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QED Feynman Rules
B AN~ vV —1Guv
Photon Propagato _—
ropagator 77 q?—/\Q—i—ie
Fermion Propagator M
p 2 _ 2

pT—m- + 1€

QED vertex 1Qey"

Table 3.1: QED Feynman Rules

gauge, the photon propagator is

( .
i
- -0
|72 + N2 + i ks
Dulg)=4 " (5 _ %% _ _ 3.3
u (9) qQ—/\Q—H'e(” FE w=1#0,vr=35+#0 (3.3)
0 otherwise
\

A derivation of this propagator, as well as background information on the gauges typically

used in electromagnetism can be found in Ref [59].

3.2 NRQED

3.2.1 NRQED Lagrangian
The NRQED Lagrangian describes the interaction of non-relativistic, possibly composite,
spin-half particle ¢ with the electromagnetic field. Up to and including the 1/M?, where M

is the mass of the spin-half particle, the NRQED Lagrangian is [60, 61]

) D? oc-B V- -F oc-(DxXFE—FE XD
»C:QN{@DV*‘CQW-FCFQ@ Wi +CDQ6[ ] ( )}77[)4_,

8M2 + iCSQB 8M2
(3.4)
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where Dy = 9/0t+1QeA°, D = V —iQeA, o are the Pauli matrices, Q) is the electric charge
of the particle (in this case, for a proton, ¢, = 1 and for an electron and a muon, @), = —1),
and e is the electromagnetic coupling Constantﬂ Here D; and D are the components of the
covariant derivative D, = 0, + iQeA,. The notation [V - E| denotes that the derivative is
acting only on E and not on 1. For a review see [62]. The (hidden) Lorentz invariance of
the Lagrangian implies that co = 1 [63] [64) [65]. The other Wilson coefficients can be related

to the proton electromagnetic form factors

) p(p) = alp') |Fi(ed®) + Z\‘;Fz(qz)q” u(p), (3.5)

via cp = Fi(0) + F»(0), cp = F1(0) 4+ 2F»(0) + 8M2F{(0), where F| = dFyi(q*)/d¢*, and
cs = 2cp — F1(0). The latter can also be determined by the hidden Lorentz invariance of the
Lagrangian [63], 64, [65]. The NRQED Feynman rules can be extracted from figure 3 of [61]
by multiplying the vertices by —i¢ and the propagators by i.

At 1/M? there are operators that couple four spin-half ﬁeldﬂ
E_leiTi dQTT 3.6
o = qpiiovxiox + R vtx X+ (3.6)

Here x is another NRQED field which can be different from . The coefficients d; and ds
start at order o?, see [66], 67, [68]. The 1/M? NRQED Lagrangian of and is enough
to describe the proton structure effects relevant to the current precision of muonic hydrogen
spectroscopy [66] (67, [68]. In particular, y is taken to be an NRQED field for the lepton. In

the following calculations, we will only need (3.4) to describe the proton’s interactions.

'We follow the conventions of [61], although in that paper the NRQED Lagrangian describes an electron,
here we take e to be positive.

#We use the convention of [65], where the operators are suppressed by 1/M? instead of 1/M, M of [61].
The two are related by a factor of M, /M, where M, is the mass of the x field.
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3.2.2 NRQED Feynman Rules

Here we present the derived Feynman rules for NRQED. The propagators are in Table
n while the vertices up to order 1/M? are in Table .

NRQED Propagators
------ i
Coulomb Phot 7 _—
oulom oton q FEEDY
T Photon 1 \QQQQQ J i 5i — 17
ransverse Photon —_— —
G2 — N2+ ie 72— \2
Fermion .p +
P’ — L + i€
2M

Table 3.2: NRQED Propagators

Here A is the “mass” of the photon, which is used to regulate infrared divergences [61].
The photon contributions shown above are for Coulomb gauge. In Feynman gauge, the
photon propagator is the same as Eq. where, again £ = 1.

The Two Photon Time Derivative Vertex is not presented in [61], but is included here.
The dot represents that the time derivative is acting on the photon. While the Relativistic

Kinetic Vertex is formally order 1/M3, it does contribute to amplitudes at order 1/M?.

3.3 QED-NRQED

The QED-NRQED EFT is the combination of the QED and NRQED field theories. The
QED Feynman rules are used to describe the relativistic particle, while the NRQED rules
describe the non-relativistic one. This EFT contains interactions seen in both QED and
NRQED.

The NRQED interactions distinguish between the time-like (A") and space-like (A") com-
ponents of A*. Therefore, in a photon exchange between a QED field and a NRQED field
the photon polarization will be determined by the NRQED vertex. It is often convenient
to use Coulomb gauge, where the photon propagator is different for time-like and space-like

components. A more detailed explanation of the photon propagators can be found in [61].
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NRQED Vertices
P p’
————
Coulomb i —iQe
]7 =7
. iQecy(p+ p’)
Dipol AL SV
ipole 511
p P’
N Q2625ij
A-A _
M
i P’
: Qecp(p’ —p) x &
F
ermi 57
P S P’
Darwin : iQecplp” — pl*
| K
Seagull
P P’
: : % Qecs(p” x p) - &
Orbit |
Spin Orbi : e
p P’
. L. Qecsd®(p" +p) x &
T D t _
ime Derivative g1 e
i p’
' o Q%e2cg0 i)
Two Photon Time Derivative gt — YSYE
o 7 o
Relativistic Kinetic VA e

Table 3.3: NRQED Vertices
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At 1/M? we can also have contact interactions of the form ¥ /T'¢, where ¢! is the
non-relativistic proton field, ¢ is a relativistic lepton field, I' is a 4 x 4 matrix and ¥ = 1549, 0.
The contact interactions must be even under parity and time reversal. Since both the unit
matrix and the Pauli matrices are even under parity, /I'¢ must be parity even too. This
implies eight possible options for I', namely, 1454,7°, 0%, v*7°, where the indices i, j, and k,
are cycled [58]. Since 1oy (0%) are even (odd) under time reversal, 14,4 and ~° can only be
combined with 1.9, while 0¥ and ~*y® can only be combined with o’. We combine §% to

the former and €“* to the latter.

QED-NRQED Interactions
Spin Independent @b;%]vof %W)ng
Spin Dependent | ¢, 0" 70 | Ylo,l (%eij R 'yk) 14

Table 3.4: Possible interactions in the QED-NRQED EFT

Experiment Interactions

Experiment | Charge Radius | Two Photon Exchange
Spectroscopy cDib;V . E@/JP dgz/);@bpiﬁliﬁu
MUSE cp¥iV - B, byl 00

Table 3.5: Possible interactions for the experiments

An operator of the form ¢I'¢ couples the left-handed and right-handed components of the
relativistic lepton field if I' contains an even number of gamma matrices. As a result, one
would expect that the Wilson coefficient of such an operator would be proportional to m. In
other words, we have chiral symmetry in the m — 0 limit. This implies that operators with
an even number of gamma matrices should be multiplied by m/M?3. At 1/M? we therefore

have only two possible contact interactions,
Lo = 2Lt 900 + P2 iy iyinie 1+ O (17047 3.7
w—WlﬁwY +W¢U¢77 + (/ )7 (3.7)

where our notation follows that of [65].
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It is important to note that this QED-NRQED effective field theory describes electro-
magnetic interactions between a relativistic lepton and a non-relativistic proton. This means
that the pion is not included as a dynamical degree of freedom. The effects of the strong
interaction are encoded in the non-perturbative QED-NRQED Wilson coefficients ¢; and b;.
For more information on the pion contributions, see [69]. Deep Inelastic Scattering is not a

concern as it only contributes at energy scales above the proton mass, which is the upper

energy limit of the QED-NRQED EFT.
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CHAPTER 4: ESTABLISHING QED-NRQED

Here we present calculations performed in the QED-NRQED EFT and compare them
to known results. The majority of this work was originally published in [70] by Dye,

Gonderinger, and Paz.

4.1 One Photon Exchange and Proven Results

In order to establish the new QED-NRQED effective field theory, it must be shown that it
reproduces known results. In particular, we consider O(Q,«) scattering up to power m?/M?,
where m (M) is the muon (proton) mass, @, = 1, and O(Qpa?) scattering at leading powei’|
We show how the former reproduces Rosenbluth scattering [71] and the latter reproduces
scattering off of a QED “point-like” proton, and the scattering of a relativistic fermion off a

static potential [72] [73].

4.1.1 One Photon QED-NRQED Coulomb Gauge

Our first application is the calculation of the QED-NRQED lepton-proton elastic scat-
tering ((k) + p(p) — (k') + p(p') at O(Q,a) (for the amplitude) and at power m?/M?. We
will see that the result agrees with the result of the Rosenbluth formula [71] up to power
m?/M?.

In the Coulomb gauge, we calculated the Feynman diagrams of Figure for a one-

photon exchange between a relativistic lepton and a non-relativistic proton up to 1/M?

using (3.1)) and (3.4) we find

72
q 1 - cr L i
MQN = eQQer [(1 —Cp 8M2> Ff;;gpu(k’),you(k) — ZﬁEG qujéf;/o'kgpu(k;/),y U,(k) ,

(4.1)
where “QN” stands for QED-NRQED, and &, and §, are two-component spinors. There is
no contribution from the operator D? at this order. We have also omitted a contribution
from cg that is proportional to gy and leads to 1/M? suppressed terms.

