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CHAPTER 1: INTRODUCTION AND
MOTIVATION

In this chapter we will briefly review the current state of particle physics and our motiva-
tions to look for new physics (NP). We begin with a historical overview of particle physics.
Then we introduce the Standard Model (SM) and the mechanisms it provides for lepton
flavor violating (LFV) decays. After that we introduce the topic of effective field theory
(EFT), which will be our tool chest for exploration of NP. Finally we will introduce our
specific approach to constraining NP with LFV decays of mesons. The first three sections
are included to give a complete and thorough picture, but the reader, especially if (s)he is

familiar with the topic may skip straight to Section without loss in continuity if desired.

1.1 Historical Overview of Particle Physics

The foundations of modern particle physics that lead to the development of the Standard
Model can be traced back to turn of the 20th century [I]; a time even before physicists
discovered quantum mechanics. J. J. Thompson’s discovery of the electron in 1897 ignited a
fire of particle physics discovery that has burned for over a century. Next came Rutherford’s
scattering experiments that proved the existence of a tiny massive and positively charged
atomic core, the nucleus, which was assumed to consist of protons. An atomic model of the
hydrogen atom as a single proton orbited by a single electron in 1914 by Niels Bohr was able
to predict its spectrum and opened the door for quantum mechanics. Attempts to explain
heavier atoms in a similar fashion ran into a problem. The masses of heavier atoms were
heavier than could be accounted for by the proton mass alone. Helium is four times the
mass of Hydrogen, but should only have two protons. Chadwick solved the problem with
the discovery of the neutron in 1932.

Our understanding of the nature of light was also seeing a revolution at this time. In
1900 Planck was working on an explanation of the electromagnetic radiation emitted by a
hot object, the so-called black-body radiation, but was left baffled by the results of statistical

mechanics. It predicted that an infinite amount of power should be radiated and lead to



what physicists called “the ultraviolet catastrophe.” Planck was able to avert disaster by
assuming the quantization of electromagnetic radiation, which lead to his empirical rule that
the energy of the emitted photons, E, equals a constant h times the radiation frequency v.
Here h = 6.626 x 10717 is Planck’s constant. The quantization of light was explained in 1905
by Einstein. Einstein put forth that when an incoming quantum of light hits a metal surface,
it gives up its energy (hv) to an electron which breaks free. This electron loses an energy
w, the work-function of the material, when breaking through the metal surface and emerges
with energy F < hv—w. The implication of Einstein’s discovery was that maximum electron
energy is independent of light intensity, but depends solely on its frequency. Einstein argued
that light was quantized by nature. This view was not well received, as the particle theory
of light was widely discredited in the 19th century. In 1916 Millikan experimentally proved
Einstein’s photoelectric effect correct [2], but the issue would not be settled until 1923 when
Compton found that the wavelength of light is shifted when scattered from a particle at
rest. Compton showed that the shift was governed by X' = A + A\.(1 — cos §), where A, = 1=
is the Compton wavelength, 6 is the scatering angle, A is the incident wavelength, and )\
is the scattered wavelength. This formula may be found by applying the conservation of
four-momentum of the photon and scattering particle before and after the interaction and
using Planck’s formula for the quantization of energy for light. This was a direct proof of
the particle nature of light.

At this point physicists still could not explain how a nucleus of positively charged protons
could stay together. The positive charges should repel each proton away from the other. It
was assumed there must be another force greater than electromagnetism that binds the
protons and neutrons together in the nucleus called the strong force (otherwise known as
the nuclear force). This force would not be as apparent at macroscopic scales like the
electromagnetic force because it has a very short range that limits its influence to the size
a nucleus. Yukawa proposed the first significant theory for the strong force in 1934. He

assumed that the proton and neutron were attracted to each other by a field and that this



field should be quantized. He predicted that in analogy to the photon there should be
a particle that would account for the features of the strong force when exchanged. This
particle would have to be heavy because of the short range of the strong force. He calculated
that it should be about 300 times the electron mass. Yukawa’s particle would come to be
known as the meson and by 1937 a candidate fitting his description was found in cosmic ray
experiments. Further work would identify that there were not one, but two particles [3] 4].
The first was the pion 7, which was indeed Yukawa’s meson and the strong force mediator
in his theory, but the second was the muon u, which we now know is a lepton.

A quantum theory of interactions of relativistic particles is now known as quantum field
theory. It finds its roots in the 1927 work of Dirac whose famous Dirac Equation, which
describes free electrons, had a disturbing problem. For every positive energy solution of the
electron, £ = +\/1m, there was a corresponding negative solution, £/ = —\/m.
If a system were to evolve naturally to its lowest energy state, an electron should simply
continue on to increasingly negative energy states. Dirac rescued his equation by proposing
that there was an infinite sea of electrons occupying the negative energy states and Pauli’s
exclusion principle prevented the observed electrons from occupying the same negative energy
states. Furthermore if enough energy was imparted to a sea electron, then a hole would be
formed which might be interpreted as a positive particle. There was no candidate particle to
account for these holes, but in 1931 the positron was discovered by Anderson and it had the
properties Dirac needed [5]. The infinite electron sea interpretation of the negative energy
states eventually gave way to a simpler and more compelling interpretation by Feynman
and Stuckelberg. Their formulation interpreted the negative energy electron solutions as the
positive energy states of the positron. This dual energy solution in Dirac’s equation is an
important universal feature of quantum field theory. It means that for every particle there
exists an anti-particle with the same mass and opposite electric charge.

The discovery of neutrinos took a parallel track to that of the aforementioned pion,

muon, and anti-particles. In 1930 the study of beta decays had a problem. Beta decay is



the transition of a nucleus to a lighter nucleus with one more unit of positive charge and an
electron. It is now known that this is actually the conversion of a neutron in the nucleus into
a proton, but in 1930 the neutron had not been discovered yet. In a two-body decay such as
this, given the rest frame of the decaying nucleus, the decay products should have equal and
opposite momenta and the energy of the emitted electrons would be constant. Experiments
showed that the electron energies were significantly variable. Pauli proposed that there must
be another particle emitted with the electron that was electrically neutral and carried away
the missing energy. Fermi presented a successful theory of beta decay that incorporated
Pauli’s particle and named it the neutm’noﬂ We now know this beta decay process is a
neutron transitioning to a proton, an electron, and an anti-neutrino (n — pTe™1).

The neutrino also turned out to be of great importance in understanding the decays of
Yukawa’s pion m to a muon g. In the cosmic ray experiments that discovered these two
particles Powell’s picture of the decaying pion tracks showed the muon moving away in a
direction perpendicular to the original pion momentum. This is only kinematically possible
if another particle were emitted back-to-back with the muon that would not leave a track
(electric charge neutral). It was assumed to be the neutrino and so @ — p + v. Soon
thereafter Powell’s group announced the discovery of the decay of a muon to an electron and
what would turn out to be two neutrinos (4 — e+v,+v,). They were able to determine that
it must be a decay product of at least three particles due to the variability in the electron’s
momentum and by 1949 the accepted explanation was the emission of two neutrinos with
the electron.

The need for direct experimental evidence for the neutrino was still necessary to confirm
its existence and quiet skeptics. In 1950 direct evidence was found by Cowan and Reines
using nuclear reactor experiments at the Savannah River reactor in South Carolina. They
observed inverse beta decay reactions 7+ p* — n+e™ and their results provided clear proof

of the neutrino’s existence [6]. There was a question as to whether or not the neutrino was

'In modern terminology this is actually an anti-neutrino.



its own anti-particle and if so, what was the disinguishing property? The crossed reaction
of v+ n — pt + e~ would occur at around the same rate as the inverse beta decay reaction.
Davis looked at a similar reaction but with the anti-neutrino (7 +n — p*™ 4 e~) and found
a null result 7] leading to the conclusion that the neutrino and anti-neutrino are distinct.
This conclusion is still under debate as Davis’s experiment does not preclude the Majorana
fermion model which allows for the neutrino v to be its own anti-neutrino v [§].

These results were expected as the law of lepton number conservation was previously
proposed by Konopinski and Mahmoud in 1934 [9]. This law states that there is a quantum
number L assigned to each lepton. L = +1 was for leptons: e™, y~, and v and L = —1
was assigned to anti-leptons: et, u*, and 7. The sum of the lepton numbers before an
interaction must equal the sum after. Thus the simplest explanation for the property that
distinguishes neutrinos from anti-neutrinos is the lepton number, L. Lepton number was
relatively successful, but it could not explain why there was no experimental observation of
1 — ey, which was allowed under this formulation of lepton conservation and charge conser-
vation. In the late 1950s and early 1960s it was proposed that there were actually electron
neutrinos v, and muon neutrinos v, and that law of lepton conservation should be extended
such that there was electron number conservation L. and muon number conservation L,.
This allowed for an accounting of all forbidden and allowed processes.

The two neutrino hypothesis was tested in 1962 at Brookhaven. Lederman, Schwartz,
Steinberg, et. al. used the anti-neutrinos from the decay of 7= — u~ + v, to register 29
counts of the interaction v, + p* — p* + n and zero for v, + p* — et +n [10]. If there
was only one neutrino there should be equal rates for both decays and this proved there was
more than one neutrino.

The years between 1947 and 1961 also saw a great number of experimental discoveries of
both mesons (e.g. K, p, w, ¢, 1, etc.) and baryons (e.g. A, ¥, =, A, etc.). This period saw
the introduction of the conservation of baryon number B by Stiickelberg. Similar to lepton

number it assigns a value of B = +1 to baryons (i.e. p, n) and B = —1 to anti-baryons (i.e.



P, n). These heavy baryons and mesons became known as strange particles first because they
were unexpected, but also because they were produced in great numbers on the timescale
of 10723 seconds and decayed slowly on the scale of 107! seconds. The difference in time
scales suggested a different mechanism of production and decay to Pais and the others [I1].
We now know that their production is due the the strong force and their decay is the action
of the weak force.

In 1953 Gell-Mann [12] and Nishijima [13] proposed another conservation law to provide
a simple explanation for the production of strange particles in pairs. Each particle was
assigned a new property of strangeness, S, that was conserved in strong interactions, but
not in weak ones.

The situation for particle physics in 1960 seemed quite disorganized and physicists were
looking for a way to organize all of the particles they found. Order was achieved by Gell-
Mann and Ne’eman with the eight-fold way in 1961. They ordered baryons and mesons into
their own hexagonal arrays of eight particles based on their electric charges and strangeness.
Hexagonal arrays are only one example. Other geometric shapes were allowed such as the
triangular array for organizing the heavier baryons (A, ¥, =, and ) known as the bayron
decuplet. When Gell-Mann organized the decuplet it lead him to predict a missing particle,
the Q~, which was later found in experiment and reinforced the correctness of the eight-fold
way. As more particles were discovered, they all found their place into an eight-fold way
supermultiplet.

People still wondered why hadronsﬂ should be organized in these geometric patterns.
The explanation would come in 1964 from Gell-Mann and Zweig independently. They each
proposed that hadrons were composed of elementary constituent particles to which Gell-
Mann gave the name quark. There were three different flavored quarks in the theory (u, d,
s) and they formed a triangular eight-fold way pattern. The u and d quarks had a strangeness

of zero and the s quark had a strangeness of one. The d and s quarks had an electric charge

2A particle that experiences strong force interactions. Baryons and mesons are hadrons.



of Q = —%, while the u quarks had charge @) = % Each of these quarks has an anti-quark
counterpart with opposite charge and strangeness.

It is these quarks and anti-quarks that form baryons and mesons. Baryons (anti-baryons)
are constructed of three quarks (anti-quarks). Mesons consist of a quark and an anti-quark.
Using these three quarks one can generate the ten A, ¥, = and €2 type baryons in the baryon
decuplet or the eight baryons in the baryon octet of type n, p, ¥, A, and = and maintain the
appropriate charge and strangeness. One can also form the eight mesons of the meson octet
of type 7, 1, and K plus a ninth meson, 7/, to form a meson nonet. The quark model can
reproduce all of the eight-fold way supermultiplets. Despite this success the quark model
had a flaw. Experiments could not produce an individual quark, which lead to the ad hoc
assumption that quarks are confined within baryons and mesons. The mechanism of this
confinement is still an open question today.

Despite the difficulty of being confined inside hadron, quarks are not completely inac-
cessible to experiment. The interior of hadrons may be explored the same way Rutherford
explored the interior of the atom. Deep inelastic scattering experiments that fired high en-
ergy electrons, neutrinos, and eventually protons were performed in the late 1960s and early
1970s and found that hadrons were mostly empty space. Ocassionally the incident partical
would back scatter indicating they hit a small lump of matter. Protons appeared to have
three lumps, which supports the quark model hypothesis.

The last point of contention for the quark model was the appearance that quarks violated
the Pauli exclusion principle. The principle states that two identical fermions cannot occupy
the same state, but hadrons such as the A*T* consist of three u quarks in the same state. As
u quarks are fermions and can only have spin £1/2, this would imply a violation of the Pauli
exclusion principle. It was proposed by Greenberg in 1964 that quarks come in three “colors”
(r =red, g = green, and b =blue) in addition to three flavors [I4]. The colors are an analogy
to the optical spectrum. To form a hadron, one must use a colorless combination of quarks.

This can be a combination of quarks with equal parts of color (rgb) which form baryons,



anti-color (7gb) which form anti-baryons, or color and anti-color (r7, gg, bb) which form the
mesons. By introducing color we are able to avoid violating Pauli’s exclusion principle in
the AT* for example because the two u quarks are not identical due to their difference in
color. The same concept applies to the all hadrons.

Because of the seemingly thin arguments for quark confinement and color, physicists
were skeptical of the the quark model. This would begin to change with the discovery of the
extremely heavy neutral J/1 meson in 1974 by two independent groups [15]. The first was
lead by Ting who named it J and the second was lead by Richter who called it ¢). What
made the J/v particularly remarkable was that its lifetime was of order 107%°; a thousand
times longer than hadrons in a similar range of mass. They had clear evidence of some new
physics.

