

[35]. We once again neglect the mass of the lighter lepton and set y = m2/mP . Calculating

E`1`2
P and F `1`2

P for P = B0
d (q1q2 = db), B0

s (q1q2 = sb), D̄0 (q1q2 = cu), and , K0
L (q1q2 = ds),

the coefficients are

E`1`2
P = κP

mPfPy

2Λ2

[(
Cq1q2`1`2
AL + Cq1q2`1`2

AR

)
+m2

PGF

(
Cq1q2`1`2
PL + Cq1q2`1`2

PR

)]
,

F `1`2
P = iκP

mPfPy

2Λ2

[(
Cq1q2`1`2
AL − Cq1q2`1`2

AR

)
+m2

PGF

(
Cq1q2`1`2
PL − Cq1q2`1`2

PR

)]
.

(2.11)
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The decay constant in Eq. (2.11) is defined in Eq. (2.9). The constant κP is 1 for B0
q ,

D̄0, and K0; and 1/
√

2 for K0
L(S). The experimental limits and numerical values of the

pseudo-scalar decay constants used in the calculations can be found in Tables 2.9 and 2.10.

The resulting constraints on the Wilson coefficients are found in Table 2.11.

2.4 Scalar quarkonium decays S → `1`2

Scalar quarkonium decays would ideally allow one to probe the Wilson coefficients of

the scalar operators in Eq. (1.8). The corresponding p-wave states χq0, where q = b, c

could be effectively produced either directly in gluon-gluon fusion at the LHC, or in the

radiative decays of Υ(2S), Υ(3S), or corresponding ψ states. It is important to note that

the corresponding branching ratios for, say, ψ(2S) → γχc0 are rather large, of the order of

10%. Finally, they could also be produced in B-decays at flavor factories.

Since Wilson coefficients of other operators could be better probed in the processes dis-

cussed in Sect. 2.1-2.2, in this section we shall concentrate on the contributions of operators

that could not be probed in the decays of vector or pseudoscalar quarkonium states.

The most general expression for the S → `1`2 decay amplitude looks exactly like Eq. (2.6),

with obvious modifications for the scalar decay:

A(S → `1`2) = u(p1, s1)
[
E`1`2
S + iF `1`2

S γ5

]
v(p2, s2). (2.12)

E`1`2
S and F `1`2

S are dimensionless constants. The branching ratio, which follows from Eq. (2.12),

is

B(S → `1`2) =
mS

8πΓS

(
1− y2

)2
[∣∣E`1`2

S

∣∣2 +
∣∣F `1`2

S

∣∣2] . (2.13)

Here ΓS is the total width of the scalar state and y = m2/mS. The coefficients E`1`2
S and
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State χc0(1P ) χb0(1P ) χb0(2P )

mS, MeV 3414.75± 0.31 9859.44± 0.52 10232.5± 0.6

ΓS, MeV 10.5± 0.6 (1.35) (0.247± 0.097)

fS, MeV ≈ 887 ≈ 423 ≈ 421

Table 2.12: Decay constants of Eq. (2.9) for the scalar quarkonium decays [35], derived from
the quark model calculation of [77]. We follow [77] and do not assign uncertainty to the
quark model estimates of the decay constants. Masses and measured widths are from [34],
and unmeasured widths (in brackets) are calculated as in [77, 78].

F `1`2
S are

E`1`2
S = y

mSGF

4Λ2

[
2ifSmSmq

(
Cql1l2
SL + Cql1l2

SR

)
+ 9aS

(
Cql1l2
GL + Cql1l2

GR

)]
,

F `1`2
S = y

mSGF

4Λ2

[
2fSmSmq

(
Cql1l2
SL − C

ql1l2
SR

)
− 9iaS

(
Cql1l2
GL − C

ql1l2
GR

)]
.

(2.14)

The hadronic matrix elements in Eq. (2.14) are defined as

〈0|qq|S(p)〉 = −imSfS ,

〈0|αs
4π
GaµνGa

µν |S(p)〉 = aS .
(2.15)

Note that we introduced an extra minus sign and a factor of mS compared to [77] for the

scalar quark density to have uniform units for all matrix elements of quark currents. For

the same reasons as in the pseudoscalar case, one expects that the gluonic matrix elements

in Eq. (2.14) for the heavy quark states χc0 or χb0 are small, so we set aS = 0 from now on.

This means that the Wilson coefficients of the gluonic operators are better probed in LFV

tau decays, where the low energy theorems [47] or experimental data [42] could be used to

constrain relevant gluonic matrix elements.

Finally, we note that no constraints on the Wilson coefficients of the scalar currents in Leff

are available, as the corresponding transitions χb(c)0 → `1`2 have not yet been experimentally

studied.
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CHAPTER 3: THREE-BODY LEPTON FLAVOR

VIOLATING DECAYS

3.1 Radiative Vector Quarkonium Decays V → γ`1`2

Addition of a photon to the final state certainly reduces the number of the events available

for studies of LFV decays, especially since no compensating mechanisms seem to be present

(c.f. [79]). However, it also makes it possible for other operators in Leff , that were not

considered in two-body decays of vector quarkonium, to contribute. For this reason the

analysis of RLFV decays is a worthwhile exercise, especially for the decays of the vector

quarkonium states.

3.1.1 Resonant transitions V → γ(M → `1`2)

The resonant two-body radiative transitions of vector states V → γ(M → `1`2) could

be used to study two-body decays considered above, provided the corresponding branching

ratios for the radiative decays are large enough. Since vector states are abundantly produced

in e+e− annihilation, these decays could provide a powerful tool to study LFV transitions

at flavor factories.

If the soft photon1 can be effectively tagged at B-factories and (p`1 + p`2)
2 ≈ m2

M , the

combined branching ratio factorizes2 and can be written as

B(V → γ`1`2) = B(V → γM)B(M → `1`2), (3.1)

where the scalar decays (M = χq0) B(χq0 → `1`2) have been studied in Sect. 2.4, while

the corresponding pseudoscalar transitions (M = ηq) B(ηq → `1`2) have been studied in

Sect. 2.2.

The resonant RLFV decays are quite useful for studies of scalar heavy meson decays, as

1The photon is relatively soft because the resonance mass is close to the mass of the meson that produced
it.

2This equation implicitly assumes that the state M is narrow, which is an excellent approximation for
the scalar heavy quarkonium states considered here (see Table 2.12). A complete Dalitz plot analysis would
be required for wider states.
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the corresponding branching ratios are large, of order of a few percent [34]. In charm,

B(ψ(2S)→ γχc0(1P )) = 9.99± 0.27% ,

B(ψ(3770)→ γχc0(1P )) = 0.73± 0.09% .

The corresponding radiative transitions in beauty sector are also rather large,

B(Υ(2S)→ γχb0(1P )) = 3.8± 0.4% ,

B(Υ(3S)→ γχb0(1P )) = 0.27± 0.04% , (3.2)

B(Υ(3S)→ γχb0(2P )) = 5.9± 0.6% .

A rough estimate for SuperKEKB [77] shows that with the integrated luminosity of L = 250

fb−1 the number of produced χb states could reach tens of millions. Thus, studies of LFV

transitions of χb states could result in a solid bound on the Wilson coefficients of the scalar

operators in Leff .

Similar radiative transitions to the pseudoscalar states are generally smaller. However,

since the pseudoscalar 0−+ states are lighter than the 1−− ones, the radiative transition rates

could still reach a percent level in charm:

B(J/ψ → γηc) = 1.7± 0.4% ,

B(ψ(2S)→ γηc) = 0.34± 0.05% .

The corresponding branching ratios in b sector are in a sub permille level and cannot be

effectively used to study LFV decays of the ηb states.

3.1.2 Non-resonant transitions

Non-resonant three-body radiative decays of vector states V → γ`1`2 could be used to

constrain the scalar operators, which are not accessible in the two-body decays of vector or
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pseudoscalar states. Since the final state now includes the photon, it is no longer possible

to express all of the hadronic effects in terms of the decay constants. The constraints would

then depend on a set of V → γ form factors that are not well known. We will discuss those

in a future publication [80].

Here we would provide information about Cq`1`2
SL (Cq`1`2

SR ), but at the expense of introducing

model dependence. We shall calculate the transition V → γ`1`2 choosing a particular model

to describe the effective quark-antiquark distribution function [79].

In principle, besides the Wilson coefficients of the scalar operators, non-resonant RLFV

decays could be used to obtain information about vector, axial, pseudoscalar, and tensor

operators and thus Cq`1`2
V L (Cq`1`2

V R ), Cq`1`2
AL (Cq`1`2

AR ), Cq`1`2
PL (Cq`1`2

PR ), and Cq`1`2
TL (Cq`1`2

TR ). However,

because these operators can be constrained using much simpler two-body decays of vector and

pseudoscalar states (see Sec. 2.1-2.2) without significant model dependence, and with better

statistics, we shall focus here mainly on the scalar operators, leaving the other constraints

to the future work [80]. In principle, a calculation of the amplitude A(V → γ`1`2) involves

evaluation of the eight diagrams shown in Fig. 3.1. Since the initial state is a 1−− vector

meson, the contributions of the axial, scalar, and pseudoscalar are contained in diagrams

3.1(a) and 3.1(b). The diagrams 3.1(c) and 3.1(d) contain the vector and tensor operator

contributions and 3.1(e)-3.1(h) are generated by the dipole operator contributions. By the

same arguments as above, we shall also ignore these vector, tensor, and dipole operators in

this section.

A calculation of A(V → γ`1`2) presented in this section involves a model to describe the

quark-antiquark wave function of the quarkonium state [79]. We choose to follow [79, 81,

82, 83] and write it as

ΨV =
Ic√

6
ΦV (x)

(
mV γ

α + ipβσαβ
)
εα(p). (3.3)

Here the momentum of the vector meson is p, the momentum fraction of the quarkonium
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1: Feynman diagrams for A(V → γ`1`2). The black circles represent the four
fermion LFV vertex, the black boxes represent the dipole LFV vertex, and the grey boxes
represent the quarkonium bound state [35].
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carried by one of the constituent quarks is x and the color space identity matrix is Ic. The

distribution amplitude, ΦV (x), in Eq. (3.3) is defined as

ΦV (x) =
fV

2
√

6
δ(x− 1/2), (3.4)

where fV is a decay constant defined in Eq. (2.4). We chose the simplest wave function which

makes the approximation that each constituent quark carries half the meson’s momentum,

which is a good approximation for the heavy quark states made of the same flavor quarks

qq̄ such as Υ(nS) or J/ψ. The non-local matrix element that is relevant for the radiative

transition is then expressed in terms of an integral over momentum fraction:

〈0|qΓµq|V 〉 =

∫ 1

0

Tr[ΓµΨV ]dx. (3.5)

We can now calculate the total and differential decay rates. Assuming single operator dom-

inance, the axial, scalar, and pseudoscalar operators lead to the following differential decay

rates:

dΓA
V→γ`1`2
dm2

12

=
1

9

αQ2
q

(4π)2

f 2
V

Λ4

(
C2
AL + C2

AR

) (m2
V −m2

12) (2m2
V y

2 +m2
12) (m2

V y
2 −m2

12)
2

mVm6
12

,

dΓS
V→γ`1`2
dm2

12

=
1

24

αQ2
q

(4π)2

f 2
VG

2
FmV

Λ4

(
C2
SL + C2

SR

) y2 (m2
V −m2

12) (m2
V y

2 −m2
12)

2

m2
12

, (3.6)

dΓP
V→γ`1`2
dm2

12

=
1

24

αQ2
q

(4π)2

f 2
VG

2
FmV

Λ4

(
C2
PL + C2

PR

) y2 (m2
V −m2

12) (m2
V y

2 −m2
12)

2

m2
12

.