The spin-averaged square of the amplitude can be calculated by an analogue of the

1We use the factors of @, to keep track of the number of proton-photon interactions.
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k K k K’ k K
—»—?—»— —»—?—»—
| |
| |
| |
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| |
# #

/ / /

b p p p p p

Figure 4.1: QED-NRQED Feynman diagrams that give a non-zero contribution to elas-
tic lepton-proton scattering at O(Q,a) up to power m?/M?. The double line denotes the
NRQED field. The dashed (curly) line represents Coulomb (transverse) photon. The dot,
circle, and cross vertices represent the Coulomb, Fermi, and Darwin terms, respectively, see
Ref. [61] for details.

Casimir trick, see the Appendix. We find

WK a242] 1 q? ? ' 2 CZFl—»Q ' 2 ECTE/QT
= €4Q§Q? i(4E2_q_’2) _ﬁ_‘_6’2+C%(q_)2+4E2_4m2)+cD((j’2_4E2 (4 2)
q?2 q? M 4M? ’ '

where E (E’) is the energy of the initial (final) lepton. In the second line, we have expanded
the kinematical variables in powers of 1/M and retained only terms up to 1/M?, for details
see the Appendix.

We can compare this result to Rosenbluth scattering, i.e. the one-photon interaction
between a proton, described by the form-factors, and a lepton. Without a considerable
increase in complexity, we can introduce form-factors for the lepton too, since some of the
radiative corrections modify the lepton form-factors from the tree-level value of F} =1, F, =

0. We thus have for the lepton-photon vertex
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The spin averaged square of the amplitude is given by

SE— 4?0’ Q2 Q] / Py 10 pa e p_ 10up Pq°
, 1ot y oA
x Tr {(k +m) (fy“Ff — %qup> (K +m) (fy Ff+ T QqA) } ) (4.4)

Collecting the terms by their powers of ¢* we have,

Eﬁ_%wW%W®W?

202 q4

(i e o)

4
iﬁﬂum+%%ﬁumﬂﬂ+@mﬁ+

+ 2(F)*(FPME —

m2

+ { ( 2 L AFPFD + (F§’)2) ((Ff)2 FARLRL 4 (F§)2) + FIFP(FLFP — AFLFD)
( F

- “m? + (F7)* ( §)2M2> +E2 (F§)2(F§)2}

m2M m?2
C FLFY ((2F! + FYFIm® + (2F7 + FL)F{M?)) . 2F (FY)* (FP)?
q m2M?2 m2M
2
J(ED (1) s
B Ve | (45)

where we have suppressed the dependence of the form factors on ¢?. Inserting this expression
into (6) and taking the limit F{ — 1, F§y — 0 reproduces similar expressions in the literature
[74], [75).

As explained in the Appendix, in the rest frame of the initial proton, W2 =4M Ep’mfw-
Multiplying by 4M E,/, using the relations cp = F1(0) + F5(0), cp = F1(0) + 2F5(0) +
8M?F](0), and expanding in powers of 1/M, we find that the result agrees with the ex-
pansion of in powers of 1/M in the F} — 1, Ff — 0 limit. In particular, there is no
contribution to the Wilson coefficients of the contact interactions, b; and by at this order,

but at O(Q2a?).
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4.1.2 One Photon QED-NRQED Feynman Gauge

As a further check of Sec. [£.1.1] the one-photon exchange between a relativistic lepton
and a non-relativistic proton up to 1/M? has been calculated in the Feynman gauge as well.
The difference between the two gauges is that four interactions contribute to the final result

in this gauge instead of three. The resulting amplitude is

) q* * PN\ 1 4 0
1
Man =00 [(1 e P 2Mq2> PR
ep 1, .
i SR ()] (16)

After performing the appropriate kinematic approximations, we are able to reproduce the

amplitude in Eq. [4.1]

Pe”kqug,akfpu(k’)’yzu(k)

(4.7)

-2
Max =0, | (1= eoghz ) €l ulh) — iz,

These kinematic approximations can be found in the Appendix. This shows that the
Feynman gauge result is the same as the Coulomb gauge result.

k K k K k k' k k'
—b—?—b— —D—?—D—

I
J[

/ / / /

p p p p p p p p

Figure 4.2: QED-NRQED Feynman diagrams that give a non-zero contribution to elas-
tic lepton-proton scattering at O(Q,a) up to power m?/M?. The double line denotes the
NRQED field. The dashed (curly) line represents Coulomb (transverse) photon. See Ref.
[61] for details.
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4.2 Two Photon Results at Leading Order

We consider elastic lepton-proton scattering £(k) + p(p) — (k') + p(p) at O(Q:a?) at
leading power in m/M. We will show that the three methods: QED-NRQED at leading
power, QED for a point particle at leading power in 1/M, and scattering off a static 1/r

potential, give the same amplitude.

4.2.1 Two Photon QED-NRQED at Leading Order

>

= ————— =
p p+k—1 9 p  p+E+L P

Figure 4.3: QED-NRQED Feynman diagrams contributing to elastic lepton-proton scattering
at O(Q2a?) at leading power in m/M. The double line denotes the NRQED field,

The NRQED propagator is i(py — p?/2M + ie)~' [61]. At leading power in 1/M we can
approximateﬂ it as i(po + i€)~'. Also, at leading power the NRQED field only couples to
A®. This means that within the Feynman gauge photon propagator, g* — ¢% = 1. Finally,
in the limit of zero momentum transfer, ¢° = 0. This means that within these restrictions,
the Feynman gauge and Coulomb gauge photon propagator are equal to each other. The

resulting amplitude is therefore

47 (kAP m) v'u i
a4 a(k) (J +m)y <k>fpfp( 1 L ) (48)

. _ 212 4
M= Qe / @)t (- R2(— K)2(E —m?) \I D ric D} ic

At the leading power in 1/M conservation of momentum and energy imply

- = SN2 - =
\/k2+m2+M:\/k’2+m2—l—\/M2—|—<k’—k‘> = \Vk24+m2=\k?4+m?2+0O(1/M),

(4.9)

ZNote that in this approximation the propagator looks like a HQET propagator, i(v - p + i€)~!, with
v = (1,0). The relation between the HQET and NRQED Lagrangians is discussed in [G3].
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i.e. |k| = |k and k° = K’°. This also implies that 6*(k'+p'—k—p) ~ 6(k'O—k°)8(k'+7" — k).
Using the identity [76] 1/ (x + i€) = P(1/xz) —imd(z), where P is Cauchy principle value,

we have at leading power in 1/M

1 1 1 1
= = —2mid(I° — k). 4.1
k:o—l0+ie+l0—k’0+@'e kO_l0+@'€+lo_ko+i€ i ) (4.10)

Averaging over the initial proton spins and summing over the final proton spins implies

f;,fp — 1. Since §(1° — k%)5(K'° — k%) = 6(1° — k9)6(1° — k'9), we can finally write

, Aedrns B d* 2m6(10 — K°) 278(1° — K'O) a(K)A° (J + m) ~ u(k)
IMER)OR Y k=) = / @i k2 A2 (KA B m?

X (=)iQ2Qe (2m) 8 (k' + p' — k), (4.11)

where we have introduced an IR regulator A as the photon “mass”.

4.2.2 Two Photon QED at Leading Order

If the proton were a point particle, we could calculate the same diagrams using QED.
As we will show, this toy model actually gives the same answer as the effective field theory
calculation. The reason is that in the infinite proton mass limit, the only information the
lepton has about the composite proton is its overall charge. Of course, once we include other
properties of the proton such as its magnetic moment or charge radius, described in NRQED
by operators suppressed by 1/M and 1/M? respectively, the two calculations will differ.

Calculating the diagrams for a point particle of mass M and charge (),e we find

R B 1 1 u(k )y (J +m) yu(k)
M= Qe /(2@4 (= k)2 — X2 (— k)2 =\ 2= m?)
ooy PHEEM L, P M,
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—.
Y

Since p = (M, 0), in the infinite mass limit

pHE—J+M %1+70_ 1 p—F+J]+M 1+4% 1
(p+k—1)?— M? 2 K= (p—K+1)?—M? 2 10— g

(4.13)

and u(p) = (&, 0),u(p) = (§,0)™°. As aresult (1—~")u(p) = 0,a(p')(1 1) = 0. The

proton matrix element can be simplified as

a(p')y" (1 270) Yu(p) = u(p )7 (1 270) (1 ZVO> v’ u(p)

= @) Kl _270) 7o+ g“‘)] {gﬁ” ++° (1 _27())] u(p) = g™, (4.14)

All together, the result is

. d* (k)P (F+m) Y Cu(k)ElE, 1 1
M= Q;QD 264/ (271')4 (l _ k)Q(l . k/)2(l2 _ TTL2) (/{ZO 10 1+ e + 10 _ 110 —|—Z€) s (415)

which is the same result as from the QED-NRQED calculation, see equation (4.8). We now

proceed in the same way as in the previous section to obtain equation (4.11]).

4.2.3 Classical Potential

We consider a lepton scattering off a static external potential [72, [73] :

—Ar 4 0
> o Qpee B d*q 2m0(¢°) ;..
A = 0, A = pZLT = —Qpe/ (27]')4 q2 — >\2€q y (416)

This implies that in terms of Feynman rules we have a factor of 2m3(q%)/(¢* — \?) for each

photon exchange with the potential. Calculating the transition matrix element we have

Al 2ma(10 — K0)  278(1° — K'0)  a(k)y° (J + m) A u(k)
2 (I — k)2 =22 (I—K)2 =)\ 12— m2 ‘

iM@2m)oK° — k) = —iQ Qe / (

(4.17)
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Up to a factor of (2)36%(k’+ 5" — k) this is the same result as the QED-NRQED calculation,

equation (4.11)).