This new physics was explained in terms of a fourth quark, the charm ¢ quark and its anti-
quark, from which the bound state J/1 = (c¢) is made. The idea of a fourth quark had been
put forth in previous years by Bjorken and Glashow [16] for various reasons. One of these
reasons was the creation of an aesthetically pleasing parallel between the number of quarks
and leptons. At that time there were four known leptons: u, v,, e, and v,; and three known
quarks: u, d, and s. The ¢ quark would make this four. This ready made explanation of J/1
and the implication that there should be other charmed hadrons did much to legitimize the
quark model. This lead to a period of new baryon and meson discoveries in the 1970s-1980s
such as the D and D" in 1976 [17] and the DY in 1977 [18].

In 1975, the 7 lepton and its associated neutrino were discovered increasing the number
of leptons to six [19]. Glashow’s lepton quark symmetry was ruined, but not for long because
the heavy neutral T meson was discovered in 1977 [20]. The quark model explained this as
a quark anti-quark bound state composed of a fifth quark, the beauty b quark. In 1983 the
first beauty mesons, By and B~ were found by CLEO. [21]. B-physics studied at B-factories
such as Belle and BaBar has been a very rich area of study ever since and as we will see

important to our research as well.



Finally in 1995 the much anticipated top ¢ quark was found by the Tevatron [22] and
restored Glashow’s symmetry with a total of six quarks and six leptons. This is not the last
part of the story before we reach modern day physics and the Standard Model (SM).

The last part of our tale is the story of the intermediate vector bosons. When Fermi
first provided his theory of beta decays in 1933, he treated it as a contact interaction. He
used an effective interaction approach not dissimilar to the one we will use later. Because
this interaction occurred in the theory at a single point, no mediator particle was necessary.
This approximation approach worked well at low energies, but would need to be replaced by
a full theory at high-energies. This would require a mediator particle called an intermediate
vector boson.

The electro-weak theory of Glashow, Weinberg, and Salam also called the GWS theory
was able to predict that there are three intermediate vector bosons for the weak force (W=*
and Z) with masses of my = 82+2 GeV and myz = 92+2 GeV [23]. These W and Z bosons
were discovered in 1983 at the European Organization for Nuclear Research (CERN) by Carlo
Rubbia’s group with measured masses of my, = 80.4034+0.029 GeV and my = 91.188+0.002
GeV. This was a great achievement for physicists and further confirmed the validity of what
had become known as the Standard Model.

We had the photon v as the the mediator of the electromagnetic force, the W+ and Z to
mediate the weak force, but what about the strong force? In view of the quark model and
the fact that mesons are not elementary particles, but rather composite structures, Yukawa’s
pion no longer looked like the fundamental mediator candidate we needed to mediate the
strong force. Physicists instead asked what is the mediator of the strong force that binds
quarks together to form hadrons? This intermediate vector boson was the gluon, which also
carries color and therefore cannot exist as an isolated particle. Despite this they can and
have been probed indirectly via deep inelastic scattering experiments and studies of inelastic
scattering at high energies.

There was still one very important part of the SM that was missing. That was the Higgs
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mechanism and its associated Higgs boson; the only scalar particle in the Standard Model.
The Higgs mechanism was developed by Peter Higgs as well as Anderson, Brout, Englert,
Guralnik, Hagen, Kibble, Landau, and 't Hooft between 1962 and 1971 [24], 25]. It was of
great importance in completing the SM as it is the mechanism by which the intermediate
gauge bosons and SM fermions attain their masses. Without the Higgs mechanism the SM
Lagrangian would not contain the mass terms for the gauge bosons and SM fermions, which
we know are massive from experiment and would represent a major flaw in the SM if not
present. The experimental discovery of a 125 GeV scalar particle now believed to be the
Higgs boson at CERN’s Large Hadron Collider (LHC) provided experimental verification of
the existence of the Higgs boson and completed the SM in 2012 [26].

The work of the past century has given us today’s Standard Model, which consists of
six leptons, six quarks, four mediators, and the Higgs boson from which we may build the
universe. There are clear indications that the SM is not a complete theory. It has difficulty
explaining baryonogenesis, which is the process that produced the imbalance of matter an
anti-matter in the Universe, and provides no viable candidate for dark matter. These are
a couple of reasons why we search for new physics. It is possible that the the SM is itself
an effective theory; a low-energy approximation of a more fundamental and complete theory

[27]. Tt is with this idea in mind that we can attempt to probe NP.

1.2 The Standard Model

The Standard Model is the culmination of particle physicists’ hard work throughout the
20th Century and is based on the SU(3) ® SU(2) ® U(1) gauge group. From the view of the
SM, all matter is made from three categories of particles: leptons, quarks, and mediators.
The particle content of the SM is summarized in Table[I.I] The quarks and leptons are both
separated into three generations or families. Each generation is organized by the mass of the
particles with the lowest masses in the first generation and the highest masses in the third
generation [1].

In the lepton sector we have six distinct spin-1/2 fermion particles. Each generation



generations of fermions gauge scalar
I II III bosons  bosons
quarks u c t g h
up charm top gluon Higgs
d s b 0
down strange bottom photon
leptons e u T VA
electron muon tauon Z-boson
V. v, v, %4
e-neutrino p-neutrino 7-neutrino | W-boson

Table 1.1: Elementary particles of the Standard Model [I]

contains a () = —1 electrically charged lepton (e.g. e, p, 7) and its associated neutral
neutrino partner. The quark sector also contains six different flavored spin-1/2 fermion
particles. The quarks have electric charges of @ = —1/3 for d, s, and b; and @ = 2/3 for u,
¢, and t. For each of these quarks and leptons there are antiparticles of opposite charge. In
addition to having six flavors, the quarks come with three different color charges: red, green,
and blue, which are named in analogy to the primary colors of visible light [1].

There are four mediator particles that mediate the electromagnetic, weak, and strong
forces. The electromagnetic force is mediated by the photon ~, which is an electrically
neutral massless spin one vector boson. The weak force is mediated by the massive spin
one W and Z vector bosons. The W boson can have an electric charge of () = £1 while
the Z boson is electrically neutral. The final spin one vector boson mediator particle is the
massless and electrically neutral gluon g, which mediates the strong force. While the gluon
is electrically neutral, it is not color neutral. It is a bi-colored particle which carries both
color and anti-color. Ultimately this means that gluons come in eight different possible color
states. The gluon makes for a more complicated (some might say more interesting) mediator

than the photon as it not only mediates the strong force, but also interacts with the strong
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force (i.e. itself).

The final piece of the SM puzzle is the scalar Higgs boson. The Higgs boson comes as a
consequence of the Higgs mechanism, the means by which the W and Z gauge bosons and all
of the SM fermions obtain mass. The SM is able to predict the masses of the W and Z gauge
bosons, but not the fermions, which must be determined empirically from experimental data.

All of the particle interactions may be mathematically described by the Lagrangian of
the Standard Model [24] 25] 28]

L
Low=—7 <WW Wi + BB, + Gg”GZV>

2 ? (L1)

-V (9)

_ 1, = Y _ Y
+ Ly (i@u - g§F- W, — g’—BM) L + Ry* (i@u - g’—BM) R

1 - Y

+9:QGt"Q — G1LoR — Go Lo R + h.c. .

The first line of Eq. represents the kinetic energies and self interactions of the
W, Z, v and g mediators. Where W“”, B* and G* are the field strength tensors for
the weak isospin, weak hypercharge, and QCD respectively. The second line of Eq.
represents the kinetic energies of the quarks and leptons and their interactions with the W,
Z, v mediators. W# and B, are the SU(2) and U(1) gauge fields. Y is the hypercharge for
U(1), T are the Pauli matrices, and g and ¢’ are the electroweak coupling constants. The L

and R represent the left-handed doublets and right-handed singlets for leptons and quarks

000,000, L

R = €RrR, UR, TR, UR, dR7 CR, SR, tR? bR'

In line three of Eq. ((1.1)) are the terms that represent the couplings and masses of the
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Vi

Figure 1.1: One loop diagram for the ;1 — ey decay mediated by neutrinos [30].

W, Z, ~, and the Higgs. Here ¢ is that Higgs scalar doublet and V'(¢) is the Higgs potential.
The last line of the SM Lagrangian describes the interactions of the quarks and gluons and
the mass terms of fermions as well as their couplings to the Higgs boson. The constant g,
is the strong coupling constant, () is the quark field spinor, and t* represents the Gell-Mann
matrices where a = 1-8. Finally, G; and G5 represent the appropriate Yukawa couplings
and ¢, is another Higgs doublet constructed from ¢ by ¢. = —im¢*. The ¢, Higgs doublet
is required to generate the masses of the upper members of the quark doublets.

Using this Lagrangian one may in principle calculate any physically allowed interaction
for the SM degrees of freedom. This of course is not a complete picture of particle physics
as there is much evidence for new physics. One clear and important example is neutrino
oscillations, which imply massive neutrinos [I, 29]. In a pure SM neutrinos are massless
and this leads to lepton family number conservation and therefore no neutrino oscillations
or flavor changing neutral currents (FCNCs) for charge leptons (e.g. u — e). This is not
the case and so with a small extension of the SM to include neutrino masses, we generate
FCNCs for charged leptons at loop level, Fig. [30, 1311, [32].

The branching ratio of this transition is [33]

I' (1 — ey) 3a Am3, Am2,\? -
B o~ = UpUh——>=4+U,U—=] <10 1.3
(= ev) =5 (w—evr) \32r) \ " U (1:3)
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Here « is the electromagnetic coupling constant, Uy is a Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix element, and Amg; /mj, is the ratio of the difference between squared

neutrino masses, Am?; = m;, —mj,

and the W-boson mass squared. From solar neutrino
and reactor experiments we know Am2, ~ 2 x 1072 eV? and Am3; ~ 8 x 107 eV? [34].
Taking the ratio of this to m3,, where my = 80 GeV, reveals that Am3,/m3, ~ 1072
and Am3, /mg, ~ 107°°. Therefore it is ultimately the ratio Amg;/myj;, that causes this
mechanism of charged lepton flavor violation (CLFV) to be highly suppressed as shown in

Eq. (1.3). If we see CLFV, it will not be a SM process, but instead some form of new physics
(NP).

1.3 Effective Field Theory

The effective field theory (EFT) approach is a rich and interesting topic with applica-
tions throughout physics. Entire books have been written about it (e.g. [27]). Here we
summarize only the most general and relevant details required for the reader to gain a basic
understanding of its application in the following Chapters.

EFTs take advantage of the naturally occurring separation of scales that appear in
physics. One would not find it practical to describe the position and velocity of an au-
tomobile using quantum mechanics, which is best equipped to describe these observables on
the scale of particles not cars. That is not to say that quantum mechanical principles are
not present at macroscopic scales, just that their effects are averaged over so much that we
do not perceive them. EFT uses this separation of scales to its advantage [27].

The only degrees of freedom that are relevant to the problem one is attempting to under-
stand are the ones necessary to perform the calculation. For our work this means that only
fields that are below the scale of particle physics that we probe should remain in the theory.
The removed particles are said to be integrated out in reference to the formal procedure from
the path integral formulation of quantum field theory. In practical calculations, such as our
work, the formal procedure is unnecessary. The integrated out particles do not disappear in

entirety. Their participation in interactions is limited by quantum theory to creation and
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destruction on very short distance scales. A classic example of an EFT is the Fermi theory
of beta decay n — pev, in which the W-boson is integrated out of the theory [25] 27].

Our application of effective field theory will deal with infrared or low energy degrees of
freedom. The EFT is mathematically described by an effective Lagrangian, which contains
local operators that are written in terms of the available infrared degrees of freedom. So long
as this Lagrangian contains the most general set of operators allowed under the symmetries of
the full theory, the S-matrix elements derived from it will also be the most general possible.
This would be a great number of operators (infinite in general) and so we must employ
a proper power counting scheme to organize the operators to avoid calculating an infinite
number of contributions [27].

The relevant power counting scheme for our purposes is simply to count the operator
dimension. These operators form an infinite series of increasingly higher dimension with each
term in the series associated with increasing powers of 1/A. A being the scale associated

with the UV complete theory described at low energies by the effective Lagrangian

_ Laims | Ldims
L = Laim 4+ A + A2 +oee (1.4)

Because the scale A is much larger than the low energy scale at which we are working with
the effective theory, we may neglect the higher dimension terms as corrections. Although the
series in Eq. is infinite, the individual terms Lg;,, ; contain a finite number of operators
of dimension i. Each of these operators would be multiplied by an unknown coefficient called
a Wilson coefficient (WC). If the complete UV theory is known, these coefficients may be
calculated by a process known as matching. This is because one sets equal or matches the
results of the full and effective theories.

In many cases the full UV complete theory is unknown and although we may not be able
to find the Wilson coefficients through matching, we do know that the higher scale physics is
encoded upon them. We can therefore learn about the UV complete theory using empirical

data from experiments to calculate or constrain the numerical values of the WCs.
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1.4 Lepton Flavor Violating Decays Using Standard

Model Effective Field Theory

Flavor-changing neutral current (FCNC) interactions serve as a powerful probe of physics
beyond the standard model (BSM). Since no operators generate FCNCs in the Standard
Model at tree level, new physics degrees of freedom can effectively compete with the SM
particles running in the loop graphs, making their discovery possible. Of course this is only
true provided the BSM models include flavor-violating interactions [35, B36]f]

The observation of charged lepton flavor violating (CLFV) transitions would provide
especially clean probes for new physics. This is because as we saw in Sect. in the
Standard Model with massive neutrinos, the CLFV transitions are suppressed by the powers
of Amg;/mj,, which renders the predictions for their transition rates vanishingly small, e.g.
B(p — ev)ysm ~ 10721 [33]. There are indeed many well-established new physics models
(see, e.g. [37, 138, 39, [40} 41]) that meet this opportunity and predict charged lepton flavor
violating (CLFV) transition rates that are significantly larger than the Standard Model rates
[31].

Currently operating and future B-factories, such as LHCb and Belle-II, will be accumu-
lating significant amounts of beauty and charm decay data. These large data sets will be
quite useful in studies of the decay rates of bottomonium and charmonium and the extremely
small decay rates of B and D mesons, which could probe new physics (NP) at unprecedent-
edly high energy scales. In particular, studies of vector and pseudoscalar meson (M =V, P)
decays such as: V =T, J/¢, and excited states; and P = n,, 1., BY, D°, and K° into the
final states containing charged leptons of different flavors such as M — €105 and M — ~vl1 05
could be performed.

