
Wayne State University

Wayne State University Dissertations

1-1-2018

Addressing The Proton Radius Puzzle Using Qed-
Nrqed Effective Field Theory
Steven Patrick Dye
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Other Physics Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Dye, Steven Patrick, "Addressing The Proton Radius Puzzle Using Qed-Nrqed Effective Field Theory" (2018). Wayne State University
Dissertations. 1922.
https://digitalcommons.wayne.edu/oa_dissertations/1922

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1922&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1922&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1922?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1922&utm_medium=PDF&utm_campaign=PDFCoverPages


ADDRESSING THE PROTON RADIUS PUZZLE USING QED-NRQED
EFFECTIVE FIELD THEORY

by

STEVEN DYE

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2018

MAJOR: Physics

Approved By:

Advisor



ACKNOWLEDGEMENTS

First and foremost, I would like to thank Gil Paz for being a tremendous advisor through-

out my time here at Wayne State. His constant guidance and patience has made me the

scientist I am today, and I am eternally grateful for that. I would like to thank the members

of my committee Abhijit Majumder, Alexey Petrov, and Paul Pancella, all of whom had

mentored me throughout my physics career. I would like to thank Ratna Naik and David

Cinabro for their roles as Chair of the Department during my time here. Both had gone

above and beyond their responsibilities as Chairs in order to help me succeed. I would like

to give a special thank you to Scott Payson who played a pivotal role in shaping my early

teaching career. I would like to thank Matthew Gonderinger for his contributions to this

work. Finally, I would like to thank my classmates Derek Hazard, Joydeep Roy, Ayesh Gu-

nawardana, Renae Conlin, and Cody Grant for their friendship and comradery during my

tenure as a graduate student at Wayne State.

ii



TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS ii

LIST OF FIGURES vii

LIST OF TABLES ix

CHAPTER 1: INTRODUCTION 1

1.1 For the Non-Physicist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 For the Physicist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of this Dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

CHAPTER 2: BACKGROUND 4

2.1 Derivation of the Charge Radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Spectroscopy Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Spectroscopy Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Hydrogen Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Muonic Hydrogen Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Scattering Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Scattering Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Electron-Proton Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.2 Muon-Proton Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Proton Charge Radius Results and Summary . . . . . . . . . . . . . . . . . . . . 15

iii



CHAPTER 3: THE FIELD THEORIES 17

3.1 QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 QED Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 QED Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 NRQED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 NRQED Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 NRQED Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 QED-NRQED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 4: ESTABLISHING QED-NRQED 24

4.1 One Photon Exchange and Proven Results. . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 One Photon QED-NRQED Coulomb Gauge . . . . . . . . . . . . . . . . . 24

4.1.2 One Photon QED-NRQED Feynman Gauge. . . . . . . . . . . . . . . . . 27

4.2 Two Photon Results at Leading Order . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Two Photon QED-NRQED at Leading Order . . . . . . . . . . . . . . . . 28

4.2.2 Two Photon QED at Leading Order . . . . . . . . . . . . . . . . . . . . . 29

4.2.3 Classical Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.4 Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.5 Anti-lepton Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Establishing QED-NRQED Summary. . . . . . . . . . . . . . . . . . . . . . . . . 36

CHAPTER 5: TWO PHOTON EXCHANGE RESULTS AT ORDER 1/M2 37

5.1 Two Photon Exchange: Feynman Gauge . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 QED Point Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



5.1.2 Effective Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2.1 Leading Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2.2 Order 1/M : iDt −D2 interference. . . . . . . . . . . . . . . . . . 44

5.1.2.3 Order 1/M : iDt − σ ·B interference . . . . . . . . . . . . . . . . 45

5.1.2.4 Order 1/M : D2 two-photon term . . . . . . . . . . . . . . . . . . 45

5.1.2.5 Order 1/M2: D2 −D2 interference . . . . . . . . . . . . . . . . . 46

5.1.2.6 Order 1/M2: σ ·B − σ ·B interference . . . . . . . . . . . . . . . 47

5.1.2.7 Order 1/M2: D2 − σ ·B interference . . . . . . . . . . . . . . . . 48

5.1.2.8 Order 1/M2: iDt −∇ · E interference . . . . . . . . . . . . . . . 49

5.1.2.9 Order 1/M2: iDt − σ · (D × E − E ×D) interference:
Time derivative Feynman rule . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.2.10 Order 1/M2: iDt − σ · (D × E − E ×D) interference:
Seagull Feynman rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2.11 Order 1/M2: iDt − σ · (D × E − E ×D) interference:
Two-photon-time-derivative Feynman rule . . . . . . . . . . . . . . . . . . 52

5.1.2.12 Order 1/M2: iDt −D4 interference . . . . . . . . . . . . . . . . . 52

5.1.2.13 Total Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.3 Extraction of b1 and b2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Two Photon Exchange: Coulomb Gauge . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 QED Point Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Effective Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.2.1 Leading Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.2.2 Order 1/M : iDt −D2 interference. . . . . . . . . . . . . . . . . . 57

5.2.2.3 Order 1/M : iDt − σ ·B interference . . . . . . . . . . . . . . . . 58

v



5.2.2.4 Order 1/M : D2 two-photon term . . . . . . . . . . . . . . . . . . 59

5.2.2.5 Order 1/M2: D2 −D2 interference . . . . . . . . . . . . . . . . . 59

5.2.2.6 Order 1/M2: σ ·B − σ ·B interference . . . . . . . . . . . . . . . 60

5.2.2.7 Order 1/M2: D2 − σ ·B interference . . . . . . . . . . . . . . . . 61

5.2.2.8 Order 1/M2: iDt −∇ · E interference . . . . . . . . . . . . . . . 62

5.2.2.9 Order 1/M2: iDt − σ · (D × E − E ×D) interference:
Time derivative Feynman rule . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2.10 Order 1/M2: iDt − σ · (D × E − E ×D) interference:
Seagull Feynman rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2.11 Order 1/M2: iDt − σ · (D × E − E ×D) interference:
Two-photon-time-derivative Feynman rule . . . . . . . . . . . . . . . . . . 65

5.2.2.12 Order 1/M2: iDt −D4 interference . . . . . . . . . . . . . . . . . 65

5.2.2.13 Total Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.3 Extraction of b1 and b2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Two Photon Exchange Results at Order 1/M2 Conclusion . . . . . . . . . . . . 68

CHAPTER 6: CONCLUSIONS AND OUTLOOK 70

6.1 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

APPENDIX: A1 73

BIBLIOGRAPHY 75

ABSTRACT 82

AUTOBIOGRAPHICAL STATEMENT 83

vi



LIST OF FIGURES

Figure 2.1 A photon interacting with a proton. . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.2 Plot from the 2010 Pohl paper showing their results [1]. Displayed is the
number of events as a function of the laser frequency. . . . . . . . . . . . . 9

Figure 2.3 Plots from [3]. Muonic hydrogen resonances for singlet and triplet transi-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10

Figure 2.4 Plots from [16]. Shown here are the measured frequencies from each tran-
sition, the expected deuteron radius, the CODATA-2010 result, and the
µp + iso result, which is obtained by combining the proton radius from
muonic hydrogen and the electronic isotope shift. . . . . . . . . . . . . . . . 11

Figure 2.5 Plot from [33]. Ratio of electric to magnetic form factor as extracted by
Rosenbluth measurements (squares) and from the JLab measurements of
recoil polarization (circles). The dashed line is the fit to the polarization
transfer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.6 Plot from Ref. [53] which highlights the discrepancy between the atomic
and muonic results. The Proton charge radius from muonic hydrogen
is marked as red while hydrogen spectroscopy is marked as blue, and
electron-proton scattering as green. The CODATA value accounts for e-p
scattering, H and deuterium (D) spectroscopy but does not consider the
muonic results.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.7 Plot from Ref. [53] which highlights the discrepancy between the atomic
and muonic results. The Proton charge radius from muonic hydrogen
is marked as red while hydrogen spectroscopy is marked as blue, and
electron-proton scattering as green. The CODATA value accounts for e-p
scattering, H and deuterium (D) spectroscopy but does not consider the
muonic results.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.8 Plot from Ref. [53]. Deuteron charge radii as obtained from µd spec-
troscopy (red), by combining µp spectroscopy and the H-D iso-shift mea-
surement (brown), from electron scattering (green) and only D spectroscopy
(blue). The CODATA value does not account for the muonic results but
considers both proton and deuteron data from Ref. [16] . . . . . . . . . . . 16

vii



Figure 4.1 QED-NRQED Feynman diagrams that give a non-zero contribution to
elastic lepton-proton scattering at O(Qpα) up to power m2/M2. The
double line denotes the NRQED field. The dashed (curly) line represents
Coulomb (transverse) photon. The dot, circle, and cross vertices represent
the Coulomb, Fermi, and Darwin terms, respectively, see Ref. [61] for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.2 QED-NRQED Feynman diagrams that give a non-zero contribution to
elastic lepton-proton scattering at O(Qpα) up to power m2/M2. The
double line denotes the NRQED field. The dashed (curly) line represents
Coulomb (transverse) photon. See Ref. [61] for details. . . . . . . . . . . . 27

Figure 4.3 QED-NRQED Feynman diagrams contributing to elastic lepton-proton
scattering at O(Q2

pα
2) at leading power in m/M . The double line denotes

the NRQED field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.4 The leptonic part of the O(Q2
pα

2) amplitude at leading power in m/M for

a lepton (left) and an anti-lepton (right). . . . . . . . . . . . . . . . . . . . 35

viii



LIST OF TABLES

Table 3.1 QED Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 3.2 NRQED Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 3.3 NRQED Vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 3.4 Possible interactions in the QED-NRQED EFT . . . . . . . . . . . . . . . . 22

Table 3.5 Possible interactions for the experiments . . . . . . . . . . . . . . . . . . . . 22

ix



1

CHAPTER 1: INTRODUCTION

1.1 For the Non-Physicist

Everything in the visible universe is made up of particles. Learning and understanding

the properties of these particles and how they interact with each other is the goal that

scientists in the field of physics strives to achieve. The properties of these particles can

include their mass, electric charge, spin, among many others.

The particle I am most interested in is the proton. Including the neutron and the electron,

these three particles make up all matter in our everyday lives. The property that most

interests me is called the charge radius. The proton has an electric charge and some finite

size, so it is reasonable to assume that this electric charge is distributed throughout the

volume of the proton. Intuitively the charge radius is defined as the average distance the

electric charge is from the center of the proton. In the past, the charge radius has been

measured through two different kinds of experiments; electron-proton scattering, which is

when an electron interacts electromagnetically with a proton at high energies, and electron

spectroscopy, which is when an electron pairs up with a proton to create a hydrogen atom by

interacting electromagnetically at low energies. The charge radius of the proton calculated

from these experiments were found to be in reasonable agreement with each other.

In 2010 however an experiment was performed to measure the proton charge radius using

muonic hydrogen spectroscopy. The experiment was the similar to spectroscopy experiments

performed in the past, except that the electron was replaced with a muon, an exotic particle

that is very similar to the electron, except for being much heavier. The result of this

experiment showed that the proton charge radius was much smaller than what was measured

in previous experiments. This has led to a proposal for a new experiment, consisting of muon-

proton scattering, to see if the charge radius is consistent with the muonic hydrogen result, or

with the already established electron-proton and hydrogen spectroscopy results. My project

has been to come up with a new way to calculate the charge radius from the data from this

future experiment. This paper establishes the properties of this new method, and presents
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calculated results.

1.2 For the Physicist

In 2010 the first measurement of the proton charge radius from spectroscopy of muonic

hydrogen was found to be 0.84184(67) fm by the Charge Radius Experiment with Muonic

Atoms (CREMA) collaboration [1]. This measurement puts the proton charge radius five

standard deviations away from the regular hydrogen spectroscopy result of 0.8768(69) fm

[2]. In the seven years since there has been a large interest in the physics field to solve this

puzzle to no avail, and in fact the puzzle has only gotten worse. A reanalysis performed by

CREMA of the charge radius from muonic hydrogen obtained a result of 0.84087(39) fm [3],

while the latest combined atomic hydrogen and electron elastic scattering results obtain a

result of 0.8751(61) fm, increasing the discrepancy to 5.6 standard deviations [4].

Contained within this dissertation is the establishment of a new Effective Field The-

ory (EFT). This EFT is a hybrid between Quantum Electrodynamics (QED) and Non-

Relativistic Quantum Electrodynamics (NRQED), and describes the electromagnetic in-

teractions between a relativistic particle and a non-relativistic one. In particular, we are

interested in the one photon exchange (1PE) and two photon exchange (TPE) between a

relativistic lepton (specifically either an electron or a muon), and a non-relativistic proton.

This QED-NRQED EFT is motivated by the MUon proton Scattering Experiment (MUSE),

which will examine e+p, e−p, µ+p, and µ−p elastic scattering [5]. MUSE is essential to solv-

ing the proton charge radius puzzle, as calculations of the radius has not performed from

muonic elastic scattering thus far. The experiment is scheduled to begin dating data in

2018/2019.

1.3 Structure of this Dissertation

This dissertation is structured as follows: in section 2 the background of the proton

charge radius and how it is extracted from experiment is discussed. Section 3 will present

the field theories QED and NRQED and illustrate how they are combined to create QED-
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NRQED. In section 4 we present 1PE calculations and TPE calculations at leading order in

QED-NRQED and compare them to related calculation methods, thereby establishing this

new EFT. In section 5 we present TPE calculations to higher orders in order to determine

values for the Wilson coefficients of interest. In section 6 we present the conclusions and

outlook for the EFT, followed by the Appendix.
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CHAPTER 2: BACKGROUND

While the proton charge radius puzzle is relatively new, the methodology for measuring

and calculating the charge radius is well established. This chapter contains the derivation of

the proton charge radius, as well as background information on the two types of experiments

used to calculate the charge radius, spectroscopy and lepton-proton scattering. This back-

ground will include theoretical calculations and experimental results. It should be noted that

all calculations presented in this document and in particle physics in general are performed

using “natural units”, where h̄ = c = 1.

2.1 Derivation of the Charge Radius

Electromagnetic interactions between particles are described through the matrix element

of the electromagnetic current

〈N(p′)|Jemµ |N(p)〉 = ū(p′)

[
γµF1(q

2) +
iσµν
2M

F2(q
2)qν

]
u(p), (2.1)

where F1(q
2) and F2(q

2) are the Pauli and Dirac form factors, and q = p′− p. Form factors

p p0

1

Figure 2.1: A photon interacting with a proton.

describe the physical properties of the particle. These form factors can be written in a

different basis as the electric and magnetic form factors through the relations

GE(q2) = F1(q
2) +

q2

4M2
F2(q

2) GM(q2) = F1(q
2) + F2(q

2). (2.2)
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It is with these form factors that charge radius of a particle can be defined as

〈r2E〉1/2 =
6

GE(0)

dGE(q2)

dq2

∣∣∣∣
q2=0

. (2.3)

Since the charge radius is defined as the slope of GE(q2) evaluated at q2 = 0, one might

naively think that only data of GE at low q2 would be required. This is not the case however

as this data cannot achieve the required precision without additional information [6]. Ref.

[7] suggests supplementing the low Q2 (Q2 = −q2) scattering data with constraints on the

curvature and higher-order derivatives of the form factor from chiral perturbation theory.

2.2 Spectroscopy Background

One method that the proton charge radius is measured through is spectroscopy, which

is the study of emitted electromagnetic radiation. This section contains information on how

the charge radius is calculated.