Here y is defined to be the same as in Sect. 2.1 and we follow the usual definition of the

Mandelstam variable m2
12 = (p1 + p2)2 [34], where momentum p1 and p2 correspond to `1 and

`2. Note that in writing Eqs. (3.6) and (3.7) we suppressed some of the indices of the Wilson

coefficients (i.e. Cq`1`2
SL → CSL) for brevity. The total decay rates for the RLFV transitions
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Figure 3.2: Differential decay rates as functions of photon energy Eγ for axial operators.
Plotted decay rates are for (a) Υ(1S) → γµτ or γeτ (solid blue), Υ(2S) → γµτ or γeτ
(short-dashed gold), Υ(3S) → γµτ or γeτ (dotted red), Υ(1S) → γeµ (dot-dashed green),
Υ(2S) → γeµ and Υ(3S) → γeµ (long-dashed purple); (b) Jψ → γµτ or γeτ (solid blue),
ψ(2S)→ γµτ or γeτ (short-dashed gold), Jψ → γeµ (dotted red), ψ(2S)→ γeµ (dot-dashed
green); (c) ρ→ γeµ (solid blue), ω → γeµ (short-dashed gold), φ→ γeµ (dotted red) [35].

can be found by integrating Eq. (3.6) over m2
12, which gives

ΓA(V → γ`1`2) =
1

18

αQ2
q

(4π)2

f 2
Vm

3
V

Λ4

(
C2
AL + C2

AR

)
f(y2),

ΓS(V → γ`1`2) =
1

144

αQ2
q

(4π)2

f 2
VG

2
Fm

7
V

Λ4

(
C2
SL + C2

SR

)
y2f(y2), (3.7)

ΓP (V → γ`1`2) =
1

144

αQ2
q

(4π)2

f 2
VG

2
Fm

7
V

Λ4

(
C2
PL + C2

PR

)
y2f(y2),

where f(y2) = 1−6y2−12y4log (y)+3y4+2y6. We may use Eq. (3.7) to normalize differential

decay distributions, so that they are independent of the unknown Wilson coefficients and

plot the normalized decay distributions under the assumption of single operator dominance.

We show differential photon spectra in V → γ`1`2 decay in Fig. 3.2 for the axial operators,

and in Fig. 3.3 for the scalar or pseudoscalar ones.

Since no experimental constraints are available for the RLFV decays of vector quarkonia,

we cannot yet place any constraints on the Wilson coefficients from those transitions.

3.2 Radiative Pseudoscalar Meson Decays P → γ`1
¯̀
2

Similarly to the B0
s → µ+µ−γ transition [84, 85, 86, 87, 88], addition of a photon to

the `1`2 final state allows one to probe operators of the effective Lagrangian that do not
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Figure 3.3: Differential decay rates as functions of photon energy Eγ for scalar/pseudoscalar
operators. Plotted decay rates are for (a) Υ(1S)→ γµτ or γeτ (solid blue), Υ(2S)→ γµτ or
γeτ (short-dashed gold), Υ(3S)→ γµτ , γeτ , or γeµ (dotted red), Υ(1S)→ γeµ (dot-dashed
green), Υ(2S)→ γeµ (long-dashed purple); (b) Jψ → γµτ or γeτ (solid blue), ψ(2S)→ γµτ
or γeτ (short-dashed gold), Jψ → γeµ (dotted red), ψ(2S) → γeµ (dot-dashed green); (c)
ρ→ γeµ (solid blue), ω → γeµ (short-dashed gold), φ→ γeµ (dotted red) [35].

contribute to P → `1`2 transition. This was pointed out for the LFV decays in [35], and,

more importantly in [89] (for a calculation of B0
s → `1`2γ in the model of [90]). In addition,

P → `1
¯̀
2 decays suffer from chiral suppression (see Eq. (2.11)), which three-body radiative

decays do not neccessarily exhibit. Thus, it is possible that RLFV decays might have larger

branching ratios than two-body LFV transitions (see [84, 85, 86, 87, 88] for similar effects in

lepton flavor conserving decays). Here we evaluate RLFV decays of the pseudoscalar mesons

with the model-independent effective Lagrangian of Eq. (1.5).

It might be theoretically easier to deal with a three-body final state that contains no

strongly-interacting composite particles. Still, the calculation of the P → `1`2γ decay is

more complicated than P → `1`2, where all nonperturbative effects are summarized in one

decay constant fP . Further, because of the electromagnetic gauge invariance, it is important

to have a good understanding of what kind of constraints the kinematic structure of the

decay amplitude imposes on the dynamics of these transitions. Let us now derive the most

general amplitude for P → `1`2γ.
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3.2.1 General amplitude and differential decay rate for P → `1
¯̀
2γ

The most general expression for the P (p) → γ(k)`1(p1)`2(p2) decay amplitude can be

obtained using the Bardeen-Tung formalism which we modify to include LFV decays [91].

The decay amplitude may be written as

A(P (p)→ γ(k)`1(p1)`2(p2)) = u(p1, s1) Mµ(p, k, q) v(p2, s2) ε∗µ(k), (3.8)

where u(p1, s1) and v(p2, s2) are spinors for `1 and ¯̀
2, q = 1

2
(p1 − p2), and ε∗µ(k) is the

polarization vector of the photon. The function Mµ(p, k, q), which we seek to parameterize,

transforms as a tensor under Lorentz transformations. This function should only contain

dynamical singularities, so particular care should be taking by writing it in such a way that

it does not contain kinematical ones3. The most general expression for the Mµ(p, k, q) from

Eq. (3.8) can be written by expanding it into simpler Lorentz structures `µi (p, q, k) multiplied

by the invariant functions MP`1`2
i , which only depend on Lorentz invariants,

Mµ(p, k, q) =
∑
i

`µi (p, q, k)MP`1`2
i (p2, ...) . (3.9)

The most general parameterization of Eq. (3.9) contains twelve form-factors,

Mµ(p, k, q) = γµ
(
MP`1`2

1 + /kMP`1`2
2

)
+ iγ5γ

µ
(
MP`1`2

3 + /kMP`1`2
4

)
+ qµ

(
MP`1`2

5 + /kMP`1`2
6

)
+ iγ5q

µ
(
MP`1`2

7 + /kMP`1`2
8

)
(3.10)

+ pµ
(
M q`1`2

9 + /kM q`1`2
10

)
+ iγ5p

µ
(
MP`1`2

11 + /kMP`1`2
12

)
.

In writing of Eq. (3.10) we used the equation of motion for the lepton spinors, and rewrote

terms containing σµν in terms of components, e.g. iσµνqν = qµ − γµ/q. Note the terms

proportional to /q can be expressed as terms proportional to /k using momentum conservation

3Kinematic singularities occur when a scalar product such as p · k can go to zero in the denominator
of a term in the function. This differs from a dynamic singularity, which occurs in the denominator of a
propagator for example like 1/(q2 −m2) when q2 → m2.
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and equations of motion. Next, terms proportional to the εµναβ tensor, such as εµναβγνpαkβ,

can be written in terms of the existing form factors of Eq. (3.10) using the relation

iεµναβγβ = γµγνγαγ5 − gµνγαγ5 − gναγµγ5 + gµαγνγ5 (3.11)

and the equations of motion. Finally, all possible terms in Eq. (3.10) proportional to kµ

trivially vanish by gauge invariance.

The set of Eq. (3.10) is still not minimal, as the condition of gauge invariance kµM
µ(p, k, q) =

0 implies that some of the MP`1`2
i in Eq. (3.10) are not independent. An elegant way of find-

ing the minimal set of gauge-invariant Lorentz structures has been given in [91], which we

shall apply to our analysis. To get the minimal set, it is most convenient to apply a projection

operator

P µν = gµν − pµkν

(p · k)
(3.12)

to Mµ(p, k, q). Since P µνMν = Mµ and kµP
µν = 0, P µν does indeed project out gauge-

invariant structures in Mµ(p, k, q). Applying P µν to Eq. (3.10) we find PνP
µν = 0 and so

terms proportional to pµ do not give contributions to the minimal set and should be dropped,

leaving the number of independent amplitudes at eight4. Applying the condition kµ`
µ
i = 0

fwe write the Lorentz structures Lµi for the set of amplitudes as

Mµ(p, k, q) =
∑
i

Lµi (p, q, k)AP`1`2i (p2, ...), (3.13)

which are defined in a manner that removes all kinematical singularities. The AP`1`2i (p2, ...)

4There is a simple argument presented in Refs. [92, 93] which calculates the number of independent
amplitudes. The number of independent amplitudes is the number N of possible helicity amplitudes as
calculated by Ni =

∏
(2si + 1). Here i is the index of the particle in the process and si is the spin of the

particle. In the case of P → γ`1 ¯̀
2 we would naively calculate N = 1 × 3 × 2 × 2 = 12 because sP = 0,

sγ = 1, and s`1,2 = 1/2. This is incorrect because the formula over counts the number of helicity states for
the photon, which is 2. Correcting for this we find N = 1 × 2 × 2 × 2 = 8, which exactly the number of
independent amplitudes we found.
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are new scalar form factors, while Lµi are

Lµ1 = γµ/k,

Lµ2 = iγ5γ
µ/k,

Lµ3 = (p · k) qµ − (k · q) pµ,

Lµ4 = iγ5 [(p · k) qµ − (k · q) pµ] ,

Lµ5 = (p · k) γµ − pµ/k,

Lµ6 = iγ5 [(p · k) γµ − pµ/k] ,

Lµ7 = qµ/k − (k · q) γµ,

Lµ8 = iγ5 [qµ/k − (k · q) γµ] .

(3.14)

This implies that the decay amplitude can be written as

A(P (p)→ γ(k)`1(p1)`2(p2)) =
∑
i

AP`1`2i (p2, ...) u(p1, s1) Lµi (p, q, k) v(p2, s2) ε∗µ(k). (3.15)

Using this general amplitude for a three-body pseudoscalar decay, P → γ`1`2, we calculate

Eq. (3.16), which is a general differential decay rate that depends on the same scalar functions

AP`1`2i (p2, ...). In Eq. (3.16) the Mandelstam variables have the usual definitions: m2
12 =

(p1 + p2)2, m2
13 = (p1 + k)2, m2

23 = (p2 + k)2, where p1,2 is the `1,2 lepton momentum and

k is the γ photon momentum. They are related to the pseudoscalar momentum, p, by

p = p1 + p2 + k. The mass mP is the pseudoscalar mass, m2 is the heavier lepton mass, and

y = m2/mP . The superscript of P`1`2 on the scalar functions AP`1`2i (p2, ...) is dropped for

brevity in Eq. (3.16). We introduce a photon mass, mγ, to regulate the infrared divergences

that will appear via bremsstrahlung diagrams. We use a value of mγ = 60 MeV as our
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cut-off, which is near the final state invariant mass resolution of experiments [89].

dΓ

dm2
12dm

2
23

=
1

(2π)3

1

384m3
P

[
− 16

(
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) (
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P
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−
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γ
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γ −m2
12
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(
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)
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13

(
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.