A convenient way to describe CLFV transitions in low energy experiments is by intro-

ducing an effective Lagrangian, L.g. Such a Lagrangian is a convenient parameterization

3The remainder of this document draws directly from journal papers written with Alexey A. Petrov in
Refs. [35] 36]



17

of all new physics models that include lepton flavor violation with the details of the mod-
els encoded in the Wilson coefficients of L.g, which are obtained by matching the effective
Lagrangian to a given BSM model at the new physics scale A [27]. This Lagrangian is
required to be invariant under the unbroken symmetry groups SU(3). ® U(1)en below the
electroweak symmetry breaking scale. At the low scale for which a given process occurs
the effective operators would exhibit the relevant Standard Model degrees of freedom with
the effective operators written completely using quarks (¢; = b,¢, s,u, and d) and leptons
(¢; = 7,1, and e). In what follows, we assume that top quarks are integrated out of the
theory, and we do not consider neutrinos. The effective Lagrangian L.g that involves CLFV
may be written as

Leg = Log+Lp+ Lo+, (1.5)

where Lp is a dipole part, Ly, is the part that contains four-fermion interactions, and Lg
is the gluonic part. Here the ellipses denote effective operators that are not relevant for
the following analysis. We are interested in the decays of electrically-neutral vector, pseudo-
scalar, and scalar mesons to flavor-off-diagonal lepton pairs and other particles. This includes
decays of quarkonia, which are ¢¢g mesons, and the pseudo-scalar mesons Bg, D and K,
which are composed of one heavy quark and one light quark. The transitions for the Bg, DY,
and K mesons involve FCNC interactions on both quark and lepton sides, while quarkonia
only have a FCNC on the lepton side.

The dipole part of Eq. , which could contribute to two-body vector decays, V — €105

and radiative decays M — y/1l5 is written as [42]

mo

Lo=—73

[(Cf)ll% ZlO"uVPng + C%ig lzaWPRﬂg) F,LLI/ + hC} . (16)

The WCs of Lp have been well constrained in leptonic LFV decays [37].
Note that it is known that the quark FCNC transitions, at least in the decays of down-

type quarks, are dominated by the SM contributions. For instance, the dipole operator
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describing ¢; — g2y can be written as [46]

Varam,, Y
7iq10w, (1 +’Y5) FH QQ+h.C. (17)

GF P
Loeng = —= E A, Oy
V2 - 2

Here A\ = Vg,V denotes the appropriate Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements, m,, is the heavier quark, and C7, is the corresponding Wilson coefficient [46].
The four-fermion dimension-six lepton-quark part of the effective Lagrangian, Eq. ([1.5)),

takes the form [42]:

1 _ _
ﬁm = _F Z [ (C\q;}%ﬂl& U1y" Prly + Cxq/ILqulez 51’7“PL€2> A1 Yuq2
q1,92
+ <Oi1]%2€1€2 gl,yMPRgz _‘_Cglngﬂz El’YMPL€2> 671’7,{%56]2
+ mquHGF (Cglépélb Z1PL€2 + ng%& 51PR€2> Q1QQ (18)
+ mamg, Gr (C}QI%QMQ 0Pty + B0t 571PR€2> q17592

+ mgquGF <C%1]%2Z1£2 Zla“”PLﬁg + Cf%quQele2 !710“”]3362) q_lo'/“,qQ -+ h.c. |.

Here my, is the mass of the heavier quark (my, = max|m,,,my|) and Prr, = (1 £ v5)/2
is the right (left) chiral projection operator. In general the Wilson coefficients would be
different for different lepton flavors ¢; and quark flavors ¢;. For a thorough discussion on how
to form a complete operator basis see Refs. [42, [43] 44], 45].

We note that the tensor operators (see the last line of Eq. (1.8))) are often omitted when
constraints on the Wilson coefficients in Eq. are derived (see, e.g. [42]). It should be
clarified that those operators are no less motivated than others in Eq. . For example,
they would be induced from Fierz rearrangement of operators of the type O ~ (Gl3) (Zl q) that
often appear in leptoquark models. Also, as we shall see later, the experimental constraints
on those coefficients follow from studying vector meson decays, where the best information
on LFV transitions in quarkonia is available.

The dimension seven gluonic operators can be either generated by some high scale physics
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or by integrating out heavy quark degrees of freedom [42, [47],

TrLQGF ﬁL s 7 1l2 g a apy
'CG — _TE[(Céé £1PL€2 + Céf ‘€1PR€2)GW/G .

+ (Ch Pty + Chf 1PRl) GO, G+ hc). (1.9)

Here 1, = —9a2/(27) is defined for the number of light active quark flavors, L, relevant to
the scale of the process, which we take p ~ 2 GeV. All Wilson coefficients should also be
calculated at the same scale. G is the Fermi constant and G = (1/2)etve? Gog 1s a dual
to the gluon field strength tensor [42].

The experimental constraints on the Wilson coefficients of effective operators in L. could
be obtained from a variety of LFV decays (see e.g. [37] for a review). Deriving constraints
on those Wilson coefficients usually involves an assumption that only one of the effective
operators dominates the result. This is not necessarily so in many particular UV comple-
tions of the LFV EFTs, so certain cancellations among contributions of various operators
are possible. Nevertheless, single operator dominance is a useful theoretical assumption in
placing constraints on the parameters of Lqg.

In Chapters [2] and |3| we argue that most of the Wilson coefficients of the effective La-
grangian in Eq. for different ¢; could be determined from experimental data on quarko-
nium and heavy pseudoscalar meson (BY, D° and K°) decays. In particular, we consider
two- and three-body decays of the mesons with differing quantum numbers and with quarks
of various flavors such as T(nS) — £10y, T(nS) — v£10ly, etc. We highlight the fact that
restricted kinematics of the two-body transitions would allow us to select operators with
particular quantum numbers significantly reducing the reliance on the single operator dom-
inance assumption. Finally, we shall argue that studies of radiative lepton flavor violating
(RLEFV) decays of vector quarkonia could provide important complementary access to study
Leg. Similarly RLFV decays of pseudoscalar mesons Bg, D° and K°, can provide comple-

mentary access to operators of type O ~ (61?2) (@q), where there is only a FCNC on the
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lepton side and primary access to vector and tensor operators of type O ~ (61@) (142),
where there are FCNCs on both the quark and lepton sides.

Note that here we only consider short distance effects in kaon decays. In the SM long
distance effects on decays such as Kg( 5 v¢¢ dominate the dynamics [48]. In light of this,
our kaon results may be modified by long distance effects. Unlike K, the Bg and D mesons
are not expected to be greatly modified by long distance effects as they are not known to
dominate their dynamics in rare SM decays.

We shall provide calculations of the relevant decay rates and establish constraints, where
experimental data are available, on Wilson coefficients of effective operators of the La-
grangian L. of Eq. . In the following chapters we assume CP-conservation, which
implies that all Wilson coefficients will be treated as real numbers. We also use the conven-
tion that the subscript of “1” denotes the lighter lepton and the subscript “2” denotes the
heavier lepton. In studying branching ratios we assume that for a meson, M, the branching
fraction B(M — (10y) = B(M — {105) + B(M — (,{5), unless specified otherwise. Finally,
it is important to note that some of the two-body and all of the three-body transitions have
yet to be experimentally studied. Numerical constraints on some Wilson coefficients of the

effective Lagrangian, L.s, from these unstudied decays are not yet available.
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CHAPTER 2: TWO-BODY LEPTON FLAVOR
VIOLATING DECAYS

2.1 Vector Quarkonium Decays V — ¢,/5

There is abundant experimental information on flavor off-diagonal leptonic decays of
vector quarkonia, both from the ground and excited states [34]. This information can be
effectively converted to experimental bounds on Wilson coefficients of vector and tensor
operators in Eq. , as well as on those of the dipole operators of Eq. . Those Wilson
coeflicients can then be related to model parameters of explicit realizations of UV completions
of effective Lagrangian in Eq. . The examples of particular new physics models that have
been previously suggested to be constrained using vector meson decays V — {1/, include,
e.g. [49, 0] (for Z' scenarios), [38, B9, [40] (for R-parity violating supersymmetric models),
and [51), 52), 53] for other approaches.

One can find a general amplitude expression for V — ¢1¢5 by considering the initial and
final states. The presence of the vector meson in the initial state implies the amplitude must
contain an associated polarization vector e#(p). The lepton and anti-lepton in the final state
will require u(py,s1) and v(pa, s9) spinors to be present in the amplitude. There is a free
index on the polarization vector that must be contracted with the matrix element between the
spinors. We therefore conclude the amplitude must be of the form @(ps, s1)M,v(pa, s2)e*(p).

Now we must consider what structures can contribute to the matrix M,. Our options are
the meson momentum p#, the first lepton momentum pf, the second anti-lepton momentum
Py, and the Dirac bilinears: 1, 735, v* and *~s. We know that p#e,(p) = 0 for on-shell vector
bosons, so we can drop terms associated with p#. When writing the general amplitude we
should consider the (ps + p1)* and (pa — p1)* combinations of the final state momenta. The
terms proportional to combination (ps +p1)* can be dropped because it is equal to p* due to
momentum conservation and p*e,(p) = 0. This leads us to four possible composite structures

built from the allowed momenta and Dirac bilinears: (py — p1)*, (p2 — p1)*7ys, ¥, and Y#~s.
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22 T er el
B(Y(1S) — 145) 6.0 x 1076 e
B(Y(2S) — l1ly) 3.3 x107°% 3.2x107°
B(T(3S) — l1ly) 3.1 x107% 4.2x 107 e
B(J/vy — 0145) 20x107% 83x10% 1.6x107"7
(
(

B ¢ — 6162) FPS FPS 4.1 x 10_6
B(ly — t17) 44%x107% 3.3x107% 5.7x10713

Table 2.1: Available experimental upper bounds on B(V — (105) and B(ly — (1) [34], 54].
Center dots signify that no experimental constraints are available and “FPS” means that
the transition is forbidden by available phase space. Charge averages of the final states are
always assumed [35].

The most general expression for the V' — ¢, decay amplitude can be written as

_ 05152
AV = 0y) = a(p1, s1) | AP, + By 29,75 + n‘;v (p2 — p1),

Dt (2.1)

my

+ (P2 = p1)us | v(p2, 52)"(p).

Af}@, Bf;lb, C@&, and Délb are dimensionless constants which depend on the underlying
Wilson coefficients of the effective Lagrangian of Eq. as well as on hadronic effects
associated with meson-to-vacuum matrix elements or decay constants.

The amplitude of Eq. leads to the branching fraction, which is convenient to repre-

sent in terms of the ratio:

B(V = 0,0 1—92)\?
( 102) _ <mv( Yy )) (}A@&‘Z—l— |B€}22‘2)

B(V — ete) drafyQ,
(2.2)
by (L= 27) (O 4+ |DR[) 4y Re (ApCls* + Bl DY)

Here « is the fine structure constant, we set y = ms/my, and we neglected the mass of the

lighter of the two leptons. The form of the coefficients Af}e2 to Df}lb depends on the initial
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state meson. For example, for V = T (n.S) (bb states), 1)(n.S) (cc states), or ¢ (s5 state), the

coefficients are:

m
At = 1 o [ Vira Qe (ChE + CBR) +rv (C + O
942 ng btz | alate
+ 2y livf—v rmymg (Crp ™ + Cpp ’

gl — Jvmv [—\/zma Quy* (Cpi2 — Cpi) — kv (C’%b N 03452)
(2.3)

\%4

T
Vira Q, (Chf +Cl%) + 2mv§lGFmvmq (cta + o)
1%

T
_ 2y2mvf—VGFmeq (C%%b - C%%&) ] )

fvmv
A2

lily
CV —

Jvm v
Dt =iy | Vira Qu (Chf — Cl) — 2n 2 Grmym, (CFy - 1)

Here @, = (2/3,—1/3) is the charge of the quark ¢ and ky = 1/2 is a constant for pure ¢g
states. The k constants are introduced purely for the purpose of writing concise equations.
Different meson states have different quark flavor mixing which contribute to the different
numerical factors of k for various initial states. It is a good approximation to drop terms
proportional to y? in Eq. for the heavy quarkonium states. Inspecting the ratio in
Eq. , one immediately infers that the best constraints could be placed on the four-
fermion coefficients, C"q/gib and C‘qf }%&, as no final state lepton mass suppression exists for
those coefficients. Yet, constraints on the the dipole coefficients, C’g? (C’g?), are also possible
in this case. This would provide NP constraints that are complementary to the ones obtained
from the lepton decay experiments, especially for ¢ = 7, obtained in the radiative 7 — u(e)y

decays.

The constraints on the Wilson coefficients of tensor operators, C%ZLIKQ (C’%%Ez), in Eq. |)
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State Y(1S)  T(2S) Y(3S)  Jib  ¥(2S) ¢ p(w)
froMeV 649431 481+39 539+84 418+9 204+5 241418 209.4+ 1.5

Table 2.2: Vector meson decay constants used in the calculation of branching ratios B (V —
(105). The transverse decay constants are set f& = fir except for J/v, which has f}F/w =
410 + 10 MeV [35], 511 55, (6, 57, 58], B9].

also depend on the ratio of meson decay constants,

Oy qlV (p)) = fumye"(p),

(0fgo" q|V (p)) = ify (e"p” — pe”),

where £”(p) is the V-meson polarization vector, and p is its momentum [55].

While the decay constants, fy/, are known, both experimentally from leptonic decays and
theoretically from lattice or QCD sum rule calculations, for a variety of states V', the tensor
(transverse) decay constant, f', has only recently been calculated for the charmonium J/v
state with the result f£¢(2 GeV) = (410 £ 10) MeV [55]. In the absence of the estimate
for fir, we follow the suggestion made in Ref. [60] and assume that f{% = fi. This seems to
be the case for the J/1 state [55] to better than 10 %. We present numerical values of the
decay constants in Table . Note that the ratio of Eq. is largely independent of the
values of the decay constants due to the choice of normalization.