The proton charge radius can be measured through the Lamb shift, which is the difference

in energy between the 2S 1
2

and 2P 1
2

states [8]. Note that the Dirac equation predicts that

these two states have the same energy. There are two sources for this energy shift, one

being the radiative corrections to the interaction of a lepton-proton pair, such as vacuum

polarization, and the other being through the different interactions that the orbits have with

the proton. The 2S 1
2

state wave function is spherical in its distribution and has a maximum

probability of being at the center of the atomic nucleus, meaning that the lepton has a finite

probability of being inside the proton. When the lepton is inside the proton, there is some

shielding of the electromagnetic field, reducing the strength of the interaction. The 2S 1
2

state

probability distribution is described by squaring its wave function, (|Ψ2,0,0|2). The 2P 1
2

state

wave function has a distribution similar to a figure eight, meaning that as the wave function

approaches the center of the proton, the probability of the lepton being there approaches

zero. This means that the 2S 1
2

orbital has a greater chance of being inside the proton than

the 2P 1
2

orbital does, leading to greater shielding in the 2S 1
2

state, resulting in a shift in the
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energy states between these two levels. The 2P 1
2

probability distribution can be described

by squaring its wave function, (|Ψ2,1,0|2). The probability distributions can be expressed

through the relations

|Ψ2,0,0|2 =
1

32πa30

(
2− r

a0

)2

e−r/a0 |Ψ2,1,0|2 =
1

32πa30

r2

a20
e−r/a0 cos2 θ, (2.4)

where r is the radius of the particle orbiting the proton, a0 is the Bohr radius, and θ is the

angle at which the lepton is currently at relative to the z-axis.

From Lamb shift measurements, the proton charge radius can be calculated by the dif-

ference in energy between a point like particle and from that measured from experiments.

The Fourier transform is defined as

ρ(~r) =
1

(2π)3

∫
d3qF (~q)e−i~q·~r F (~q) =

∫
d3rρ(~r)ei~q·~r, (2.5)

where ~q is the three-dimensional momentum of the exchanged photon. Using Gauss’s law,

the electric potential of the proton can be written as

V (~r) =
|e|

(2π)3

∫
d3qe−i~q·~r

F (~q)

~q 2
. (2.6)

For small ~q, we can assume that the proton charge distribution ρ(~r) is spherically symmetric,

and therefore can use a Taylor Series expansion on the Fourier transform and write it as

F (~q) = 1 − ~q 2〈r2〉
6

+ · · ·, where
∫
d3rρ(~r) = 1 and 〈r2〉 =

∫
d3rρ(~r)r2. Using this and the

relation

1

4πr
=

1

(2π)3

∫
d3q

e−i~q·~r

~q 2
, (2.7)

The potential energy of the proton can be written as

V (~r) =
|e|
4πr
− 〈r

2〉
6
|e|δ3(~r) + · · ·. (2.8)

Using this shift in potential energy and perturbation theory, the difference in energy levels
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between a point particle and a particle with a finite size can be calculated to be

∆E〈r2〉 = 〈ψ|〈r
2〉

6
|e|δ3(~r)|ψ〉 =

2α4

3n3
m3
r〈r2〉δ`0, (2.9)

where n is the principle quantum number of the wave function, α = e4/4π is the fine structure

constant, and mr is the reduced mass. Since the reduced mass for muonic hydrogen is of

the order 200 times larger than atomic hydrogen, the energy shift for muonic hydrogen will

be of the order 2003 times larger. Radiative effects are however still a factor in extracting

the charge radius. The proton structure effects for atomic hydrogen is of the order 10−9 eV,

while for muonic hydrogen it is of the order 10−3 eV. Since the effect is larger the muonic

hydrogen than it is for atomic hydrogen, it allows for a better precision measurement on the

charge radius of the proton, as the Lamb shift measurement itself is of the order 10−5 eV.

2.3 Spectroscopy Experiment

2.3.1 Hydrogen Spectroscopy

Atomic spectroscopy has been the benchmark for precision electromagnetic measurements

for the past 70 years. Because of its rich history, this section will only focus on the exper-

iments referenced by the CODATA-2014 report [4] and the newest hydrogen spectroscopy

result. The CODATA value of the proton charge radius is based primarily on precision

spectroscopy results from Ref [9, 10, 11, 12], and calculations of bound-state QED [13, 14].

Ref. [9] measured the absolute frequency of the hydrogen 1S−2S two photon transition,

and obtained a measurement of 2 466 061 413 187 103(46) Hz. This was acquired by phase

coherent comparison, which used an atomic cesium fountain clock as a frequency standard.

Ref. [10] measured the stability of the fine structure constant α, and concluded that α̇/α =

(−.09± 2.9)× 10−15 yr−1, which is consistent with zero. This was performed by measuring

the 1S − 2S transition and comparing it to [9]. The same experimental setup was used in

both [9] and [10]. Ref. [11] performed a reanalysis of spectroscopy data, including obtaining

improved values of the 1S1/2 Lamb shift and of the 2S1/2 − nS1/2, nDJ frequencies, where
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n is the wave number, reducing the uncertainty in the Rydberg constant R∞, and to the

Lamb Shift results. Ref. [12] performed an optical frequency measurement of the 2S − 12D

two-photon transitions in hydrogen and deuterium. They obtained Lamb shift values of

L1S−2P = 8172.837(22) MHz and L2S−2P = 1057.8446(29) MHz for the hydrogen atom, and

L1S−2P = 8183.966(22) MHz and L2S−2P = 1059.2337(29) MHz for deuterium.

The most recent hydrogen spectroscopy experiment measured the 2S − 4P transition

frequency in hydrogen [15]. The results of this experiment put the charge radius at 0.8335(95)

fm, which is consistent with the muonic hydrogen results and 3.3 standard deviations away

from previously established hydrogen result. This latest result has not been included in the

CODATA results, nor the muonic hydrogen results.

2.3.2 Muonic Hydrogen Spectroscopy

Unlike atomic spectroscopy, which has a rich history of experiments, muonic spectroscopy

currently only has three published experimental results, two muonic hydrogen experiments

and one muonic deuterium experiment, all of which have been performed by the CREMA

collaboration. Here we provide a summary of the experimental set-ups and the resultant

measurements.

The first muonic hydrogen experiment was performed in 2010 by Pohl et al. at the Paul

Scherrer Institute (PSI) in Switzerland [1]. Here they performed laser spectroscopy of the

(2SF=1
1/2 − 2P F=1

3/2 ) transition in muonic hydrogen, where F is the hyperfine splitting level.

The experiment was set up as follows: a low energy muon beam with an energy around 5

keV is stopped in a low-pressure hydrogen gas target with a temperature of 300 K and a

pressure of 1 mbar. Here highly excited muonic proton bound states are formed. About 1%

of the muonic protons end up in the 2S-state, which has a lifetime of around 1 µs within

the gas target. After a delay of 0.9 µs, the muonic hydrogen is illuminated by a laser pulse

at a wavelength of 6.0 µm. The laser induces the 2S → 2P transition, after which decays

back to the ground state, emitting a photon. The frequency of these emitted photon were
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Figure 2.2: Plot from the 2010 Pohl paper showing their results [1]. Displayed is the number
of events as a function of the laser frequency.

measured to be 49,881.88(76) GHz. Using this measurement, and the relation

∆ELamb = 209.9779(49)− 5.2262r2p + 0.0347r3p, (2.10)

the proton charge radius is calculated to be rp = 0.84184(67) fm. In Eq. 2.10, the first term

accounts for bound-state QED contributions (radiative, recoils, binding, and relativistic

corrections), the second term takes into account the shift of the energy levels caused by the

finite size of the proton, and the third term is the two-photon exchange (TPE), which is

related to the proton polarizability. Note that all of theses numbers have units of meV.

The second experiment was performed by the same group in 2013 using the same exper-

imental set-up as the experiment in 2010 [3]. Here the 2SF=0
1/2 − 2P F=1

3/2 transition frequency

was measured, along with a reevaluation of the 2SF=1
1/2 − 2P F=2

3/2 transition frequency. With

the addition of the 2SF=0
1/2 − 2P F=1

3/2 transition frequency the hyperfine splitting of the 2S1/2

state was determined to be ∆Eexp
HFS = 22.8089(51) meV, making the calculation of the proton

charge radius independent of theoretical predictions for the 2S hyperfine splitting energy.

The measured values of the 2SF=0
1/2 − 2P F=1

3/2 and 2SF=1
1/2 − 2P F=2

3/2 transition frequencies are
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54,611.16(1.05) GHz. and 49,881.35(65) GHz. respectfully. The proton charge radius can

now be extracted from Lamb shift measurements from the relation

∆ELamb = 206.0336(15)− 5.2275(10)r2p + ∆ETPE, (2.11)

where ∆ETPE is the two-photon exchange contribution. Here all values have units of meV.

The third term in Eq. 2.11 is the same as the third term in Eq. 2.10, the only difference

being that Eq. 2.11 no longer is dependent on the theoretical prediction of the 2S hyperfine

splitting energy since it was measured in [3]. With the hyperfine splitting energy result, the

change in energy due to the TPE is determined to be ∆ETPE = 0.0332(20) meV. With these

measurements and Eq. 2.11, the proton charge radius was recalculated to be rp = 0.84087(39)

fm.

Figure 2.3: Plots from [3]. Muonic hydrogen resonances for singlet and triplet transitions.

The same experiment was performed a third time in 2016, this time using muonic deu-

terium instead of muonic hydrogen [16]. Using the same experimental set-up as the previous

experiments, the 2S
F=3/2
1/2 → 2P

F=5/2
3/2 , 2S

F=1/2
1/2 → 2P

F=3/2
3/2 , and 2S

F=1/2
1/2 → 2P

F=1/2
3/2 tran-

sitions were measured. The frequencies measured were 50816.27(91) GHz, 52061.2(2.03)

GHz, and 52154.1(2.23) GHz, respectfully. From these measurements, the charge radius
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of a deuteron is rd = 2.12562(78) fm, a 7.5σ difference from the CODATA-2010 value of

rd = 2.1424(21) fm [17]. This experiment shows that the proton radius problem extends

beyond just the proton itself.

Figure 2.4: Plots from [16]. Shown here are the measured frequencies from each transition,
the expected deuteron radius, the CODATA-2010 result, and the µp + iso result, which is
obtained by combining the proton radius from muonic hydrogen and the electronic isotope
shift.

Future spectroscopy measurements are anticipated [18] in muonic 3He and 4He, where

nuclear structure effects are important for interpretation [19, 20, 21, 22]. Several other

experimental groups plan to measure the hyperfine splitting energy of various muonic atoms

with higher precision [23, 24, 25].
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2.4 Scattering Background

Information on the two form factors GE(Q2) and GM(Q2) are obtained from ep scattering

experiments. The ratio of these two form factors are extracted from experiments through

two different methods; polarization transfer technique, and Rosenbluth separation [26].

Unpolarized electron scattering experiments use the Rosenbluth separation method [27,

28, 29, 30, 31, 32], where the e−p elastic cross section is measured at a fixed four-momentum

transfer, Q2, while varying the electron scattering angle and the incident energy of the

electron. The four-momentum is set at Q2 = −q2 = 4EE ′ sin2(θ/2), where E is the incident

electron beam energy, E ′ is the scattered electron energy, and θ is the angle of the scattered

electron. The form factors are then extracted from the reduced Born cross section, given by,

dσR =
dσ

dΩ

(1 + τ)ε

σMottτ
=
ε

τ
G2
E(Q2) +G2

M(Q2), (2.12)

where σMott is the cross section for elastic scattering off a point-like proton, ε = [1 + 2(1 +

τ) tan2(θ/2)−1] is the virtual photon polarization as measured in the lab frame, τ = Q2/4M2,

and M is the proton mass. G2
E(Q2) is then proportional to the ε dependence of σR and

G2
M(Q2) is proportional to the cross section extrapolated to ε = 0.

Recoil polarization experiments, [34, 35, 36, 37, 38] measure the polarization of the re-

coiling electron proton after scattering a polarized electron off an unpolarized proton target.

This is referred to as the Polarization transfer technique. The ratio of the electric and mag-

netic form factors is proportional to the ratio of the transverse and longitudinal polarization

of the recoil proton. the ratio of the form factors can be extracted from spin-dependent

elastic scattering of polarized electrons from polarized proton [39]. The ratio of the electric

to magnetic form factors is typically measured as, µpGE(Q2)

GM (Q2)
, where µp is the proton magnetic

moment. The discrepancy between the ratios is thought to be due to the absence of TPE

corrections.
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Figure 2.5: Plot from [33]. Ratio of electric to magnetic form factor as extracted by Rosen-
bluth measurements (squares) and from the JLab measurements of recoil polarization (cir-
cles). The dashed line is the fit to the polarization transfer data.

2.5 Scattering Experiment

2.5.1 Electron-Proton Scattering

For the past 50 years, electron scattering has been extensively used to discover informa-

tion about the proton. In particular, it is used to determine the form factors, which describe

the physical properties of the particle. Here we will take a look at a select few of the exper-

iments that measured the cross sections of e+p and e−p, and the different methods used to

extract the charge radius from these measurements.

The OLYMPUS experiment at DESY was designed to measure the ratio between e+p

and e−p elastic scattering cross sections [40]. Data for this experiment was collected in 2012.

In 2013 MAMI performed for low Q2 (10−4 GeV) ep scattering experiments [41]. They did

this by utilizing initial state radiation. The PRad collaboration at Jefferson Laboratory [42]

looked at e−p at low Q2 (10−4 GeV). This was done by using a windowless H target and a

novel non-magnetic calorimeter. The data from this experiment is currently being analyzed

[43]. CLAS at Jefferson Lab measured e+p and e−p cross sections in order to determine the
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TPE contribution to the electromagnetic form factors [44].

Since the proton charge radius can be extracted from electron-proton scattering, some of

the discussion in the literature has focused on reevaluation of the extraction of proton radii

from scattering, see for example the z-expansion based studies [45, 46, 47], and references

therein1. While leading to a more robust error estimate, the value for the proton charge

radius of [45, 47] generally disfavors the muonic hydrogen result. It should be noted that

other studies not based on the z expansion listed, e.g., in [48], find values that are consistent

with the muonic hydrogen result.

2.5.2 Muon-Proton Scattering

Future proton charge radius results will be measured by elastic µ+p and µ−p scattering

at the MUonic Scattering Experiment (MUSE) at the Paul Scherrer Institute in Switzerland

[5]. The typical momentum of the muons in the experiment is of the order of the muon

mass, m ∼ 100 MeV. At these energies, the muon is relativistic but the proton can still

be considered as non-relativistic. The appropriate effective field theory for such kinematics

is QED-NRQED, and is the topic of this dissertation. MUSE will measure cross sections

for elastic µ±p and e±p scattering in the PSI πM1 beam line. The πM1 channel transports

mixed secondary beams of electrons, muons, pions, and protons generated by interactions of

the primary proton beam at the M1 production target. The primary beam identification for

triggering purposes uses an array of thin scintillators with SiPM readout located upstream of

the target, which are required to have <300 ps resolution along the high-rate capability and

high efficiency. MUSE will test beyond standard model physics, and enhance two photon

exchange effects. The beam energies for the leptons will be set at 115, 153, and 210 MeV.

Data is expected to be taken in late 2018/ early 2019 [5].