4.2.4 Cross Section
For completeness we also calculate the cross section. The calculation is similar to [72], [73]

but the integrals are calculated using the standard Feynman parameters. We start from

equation (4.11)). Using

5(10 — EOY5(1° — k'0) _ 5(10 — EOY5(1° — k'0) (4.18)
(1= k)2 = N2 [(I — k)2 — N2 [I2 — m?)] [(f_ R)2 + ﬂ [(;_ i+ )\2] [,;;2 _ ﬁ} T
and
S(I° — KN a(k)° (J+ m) 7 u(k) = 6(1° — K°)a (k') (kovo +m+l- i) u(k), (4.19)
we get
IM@2n) YK +p =k —p) = —21'—@; ad 218 (k" — k'°)(2m)*0* (k' + " — k)
/ 3 a(k’) <k070 I 7) u(k)
X | d¥l——— — — . (4.20)
(= Ry 02| [T Ry 2] [B2 2 + i
We need two integrals
; 1
h _./dlwuzy+v}W:@w+aqp;_ﬁ+ky
I = ; (4.21)

/leLEV+M}WLQV+V]FLJ%H4'

The denominators arising from the photon propagators can be combined using a Feynman

parameter as

— —

z [(f — )2+ AQ] + 7 [(f B2+ AQ] = (- R)?+ M2, (4.22)
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where 0 <z <1,z2=1—x, K = 2k+2k', M> = — K2+ k2+ )2, and we have used k2 = k'2.
Combining this with the third denominator of (4.21]) using another Feynman parameter we
find

1 1 1
L, = —2/ dac/ dyy/d3l - 3
o Jo (l2+A—ie>
. 1 1 Kz
L = —2/ d:v/ dny/d3l — 3 (4.23)
o (Fva i)

where A = ygj[? 24 yM? — g]? and we have changed [ 1-K y. It is convenient to perform
the integral over m first and then to integrate over y. For the x integral we note that A is
a function of z(1 — ). We split the integration range into two intervals, 0 < z < 1/2 and

1/2 < x <1, and change variables to z = z(1 — x). Thus, for a function f(z),

/Oldxf(x):/Oidzf(%_%m)+f(%+%m) (4.24)

v1—4z '
After the change of variables, K2 = k2 — 4k2z sin? § and M? = \? + 4k?2 sin? ¢ Performing

the m and y integrations we have

71.2

1
112_2/4\/1@74 2
0 Y M [(M—¢|IZ|> +1€2}

(4.25)

. %z(k’#k’i) /i dz { L iM|K|+ k2
2 — — = . N2 .
2 JJo o VI-dz [ MK? MK?[(M—i!k!) +K2}

' M + |k| — |K
Lo (MR =R L (4.26)
2|K |3 iM + k| + | K]
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The polynomial terms in [; and I can be integrated directly. For the logarithmic term in

I} it is convenient to use integration by parts. Defining I} = I (k' + k") /2, we find

2 2| k| sin
I, = = log 2
' 2i|k|? sin® & ( A

w2 T 1 1 2| k| sin A
L = ——<c=|1-— —1 1 2] 4+ log — . (4.27
> ST oot {2 ( sin§> i [SmQ 0g ( 3 %8 o (4.27)

This is the same result in Ref. [73]. As was pointed out in [65], [72] has the wrong sign for

NI

1.
Since fu(k) = (k°9° — k- J)u(k) = mu(k), we have k-7 u(k) = (k%° —m)u(k). Similarly
(k') K -5 = u(k') (K °9° — m). Equation (4.20) simplifies to

B 2Q2Q; 07 .

M(2) _
QN T

(k') [m(ly — L) + k°9°(1 + I)] w(k), (4.28)
where we have added the subscript “QN” to denote that we are using non-relativistic nor-
malization for the proton states.

The O(Q,c) amplitude at leading power is obtained from equation (4.1) by keeping only

the leading power term and replacing f;ﬂ,gp — 1, see section . We have
1
MG = —47ranQgﬁu(k’)70u(k). (4.29)

At leading power in 1/M the relation between Mqn and M in the initial proton rest frame
is just M = 2M M, see the Appendix, and we obtain

—SMﬂanQg — 1 0 kO(TQ mq—‘Q
Tu(k‘ )37 |1+ aQpQe—— (11 + L) | + anQ€2_ﬂ_2(Il — 1) ¢ .

(1+42) _
M 2
(4.30)
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At leading power in 1/M the cross section is given by do/dQ) = \M\z/(647r2M2). We find

2

1+ anQZM (Re (I, + L) + m?Re (I, — 1) )] |

2 E? (1 — v2sin? g)
(431)

d_o' _ 4@12)042@?5]2 (1 — v2sin? g)
ds? qt

where F = k° and v = |E|/ kY. Since I, is purely imaginary, only I, contributes to the cross

section. In particular, the dependence on A cancels. The cross section is finally

do  4Q*0?Q?E? (1 — v3sin% ¢
ds? q

2
20
2

(4.32)

0 0
mvsin 5(1 — sin 3)
1 — v2sin

Taking Q; = —1 we obtain the result{] of [72} [73).

4.2.5 Anti-lepton Cross Section

In the calculation above we have assumed that the lepton is a particle. It is instructive
to see how changes for anti-lepton-proton scattering. The answer, “Take )y = +1 in
(4.32)” is correct, but since for QED the Feynman rule for the vertex is the same for leptons
and anti-leptons, it is not immediately obvious why this is true. Beyond the theoretical
interest, MUSE will consider both u*p and e*p scattering [5], so it is instructive to see how
the cross section changes.

Ignoring overall minus signs, apart from sign difference between lepton and anti-leptons,

the leptonic part of the O(Q,«a) amplitude is given by

MDY = Quaa(k )y u(k)Au(k — k). ..

MDD = —Quav(k)y (k) Ak — k). .. . (4.33)

3Note that [72] uses A% = Qe e~ /r. As a result, one needs to replace a — €2 in the comparison. Also,
one has to be careful about the relative sign between the lepton and the potential charges in [73].
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k [ K k ) K
= - = = — =
v K v o

Figure 4.4: The leptonic part of the (’)(ngﬂ) amplitude at leading power in m/M for a
lepton (left) and an anti-lepton (right).

As seen in figure [4.4] the leptonic part of the O(Q2a?) amplitude is

MP = Q% / a1 a(/@')w(’ +m)7"u(k)A#(l—k’)Al,(k:—l)...

(2m)4 12 —m?
M2 = Qe [ ot B i a0 - A -0 s

Notice that Mﬁ and Mﬁ) have the same overall sign. Calculating the spin-averaged

leptonic part of the squared amplitude we have the following traces

T {0+ m) B+ Qe (af +bm) 2] (F+m) [ + Qpar” (@' b m) v}

T { (= m) [+ Qpan” (—af + bm) 3] (F = m) [ + Qpar’ (—a* [+ 1" m) 7| } |

(4.35)

where a and b contain integrals over d*l and we ignore overall factors common to the two
traces. Collecting the terms arising from the inference between M and M® | ie. the
O(Qg(x?’) terms in the cross section, we always pick up even number of gamma matrices
which imply we always get an extra minus sign for the anti-leptons. The order of the gamma
matrices also changes, but because of the symmetries of trace, this has no effect. The cross

section is therefore,

d 40202 E? (1 — v2%sin? 2
0'€$ _ Qp (_’ 2) 1 :i: an
ds q*t

(4.36)
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4.3 Establishing QED-NRQED Summary

QED-NRQED lepton-proton scattering at O(Q,«) and power m?/M? reproduces the
known Rosenbluth scattering formula, i.e. the one-photon exchange cross section expressed
in terms of the proton form factors [71], up to power m?/M?. It requires just the Dirac
Lagrangian and the NRQED Lagrangian up to 1/M?. In particular, there is no contribution
at this order from 1/M? corrections to the Dirac Lagrangian [65] and more importantly from
the lepton-proton contact interactions. This implies that the coefficients of these operators
start at a higher order in «. In particular, one would expect that the first non-zero contri-
bution to by and by in equation (3.7) would be at O(Q2a?) . For that, one has to calculate
an appropriate amplitude to O(ngﬂ) and power m?/M? and is done in Chapter .

QED-NRQED lepton-proton scattering at O(Q2a?) and at leading power reproduces the
O(anz) terms in the scattering of a lepton off a static 1/r potential [72, [73]. Interestingly it
also reproduces the lepton scattering off a “point particle” proton at leading power in 1/M.
It is easy to understand why. In the M — oo limit the only information the lepton has about
the proton is the proton’s charge Qpe. Effects such as the proton magnetic moment and the
proton charge radius arise only at 1/M and 1/M? respectively, see equation . QED-
NRQED can naturally incorporate such effects. For completeness, we have also calculated
the cross section, but unlike [72] [73] we used the standard technique of Feynman parameters.
Still, these leading power integrals are not representative of the typical integrals one would
obtain in calculating QED-NRQED diagrams at higher powers. These integrals will be seen
in the two-photon exchange sections. Finally, we have also commented on the change in the

cross section when we consider anti-lepton scattering.
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CHAPTER 5: TWO PHOTON EXCHANGE
RESULTS AT ORDER 1/M?>

Information about the Wilson coefficient cp, which is equivalent to the proton charge
radius, only becomes relevant at O(1/M?). This means that information about the O(1/M?)
contact interaction coefficients b; and by are needed. This information can be obtained
through the two-photon exchange calculations using the QED-NRQED EFT, presented here
in this chapter. The calculations here are four-fold. The first calculation is performed
on a “point-like” proton in Feynman gauge in QED while the second is performed on a
physical proton also in Feynman gauge in QED-NRQED. The differences between these two
calculations is what gives us information about the Wilson coefficients b; and by. These
calculations are then repeated in the Coulomb gauge for comparison. When calculating the
EFT integrals in the TPE, two methods were used. The first is a method of regions similar
to what is used in Soft-Collinear Effective Theory [78], the second uses an expansion of
the photon propagator. The simplest way to determine these coefficients is to use the zero

momentum exchange reference frame.