Choosing other initial states would make it possible to constrain other combinations of
the Wilson coefficients in Eq. . This is important for the NP models where several LFV

operators would contribute, especially in the case where no operator gives a priori dominant
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contribution. For example, choosing V' = p meson with p ~ (uﬂ — dd) /\/2 gives:

Ap= I (Qu- Qo ( )
By - fpmﬂ VB (Qu = Q) (B — )
Gy = "m”y VEra (Qu = Qu) (CHE +CB)
Dy = fpmf’y Vara (Qu — Qu) (B2 —Ci).

0142 0142
(71)[/ + (;&)}{ )

Zlfg 5162

)

(2.5)

5152 5152

Here we imposed isospin symmetry on the NP operators and their coefficients, which resulted
in the cancellation of the four-fermion operator contribution. The p meson is kinematically
restricted to decay to pe and no other LFV products, so only pe operators can be constrained
in this channel. The corresponding results for V = w ~ (uﬂ + dd) /+/2 decay can be obtained
from Eq. by substituting Q, — (Q. + Qq) /v2 and using x, = 1/v/2. Again, the
restricted kinematics of the decay implies that only pe operators interacting with up and
down quarks can be constrained. Since we imposed isospin symmetry, it is convenient to use
mg = (Mmy + mg) /2.

Contrasting Eq. with the experimental data from Ref. [34] we can constrain the
Wilson coefficients of the Lagrangian Eq. . Assuming single operator dominance, the
results can be found in Table 2.3] The Wilson coefficients of dipole operators can be found
in Table 2.4

It is important to note that some of the bounds presented in Tables and are
rather weak and might not even look physically meaningful, especially the ones coming from
¢ decays. In fact, assuming Wilson coefficients C' ~ 1 seems to imply that new physics scale
A/ v/C only extends to several MeVs, clearly breaking the EFT paradigm that assumes local
operators up to the scales of several TeVs! A correct interpretation of those entries in Tables
and is that existing data simply does not allow to place strong constraints on the
combination Wilson coefficients. This is rather common in EFT analyses of new physics

phenomena, see e.g. [61].
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Wilson

coefficient  Leptons Initial state (quark)

(GeV~?) Gy T(LS) (b)  Y(25) (b) Y(3S) ()  J/¥ () ¢ (s)
pr 56x107% 41x107° 35x10°° 55x10°  FPS

ICE2 /A2 er 41%x107% 41x10% 1.1x10"*  FPS
e 1.0x 107 2x1073
pr o 56x107% 41x107° 35x10°° 55x10°  FPS

ICH2 /N er 41x10°% 41x10% 1.1x10* FPS
el 1.0x107° 2x1073
pr 44x1072 32x1072 2.8 x 1072 1.2 FPS

1CI2 /N2 er 3.3x1072 32x 1072 2.4 FPS
el 4.8 1 x 10%
pr 44x1072 32x1072 2.8 x 1072 1.2 FPS

|Ca92 /N2 er 3.3x1072 3.2 x 1072 2.4 FPS
el 4.8 1 x 104

Table 2.3: Constraints on the Wilson coefficients of four-fermion operators. Center dots
signify that no experimental data are available to produce a constraint; “FPS” means that the
transition is forbidden by phase space. The vector operators will always be better constrained
relative to the tensor operators via this decay channel due to the chiral suppression of the
tensor operators. Note that no experimental data is available for higher excitations of ¢ [35].

Wilson

coefficient Leptons Initial state

(GeV~2) (10, T(1S) T(25) T(35) J /0 ¢ Uy — by
pr o 20x107% 1.6x107* 14x107* 25x107* FPS 2.6 x10°1°

|Cht2 /A2 et 1.6 x107* 1.6 x107* 53x10~* FPS 2.7 x10°'°
el 1.1x107% 02 3.1x1077
Ut 20x 107 1.6x10™* 14x10™* 25x107* FPS 2.6 x 10719

|CGt2 /A2 et 1.6 x107* 1.6x107* 53 x10~* FPS 2.7 x 1071
e 1.1x107% 02 31x1077

Table 2.4: Constraints on the dipole Wilson coefficients from the 17~

quarkonium decays

and radiative lepton transitions ¢35 — ¢1y. Center dots signify that no experimental data are
available to produce a constraint; “FPS” means that the transition is forbidden by phase
space [35].
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22 el
B(n — 016y) 6.0 x107°
By — 616y) 4.7 x107*
B(n® — 0145) 3.6 x 10710

Table 2.5: Available experimental limits on B(P — (1) [34]. Note that no constraints for
the heavy quark pseudoscalar states such as 7 are available. Only phase space allowed
transitions are shown [35].

Looking at Eq. (2.3) one sees that there is a practical limitation on the two-body vector
meson decays. Only a subset of the Wilson coefficients is selected by the quantum numbers
of the initial state and can be probed. This fact can be turned into virtue if experimental

information on LFV decays of quarkonium states with other quantum numbers is available.

2.2 Pseudo-scalar Quarkonium Decays P — (/s

Constraints on other Wilson coefficients of the effective Lagrangian in Eq. could be
obtained by considering decays of pseudoscalar mesons with quantum numbers J7¢ = 0=,
which include states like ), n"), and their excitations. These decays would be sensitive
to axial and pseudoscalar operators without flavor changes in the quark currents, providing
information about C'%1(C%4?) and/or C%1%2(C%12) in Eq. as well as to gluonic op-
erators of Eq. . The 7y states could be abundantly produced at the LHCb experiment
directly in gluon-gluon fusion interactions [62]. In case of the 7. and its excitations, another
production mechanism would include non-leptonic B-decays, as the corresponding branching
ratios for non-leptonic B decays into 7. and kaons are reasonably large, of order of per mille
[34].

Following a similar method to the decays of vector mesons considered in Sect. 2.1 one
can write the most general expression for the P — (10, decay. In the case of the decay of a
pseudoscalar, there is no polarization vector, but we still have the two spinors u(p;, s1) and
v(p2, s2) for the leptons ¢1 5. This leads to a general amplitude of @(py, s1)Mv(pa, s2). The

matrix M has no Lorentz indices because there is nothing to contract with a free index. It
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therefore can only depend on the Dirac bilinears 1 and 5 and some constants. One can then

write the most general expression for the P — ¢105 decay amplitude as
A(P — l10y) = u(py, 51) [E’f}g2 + iFﬁlb%} v(pa, $2) (2.6)

with Ef}b and FI{EEQ being dimensionless constants which depend on the Wilson coefficients
of operators in Eq. and various decay constants.

The amplitude of Eq. leads to the branching ratio for decays of pseudoscalar mesons
to flavor off-diagonal lepton products:

B(P — 0,) = 8’:_15; (1= 9*)" [|Epe ] + [Ffe)]. (2.7)

Here I'p is the total width of the pseudoscalar state. We have once again neglected the mass
of the lighter lepton and set y = my/mp. Calculating ES* and FR* for P = n, (bb state)

and 7. (cc state), the coefficients are

E?b _ ymp [ —ifp (2 <CZX€L1£2 Cﬂﬂz) _ m?:;GF (C«qfﬂz C«q51€2

e )
+9Grap (Chr + Cai) |,
. (2.8)
Flt = ?img [ —ifp < ( WQ B CZ&@) MG ( qmg _ qzlb))
+9Grap (Car - Cai) |.
The hadronic matrix elements in Eq. (2.11)) are defined as [47]
(Ol 1542 P(p)) = —ifpp",
(2.9)

Qs apy Fya
(01 =G G |P(p)) = ap.

Here p is the momentum of the meson. For heavy quarks ¢ = ¢, b one expects the matrix
elements of gluonic operators in Eq. (2.9) to be quite small. This can be visualized by noting

that in the heavy quark limit 7, is a small state of size (myv)~" and has a small overlap
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State i Ne n, u(d) n,$ n', u(d) n,s T
fg, MeV 667+6 38747 1084+=3 —-111+6 89+ 3 136 =6 130.41 +0.20

Table 2.6: Pseudoscalar meson decay constants used in the calculation of branching ratios
B(P — (1¢5) [35] 34], 55 63, [64].
with soft gluons, whose Compton wavelength is of the order of Aéém as myv > Aqep.
Here v is the velocity of heavy quarks. Thus, for the remainder of this chapter, we shall
set ay,, = 0. The constraints on the Wilson coefficients of gluonic operators could be
obtained either from studying lepton flavor violating 1’ decays (for pe currents) or from the
corresponding tau decays. We use a,, = —0.0224+0.002 GeV? and a,y = —0.057£0.002 GeV?
[64]. The numerical values of the other pseudoscalar decay constants used in the calculations
can be found in Table 2.6] For the light quark states, such as n and 7’ the corresponding
expressions are a bit more involved:
Bt =y D | = ifped (2( O + CH* ) — Grmd (OB + CHY)
—ifprk (2(C3" + O ) = Grmd (Cp1 + CHR?)
o)l

1% 014

+9GF(IP<C§2 012
Ff)ﬂz _ y% |:_ P’il (2 <Cq51€2 C;]f]l%€2> GFmP <erf1€2 qu1€2>
— fpnf (2(Cat" — o) — Gemd (O3 - CFy)

; (2.10)
: 12y 0

—~9iGrap (CoL2 = Chr2) |

where the index ¢ = u/d, k! = 1/V/3, &1 = —/2/3, k7 = /2/3, and &I = 1/V/3. It

is important to note that, if observed, simultaneous fit to several light quark meson decays

could independently constrain Wilson coefficients of effective operators in Eq. (|1.5]), as follows

from Eq. (2.10).

The resulting constraints on the WCs could be found in Tables [2.7] and 2.8] Note that

no experimental constraints on the b and ¢ currents are available, as the corresponding
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Wilson

coefficient  Leptons Initial state

(GeV™~?) Gl me n(u/d) n(s) 1 (u/d) 1'(s)
pr .-~ ---  FPS FPS FPS FPS

C¥ 2 /N2 er ... ... FPS FPS FPS FPS
e co- ce- 3x107% 2x107% 21x1070 1.9x 107!
pur .-~ ---  FPS FPS FPS FPS

|C92 /N2 er ... ... FPS FPS FPS FPS
e - -0 3x107% 2x107% 21x107' 1.9x 107!
pr .-~ ---  FPS FPS FPS FPS

C¥Y2 /A2 er ... ...  FPS FPS FPS FPS
e oe- - 2x10%  1x 100 3.9x10* 3.6 x 104
pur .-~ ---  FPS FPS FPS FPS

C¥2 /N2 er ... ... FPS FPS FPS FPS
e oe- oo 2x10%  1x10°  3.9x10* 3.6 x 10

Table 2.7: Constraints on the Wilson coefficients from pseudoscalar meson decays. Center
dots signify that no experimental data is available to produce a constraint; “FPS” means
that the transition is forbidden by available phase space [35].

Wilson

coefficient Leptons Initial state
(GeV~2) Gly M n n
CalP /A% ey oo oo 2% 102 5.0 x10°
ICal /N ey oo -0 2% 102 5.0 x 10

Table 2.8: Constraints on the pseudoscalar gluonic Wilson coefficients. Center dots signify
that no experimental data is available to produce a constraint. No data for other lepton
species is available [35].



31

014y UT er el
B(BY — (16;) 22x107° 28 x107° 1.0 x 107
B(BO — U1 0y) e e 5.4 % 1079
B(D° — (14,) FPS e 1.3 x 1078
B(KY — (14y) FPS FPS 4.7 x 10712

Table 2.9: Available experimental limits on B(P — (14y) [34, 65, [66], 67, [68]. Center dots
signify that no experimental data are available; “FPS” means that the transition is forbidden
by phase space [36].

State BY B? D° K?
fp, MeV 186 +£4 224+4  2074+£38 155.0+1.9
Cp, 10714 MeV 4330 £ 11 4374+£15 16050 =60 1.287 £ 0.005
mp, GeV 5.28 5.37 1.86 0.498

Table 2.10: Pseudoscalar meson decay constants [75] [70], total decay widths, and meson
masses [34] used in the calculation of branching ratios B(P — ¢1/5) [36].

transitions ny) — (105 have not yet been experimentally studied. Also, constraints on the
WCs of gluonic operators in Table are significantly weaker than those available from tau
decays [47]. Again, just as in Section [2.1] large entries in the Tables[2.7 and [2.§ do not imply
a breakdown of the EFT description of LF'V decays, but signify that existing data does not

allow us to place strong constraints on the combination of relevant Wilson coefficients.

2.3 Pseudo-scalar BY, D, and K" Decays P — {1/,

Many studies have focused on rare leptonic decays of Bg mesons, B, — 00, as both
precision tests of the SM and as an opportunity to search for new physics (e.g. [69] [70, [T,
72, [73]). The abundance of produced Bg and D° states at the LHCb, Belle II, and BESIII
experiments also allows for studies of lepton-flavor violating decays at these experiments
[74],134]. Such decays were discussed at length previously, mainly in the context of particular
models. Here we shall review these transitions emphasizing the possibility to constrain

Wilson coefficients of the axial and pseudoscalar operators of the effective Lagrangian in
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Wilson
coefficient Leptons Initial state
GeV~2 4 BY (db)  BY(sb) D% (ue) K ((ds—sd) /v2)
pr 2.3 %1078 e FPS FPS
|Caait2 N2 e 926 %1078 o o FPS
et 23x107° 44x107? 24x1078 5.0 x 10712
pr o 2.3x 1078 Ce FPS FPS
|Ca20f /N2 e 26 %1078 o o FPS
e 23x107° 44x107° 24x 1078 5.0 x 10712
WT 7.1 x107° cee FPS FPS
|cupitz N2 e 80 x 1077 e . FPS
e, T1x107% 1.3x107° 59x107* 1.7 x 1076
pr 7.1x107° e FPS FPS
|Caehl A2 er 80 x 1077 o o FPS
ef 71x107% 1.3x10™° 59x10~* 1.7 x 1076

Table 2.11: Constraints on the Wilson coefficients from pseudoscalar meson decays. Note
the K9 results only include short distance effects. Center dots signify that no experimental
data are available to produce a constraint; “FPS” means that the transition is forbidden by
phase space. Particle masses and other input parameters are from [36, [34) 65], 66], 67, [68].