(3.16)

3.2.2 Scalar functions AP`1`2
i for B0

q , D̄
0, and K0 mesons

The scalar functions AP`1`2i (p2, ...) introduced in Eq. (3.13) can only depend on kinemat-

ical invariants and form factors. These functions can be calculated on the lattice or using

other non-perturbative methods. Examining the four-fermion Lagrangian of Eq. (1.8) one

can find that the contributions of Figs. (3.4), (3.6), and (3.7) to AP`1`2i could be written

in terms of the form factors for P (p) → γ(k) transitions used to parameterize lepton flavor

conserving decays, such as P+ → γ`+ν̄ or P 0 → γ`¯̀. The definitions of the form factors are
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[85, 86, 87, 89]

〈γ(k)|q1γ
µγ5q2|P (p)〉 = i

√
4πα ε∗α(k) [gαµp · k − pαkµ] fPA [Q2, k2], (3.17)

〈γ(k)|q1γ
µq2|P (p)〉 =

√
4πα ε∗ν(k)εµναβpαkβf

P
V [Q2, k2], (3.18)

〈γ∗(k)|q1σ
µνq2|P (p)〉 = i

√
4πα ε∗α(k)

[
εµναβkβf

P
T1[Q2, k2]

+

(
pα − p · k

k2
kα
)
εµνρβpρkβf

P
T2[Q2, k2] (3.19)

+

(
εµναρpρ +

kα

k2
εµνρβpρkβ

)
fPT3[Q2, k2]

]
.

Here Q = p− k and the tensor form factors are defined for an off-shell photon. The tensor

form factors fPT1,2,3[k2
1, k

2
2] are functions of two variables: k1, which is the momentum flowing

from a vertex associated with the tensor current, and k2, which is the momentum of the

photon emitted from the valence quark of the meson. Note that for the on-shell photon

k2 = 0, there exist a relationship between fPT2 and fPT3. Gauge invariance implies that

fPT3[Q2, 0] = (p · k)fPT2[Q2, 0], so the tensor matrix element simplifies to [85]

〈γ(k)|q1σµνq2|P (p)〉 = i
√

4πα ε∗α(k)
[
εµναβk

βfPT1[Q2, 0]

+
(
pαεµνρβp

ρkβ + p · kεµναβpβ
)
fPT2[Q2, 0]

]
.

(3.20)

Using Eqs. (3.17), (3.18), and (3.20) we can calculate the scalar function contributions

of the axial, vector, and tensor operators from the Lagrangian in Eq. (1.8) of type O ∼

(`1`2)(q1q2) where q1 6= q2, which are found in Fig. (3.4). To calculate these and the other

diagrams that follow one must understand that the amplitudes of the individual diagrams

factorize into a part described by the matrix elements that define the form factors and

a part that can be found by calculating the Feynman rules for the new physics effective

interaction. In Fig. (3.4) these new physics effective interactions are described in Eq. (1.8).
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q1P (p)

(b)

Figure 3.4: Four-fermion interaction diagrams for A(P → γ`1`2) for operators of type O ∼
(`1`2)(q1q2) where q1 6= q2 with photon γ(k) attached to the valence quark. The black circles
represent the four-fermion LFV vertex defined in Leff of Eq. (1.8) [36].

The contributions of these diagrams to the scalar functions AP`1`2i are

A3.4ab
1 =

√
4πα

2Λ2

(
Cq1q2`1`2
V R − Cq1q2`1`2

V L

)
ymPf

P
V [m2

12, 0]

−
√

4πα
Λ2

(
Cq1q2`1`2
TR − Cq1q2`1`2

TL

)
ymPmHGF

(
fPT1[m2

12, 0] +
m2
P−m

2
12

2
fPT2[m2

12, 0]
)

,

A3.4ab
3 = − 2

√
4πα

Λ2

(
Cq1q2`1`2
TR − Cq1q2`1`2

TL

)
ymPmHGFf

P
T2[m2

12, 0],

A3.4ab
5 = −

√
4πα

2Λ2

(
Cq1q2`1`2
AR + Cq1q2`1`2

AL

)
fPA [m2

12]

(3.21)

+
√

4πα
Λ2

(
Cq1q2`1`2
TR − Cq1q2`1`2

TL

)
y2m2

PmHGFf
P
T2[m2

12, 0], and

A3.4ab
7 =

√
4πα
Λ2

(
Cq1q2`1`2
V R − Cq1q2`1`2

V L

)
fPV [m2

12, 0].

Note that in this section (e.g. in writing Eq. (3.21)) we suppressed the previously used

superscript of P`1`2 in favor of a superscript related to the associated diagrams, which

consists of the figure number and sub-figure letters (i.e. 3.4ab). We only show the odd

subscript scalar function equations. The even subscript equations can be found from the

odd subscript equations by replacing the left-handed WCs by their negative magnitudes (i.e.

CV L → −CV L, CAL → −CAL, etc. ) and multiplying the odd subscript scalar function by

the imaginary constant i. This may be used to find A2 from A1, A4 from A3, A6 from A5,

and A8 from A7 and is true throughout this section.

There is no contribution in Fig. (3.4) from the pseudoscalar operators of the Lagrangian
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Figure 3.5: Bremsstrahlung diagrams for A(P → γ`1`2) for operators of type O ∼
(`1`2)(q1q2) where q1 6= q2. The black circles represent the four-fermion LFV vertex de-
fined in Leff of Eq. (1.8) [36].

in Eq. (1.8). This can be seen by taking the divergence of the matrix element for the axial

current to relate the axial and pseudoscalar matrix elements,

〈γ(k)|q1γ5q2|P (p)〉 = − 1

mq1 +mq2

pµ〈γ(k)|q1γµγ5q2|P (p)〉, (3.22)

and using Eq. (3.17) to get

〈γ(k)|q1γ5q2|P (p)〉 = 0. (3.23)

A similar argument can be made to prove that the scalar operators also do not give form

factor contributions.

The bremsstrahlung diagrams of Fig. (3.5) are calculated similarly to the two-body decays

of Sect. 2.3 using the matrix element of Eq. (2.9). We have given the photon a small mass,

mγ, to regulate the infrared divergences. This divergence only appears in the quark flavor

changing axial and pseudoscalar operator terms of the scalar functions, Eq. (3.24), so the

photon mass is set to zero for the non-divergent terms. The same is true for the differential

decay rate in Eq. (3.16). The axial and pseudoscalar operator scalar function terms are

defined here as
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Figure 3.6: Dipole operator diagrams for A(P → γ`1`2). The grey circles with the black
border represent the SM dipole penguin vertex (Eq. (1.7)) and the black boxes represent the
dipole LFV vertex (Eq. (1.6)). Note that the contributions of these diagrams are severely
constrained by already available data on `1 → `2γ decays [36].

A3.5ab
1 =

√
4πα

2Λ2

(
Cq1q2`1`2
AR + Cq1q2`1`2

AL +m2
PGF

(
Cq1q2`1`2
PR + Cq1q2`1`2

PL

))
ymP fP (m2

P+m2
γ−m2

12)
m2

13(m2
23−m2

P y
2)

,

A3.5ab
3 = 2

√
4πα

Λ2

(
Cq1q2`1`2
AR − Cq1q2`1`2

AL +m2
PGF

(
Cq1q2`1`2
PR − Cq1q2`1`2

PL

))
ymP fP

m2
13(m2

23−m2
P y

2)
. (3.24)

The diagrams in Fig. (3.6) contain both the dipole operators of Eq. (1.6) and contribu-

tions from the SM dipole penguin operator, Eq. (1.7). This is directly related to both the on

and off-shell tensor matrix elements in Eqs. (3.19) and (3.20) from which we need to write

matrix elements of the form 〈γ(k)|q1σ
µν(1 ± γ5)q2|P (p)〉. These can be found by using the
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relation σµνγ5 = − i
2
εµναβσ

αβ, which yields:

〈γ(k)|q1σ
µν(1± γ5)q2|P (p)〉Qν = i

√
4πα ε∗α(k)

{ (
fPT1[Q2, 0] + p · kfPT2[Q2, 0]

)
εpkαµ

± i
(
fPT1[Q2, 0] + p ·QfPT2[Q2, 0]

)
(gαµp · k − pαkµ)

}
,

(3.25)

〈γ∗(Q)|q1σ
µν(1± γ5)q2|P (p)〉kν = fi

√
4πα ε∗α(Q)

{
εpkµα ± i (gαµp · k − pµkα)

}
×
(
fPT1[0, Q2] + fPT3[0, Q2]

)
.

(3.26)

The on-shell matrix element in Eq. (3.25) contributes to Figs. 3.6(a) and 3.6(b). While

the off-shell matrix element in Eq. (3.26) is necessary for calculating the dipole operator

contributions of the diagrams in Figs. 3.6(c) and 3.6(d). In these diagrams, the lepton

current is attached to the photon coming from the meson’s valence quarks and so Q ↔ k

when we calculate Eq. (3.26). Using these matrix elements we find the dipole operator

components of the scalar functions which are

A3.6abcd
1 = − 1

Λ2

(
C`1`2
DR − C

`1`2
DL

)
4πα
π2 ymPmH

GF√
2
C7γ

∑
q

λPq fPT,I ,

A3.6abcd
3 = 2

Λ2
4πα
π2

ymPmH
m2

12

GF√
2
C7γ

∑
q

λPq
((
C`1`2
DR − C

`1`2
DL

)
fPT,I −

(
C`1`2
DR + C`1`2

DL

)
fPT,II

)
,

A3.6abcd
5 = − 1

Λ2
4πα
π2

y2m2
PmH
m2

12

GF√
2
C7γ

∑
q

λPq
((
C`1`2
DR − C

`1`2
DL

)
fPT,I −

(
C`1`2
DR + C`1`2

DL

)
fPT,II

)
,

(3.27)

where we have used the shorthand notations fPT,I and fPT,II that we define as

fPT,I =fPT1[m2
12, 0] + fPT1[0,m2

12] +
m2
P−m

2
12

2
fPT2[m2

12, 0] + fPT3[0,m2
12] and

fPT,II =fPT1[m2
12, 0] + fPT1[0,m2

12] +
m2
P+m2

12

2
fPT2[m2

12, 0] + fPT3[0,m2
12].

(3.28)

Here λPq = Vqq2V
∗
qq1

, which are the appropriate CKM matrix elements for the calculation.

So far we have not addressed the contributions of the diagrams in Fig. (3.7). These dia-

grams contain contributions from the axial, vector, and tensor operators from the Lagrangian

in Eq. (1.8) of type `1`2qq, where the quarks are both the same flavor. As was the case for
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Figure 3.7: Four-fermion interaction diagrams for A(P → γ`1`2) for operators of type O ∼
(`1

¯̀
2)(q̄q) with photon γ(k) attached to the SM dipole penguin vertex. The black circles

represent the four-fermion LFV vertex (Eq. (1.8)) and the grey circles with the black border
represent the SM dipole penguin vertex (Eq. (1.7)) [36].

the four-fermion operators that had a flavor change on both the quark side and lepton side,

the scalar and pseudoscalar operators do not contribute. We can calculate the contributions

of the vector operators using the same tensor matrix element as in Eq. (3.26), but with one

important modification. The form factors are the sum of two form factors related to each

quark flavor, fT i = f̃ q1T i + f̃ q2T i (e.g. see [94]). Because it is convenient we will use a definition

with the quark charge explicitly included in the formula, fT i = Qq1f
q1
Ti + Qq2f

q2
T i. This is

important because in the case of Fig. 3.7(a) we only have contributions from f q1T i and in Fig.

3.7(b) we only have f q2T i.