5.1 Two Photon Exchange: Feynman Gauge
For the two photon exchange calculations, we have set the proton incoming (p) and

outgoing (p/) to zero.

5.1.1 QED Point Particle

We consider the toy example of a point-particle “proton”. In this calculation, the lepton
line is kept the same, but the proton line is taken to the non-relativistic limit. For this
case, the amplitude of the direct and cross Feynman diagrams for a relativistic lepton and a

non-relativistic point-like proton is

1 1 A (1) By (1), A (D)Buyl)

A
m)r (2= N)2 2 +2mv-1 | I?—=2Mv-1 2+ 2Mv -1 (5.1)

iM=e'QpQ7 /
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where

A1) = alk)y" [J+m(1+4°)] v u(k)

B (1) = alp)y" [J+ M(1++°)] v u(p), (5.2)

—.
Y

and v = (1,0), k = mv, p = M.
We use non-relativistic normalization for the proton spinors u(p)tu(p) = 1, where u(p) =

(x 0) and the Dirac representation of the v matrices

AY(1) = a(k) [v" (12 +m) + my%y" + 1 (697° — ie"* v 4*)] u(k)

[
A1) = a(k) [v' (12 +m) + my"y° + V(697" + i€7*+) ] u(k)
AY(l) = u(k) |

(697° + i€75*9°) (I + m) — I"y'y* 7 + my'y ] u(k),  (5.3)

where we have used the identity 7'y'77 = — (6%7° + i¢’*4*45). The components of B*” are

BY(l) = x"x(2M + 1), BY =T (I —ie"*lo") x

BO(1) = X! '+ ieijkljak) x, BY=101% (67 + ieijkak) X- (5.4)
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Neglecting terms linear in [ we find

A" () Byu(l) = a(k)u(k)x"x 2m(M — 19 + a(k)7 ulk)x'x [z(m 410 (M +21%) — 21 2}

o . . T 4.
+ (k) (%e”kijk u(k)x'o"x(=2mi°) + u(k)y'y u(k)x o'y —gl 24 20%m +1°)

A (1) B (1) = a(k)u(k)y"x 2m(M + 1°) + a(k)y u(k)x x [2(m FIO)(M —2°) 420 2}

o . . T 4.
+ u(k) (Ee”kfy]'yk> u(k)x o' x(—2ml°) + a(k)y' 7 u(k)x o'y —§l2+2l0(m+l0) , (5.5)

where we have used that for integrals over [l7 we can replace I'li — 12/3. We need the

following integrals.

i 4 1,10, 709, [
(M), 1(M), (M), F(M) = (—i)(4my? [ L
( )7 ( )7 ( )7 ( )_(_Z)( 7T) (271')4 (l2_)\2)2(l2+2mvl)(l2_"_2MUl)
(5.6)
To calculate the integrals, we note the partial fractioning identity
1 1 B 1 1 1 B 1 (5.7)
P42mu-l 2+2Mv-1 2(M—m)v-1\I2+2mv-1 12+2Mv-1)" '
We define
: 0 .00 ~ . 2 d'l {1’ o, 00, f2}
Z(m)72 (m)>l (m)a Z(m) = (_Z)(47T) / (271')4 (12 _ )\2)2(,0 . l)(lQ + 2mu - l)’ (58)
and express I, 1°, 1%, T in terms of i,1°, 7%, i:
i(m) —i(M) i°(m) —i%(M) 49 i°(m) —i®(M) - i(m) — (M)
I(M)=—F+—=1"(M) = I'(M) = I(M) =
(M) 2(M —m) ’ (M) 2(M —m) (M) 2(M —m) (M) 2(M —m)
(5.9)

In calculating the ¢ integrals it is convenient to combine denominators via

1 1 /O°° ( 2 dy (5.10)

Zyomv-l vl 2+ 2mu-1+2yv-1)°
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Calculating i, 1, 1%, 7 we find

W<m—x&ﬁ> 1 Vmir 1

im) = mA3 + mX2  8m3\ | 6m3

0 T 1+ logm? — log A2

m) = 2v/m2\ * 2m?

—2+1 21 2
i(m) = + logm og A
2m
. 7r<m— Vm2> 3logm? — 3log A\
i(lm) = — + - . (5.11)

In terms of the I functions we have

Mpp.
Q7 Q2et

+ ﬂ(k)’you(k)XTx{2Mm [L(=M)+I(M)] —4m [I°(—M) — I°(M)] +

= fa(k’)u(k;)XTx{QMm [I(=M) + I[(M)] +2m [[O(—M) — IO(M)} } +

#2100 + 1°00)] =4[220 - %] + 2 [1(-1) - )] }
+ a(k) (%eijk7j7k> u(k)XTUiX{ —2m [IO(_M) + IO(M)} }

+ ﬁ(k)yivt”u(l{:)XTJix{Qm [I°(—=M) + I°(M)] + 2 [I®°(—M) + IP°(M)] — % [f(—M) + f(M)] }

All together, the result is

My, ~ 2mMm 3 2 1 m?log M — M?logm
= a(k)u(k)x' log A — = —
020ar ~ MRIHXX [(m+M)>\3 T m ey T M (Og 3 m? — M?
~ 2mMm 5 2 1 2(m?*log M — M?*logm)
k)Y u(k) X! — —2log A — =
_W(humxth+MM3zMWHmA+mM( osAT g m? — M?
~ i ik ik gy mm 2logA—1  2(M?logm —m?*log M)
+ u(k) (26 Vv)u(k)XUX[M(m—i—M))\—{_ T N2(m? — M%)
_ ; ; T T 1+2log M — 2log A
+MWM%%MMXLWM—Mm+MM+ Ve } (5.13)
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In the non-relativistic limit @u, @y%u — x)xe, and @ (2€dkink) u, ay'yPu — Xioix, and we

obtain
MK = vy AmMm 7r N 2 _log)\_2+m2logM—leogm
Q1Q%a? AP | o L MON 2(m+ M)A mM 3 m2 — M?2

dm_ 2log(m/M )} | (5.14)

T i T i
XXX X [_S(m M TmE— M

which is the NRQED-NRQED result [79].

5.1.2 Effective Field Theory
In the following calculations, k = (m,@), and everything at order 1/M3 and above is
omitted. The integrals in this section are solved using two methods, the method of regions

and expanding the non-relativistic proton propagator in powers of 1/M.

5.1.2.1 Leading Power

k k—1 k k k—1 k
— —_—
: : AN /

| | \\ /’

| | \N7/

| [} A

] ] /7 N\

| | / \

" " , N

| | / \
e ———c—— E _— —— — =

p p+l p P p =l p

Calculating the direct and cross Coulomb photon exchange diagrams, we find
MDirect+Crossed = OCQQIZQ}%XTX [aﬁyou ([é) + IOC) +uu (Inlz + Inc;)] )

where

DC _ (_i\(4r)2 d*l {m,m —1°}
Iniy = (=9)4m) /(2704 I )2 — m2] (12 — \2)2
(1= ky2 = me) 2 =22y |0 — L

-
ﬂo_l_]

We present two methods for performing these sets of integrals. The first method uses method
of regions approach. The integrals has three mass scales, the photon “mass” A, the lepton

mass m, and the proton mass M. Our method takes the ratios of these regions with respect
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to M,i.e. § = A\/M and e = m/M. From here the integral is broken up into two regions, the
first being where the photon momentum [ is of the order §, while the second region is when
[ > §. The residue theorem is used to integrate over [°. From here, an intermediate energy
cut-off is used to separate these two regions, at which point they are integrated over [. The
intermediate energy cut-off cancels in the sum of the two regions. This serves as a check for
the calculation. Finally, the terms independent of A were expanded with respect to €. From

this method, the results of these integrals are

2rmM 1 7(3m?+5m?M —mM? + M3) (5m — 2M)log(A\/m) (5m?* — 5mM + 2M?)