Eq. . Note that these studies are complementtary to those discussed in Sect. , as
here we allow for flavor changes in the quark currents as well. These decays would provide
information about C%424%?(CUE4%Y and /or CUERA% (CUEAEY iy By, .

Here the most general expression for the P — ¢1/5 decay amplitude is the same as Eq.
of Sect. [2.2] which leads to the same form for the branching ratio found in Eq.
[35]. We once again neglect the mass of the lighter lepton and set y = my/mp. Calculating
E5% and F5 for P = BY (quqs = db), B° (q1q2 = sb), D° (q1q2 = cu), and , K (q1qo = ds),

the coefficients are

E£P1£2 = Kkp m;/{éjy |:<Cvzl1£25142 + 0311}%25132> + mZPGF (C?Dlgﬂlﬁ + 0%11%25142)} 7 (2 11)
Ff;lb _ Zﬁpm;]'(iy |:<031152€1£2 _ 0%1325152) + mQPGF (C«ggﬂlfz _ C«%}%ﬂﬂz)} ) '
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The decay constant in Eq. (2.11) is defined in Eq. (2.9). The constant xp is 1 for B,
D° and K°; and 1/v/2 for Kg(s). The experimental limits and numerical values of the
pseudo-scalar decay constants used in the calculations can be found in Tables and [2.10]

The resulting constraints on the Wilson coefficients are found in Table [2.11]

2.4 Scalar quarkonium decays S — /145

Scalar quarkonium decays would ideally allow one to probe the Wilson coefficients of
the scalar operators in Eq. . The corresponding p-wave states xq0, where ¢ = b,c
could be effectively produced either directly in gluon-gluon fusion at the LHC, or in the
radiative decays of Y(2S5), T(3S5), or corresponding 1 states. It is important to note that
the corresponding branching ratios for, say, ¥(2S) — vy« are rather large, of the order of
10%. Finally, they could also be produced in B-decays at flavor factories.

Since Wilson coefficients of other operators could be better probed in the processes dis-
cussed in Sect. in this section we shall concentrate on the contributions of operators
that could not be probed in the decays of vector or pseudoscalar quarkonium states.

The most general expression for the S — ¢,/ decay amplitude looks exactly like Eq. ,

with obvious modifications for the scalar decay:
A(S — €1z2> = ﬂ(pl, 81> [E?Q + Z‘Fél&")%} U(pg, 82). (212)

E?ZQ and F, éléz are dimensionless constants. The branching ratio, which follows from Eq. 1} ,

18

B(S — (11,) = 8:”;3 (1= 9")" [|BG ]+ [F&™[]. (2.13)

Here I'g is the total width of the scalar state and y = my/mg. The coefficients E?Z? and
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State Xeo(1P) Xoo(1P) Xv0(2P)
mg, MeV 3414.75 £ 0.31 9859.44 + 0.52 10232.5 4+ 0.6
T, MoV 10.5+ 0.6 (1.35) (0.247 + 0.097)
fs, MeV ~ 887 ~ 423 ~ 421

Table 2.12: Decay constants of Eq. for the scalar quarkonium decays [35], derived from
the quark model calculation of [77]. We follow [77] and do not assign uncertainty to the
quark model estimates of the decay constants. Masses and measured widths are from [34],
and unmeasured widths (in brackets) are calculated as in [77, [78].

F élé? are
mgsG
il 4SA ki [Q’ifsmsmq (nggb + cgﬁz;?) + 9ag (Cgfi’? + cgj;;?)] : o1
G .
Fgt = y—ﬂz&; [Qfsmsmq (Cglil? - Cglzlzl2> — uag (chlib - chlzlzlgﬂ :
The hadronic matrix elements in Eq. (2.14]) are defined as
(0fgq|S(p)) = —imsfs
(2.15)

Qs apv a
<O|EG a G,uz/|8(p)> =as.

Note that we introduced an extra minus sign and a factor of mg compared to [77] for the
scalar quark density to have uniform units for all matrix elements of quark currents. For
the same reasons as in the pseudoscalar case, one expects that the gluonic matrix elements
in Eq. for the heavy quark states x.o or xuo are small, so we set ag = 0 from now on.
This means that the Wilson coefficients of the gluonic operators are better probed in LFV
tau decays, where the low energy theorems [47] or experimental data [42] could be used to
constrain relevant gluonic matrix elements.

Finally, we note that no constraints on the Wilson coefficients of the scalar currents in Lg
are available, as the corresponding transitions xp(cjo — 105 have not yet been experimentally

studied.
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CHAPTER 3: THREE-BODY LEPTON FLAVOR
VIOLATING DECAYS

3.1 Radiative Vector Quarkonium Decays V — 78122
Addition of a photon to the final state certainly reduces the number of the events available
for studies of LF'V decays, especially since no compensating mechanisms seem to be present
(c.f. [79]). However, it also makes it possible for other operators in L., that were not
considered in two-body decays of vector quarkonium, to contribute. For this reason the
analysis of RLFV decays is a worthwhile exercise, especially for the decays of the vector

quarkonium states.

3.1.1 Resonant transitions V — y(M — {/5)

The resonant two-body radiative transitions of vector states V — ~v(M — ¢1f5) could
be used to study two-body decays considered above, provided the corresponding branching
ratios for the radiative decays are large enough. Since vector states are abundantly produced
in eTe” annihilation, these decays could provide a powerful tool to study LFV transitions
at flavor factories.

If the soft photon]] can be effectively tagged at B-factories and (p, + pg,)? &~ m?,, the

combined branching ratio factorizef’ and can be written as
B(V = vl10y) = B(V = yM)B(M — £,05), (3.1)

where the scalar decays (M = xq0) B(xqo — ¢105) have been studied in Sect. , while
the corresponding pseudoscalar transitions (M = n,) B(n, — (1fs) have been studied in

Sect. 2.2

The resonant RLFV decays are quite useful for studies of scalar heavy meson decays, as

!The photon is relatively soft because the resonance mass is close to the mass of the meson that produced
it.

2This equation implicitly assumes that the state M is narrow, which is an excellent approximation for
the scalar heavy quarkonium states considered here (see Table[2.12). A complete Dalitz plot analysis would
be required for wider states.
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the corresponding branching ratios are large, of order of a few percent [34]. In charm,

B(¥(25) = yxe(1P)) = 9.99 & 0.27% |

B (3770) = vxeo(1P)) = 0.73 £ 0.09% .

The corresponding radiative transitions in beauty sector are also rather large,

B(Y(285) = vxpo(1P)) = 3.8 +0.4% ,
B(Y(35) = vxpo(1P)) = 0.27 + 0.04% , (3.2)

B(T(3S) = vxe0(2P)) = 5.9 + 0.6% .

A rough estimate for SuperKEKB [77] shows that with the integrated luminosity of £ = 250
fb~! the number of produced Y, states could reach tens of millions. Thus, studies of LFV
transitions of y; states could result in a solid bound on the Wilson coefficients of the scalar
operators in Leg.

Similar radiative transitions to the pseudoscalar states are generally smaller. However,
since the pseudoscalar 0~ states are lighter than the 17~ ones, the radiative transition rates

could still reach a percent level in charm:

B(J/v — yn.) =1.7+04% ,

B((2S) — n.) = 0.34 £ 0.05% .

The corresponding branching ratios in b sector are in a sub permille level and cannot be

effectively used to study LFV decays of the n, states.

3.1.2 Non-resonant transitions
Non-resonant three-body radiative decays of vector states V. — 15 could be used to

constrain the scalar operators, which are not accessible in the two-body decays of vector or
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pseudoscalar states. Since the final state now includes the photon, it is no longer possible
to express all of the hadronic effects in terms of the decay constants. The constraints would
then depend on a set of V' — « form factors that are not well known. We will discuss those
in a future publication [80].

Here we would provide information about C’g%b (Cg%&), but at the expense of introducing
model dependence. We shall calculate the transition V — ~v¢,f, choosing a particular model
to describe the effective quark-antiquark distribution function [79].

In principle, besides the Wilson coefficients of the scalar operators, non-resonant RLFV
decays could be used to obtain information about vector, axial, pseudoscalar, and tensor
operators and thus C¥12(C4L2) ¢4 (042 ¢ (CUH2), and CLH2 (CHA2). However,
because these operators can be constrained using much simpler two-body decays of vector and
pseudoscalar states (see Sec. without significant model dependence, and with better
statistics, we shall focus here mainly on the scalar operators, leaving the other constraints
to the future work [80]. In principle, a calculation of the amplitude A(V — y/145) involves
evaluation of the eight diagrams shown in Fig. . Since the initial state is a 17~ vector

meson, the contributions of the axial, scalar, and pseudoscalar are contained in diagrams

[3.1(a)l and |3.1(b) The diagrams [3.1(c)| and [3.1(d)| contain the vector and tensor operator

contributions and |3.1(e)| are generated by the dipole operator contributions. By the

same arguments as above, we shall also ignore these vector, tensor, and dipole operators in

this section.
A calculation of A(V — ~£,/5) presented in this section involves a model to describe the
quark-antiquark wave function of the quarkonium state [79]. We choose to follow [79] [8T],

82, 83] and write it as

I

\I/V:\/6

Oy (z) (myy® +ip’o?) ¢ (p). (3.3)

Here the momentum of the vector meson is p, the momentum fraction of the quarkonium
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Figure 3.1: Feynman diagrams for A(V — ~{1f;). The black circles represent the four
fermion LFV vertex, the black boxes represent the dipole LFV vertex, and the grey boxes
represent the quarkonium bound state [35].
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carried by one of the constituent quarks is  and the color space identity matrix is I.. The

distribution amplitude, &y (x), in Eq. (3.3) is defined as

_ v

(- 1/2), (3.4)

where fy is a decay constant defined in Eq. . We chose the simplest wave function which
makes the approximation that each constituent quark carries half the meson’s momentum,
which is a good approximation for the heavy quark states made of the same flavor quarks
qq such as Y(nS) or J/¢. The non-local matrix element that is relevant for the radiative

transition is then expressed in terms of an integral over momentum fraction:
1
(0[gT"q|V) = / Te[D4 0y |da. (3.5)
0

We can now calculate the total and differential decay rates. Assuming single operator dom-

inance, the axial, scalar, and pseudoscalar operators lead to the following differential decay

rates:
A 2
dFV—wMz _ 1 an ﬁ (02 102 ) (my, —miy) 2miy® + miy) (miy* — miy)
dmi, 9 (47T)2 AL RTAE AR mymsy 7
S 2
dFV—W&Zz — i an f‘sz%“mV (02 + 2 ) y2 (m%/ — m%2) (m%/yQ — m%Q) (36)
dm%z 24 (471')2 A4 SL SR m%Q )
ar. 1 aQ? 232 202 _ 2 2.2 232
Vot L g fvGemy (C2, + C2p) y~ (my —mi,) (myy” — myy)
dm?, 24 (47r)2 A4 PL PR m2,

Here y is defined to be the same as in Sect. and we follow the usual definition of the
Mandelstam variable m2, = (p; + p2)” [34], where momentum p; and p, correspond to ¢; and
{5. Note that in writing Eqs. (3.6]) and (3.7)) we suppressed some of the indices of the Wilson

coefficients (i.e. C’gfilg2 — Cgy) for brevity. The total decay rates for the RLFV transitions
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Figure 3.2: Differential decay rates as functions of photon energy £, for axial operators.
Plotted decay rates are for (a) Y(1S) — ~ut or yer (solid blue), YT(2S) — ~yur or ver
(short-dashed gold), Y(3S) — yut or yer (dotted red), Y(1S) — ~veu (dot-dashed green),
T(25) — vep and Y(3S) — veu (long-dashed purple); (b) Ji — yur or ver (solid blue),
¥(2S) — yut or yer (short-dashed gold), Ji — ~vep (dotted red), 1(2S) — ~veu (dot-dashed
green); (c¢) p — veu (solid blue), w — ~vep (short-dashed gold), ¢ — ~vep (dotted red) [35].

can be found by integrating Eq. (3.6 over m?3,, which gives

- 1 a@Q? f2m?
FA(V — 78162) = 1_8 (47T)q2 ‘;\4‘/ (CiL + CflR) f(yZ),

_ 1 aQ2 f2G2m7
FslVi=2 bl = s ar - (Con+ Can) v, (3.7)

1 aQ? f2G2mY,

Lp(V = ylhly) = T ar)’ Al (Chr +Chp) V' F(1P),

where f(y?) = 1—6y?—12y*log (y)+3y* +2y°. We may use Eq. to normalize differential
decay distributions, so that they are independent of the unknown Wilson coefficients and
plot the normalized decay distributions under the assumption of single operator dominance.
We show differential photon spectra in V' — v/, £, decay in Fig. for the axial operators,
and in Fig. for the scalar or pseudoscalar ones.

Since no experimental constraints are available for the RLFV decays of vector quarkonia,

we cannot yet place any constraints on the Wilson coefficients from those transitions.

3.2 Radiative Pseudoscalar Meson Decays P — v/{{y
Similarly to the BY — p*pu~ transition [84] 85, 86l R7, B8], addition of a photon to

the ¢,0, final state allows one to probe operators of the effective Lagrangian that do not
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Figure 3.3: Differential decay rates as functions of photon energy E., for scalar/pseudoscalar
operators. Plotted decay rates are for (a) Y(1S) — yur or ver (solid blue), T(2S) — yur or
ver (short-dashed gold), Y(3S) — yur, ver, or yeu (dotted red), Y(1S5) — veu (dot-dashed
green), T(25) — yeu (long-dashed purple); (b) Ji — yut or yer (solid blue), ¥(2S) — yur
or ver (short-dashed gold), Ji¢ — ~vep (dotted red), ¥(2S) — veu (dot-dashed green); (c)
p — vep (solid blue), w — yep (short-dashed gold), ¢ — vyep (dotted red) [35].

contribute to P — 1/ transition. This was pointed out for the LFV decays in [35], and,
more importantly in [89] (for a calculation of BY — ¢1f5y in the model of [90]). In addition,
P — (105 decays suffer from chiral suppression (see Eq. (2.11])), which three-body radiative
decays do not neccessarily exhibit. Thus, it is possible that RLF'V decays might have larger
branching ratios than two-body LFV transitions (see [84], [85] [86] 87, [88] for similar effects in
lepton flavor conserving decays). Here we evaluate RLF'V decays of the pseudoscalar mesons
with the model-independent effective Lagrangian of Eq. .