1Some other z-expansion based studies do not bound the coefficients of the z expansion [49, 50, 51] or
modify it [52]. These may result in values that are lower than [45, 47]. See [45] for a discussion of the
bounding of the coefficients.
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2.6 Proton Charge Radius Results and Summary

Here is presented the extracted values of the proton charge radius from the different ex-

periments. The CODATA14 value, which is the combination of the atomic spectroscopy and

ep scattering is 0.8751(61) fm [4]. The value of the charge radius from muonic spectroscopy

is 0.84087(39) fm [3], a discrepancy of 5.6σ from the CODATA14 result. The ep scattering

in particular has many different evaluations to compare to.

proton charge radius [fm]
0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

σ5.6 

CODATA-2014

H spectroscopy

e-p scatt

p 2013µ

p 2010µ

Figure 2.6: Plot from Ref. [53] which highlights the discrepancy between the atomic and
muonic results. The Proton charge radius from muonic hydrogen is marked as red while
hydrogen spectroscopy is marked as blue, and electron-proton scattering as green. The
CODATA value accounts for e-p scattering, H and deuterium (D) spectroscopy but does not
consider the muonic results.

For the past 10 years, multiple reanalyzes have been performed to the electron scattering

data to determine the charge radius of the proton. Below is a table showing some of the

most recent results. The proton charge radius problem also arises within the deuteron as

proton charge radius [fm]
0.82 0.84 0.86 0.88 0.9

CODATA-2014

H spectroscopy

e-p scatt
Belushkin 2007

Lorenz 2012

Higinbotham 2016

Horbatsch 2017

Griffioen 2015

Lee 2015

Sick 2015

Hill, Paz 2010

p 2013µ

p 2010µ

d + isoµ

Figure 2.7: Plot from Ref. [53] which highlights the discrepancy between the atomic and
muonic results. The Proton charge radius from muonic hydrogen is marked as red while
hydrogen spectroscopy is marked as blue, and electron-proton scattering as green. The
CODATA value accounts for e-p scattering, H and deuterium (D) spectroscopy but does not
consider the muonic results.
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the deuteron charge radius is highly correlated to the proton charge radius. This correlation

is due to the measured isotrope shift of the 1S → 2S transition in atomic hydrogen and

deuterium [54, 55], and contributes to the difference of the squared deuteron and proton

charge radii as [56]

r2d − r2p = 3.82007(65)fm. (2.13)

deuteron charge radius [fm]
2.12 2.125 2.13 2.135 2.14 2.145

dµ

D spectroscopyp  +  isoµ

CODATA-2014

e-d scatt.

Figure 2.8: Plot from Ref. [53]. Deuteron charge radii as obtained from µd spectroscopy
(red), by combining µp spectroscopy and the H-D iso-shift measurement (brown), from
electron scattering (green) and only D spectroscopy (blue). The CODATA value does not
account for the muonic results but considers both proton and deuteron data from Ref. [16]

Even seven years after the first mysterious results from the first CREMA experiment the

proton charge radius puzzle remains unresolved. With the two different ways to measure

the charge radius, scattering and spectroscopy, comes a need to compare the results of these

experiments directly. Our QED-NRQED EFT hopes to make this connection in order to do

just this.
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CHAPTER 3: THE FIELD THEORIES

In this section, the field theories QED and NRQED are introduced and the EFT QED-

NRQED is established as well. Presented here are the properties of these field theories.

3.1 QED

Quantum electrodynamics is a relativistic quantum field theory that describes the in-

teractions between light and matter. QED was first established in 1928 [57] by Paul Dirac

and is perhaps one of the most physically sound theories in science as it is able to bring full

agreement between quantum mechanics and special relativity through the Dirac equation.

3.1.1 QED Lagrangian

The QED Lagrangian is can be expressed as

L = ¯̀γµ i (∂µ + ieQ`Aµ) `−m ¯̀̀ , (3.1)

where Q` is the electric charge of the particle (−1 for an electron or a muon). Techni-

cally QED only describes the interactions of point particles, so it cannot fully describe the

interactions or more complex particles, such as the proton.

3.1.2 QED Feynman Rules

From the QED Lagrangian, the QED Feynman rules can be extracted, and are presented

in Table 3.1

Here λ is the “mass” of the photon that will be used to regulate infrared divergences.

In RZ gauge, the QED photon propagator is given by [58]

Dµν(q) =
−i

q2 − λ2 + iε

(
gµν − (1− ξ)q

µqν

q2

)
(3.2)

In Feynman gauge, ξ = 1, which reproduces the photon propagator in Table 3.1. In Coulomb



18

QED Feynman Rules

Photon Propagator q !
µ ⌫

1

−igµν
q2 − λ2 + iε

Fermion Propagator p

1

i(/p+m)

p2 −m2 + iε

QED vertex

p p0

1

iQeγµ

Table 3.1: QED Feynman Rules

gauge, the photon propagator is

Dµν(q) =



i

|~q|2 + λ2 + iε
µ, ν = 0

i

q2 − λ2 + iε

(
δij −

qiqj
|~q|2
)

µ = i 6= 0, ν = j 6= 0

0 otherwise

(3.3)

A derivation of this propagator, as well as background information on the gauges typically

used in electromagnetism can be found in Ref [59].

3.2 NRQED

3.2.1 NRQED Lagrangian

The NRQED Lagrangian describes the interaction of non-relativistic, possibly composite,

spin-half particle ψ with the electromagnetic field. Up to and including the 1/M2, where M

is the mass of the spin-half particle, the NRQED Lagrangian is [60, 61]

L = ψ†
{
iDt + c2

D2

2M
+ cFQe

σ ·B
2M

+ cDQe
[∇ ·E]

8M2
+ icSQe

σ · (D×E −E ×D)

8M2

}
ψ+ · · ·,

(3.4)
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where Dt = ∂/∂t+ iQeA0, D = ∇− iQeA, σ are the Pauli matrices, Q is the electric charge

of the particle (in this case, for a proton, Qp = 1 and for an electron and a muon, Q` = −1),

and e is the electromagnetic coupling constant1. Here Dt and D are the components of the

covariant derivative Dµ = ∂µ + iQeAµ. The notation [∇ ·E] denotes that the derivative is

acting only on E and not on ψ. For a review see [62]. The (hidden) Lorentz invariance of

the Lagrangian implies that c2 = 1 [63, 64, 65]. The other Wilson coefficients can be related

to the proton electromagnetic form factors

〈p(p′)|Jem
µ |p(p)〉 = ū(p′)

[
γµF1(q

2) +
iσµν
2M

F2(q
2)qν

]
u(p) , (3.5)

via cF = F1(0) + F2(0), cD = F1(0) + 2F2(0) + 8M2F ′1(0), where F ′1 = dF1(q
2)/dq2, and

cS = 2cF −F1(0). The latter can also be determined by the hidden Lorentz invariance of the

Lagrangian [63, 64, 65]. The NRQED Feynman rules can be extracted from figure 3 of [61]

by multiplying the vertices by −i and the propagators by i.

At 1/M2 there are operators that couple four spin-half fields2

Lψχ =
d1
M2

ψ†σiψχ†σiχ+
d2
M2

ψ†ψχ†χ+ · · · . (3.6)

Here χ is another NRQED field which can be different from ψ. The coefficients d1 and d2

start at order α2, see [66, 67, 68]. The 1/M2 NRQED Lagrangian of (3.4) and (3.6) is enough

to describe the proton structure effects relevant to the current precision of muonic hydrogen

spectroscopy [66, 67, 68]. In particular, χ is taken to be an NRQED field for the lepton. In

the following calculations, we will only need (3.4) to describe the proton’s interactions.

1We follow the conventions of [61], although in that paper the NRQED Lagrangian describes an electron,
here we take e to be positive.

2We use the convention of [65], where the operators are suppressed by 1/M2 instead of 1/MχM of [61].
The two are related by a factor of Mχ/M , where Mχ is the mass of the χ field.
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3.2.2 NRQED Feynman Rules

Here we present the derived Feynman rules for NRQED. The propagators are in Table

3.2 while the vertices up to order 1/M2 are in Table 3.3.

NRQED Propagators

Coulomb Photon ~q

1

i

~q 2 + λ2

Transverse Photon i j

1

i

q2 − λ2 + iε

(
δij − qiqj

~q 2 − λ2
)

Fermion p

1

i

p0 − ~p 2

2M
+ iε

Table 3.2: NRQED Propagators

Here λ is the “mass” of the photon, which is used to regulate infrared divergences [61].

The photon contributions shown above are for Coulomb gauge. In Feynman gauge, the

photon propagator is the same as Eq. 3.2 where, again ξ = 1.

The Two Photon Time Derivative Vertex is not presented in [61], but is included here.

The dot represents that the time derivative is acting on the photon. While the Relativistic

Kinetic Vertex is formally order 1/M3, it does contribute to amplitudes at order 1/M2.

3.3 QED-NRQED

The QED-NRQED EFT is the combination of the QED and NRQED field theories. The

QED Feynman rules are used to describe the relativistic particle, while the NRQED rules

describe the non-relativistic one. This EFT contains interactions seen in both QED and

NRQED.

The NRQED interactions distinguish between the time-like (A0) and space-like (Ai) com-

ponents of Aµ. Therefore, in a photon exchange between a QED field and a NRQED field

the photon polarization will be determined by the NRQED vertex. It is often convenient

to use Coulomb gauge, where the photon propagator is different for time-like and space-like

components. A more detailed explanation of the photon propagators can be found in [61].
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NRQED Vertices

Coulomb

~p ~p 0

1

− iQe

Dipole

~p ~p 0

1

iQec2(~p+ ~p ′)

2M

~A · ~A

~p ~p 0

1

− Q2e2δij

M

Fermi

~p ~p 0

1

QecF (~p ′ − ~p)× ~σ
2M

Darwin

~p ~p 0

1

iQecD|~p ′ − ~p|2
8M2

Seagull ~q "

~p ~p 0

1

Q2e2cS~q × ~σ
4M2

Spin Orbit

~p ~p 0

1

QecS(~p ′ × ~p) · ~σ
4M2

Time Derivative q "

~p ~p 0

1

− QecSq
0(~p ′ + ~p)× ~σ
8M2

Two Photon Time Derivative q "

~p ~p 0

1

− Q2e2cSσ
iεijkq0

4M2

Relativistic Kinetic

q "

~p ~p 0

1

i~p 4

8M3

Table 3.3: NRQED Vertices
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At 1/M2 we can also have contact interactions of the form ψ†Σψ ¯̀Γ`, where ψ† is the

non-relativistic proton field, ` is a relativistic lepton field, Γ is a 4×4 matrix and Σ = 12×2, σi.

The contact interactions must be even under parity and time reversal. Since both the unit

matrix and the Pauli matrices are even under parity, ¯̀Γ` must be parity even too. This

implies eight possible options for Γ, namely, 14×4, γ0, σij, γiγ5, where the indices i, j, and k,

are cycled [58]. Since 12×2 (σi) are even (odd) under time reversal, 14×4 and γ0 can only be

combined with 12×2, while σij and γiγ5 can only be combined with σi. We combine δij to

the former and εijk to the latter.

QED-NRQED Interactions

Spin Independent ψ†pψp`γ
0` ψ†pψp``

Spin Dependent ψ†pσiψp`γ
iγ5` ψ†pσiψp`

(
i

2
εijkγjγk

)
`

Table 3.4: Possible interactions in the QED-NRQED EFT

Experiment Interactions

Experiment Charge Radius Two Photon Exchange

Spectroscopy cDψ
†
p∇ · ~Eψp d2ψ

†
pψpψ

†
µψµ

MUSE cDψ
†
p∇ · ~Eψp b1ψ

†
pψp`γ

0`

Table 3.5: Possible interactions for the experiments

An operator of the form ¯̀Γ` couples the left-handed and right-handed components of the

relativistic lepton field if Γ contains an even number of gamma matrices. As a result, one

would expect that the Wilson coefficient of such an operator would be proportional to m. In

other words, we have chiral symmetry in the m→ 0 limit. This implies that operators with

an even number of gamma matrices should be multiplied by m/M3. At 1/M2 we therefore

have only two possible contact interactions,

L`ψ =
b1
M2

ψ†ψ ¯̀γ0`+
b2
M2

ψ†σiψ ¯̀γiγ5`+O
(
1/M3

)
, (3.7)

where our notation follows that of [65].
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It is important to note that this QED-NRQED effective field theory describes electro-

magnetic interactions between a relativistic lepton and a non-relativistic proton. This means

that the pion is not included as a dynamical degree of freedom. The effects of the strong

interaction are encoded in the non-perturbative QED-NRQED Wilson coefficients ci and bi.

For more information on the pion contributions, see [69]. Deep Inelastic Scattering is not a

concern as it only contributes at energy scales above the proton mass, which is the upper

energy limit of the QED-NRQED EFT.
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CHAPTER 4: ESTABLISHING QED-NRQED

Here we present calculations performed in the QED-NRQED EFT and compare them

to known results. The majority of this work was originally published in [70] by Dye,

Gonderinger, and Paz.

4.1 One Photon Exchange and Proven Results

In order to establish the new QED-NRQED effective field theory, it must be shown that it

reproduces known results. In particular, we consider O(Qpα) scattering up to power m2/M2,

where m (M) is the muon (proton) mass, Qp = 1, and O(Q2
pα

2) scattering at leading power1.

We show how the former reproduces Rosenbluth scattering [71] and the latter reproduces

scattering off of a QED “point-like” proton, and the scattering of a relativistic fermion off a

static potential [72, 73].

4.1.1 One Photon QED-NRQED Coulomb Gauge

Our first application is the calculation of the QED-NRQED lepton-proton elastic scat-

tering `(k) + p(p)→ `(k′) + p(p′) at O(Qpα) (for the amplitude) and at power m2/M2. We

will see that the result agrees with the result of the Rosenbluth formula [71] up to power

m2/M2.

In the Coulomb gauge, we calculated the Feynman diagrams of Figure 4.1 for a one-

photon exchange between a relativistic lepton and a non-relativistic proton up to 1/M2

using (3.1) and (3.4) we find

MQN = e2QpQ`

[(
1− cD

~q 2

8M2

)
1

~q 2
ξ†p′ξpū(k′)γ0u(k)− i cF

2M

1

q2
εijkqjξ†p′σ

kξpu(k′)γiu(k)

]
,

(4.1)

where “QN” stands for QED-NRQED, and ξp′ and ξp are two-component spinors. There is

no contribution from the operator D2 at this order. We have also omitted a contribution

from cS that is proportional to q0 and leads to 1/M3 suppressed terms.

The spin-averaged square of the amplitude can be calculated by an analogue of the

1We use the factors of Qp to keep track of the number of proton-photon interactions.
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p p0

k k0

1
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k k0

1

p p0

k k0

1

Figure 4.1: QED-NRQED Feynman diagrams that give a non-zero contribution to elas-
tic lepton-proton scattering at O(Qpα) up to power m2/M2. The double line denotes the
NRQED field. The dashed (curly) line represents Coulomb (transverse) photon. The dot,
circle, and cross vertices represent the Coulomb, Fermi, and Darwin terms, respectively, see
Ref. [61] for details.

Casimir trick, see the Appendix. We find

|M|2QN = e4Q2
pQ

2
`

[
1

~q 4

(
1− cD

~q 2

8M2

)2

(4EE ′ + q2) +
c2F
M2

1

q4
~q 2

(
EE ′ −m2 −

~k · ~q ~k′ · ~q
~q 2

)]
=
e4Q2

pQ
2
`

~q 2

[
1

~q 2
(4E2 − ~q 2)− 2E

M
+
~q 2 + c2F (~q 2 + 4E2 − 4m2) + cD(~q 2 − 4E2)

4M2

]
, (4.2)

where E (E ′) is the energy of the initial (final) lepton. In the second line, we have expanded

the kinematical variables in powers of 1/M and retained only terms up to 1/M2, for details

see the Appendix.