= —
o (m A M)N N2 * 8mM (m + M)2\ 4mM? 12m?2M?
o L @BmaMr  (5m+2M)log(\/m) (5m2 + 5mM + 2M?)
™2 8SmM A\ 4mM?> 12m2M?2
D 2mMm _i+(3m3 +m?M — mM? + 5]\43)7T+(5m2 — 8mM + 4M?) log(\/m)
O 7 (m+ MN 22 8mM (m + M)2\ Am2 M OBIA/TT
15 15log2  (161m? — 20mM + 32M?2)
— 1 M —
sazz elm/M) + = A8m2 M2
1 (Bm+5M)r  (5m?* + 8mM + 4M?
IS == — — log(\
O TN T T SmMA Am2 M2 og(A/m)
5 15log2  (161m? + 20mM + 32M?)
1 M) —
T Sap ostm/M) = T Bm2 M2
In total,
Mbpic _ auxty 2mMmr  (m+3M)r  log(A/m) N 5
Q7 Q%2 (m+M)N  4(m+ M)\ mM 6mM

2mMnr  (bm+T7M)r  4log(A/m) N 5
m—+ M)A 4(m+ M)A mM 6mM

}. (5.15)

+ a7 uxTy [ (

The second method involves expanding the non-relativistic proton propagator in terms
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of 1/M. The proton propagator now takes the form

) (1 P2 7l
N 5.16
0 P’ +4 Z(p0+2(P0)2M+4(P0)3M2+ ( )
PO — — +ie

2M

where only terms of up to 1/M? are kept. Here we integrate over [° using the residue theorem

and integrate over [. From this method, the solutions to the integrals are

ID:%—m—iJr ™ 1 2mm?® 3¢ N 5 log(A\/m)
" A3 A2 8 m  6m2  AM 8A\M  12mM 2mM
2rm?®  brm 5 5log(\/m)
D ERE SN VE AR T ER Y Ve
c 1 N 1 3r N 5  log(A/m) N 5  blog(A\/m)
X2 8 m 6m2 8AM  12mM 2mM 1202 4M?
D 2mrm 1 N 5 2 log(A/m) 2mm? 11z N 5  2log(A\/m)
0 A3 A2 8Am  3m? m?2 AM 8A\M  12mM mM
N 2rm? N 9rm 113 5log(A/m) N 15log(2A/m)
ASM?2 - ANM?2 48M?2 4M? 8M?
7C_ 1 5 N 2 log(\/m) = 3m N 5  2log(A/m)
O X2 8am 3m? m? 8AM  12mM mM
113 5log(A/m)  15log(2A/m)
A8M2 4M? 8M?

where A is a UV cutoff regulator. In total

Mpyo o [2mm m  m? m 5m 5 log(\/m)
T D+C 1 220 G o _
Qa2 ~ "X vtae) T\ Pt ) e T

+ a7 ux 'y [Qmﬂ <1 ~ Iy m—z) T (7 - 9—m> + o _ 410%()‘/7”)] . (5.17)

C4AMA 6mM mM
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As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

MNN i AmMm

—Q%ang = XMXHXLXI)W; (5.18)
p

i.e. the sum of the two 1/A3 terms in (5.15)) agrees with (5.18)). More importantly, ((5.17))
clearly is the 1/M expanded result of (5.15]).
Since the expanded results are simplier to check numerically, the rest of the calculations

only the expanded results will be presented.

5.1.2.2 Order 1/M: iD; — D? interference

k k-1 e ke k—1 k
P p +1 P P p+l1 P
The amplitude of the resulting diagrams is
1 d*] 1 K 1
:_-i422—0T_/ 5.19
MD,C ( 7’) € Ql qufy uX XM (27T)4 (l _ k)2 _ m2 <l2 _ )\2)2 l—ﬁ ) ( )

where

2 log (A 2 1 151log(2A
My — +042Q12Q§1_WOUXTX( 7r +3og( /m) ™m 31 15log( /m))

AM mM AM?2  8M?2 402
_ 3log(A/m) 31 15log(2A/m)
_ 21212~.0, 1t
Mo = —aQQuy “XX(_ mM  T8M2 AN ’
Thus,

21 6log(A/m 2mm
Mpic = OézQzQQiﬂ’VOUXTX ( + BA/m) _ ) :

AM mM AM?
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5.1.2.3 Order 1/M: iD; — o - B interference
We find

d*l 1 2 1

2m) (I — k)2 — m? (12 — A2)? E
T UL
2M

~f2 _ .
Mpc = —(—i) <§>64Q?Q§cwv Yux'o XM/ (

Mp 2 5 o+ (2m  3log(A/m) 2mm = 31 151log(2A/m)
—aA— = w7 uxo'x + -5 = — -
a?QiQpcr 3 AM mM AM?  8M AM

2_ . - 3log(A 31 15log(2A

Mo 20 (CSlosm) | S 15log2A/m)

a?QiQpcr 3 mM 8M? 4M?
Thus,

2 _ i
Mpic = —50424212@;:01?“7 Yux'o'x (

2m 2mm n 31 15log(2A/m)
AM  AM?2  4M? 2M ‘

As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

2 . . 2m
NN __ 2 T i T i
./\/l = gO{ CI])J‘CZ‘XMO-MXMXpUpo (—m) . (520)

5.1.2.4 Order 1/M: D? two-photon term

For the D? two-photon interaction, only one diagram contributes.



Y
sy

The amplitude of this diagram is expressed as

1
_ Na 421210 0
M= (0BG Qab m — 1)~ i [ oo s
_ 2212- 0 i . ™ 1 210g )\/m)
307QIQp Iy ux X( OAM  2mM mM
_ 2122 i _ T 1 _log()\/m) 921
3a”Q; Q) uuy X( NI gyl £ (5.21)
The non-relativistic limit of (5.21)) is
210gm—210g)\ 28 1
2
M =« Ql QprXHXpXP ( mM 15 mM) (522)
As a comparison, the NRQED-NRQED calculation of the analogous diagram gives
2log(2A) —2logA 28 1
NN _ 21221 i =
M A" Qr QX XX pXp ( 7 o) (5.23)

5.1.2.5 Order 1/M?: D? — D? interference

k k—1 k k k—1 k
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The amplitude of these two diagrams is

L e'Q7Q; 0 0 d'l 1 & L
Mpe = (=) 4M2Pu [ (m = 1°) —m] “XTX/ @2m)T (1 — k)2 —m2 (12 — z2)? 2
40—
2M
where
a’Q; Q> 2mm 3log(2A/m) 1 2mm
_ -0 ) I Py -
Mp e {X XUy u (—/\ + 3log(A/m) + 5 + 4) X XUU( \ —|—3log(/\/m))}
a2Q2()? 3log(2A/m) 1
Mo = # x'xayu [ —3log(\/m) — 3log(2A/m) 1Y _ x xau (=3log(A/m)) |.
AM 2 4
Thus,

5.1.2.6 Order 1/M?: ¢- B — o - B interference
k k-1 k k k-1 K
p p +1 p P : p —1 ; p

The resulting amplitude is

QL [0y ty (1€ 4 1P — dunty (1€ 4 17
Mo+ Mp = — 5= |y uxx (1§ + 1) — aux'x (I, + 1,,)
o 1 : L
+1 (%e’]kvjvk) UXTO'Z)(g (I£ — ],(;;) + TLWWE)UXTUZXg (IOC - ]OD) ]7
where

d* {m,m — I°} I2

27)* )
(1= k)2 = m?] [(12 = A2)]

10§ = (i [ ¢

l_é Y
L0 -
: 2M
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and
D 2mm
I, = — 3log(A/m)
L, 2mm 13
Iy = N + 3log(A/m) + 1 + 5 log(2A/m)
1€ = —3log(\/m)
c 1 3
Iy = —3log(A\/m) — 173 log(2A/m).
Thus,

a?Q?c [ 2mrm B 2mm
Mpio = —51- {uvouxTx (—) — aux'x (—)

2M? A A
o /92
+u 36”’“777’“ ux'o'y 2T log(A/m)
2 3 A
Bt 2mm 1
+uvy' v ux'o'x —gT—6—210g()\/m)—10g(2/\/m) :

5.1.2.7 Order 1/M?: D? — ¢ - B interference
k k-1 2 k k-1 k k k-1 k k k-1 k
» p+1 %p p p -l P pg p+l1 p P p =l P

2)? 1, . BT .
Mpic = %gﬂalx [ﬂ (%6”’“7’7'“) w (IR = 1S) = ay'yu (1P - 15)
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where
4 707 72
IPC = (i) (4ry? d*l {m,m —1°}1
" (2ﬂ)4 2 2 2 232 0 l_é
| —Fk)? — 12—\ 470 — —
(= k2 =) [(2 2] |20 —
D 2mm
I, = T+310g(/\/m)
2 1 |
P = LI 3log(A\/m) + 3log(2A/m)
A 4 2
1€ = —3log(\/m)
1 log(2A
I€ = —= —3log(\/m)— 3log(2A/m)
4 2
Thus
a2Ql2Qch1 T 7 _ /L ij ] k 27Tm
Mpic = 23X X[U (55 7Y ) U<T + 610%()\/7"))

— u7i75u<27rTm + % + 6log(A/m) + 310g(2A/m))] . (5.24)

5.1.2.8 Order 1/M?: iD, — V - E interference

a*Q Qpep t

Mpic=— A2 X'x |uu (Inlz + ]72) + a7 (Iéj + ]OC)
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where
4 707 72
128 = ian? [ tmm = 031
7 (2m)* 2 2] [72 212 0 _ P
(I — k)2 —m?2][I2 — \?]" |+l oY
D 2mm
I, = N + 3log(A\/m)
D 2mm 1 3
Iy = — 3log(A/m) + - 173 10g(2A/m)
I¢ = —3log(\/m)
1
I§ = —3log(\/m) — 1 glog(2/\/m).
Thus
a? c 2mm 2mm
Mpic = — Ci?\jip DXTx[uu< 3 )—HWU( 5 )] (5.25)

As a comparison, the NRQED-NRQED calculation of the analogous diagrams for the proton
gives

™m
MNVN = Qz Qp DXMXMXpo ( m) , (5.26)

which is the sum of the terms in ([5.25)).
5.1.2.9 Order 1/M?* iD; —o-(D x E— E x D) interference:

Time derivative Feynman rule

k k—1 k k k—1 k
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
| |
[} |
P p +1 P P p+1 P
«Q Q QpCs
Mpic = —L=P TR vyt (ID ]C)

6M?
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where
dil I
DC _ (_; 2
I (—1)(4m) /(2ﬂ)4 2 - 2 0 7
(1 — k)2 —m?][l —/\] +1 ~ 5
D 3
7 = —Elog(QA/m)
© - glog(QA/m).
Thus
« QlQpCS t K

Mpio = ——==x " xar " u (=3 log(2A/m)) .