A3.7ab
1 = −

√
4πα

π2Λ2

2∑
j=1

(
C
qj`1`2
V R − Cqj`1`2

V L

)
ymP

2
GF√

2
C7γ

∑
q

λPq

(
f
P,qj
T1 [0,m2

12]+f
P,qj
T3 [0,m2

12]
)

,

A3.7ab
5 =

√
4πα

π2Λ2

2∑
j=1

(
C
qj`1`2
V R + C

qj`1`2
V L

)
mH

2
GF√

2
C7γ

∑
q

λPq

(
f
P,qj
T1 [0,m2

12]+f
P,qj
T3 [0,m2

12]
)

, (3.29)

A3.7ab
7 = −

√
4πα

π2Λ2

2∑
j=1

(
C
qj`1`2
V R − Cqj`1`2

V L

)
mH

GF√
2
C7γ

∑
q

λPq

(
f
P,qj
T1 [0,m2

12]+f
P,qj
T3 [0,m2

12]
)

.

Applying this information to the decays of B0
q , D̄

0, and K0 mesons shown in Figs. (3.4)–
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(3.7), we find that each scalar function AP`1`2i is written as

AP`1`2i (p2, ...) = A3.4ab
i + A3.5ab

i + A3.6abcd
i + A3.7ab

i (i = 1–8) , (3.30)

which are functions of model independent form factors and decay constants.

3.2.3 Results

Unfortunately, no experimental limits on the branching ratios of radiative lepton-flavor

violating decays exist to constrain any of the applicable Wilson coefficients of the effective

Lagrangian of Eq. (1.5). We encourage our colleagues from the LHC and KEK to study

these decays. However, some information about Wilson coefficients is available from other

transitions, such as two-body decays discussed in Chap. 2. In this section we use this infor-

mation, along with the assumption of single operator dominance to derive the expectations

for the size of the radiative LFV decays, if driven by those operators. These upper lim-

its are presented in Tables 3.1 and 3.2 and the differential decay rates are plotted in Figs.

(3.8)–(3.11) of Section 3.2.3.1.

All of the form factors and numerical constants, unless previously mentioned, used to

obtain the results in this section may be found in the Appendix. In some cases where form

factors are currently unknown, we apply a constituent quark model to estimate the relevant

contribution. The quark model approach and results may be found in Sect. 3.2.4.

3.2.3.1 Spectra

Inputting the scalar functions of Eq. (3.30) in the differential decay rate, Eq. (3.16),

and integrating over the Mandelstam variables m2
23 and m2

12, we calculate the differential

decay rate, dΓ/dm2
12, and total decay rate, Γ

(
P → γ`1`2

)
. Using these results we may

predict the differential decay spectra for individual operators, (1/Γ) (dΓ/dEγ). Where we

make the variable change from m2
12 to Eγ, the photon energy in the meson rest frame, and

normalize to the total decay rate. This analysis requires the practical assumption of single

operator dominance so that the unknown WCs of individual operators will cancel between
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Figure 3.8: Vector operator (O ∼ (`1`2)(q1q2) where q1 6= q2) differential decay plots as
functions of photon energy Eγ: (a) Bd → γµτ or γeτ (solid blue curve), Bd → γeµ (short-
dashed gold curve), Bs → γµτ or γeτ (dotted red curve), Bs → γeµ (dot-dashed green
curve); (b) D → γeτ (solid blue curve), D → γeµ (short-dashed gold curve), K → γeµ
(dotted red curve) [36].

the differential and total decay rates.

The differential decay rates for the vector and tensor operators of type O ∼ (`1`2)(q1q2)

where q1 6= q2 are

dΓq1q2`1`2V

dm2
12

=
C2
V R + C2

V L

Λ4

4πα

(2π)3

1

576m2
P

(
m2
P −m2

12

)3 (
2m2

12 − 3m2
Py

2
)
fPV [m2

12, 0], (3.31)

dΓq1q2`1`2T

dm2
12

=
C2
TR + C2

TL

Λ4

4πα

(2π)3

y2m2
qH
G2
F

288m2
P

(
m2
P −m2

12

)3

×
((

2fPT1[m2
12, 0] +m2

Pf
P
T2[m2

12, 0]
)2

+m2
12

(
fPT2[m2

12, 0]
)2
)

.

(3.32)

Here we have suppressed the superscripts of the WCs for brevity (e.g. Cq1q2`1`2
V R → CV R).

We drop terms higher in order than y2, which is a good approximation in most cases as the

ratio y is small. The vector and tensor operators with flavor change on both the quark and

lepton side are of particular importance to our analysis. They cannot be constrained via

two-body decays and so the three-body decay channels present us with a unique opportunity

to place limits on the associated WCs. The vector operators also have an advantage over

the tensor operators because they are not chirally suppressed by quark and lepton masses.
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Figure 3.9: Tensor operator (O ∼ (`1`2)(q1q2) where q1 6= q2) differential decay plots as
functions of photon energy Eγ: (a) Bd → γµτ or γeτ (solid blue curve), Bd → γeµ (short-
dashed gold curve), Bs → γµτ or γeτ (dotted red curve), Bs → γeµ (dot-dashed green
curve); (b) D → γeτ (solid blue curve), D → γeµ (short-dashed gold curve) [36].

��� ��� ��� ��� ��� ���
�

��

���

���

���

���

�γ (���)

� Γ


Γ


�
γ

(�
�
�
-
�
)

(a)

��� ��� ��� ��� ���
�

��

��

��

��

�

�

�

�

�

�γ (���)

� Γ


Γ


�
γ

(�
�
�
-
�
)

(b)

Figure 3.10: Axial operator (O ∼ (`1`2)(q1q2) where q1 6= q2) differential decay plots as
functions of photon energy Eγ: (a) Bd → γµτ or γeτ (solid blue curve), Bd → γeµ (short-
dashed gold curve), Bs → γµτ or γeτ (dotted red curve), Bs → γeµ (dot-dashed green
curve); (b) left scale D → γeµ (solid blue curve), right scale K → γeµ (short-dashed gold
curve) [36].
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Figure 3.11: Pseudoscalar operator (O ∼ (`1`2)(q1q2) where q1 6= q2) differential decay plots
as functions of photon energy Eγ: (a) Bd → γµτ or γeτ (solid blue curve), Bd → γeµ
(short-dashed gold curve), Bs → γµτ or γeτ (dotted red curve), Bs → γeµ (dot-dashed
green curve); (b) left scale D → γeµ (solid blue curve), right scale K → γeµ (short-dashed
gold curve) [36].

Assuming WCs are of similar size, this means the vector operators would give a larger

contribution to the overall decay rate and conversely are better constrained by experimental

limits. The differential spectra given in Eqs. (3.31)–(3.32) are shown in Figs. (3.8)–(3.9).

The three-body decays considered here also provide complementary access to the axial

and pseudoscalar operators of type O ∼ (`1`2)(q1q2) where q1 6= q2. We do not provide the

equations for the individual differential decay rates as they are more cumbersome than their

vector and tensor counterparts and they are better constrained via two-body decays. Their

differential spectra are plotted in Figs. (3.10)–(3.11) We demonstrate how well constrained

these and other operators are in Sects. 3.2.3.2 and 3.2.4.2.

3.2.3.2 Limits

Using the available limits on Wilson coefficients from Sect. 2.3 with the form factors of the

Appendix, we predict the upper threshold experiments must reach to potentially see LFV in

the P → γ`1`2 decays involving the axial and pseudoscalar operators of typeO ∼ (`1`2)(q1q2)

where q1 6= q2 and dipole operators. These upper bounds are presented in Table 3.1 for B0
q

decays and in Table 3.2 for D̄0 and K0
L decays. K0

L is used in lieu of K0 for the limits on the

branching ratios due to a lack of experimental information on the total decay rate of K0.
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Wilson Upper limits

coefficient B(B0
d → γµτ) B(B0

d → γeτ) B(B0
d → γeµ) B(B0

s → γeµ)

Cqb`1`2
AR 9.2× 10−7 1.2× 10−6 6.5× 10−11 3.7× 10−10

Cqb`1`2
AL 9.2× 10−7 1.2× 10−6 6.5× 10−11 3.7× 10−10

Cqb`1`2
PR 9.0× 10−7 1.2× 10−6 3.2× 10−11 1.7× 10−10

Cqb`1`2
PL 9.0× 10−7 1.2× 10−6 3.2× 10−11 1.7× 10−10

Table 3.1: Upper limits on B0
q → γ`1`2 branching ratios from known Wilson coefficient

constraints using form factors for four-fermion axial and pseudoscalar operators of type
O ∼ (`1`2)(q1q2) where q1 6= q2 [36].

Wilson Upper limits

coefficient B(D̄0 → γeµ) B(K0
L → γeµ)SD

Cq1q2`1`2
AR 2.2× 10−10 2.3× 10−14

Cq1q2`1`2
AL 2.2× 10−10 2.3× 10−14

Cq1q2`1`2
PR 4.5× 10−9 2.2× 10−14

Cq1q2`1`2
PL 4.5× 10−9 2.2× 10−14

Table 3.2: Upper limits on D̄0 (uc̄), K0
L

((
ds− sd

)
/
√

2
)
→ γ`1`2 branching ratios from

known Wilson coefficient constraints using form factors for four-fermion axial and pseu-
doscalar operators of type O ∼ (`1`2)(q1q2) where q1 6= q2. Note the K0

L results are for short
distance (SD) interactions [36].

The normalized differential decay plots of K0 are the same as K0
L because the normalization

to the total decay rate cancels out the numerical differences (i.e. a factor of 1/
√

2).

The predicted upper limits of the four-fermion axial and pseudoscalar operators for radia-

tive pseudoscalar decays P → γ`1`2 in Tables 3.1 and 3.2 demonstrate that these operators

ultimately are better constrained by their two-body decay counterparts. When we compare

the predicted upper bounds of three-body rates in Tables 3.1 and 3.2 to the two-body exper-

imental limits in Table 2.9 we see they are one to two orders of magnitude smaller. Therefore

the three-body decays could still provide complimentary access to these operators.

The tensor form factors in the Appendix also allow us to analyze the contributions of

the dipole operators from Eq. (1.6). The dipole operators are best constrained via radiative
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Leptons Wilson coefficient [35] Predicted upper limits

`1`2 (GeV−2) B(B0
d → γ`1`2) B(B0

s → γ`1`2) B(D̄0 → γ`1`2)

µτ |C`1`2
DR /Λ

2| = 2.6× 10−10 3.1× 10−28 1.2× 10−26 FPS

eτ 2.7× 10−10 3.3× 10−28 1.3× 10−26 3.8× 10−38

eµ 3.1× 10−7 5.3× 10−24 1.2× 10−21 1.4× 10−27

µτ |C`1`2
DL /Λ

2| = 2.6× 10−10 3.1× 10−28 1.2× 10−26 FPS

eτ 2.7× 10−10 3.3× 10−28 1.3× 10−26 3.8× 10−38

eµ 3.1× 10−7 5.3× 10−24 1.2× 10−21 1.4× 10−27

Table 3.3: Upper limits on B0
q

(
qb
)
, D̄0 (uc̄) → γ`1`2 branching ratios from known dipole

Wilson coefficient constraints found in Chap. 2 and using form factors for dipole operators
(see the Appendix). FPS stands for “forbidden phase space” [36].

lepton decays `2 → `1γ, where `2 = τ , µ and `1 = µ, e. These decays have been the focus

of most LFV experiments and therefore have the best constraints: B(τ → µγ) = 4.4× 10−8,

B(τ → eγ) = 3.3×10−8, and B(µ→ eγ) = 4.2×10−13 [34, 95, 96]. In Sect. 2.1 we were able

to provide complimentary access via two-body vector quarkonium decays V → `1`2 [35].