We can compare this result to Rosenbluth scattering, i.e. the one-photon interaction

between a proton, described by the form-factors, and a lepton. Without a considerable

increase in complexity, we can introduce form-factors for the lepton too, since some of the

radiative corrections modify the lepton form-factors from the tree-level value of F1 = 1, F2 =

0. We thus have for the lepton-photon vertex

〈`(k′)|Jem
µ |`(k)〉 = ū(k′)

[
γµF

`
1(q2)− iσµν

2m
F `
2(q2)qν

]
u(k) . (4.3)
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The spin averaged square of the amplitude is given by

|M|2 =
4π2α2Q2

pQ
2
`

q4
Tr

{
(/p′ +M)

(
γµF

p
1 +

iσµα
2M

F p
2 q

α

)
(/p+M)

(
γνF

p
1 −

iσνβ
2M

F p
2 q

β

)}
× Tr

{
(/k′ +m)

(
γµF `

1 −
iσµρ

2m
F `
2qρ

)
(/k +m)

(
γνF `

1 +
iσνλ

2m
F `
2qλ

)}
. (4.4)

Collecting the terms by their powers of q2 we have,

|M|2

π2α2
=

256E2(F `
1)2(F p

1 )2M2

q4
+

64

q2

[
(F `

1)2(F p
1 + F p

2 )2m2 + (F p
1 )2(F `

1 + F `
2)2M2 +

+ 2(F `
1)2(F p

1 )2ME −
E2
((
F `
1

)2
(F p

2 )2m2 + (F p
1 )2
(
F `
2

)2
M2
)

m2

]
+ 16

[(
(F p

1 )2 + 4F p
1F

p
2 + (F p

2 )2
)((

F `
1

)2
+ 4F `

1F
`
2 +

(
F `
2

)2)
+ F `

1F
p
1 (F `

1F
p
1 − 4F `

2F
p
2 )

−
2E
((
F `
1

)2
(F p

2 )2m2 + (F p
1 )2
(
F `
2

)2
M2
)

m2M
+
E2
(
F `
2

)2
(F p

2 )2

m2

]
+ 4q2

[
F `
2F

p
2

(
(2F `

1 + F `
2)F p

2m
2 + (2F p

1 + F p
2 )F `

2M
2)
)

m2M2
+

2E
(
F `
2

)2
(F p

2 )2

m2M

]
+ q4

[(
F `
2

)2
(F p

2 )2

m2M2

]
, (4.5)

where we have suppressed the dependence of the form factors on q2. Inserting this expression

into (6) and taking the limit F `
1 → 1, F `

2 → 0 reproduces similar expressions in the literature

[74, 75].

As explained in the Appendix, in the rest frame of the initial proton, |M|2 = 4MEp′ |M|
2

QN.

Multiplying (4.2) by 4MEp′ , using the relations cF = F1(0) + F2(0), cD = F1(0) + 2F2(0) +

8M2F ′1(0), and expanding in powers of 1/M , we find that the result agrees with the ex-

pansion of (4.5) in powers of 1/M in the F `
1 → 1, F `

2 → 0 limit. In particular, there is no

contribution to the Wilson coefficients of the contact interactions, b1 and b2 at this order,

but at O(Q2
pα

2).
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4.1.2 One Photon QED-NRQED Feynman Gauge

As a further check of Sec. 4.1.1, the one-photon exchange between a relativistic lepton

and a non-relativistic proton up to 1/M2 has been calculated in the Feynman gauge as well.

The difference between the two gauges is that four interactions contribute to the final result

in this gauge instead of three. The resulting amplitude is

MQN = e2QpQ`

[(
1 +

q4

4M2~q 2
− cD

~q 2

8M2
+

q0~q 2

2Mq2

)
1

~q 2
ξ†p′ξpū(k′)γ0u(k)

− i cF
2M

1

q2
εijkqjξ†p′σ

kξpu(k′)γiu(k)

]
. (4.6)

After performing the appropriate kinematic approximations, we are able to reproduce the

amplitude in Eq. 4.1,

MQN = e2QpQ`

[(
1− cD

~q 2

8M2

)
1

~q 2
ξ†p′ξpū(k′)γ0u(k)− i cF

2M

1

q2
εijkqjξ†p′σ

kξpu(k′)γiu(k)

]
.

(4.7)

These kinematic approximations can be found in the Appendix. This shows that the

Feynman gauge result is the same as the Coulomb gauge result.

p p0

k k0

1

p p0

k k0

1

p p0

k k0

1

p p0

k k0

1

Figure 4.2: QED-NRQED Feynman diagrams that give a non-zero contribution to elas-
tic lepton-proton scattering at O(Qpα) up to power m2/M2. The double line denotes the
NRQED field. The dashed (curly) line represents Coulomb (transverse) photon. See Ref.
[61] for details.
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4.2 Two Photon Results at Leading Order

We consider elastic lepton-proton scattering `(k) + p(p) → `(k′) + p(p′) at O(Q2
pα

2) at

leading power in m/M . We will show that the three methods: QED-NRQED at leading

power, QED for a point particle at leading power in 1/M , and scattering off a static 1/r

potential, give the same amplitude.

4.2.1 Two Photon QED-NRQED at Leading Order

p

k

p + k � l p0

l k0

p

k

p + k0 + l p0

l k0

Figure 4.3: QED-NRQED Feynman diagrams contributing to elastic lepton-proton scattering
at O(Q2

pα
2) at leading power in m/M . The double line denotes the NRQED field.

The NRQED propagator is i(p0 − ~p 2/2M + iε)−1 [61]. At leading power in 1/M we can

approximate2 it as i(p0 + iε)−1. Also, at leading power the NRQED field only couples to

A0. This means that within the Feynman gauge photon propagator, gµν → g00 = 1. Finally,

in the limit of zero momentum transfer, q0 = 0. This means that within these restrictions,

the Feynman gauge and Coulomb gauge photon propagator are equal to each other. The

resulting amplitude is therefore

iM = Q2
pQ

2
`e

4

∫
d4l

(2π)4
ū(k′)γ0 (/l +m) γ0u(k)ξ†p′ξp

(l − k)2(l − k′)2(l2 −m2)

(
1

k0 − l0 + iε
+

1

l0 − k′ 0 + iε

)
. (4.8)

At the leading power in 1/M conservation of momentum and energy imply

√
~k2 +m2 +M =

√
~k′ 2 +m2 +

√
M2 +

(
~k′ − ~k

)2
⇒
√
~k2 +m2 =

√
~k′ 2 +m2 +O(1/M),

(4.9)

2Note that in this approximation the propagator looks like a HQET propagator, i(v · p + iε)−1, with
v = (1,~0). The relation between the HQET and NRQED Lagrangians is discussed in [63].
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i.e. |~k| = |~k′| and k0 = k′ 0. This also implies that δ4(k′+p′−k−p) ≈ δ(k′ 0−k0)δ3(~k ′+~p ′−~k).

Using the identity [76] 1/ (x+ iε) = P (1/x)− iπδ(x), where P is Cauchy principle value,

we have at leading power in 1/M

1

k0 − l0 + iε
+

1

l0 − k′ 0 + iε
=

1

k0 − l0 + iε
+

1

l0 − k0 + iε
= −2πiδ(l0 − k0). (4.10)

Averaging over the initial proton spins and summing over the final proton spins implies

ξ†p′ξp → 1. Since δ(l0 − k0)δ(k′ 0 − k0) = δ(l0 − k0)δ(l0 − k′ 0), we can finally write

iM (2π)4δ4(k′ + p′ − k − p) =

∫
d4l

(2π)4
2πδ(l0 − k0)
(l − k)2 − λ2

2πδ(l0 − k′ 0)
(l − k′)2 − λ2

ū(k′)γ0 (/l +m) γ0u(k)

l2 −m2

× (−)iQ2
pQ

2
`e

4(2π)3δ3(~k ′ + ~p ′ − ~k), (4.11)

where we have introduced an IR regulator λ as the photon “mass”.

4.2.2 Two Photon QED at Leading Order

If the proton were a point particle, we could calculate the same diagrams using QED.

As we will show, this toy model actually gives the same answer as the effective field theory

calculation. The reason is that in the infinite proton mass limit, the only information the

lepton has about the composite proton is its overall charge. Of course, once we include other

properties of the proton such as its magnetic moment or charge radius, described in NRQED

by operators suppressed by 1/M and 1/M2 respectively, the two calculations will differ.

Calculating the diagrams for a point particle of mass M and charge Qpe we find

iM = Q2
pQ

2
`e

4

∫
d4l

(2π)4
1

(l − k)2 − λ2
1

(l − k′)2 − λ2
ū(k′)γµ (/l +m) γνu(k)

(l2 −m2)

× ū(p′)

(
γµ

/p+ /k − /l +M

(p+ k − l)2 −M2
γν + γν

/p− /k′ + /l +M

(p− k′ + l)2 −M2
γµ
)
u(p). (4.12)
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Since p = (M,~0), in the infinite mass limit

/p+ /k − /l +M

(p+ k − l)2 −M2
→ 1 + γ0

2
· 1

k0 − l0 ,
/p− /k′ + /l +M

(p− k′ + l)2 −M2
→ 1 + γ0

2
· 1

l0 − k′ 0 , (4.13)

and u(p) = (ξp, 0), ū(p′) = (ξp′ , 0)†γ0. As a result (1−γ0)u(p) = 0, ū(p′)(1−γ0) = 0. The

proton matrix element can be simplified as

ū(p′)γα
(

1 + γ0

2

)
γβu(p) = ū(p′)γα

(
1 + γ0

2

)(
1 + γ0

2

)
γβu(p)

= ū(p′)

[(
1− γ0

2

)
γα + gα0

] [
gβ0 + γβ

(
1− γ0

2

)]
u(p) = gα0gβ0ξ†p′ξp. (4.14)

All together, the result is

iM = Q2
pQ

2
`e

4

∫
d4l

(2π)4
ū(k′)γ0 (/l +m) γ0u(k)ξ†p′ξp

(l − k)2(l − k′)2(l2 −m2)

(
1

k0 − l0 + iε
+

1

l0 − k′ 0 + iε

)
, (4.15)

which is the same result as from the QED-NRQED calculation, see equation (4.8). We now

proceed in the same way as in the previous section to obtain equation (4.11).

4.2.3 Classical Potential

We consider a lepton scattering off a static external potential [72, 73] :

~A = 0, A0 =
Qpe e

−λr

4πr
= −Qpe

∫
d4q

(2π)4
2πδ(q0)

q2 − λ2 e
iqx, (4.16)

This implies that in terms of Feynman rules we have a factor of 2πδ(q0)/(q2 − λ2) for each

photon exchange with the potential. Calculating the transition matrix element we have

iM (2π)δ(k′ 0 − k0) = −iQ2
pQ

2
`e

4

∫
d4l

(2π)4
2πδ(l0 − k0)
(l − k)2 − λ2 ·

2πδ(l0 − k′ 0)
(l − k′)2 − λ2 ·

ū(k′)γ0 (/l +m) γ0u(k)

l2 −m2
.

(4.17)
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Up to a factor of (2π)3δ3(~k ′+~p ′−~k) this is the same result as the QED-NRQED calculation,

equation (4.11).

4.2.4 Cross Section

For completeness we also calculate the cross section. The calculation is similar to [72, 73]

but the integrals are calculated using the standard Feynman parameters. We start from

equation (4.11). Using

δ(l0 − k0)δ(l0 − k′ 0)
[(l − k)2 − λ2] [(l − k′)2 − λ2] [l2 −m2]

=
δ(l0 − k0)δ(l0 − k′ 0)[

(~l − ~k)2 + λ2
] [

(~l − ~k′)2 + λ2
] [
~k2 −~l2

] , (4.18)

and

δ(l0 − k0)ū(k′)γ0 (/l +m) γ0u(k) = δ(l0 − k0)ū(k′)
(
k0γ0 +m+~l · ~γ

)
u(k), (4.19)

we get

iM (2π)4δ4(k′ + p′ − k − p) = −2i
Q2
pQ

2
`α

2

π
2πδ(k0 − k′ 0)(2π)3δ3(~k ′ + ~p ′ − ~k)

×
∫
d3l

ū(k′)
(
k0γ0 +m+~l · ~γ

)
u(k)[

(~l − ~k)2 + λ2
] [

(~l − ~k′)2 + λ2
] [
~k2 −~l2 + iε

] . (4.20)

We need two integrals

I1 =

∫
d3l

1[
(~l − ~k)2 + λ2

] [
(~l − ~k′)2 + λ2

] [
~k2 −~l2 + iε

] ,
I i2 =

∫
d3l

li[
(~l − ~k)2 + λ2

] [
(~l − ~k′)2 + λ2

] [
~k2 −~l2 + iε

] . (4.21)

The denominators arising from the photon propagators can be combined using a Feynman

parameter as

x
[
(~l − ~k)2 + λ2

]
+ x̄

[
(~l − ~k′)2 + λ2

]
= (~l − ~K)2 +M2, (4.22)
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where 0 ≤ x ≤ 1, x̄ = 1−x, ~K = x~k+ x̄~k′, M2 = − ~K2 +~k2 +λ2, and we have used ~k2 = ~k′ 2.

Combining this with the third denominator of (4.21) using another Feynman parameter we

find

I1 = −2

∫ 1

0

dx

∫ 1

0

dy y

∫
d3l

1(
~l2 + ∆− iε

)3
I i2 = −2

∫ 1

0

dx

∫ 1

0

dy y2
∫
d3l

Ki(
~l2 + ∆− iε

)3 , (4.23)

where ∆ = yȳ ~K2 + yM2− ȳ~k2 and we have changed ~l→ ~l− ~Ky. It is convenient to perform

the integral over |~l| first and then to integrate over y. For the x integral we note that ∆ is

a function of x(1 − x). We split the integration range into two intervals, 0 ≤ x ≤ 1/2 and

1/2 ≤ x ≤ 1, and change variables to z = x(1− x). Thus, for a function f(x),

∫ 1

0

dx f(x) =

∫ 1
4

0

dz
f
(
1
2
− 1

2

√
1− 4z

)
+ f

(
1
2

+ 1
2

√
1− 4z

)
√

1− 4z
. (4.24)

After the change of variables, ~K2 = ~k2 − 4~k2z sin2 θ
2

and M2 = λ2 + 4~k2z sin2 θ
2
. Performing

the |~l| and y integrations we have

I1 = −2

∫ 1
4

0

dz√
1− 4z

π2

M

[(
M − i|~k|

)2
+ ~K2

] (4.25)

I i2 = −2π2

(
ki + k′i

2

)∫ 1
4

0

dz√
1− 4z

{
1

M ~K2
+

iM | ~K|+ ~k2

M ~K2

[(
M − i|~k|

)2
+ ~K2

] +

+
i

2| ~K|3
log

(
iM + |~k| − | ~K|
iM + |~k|+ | ~K|

)}
. (4.26)
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The polynomial terms in I1 and I i2 can be integrated directly. For the logarithmic term in

I i2 it is convenient to use integration by parts. Defining I i2 ≡ I2 (ki + k′i) /2, we find

I1 =
π2

2i|~k|3 sin2 θ
2

log

(
2|~k| sin θ

2

λ

)

I2 =
π2

2|~k|3 cos2 θ
2

{
π

2

(
1− 1

sin θ
2

)
− i
[

1

sin2 θ
2

log

(
2|~k| sin θ

2

λ

)
+ log

λ

2|~k|

]}
. (4.27)

This is the same result in Ref. [73]. As was pointed out in [65], [72] has the wrong sign for

I1.