6.M?

5.1.2.10 Order 1/M?: iD; — o - (D x E — E x D) interference:

Seagull Feynman rule

ZQl
M = WE e L TTA I TR |
where
4l K
I=(—i)(4 2/
( Z)( 7T) (271')4 [(l . k)2 . m2] [l2 o )\2]2

1 3

I= i ilog(QA/m),

where A is a UV cutoff regulator.
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Thus

a?Qles

M= 3M?2

1
X Py v u (_Z — glog(QA/m)) .

5.1.2.11 Order 1/M?: iD; —o-(D x E — E x D) interference:
Two-photon-time-derivative Feynman rule

The diagrams that contribute to this interaction are

hS]
hS]
hS]
hS]

The amplitude from these diagrams is

2
M = Q’ Xox[uwyu Io—U(Q”’“WV)u-Im],

where
d4l {m,m —1°}1°
2m)4 [(1 — k)2 — m2] [(12 — \2)?]

T = (=) | -

log(A/m)  log(2A/m) +§
2 2 4
I, = log(A/m)+1

[0:

where A is a UV cutoff regulator.
5.1.2.12 Order 1/M?: iD, — D* interference
The resulting amplitude is

OéQQlQ
SM3

Mpic=— au (I + I5) + uy'u (10 + I)
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k k—1 k k k—1 k
—_—— ———————
! ! N

| | \\ /’
[} [} \N7
[} [} A
] ] /7 N\
| | / N
| | // \\
[} EE [} / %é \
P p +1 P P p —1 P

where
d* {m,m — 19} I*
b,c _ 2 )
Im,O _< 2)(477-) / (27‘()4 , l_é 2
— )2 — 2] 12 — )2 o_
(I — k)2 —m?2][I2 — \?]" |+l 2M]
I, = 0(1)
P = 00)
I =0
I =0
Thus,
1

As a comparison, the NRQED-NRQED calculation of the analogous diagrams for the proton

gives
™m

2
NN _ 22214
MY = ?Q7Q2x X, xp (m) ; (5.28)

which is the sum of the terms in (5.27)).
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5.1.2.13 Total Result

The total EFT result in Feynman gauge from the expanded proton propagator method
is
Qszm 2@12371'7712 3Q§7r QQZ QQZQ) log(A/m)

XN XM ANM 3mM mM
2Q%mm®  3Q%rm QpcpTm C%Wm)ﬂuXTX

Megpr = OZQQ? [(

M2 T ANM2 2AM? AM?
2@%7?W_2Q§7TW2 5 2Q7 4@12) log(A/m) 2Q>mm? 3Qi7rm_QpcD7rm mm iPury
A3 A3 M AINM 3mM mM A3 M2 4NM? 2AM?2 AM?
N (_ 4Q%m N AQrm  2Q,cpmm  cgmm 31Qp  13Qycs Qe %

3AM ' 3\M? 3AM?2 3AM2  6M?2 ' 12M2  6M?  12M2
2

) , A .
n (Qpcs _ 2Qpcr C_F) log(\/m)+ (i _3¢s _Cr_ Cr ) log(QA/m)) uy'y uxto'x

2Q,crmm  c2mm  Q,cg _ @Qpcs | 2Qpcr » i
+( 3§\M2 +3§\M2_ vz T\ e T +W log(A/m) Ju| e Ceitink Yuytotx |

(5.29)

When this result is taken to the non-relativistic limit, i.e. @u, @7°u — xbxe, @ (2edkink) u, ty'yPu —

X;Ung, and the proton Wilson coefficients are set to @), the result is

Megr i o [4mm 4 4m?2r T 2log(m/\)  4min L _mm
QPQ2a? MMM T TR T MM T 2MA T mM | MPNS 20PN
; : A 16 dmm 2log(m/2A)
foxoxtoix, | — — - 5.30
ToXeTxege X’{ 3MA  3MZ T 3M2A M2 (5:30)

which is the same as Eq. once it has been expanded in 1/M, and the M in the

logarithmic term has been replaced by a cut-off energy 2A.

5.1.3 Extraction of b; and bs
With the amplitude of the point particle and the EFT calculations, we can now determine
the Wilson coefficients b; and b, by taking difference of the two amplitudes. After expanding

the 1/ terms in the point particle solution, and the proton Wilson coefficients to @, the
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difference between the point particle and EFT results is

Mp.p. - MEFT

2@4@2 <

i A — i Bt i 31
A\ g 2los(2 /M)>U’w ux'o'x, (5.31)

where A is the UV cutoff of QED-NRQED.

5.2 Two Photon Exchange: Coulomb Gauge
For the two photon exchange calculations, we have set the proton incoming (p) and
outgoing (]57 ) to zero. Here we will use the same methods to solve the integrals as we have

done before and only terms up to 1/M? are kept.

5.2.1 QED Point Particle

The amplitude of the point particle in Coulomb gauge is calculated using the same method

that was used for the Feynman gauge. The total amplitude is

Mpp ( 2rmM N 177 N 2log(A/m)  2mlog(m/M) 247 > ix
02Q2Q2 ~ \N(m+ M) " 16Xm+ M) mM | M(m*—M2) 106mM
2rmM 257 4log(A/m)  4dmlog(m/M) 107 \_ o
(/\3(m+ M) 16Am+ M) mM  M(m2— M) 105mM)“7 X
7(8M +3m)  2log(A\/m)  2(m?* — 3M?)log(m/M) 23 1\ _ :
( TBAM(m+ M) 3M2 3M2(m2— M?) 45]\42)1W THEXTX
m 2log(A/m)  2m?*log(m/M 23 0\ (i :
* (2)\M(m T 35\42/ ) 3M2(m2(—/]\/[2)) - 45mM> (2 B )“XT" X

(5.32)

Notice that this is not the same as the amplitude in the Feynman gauge, as seen in Eq. [5.13]

In the non-relativistic limit @w, @y°u — X};Xg, and u (Z €ikndnk )u, uy Y u — X}aixg and

we obtain
MNE AmM ™ 2 (m?log M — M?logm 2
e Y N
B 2 XZXEXpo - + — log A — —
Q7 Q% (m+ M)A 2(m+ M)A mM — M? 3

A 2log(m/M)
S(m+ M)A T m2— P ] (5:33)

+Xbo' xexho v, {—
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which is the same as Feynman gauge result in Eq. and the NRQED-NRQED result [79].

5.2.2 Effective Field Theory

In the following calculations, k = (m,0), and everything at order 1/M?® and above is
omitted. The method used in this section is the same as in Sec Only the expanded
solutions are presented.

5.2.2.1 Leading Power

Here are the two diagrams that contribute to the Leading Power interaction.

k k—1 k k k—1 k
—_—— —_—
: : N\ /

| | \\ /’

| | A4

| | A

] ] /7 N\

| | / \

| | ’/ \\

| | / \
e r—— e —————

p p+l p p p =l p

Calculating the direct and cross Coulomb photon exchange diagrams, we find

MDirectJrCrossed = QQQ?QixTX [ﬂfyou (I(? + IOC) + uu ([nlz + [nc;)] )

where
d*l {m,m —1°}
[D,C — _ . 4 2 / )
m,0 ( Z)( 7T) (271')4 . 9 l_ﬁ )
(1 = k)2 — m?] (52 n >\2> O o
and
D 2mm 7r 8 2 2m?m 1 2m?r mm
1P = — +—— — — —- -
A3 2mA  3m?2  3mM  MXN  3M?  M2X3  2MZ2)\
c - T 8 2 i 1
™ 2mA 3m?  3mM - 3M?
D 2mm T 4 4 2m*r w 7 2mir 3mm 2log(2A/m)
Iy = + - + - - - + + +
A3 2mA  3m?  3mM  MXN MM 3M?  M?2X3  2M2)\ M?
4 4 7 2log(2A/m)
S — -
0 omA | 3m? | 3mM ' 32 M2
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where A is a UV cutoff regulator. In total

Mpyc i | 2mm ] m  m? +m7r 4
QiQ20?> 2M2\  3mM

2 2
+ P uxty { mm (1 _my ﬂ) __T (1 _ §E> + L] . (5.34)

2M 3mM
As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

MNN
=X\ xp— s,
QrQza? N e el T N

(5.35)

i.e. the sum of the two 1/\® terms in (5.34)) agrees with the 1/M expansion of this result,
as expected.