Using the WC constraints obtained from the radiative lepton decays `2 → `1γ in [35], we

predict the dipole operator decay upper limits for P → γ`1`2 in Table 3.3. Here the predicted

upper limits range from 10−21–10−38, which is much lower than we would expect to be within

experimental reach during the foreseeable future. Despite showing that P → γ`1`2 is not

a useful means to constrain the dipole operators, the results in Table 3.3 are ten or more

orders of magnitude smaller than the predictions of the axial and pseudoscalar operators in

Tables 3.1 and 3.2. This confirms that P → γ`1`2 decays are better equiped to constrain

four-fermion operators. Indeed the operators in the best position to be constrained are the

quark flavor changing four-fermion vector operators, which see no chiral suppression via

lepton or quark masses and cannot be constrained via two-body decays.

3.2.4 Quark Model

When the necessary form factors are unavailable to take a model independent approach

to the calculation of the four-fermion operator contributions of the diagrams in Fig. (3.7),
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Wilson Leptons Quark

coefficient (GeV−2) `1`2 b c s u/d

|Cq`1`2
V L(R)/Λ

2| µτ 3.5× 10−6 5.5× 10−5 · · · · · ·
|Cq`1`2

V L(R)/Λ
2| eτ 4.1× 10−6 1.1× 10−4 · · · · · ·

|Cq`1`2
V L(R)/Λ

2| eµ · · · 1.0× 10−5 2.0× 10−3 · · ·
|Cq`1`2

AL(R)/Λ
2| eµ · · · · · · 2.0× 10−3 3.0× 10−3

|Cq`1`2
TL(R)/Λ

2| µτ 2.8× 10−2 1.2 · · · · · ·
|Cq`1`2

TL(R)/Λ
2| eτ 3.2× 10−2 2.4 · · · · · ·

|Cq`1`2
TL(R)/Λ

2| eµ · · · 4.8 · · · · · ·

Table 3.4: Known Wilson coefficient limits from Chap. 2 [35]. Note the center dots denote
unknown values which could be constrained via P → γ`1

¯̀
2 [36].

we may choose a model dependent approach. We again apply a constituent quark model

to calculate the contributions of four-fermion vector, axial, and tensor operators of the type

(`1`2)(qq). We constrained both the vector and tensor Wilson coefficients for these operators

previously in Chap. 2 [35]. The results are reproduced here in Table 3.4 and can be used

to find a predicted upper bound on the branching ratio of B
(
P → γ`1`2

)
for individual

operators using the single operator dominance assumption.

3.2.4.1 Consituent Quark Model

The amplitude for the diagrams in Fig. (3.7) using this model is

iA = − i

Λ2
ε∗µ(k)

2∑
i=1

(
u`1

[
Cqi`1`2
V R γαPR + Cqi`1`2

V L γαPL

]
v`2〈0| q1ΓV ,qi

αµ q2 |P (p)〉

+u`1

[
Cqi`1`2
AR γαPR + Cqi`1`2

AL γαPL

]
v`2〈0| q1ΓA,qi

αµ q2 |P (p)〉

+m2mqiGFu`1

[
Cqi`1`2
TR σαβPL + Cqi`1`2

TR σαβPR

]
v`2〈0| q1ΓT ,qi

αβµq2 |P (p)〉
)

.

(3.33)

This amplitude is dependent on matrix elements of the form 〈0| q1Γq2 |P 〉 with the ma-

trices Γ defined for each operator (O ∼ (`1`2)(qiqi), i = 1, 2) as
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ΓV ,q1
αµ = iGF√

2

√
4πα
π2 mq1C7γ

∑
q

λPq γα
x/p−/k+mq1

(xp−k)2−m2
q1

σµν (1 + γ5) kν ,

ΓA,q1
αµ = iGF√

2

√
4πα
π2 mq1C7γ

∑
q

λPq γαγ5
x/p−/k+mq1

(xp−k)2−m2
q1

σµν (1 + γ5) kν ,

ΓT ,q1
αβµ = iGF√

2

√
4πα
π2 mq1C7γ

∑
q

λPq σαβ
x/p−/k+mq1

(xp−k)2−m2
q1

σµν (1 + γ5) kν ,

(3.34)

ΓV ,q2
αµ = iGF√

2

√
4πα
π2 mq2C7γ

∑
q

λPq σµν (1 + γ5) kν
−(1−x)/p+/k+mq2
((1−x)p−k)2−m2

q2

γα,

ΓA,q2
αµ = iGF√

2

√
4πα
π2 mq2C7γ

∑
q

λPq σµν (1 + γ5) kν
−(1−x)/p+/k+mq2
((1−x)p−k)2−m2

q2

γαγ5, and

ΓT ,q2
αβµ = iGF√

2

√
4πα
π2 mq2C7γ

∑
q

λPq σµν (1 + γ5) kν
−(1−x)/p+/k+mq2
((1−x)p−k)2−m2

q2

σαβ.

(3.35)

In modeling the quark anti-quark distribution, we again chose to follow [79, 82, 83], where

we can write the wave function of the ground state, P (p), as

ψP =
Ic√

6
φP [x]γ5

(
/p+mPg[x]

)
. (3.36)

The variable x is the fraction of the meson momentum transferred by one of the quarks

and Ic is the color space identity matrix. We assigned the momenta in Fig. (3.7) such that

the valence quark q1 has momentum xP and the valence quark q2 has momentum (1− x)P .

The function gP [x] is gH [x] ∼ 1 for high mass mesons and gL[x] = 0 for low mass mesons.

The distribution amplitudes used for light and heavy mesons and their normalization are

φL ∼ x (1− x) , φH ∼
[
mqL

MH

1

1− x
+

1

x
− 1

]−2

,
fP

2
√

6
=

∫ 1

0

φ[x] dx. (3.37)

Here mqL is the mass of the low mass quark and the normalization is proportional to the
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Quark mu md ms mc mb

Constituent mass (MeV) 335.5 339.5 486 1550 4730

Table 3.5: Constituent quark masses required for calculations of quark model matrix element
[97].
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Figure 3.12: Differential decay plots as functions of photon energy Eγ for (a) vector/axial,
(b) left-handed tensor, and (c) right-handed tensor operators of the type O ∼

(
`1`2

) (
bb
)
.

Plotted decay rates are Bd → γµτ or γeτ (solid blue curve), Bd → γeµ (short-dashed gold
curve), Bs → γµτ or γeτ (dotted red curve), Bs → γeµ (dot-dashed green curve) [36].

decay constant fP . We find the matrix element,

〈0| q1Γµq2 |P 〉 =

∫ 1

0

Tr[ΓµψP ] dx, (3.38)

by integration of the meson momentum fraction x and taking the trace.

3.2.4.2 Spectra and Limits

Since we applied a constituent quark model to calculate the transition amplitudes we

need to define its parameters (constituent quark masses) that are used to calculate the

matrix element in Eq. (3.38). These masses are in Table 3.5. Using this matrix element

and integrating over the Mandelstam variables m2
23 and m2

12 we can calculate the differential

decay rate as a function of the photon energy, Eγ, in the rest-frame of the meson P and the

total decay rate. Plots of these differential decay spectra normalized to individual operator

total decay rates are in Figs. (3.12)–(3.16), which show the spectra of B0
q , D̄

0, and K0 decays

for the vector, axial, and tensor operators of type (`1`2)(qq). The normalization cancels out
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Figure 3.13: Differential decay plots as functions of photon energy Eγ for (a) vector/axial,
(b) left-handed tensor, and (c) right-handed tensor operators of the type O ∼

(
`1`2

)
(cc).

Plotted decay rates are D → γeτ (solid blue curve), D → γeµ (short-dashed gold curve).
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Figure 3.14: Differential decay plots as functions of photon energy Eγ for (a) vector/axial
and (b) left/right-handed tensor operators of the type O ∼

(
`1`2

)
(ss). Plotted decay rates

are Bs → γµτ or γeτ (solid blue curve), Bs → γeµ (short-dashed gold curve), and K → γeµ
(dotted red curve).

sources of uncertainty such as the Wilson coefficients (i.e. Cqi`1`2
V R(L)) and the CKM matrix

element values. As we did in Section 3.2.3.2, we apply known Wilson coefficient constraints

from Table. 3.4 and the single operator dominance assumption to the total decay rate to

make predictions of the branching ratio upper limit for these operators, which can be found

in Tables. 3.6 – 3.8.

These limits range in order of magnitude from 10−10–10−28 and therefore many are below

experimental reach. It is the spaces between these limits that should draw the reader’s

attention. There is much opportunity here to constrain the operators whose limits cannot

be predicted. Providing limits using these RLFV decays would of course be complementary

to two-body LFV decays of quarkonia (e.g. [35]), but would come for free as we constrain
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Figure 3.15: Differential decay plots as functions of photon energy Eγ for (a) vector/axial,
(b) left-handed tensor, and (c) right-handed tensor operators of the type O ∼

(
`1`2

) (
dd
)
.

Plotted decay rates are Bd → γµτ or γeτ (solid blue curve), Bd → γeµ (short-dashed gold
curve), and K → γeµ (dotted red curve).
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Figure 3.16: Differential decay plots as functions of photon energy Eγ for (a) vector/axial,
(b) left-handed tensor, and (c) right-handed tensor operators of the type O ∼

(
`1`2

)
(uu).

Plotted decay rates are D → γeτ (solid blue curve), D → γeµ (short-dashed gold curve).
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Wilson Upper limits

coefficient B(B0
d → γµτ) B(B0

d → γeτ) B(B0
d → γeµ)

Cb`1`2
V R 5.7× 10−20 7.8× 10−20 · · ·

Cb`1`2
V L 5.7× 10−20 7.8× 10−20 · · ·

Cd`1`2
V R · · · · · · · · ·

Cd`1`2
V L · · · · · · · · ·

Cd`1`2
AR · · · · · · 2.0× 10−12

Cd`1`2
AL · · · · · · 2.0× 10−12

Cb`1`2
TR 3.9× 10−21 5.1× 10−21 · · ·

Cb`1`2
TL 1.1× 10−18 1.5× 10−18 · · ·

Table 3.6: Upper limits on B0
d(db̄)→ γ`1`2 branching ratios from known Wilson coefficient

constraints using constituent quark model. The center dots indicate no Wilson coefficient
constraints were available for a prediction of an upper bound. Experimental studies of this
decay channel would present an opportunity to constrain these Wilson coefficients [36].