Since /ku(k) = (k0γ0−~k ·~γ)u(k) = mu(k), we have ~k ·~γ u(k) = (k0γ0−m)u(k). Similarly

ū(k′)~k′ · ~γ = ū(k′)(k′ 0γ0 −m). Equation (4.20) simplifies to

M(2)
QN = −2Q2

pQ
2
`α

2

π
ū(k′)

[
m(I1 − I2) + k0γ0(I1 + I2)

]
u(k), (4.28)

where we have added the subscript “QN” to denote that we are using non-relativistic nor-

malization for the proton states.

The O(Qpα) amplitude at leading power is obtained from equation (4.1) by keeping only

the leading power term and replacing ξ†p′ξp → 1, see section 4.2. We have

M(1)
QN = −4παQpQ`

1

~q 2
u(k′)γ0u(k). (4.29)

At leading power in 1/M the relation betweenMQN andM in the initial proton rest frame

is just M = 2MMQN, see the Appendix, and we obtain

M(1+2) =
−8MπαQpQ`

~q 2
ū(k′)

{
γ0
[
1 + αQpQ`

k0~q 2

2π2
(I1 + I2)

]
+ αQpQ`

m~q 2

2π2
(I1 − I2)

}
.

(4.30)
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At leading power in 1/M the cross section is given by dσ/dΩ = |M|2/(64π2M2). We find

dσ

dΩ
=

4Q2
pα

2Q2
`E

2
(
1− v2sin2 θ

2

)
~q 4

[
1 + αQpQ`

~q 2E

π2

(
Re (I1 + I2) +

m2 Re (I1 − I2)
E2
(
1− v2sin2 θ

2

))],
(4.31)

where E = k0 and v = |~k|/k0. Since I1 is purely imaginary, only I2 contributes to the cross

section. In particular, the dependence on λ cancels. The cross section is finally

dσ

dΩ
=

4Q2
pα

2Q2
`E

2
(
1− v2sin2 θ

2

)
~q 4

[
1− αQpQ`

πv sin θ
2
(1− sin θ

2
)

1− v2sin2 θ
2

]
. (4.32)

Taking Q` = −1 we obtain the results3 of [72, 73].

4.2.5 Anti-lepton Cross Section

In the calculation above we have assumed that the lepton is a particle. It is instructive

to see how (4.32) changes for anti-lepton-proton scattering. The answer, “Take Q` = +1 in

(4.32)” is correct, but since for QED the Feynman rule for the vertex is the same for leptons

and anti-leptons, it is not immediately obvious why this is true. Beyond the theoretical

interest, MUSE will consider both µ±p and e±p scattering [5], so it is instructive to see how

the cross section changes.

Ignoring overall minus signs, apart from sign difference between lepton and anti-leptons,

the leptonic part of the O(Qpα) amplitude is given by

M(1)

`− = Qpα ū(k′)γµu(k)Aµ(k − k′) . . .

M(1)

`+ = −Qpα v̄(k)γµv(k′)Aµ(k − k′) . . . . (4.33)

3Note that [72] uses A0 = Qpe e
−λr/r. As a result, one needs to replace α→ e2 in the comparison. Also,

one has to be careful about the relative sign between the lepton and the potential charges in [73].
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k→ l→ k′→

ν µ

k′→k→ l→

ν µ

Figure 4.4: The leptonic part of the O(Q2
pα

2) amplitude at leading power in m/M for a
lepton (left) and an anti-lepton (right).

As seen in figure 4.4, the leptonic part of the O(Q2
pα

2) amplitude is

M(2)

`− = Q2
pα

2

∫
d4l

(2π)4
ū(k′)γµ

(/l +m)

l2 −m2
γνu(k)Aµ(l − k′)Aν(k − l) . . .

M(2)

`+ = −Q2
pα

2

∫
d4l

(2π)4
v̄(k)γν

(−/l +m)

l2 −m2
γµv(k′)Aµ(l − k′)Aν(k − l) . . . . (4.34)

Notice that M(1)

`+ and M(2)

`+ have the same overall sign. Calculating the spin-averaged

leptonic part of the squared amplitude we have the following traces

`− : Tr
{

(/k′ +m) [γρ +Qpαγ
µ (a/l + bm) γν ] (/k +m)

[
γρ
′
+Qpαγ

ν′ (a∗ /l + b∗m) γµ
′
]}

`+ : Tr
{

(/k −m) [γρ +Qpαγ
ν (−a/l + bm) γµ] (/k′ −m)

[
γρ
′
+Qpαγ

µ′ (−a∗ /l + b∗m) γν
′
]}

,

(4.35)

where a and b contain integrals over d4l and we ignore overall factors common to the two

traces. Collecting the terms arising from the inference between M(1) and M(2), i.e. the

O(Q3
pα

3) terms in the cross section, we always pick up even number of gamma matrices

which imply we always get an extra minus sign for the anti-leptons. The order of the gamma

matrices also changes, but because of the symmetries of trace, this has no effect. The cross

section is therefore,

dσ`∓

dΩ
=

4Q2
pα

2E2
(
1− v2sin2 θ

2

)
~q 4

[
1± αQp

πv sin θ
2
(1− sin θ

2
)

1− v2sin2 θ
2

]
. (4.36)
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4.3 Establishing QED-NRQED Summary

QED-NRQED lepton-proton scattering at O(Qpα) and power m2/M2 reproduces the

known Rosenbluth scattering formula, i.e. the one-photon exchange cross section expressed

in terms of the proton form factors [71], up to power m2/M2. It requires just the Dirac

Lagrangian and the NRQED Lagrangian up to 1/M2. In particular, there is no contribution

at this order from 1/M2 corrections to the Dirac Lagrangian [65] and more importantly from

the lepton-proton contact interactions. This implies that the coefficients of these operators

start at a higher order in α. In particular, one would expect that the first non-zero contri-

bution to b1 and b2 in equation (3.7) would be at O(Q2
pα

2) . For that, one has to calculate

an appropriate amplitude to O(Q2
pα

2) and power m2/M2 and is done in Chapter 5.

QED-NRQED lepton-proton scattering at O(Q2
pα

2) and at leading power reproduces the

O(Q2
pα

2) terms in the scattering of a lepton off a static 1/r potential [72, 73]. Interestingly it

also reproduces the lepton scattering off a “point particle” proton at leading power in 1/M .

It is easy to understand why. In the M →∞ limit the only information the lepton has about

the proton is the proton’s charge Qpe. Effects such as the proton magnetic moment and the

proton charge radius arise only at 1/M and 1/M2 respectively, see equation (3.4). QED-

NRQED can naturally incorporate such effects. For completeness, we have also calculated

the cross section, but unlike [72, 73] we used the standard technique of Feynman parameters.

Still, these leading power integrals are not representative of the typical integrals one would

obtain in calculating QED-NRQED diagrams at higher powers. These integrals will be seen

in the two-photon exchange sections. Finally, we have also commented on the change in the

cross section when we consider anti-lepton scattering.
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CHAPTER 5: TWO PHOTON EXCHANGE

RESULTS AT ORDER 1/M 2

Information about the Wilson coefficient cD, which is equivalent to the proton charge

radius, only becomes relevant at O(1/M2). This means that information about the O(1/M2)

contact interaction coefficients b1 and b2 are needed. This information can be obtained

through the two-photon exchange calculations using the QED-NRQED EFT, presented here

in this chapter. The calculations here are four-fold. The first calculation is performed

on a “point-like” proton in Feynman gauge in QED while the second is performed on a

physical proton also in Feynman gauge in QED-NRQED. The differences between these two

calculations is what gives us information about the Wilson coefficients b1 and b2. These

calculations are then repeated in the Coulomb gauge for comparison. When calculating the

EFT integrals in the TPE, two methods were used. The first is a method of regions similar

to what is used in Soft-Collinear Effective Theory [78], the second uses an expansion of

the photon propagator. The simplest way to determine these coefficients is to use the zero

momentum exchange reference frame.

5.1 Two Photon Exchange: Feynman Gauge

For the two photon exchange calculations, we have set the proton incoming (~p) and

outgoing (~p′) to zero.

5.1.1 QED Point Particle

We consider the toy example of a point-particle “proton”. In this calculation, the lepton

line is kept the same, but the proton line is taken to the non-relativistic limit. For this

case, the amplitude of the direct and cross Feynman diagrams for a relativistic lepton and a

non-relativistic point-like proton is

iM = e4Q2
pQ

2
`

∫
d4l

(2π)4
1

(l2 − λ2)2
1

l2 + 2mv · l

[
Aµν(l)Bµν(−l)
l2 − 2Mv · l +

Aµν(l)Bνµ(l)

l2 + 2Mv · l

]
(5.1)
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where

Aµν(l) = ū(k)γµ
[
/l +m(1 + γ0)

]
γνu(k)

Bµν(l) = ū(p)γµ
[
/l +M(1 + γ0)

]
γνu(p), (5.2)

and v = (1,~0), k = mv, p = Mv.

We use non-relativistic normalization for the proton spinors u(p)†u(p) = 1, where u(p) =

(χ 0) and the Dirac representation of the γ matrices

γ0 =

 1 0

0 −1

 , γi =

 0 σi

−σi 0

 .

The components of Aµν are

A00(l) = ū(k)
[
γ0
(
l0 +m

)
+ liγi +m

]
u(k)

A0i(l) = ū(k)
[
γi
(
l0 +m

)
+mγ0γi + lj

(
δijγ0 − iεijkγkγ5

)]
u(k)

Ai0(l) = ū(k)
[
γi
(
l0 +m

)
+mγiγ0 + lj

(
δijγ0 + iεijkγkγ5

)]
u(k)

Aij(l) = ū(k)
[(
δijγ0 + iεijkγkγ5

) (
l0 +m

)
− lkγiγkγj +mγiγj

]
u(k), (5.3)

where we have used the identity γ0γiγj = −
(
δijγ0 + iεijkγkγ5

)
. The components of Bµν are

B00(l) = χ†χ(2M + l0), B0i = χ†
(
li − iεijkljσk

)
χ

Bi0(l) = χ†
(
li + iεijkljσk

)
χ, Bij = l0χ†

(
δij + iεijkσk

)
χ. (5.4)
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Neglecting terms linear in ~l we find

Aµν(l)Bνµ(l) = ū(k)u(k)χ†χ 2m(M − l0) + ū(k)γ0u(k)χ†χ
[
2(m+ l0)(M + 2l0)− 2~l 2

]
+ ū(k)

(
i

2
εijkγjγk

)
u(k)χ†σiχ(−2ml0) + ū(k)γiγ5u(k)χ†σiχ

[
−4

3
~l 2 + 2l0(m+ l0)

]
Aµν(l)Bµν(−l) = ū(k)u(k)χ†χ 2m(M + l0) + ū(k)γ0u(k)χ†χ

[
2(m+ l0)(M − 2l0) + 2~l 2

]
+ ū(k)

(
i

2
εijkγjγk

)
u(k)χ†σiχ(−2ml0) + ū(k)γiγ5u(k)χ†σiχ

[
−4

3
~l 2 + 2l0(m+ l0)

]
, (5.5)

where we have used that for integrals over lilj we can replace lilj → ~l 2/3. We need the

following integrals.

I(M), I0(M), I00(M), Ĩ(M) = (−i)(4π)2
∫

d4l

(2π)4

{
1, l0, l0l0, ~l 2

}
(l2 − λ2)2(l2 + 2mv · l)(l2 + 2Mv · l) .

(5.6)

To calculate the integrals, we note the partial fractioning identity

1

l2 + 2mv · l ·
1

l2 + 2Mv · l =
1

2(M −m)

1

v · l

(
1

l2 + 2mv · l −
1

l2 + 2Mv · l

)
. (5.7)

We define

i(m), i0(m), i00(m), ĩ(m) = (−i)(4π)2
∫

d4l

(2π)4

{
1, l0, l0l0, ~l 2

}
(l2 − λ2)2(v · l)(l2 + 2mv · l) , (5.8)

and express I, I0, I00, Ĩ in terms of i, i0, i00, ĩ:

I(M) =
i(m)− i(M)

2(M −m)
, I0(M) =

i0(m)− i0(M)

2(M −m)
, I00(M) =

i00(m)− i00(M)

2(M −m)
, Ĩ(M) =

ĩ(m)− ĩ(M)

2(M −m)
.

(5.9)

In calculating the i integrals it is convenient to combine denominators via

1

l2 + 2mv · l ·
1

v · l =

∫ ∞
0

2 dy

(l2 + 2mv · l + 2yv · l)2
. (5.10)
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Calculating i, i0, i00, ĩ we find

i(m) =
π
(
m−

√
m2
)

mλ3
+

1

mλ2
−
√
m2 π

8m3λ
+

1

6m3

i0(m) = − π

2
√
m2λ

+
1 + logm2 − log λ2

2m2

i00(m) =
−2 + logm2 − log λ2

2m

ĩ(m) =
π
(
m−

√
m2
)

mλ
+

3 logm2 − 3 log λ2

2m
. (5.11)

In terms of the I functions we have

Mp.p.

Q2
lQ

2
pe

4
= ū(k)u(k)χ†χ

{
2Mm [I(−M) + I(M)] + 2m

[
I0(−M)− I0(M)

]}
+

+ ū(k)γ0u(k)χ†χ

{
2Mm [I(−M) + I(M)]− 4m

[
I0(−M)− I0(M)

]
+

+ 2M
[
I0(−M) + I0(M)

]
− 4

[
I00(−M)− I00(M)

]
+ 2

[
Ĩ(−M)− Ĩ(M)

]}
+ ū(k)

(
i

2
εijkγjγk

)
u(k)χ†σiχ

{
− 2m

[
I0(−M) + I0(M)

]}
+ ū(k)γiγ5u(k)χ†σiχ

{
2m
[
I0(−M) + I0(M)

]
+ 2

[
I00(−M) + I00(M)

]
− 4

3

[
Ĩ(−M) + Ĩ(M)

]}
.

(5.12)

All together, the result is

Mp.p.

Q2
lQ

2
pα

2
= ū(k)u(k)χ†χ

[
2mMπ

(m+M)λ3
+

3π

4(m+M)λ
+

2

mM

(
log λ− 1

3
− m2 logM −M2 logm

m2 −M2

)]
+ū(k)γ0u(k)χ†χ

[
2mMπ

(m+M)λ3
− 5π

4(m+M)λ
+

2

mM

(
−2 log λ− 1

3
+

2(m2 logM −M2 logm)

m2 −M2

)]
+ ū(k)

(
i

2
εijkγjγk

)
u(k)χ†σiχ

[
mπ

M(m+M)λ
+

2 log λ− 1

M2
+

2 (M2 logm−m2 logM)

M2(m2 −M2)

]
+ ū(k)γiγ5u(k)χ†σiχ

[
− π

Mλ
− π

3(m+M)λ
+

1 + 2 logM − 2 log λ

M2

]
. (5.13)
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In the non-relativistic limit ūu, ūγ0u → χ†`χ`, and ū
(
i
2
εijkγjγk

)
u, ūγiγ5u → χ†`σ

iχ` and we

obtain

MNR
p.p.

Q2
lQ

2
pα

2
= χ†`χ`χ

†
pχp

[
4mMπ

(m+M)λ3
− π

2(m+M)λ
+

2

mM

(
− log λ− 2

3
+
m2 logM −M2 logm

m2 −M2

)]
+ χ†`σ

iχ`χ
†
pσ

iχp

[
− 4π

3(m+M)λ
+

2 log(m/M)

m2 −M2

]
, (5.14)

which is the NRQED-NRQED result [79].