It might be theoretically easier to deal with a three-body final state that contains no
strongly-interacting composite particles. Still, the calculation of the P — ¢;0yy decay is
more complicated than P — (10, where all nonperturbative effects are summarized in one
decay constant fp. Further, because of the electromagnetic gauge invariance, it is important
to have a good understanding of what kind of constraints the kinematic structure of the
decay amplitude imposes on the dynamics of these transitions. Let us now derive the most

general amplitude for P — ¢1(57.
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3.2.1 General amplitude and differential decay rate for P — (,/5y
The most general expression for the P(p) — ~v(k)¢1(p1)l2(p2) decay amplitude can be
obtained using the Bardeen-Tung formalism which we modify to include LFV decays [91].

The decay amplitude may be written as

A(P(p) — ’V(k)gl(pl)ZQ(pQ» = u(p1, s1) M"(p, k,q) v(p2, 52) 5Z(k)> (3.8)

where (p1, 1) and v(ps, s3) are spinors for ¢, and fo, ¢ = %(pl —p2), and €;,(k) is the
polarization vector of the photon. The function M*(p, k, q), which we seek to parameterize,
transforms as a tensor under Lorentz transformations. This function should only contain
dynamical singularities, so particular care should be taking by writing it in such a way that
it does not contain kinematical onesﬂ The most general expression for the M*(p, k,q) from
Eq. can be written by expanding it into simpler Lorentz structures ¢ (p, ¢, k) multiplied

by the invariant functions MZ-P 2 which only depend on Lorentz invariants,

M*(p.k,q) = > p,q. k)M (p?, ) (3.9)
The most general parameterization of Eq. (3.9) contains twelve form-factors,

M*(p.k,q) = o (M7 4 EMG™%) iy (M™% o+ M)
+ q# (ME)PZMQ + kMéDhb) + Z',Y5q,u (M%Dfl@z + kMBPZMg) (310)

o (M MR ) s (M M)

In writing of Eq. (3.10) we used the equation of motion for the lepton spinors, and rewrote
terms containing ¢*” in terms of components, e.g. 10"q, = ¢ — 7"¢. Note the terms

proportional to ¢ can be expressed as terms proportional to § using momentum conservation

3Kinematic singularities occur when a scalar product such as p - k can go to zero in the denominator
of a term in the function. This differs from a dynamic singularity, which occurs in the denominator of a
propagator for example like 1/(¢? — m?) when ¢? — m2.
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and equations of motion. Next, terms proportional to the #**# tensor, such as e**%~,p, kg,

can be written in terms of the existing form factors of Eq. (3.10]) using the relation

i€ Py = Yy s — g s — 67V + 7Y (3.11)

and the equations of motion. Finally, all possible terms in Eq. proportional to k*
trivially vanish by gauge invariance.

The set of Eq. is still not minimal, as the condition of gauge invariance k, M*(p, k, q)

0 implies that some of the Mip 182 in Eq. are not independent. An elegant way of find-

ing the minimal set of gauge-invariant Lorentz structures has been given in [91], which we

shall apply to our analysis. To get the minimal set, it is most convenient to apply a projection

operator
PrE
(p- k)

to M*(p,k,q). Since P* M, = M* and k,P" = 0, P* does indeed project out gauge-

P = ghv (3.12)

invariant structures in M*(p, k,q). Applying P* to Eq. (3.10) we find P,P*” = 0 and so
terms proportional to p* do not give contributions to the minimal set and should be dropped,
leaving the number of independent amplitudes at eightﬂ Applying the condition k, ¢} = 0

fwe write the Lorentz structures LY for the set of amplitudes as

M*(p, k,q) = Z L (p, q, k) AP 2 (p? ), (3.13)

which are defined in a manner that removes all kinematical singularities. The A7 (p?,...)

4There is a simple argument presented in Refs. [92, 03] which calculates the number of independent
amplitudes. The number of independent amplitudes is the number N of possible helicity amplitudes as
calculated by N; = [](2s; + 1). Here i is the index of the particle in the process and s; is the spin of the
particle. In the case of P — /105 we would naively calculate N = 1 x 3 x 2 x 2 = 12 because sp = 0,
sy =1, and s, , = 1/2. This is incorrect because the formula over counts the number of helicity states for
the photon, which is 2. Correcting for this we find N = 1 x 2 x 2 x 2 = 8, which exactly the number of
independent amplitudes we found.
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are new scalar form factors, while L are

LY =~"f,

Ly = iysv"k,

Ly =(p-k)g" — (k-q)p,
Li=iy[(p-k)g" — (k-q)p"],
LE = (p- k)" —p"F,

Lg = ivs [(p- k)v" — p"k],

Ly ="k — (k- q)7",

Ly = ivs [¢"k — (k- g) "]

(3.14)

This implies that the decay amplitude can be written as

A(P(p) = (k) (p)a(p2)) = Y AP (0%, ) Uy, 51) L (p, g, k) v(p2, 52) € (k). (3.15)
Using this general amplitude for a three-body pseudoscalar decay, P — v/1{5, we calculate
Eq. , which is a general differential decay rate that depends on the same scalar functions
APt (p2 ) In Eq. the Mandelstam variables have the usual definitions: m?2, =
(p1 + p2)?, mi, = (p1 + k)?, m3; = (p2 + k)?, where p; 5 is the ¢; 5 lepton momentum and
k is the v photon momentum. They are related to the pseudoscalar momentum, p, by
p = p1 + p2 + k. The mass mp is the pseudoscalar mass, ms is the heavier lepton mass, and
y = my/mp. The superscript of P¢y/y on the scalar functions A7 “lz(p2 ) is dropped for
brevity in Eq. . We introduce a photon mass, m., to regulate the infrared divergences

that will appear via bremsstrahlung diagrams. We use a value of m, = 60 MeV as our
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cut-off, which is near the final state invariant mass resolution of experiments [89).

dl’ 1 1
dmi,dm3, — (2m)° 384m3} | =16 (A7 + 43) (3, (mby? — m3y) +m2md (1 - y?))

+ 2 (A3 + A3) (mpy® —mi,) {m%:a (mby® — mizm3,)
+m? (mfgmig — 3 (mp —mi, + m3)2> }
4 (A2 1 42) Lomb ity ((m? = mi) + mdy)
—mpy® (mp +miy) (mpy® + mis — mi;) }
— (A2+ A2 { (2mpy? —mi,) <(m?oy2 —m3)” + m;;g)
by (mh = mby) (bt —my +md) |

— SRe[A1 A} + A A7) {md, (mby? — miym,)

g ¥
—16Re [A1 A + Ay Afl mpymi, (mp — mi,)
+ 8Re[A A7 + Ay Af] mpymiy (mpy® — miy + miy)

+ 8Re [A3 A} + A AL mpymi,

+ 4Re [A3 AL + A AL mpymi, (mby? 1am3s)

mpy  — MioMog

+ 4Re [As A% + AgAj| (mp — miy) (mpy? —miy) (mpy® — m3s + mi;) ] :

3.2.2 Scalar functions AZP b for Bg, DY, and K" mesons

The scalar functions A”4%(p?,...) introduced in Eq. can only depend on kinemat-
ical invariants and form factors. These functions can be calculated on the lattice or using
other non-perturbative methods. Examining the four-fermion Lagrangian of Eq. one
can find that the contributions of Figs. , , and 1) to Af “% could be written
in terms of the form factors for P(p) — (k) transitions used to parameterize lepton flavor

conserving decays, such as P* — ¢+ or P° — «¢¢. The definitions of the form factors are
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85, 186, )87, 8]
(Y(K)[@17"9502l P(p)) = ivVaAma k) [9™p - k — p*kH] [F[Q% K7, (3.17)
(K@ @2 P(p)) = Vara eik)e P paks fi7[Q% K], (3.18)

(V" (B)[q:0" ¢ P(p)) = ivAma e (k) [6“”0‘5 ko friQ°, K]

o p : k o v
+ (p - ?k ) e pﬁppkﬁf%[@27 k2] (3.19)

[0}

k
+ <6‘“’appp + ﬁe“”pﬁppkg) [ra]Q?, kQ]] )

Here () = p — k and the tensor form factors are defined for an off-shell photon. The tensor
form factors ff) , 5[k7, k3] are functions of two variables: ki, which is the momentum flowing
from a vertex associated with the tensor current, and ks, which is the momentum of the
photon emitted from the valence quark of the meson. Note that for the on-shell photon
k* = 0, there exist a relationship between fF, and fF,. Gauge invariance implies that

TEIQ% 0] = (p- k) fR[Q% 0], so the tensor matrix element simplifies to [85]

) 0002 P(9)) = iv/A7er (k) ek F[Q2, 0]
(3.20)

+ (pozﬁuupﬁppkﬂ + p- keuuaﬁpﬁ) fTI‘DZ [Q27 0]:| :

Using Eqgs. (3.17), (3.18), and (3.20) we can calculate the scalar function contributions
of the axial, vector, and tensor operators from the Lagrangian in Eq. (1.8 of type O ~

(0105)(q,q2) where g1 # gy, which are found in Fig. (3.4). To calculate these and the other
diagrams that follow one must understand that the amplitudes of the individual diagrams
factorize into a part described by the matrix elements that define the form factors and
a part that can be found by calculating the Feynman rules for the new physics effective

interaction. In Fig. (3.4]) these new physics effective interactions are described in Eq. (1.8§]).
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Figure 3.4: Four-fermion interaction diagrams for A(P — ~l,05) for operators of type O ~
(¢102)(q,q2) where g1 # 2 with photon (k) attached to the valence quark. The black circles
represent the four-fermion LEV vertex defined in L.ss of Eq. (1.8) [36].

Pl14o
Ai

The contributions of these diagrams to the scalar functions are

A|1mab _ Vina CQleﬁlfz C<11Q25152

Z/mva m127 0]

010 010 9 2 mZy P2
qu]? v Cq1q2 o yumHGF (le [m127 0] + =z 2m12 fTQ [m12’ 0]> ’

yumHGFfTQ [mf% 0]7

TR
(3.21)

m12

erwzflfz C«lmzflfz

Y umHGFsz [mm, 0], and

(
(
A3mhb _ _ 2VAna (quqgeléQ Oqlqgelez
(
= (

b
ABA —

)
)
)
cua bl | o q2€1£2) 7P
)
)

a q1q2¢142 Q1tI2€1€2
A2 <CVR - Cy S Imiy, 0

Note that in this section (e.g. in writing Eq. ) we suppressed the previously used
superscript of Pf¢fy in favor of a superscript related to the associated diagrams, which
consists of the figure number and sub-figure letters (i.e. [3.4ub). We only show the odd
subscript scalar function equations. The even subscript equations can be found from the
odd subscript equations by replacing the left-handed WCs by their negative magnitudes (i.e.
Cyr — —Cyp, Cap — —Cap, ete. ) and multiplying the odd subscript scalar function by
the imaginary constant ¢. This may be used to find As from A;, Ay from Az, Ag from As,
and Ag from A7 and is true throughout this section.

There is no contribution in Fig. (3.4]) from the pseudoscalar operators of the Lagrangian
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q1 q1
P (p) v(k) P(p) ~v(k)
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Figure 3.5: Bremsstrahlung diagrams for A(P — vl1ls) for operators of type O ~
(0105)(q,q2) where q; # go. The black circles represent the four-fermion LFV vertex de-

fined in L.s; of Eq. (1.8) [36].

in Eq. (1.8). This can be seen by taking the divergence of the matrix element for the axial

current to relate the axial and pseudoscalar matrix elements,

1
k|G P(p)) = ———— p(~(k)|g P 292
(v(k)|[q,7592| P(p)) mq1+mq2p (Y(E) @1 7.75921 P (p)), (3.22)
and using Eq. (3.17)) to get
(v(k)[g1v592| P(p)) = 0. (3.23)

A similar argument can be made to prove that the scalar operators also do not give form
factor contributions.

The bremsstrahlung diagrams of Fig. are calculated similarly to the two-body decays
of Sect. using the matrix element of Eq. . We have given the photon a small mass,
m., to regulate the infrared divergences. This divergence only appears in the quark flavor
changing axial and pseudoscalar operator terms of the scalar functions, Eq. , so the
photon mass is set to zero for the non-divergent terms. The same is true for the differential
decay rate in Eq. . The axial and pseudoscalar operator scalar function terms are

defined here as
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Figure 3.6: Dipole operator diagrams for A(P — ~/1fy). The grey circles with the black
border represent the SM dipole penguin vertex (Eq. ) and the black boxes represent the
dipole LFV vertex (Eq. ) Note that the contributions of these diagrams are severely
constrained by already available data on ¢; — f5y decays [36].