Wilson Upper limits

coefficient B(B0
s → γµτ) B(B0

s → γeτ) B(B0
s → γeµ)

Cb`1`2
V R 1.8× 10−18 2.5× 10−18 · · ·

Cb`1`2
V L 1.8× 10−18 2.5× 10−18 · · ·

Cs`1`2
V R · · · · · · 1.3× 10−10

Cs`1`2
V L · · · · · · 1.3× 10−10

Cs`1`2
AR · · · · · · 1.5× 10−11

Cs`1`2
AL · · · · · · 1.5× 10−11

Cb`1`2
TR 2.1× 10−19 2.8× 10−19 · · ·

Cb`1`2
TL 3.9× 10−17 5.1× 10−17 · · ·

Table 3.7: Upper limits on B0
s (sb̄)→ γ`1`2 branching ratios from known Wilson coefficient

constraints using constituent quark model. The center dots indicate no Wilson coefficient
constraints were available for a prediction of an upper bound. Experimental studies of this
decay channel would present an opportunity to constrain these Wilson coefficients [36].
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Wilson Upper limits

coefficient B(D̄0 → γeτ) B(D̄0 → γeµ)

Cc`1`2
V R 5.1× 10−28 8.8× 10−24

Cc`1`2
V L 5.1× 10−28 8.8× 10−24

Cu`1`2
AR · · · 1.3× 10−16

Cu`1`2
AL · · · 1.3× 10−16

Cc`1`2
TR 6.0× 10−28 2.5× 10−24

Cc`1`2
TL 6.2× 10−27 3.7× 10−22

Table 3.8: Upper limits on D̄0 (uc̄)→ γ`1`2 branching ratios from known Wilson coefficient
constraints using constituent quark model. The center dots indicate no Wilson coefficient
constraints were available for a prediction of an upper bound. Experimental studies of this
decay channel would present an opportunity to constrain these Wilson coefficients [36].

the vector and tensor operators with flavor changes on both the quark and lepton sides.
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CHAPTER 4: CONCLUSION

Studies of lepton flavor violating transitions are a promising path in the search for new

physics. A convenient way to study new physics is to employ effective Lagrangians. All

models of new physics that include flavor-violating interactions are encoded in the values

of Wilson coefficients of the low energy effective Lagrangian in Eq. (1.5). We argued that

Wilson coefficients of this Lagrangian could be effectively probed by studying decays of

quarkonium and other meson states with different spin-parity quantum numbers, providing

complementary constraints to those obtained from tau and mu decays [37, 98].

The proposed framework allows us to select two-body meson decays in such a way that

only operators with particular quantum numbers are probed, significantly reducing the re-

liance on the single operator dominance assumption that is prevalent in constraining the

parameters of the effective LFV Lagrangian. We argued that studies of RLFV decays could

provide important complementary access to effective operators probed in two-body decays

of type O ∼
(
`1

¯̀
2

)
(q̄q) where there is only a FCNC on the lepton side without the need

to include a composite strongly-interacting meson to the final state. We also saw that the

radiative three-body decays of B0
q , D

0, and K0 to γ`1`2 allowed access to the effective op-

erators in Eq. (1.5) which cannot be probed via any two-body meson decays. Finally, we

provide evidence that the dipole operators are so well constrained by radiative LFV tran-

sitions `2 → `1γ that their threshold for contributions to B(P → γ`1`2) is many orders of

magnitude below experimental reach. Thus, their contribution to the sum of amplitudes in

Eq. (3.30) can be safely dropped.

As more data is produced by Belle II and the LHCb experiment, we emphatically encour-

age our experimental colleagues to produce experimental limits on both LFV and radiative

LFV decays of the quarkonia and the B0
q , D̄

0, and K0 mesons discussed in this work.
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APPENDIX: FORM FACTORS AND NUMERICAL

CONSTANTS

To estimate differential decay rates and the upper limits of the total decay rates of the

radiative decays in Section 3.2.3, we must apply the form factors of Eqs. (3.17)–(3.19) and

the numerical constants of Tables 1 and 2. Numerical inputs for the CKM matrix elements

are found in [34]. Before we can apply these form factors, we must relate them to those

calculated in the literature, which are defined as [85, 86, 87, 88, 89]

〈γ∗(k2)|q1γ
µγ5q2|P (p)〉 = ieε∗α(k2) (gαµk1 · k2 − kα1 k

µ
2 )
F P
A [k2

1, k
2
2]

mP

,

〈γ∗(k2)|q1γ
µq2|P (p)〉 = eε∗α(k2)εk1k2µα

F P
V [k2

1, k
2
2]

mP

,

〈γ∗(k2)|q1σ
µνγ5q2|P (p)〉k1ν = eε∗α(k2) (gαµk1 · k2 − kα1 k

µ
2 )F P

TA[k2
1, k

2
2], and

〈γ∗(k2)|q1σ
µνq2|P (p)〉k1ν = ieε∗α(k2)εk1k2µαF P

TV [k2
1, k

2
2].

(1)

These form factors are functions of two momenta, k1, which is emitted from the q1 → q2

weak transition current, and k2, which is emitted from one of the valence quarks of the meson

P . Here the photon is off-shell, but the on-shell definitions may be found by assuming k2
2 = 0

and applying the momentum conservation relation p = k1 + k2.

Assuming k2 = 0 and making the appropriate substitutions of Q = p − k and k for k1

and k2 we find the necessary relations between the form factors in Eqs. (3.17)–(3.19) and

Eq. (1) as

mu md mc ms mb

2.2+0.6
−0.4 MeV 4.7+0.5

−0.4 MeV 1.28± 0.03 GeV 96+8
−4 MeV 4.18+0.04

−0.03 GeV

Table 1: MS quark masses required for decay calculations [34].
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Transition Scale µ [GeV] |C7γ| Ref.

b→ d(s)γ 5.0 0.299 [46]

c→ uγ 1.3 0.0025

4|V ∗ubVcb|
[60]

Table 2: Penguin operator Wilson coefficients, C7γ, for decay calculations.

Parameter FV FTV FA FTA

B0
d,s → γ β

(
GeV−1

)
0.28 0.30 0.26 0.33

∆ (GeV) 0.04 0.04 0.30 0.30

Table 3: Parameters of the B0
q → γ form factors, as defined in Eq. (3) [85].

F P
V ,A[Q2, 0] = mpf

P
V ,A[Q2, 0],

F P
TV [Q2, 0] = − fPT1[Q2, 0]− p · kfPT2[Q2, 0],

F P
TA[Q2, 0] = − fPT1[Q2, 0]− p ·QfPT2[Q2, 0],

F P
TV,TA[0, Q2] = − fPT1[0, Q2]− fPT3[0, Q2].

(2)

To make use of these relations we employ the parameterizations of [85] for the FV , FA,

FTV , and FTA form factors. For the B0
q → γ form factor parameterization when the photon

γ is emitted from the valence quarks (k1 = Q, k2 = k) we use

F
Bq
i [E] = βi

fPmP

∆i + Eγ
, i = V, A, TV, TA (3)

where Eγ is the photon energy in the P -meson rest-frame. The constants β and ∆ are

numerical parameters which can be found in Table 3.

For the parameterization of the D̄0, K0 → γ form factors when the photon γ is emitted
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Parameter V A TV TA

D̄0 → γ F c
i (0) -0.12 0.14 -0.12 -0.12

F u
i (0) -0.37 -0.31 -0.38 -0.38

Mi (GeV) 2.0 2.3 2.0 2.4

K0 → γ F d
i (0) -0.22 0.20 – –

F s
i (0) -0.18 -0.19 – –

Mi (GeV) 0.89 0.89 – –

Table 4: Parameters of the D̄0,K0 → γ form factors, as defined in Eq. (4) [89, 99]. The K0

tensor form factors will be calculated elsewhere.

V g[0]
B0
q→V

+ g[0]D̄
0→V

+ fV (MeV) mV (MeV) ΓV (MeV) Refs.

ρ 0.27 −0.66 154 775.26± 0.25 147.8± 0.9 [34, 88, 100]

ω −0.27 −0.66 45.3 782.65± 0.12 8.49± 0.08 [34, 88, 100]

φ −0.38 −58.8 1019.460± 0.016 4.247± 0.016 [34, 88, 100]

Table 5: Vector meson dominance input parameters for FTV , TA[0, Q2] form factors.

from the valence quarks (k1 = Q, k2 = k) we use

F P
i [m2

12] =
Qq1F

(q1)
i [0] +Qq2F

(q2)
i [0]

1− m2
12

M2
i

, i = V, A, TV, TA. (4)

Here Qd(s) = −1
3
, Qu(c) = 2

3
, and the remaining parameters are found in Table 4 [89].

The form factors F P
TV , TA[0, Q2] for B0

q and D̄0 decays are parameterized using vector

meson dominance in [87, 88], which gives

F P
TV , TA[0, Q2] = F P

TV , TA[0, 0]−
∑
V

2fV g[0]P→V+

Q2/mV

Q2 −m2
V + imV ΓV

. (5)

The vector meson dominance input parameter values are found in Table 5. The ρ and

ω mesons are part of the vector meson sum for B0
d and D̄0 form factors because of their

respective d and u valence quark content. The φ meson is part of the vector meson sum

for the B0
s form factor because of its s valence quark content. The zero momentum values
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of the tensor form factors are F
B0
d,s

TV , TA[0, 0] = 0.115 [85] and F D̄0

TV , TA[0, 0] = Qcf
c
TV,TA[0] +

Quf
u
TV,TA[0].

Given these form factors and the general input values given in Tables 1 and 2 we are able

to plot the normalized differential decay rates and estimate the upper limits for the radiative

branching ratios assuming single operator dominance in Section 3.2.3.



70

BIBLIOGRAPHY

[1] D. Griffiths, “Introduction to elementary particles,” Weinheim, Germany: Wiley-VCH

(2008) 454 p

[2] R. A. Millikan “A Direct Photoelectric Determination of Planck’s h” Phys. Rev. 7, 355

(1916). doi:10.1103/PhysRev.7.355

[3] C. M. G. Lattes, H. Muirhead, G. P. S. Occhialini and C. F. Powell, “Processes Involving

Charged Mesons,” Nature 159, 694 (1947). doi:10.1038/159694a0

[4] R. E. Marshak and H. A. Bethe, “On the Two-Meson Hypothesis,” Phys. Rev. 72, 506

(1947). doi:10.1103/PhysRev.72.506

[5] C. D. Anderson “Early Work on the Positron and Muon” American Journal of Physics

29, 825 (1961). doi:10.1119/1.1937627

[6] F. Reines and C. L. Cowan, “Detection of the free neutrino,” Phys. Rev. 92, 830 (1953).

doi:10.1103/PhysRev.92.830; C. L. Cowan, F. Reines, F. B. Harris, H. W. Kruse, and

A. D. McGuire “Detection of the free neutrino: a Confirmation,” Science 124, 103-104

(1956). doi: 10.1126/science.124.3212.103

[7] R. Davis, Jr. and D. S. Harmer, “Attempt to observe the Cl37(ν̄e−)Ar37 reaction induced

by reactor antineutrinos,” Bull. Am. Phys. Soc. 4, 217 (1959).

[8] E. Nuovo Cim Majorana, “Teoria simmetrica dell’elettrone e del positrone” Il Nuovo

Cimento 14, 171 (1937) doi: 10.1007/BF02961314

[9] E. J. Konopinski and H. M. Mahmoud, “The Universal Fermi interaction,” Phys. Rev.

92, 1045 (1953). doi:10.1103/PhysRev.92.1045

[10] G. Danby, J. M. Gaillard, K. A. Goulianos, L. M. Lederman, N. B. Mistry,

M. Schwartz and J. Steinberger, “Observation of High-Energy Neutrino Reactions

and the Existence of Two Kinds of Neutrinos,” Phys. Rev. Lett. 9, 36 (1962).

doi:10.1103/PhysRevLett.9.36



71

[11] A. Pais, “Some Remarks on the V-Particles,” Phys. Rev. 86, 663 (1952).

doi:10.1103/PhysRev.86.663

[12] M. Gell-Mann, “Isotopic Spin and New Unstable Particles,” Phys. Rev. 92, 833 (1953).

doi:10.1103/PhysRev.92.833

[13] T. Nakano and K. Nishijima, “Charge Independence for V-particles,” Prog. Theor. Phys.