5.1.2 Effective Field Theory

In the following calculations, k = (m,~0), and everything at order 1/M3 and above is

omitted. The integrals in this section are solved using two methods, the method of regions

and expanding the non-relativistic proton propagator in powers of 1/M .

5.1.2.1 Leading Power

p

k

p + l p

k � l k

p

k

p � l p

k � l k

Calculating the direct and cross Coulomb photon exchange diagrams, we find

MDirect+Crossed = α2Q2
lQ

2
pχ
†χ
[
ūγ0u

(
ID0 + IC0

)
+ ūu

(
IDm + ICm

)]
,

where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}

[(l − k)2 −m2] (l2 − λ2)2
[
±l0 −

~l2

2M

] .
We present two methods for performing these sets of integrals. The first method uses method

of regions approach. The integrals has three mass scales, the photon “mass” λ, the lepton

mass m, and the proton mass M . Our method takes the ratios of these regions with respect
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to M , i.e. δ = λ/M and ε = m/M . From here the integral is broken up into two regions, the

first being where the photon momentum l is of the order δ, while the second region is when

l > δ. The residue theorem is used to integrate over l0. From here, an intermediate energy

cut-off is used to separate these two regions, at which point they are integrated over ~l. The

intermediate energy cut-off cancels in the sum of the two regions. This serves as a check for

the calculation. Finally, the terms independent of λ were expanded with respect to ε. From

this method, the results of these integrals are

IDm =
2πmM

(m+M)λ3
− 1

λ2
+
π(3m3 + 5m2M −mM2 +M3)

8mM(m+M)2λ
+

(5m− 2M) log(λ/m)

4mM2
−(5m2 − 5mM + 2M2)

12m2M2

ICm =
1

λ2
− (3m+M)π

8mMλ
− (5m+ 2M) log(λ/m)

4mM2
+

(5m2 + 5mM + 2M2)

12m2M2

ID0 =
2mMπ

(m+M)λ3
− 1

λ2
+

(3m3 +m2M −mM2 + 5M3)π

8mM(m+M)2λ
+

(5m2 − 8mM + 4M2)

4m2M2
log(λ/m)

− 15

8M2
log(m/M) +

15 log 2

4M2
− (161m2 − 20mM + 32M2)

48m2M2

IC0 =
1

λ2
− (3m+ 5M)π

8mMλ
− (5m2 + 8mM + 4M2

4m2M2
log(λ/m)

+
15

8M2
log(m/M)− 15 log 2

4M2
+

(161m2 + 20mM + 32M2)

48m2M2

In total,

MD+C

Q2
lQ

2
pα

2
= ūuχ†χ

[
2mMπ

(m+M)λ3
− (m+ 3M)π

4(m+M)λ
− log(λ/m)

mM
+

5

6mM

]
+ ūγ0uχ†χ

[
2mMπ

(m+M)λ3
− (5m+ 7M)π

4(m+M)λ
− 4 log(λ/m)

mM
+

5

6mM

]
. (5.15)

The second method involves expanding the non-relativistic proton propagator in terms
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of 1/M . The proton propagator now takes the form

i

p0 − ~p 2

2M
+ iε

→ i

(
1

p0
+

~p 2

2(p0)2M
+

~p 4

4(p0)3M2
+ . . .

)
(5.16)

where only terms of up to 1/M2 are kept. Here we integrate over l0 using the residue theorem

and integrate over ~l. From this method, the solutions to the integrals are

IDm =
2πm

λ3
− 1

λ2
+

π

8λm
− 1

6m2
− 2πm2

λ3M
− 3π

8λM
+

5

12mM
− log(λ/m)

2mM

+
2πm3

λ3M2
+

5πm

4λM2
− 5

12M2
+

5 log(λ/m)

4M2

ICm =
1

λ2
− π

8λm
+

1

6m2
− 3π

8λM
+

5

12mM
− log(λ/m)

2mM
+

5

12M2
− 5 log(λ/m)

4M2

ID0 =
2πm

λ3
− 1

λ2
+

5π

8λm
− 2

3m2
+

log(λ/m)

m2
− 2πm2

λ3M
− 11π

8λM
+

5

12mM
− 2 log(λ/m)

mM

+
2πm3

λ3M2
+

9πm

4λM2
− 113

48M2
+

5 log(λ/m)

4M2
+

15 log(2Λ/m)

8M2

IC0 =
1

λ2
− 5π

8λm
+

2

3m2
− log(λ/m)

m2
− 3π

8λM
+

5

12mM
− 2 log(λ/m)

mM

+
113

48M2
− 5 log(λ/m)

4M2
− 15 log(2Λ/m)

8M2

where Λ is a UV cutoff regulator. In total

MD+C

Q2
lQ

2
pα

2
= ūuχ†χ

[
2mπ

λ3

(
1− m

M
+
m2

M2

)
+

π

4Mλ

(
− 3 +

5m

M

)
+

5

6mM
− log(λ/m)

mM

]
+ ūγ0uχ†χ

[
2mπ

λ3

(
1− m

M
+
m2

M2

)
− π

4Mλ

(
7− 9m

M

)
+

5

6mM
− 4 log(λ/m)

mM

]
. (5.17)
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As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

MNN

Q2
lQ

2
pα

2
= χ†µχµχ

†
pχp

4mMπ

(m+M)λ3
, (5.18)

i.e. the sum of the two 1/λ3 terms in (5.15) agrees with (5.18). More importantly, (5.17)

clearly is the 1/M expanded result of (5.15).

Since the expanded results are simplier to check numerically, the rest of the calculations

only the expanded results will be presented.

5.1.2.2 Order 1/M : iDt −D2 interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

The amplitude of the resulting diagrams is

MD,C = (−i)± e4Q2
lQ

2
pūγ

0uχ†χ
1

M

∫
d4l

(2π)4
1

(l − k)2 −m2

~l2

(l2 − λ2)2
1

±l0 −
~l2

2M

, (5.19)

where

MD = +α2Q2
lQ

2
pūγ

0uχ†χ

(
2π

λM
+

3 log(λ/m)

mM
− 2πm

λM2
+

31

8M2
− 15 log(2Λ/m)

4M2

)
MC = −α2Q2

lQ
2
pūγ

0uχ†χ

(
−3 log(λ/m)

mM
+

31

8M2
− 15 log(2Λ/m)

4M2

)
.

Thus,

MD+C = α2Q2
lQ

2
pūγ

0uχ†χ

(
2π

λM
+

6 log(λ/m)

mM
− 2πm

λM2

)
.
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p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

5.1.2.3 Order 1/M : iDt − σ ·B interference

We find

MD,C = −(−i)
(

2

3

)
e4Q2

lQ
2
pcF ūγ

iγ5uχ†σiχ
1

M

∫
d4l

(2π)4
1

(l − k)2 −m2

~l2

(l2 − λ2)2
1

±l0 −
~l2

2M

MD

α2Q2
lQpcF

= −2

3
ūγiγ5uχ†σiχ

(
2π

λM
+

3 log(λ/m)

mM
− 2πm

λM2
+

31

8M2
− 15 log(2Λ/m)

4M2

)
MC

α2Q2
lQpcF

= −2

3
ūγiγ5uχ†σiχ

(
−3 log(λ/m)

mM
+

31

8M2
− 15 log(2Λ/m)

4M2

)

Thus,

MD+C = −2

3
α2Q2

lQpcF ūγ
iγ5uχ†σiχ

(
2π

λM
− 2πm

λM2
+

31

4M2
− 15 log(2Λ/m)

2M

)
.

As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

MNN =
2

3
α2cpF c

µ
Fχ
†
µσ

i
µχµχ

†
pσ

i
pχp

(
− 2π

(m+M)λ

)
. (5.20)

5.1.2.4 Order 1/M : D2 two-photon term

For the D2 two-photon interaction, only one diagram contributes.
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p

k

p

k � l k

The amplitude of this diagram is expressed as

M = (−i)3e4Q2
lQ

2
pū[γ0(m− l0)−m]uχ†χ

1

M

∫
d4l

(2π)4
1

[l2 − λ2]2
1

(l − k)2 −m2

= 3α2Q2
lQ

2
pūγ

0uχ†χ

(
− π

2λM
− 1

2mM
− 2 log(λ/m)

mM

)
− 3α2Q2

lQ
2
pūuχ

†χ

(
− π

2λM
+

1

2mM
− log(λ/m)

mM

)
. (5.21)

The non-relativistic limit of (5.21) is

MNR = α2Q2
lQ

2
pχ
†
µχµχ

†
pχp

(
2 logm− 2 log λ

mM
− 28

15
· 1

mM

)
. (5.22)

As a comparison, the NRQED-NRQED calculation of the analogous diagram gives

MNN = α2Q2
lQ

2
pχ
†
µχµχ

†
pχp

(
2 log(2Λ)− 2 log λ

mM
− 28

15
· 1

mM

)
. (5.23)

5.1.2.5 Order 1/M2: D2 −D2 interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k
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The amplitude of these two diagrams is

MD,C = (−i)e
4Q2

lQ
2
p

4M2
ū
[
γ0(m− l0)−m

]
uχ†χ

∫
d4l

(2π)4
1

(l − k)2 −m2

~l2

(l2 − λ2)2
1

±l0 −
~l2

2M

,

where

MD =
α2Q2

lQ
2
p

4M2

[
χ†χūγ0u

(
2πm

λ
+ 3 log(λ/m) +

3 log(2Λ/m)

2
+

1

4

)
− χ†χūu

(
2πm

λ
+ 3 log(λ/m)

)]
MC =

α2Q2
lQ

2
p

4M2

[
χ†χūγ0u

(
−3 log(λ/m)− 3 log(2Λ/m)

2
− 1

4

)
− χ†χūu (−3 log(λ/m))

]
.

Thus,

MD+C =
α2Q2

lQ
2
p

4M2

(
ūγ0u− ūu

)(2πm

λ

)
.

5.1.2.6 Order 1/M2: σ ·B − σ ·B interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k

The resulting amplitude is

MC +MD =
α2Q2

l c
2
F

2M2

[
ūγ0uχ†χ

(
IC0 + ID0

)
− ūuχ†χ

(
ICm + IDm

)
+ū

(
i

2
εijkγjγk

)
uχ†σiχ

1

3

(
IDm − ICm

)
+ ūγiγ5uχ†σiχ

1

3

(
IC0 − ID0

) ]
,

where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}~l2

[(l − k)2 −m2]
[
(l2 − λ2)2

] [
±l0 −

~l2

2M

] ,
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and

IDm =
2πm

λ
+ 3 log(λ/m)

ID0 =
2πm

λ
+ 3 log(λ/m) +

1

4
+

3

2
log(2Λ/m)

ICm = −3 log(λ/m)

IC0 = −3 log(λ/m)− 1

4
− 3

2
log(2Λ/m).

Thus,

MD+C =
α2Q2

l c
2
F

2M2

[
ūγ0uχ†χ

(
2πm

λ

)
− ūuχ†χ

(
2πm

λ

)
+ū

(
i

2
εijkγjγk

)
uχ†σiχ

(
2

3

πm

λ
+ 2 log(λ/m)

)
+ūγiγ5uχ†σiχ

(
−2

3

πm

λ
− 1

6
− 2 log(λ/m)− log(2Λ/m)

)]
.

5.1.2.7 Order 1/M2: D2 − σ ·B interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

MD+C =
α2Q2

lQpcF
M2

1

3
χ†σiχ

[
ū

(
i

2
εijkγjγk

)
u
(
IDm − ICm

)
− ūγiγ5u

(
ID0 − IC0

) ]
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where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}~l2

[(l − k)2 −m2]
[
(l2 − λ2)2

] [
±l0 −

~l2

2M

]

IDm =
2πm

λ
+ 3 log(λ/m)

ID0 =
2πm

λ
+

1

4
+ 3 log(λ/m) +

3 log(2Λ/m)

2

ICm = −3 log(λ/m)

IC0 = −1

4
− 3 log(λ/m)− 3 log(2Λ/m)

2
.

Thus

MD+C =
α2Q2

lQpcF
M2

1

3
χ†σiχ

[
ū

(
i

2
εijkγjγk

)
u

(
2πm

λ
+ 6 log(λ/m)

)
− ūγiγ5u

(
2πm

λ
+

1

2
+ 6 log(λ/m) + 3 log(2Λ/m)

)]
. (5.24)

5.1.2.8 Order 1/M2: iDt −∇ · E interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

MD+C = −α
2Q2

lQpcD
4M2

χ†χ

[
ūu
(
IDm + ICm

)
+ ūγ0u

(
ID0 + IC0

) ]
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where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}~l2

[(l − k)2 −m2] [l2 − λ2]2
[
±l0 −

~l2

2M

]

IDm =
2πm

λ
+ 3 log(λ/m)

ID0 =
2πm

λ
+ 3 log(λ/m) +

1

4
+

3

2
log(2Λ/m)

ICm = −3 log(λ/m)

IC0 = −3 log(λ/m)− 1

4
− 3

2
log(2Λ/m).

Thus

MD+C = −α
2Q2

lQpcD
4M2

χ†χ

[
ūu

(
2πm

λ

)
+ ūγ0u

(
2πm

λ

)]
. (5.25)

As a comparison, the NRQED-NRQED calculation of the analogous diagrams for the proton

gives

MNN = α2Q2
lQ

2
pc
p
Dχ
†
µχµχ

†
pχp

(
− πm

M(M +m)λ

)
, (5.26)

which is the sum of the terms in (5.25).

5.1.2.9 Order 1/M2: iDt − σ · (D × E − E ×D) interference:

Time derivative Feynman rule

p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

MD+C =
α2Q2

lQpcS
6M2

χ†σkχūγkγ5u
(
ID − IC

)
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where

ID,C = (−i)(4π)2
∫

d4l

(2π)4
l0~l2

[(l − k)2 −m2] [l2 − λ2]2
[
±l0 −

~l2

2M

]

ID = −3

2
log(2Λ/m)

IC =
3

2
log(2Λ/m).

Thus

MD+C =
α2Q2

lQpcS
6M2

χ†σkχūγkγ5u (−3 log(2Λ/m)) .

5.1.2.10 Order 1/M2: iDt − σ · (D × E − E ×D) interference:

Seagull Feynman rule

p

k

p

k � l k

p

k

p

k � l k

M =
α2Q2

l cS
3M2

χ†σkχūγkγ5u · I

where

I = (−i)(4π)2
∫

d4l

(2π)4

~l2

[(l − k)2 −m2] [l2 − λ2]2

I = −1

4
− 3

2
log(2Λ/m),

where Λ is a UV cutoff regulator.
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Thus

M =
α2Q2

l cS
3M2

χ†σkχūγkγ5u

(
−1

4
− 3

2
log(2Λ/m)

)
.

5.1.2.11 Order 1/M2: iDt − σ · (D × E − E ×D) interference:

Two-photon-time-derivative Feynman rule

The diagrams that contribute to this interaction are

p

k

p

k � l k

p

k

p

k � l k

The amplitude from these diagrams is

M =
α2Q2

l cS
M2

χ†σiχ

[
ūγiγ5u · I0 − ū

(
i

2
εijkγjγk

)
u · Im

]
,

where

Im,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0} l0

[(l − k)2 −m2]
[
(l2 − λ2)2

]

I0 =
log(λ/m)

2
− log(2Λ/m)

2
+

5

4

Im = log(λ/m) + 1,

where Λ is a UV cutoff regulator.