5.2.2.2 Order 1/M: iD; — D? interference

k k-1 k k k-1 k
P P+l p p P+l p
We find
1 [ dY 1 1 1 A2
(. 44212- 0, F. *
Mpc=(—i)Fe QQpuy ux XM/ 2m)4 (1 — k)2 —m2 12 — \2 L 12 (fz+)\2)2
~ 57
(5.36)
— 20202740, i (T 2 i
Mp = —a’ Q@i ux'x ( 2AM+5mM+2AM2)
2
B 21220
Me = +aQQuuy ux'x (_5m—M)

Thus

20202 0, 7T_4_7rm
Mbpic anquvuxx(%M e YA S VE
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As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

4 T
NN _ 212072 f, _ .
M XXX X ( SmM | 2(M + m))\> ! (5.37)

i.e. the same result.
5.2.2.3 Order 1/M: iD; — o - B interference

The diagrams that contribute to this interaction are

k .y k K k-1 k

p p+l p P p +1 P

We find

a2 i N L d'l 1 1 1 12
Mpc = (—i) (5) e Qr@perty Y ux o' X7 @ (I —kZ—m2Z— 2 " RN
- 2M

Mp 2 s 2 2log(A/m) 4 2rm 4 3log(2A/m)
2QQcr 3UVVMXOX TN T T M 3mM M2 M AP

Mc 2 s i (2log(A/m) 4 4 3log(2A/m)
a2Q?Qycr 37 EXTX mM 3mM M2 * M2
Thus

2 202 o inB i 2r 2mm 8  6log(2A/m)
Mo = 30 QQperuy'yPux'o'x (_W T e e

As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

2 . 4 2m
NN 2 i )
M = §O( CI})«"C!I?‘XLO-/LX,LLX;UpXP (—m) . (538)
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5.2.2.4 Order 1/M: D? two-photon term

k k—1 k
> >
P P
| ) d4l 1 2 )\4
M = (—z)&@?@iu [VO(m — lo) UX XM/ —m2 (l2 _ )\2) (2 + _(l_é N /\2)2>
_ 1 177 89 4log()\/m)
21220
= QG uxxy; (_ 16X 105m  m
~ 1 170 107 2log(A/m)
- @*QiQuuux"x7; <_16)\ R T 239

As a comparison, the NRQED-NRQED calculation of the analogous diagram gives

2log(2A) —2logA 28 1
M QQZ QpXMXNXpo ( mM 15 mM (540)
The non-relativistic limit of ([5.39) is
210gm—210g)\ 28 1

5.2.2.5 Order 1/M?: D? — D? interference

k k—1 k k k—1 k
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QR 1 ! L
= (—i i — 1% — 1 / =
Mpo = (=)=t [7"(m =1") —m]ux'x 2m)1 (1 — k)2 —m2 (12 — )2)? Lo BBy
oM
Mop = XTX (ﬂyou — ﬂu) ! LU E
?Q2Q? AMZ \ 4\ 35
Mo = XTX (fwou — ﬂu) ! E
?QIQ? AM? \ 35
Thus
Q> ~ ™
Mose = =p® (m'u =) (F5)
5.2.2.6 Order 1/M?*: ¢- B — o - B interference
k k-1 k k k-1 k
p p +1 p p p—1 P
a?Qfck
Me + Mp = i {WOUXTX (1§ + 1Y) — aux'x (IS + 1F)
o 1 , -1
+u (Ee”kvwk) uXTalxg (I£ — I,(;:) + TWZWSUXTUng (]g - I(?)}
where
d*l {m,m — I°} [2
ID,C — 4 2/ ’
mo = (—1)(4m) (2m)4 2

(1= k)2 = m?] [(2 = 2?)°]

S p——
oM

|
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P = 27rTm + 3log(A/m)
L, 2mm 1 3
I = —3log(\/m)
1 3
IS = —3log(\/m) — 173 log(2A/m).

Thus

a? 2 2
e =t (5) ot (52

. 27
— ijk P = 1
+u<2 77>uxax(3—>\ +2 og()\/m))

2mm 1

+ay ySuxtoty (—gT —5~ 2log(A/m) — 10g(2A/m)) } :

5.2.2.7 Order 1/M?: D? — ¢ - B interference
k k-1 k k k—1 k k k-1 k k k-1 k
P p+1 P p p =1 P P p +1 P P p =l P

a?QiQuer 1 L L [ ; y
Mc+MD:T”F§xTax{u <2 J’“vv) (I = In) —uy'yu (I = I§)

4 m.m — 10 7212
ID’C—(—i)(47T)2/ (dl { ) l}l/\

(1= k)2 —m?] [(12 — X2)?] [ﬁ + )\2]

E
40 -
! 2M



™m 3
) R
m 2N 5
m™m 3
o= =
0 2N 5
o= 3
m 5
3
¢ = =
0 5

Thus

M2 3 2\

20)2 1 4 o . 6

5.2.2.8 Order 1/M?: iD; — V - E interference

k k—1 k k k—1 k k k—1 k k k—1
— —_— — —_——
H | N )/ 1 1 AN
: : N | | N
| | \\ // | | \\ l’
| | N | | A
| 1 // \\ | | ’/ \\
|

: : ,/ N : " ’
| |

__0PQiQuen i [ p oy Lo (g0 O
Mc+Mp = o XX au (I + 15) + @yu (I + IF)
where
d*l {m,m — I°} I2
]’D,C: s 4 2 9
m,0 ( Z)( 7T) /(271')4

(1 — k)2 — m2] [ﬁ n )\2] ’

&
40—
oM
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2mm

L L
m )
2
P = ”Tm—4+410g(2A/m)
¢ = 4

IS = 4—4log(2A/m).

Thus,

a*Q7 Qpep t

XX [uu (%Tm) + ay'u <%Tm) ] (5.42)

As a comparison, the NRQED-NRQED calculation of the analogous diagrams for the proton

Mc+ Mp =—

gives

NN _ 21212 mwm
MY = QP Q2 X XXXy (—m> (5.43)

which is the the sum of the terms in (}5.42]).
5.2.2.9 Order 1/M?: iD;, — o - (D x E — E x D) interference:

Time derivative Feynman rule

k k—1 k k E—1 k
] [}
| |
| :
p p +1 P D p +1 P
a“QiQpcs
MC 4 MD — l 217 XT kxu,yk,.yf)u ([C [D)
oM
where

d*l 1072

(0= k)2 = m? 2 = N7 [+ ]

E
40
! 2M
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I? = 2log(2A/m)

19 = —2log(2A/m).

Thus,

« QlQpCS Tk

Mc+ Mp = iz X°© XYY u (—4log(2A/m)) .

5.2.2.10 Order 1/M?: iD;—o-(D x E — E x D) interference:

Seagull Feynman rule

«a Qz
3M?2

M = ——L5 Tobyviink Py - 1

where

d*l 12

I = (—i)(4n)?
= )/(%Vw—ky—mmp—vwﬁ+v]
I =2log(2A/m),

where A is a UV cutoff regulator.

Thus
2Ql

M=—=3y

— 5 Aok xan y u (2log(2A /m))



65

i
=
3
3

5.2.2.11 Order 1/M?: iD; — o - (D x E — E x D) interference:

Two-photon-time-derivative Feynman rule

?Qics ¢+ . [ s % ik ok
M = e XTO'X|:U’)/’}/U'IO—’U/(§€J ¥y >u[m]
where
o = (-i)(amy? [ At o O e
mo = (—1) (47 -
’ Crt = kp —m? [ = R7] 5 (B4 )
where
log(A\/m) log(2A/m) 7
I = = +—
3 6 36
log(A\/m) 1
Im - 5 a’
3 + 9

where A is a UV cutoff regulator.

5.2.2.12 Order 1/M?: iD; — D* interference

k k—1 k k k—1 k
—_—— —_—
: : AN /

| | \\ /’

| | \N7/

! ! /A\

: : N
| : / \
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_ Q@ t ol (7D | 7C\ L =0, (7D , 7C
where
, d*l {m,m — 19} I*
DC _ 2 )
]m,O _( Z)(47T) /(271_)4 B ) Z_Q 2
12 2] |72 2 0o_ "
(1 — k) m][l +)\] +] QM]
L, = 0()
1P = o)
Iy = 0()
I§ = o)
Thus,
1

As a comparison, the NRQED-NRQED calculation of the analogous diagrams for the proton

gives
™m

2
NN _ 222+
MY = ?Q7Q2x X, xp (m) , (5.45)

which is the sum of the terms in ((5.44)).
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5.2.2.13 Total Result

The total EFT result in Coulomb gauge is

2Q%rm  2Q%mm? 17Q*m  247Q%  2Q*log(\/m)
_ 92 pTm 24y T P P
Mprr = a7Q; K e NM TI6AM  105mM | mM
2Q2mm®  TQ Tm _ Qyepmm cpmm
A3M2 16AM2 2\ M? AM?2
2Q2mm B 2Q2mm? B 25Q2m N 107Q> B 4Q2 log(A\/m)
A3 ASM 16AM  105mM mM
2Q2mm®  17Q2mm _ Qpepmm cimm
A3 M2 16 A M2 2\ M2 AM?
(- 4Q,crm  TQpcrmm B C%ﬂ'm TQpcs B 74Qpcr B c% QpcS 02 log()/m)
3AM 6AM? 3AM?2  36M? 15M?2 12M?2 3M2 M2
+ < . 3Cx?pCS + 4CQpCF

) aux'x

) ay uxx

2
YE M2 2M2> 10g(2A/m)) E’VWE)UXTUZX

Qpermm | cpmm  Qpcs  2QpCr Qpcs ¢ (i i
+( BYE +3§M2_9§42_ SE _3]?42—72 log(A/m) |u( Se Leitkaiok Yuytoty | .