10, 581 (1953). doi:10.1143/PTP.10.581

[14] O. W. Greenberg, “Spin and Unitary Spin Independence in a Paraquark Model of

Baryons and Mesons,” Phys. Rev. Lett. 13, 598 (1964). doi:10.1103/PhysRevLett.13.598

[15] J. J. Aubert et al. [E598 Collaboration], “Experimental Observation of a Heavy Parti-

cle J ,” Phys. Rev. Lett. 33, 1404 (1974). doi:10.1103/PhysRevLett.33.1404; J. E. Au-

gustin et al. [SLAC-SP-017 Collaboration], “Discovery of a Narrow Resonance in e+e−

Annihilation,” Phys. Rev. Lett. 33, 1406 (1974) [Adv. Exp. Phys. 5, 141 (1976)].

doi:10.1103/PhysRevLett.33.1406

[16] J. D. Bjorken and S. L. Glashow, “Elementary Particles and SU(4),” Phys. Lett. 11,

255 (1964). doi:10.1016/0031-9163(64)90433-0

[17] G. Goldhaber et al., “Observation in e+ e- Annihilation of a Narrow State at

1865-MeV/c2 Decaying to K π and K π π π,” Phys. Rev. Lett. 37, 255 (1976).

doi:10.1103/PhysRevLett.37.255; I. Peruzzi et al., “Observation of a Narrow Charged

State at 1876-MeV/c2 Decaying to an Exotic Combination of K π π,” Phys. Rev. Lett.

37, 569 (1976). doi:10.1103/PhysRevLett.37.569

[18] R. Brandelik et al. [DASP Collaboration], “Evidence for the F Meson,” Phys. Lett.

70B, 132 (1977). doi:10.1016/0370-2693(77)90361-6

[19] M. L. Perl et al., “Evidence for Anomalous Lepton Production in e+−e− Annihilation,”

Phys. Rev. Lett. 35, 1489 (1975). doi:10.1103/PhysRevLett.35.1489

[20] S. W. Herb et al., “Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV Proton-

Nucleus Collisions,” Phys. Rev. Lett. 39, 252 (1977). doi:10.1103/PhysRevLett.39.252



72

[21] S. Behrends et al. [CLEO Collaboration], “Observation of Exclusive Decay Modes of B

Flavored Mesons,” Phys. Rev. Lett. 50, 881 (1983). doi:10.1103/PhysRevLett.50.881

[22] F. Abe et al. [CDF Collaboration], “Observation of top quark production in p̄p col-

lisions,” Phys. Rev. Lett. 74, 2626 (1995) doi:10.1103/PhysRevLett.74.2626 [hep-

ex/9503002].; S. Abachi et al. [D0 Collaboration], “Observation of the top quark,” Phys.

Rev. Lett. 74, 2632 (1995) doi:10.1103/PhysRevLett.74.2632 [hep-ex/9503003].

[23] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19, 1264 (1967).

doi:10.1103/PhysRevLett.19.1264

[24] F. Halzen and A. D. Martin, “Quarks And Leptons: An Introductory Course In Modern

Particle Physics,” New York, USA: Wiley (1984) 396p

[25] M. D. Schwartz, “Quantum Field Theory and the Standard Model,” Cambridge, UK:

Cambridge University Press (2014) 850p

[26] S. Chatrchyan et al. [CMS Collaboration], “Observation of a new boson at a mass

of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30 (2012)

doi:10.1016/j.physletb.2012.08.021 [arXiv:1207.7235 [hep-ex]].;G. Aad et al. [ATLAS

Collaboration], “Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1 (2012)

doi:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].

[27] A. A. Petrov and A. E. Blechman, “Effective Field Theories,” Singapore: World Scien-

tific (2016) 303p

[28] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,” Westview

Press (1995) 842p

[29] Q. R. Ahmad et al. [SNO Collaboration], “Direct evidence for neutrino flavor transfor-

mation from neutral current interactions in the Sudbury Neutrino Observatory,” Phys.

Rev. Lett. 89, 011301 (2002) doi:10.1103/PhysRevLett.89.011301 [nucl-ex/0204008].



73

[30] T. P. Cheng and L. F. Li, “µ → eγ in Theories With Dirac and Majorana Neutrino

Mass Terms,” Phys. Rev. Lett. 45, 1908 (1980). doi:10.1103/PhysRevLett.45.1908

[31] T. P. Cheng and L. F. Li, “Gauge Theory Of Elementary Particle Physics,” Oxford,

Uk: Clarendon (1984) 536 P. (Oxford Science Publications)

[32] T. P. Cheng and L. F. Li, “Nonconservation of Separate mu - Lepton and e - Lepton

Numbers in Gauge Theories with v+a Currents,” Phys. Rev. Lett. 38, 381 (1977).

doi:10.1103/PhysRevLett.38.381

[33] L. Calibbi and G. Signorelli, arXiv:1709.00294 [hep-ph].

[34] C. Patrignani et al. [Particle Data Group], “Review of Particle Physics,” Chin. Phys. C

40, no. 10, 100001 (2016) and 2017 update. doi:10.1088/1674-1137/40/10/100001

[35] D. E. Hazard and A. A. Petrov, “Lepton flavor violating quarkonium decays,” Phys.

Rev. D 94, no. 7, 074023 (2016)

[36] D. E. Hazard and A. A. Petrov, “Radiative lepton flavor violating B, D, and K decays,”

arXiv:1711.05314 [hep-ph].

[37] M. Raidal et al., “Flavour physics of leptons and dipole moments,” Eur. Phys. J. C 57,

13 (2008) doi:10.1140/epjc/s10052-008-0715-2 [arXiv:0801.1826 [hep-ph]].

[38] H. K. Dreiner, G. Polesello and M. Thormeier, “Bounds on broken R parity from leptonic

meson decays,” Phys. Rev. D 65, 115006 (2002) doi:10.1103/PhysRevD.65.115006 [hep-

ph/0112228].

[39] H. K. Dreiner, M. Kramer and B. O’Leary, “Bounds on R-parity violating supersymmet-

ric couplings from leptonic and semi-leptonic meson decays,” Phys. Rev. D 75, 114016

(2007) doi:10.1103/PhysRevD.75.114016 [hep-ph/0612278].

[40] K. S. Sun, T. F. Feng, T. J. Gao and S. M. Zhao, “Search for lepton flavor viola-

tion in supersymmetric models via meson decays,” Nucl. Phys. B 865, 486 (2012)

doi:10.1016/j.nuclphysb.2012.08.005 [arXiv:1208.2404 [hep-ph]].



74

[41] M. Lindner, M. Platscher and F. S. Queiroz, “A Call for New Physics : The Muon

Anomalous Magnetic Moment and Lepton Flavor Violation,” arXiv:1610.06587 [hep-

ph].

[42] A. Celis, V. Cirigliano and E. Passemar, “Model-discriminating power of lep-

ton flavor violating τ decays,” Phys. Rev. D 89, no. 9, 095014 (2014)

doi:10.1103/PhysRevD.89.095014 [arXiv:1403.5781 [hep-ph]].

[43] W. Buchmuller and D. Wyler, “Effective Lagrangian Analysis of New Interactions and

Flavor Conservation,” Nucl. Phys. B 268, 621 (1986). doi:10.1016/0550-3213(86)90262-

2

[44] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, “Dimension-Six Terms in the

Standard Model Lagrangian,” JHEP 1010, 085 (2010) doi:10.1007/JHEP10(2010)085

[arXiv:1008.4884 [hep-ph]].

[45] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, “Renormalization Group Evo-

lution of the Standard Model Dimension Six Operators III: Gauge Coupling Depen-

dence and Phenomenology,” JHEP 1404, 159 (2014) doi:10.1007/JHEP04(2014)159

[arXiv:1312.2014 [hep-ph]].

[46] G. Buchalla, A. J. Buras and M. E. Lautenbacher, “Weak decays beyond leading loga-

rithms,” Rev. Mod. Phys. 68, 1125 (1996)

[47] A. A. Petrov and D. V. Zhuridov, “Lepton flavor-violating transitions in effec-

tive field theory and gluonic operators,” Phys. Rev. D 89, no. 3, 033005 (2014)

doi:10.1103/PhysRevD.89.033005 [arXiv:1308.6561 [hep-ph]].

[48] V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, “Kaon Decays in the

Standard Model,” Rev. Mod. Phys. 84, 399 (2012) doi:10.1103/RevModPhys.84.399

[arXiv:1107.6001 [hep-ph]].



75

[49] S. Nussinov, R. D. Peccei and X. M. Zhang, “On unitarity based relations be-

tween various lepton family violating processes,” Phys. Rev. D 63, 016003 (2001)

doi:10.1103/PhysRevD.63.016003 [hep-ph/0004153].

[50] C. X. Yue and J. R. Zhou, “New gauge boson Z? and lepton flavor violating de-

cays and production of vector mesons,” Phys. Rev. D 93, no. 3, 035021 (2016)

doi:10.1103/PhysRevD.93.035021 [arXiv:1602.00211 [hep-ph]].

[51] A. Abada, D. Becirevic, M. Lucente and O. Sumensari, “Lepton flavor violating decays

of vector quarkonia and of the Z boson,” Phys. Rev. D 91, no. 11, 113013 (2015)

doi:10.1103/PhysRevD.91.113013 [arXiv:1503.04159 [hep-ph]].

[52] T. Gutsche, J. C. Helo, S. Kovalenko and V. E. Lyubovitskij, “New bounds on lepton

flavor violating decays of vector mesons and the Z0 boson,” Phys. Rev. D 83, 115015

(2011) doi:10.1103/PhysRevD.83.115015 [arXiv:1103.1317 [hep-ph]].

[53] D. Black, T. Han, H. J. He and M. Sher, Phys. Rev. D 66, 053002 (2002)

doi:10.1103/PhysRevD.66.053002 [hep-ph/0206056].

[54] J. P. Lees et al. [BaBar Collaboration], “Search for Charged Lepton Flavor

Violation in Narrow Upsilon Decays,” Phys. Rev. Lett. 104, 151802 (2010)

doi:10.1103/PhysRevLett.104.151802 [arXiv:1001.1883 [hep-ex]].

[55] D. Becirevic, G. Duplancia, B. Klajn, B. Meli and F. Sanfilippo, “Lattice QCD and QCD

sum rule determination of the decay constants of ηc, J/ψ and hc states,” Nucl. Phys. B

883, 306 (2014) doi:10.1016/j.nuclphysb.2014.03.024 [arXiv:1312.2858 [hep-ph]].

[56] B. Colquhoun, R. J. Dowdall, C. T. H. Davies, K. Hornbostel and G. P. Lepage, “Υ

and Υ′ Leptonic Widths, abµ and mb from full lattice QCD,” Phys. Rev. D 91, no. 7,

074514 (2015) doi:10.1103/PhysRevD.91.074514 [arXiv:1408.5768 [hep-lat]].

[57] M. S. Maior de Sousa and R. Rodrigues da Silva, “The ρ(2S) and ψ(2S) meson in a

double pole QCD Sum Rules,” arXiv:1205.6793 [hep-ph].



76

[58] G. C. Donald et al. [HPQCD Collaboration], “Vcs from Ds → φ`ν semilep-

tonic decay and full lattice QCD,” Phys. Rev. D 90, no. 7, 074506 (2014)

doi:10.1103/PhysRevD.90.074506 [arXiv:1311.6669 [hep-lat]].

[59] Y. Chen, A. Alexandru, T. Draper, K. F. Liu, Z. Liu and Y. B. Yang, “Leptonic Decay

Constant of ρ at Physical Point,” arXiv:1507.02541 [hep-ph]; V. V. Braguta, “The study

of leading twist light cone wave functions of J/psi meson,” Phys. Rev. D 75, 094016

(2007) doi:10.1103/PhysRevD.75.094016 [hep-ph/0701234 [HEP-PH]].