24,2 2
BEhb _  Vina q19241¢2 q192£1 42 2 q192¢142 q1q2¢1 42 ymPfP(mp+m»y_m12)
A= g (G CRE i Ge (CRE S OB ) ) = i)

B3hb _ 2Vdra q19241¢2 q1q28142 2 q19201 42 q1q20102 ympfp
A3 A2 CYAR - OAL + mPGF CPR - CPL w2 (m2a—mg?) (324)

The diagrams in Fig. (3.6) contain both the dipole operators of Eq. (1.6)) and contribu-
tions from the SM dipole penguin operator, Eq. ((1.7). This is directly related to both the on
and off-shell tensor matrix elements in Egs. (3.19) and (3.20) from which we need to write

matrix elements of the form (y(k)|g,0" (1 & 75)q2| P(p)). These can be found by using the
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relation o,,7; = —%ew,agaaﬁ, which yields:

(V(B)[@, 0™ (L £ 75) 42| P(p)) Qu = iVATa (k) { (f11]Q% 0] +p - kf7o[Q%, 0]) ¥

(3.25)
i (FR1Q% 0]+ p- QF[Q%0]) (¢°p - k — pk") },
()70 (1 £ 75)a2| P(p)Yky, = fivAma €5(Q) {7 £i (¢°"p - k — p"k*)} 5.26)

X (filfl [07 QZ] + fZ{DS[O? QZ]) :

The on-shell matrix element in Eq. (3.25) contributes to Figs. [3.6(a)| and [3.6(b)l While

the off-shell matrix element in Eq. is necessary for calculating the dipole operator
contributions of the diagrams in Figs. and . In these diagrams, the lepton
current is attached to the photon coming from the meson’s valence quarks and so @ < k
when we calculate Eq. . Using these matrix elements we find the dipole operator

components of the scalar functions which are
Aimabcd S (C’fjlff — CeDl?) dra ympmH\[Cm ZAP fT.h
bed G P 010 0162 P 00 0162 P
AT = v i YN (OO = OB A= (Ol + CBE) i) - o)

Bhbed _ 1 4ma V*mibmy Gp P L4 L1182 bby Gtz P
A3 = _F7—2_C77 Ao ((Cog = Cpi?) fra— (Coit + Cor?) frn) »

where we have used the shorthand notations ff; and ff; that we define as

mp— m12

fTI _le[mua ]‘i“le[O m12] + fT2[m127 ]+fT3[O m%z] and

(3.28)

mp+mi,

f7€2[ Mg, ]+fT3[O m12]

fTII —le[mlza 0] + le[ 2] +

Here )\P Vg2 Vg, » Which are the appropriate CKM matrix elements for the calculation.
So far we have not addressed the contributions of the diagrams in Fig. (3.7). These dia-
grams contain contributions from the axial, vector, and tensor operators from the Lagrangian

in Eq. (1.8)) of type £105Gq, where the quarks are both the same flavor. As was the case for
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Figure 3.7: Four-fermion interaction diagrams for A(P — ~¢,/;) for operators of type O ~
(¢105)(qq) with photon (k) attached to the SM dipole penguin vertex. The black circles
represent the four-fermion LFV vertex (Eq. ) and the grey circles with the black border
represent the SM dipole penguin vertex (Eq. ) [36].

the four-fermion operators that had a flavor change on both the quark side and lepton side,
the scalar and pseudoscalar operators do not contribute. We can calculate the contributions
of the vector operators using the same tensor matrix element as in Eq. , but with one
important modification. The form factors are the sum of two form factors related to each
quark flavor, fr; = fi + f%2 (e.g. see [94]). Because it is convenient we will use a definition
with the quark charge explicitly included in the formula, fr; = Qg fi + Qg f:. This is

important because in the case of Fig. we only have contributions from ff; and in Fig.

3.7(b)| we only have f

2
A|1ﬂab _ _ Vima Z (C‘q/jélb C‘bgl( )

m2A2

WZAP( 0, M)+ 17510, miy))

3|a1

xR Z (Cvr™ + cpp™) it e, 30 MY (1010, mi) + £13710,m3] ), (3.29)

q

Ay (cR™ — g™ ) mu JCHZAP( 100, mi)+ £715700,m%) ).
j=1

Applying this information to the decays of BY, D°, and K mesons shown in Figs. (3.4)-
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(13.7]), we find that each scalar function AZP “f2 is written as
APtite(2 0y — ABWb | fBERb | ABGbed | ABIWb - (; — 1g) (3.30)

which are functions of model independent form factors and decay constants.

3.2.3 Results

Unfortunately, no experimental limits on the branching ratios of radiative lepton-flavor
violating decays exist to constrain any of the applicable Wilson coefficients of the effective
Lagrangian of Eq. . We encourage our colleagues from the LHC and KEK to study
these decays. However, some information about Wilson coefficients is available from other
transitions, such as two-body decays discussed in Chap. [2] In this section we use this infor-
mation, along with the assumption of single operator dominance to derive the expectations
for the size of the radiative LF'V decays, if driven by those operators. These upper lim-
its are presented in Tables and and the differential decay rates are plotted in Figs.
f of Section

All of the form factors and numerical constants, unless previously mentioned, used to
obtain the results in this section may be found in the Appendix. In some cases where form
factors are currently unknown, we apply a constituent quark model to estimate the relevant
contribution. The quark model approach and results may be found in Sect. [3.2.4]
3.2.3.1 Spectra

Inputting the scalar functions of Eq. in the differential decay rate, Eq. ,
and integrating over the Mandelstam variables m2, and m?,, we calculate the differential
decay rate, dI'/dm3,, and total decay rate, T’ (P — leg). Using these results we may
predict the differential decay spectra for individual operators, (1/I') (dI'/dE,). Where we
make the variable change from m3, to E., the photon energy in the meson rest frame, and
normalize to the total decay rate. This analysis requires the practical assumption of single

operator dominance so that the unknown WCs of individual operators will cancel between
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Figure 3.8: Vector operator (O ~ (£105)(q,q2) where q; # ¢) differential decay plots as
functions of photon energy E,: (a) By — yut or ver (solid blue curve), B; — vep (short-
dashed gold curve), B; — ~yur or ver (dotted red curve), By — 7eu (dot-dashed green
curve); (b) D — ~ver (solid blue curve), D — ~ep (short-dashed gold curve), K — ~eu
(dotted red curve) [36].

the differential and total decay rates.
The differential decay rates for the vector and tensor operators of type O ~ (£105)(q,¢2)

where ¢, # ¢y are

dryest 2o 4 0% Ana 1

(m} —miy)” (2md, — 3mpy®) [ Imy, 00, (3.31)

dm?, A* (2m)3 576m3
dr o=t _ Cip+ Gy Ara ymg, Gy, . 23\3
a?, T AT (ap assma, 7P M)
12 T P (3.32)

% (2, 0] + i fFalmiy, 0)” + mdy (Fhalmdy, 0))°)

Here we have suppressed the superscripts of the WCs for brevity (e.g. C’{%ﬂlb — CyR).
We drop terms higher in order than y?, which is a good approximation in most cases as the
ratio y is small. The vector and tensor operators with flavor change on both the quark and
lepton side are of particular importance to our analysis. They cannot be constrained via
two-body decays and so the three-body decay channels present us with a unique opportunity
to place limits on the associated WCs. The vector operators also have an advantage over

the tensor operators because they are not chirally suppressed by quark and lepton masses.
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Figure 3.9: Tensor operator (O ~ (¢105)(G,q2) where q; # o) differential decay plots as
functions of photon energy E,: (a) By — yut or ver (solid blue curve), By — vep (short-
dashed gold curve), B, — ~yur or ver (dotted red curve), B, — ~veu (dot-dashed green
curve); (b) D — ver (solid blue curve), D — ~vep (short-dashed gold curve) [36].
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Figure 3.10: Axial operator (O ~ (£105)(q,q2) where ¢, # ¢2) differential decay plots as
functions of photon energy E,: (a) By — yut or ver (solid blue curve), By — vep (short-
dashed gold curve), B, — ~vyur or ver (dotted red curve), By — 7yeu (dot-dashed green
curve); (b) left scale D — ~epu (solid blue curve), right scale K — ~eu (short-dashed gold

curve) [36].
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Figure 3.11: Pseudoscalar operator (O ~ (£105)(q,q2) where ¢, # ¢o) differential decay plots
as functions of photon energy E,: (a) By — ~yut or yer (solid blue curve), By — ~veu
(short-dashed gold curve), B, — ~yur or yer (dotted red curve), B, — veu (dot-dashed
green curve); (b) left scale D — ~vep (solid blue curve), right scale K — ~vep (short-dashed
gold curve) [36].

Assuming WCs are of similar size, this means the vector operators would give a larger
contribution to the overall decay rate and conversely are better constrained by experimental
limits. The differential spectra given in Eqgs. — are shown in Figs. —.
The three-body decays considered here also provide complementary access to the axial
and pseudoscalar operators of type O ~ (£1£5)(q,q2) where q1 # g. We do not provide the
equations for the individual differential decay rates as they are more cumbersome than their
vector and tensor counterparts and they are better constrained via two-body decays. Their

differential spectra are plotted in Figs. (3.10)—(3.11) We demonstrate how well constrained

these and other operators are in Sects. [3.2.3.2] and |3.2.4.2]

3.2.3.2 Limits

Using the available limits on Wilson coefficients from Sect. 2.3 with the form factors of the
Appendix, we predict the upper threshold experiments must reach to potentially see LE'V in
the P — ~/,/5 decays involving the axial and pseudoscalar operators of type O ~ (£105)(q,qz2)
where ¢; # g2 and dipole operators. These upper bounds are presented in Table for Bg
decays and in Table|3.2|for D° and K9 decays. K9 is used in lieu of K for the limits on the

branching ratios due to a lack of experimental information on the total decay rate of K°.
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Wilson Upper limits

coefficient  B(BY — yur) B(BY — ver) B(BY — vyeu) B(B? — ~vep)
Cabltz 9.2 x 107 12x10°¢  65x10"1  3.7x 10710
btz 9.2 x 1077 1.2 x 1076 6.5x 1071 3.7 x 10710
Cait 9.0 x 1077 12x107%  32x1071  1.7x 10710
CPhte 9.0 x 107 1.2 x 1076 32x 1071 1.7x 10710

Table 3.1:  Upper limits on BS — ~(10y branching ratios from known Wilson coefficient
constraints using form factors for four-fermion axial and pseudoscalar operators of type

O ~ ((105)(q,g2) Where g1 # go [30].

Wilson Upper limits
coefficient  B(D° — vyen) B(K? — vew)sp
Caeht 99510710 2.3 x 1071
Cuehte 2.2 x 10710 2.3 x 10714
it 4.5 x 1079 2.2x 1074
Cnazits 4.5 x 1077 2.2 x 1071

Table 3.2 Upper limits on D° (uc), K? ((ds — sd) /v/2) — ~{1l branching ratios from
known Wilson coefficient constraints using form factors for four-fermion axial and pseu-
doscalar operators of type O ~ (£1£5)(q,q2) where g1 # g2. Note the K results are for short
distance (SD) interactions [36].

The normalized differential decay plots of K are the same as K? because the normalization
to the total decay rate cancels out the numerical differences (i.e. a factor of 1/v/2).

The predicted upper limits of the four-fermion axial and pseudoscalar operators for radia-
tive pseudoscalar decays P — 015 in Tables and demonstrate that these operators
ultimately are better constrained by their two-body decay counterparts. When we compare
the predicted upper bounds of three-body rates in Tables[3.1]and [3.2] to the two-body exper-
imental limits in Table[2.9 we see they are one to two orders of magnitude smaller. Therefore
the three-body decays could still provide complimentary access to these operators.

The tensor form factors in the Appendix also allow us to analyze the contributions of

the dipole operators from Eq. (1.6). The dipole operators are best constrained via radiative
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Leptons Wilson coefficient [35] Predicted upper limits

0145 (GeV~2) B(BY — yl1ly) B(B? — yl1ly) B(D° — vl10y)
ur |CGE /A2 = 2.6 x 10710 3.1 x 10728 1.2 x 107% FPS

et 2.7 x 10710 3.3 x 10728 1.3 x 10726 3.8 x 1073
eu 3.1x 1077 5.3 x 107 1.2 x 1072 1.4 x 10727
U OG22 /A2 = 2.6 x 10710 3.1x10°%8 1.2 x 10726 FPS

er 2.7 x 10710 3.3 x 10728 1.3 x 10726 3.8 x 1073
eu 3.1x 1077 5.3 x 107 1.2 x 1072 1.4 x 107%7

Table 3.3: Upper limits on BY (¢b), D° (u¢) — {105 branching ratios from known dipole
Wilson coefficient constraints found in Chap. 2] and using form factors for dipole operators
(see the Appendix). FPS stands for “forbidden phase space” [36].

lepton decays o — ¢17, where {5 = 7,  and ¢; = u, e. These decays have been the focus
of most LFV experiments and therefore have the best constraints: B(t — py) = 4.4 x 1078,
B(t — ey) = 3.3x 1078, and B(p — ey) = 4.2 x 10713 [34,95, [06]. In Sect. 2.1] we were able
to provide complimentary access via two-body vector quarkonium decays V — £10, [35].
Using the WC constraints obtained from the radiative lepton decays ¢5 — ¢1y in [35], we
predict the dipole operator decay upper limits for P — ¢4/, in Table . Here the predicted
upper limits range from 107210738, which is much lower than we would expect to be within
experimental reach during the foreseeable future. Despite showing that P — ~/;¢5 is not
a useful means to constrain the dipole operators, the results in Table are ten or more
orders of magnitude smaller than the predictions of the axial and pseudoscalar operators in
Tables and This confirms that P — ~/,{5 decays are better equiped to constrain
four-fermion operators. Indeed the operators in the best position to be constrained are the
quark flavor changing four-fermion vector operators, which see no chiral suppression via

lepton or quark masses and cannot be constrained via two-body decays.

3.2.4 Quark Model

When the necessary form factors are unavailable to take a model independent approach

to the calculation of the four-fermion operator contributions of the diagrams in Fig. (3.7)),
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Wilson Leptons Quark

coefficient (GeV™?) 010y b c s u/d
|G /A7 pr 35 x107% 55x%x107°

|Cgfg"2 /A2 et 41x10°% 1.1x1074

(et AN ef 1.0x 107 2.0x107?

|Ojfgf2) JA?| ef 2.0x 1073 3.0 x 1073
(e AN pr o 2.8 x 1072 1.2

[e AN et 32x1072 2.4

|C Gy /A2 ef 4.8

Table 3.4: Known Wilson coefficient limits from Chap. _[35]. Note the center dots denote
unknown values which could be constrained via P — ~y¢1/5 [36].

we may choose a model dependent approach. We again apply a constituent quark model

to calculate the contributions of four-fermion vector, axial, and tensor operators of the type

(€,05)(qq). We constrained both the vector and tensor Wilson coefficients for these operators

previously in Chap. [ [35]. The results are reproduced here in Table and can be used

to find a predicted upper bound on the branching ratio of B (P — 'yﬁlzg) for individual

operators using the single operator dominance assumption.