(5.46)

Note that as in the point-particle case, this is not the same result as the Feynman gauge as
seen in Eq. [5.29
When this result is taken to the non-relativistic limit, i.e. au, @y%u — x}xs, @ (LeTkyink) u, uyiyPu —

X;O’i)@, and the proton Wilson coefficients are set to @), the result is

MEEr 4 i [Amm 4 dmPr 7 2log(m/\)  4mim  mrw
Q2Q2a? MNP TS TR T M T 2MA mM M2 2012
; ; A 16 dmm 2log(m/2A)
P i | _ _ 5.47
XX Xp{ 3MA  3M2 ' 3AI%) VR 547)

which is the same result as the Feynman gauge calculation and the same as both point
particle calculations once they been expanded in 1/M, and the M in the logarithmic term

has been replaced by a cut-off energy 2A.
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5.2.3 Extraction of b; and b

Just as before, we can now find the Wilson coefficients b; and by by taking the difference
between the point particle and EFT amplitudes. After expanding the 1/ terms in the point
particle solution, and the proton Wilson coefficients to (), the difference between the point
particle and EFT result is

2"}

Mp.p‘ - MEFT - WE

1 . ,
<?6 - 210g(2A/M)>H’yW5uXTazx, (5.48)

This is the same result as the Feynman gauge in Eq. [5.31]
5.3 Two Photon Exchange Results at Order 1/M?* Con-

clusion

One should note that the Coulomb and Feynman do not give the same final answer
in the EFT case nor for the case of the point-like proto,. All four calculations do agree
however once the lepton line is taken to the non-relativistic limit. In the relativistic limit,
it is only the differences between the point-like proton and real proton where the different
gauges agree. This shows that the QED-NRQED EFT is able to provide information about
the Wilson coefficients b; and by. Although we obtain different amplitudes in the Coulomb
and Feynamn gauge, the differences between the QED point particle result and the QED-
NRQED real proton result are the same in both gauges, meaning that b; and b, are the same
in both gauges. When matching the QED-NRQED EFT to the point particle, the value of

the Wilson coefficients b; and by are

by =0+0(’) by ="Q;Q, {? —2log (%ﬂ + O(a?). (5.49)

Because terms with an even number of gamma matrices are suppressed by a factor of m/M,

the coefficients of the wuyx'y and u(e“*4/y*)uxfo?y terms are expected to be zero, and in
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fact they are. What is surprising is that b;, is also zero. It remains to be seen if this also

the case in the matching to a real proton
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CHAPTER 6: CONCLUSIONS AND OUTLOOK

6.1 Conclusion

It has been seven years since the proton charge radius puzzle was brought to light and the
scientific community is no closer to solving it now. While there are many contributions that
have to be taken into account when calculating the charge radius, the TPE contribution has
a much higher uncertainty than many others, and is the focus of the work presented here.
This dissertation has established the QED-NRQED EFT by reproducing known calculations.
These calculations are the one-photon exchange which in turned reproduced Rosenbluth
scattering up to O(m?/M?), and TPE at leading order in m/M, which in turned produced
Mott scattering with an « correction. New results presented in Chapter |5| consisted of
higher orders of TPE calculations in O(m?/M?), and showing that these calculations produce
consistent results. These calculations were completed to determine the Wilson coefficients
by and by in the QED-NRQED effective lagrangian, Eq. [3.7] Surprisingly, in the case of a

point-like proton, b; = 0.

6.2 Future Work

One of the issues involved in the extraction of the proton charge radius from muonic
hydrogen is the hadronic uncertainty associated with the two-photon exchange amplitude.
Only its imaginary part can be directly reconstructed from experimental data. Since there is
a term that needs to be subtracted in the dispersion relation, the amplitude cannot be fully
reconstructed from its imaginary part. We have some information about the subtraction
function, but by and large, it has to be modeled [68].

There have been several studies of this issue, see e.g. [77, 80, 81, 82], 83], but considering
the far-reaching implications of the puzzle it is important to explore a variety of approaches.
One such approach is to directly match onto NRQED to describe proton structure effects in

hydrogen-like systems as was done in [68]EI. From such an analysis one finds that the muonic

1See also [66, [67] for a different approach that first used NRQED for this problem.
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hydrogen measurement depends on two Wilson coefficients in the NRQED Lagrangian. One
is equivalent to the charge radius. The other is the coefficient of the spin-independent
muon-proton contact interaction and could be determined by matching to the two-photon
amplitude, if it was fully known.

The muonic hydrogen result can be tested in the planned muon-proton scattering ex-
periment, MUSE [5]. In this experiment, the 3-momentum of the muons is of the order of
the muon mass. QED-NRQED is an appropriate EFT as it combines relativistic muons and
non-relativistic protons interactions, and is naturally organized as an expansion in « and
m/M. This dissertation has presented three QED-NRQED calculations: O(Q,«) amplitude
results up to and including power m?/M?, O(QIQJQZ) at leading power in m /M, and values for
the Wilson coefficients b; and by by matching these amplitudes onto point particle results.
With the results obtained the cross section can be determined as well. In order to accomplish

this, the hadronic tensor W#" will be needed, and is defined as
W s0) = [ e T (0)02 (0} k.. (6.1)

where k is the nucleon three-momentum, s its spin, and J¥  is the electromagnetic current.
Note that some authors refer to this quantity as T+ [84], [85].
Using current conservation, and invariance of electromagnetic interactions under parity

and time-reversal, W can be expressed as

v

W = i, (K, 5) [ (—g*“’ + %) Wi(r, Q%) + (k Ut 'qqf#) (’f -t 'q‘éqy) Wa(v, Q%)

" (W,W AR+ g k) Hi (1, Q?)

n (w,mqﬂ e+ [v“,v”]f)h&(v, Q2>] u(k.s). (62)

where the four scalar functions Wy, Wy, Hy, and Hy depend on the variables v = 2k - ¢
and Q* = —¢®. For a point particle, Wi = 202/(Q* — v?), Wh = 8Q*/(Q* — v*), H, =
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—2Q%*/(Q* — v?), and Hy = 0. Wy and W, are defined as

Wi @) = Wi(0.QY + - /WMM
0

T V/Z(VIQ _ V2) )

Wa(v,@Q*) = 1 /00 dv”? M : (6.3)
0

T 1/2 _ V2

Future work will consist of relating the two photon exchange calculations Wilson coef-
ficients by and by to the full two-photon amplitude, i.e. Wy, W5, Hy, and H,. This final
expected result will look similar to Eq. 7 in Ref. [68]. We will also compare to the NRQED
Wilson coefficients d; and ds either directly by matching, or indirectly via the full two-
photon amplitude. Once this is done, one could calculate the lepton-proton cross section
in QED-NRQED. Ideally this would lead to a direct model-independent relation between
muon-proton scattering and muonic hydrogen spectroscopy, or in other words, use data to

resolve the hadronic uncertainty.
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APPENDIX: KINEMATICS

We consider lepton-proton scattering, ¢(k) + p(p) — ¢(k’) + p(p') in the initial proton
rest frame, i.e. p = 0. We denote the leption mass by m and the proton mass by M. The
initial lepton energy is E and the final lepton energy is E’. The scattering angle, i.e. the
angle between k and k' is 0. We define ¢ =k — k' = p/ — p.

For spin-averaged 2 — 2 scattering there are only two independent variables, so many of

the kinematical variables can be related to one another:

P=p+q K=k-—gq p=M, E=m
p-q=ME—-E)=M¢ =—-¢/2,

k-q=q*/2, §*=—q¢ +q"/4M">. (4)

There are also several approximate relations between the various kinematic variables:

2 o 1
q2 = —q2+q4/4]\/[2+(’)(ﬁ)

7’/2+ O(%)

E'-q*:—”/ﬂo(%) (5)

k-q

The differential cross section is given by:

b : P )
dQ ~ 64m2M |k o !
|k| M B || ’E/closﬁ

—
where as usual M| is the spin-averaged amplitude squared.

Usually the Dirac spinors are normalized via ufu = 2E. For NRQED the spinors are
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normalized as £7¢ = 1. As a result we can relate the amplitude for lepton-proton scattering in
the standard normalization (M) to that of QED-NRQED (Mqy) via M = 2,/E, E, Mqx.
In the rest frame of the initial proton the spin averaged amplitudes Wz and WEN are
related by [M| = 4ME,[M]qy, where E, = \/M? + G2,

Spin averaged squared amplitudes in QED-NRQED can be calculated by an analogue of
the Casimir trick. Thus for the amplitude of the form M = f;, Y& u(k') T u(k), where € is

a two-component spinor, ¥ = ¢ or lays, u is a Dirac spinor, and I' part of the Dirac basis,
— 1 =
Mgy = 3 Tr B3] Tr [(f + m)D(K +m)T] (7)

where T' = 7°T'f40,
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ABSTRACT

ADDRESSING THE PROTON RADIUS PUZZLE USING QED-NRQED
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by
STEVEN DYE
May 2018

Advisor: Dr. Gil Paz
Major: Physics
Degree:  Doctor of Philosophy

In 2010 the first extraction of the proton charge radius from muonic hydrogen was found
to be five standard deviations away from the regular hydrogen value. Seven years later,
this proton radius puzzle still persists, and challenges our understanding of the structure of
the proton. An effective field theory analysis using Non-Relativistic Quantum Electrody-
namics (NRQED) indicates that the muonic hydrogen result can be interpreted as a large,
compared to some model estimates, muon-proton spin-independent contact interaction. The
muonic hydrogen result can be tested by a muon-proton scattering experiment, MUSE, that
is planned at the Paul Scherrer Institute in Switzerland. The typical momentum of the
muons in this experiment is of the order of the muon mass. In this energy regime the muons
are relativistic but the protons are still non-relativistic. The interaction between the muons
and protons can be described by a new effective field theory QED-NRQED. This document
will present elements of this effective field theory, which will include the reproduction of
Rosenbluth scattering up to the second power in the inverse proton mass, relativistic scat-
tering off of a static potential, scattering amplitudes up to the inverse proton mass squared,

and the determination of the four-fermion contact interactions.
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