5.1.2.12 Order 1/M2: iDt −D4 interference

The resulting amplitude is

MD+C = −α
2Q2

lQ
2
p

8M3
χ†χ

[
ūu
(
IDm + ICm

)
+ ūγ0u

(
ID0 + IC0

) ]
,
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p

k

p

k � l k

p + l p

k

p

k � l k

p � l

where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}~l4

[(l − k)2 −m2] [l2 − λ2]2
[
±l0 −

~l2

2M

]2

IDm = O(1)

ID0 = O(1)

ICm = 0

IC0 = 0.

Thus,

MD+C = O
(

1

M3

)
. (5.27)

As a comparison, the NRQED-NRQED calculation of the analogous diagrams for the proton

gives

MNN = α2Q2
lQ

2
pχ
†
µχµχ

†
pχp

(
πm2

M(M +m)2λ

)
, (5.28)

which is the sum of the terms in (5.27).
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5.1.2.13 Total Result

The total EFT result in Feynman gauge from the expanded proton propagator method

is

MEFT = α2Q2
`

[(
2Q2

pπm

λ3
− 2Q2

pπm
2

λ3M
+

3Q2
pπ

4λM
− 2Q2

p

3mM
+

2Q2
p log(λ/m)

mM

+
2Q2

pπm
3

λ3M2
+

3Q2
pπm

4λM2
− QpcDπm

2λM2
− c2Fπm

λM2

)
ūuχ†χ

+

(
2Q2

pπm

λ3
−2Q2

pπm
2

λ3M
−5Q2

pπ

4λM
− 2Q2

p

3mM
−4Q2

p log(λ/m)

mM
+

2Q2
pπm

3

λ3M2
+

3Q2
pπm

4λM2
−QpcDπm

2λM2
+
c2Fπm

λM2

)
ūγ0uχ†χ

+

(
− 4Q2

pπ

3λM
+

4Q2
pπm

3λM2
− 2QpcFπm

3λM2
− c2Fπm

3λM2
− 31Q2

p

6M2
+

13QpcS
12M2

− QpcF
6M2

− c2F
12M2

+

(
QpcS
M2
− 2QpcF

M2
− c2F
M2

)
log(λ/m)+

(
5

M2
− 3cS

2M2
− cF
M2
− c2F

2M2

)
log(2Λ/m)

)
ūγiγ5uχ†σiχ

+

(
2QpcFπm

3λM2
+
c2Fπm

3λM2
−QpcS
M2

+

(
−QpcS
M2

+
2QpcF
M2

+
c2F
M2

)
log(λ/m)

)
ū

(
i

2
εijkγjγk

)
uχ†σiχ

]
.

(5.29)

When this result is taken to the non-relativistic limit, i.e. ūu, ūγ0u→ χ†`χ`, ū
(
i
2
εijkγjγk

)
u, ūγiγ5u→

χ†`σ
iχ`, and the proton Wilson coefficients are set to Qp, the result is

MNR
EFT

Q2
lQ

2
pα

2
= χ†`χ`χ

†
pχp

[
4mπ

λ3
− 4

3mM
− 4m2π

Mλ3
− π

2Mλ
+

2 log(m/λ)

mM
+

4m3π

M2λ3
+

mπ

2M2λ

]
+ χ†`σ

iχ`χ
†
pσ

iχp

[
− 4π

3Mλ
− 16

3M2
+

4mπ

3M2λ
− 2 log(m/2Λ)

M2

]
, (5.30)

which is the same as Eq. 5.14 once it has been expanded in 1/M , and the M in the

logarithmic term has been replaced by a cut-off energy 2Λ.

5.1.3 Extraction of b1 and b2

With the amplitude of the point particle and the EFT calculations, we can now determine

the Wilson coefficients b1 and b2 by taking difference of the two amplitudes. After expanding

the 1/λ terms in the point particle solution, and the proton Wilson coefficients to Qp, the
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difference between the point particle and EFT results is

Mp.p. −MEFT =
α2Q2

`Q
2
p

M2

(
16

3
− 2 log(2Λ/M)

)
ūγiγ5uχ†σiχ, (5.31)

where Λ is the UV cutoff of QED-NRQED.

5.2 Two Photon Exchange: Coulomb Gauge

For the two photon exchange calculations, we have set the proton incoming (~p) and

outgoing (~p′) to zero. Here we will use the same methods to solve the integrals as we have

done before and only terms up to 1/M2 are kept.

5.2.1 QED Point Particle

The amplitude of the point particle in Coulomb gauge is calculated using the same method

that was used for the Feynman gauge. The total amplitude is

Mp.p

α2Q2
`Q

2
p

=

(
2πmM

λ3(m+M)
+

17π

16λ(m+M)
+

2 log(λ/m)

mM
+

2m log(m/M)

M(m2 −M2)
− 247

105mM

)
ūuχ†χ

+

(
2πmM

λ3(m+M)
− 25π

16λ(m+M)
− 4 log(λ/m)

mM
− 4m log(m/M)

M(m2 −M2)
+

107

105mM

)
ūγ0uχ†χ

+

(
− π(8M + 3m)

6λM(m+M)
− 2 log(λ/m)

3M2
− 2(m2 − 3M2) log(m/M)

3M2(m2 −M2)
+

23

45M2

)
ūγiγ5uχ†σiχ

+

(
πm

2λM(m+M)
+

2 log(λ/m)

3M2
+

2m2 log(m/M)

3M2(m2 −M2)
− 23

45mM

)
ū

(
i

2
εijkγjγk

)
uχ†σiχ.

(5.32)

Notice that this is not the same as the amplitude in the Feynman gauge, as seen in Eq. 5.13.

In the non-relativistic limit ūu, ūγ0u → χ†`χ`, and ū
(
i
2
εijkγjγk

)
u, ūγiγ5u → χ†`σ

iχ` and

we obtain

MNR
p.p.

Q2
lQ

2
pα

2
= χ†`χ`χ

†
pχp

[
4mMπ

(m+M)λ3
− π

2(m+M)λ
+

2

mM

(
m2 logM −M2 logm

m2 −M2
− log λ− 2

3

)]
+ χ†`σ

iχ`χ
†
pσ

iχp

[
− 4π

3(m+M)λ
+

2 log(m/M)

m2 −M2

]
, (5.33)
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which is the same as Feynman gauge result in Eq. 5.14 and the NRQED-NRQED result [79].

5.2.2 Effective Field Theory

In the following calculations, k = (m,~0), and everything at order 1/M3 and above is

omitted. The method used in this section is the same as in Sec 5.1.2. Only the expanded

solutions are presented.

5.2.2.1 Leading Power

Here are the two diagrams that contribute to the Leading Power interaction.

p

k

p + l p

k � l k

p

k

p � l p

k � l k

Calculating the direct and cross Coulomb photon exchange diagrams, we find

MDirect+Crossed = α2Q2
lQ

2
pχ
†χ
[
ūγ0u

(
ID0 + IC0

)
+ ūu

(
IDm + ICm

)]
,

where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}

[(l − k)2 −m2]
(
~l2 + λ2

)2 [
±l0 −

~l2

2M

] ,
and

IDm =
2mπ

λ3
− π

2mλ
+

8

3m2
− 2

3mM
− 2m2π

Mλ3
− 1

3M2
+

2m3π

M2λ3
+

mπ

2M2λ

ICm =
π

2mλ
− 8

3m2
− 2

3mM
+

1

3M2

ID0 =
2mπ

λ3
+

π

2mλ
− 4

3m2
+

4

3mM
− 2m2π

Mλ3
− π

Mλ
− 7

3M2
+

2m3π

M2λ3
+

3mπ

2M2λ
+

2 log(2Λ/m)

M2

IC0 = − π

2mλ
+

4

3m2
+

4

3mM
+

7

3M2
− 2 log(2Λ/m)

M2
,
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where Λ is a UV cutoff regulator. In total

MD+C

Q2
lQ

2
pα

2
= ūuχ†χ

[
2mπ

λ3

(
1− m

M
+
m2

M2

)
+

mπ

2M2λ
− 4

3mM

]
+ ūγ0uχ†χ

[
2mπ

λ3

(
1− m

M
+
m2

M2

)
− π

Mλ

(
1− 3

2

m

M

)
+

8

3mM

]
. (5.34)

As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

MNN

Q2
lQ

2
pα

2
= χ†µχµχ

†
pχp

4mMπ

(m+M)λ3
, (5.35)

i.e. the sum of the two 1/λ3 terms in (5.34) agrees with the 1/M expansion of this result,

as expected.

5.2.2.2 Order 1/M : iDt −D2 interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

We find

MD,C = (−i)∓ e4Q2
lQ

2
pūγ

0uχ†χ
1

M

∫
d4l

(2π)4
1

(l − k)2 −m2

1

l2 − λ2
1

±l0 −
~l2

2M

λ2~l2

(~l2 + λ2)2

(5.36)

MD = −α2Q2
lQ

2
pūγ

0uχ†χ

(
− π

2λM
+

2

5mM
+

πm

2λM2

)
MC = +α2Q2

lQ
2
pūγ

0uχ†χ

(
− 2

5mM

)

Thus

MD+C = α2Q2
lQ

2
pūγ

0uχ†χ

(
π

2λM
− 4

5mM
− πm

2λM2

)
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As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

MNN = α2Q2
lQ

2
pχ
†
µχµχ

†
pχp

(
− 4

5mM
+

π

2(M +m)λ

)
, (5.37)

i.e. the same result.

5.2.2.3 Order 1/M : iDt − σ ·B interference

The diagrams that contribute to this interaction are

p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

We find

MD,C = (−i)
(

2

3

)
e4Q2

lQpcF ūγ
iγ5uχ†σiχ

1

M

∫
d4l

(2π)4
1

(l − k)2 −m2

1

l2 − λ2
1

±l0 −
~l2

2M

~l2

~l2 + λ2

MD

α2Q2
lQpcF

=
2

3
ūγiγ5uχ†σiχ

(
− 2π

λM
− 2 log(λ/m)

mM
+

4

3mM
+

2πm

λM2
− 4

M2
+

3 log(2Λ/m)

M2

)
MC

α2Q2
lQpcF

=
2

3
ūγiγ5uχ†σiχ

(
2 log(λ/m)

mM
− 4

3mM
− 4

M2
+

3 log(2Λ/m)

M2

)

Thus

MD+C =
2

3
α2Q2

lQpcF ūγ
iγ5uχ†σiχ

(
− 2π

λM
+

2πm

λM2
− 8

M2
+

6 log(2Λ/m)

M2

)

As a comparison, the NRQED-NRQED calculation of the analogous diagrams gives

MNN =
2

3
α2cpF c

µ
Fχ
†
µσ

i
µχµχ

†
pσ

i
pχp

(
− 2π

(m+M)λ

)
. (5.38)
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5.2.2.4 Order 1/M : D2 two-photon term

p

k

p

k � l k

M = (−i)e4Q2
lQ

2
pū
[
γ0(m− l0)−m

]
uχ†χ

1

M

∫
d4l

(2π)4
1

(l − k)2 −m2

(
1

l2 − λ2
)2
(

2 +
λ4

(~l2 + λ2)2

)

= α2Q2
lQ

2
pūγ

0uχ†χ
1

M

(
−17π

16λ
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105m
− 4 log(λ/m)

m

)
− α2Q2

lQ
2
pūuχ

†χ
1

M

(
−17π

16λ
+

107

105m
− 2 log(λ/m)

m

)
(5.39)

As a comparison, the NRQED-NRQED calculation of the analogous diagram gives

MNN = α2Q2
lQ

2
pχ
†
µχµχ

†
pχp

(
2 log(2Λ)− 2 log λ

mM
− 28

15
· 1

mM

)
. (5.40)

The non-relativistic limit of (5.39) is

MNR = α2Q2
lQ

2
pχ
†
µχµχ

†
pχp

(
2 logm− 2 log λ

mM
− 28

15
· 1

mM

)
. (5.41)

5.2.2.5 Order 1/M2: D2 −D2 interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k
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MD,C = (−i)e
4Q2

lQ
2
p

4M2
ū
[
γ0(m− l0)−m

]
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∫
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1
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MD

α2Q2
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= χ†χ
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ūγ0u− ūu

) 1
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(
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)
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2
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= χ†χ
(
ūγ0u− ūu

) 1
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(
6

35

)

Thus

MD+C =
α2Q2

lQ
2
p

4M2

(
ūγ0u− ūu

) (πm
4λ

)
5.2.2.6 Order 1/M2: σ ·B − σ ·B interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k

MC +MD =
α2Q2

l c
2
F

2M2

[
ūγ0uχ†χ

(
IC0 + ID0

)
− ūuχ†χ

(
ICm + IDm

)
+ū

(
i

2
εijkγjγk

)
uχ†σiχ

1

3

(
IDm − ICm

)
+ ūγiγ5uχ†σiχ

1

3

(
IC0 − ID0

) ]

where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}~l2

[(l − k)2 −m2]
[
(l2 − λ2)2

] [
±l0 −

~l2

2M

]
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IDm =
2πm

λ
+ 3 log(λ/m)

ID0 =
2πm

λ
+ 3 log(λ/m) +

1

4
+

3

2
log(2Λ/m)

ICm = −3 log(λ/m)

IC0 = −3 log(λ/m)− 1

4
− 3

2
log(2Λ/m).

Thus

MC +MD =
α2Q2

l c
2
F

M2

[
ūγ0uχ†χ

(
2πm

λ

)
− ūuχ†χ

(
2πm

λ

)
+ū

(
i

2
εijkγjγk

)
uχ†σiχ

(
2

3

πm

λ
+ 2 log(λ/m)

)
+ūγiγ5uχ†σiχ

(
−2

3

πm

λ
− 1

6
− 2 log(λ/m)− log(2Λ/m)

)]
.

5.2.2.7 Order 1/M2: D2 − σ ·B interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

MC +MD =
α2Q2

lQpcF
M2

1

3
χ†σiχ

[
ū

(
i

2
εijkγjγk

)
u
(
IDm − ICm

)
− ūγiγ5u

(
ID0 − IC0

) ]

where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}~l2λ2

[(l − k)2 −m2]
[
(l2 − λ2)2

] [
~l2 + λ2

] [
±l0 −

~l2

2M

]
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IDm =
πm

2λ
− 3

5

ID0 =
πm

2λ
− 3

5

ICm =
3

5

IC0 =
3

5
.

Thus

MC +MD =
α2Q2

lQpcF
M2

1

3
χ†σiχ

[
ū

(
i

2
εijkγjγk

)
u− ūγiγ5u

](
πm

2λ
− 6

5

)
.

5.2.2.8 Order 1/M2: iDt −∇ · E interference

p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

MC +MD = −α
2Q2

lQpcD
4M2

χ†χ

[
ūu
(
IDm + ICm

)
+ ūγ0u

(
ID0 + IC0

) ]
where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}~l2

[(l − k)2 −m2]
[
~l2 + λ2

]2 [
±l0 −

~l2

2M

]
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IDm =
2πm

λ
− 4

ID0 =
2πm

λ
− 4 + 4 log(2Λ/m)

ICm = 4

IC0 = 4− 4 log(2Λ/m).

Thus,

MC +MD = −α
2Q2

lQpcD
4M2

χ†χ

[
ūu

(
2πm

λ

)
+ ūγ0u

(
2πm

λ

)]
(5.42)

As a comparison, the NRQED-NRQED calculation of the analogous diagrams for the proton

gives

MNN = α2Q2
lQ

2
pc
p
Dχ
†
µχµχ

†
pχp

(
− πm

M(M +m)λ

)
, (5.43)

which is the the sum of the terms in (5.42).