3.2.4.1 Consituent Quark Model

The amplitude for the diagrams in Fig. (3.7)) using this model is

+m2mqi GFﬂgl

| Ol Pr+ CH v P un 0101l 4 [P (p)

| CUR™"Pr+ CUL Y P og (01 0uT0 2 [ P(9))

(3.33)

C%Elfz aﬁp _|_qu£1€2 O‘BP Ug2<0’qlrz7ﬁq;iQ2‘P(p>>>‘

This amplitude is dependent on matrix elements of the form (0|q,I'¢2 |P) with the ma-

trices I" defined for each operator (O

~ (00)(;q5), i = 1,2) as
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a 'Y (zp—k)*—mZ
q
. Vira zp—k+m v
Dot = 96250 my, Cr, > Af%%(rf_k)—a_%l%u (1 +5) K, (3.34)

. T Tp—f+m v
roo = ey, o Y Afaaﬁ—(mj_ff_;;gl O (14 75) K,
q

. Vira v —(1—z)p+k+m
FZ};@ — ZG—\/}QZ ;41_2 quC’py Z )\5@“, (1 + ’75) k MT%VQ,
q
. Viara v —(1—2)p+k+mgq
Fﬁ;jp — @% g, Cry Z Ao (1+75) k MT@VQ%, and (3.35)
q
T, . VAro v —(1—z)p+k+m
Faﬁqj - ZG_\/I% :2 mq207’y Z )\50-/.111 (1 + /75) k ((1(*$)p)fk)2—rri2122 Jaﬁ'

q

In modeling the quark anti-quark distribution, we again chose to follow [79, [82] 83], where

we can write the wave function of the ground state, P(p), as

Yp = %@3[37]75 (p +mpgl]) . (3.36)

The variable x is the fraction of the meson momentum transferred by one of the quarks
and [, is the color space identity matrix. We assigned the momenta in Fig. such that
the valence quark g, has momentum x P and the valence quark g, has momentum (1 — x)P.
The function gp[z] is gu|x] ~ 1 for high mass mesons and g, [x] = 0 for low mass mesons.

The distribution amplitudes used for light and heavy mesons and their normalization are

mg, 1 1

cofe
o~ x(1—2x), oy~ MHva——l} ,ﬁ: /0 olx] dx. (3.37)

T

Here m,, is the mass of the low mass quark and the normalization is proportional to the
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Quark My, mg Mg Mg ™y

Constituent mass (MeV) 335.5 339.5 486 1550 4730

Table 3.5: Constituent quark masses required for calculations of quark model matrix element
[91].

00 05 10 15 20 25 00 05 10 15 20 25 00 05 10 15 20 25
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(a) (b) ()

Figure 3.12: Differential decay plots as functions of photon energy E., for (a) vector/axial,
(b) left-handed tensor, and (c) right-handed tensor operators of the type O ~ (¢105) (bb).
Plotted decay rates are By — yut or et (solid blue curve), By — ~vep (short-dashed gold
curve), By — yut or ver (dotted red curve), By — yeu (dot-dashed green curve) [36].

decay constant fp. We find the matrix element,

1
(0|, |P) = /O Tr[[yp] dz, (3.38)

by integration of the meson momentum fraction z and taking the trace.
3.2.4.2 Spectra and Limits

Since we applied a constituent quark model to calculate the transition amplitudes we
need to define its parameters (constituent quark masses) that are used to calculate the
matrix element in Eq. . These masses are in Table . Using this matrix element
and integrating over the Mandelstam variables m3, and m?, we can calculate the differential
decay rate as a function of the photon energy, F., in the rest-frame of the meson P and the
total decay rate. Plots of these differential decay spectra normalized to individual operator
total decay rates are in Figs. 7, which show the spectra of B, D°, and K° decays

for the vector, axial, and tensor operators of type (¢1/5)(gq). The normalization cancels out
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Figure 3.13: Differential decay plots as functions of photon energy E., for (a) vector/axial,
(b) left-handed tensor, and (c) right-handed tensor operators of the type O ~ (¢145) (¢c).
Plotted decay rates are D — ~yer (solid blue curve), D — ~veu (short-dashed gold curve).
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Figure 3.14: Differential decay plots as functions of photon energy E. for (a) vector/axial
and (b) left/right-handed tensor operators of the type O ~ ({105) (5s). Plotted decay rates
are By — yut or ver (solid blue curve), By — ~veu (short-dashed gold curve), and K — vep
(dotted red curve).

sources of uncertainty such as the Wilson coefficients (i.e. C"q}g(%) and the CKM matrix
element values. As we did in Section [3.2.3.2] we apply known Wilson coefficient constraints
from Table. and the single operator dominance assumption to the total decay rate to
make predictions of the branching ratio upper limit for these operators, which can be found
in Tables. 3.6 - B.8

These limits range in order of magnitude from 107°~1072® and therefore many are below
experimental reach. It is the spaces between these limits that should draw the reader’s
attention. There is much opportunity here to constrain the operators whose limits cannot
be predicted. Providing limits using these RLF'V decays would of course be complementary

to two-body LFV decays of quarkonia (e.g. [35]), but would come for free as we constrain
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Figure 3.15: Differential decay plots as functions of photon energy E, for (a) vectgr/ axial,
(b) left-handed tensor, and (c) right-handed tensor operators of the type O ~ ({105) (dd).
Plotted decay rates are By — yut or yer (solid blue curve), By — ~vepu (short-dashed gold

curve), and K — vep (dotted red curve).
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Figure 3.16: Differential decay plots as functions of photon energy E, for (a) Vectc_)r/ axial,
(b) left-handed tensor, and (c) right-handed tensor operators of the type O ~ (£10s) (uu).
Plotted decay rates are D — et (solid blue curve), D — ~yeu (short-dashed gold curve).
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Wilson Upper limits

coefficient B(BY — vyur) B(BY — ver) B(BY — veu)
Cy 57x107% 7.8 x 1072

Cyt 57x107%0 7.8 x107%

Cgéé&

Cgéiég .. e
Cdats e e 2.0 x 10712
cidatz co e 2.0 x 10712
Cr 3.9x107*  51x107*

Chte 11x107%  1.5x 1078

Table 3.6: Upper limits on BY(db) — ~/,f, branching ratios from known Wilson coefficient
constraints using constituent quark model. The center dots indicate no Wilson coefficient
constraints were available for a prediction of an upper bound. Experimental studies of this
decay channel would present an opportunity to constrain these Wilson coefficients [36].

Wilson Upper limits

coefficient B(B? — vyur) B(B? — ver) B(B? — yeu)
VL 1.8 %1071  25x107®

Cate 1.8x 107" 25x 1078 .
O\S/%b - ce 1.3 x 10710
C‘S/ﬁib . . 1.3 x 10710
02511%52 . e 1.5 x 1071
CZELMQ o e 1.5 x 1071
Chet 2.1 x 1071 2.8 x 1071

Cbirte 3.9x10°'7  51x107"7

Table 3.7: Upper limits on B?(sb) — y¢1{, branching ratios from known Wilson coefficient
constraints using constituent quark model. The center dots indicate no Wilson coefficient
constraints were available for a prediction of an upper bound. Experimental studies of this
decay channel would present an opportunity to constrain these Wilson coefficients [36].
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Wilson Upper limits
coefficient B(D® — ver) B(D° — veu)
CL 51x 107 88 x 107
Ot 51x107% 88 x 107
oy S 1.3 x 10716
ovas o 1.3 x 10716
O 6.0x 1072 25 x 107
5t 6.2x 10727 3.7 x107%

Table 3.8: Upper limits on D° (ué) — v¢1¢5 branching ratios from known Wilson coefficient
constraints using constituent quark model. The center dots indicate no Wilson coefficient
constraints were available for a prediction of an upper bound. Experimental studies of this
decay channel would present an opportunity to constrain these Wilson coefficients [36].

the vector and tensor operators with flavor changes on both the quark and lepton sides.
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CHAPTER 4: CONCLUSION

Studies of lepton flavor violating transitions are a promising path in the search for new
physics. A convenient way to study new physics is to employ effective Lagrangians. All
models of new physics that include flavor-violating interactions are encoded in the values
of Wilson coefficients of the low energy effective Lagrangian in Eq. (L.F). We argued that
Wilson coefficients of this Lagrangian could be effectively probed by studying decays of
quarkonium and other meson states with different spin-parity quantum numbers, providing
complementary constraints to those obtained from tau and mu decays [37, 9§].

The proposed framework allows us to select two-body meson decays in such a way that
only operators with particular quantum numbers are probed, significantly reducing the re-
liance on the single operator dominance assumption that is prevalent in constraining the
parameters of the effective LF'V Lagrangian. We argued that studies of RLFV decays could
provide important complementary access to effective operators probed in two-body decays
of type O ~ (Elfg) (Gq) where there is only a FCNC on the lepton side without the need
to include a composite strongly-interacting meson to the final state. We also saw that the
radiative three-body decays of BY, D°, and K° to v,/ allowed access to the effective op-
erators in Eq. which cannot be probed via any two-body meson decays. Finally, we
provide evidence that the dipole operators are so well constrained by radiative LFV tran-
sitions fo — 17 that their threshold for contributions to B(P — ~/1f5) is many orders of
magnitude below experimental reach. Thus, their contribution to the sum of amplitudes in
Eq. can be safely dropped.

As more data is produced by Belle IT and the LHCb experiment, we emphatically encour-
age our experimental colleagues to produce experimental limits on both LFV and radiative

LFV decays of the quarkonia and the BY, D° and K° mesons discussed in this work.
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APPENDIX: FORM FACTORS AND NUMERICAL
CONSTANTS

To estimate differential decay rates and the upper limits of the total decay rates of the
radiative decays in Section [3.2.3] we must apply the form factors of Eqs. (3.17)—(3.19) and
the numerical constants of Tables [I] and 2] Numerical inputs for the CKM matrix elements
are found in [34]. Before we can apply these form factors, we must relate them to those
calculated in the literature, which are defined as [85], 86}, 87, [88], 8]

. B . N N FP k2’ ]{?2
(0 (k17500 Pp)) = et i) (5 hs - — ikt T2
FEk?, k2
O ()0l P0)) = e (ky) o OIS
mp (1)
(7 (k2) 310" 52| P(p) ko = e (o) (97 En - ke — kY kY) Fralki, k3), and

(7" (k) [G10"" 2] P(p)) vy = ey, (k) €52 Py [k, K3

These form factors are functions of two momenta, k1, which is emitted from the ¢ — ¢
weak transition current, and ko, which is emitted from one of the valence quarks of the meson
P. Here the photon is off-shell, but the on-shell definitions may be found by assuming k35 = 0
and applying the momentum conservation relation p = ky + ks.

Assuming k? = 0 and making the appropriate substitutions of Q = p — k and k for k;
and ko we find the necessary relations between the form factors in Egs. (3.17)—(3.19) and

Eq. as

My, my M mg mp
2.2796 MeV 4770 MeV  1.28 £0.03 GeV 9675 MeV  4.18+0% GeVv

Table 1: MS quark masses required for decay calculations [34].
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Transition Scale p [GeV]  |C7,|  Ref.

b— d(s)y 5.0 0.299  [46]
0.0025

Table 2: Penguin operator Wilson coefficients, C7,, for decay calculations.

Parameter FV FTV FA FTA
Bj,—~ B(GeV™') 028 030 026 0.33
A(GeV)  0.04 0.04 0.30 0.30

Table 3: Parameters of the B) — ~ form factors, as defined in Eq. [85].

FxI/D,A[Q2a 0] = mpf5,A[Q27 0],

FTI"DV[Q27O] = _filfl[QQJO] _pkfIEZ[QzJO]? (2)
FrAl@%, 01 = — f11[Q% 0] — p- Qf12[Q% 0],
FII“DV,TA[Ou QZ] - = f?lfl[ov Q2] - f7€3[07 QZ]

To make use of these relations we employ the parameterizations of [85] for the Fy, Fa,
Fry, and Fry form factors. For the Bg — 7 form factor parameterization when the photon
7 is emitted from the valence quarks (k1 = Q, ko = k) we use

Jpmp

By _ A P
‘in [E] - /BlAZ + Ey? ? V7 Aa TV7 TA (3)

where F. is the photon energy in the P-meson rest-frame. The constants 8 and A are
numerical parameters which can be found in Table [3]

For the parameterization of the D°, K° — ~ form factors when the photon v is emitted
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Parameter V A TV TA

DY — v FF0) -0.12 0.14 -0.12 -0.12
F(0) -0.37 -0.31 -0.38 -0.38
M; (GeV) 2.0 23 20 24
K% —~ F40) -0.22 020 - —
F#(0) -0.18 -0.19 - —

M; (GeV) 089 089 —  —

Table 4: Parameters of the D% K — ~ form factors, as defined in Eq. 189, 99]. The K°
tensor form factors will be calculated elsewhere.

0
By—V

Vo glo];, glo]2°=v fy (MeV) my (MeV) Iy (MeV)  Refs.

p 027 —0.66 154 77526 +0.25  147.8+0.9  [34, 188, 100]
w =027  —0.66 45.3 782.65+0.12  849+0.08  [34, 188, 100]
¢  —0.38 —58.8  1019.460 +0.016 4.247 +0.016 [34, 188, 100]

Table 5: Vector meson dominance input parameters for Fry, r4[0, Q%] form factors.

from the valence quarks (k1 = @, ky = k) we use

_ QuF™ 0]+ QuF™[0]

F [mi,) — . i=V, A TV, TA, (4)
1— Mli;
Here Qqs) = —%, Que) = %, and the remaining parameters are found in Table [89].

The form factors Ffy, 1,4[0,Q? for B) and D° decays are parameterized using vector

meson dominance in [87, 88], which gives

Q2/mv

Q2 — m%/ + imvrv ’

Fz{gv, TA[Oa QQ] = sz“jv, TA[Oa 0} - Z QfVQ[O]i_W
v

()

The vector meson dominance input parameter values are found in Table The p and
w mesons are part of the vector meson sum for BY and D form factors because of their
respective d and u valence quark content. The ¢ meson is part of the vector meson sum

for the B? form factor because of its s valence quark content. The zero momentum values
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0 _
of the tensor form factors are Ffé‘fTA [0,0] = 0.115 [85] and FF) 14[0,0] = Qcfiy74[0] +
Quf%V,TA [O] :
Given these form factors and the general input values given in Tables (1| and [2| we are able
to plot the normalized differential decay rates and estimate the upper limits for the radiative

branching ratios assuming single operator dominance in Section [3.2.3|
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