[60] A. Khodjamirian, T. Mannel and A. A. Petrov, “Direct probes of flavor-changing neutral

currents in e+ e−-collisions,” JHEP 1511, 142 (2015) doi:10.1007/JHEP11(2015)142

[arXiv:1509.07123 [hep-ph]].

[61] A. A. Petrov and W. Shepherd, “Searching for dark matter at LHC with Mono-

Higgs production,” Phys. Lett. B 730, 178 (2014) doi:10.1016/j.physletb.2014.01.051

[arXiv:1311.1511 [hep-ph]].

[62] N. Brambilla et al., “Heavy quarkonium: progress, puzzles, and opportunities,” Eur.

Phys. J. C 71, 1534 (2011) doi:10.1140/epjc/s10052-010-1534-9 [arXiv:1010.5827 [hep-

ph]].

[63] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel and G. P. Lepage, “Heavy meson

masses and decay constants from relativistic heavy quarks in full lattice QCD,” Phys.

Rev. D 86, 074503 (2012) doi:10.1103/PhysRevD.86.074503 [arXiv:1207.0994 [hep-lat]].

[64] M. Beneke and M. Neubert, “Flavor singlet B decay amplitudes in QCD factorization,”

Nucl. Phys. B 651, 225 (2003) doi:10.1016/S0550-3213(02)01091-X [hep-ph/0210085].

[65] B. Aubert et al. [BaBar Collaboration], “Searches for the decays B0 → `±τ∓ and B+ →

`+ν (` = e, µ) using hadronic tag reconstruction,” Phys. Rev. D 77, 091104 (2008)

doi:10.1103/PhysRevD.77.091104 [arXiv:0801.0697 [hep-ex]].



77

[66] D. Ambrose et al. [BNL Collaboration], “New limit on muon and electron lep-

ton number violation from K0
L → µ±e∓ decay,” Phys. Rev. Lett. 81, 5734 (1998)

doi:10.1103/PhysRevLett.81.5734 [hep-ex/9811038].

[67] R. Aaij et al. [LHCb Collaboration], “Search for the lepton-flavour violating de-

cay D0 → e±µ∓,” Phys. Lett. B 754, 167 (2016) doi:10.1016/j.physletb.2016.01.029

[arXiv:1512.00322 [hep-ex]].

[68] R. Aaij et al. [LHCb Collaboration], “Search for the lepton-flavour violating decays

B0
(s) → e±µ∓,” arXiv:1710.04111 [hep-ex].

[69] W. Altmannshofer, C. Niehoff and D. M. Straub, “Bs → µ+µ− as current and fu-

ture probe of new physics,” JHEP 1705, 076 (2017) doi:10.1007/JHEP05(2017)076

[arXiv:1702.05498 [hep-ph]].

[70] M. Beneke, C. Bobeth and R. Szafron, “Enhanced electromagnetic correction to the

rare B-meson decay Bs,d → µ+µ−,” arXiv:1708.09152 [hep-ph].

[71] T. Blake, G. Lanfranchi and D. M. Straub, “Rare B Decays as Tests of the Stan-

dard Model,” Prog. Part. Nucl. Phys. 92, 50 (2017) doi:10.1016/j.ppnp.2016.10.001

[arXiv:1606.00916 [hep-ph]].

[72] C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser,

“Bs,d → l+l− in the Standard Model with Reduced Theoretical Uncertainty,” Phys.

Rev. Lett. 112, 101801 (2014) doi:10.1103/PhysRevLett.112.101801 [arXiv:1311.0903

[hep-ph]].

[73] C. Bobeth, M. Gorbahn and E. Stamou, “Electroweak Corrections to Bs,d →

`+`−,” Phys. Rev. D 89, no. 3, 034023 (2014) doi:10.1103/PhysRevD.89.034023

[arXiv:1311.1348 [hep-ph]].

[74] Y. Amhis et al., “Averages of b-hadron, c-hadron, and τ -lepton properties as of summer

2016,” arXiv:1612.07233 [hep-ex].



78

[75] R. J. Dowdall et al. [HPQCD Collaboration], “B-Meson Decay Constants from Improved

Lattice Nonrelativistic QCD with Physical u, d, s, and c Quarks,” Phys. Rev. Lett. 110,

no. 22, 222003 (2013) doi:10.1103/PhysRevLett.110.222003 [arXiv:1302.2644 [hep-lat]].

[76] N. Carrasco et al., “Leptonic decay constants fK , fD, and fDs with Nf =

2 + 1 + 1 twisted-mass lattice QCD,” Phys. Rev. D 91, no. 5, 054507 (2015)

doi:10.1103/PhysRevD.91.054507 [arXiv:1411.7908 [hep-lat]].

[77] S. Godfrey and H. E. Logan, “Probe of new light Higgs bosons from bottomonium

χb0 decay,” Phys. Rev. D 93, no. 5, 055014 (2016) doi:10.1103/PhysRevD.93.055014

[arXiv:1510.04659 [hep-ph]].

[78] S. Godfrey and K. Moats, “Bottomonium Mesons and Strategies for their Obser-

vation,” Phys. Rev. D 92, no. 5, 054034 (2015) doi:10.1103/PhysRevD.92.054034

[arXiv:1507.00024 [hep-ph]].

[79] Y. G. Aditya, K. J. Healey and A. A. Petrov, “Searching for super-WIMPs in leptonic

heavy meson decays,” Phys. Lett. B 710, 118 (2012) doi:10.1016/j.physletb.2012.02.042

[arXiv:1201.1007 [hep-ph]].

[80] D. E. Hazard and A. A. Petrov, to be published

[81] Z. Dziembowski and L. Mankiewicz, “Light Meson Distribution Amplitude: A Simple

Relativistic Model,” Phys. Rev. Lett. 58, 2175 (1987). doi:10.1103/PhysRevLett.58.2175

[82] A. Szczepaniak, E. M. Henley and S. J. Brodsky, “Perturbative QCD Effects in Heavy

Meson Decays,” Phys. Lett. B 243, 287 (1990). doi:10.1016/0370-2693(90)90853-X

[83] G. P. Lepage and S. J. Brodsky, “Exclusive Processes in Perturbative Quantum Chro-

modynamics,” Phys. Rev. D 22, 2157 (1980). doi:10.1103/PhysRevD.22.2157

[84] Y. G. Aditya, K. J. Healey and A. A. Petrov, “Faking Bs → µ+µ−,” Phys. Rev. D 87,

074028 (2013) doi:10.1103/PhysRevD.87.074028 [arXiv:1212.4166 [hep-ph]].



79

[85] F. Kruger and D. Melikhov, “Gauge invariance and form-factors for the decay

B → γl+l−,” Phys. Rev. D 67, 034002 (2003) doi:10.1103/PhysRevD.67.034002 [hep-

ph/0208256].

[86] D. Melikhov, A. Kozachuk and N. Nikitin, “Rare FCNC radiative leptonic decays B →

γ`+`−,” PoS (EPS-HEP2017) 228 [arXiv:1710.02719 [hep-ph]].

[87] A. Kozachuk, D. Melikhov and N. Nikitin, “Rare radiative leptonic B-decays,” EPJ Web

Conf. 125, 02015 (2016) doi:10.1051/epjconf/201612502015 [arXiv:1609.06491 [hep-

ph]].

[88] D. Melikhov and N. Nikitin, “Rare radiative leptonic decays B(d, s) → l+l−γ,” Phys.

Rev. D 70, 114028 (2004) doi:10.1103/PhysRevD.70.114028 [hep-ph/0410146].

[89] D. Guadagnoli, D. Melikhov and M. Reboud, “More Lepton Flavor Vi-

olating Observables for LHCb’s Run 2,” Phys. Lett. B 760 (2016) 442

doi:10.1016/j.physletb.2016.07.028 [arXiv:1605.05718 [hep-ph]].

[90] S. L. Glashow, D. Guadagnoli and K. Lane, “Lepton Flavor Violation in B De-

cays?,” Phys. Rev. Lett. 114, 091801 (2015) doi:10.1103/PhysRevLett.114.091801

[arXiv:1411.0565 [hep-ph]].

[91] W. A. Bardeen and W. K. Tung, “Invariant amplitudes for photon pro-

cesses,” Phys. Rev. 173, 1423 (1968) Erratum: [Phys. Rev. D 4, 3229 (1971)].

doi:10.1103/PhysRevD.4.3229, 10.1103/PhysRev.173.1423

[92] H. W. Fearing, G. R. Goldstein and M. J. Moravcsik, “Amplitude structure of off-shell

processes,” Phys. Rev. D 29, 2612 (1984). doi:10.1103/PhysRevD.29.2612

[93] M. D. Scadron and H. F. Jones, “Covariant M functions for higher spin,” Phys. Rev.

173, 1734 (1968). doi:10.1103/PhysRev.173.1734

[94] M. Beyer, D. Melikhov, N. Nikitin and B. Stech, “Weak annihilation in the rare radiative

B → ργ decay,” Phys. Rev. D 64, 094006 (2001) doi:10.1103/PhysRevD.64.094006 [hep-

ph/0106203].



80

[95] A. M. Baldini et al. [MEG Collaboration], “Search for the lepton flavour violating decay

µ+ → e+γ with the full dataset of the MEG experiment,” Eur. Phys. J. C 76, no. 8,

434 (2016) doi:10.1140/epjc/s10052-016-4271-x [arXiv:1605.05081 [hep-ex]].

[96] B. Aubert et al. [BaBar Collaboration], “Searches for Lepton Flavor Violation in

the Decays τ± → e±γ and τ± → µ±γ,” Phys. Rev. Lett. 104 (2010) 021802

doi:10.1103/PhysRevLett.104.021802 [arXiv:0908.2381 [hep-ex]].

[97] M. D. Scadron, R. Delbourgo and G. Rupp, “Constituent quark masses and the elec-

troweak standard model,” J. Phys. G 32, 735 (2006) doi:10.1088/0954-3899/32/5/009

[hep-ph/0603196].

[98] R. Bruser, T. Feldmann, B. O. Lange, T. Mannel and S. Turczyk, “Angular analy-

sis of new physics operators in polarized τ → 3` decays,” JHEP 1510, 082 (2015)

doi:10.1007/JHEP10(2015)082 [arXiv:1506.07786 [hep-ph]].

[99] D. Melikhov “D → γ Form Factors” (Personal Communication)

[100] D. Melikhov and B. Stech, “Weak form-factors for heavy meson decays: An Update,”

Phys. Rev. D 62, 014006 (2000) doi:10.1103/PhysRevD.62.014006 [hep-ph/0001113].



81

ABSTRACT

APPLICATIONS OF EFFECTIVE FIELD THEORIES TO NEW PHYSICS

by

DEREK E. HAZARD

May 2018

Advisor: Dr. Alexey A. Petrov

Major: Physics

Degree: Doctor of Philosophy

We apply an effective field theory approach and argue that lepton flavor violating (LFV)

decays M → `1`2 of meson states M with different quantum numbers could be used to

put constraints on the Wilson coefficients of effective operators describing LFV interactions

at low energy scales. We note that the restricted kinematics of the two-body decay of

quarkonium or a heavy quark meson allows us to select operators with particular quantum

numbers, significantly reducing the reliance on the single operator dominance assumption

that is prevalent in constraining parameters of the effective LFV Lagrangian. We shall

also argue that studies of radiative lepton flavor violating M → γ`1`2 decays could provide

important complementary access to those effective operators in addition to primary access

to operators that cannot be constrained via two-body decays.
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