5.2.2.9 Order 1/M2: iDt − σ · (D × E − E ×D) interference:

Time derivative Feynman rule

p

k

p + l p

k � l k

p

k

p � l p

k � l k

p

k

p + l p

k � l k

p

k

p � l p

k � l k

MC +MD =
α2Q2

lQpcS
6M2

χ†σkχūγkγ5u
(
IC − ID

)
where

ID,C = (−i)(4π)2
∫

d4l

(2π)4
l0~l2

[(l − k)2 −m2] [l2 − λ2]
[
~l2 + λ2

] [
±l0 −

~l2

2M

]
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ID = 2 log(2Λ/m)

IC = −2 log(2Λ/m).

Thus,

MC +MD =
α2Q2

lQpcS
6M2

χ†σkχūγkγ5u (−4 log(2Λ/m)) .

5.2.2.10 Order 1/M2: iDt − σ · (D × E − E ×D) interference:

Seagull Feynman rule

p

k

p

k � l k

p

k

p

k � l k

M = −α
2Q2

l cS
3M2

χ†σkχūγkγ5u · I

where

I = (−i)(4π)2
∫

d4l

(2π)4

~l2

[(l − k)2 −m2] [l2 − λ2]
[
~l2 + λ2

]
I = 2 log(2Λ/m),

where Λ is a UV cutoff regulator.

Thus

M = −α
2Q2

l cS
3M2

χ†σkχūγkγ5u (2 log(2Λ/m)) .
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p

k

p

k � l k

p

k

p

k � l k

5.2.2.11 Order 1/M2: iDt − σ · (D × E − E ×D) interference:

Two-photon-time-derivative Feynman rule

M =
α2Q2

l cS
M2

χ†σiχ

[
ūγiγ5u · I0 − ū

(
i

2
εijkγjγk

)
u · Im

]
where

Im,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0} l0

[(l − k)2 −m2]
[
(l2 − λ2)2

]
1− 2~l 2

3
(
~l2 + λ2

)


where

I0 =
log(λ/m)

3
− log(2Λ/m)

6
+

7

36

Im =
log(λ/m)

3
+

1

9
,

where Λ is a UV cutoff regulator.

5.2.2.12 Order 1/M2: iDt −D4 interference

p

k

p

k � l k

p + l p

k

p

k � l k

p � l
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MC +MD = −α
2Q2

lQ
2
p

8M3
χ†χ

[
ūu
(
IDm + ICm

)
+ ūγ0u

(
ID0 + IC0

) ]
where

ID,Cm,0 = (−i)(4π)2
∫

d4l

(2π)4
{m,m− l0}~l4

[(l − k)2 −m2]
[
~l2 + λ2

]2 [
±l0 −

~l2

2M

]2

IDm = O(1)

ID0 = O(1)

ICm = O(1)

IC0 = O(1).

Thus,

MC +MD = O
(

1

M3

)
. (5.44)

As a comparison, the NRQED-NRQED calculation of the analogous diagrams for the proton

gives

MNN = α2Q2
lQ

2
pχ
†
µχµχ

†
pχp

(
πm2

M(M +m)2λ

)
, (5.45)

which is the sum of the terms in (5.44).



67

5.2.2.13 Total Result

The total EFT result in Coulomb gauge is

MEFT = α2Q2
`

[(
2Q2

pπm

λ3
− 2Q2

pπm
2

λ3M
+

17Q2
pπ

16λM
− 247Q2

p

105mM
+

2Q2
p log(λ/m)

mM

+
2Q2

pπm
3

λ3M2
+

7Q2
pπm

16λM2
− QpcDπm

2λM2
− c2Fπm

λM2

)
ūuχ†χ

+

(
2Q2

pπm

λ3
− 2Q2

pπm
2

λ3M
− 25Q2

pπ

16λM
+

107Q2
p

105mM
− 4Q2

p log(λ/m)

mM

+
2Q2

pπm
3

λ3M2
+

17Q2
pπm

16λM2
− QpcDπm

2λM2
+
c2Fπm

λM2

)
ūγ0uχ†χ

+

(
− 4QpcFπ

3λM
+

7QpcFπm

6λM2
− c2Fπm

3λM2
+

7QpcS
36M2

− 74QpcF
15M2

− c2F
12M2

+

(
QpcS
3M2

− c2F
M2

)
log(λ/m)

+

(
− 3QpcS

2M2
+

4QpcF
M2

− c2F
2M2

)
log(2Λ/m)

)
ūγiγ5uχ†σiχ

+

(
QpcFπm

6λM2
+
c2Fπm

3λM2
−QpcS

9M2
−2QpcF

5M2
+

(
−QpcS

3M2
− c2F
M2

)
log(λ/m)

)
ū

(
i

2
εijkγjγk

)
uχ†σiχ

]
.

(5.46)

Note that as in the point-particle case, this is not the same result as the Feynman gauge as

seen in Eq. 5.29.

When this result is taken to the non-relativistic limit, i.e. ūu, ūγ0u→ χ†`χ`, ū
(
i
2
εijkγjγk

)
u, ūγiγ5u→

χ†`σ
iχ`, and the proton Wilson coefficients are set to Qp, the result is

MNR
EFT

Q2
lQ

2
pα

2
= χ†`χ`χ

†
pχp

[
4mπ

λ3
− 4

3mM
− 4m2π

Mλ3
− π

2Mλ
+

2 log(m/λ)

mM
+

4m3π

M2λ3
+

mπ

2M2λ

]
+ χ†`σ

iχ`χ
†
pσ

iχp

[
− 4π

3Mλ
− 16

3M2
+

4mπ

3M2λ
− 2 log(m/2Λ)

M2

]
, (5.47)

which is the same result as the Feynman gauge calculation and the same as both point

particle calculations once they been expanded in 1/M , and the M in the logarithmic term

has been replaced by a cut-off energy 2Λ.
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5.2.3 Extraction of b1 and b2

Just as before, we can now find the Wilson coefficients b1 and b2 by taking the difference

between the point particle and EFT amplitudes. After expanding the 1/λ terms in the point

particle solution, and the proton Wilson coefficients to Qp, the difference between the point

particle and EFT result is

Mp.p. −MEFT =
α2Q2

`Q
2
p

M2

(
16

3
− 2 log(2Λ/M)

)
ūγiγ5uχ†σiχ, (5.48)

This is the same result as the Feynman gauge in Eq. 5.31.

5.3 Two Photon Exchange Results at Order 1/M 2 Con-

clusion

One should note that the Coulomb and Feynman do not give the same final answer

in the EFT case nor for the case of the point-like proto,. All four calculations do agree

however once the lepton line is taken to the non-relativistic limit. In the relativistic limit,

it is only the differences between the point-like proton and real proton where the different

gauges agree. This shows that the QED-NRQED EFT is able to provide information about

the Wilson coefficients b1 and b2. Although we obtain different amplitudes in the Coulomb

and Feynamn gauge, the differences between the QED point particle result and the QED-

NRQED real proton result are the same in both gauges, meaning that b1 and b2 are the same

in both gauges. When matching the QED-NRQED EFT to the point particle, the value of

the Wilson coefficients b1 and b2 are

b1 = 0 +O(α3) b2 = α2Q2
`Q

2
p

[
16

3
− 2 log

(
2Λ

M

)]
+O(α3). (5.49)

Because terms with an even number of gamma matrices are suppressed by a factor of m/M ,

the coefficients of the ūuχ†χ and ū(εijkγjγk)uχ†σiχ terms are expected to be zero, and in
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fact they are. What is surprising is that b1, is also zero. It remains to be seen if this also

the case in the matching to a real proton
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CHAPTER 6: CONCLUSIONS AND OUTLOOK

6.1 Conclusion

It has been seven years since the proton charge radius puzzle was brought to light and the

scientific community is no closer to solving it now. While there are many contributions that

have to be taken into account when calculating the charge radius, the TPE contribution has

a much higher uncertainty than many others, and is the focus of the work presented here.

This dissertation has established the QED-NRQED EFT by reproducing known calculations.

These calculations are the one-photon exchange which in turned reproduced Rosenbluth

scattering up to O(m2/M2), and TPE at leading order in m/M , which in turned produced

Mott scattering with an α correction. New results presented in Chapter 5 consisted of

higher orders of TPE calculations inO(m2/M2), and showing that these calculations produce

consistent results. These calculations were completed to determine the Wilson coefficients

b1 and b2 in the QED-NRQED effective lagrangian, Eq. 3.7. Surprisingly, in the case of a

point-like proton, b1 = 0.

6.2 Future Work

One of the issues involved in the extraction of the proton charge radius from muonic

hydrogen is the hadronic uncertainty associated with the two-photon exchange amplitude.

Only its imaginary part can be directly reconstructed from experimental data. Since there is

a term that needs to be subtracted in the dispersion relation, the amplitude cannot be fully

reconstructed from its imaginary part. We have some information about the subtraction

function, but by and large, it has to be modeled [68].

There have been several studies of this issue, see e.g. [77, 80, 81, 82, 83], but considering

the far-reaching implications of the puzzle it is important to explore a variety of approaches.

One such approach is to directly match onto NRQED to describe proton structure effects in

hydrogen-like systems as was done in [68]1. From such an analysis one finds that the muonic

1See also [66, 67] for a different approach that first used NRQED for this problem.
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hydrogen measurement depends on two Wilson coefficients in the NRQED Lagrangian. One

is equivalent to the charge radius. The other is the coefficient of the spin-independent

muon-proton contact interaction and could be determined by matching to the two-photon

amplitude, if it was fully known.

The muonic hydrogen result can be tested in the planned muon-proton scattering ex-

periment, MUSE [5]. In this experiment, the 3-momentum of the muons is of the order of

the muon mass. QED-NRQED is an appropriate EFT as it combines relativistic muons and

non-relativistic protons interactions, and is naturally organized as an expansion in α and

m/M . This dissertation has presented three QED-NRQED calculations: O(Qpα) amplitude

results up to and including power m2/M2, O(Q2
pα

2) at leading power in m/M , and values for

the Wilson coefficients b1 and b2 by matching these amplitudes onto point particle results.

With the results obtained the cross section can be determined as well. In order to accomplish

this, the hadronic tensor W µν will be needed, and is defined as

W µν(k, s, q) = i

∫
d4x eiq·x〈k, s|T{Jµe.m.(x)Jνe.m.(0)}|k, s〉 , (6.1)

where k is the nucleon three-momentum, s its spin, and Jµe.m. is the electromagnetic current.

Note that some authors refer to this quantity as T µν [84, 85].

Using current conservation, and invariance of electromagnetic interactions under parity

and time-reversal, W µν can be expressed as

W µν = ūp(k, s)

[(
−gµν +

qµqν

q2

)
W1(ν,Q

2) +

(
kµ − k · q qµ

q2

)(
kν − k · q qν

q2

)
W2(ν,Q

2)

+

(
[γν ,/q]kµ − [γµ,/q]kν + [γµ, γν ]q · k

)
H1(ν,Q

2)

+

(
[γν ,/q]qµ − [γµ,/q]qν + [γµ, γν ]q2

)
H2(ν,Q

2)

]
up(k, s) , (6.2)

where the four scalar functions W1, W2, H1, and H2 depend on the variables ν = 2k · q

and Q2 = −q2. For a point particle, W1 = 2ν2/(Q4 − ν2), W2 = 8Q2/(Q4 − ν2), H1 =
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−2Q2/(Q4 − ν2), and H2 = 0. W1 and W2 are defined as

W1(ν,Q
2) = W1(0, Q

2) +
ν2

π

∫ ∞
0

dν ′2
ImW1(ν

′, Q2)

ν ′2(ν ′2 − ν2) ,

W2(ν,Q
2) =

1

π

∫ ∞
0

dν ′2
ImW2(ν

′, Q2)

ν ′2 − ν2 . (6.3)

Future work will consist of relating the two photon exchange calculations Wilson coef-

ficients b1 and b2 to the full two-photon amplitude, i.e. W1, W2, H1, and H2. This final

expected result will look similar to Eq. 7 in Ref. [68]. We will also compare to the NRQED

Wilson coefficients d1 and d2 either directly by matching, or indirectly via the full two-

photon amplitude. Once this is done, one could calculate the lepton-proton cross section

in QED-NRQED. Ideally this would lead to a direct model-independent relation between

muon-proton scattering and muonic hydrogen spectroscopy, or in other words, use data to

resolve the hadronic uncertainty.



73

APPENDIX: KINEMATICS

We consider lepton-proton scattering, `(k) + p(p) → `(k′) + p(p′) in the initial proton

rest frame, i.e. ~p = 0. We denote the leption mass by m and the proton mass by M . The

initial lepton energy is E and the final lepton energy is E ′. The scattering angle, i.e. the

angle between ~k and ~k′ is θ. We define q = k − k′ = p′ − p.

For spin-averaged 2→ 2 scattering there are only two independent variables, so many of

the kinematical variables can be related to one another:

p′ = p+ q, k′ = k − q, p2 = M2, k2 = m2,

p · q = M(E − E ′) = Mq0 = −q2/2,

k · q = q2/2, ~q 2 = −q2 + q4/4M2. (4)

There are also several approximate relations between the various kinematic variables:

q2 = −~q 2 + ~q 4/4M2 +O
(

1

M3

)
~k · ~q = ~q 2/2 +O

(
1

M

)
~k′ · ~q = −~q 2/2 +O

(
1

M

)
(5)

The differential cross section is given by:

dσ

dΩ
=

1

64π2M

|~k′|
|~k|

1∣∣∣∣M + E − |
~k|E ′cosθ
|~k′|

∣∣∣∣
|M|2, (6)

where as usual |M|2 is the spin-averaged amplitude squared.

Usually the Dirac spinors are normalized via u†u = 2E. For NRQED the spinors are
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normalized as ξ†ξ = 1. As a result we can relate the amplitude for lepton-proton scattering in

the standard normalization (M) to that of QED-NRQED (MQN) viaM = 2
√
Ep′EpMQN.

In the rest frame of the initial proton the spin averaged amplitudes |M|2 and |M|2QN are

related by |M|2 = 4MEp′ |M|
2

QN, where Ep′ =
√
M2 + ~q 2.

Spin averaged squared amplitudes in QED-NRQED can be calculated by an analogue of

the Casimir trick. Thus for the amplitude of the form M = ξ†p′ Σ ξp ū(k′) Γu(k), where ξ is

a two-component spinor, Σ = ~σ or 12×2, u is a Dirac spinor, and Γ part of the Dirac basis,

|M|2QN =
1

4
Tr
[
ΣΣ†

]
Tr
[
(/k +m)Γ(/k′ +m)Γ

]
, (7)

where Γ = γ0Γ†γ0.
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In 2010 the first extraction of the proton charge radius from muonic hydrogen was found

to be five standard deviations away from the regular hydrogen value. Seven years later,

this proton radius puzzle still persists, and challenges our understanding of the structure of

the proton. An effective field theory analysis using Non-Relativistic Quantum Electrody-

namics (NRQED) indicates that the muonic hydrogen result can be interpreted as a large,

compared to some model estimates, muon-proton spin-independent contact interaction. The

muonic hydrogen result can be tested by a muon-proton scattering experiment, MUSE, that

is planned at the Paul Scherrer Institute in Switzerland. The typical momentum of the

muons in this experiment is of the order of the muon mass. In this energy regime the muons

are relativistic but the protons are still non-relativistic. The interaction between the muons

and protons can be described by a new effective field theory QED-NRQED. This document

will present elements of this effective field theory, which will include the reproduction of

Rosenbluth scattering up to the second power in the inverse proton mass, relativistic scat-

tering off of a static potential, scattering amplitudes up to the inverse proton mass squared,

and the determination of the four-fermion contact interactions.
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