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Al Diwaniyah, Iraq 
 
 
Iterative Sure Independent Screening (ISIS) was proposed for the problem of variable 
selection with ultrahigh dimensional feature space. Unfortunately, the ISIS method 
transforms the dimensionality of features from ultrahigh to ultra-low and may result in un-
reliable inference when the number of important variables particularly is greater than the 
screening threshold. The proposed method has transformed the ultrahigh dimensionality of 
features to high dimension space in order to remedy of losing some information by ISIS 
method. The proposed method is compared with ISIS method by using real data and 
simulation. The results show this method is more efficient and more reliable than ISIS 
method. 
 
Keywords: VIF-Regression, ISIS, screening, feature selection, high dimensional data 
 

Introduction 

The rapid evolution of communication networks and information technology has 
allowed us to collect millions of data with massive features, especially in gene 
expression and microarray data related fields, as well as in financial sciences, 
machine learning, computer sciences and other multidisciplinary scientific fields 
(Algamal & Lee, 2015; Algamal, Lee, & Al-Fakih, 2016; Zhang, Fu, Jiang, & Yu, 
2007; Zheng & Liu, 2011). This type of data forms a big challenge to researchers 
for providing statistical tools with the ability to deal with such data. It is well known 
that regression feature selection targets a subset of important features which 
satisfies a determined criterion (Alhamzawi & Algamal, 2018). Tools for analyzing 
high dimensional data include Lasso (Tibshirani, 1996), SCAD (Fan & Li, 2001), 
LARS (Efron, Hastie, Johnstone, & Tibshirani, 2004), Elastic-Net (Zou & Hastie, 
2005), adaptive Elastic-Net (Zou & Zhang, 2009), and Adaptive Lasso (Zou, 2006).  
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Data collection of unprecedented size and complexity has become easier due 
to the daily growth of computing power and its technologies that allowed to appear 
ultrahigh dimensional features in which the number of predictors or features (p) 
extremely exceeds the number of observations (n), p ≫	n (Algamal, Lee, Al-Fakih, 
& Aziz, 2015; Fan & Lv, 2010). Unfortunately, the high dimensional methods 
mentioned above cannot apply directly with this type of data because they are time 
consuming and they lead to loss of statistical inference accuracy and algorithmic 
stability.  

Jianqing Fan and Jinchi Lv (2008) suggested sure independence screening 
(SIS) which is a very effective procedure to tackle the ultrahigh dimensional feature 
problem. In the context of least squares regression, SIS algorithm starts with very 
simple procedure called screening. Screening means ranking features that have the 
best marginal correlation with the response, and then picking up the top features 
that indexed from the first rank to the feature that has been ranked at d where 
d = n/log(n). Lasso or SCAD can be applied in the second stage to select the 
important features among d of them. 

Jianqing Fan and Jinchi Lv (2008) pointed out that regularity conditions may 
fail with SIS in some cases, so they Iterated SIS (ISIS) using subsamples procedure 
to process these cases. Subsampling performs false selection rate for controlling 
inclusion noise variables in the second stage of SIS. An important Lasso limitation 
is it selects at most n features where p > n. But, it is remarkable that the key idea of 
SIS is forcing the dimensionality p to be less than the sample size n. It means the 
screening feature transforms the dimensionality feature space from ultrahigh to 
ultra-low. As a result of this procedure, selection of important features cannot 
exceed d, where d < n and d ≪	p, consequently SIS algorithm has a problem like 
lasso's problem. The second stage ISIS works by iteratively performing Lasso or 
SCAD algorithm to recruit z features where z < d.  

Sure independence screening method 

Consider a dataset , where yi is a response variable and 

Xi = (xi1, xi2, …, xip) represents a p-dimensional explanatory variable vector. 
Without loss of generality, it is assumed that the response variable is centered and 
the explanatory variables are standardized.  

Consider the following linear regression model, 
 

  (1) 

yi ,x i( ){ }i=1
n

y = Xβ + e,
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where y is an n × 1 vector of observations of the response variable, X = (x1, …, xp) 
is an known design matrix of n × p explanatory variables, β = (β1, …, βp)T is a p × 1 
vector of unknown regression coefficients, and ε is an n × 1 vector of random errors 
with mean 0 and variance σ2. Using OLS method, the parameter estimation of (1) 
is given by 
 
  (2) 

 
The OLS estimator is unbiased and it has minimum variance among all linear 

unbiased estimators. In practice, for multiple linear regression model, this model 
contains irrelevant or noisy variables leading to low performance with less 
prediction precision. As a consequence, analyzing variables in terms of their 
importance has become a necessary task. The sure independence screening method 
(SIS) has shown excellent performance in reducing high dimensionality (Fan & Lv, 
2008). To improve the prediction stability and to expedite computation time Fan 
and Lv (2008) proposed SIS procedure for ultrahigh-dimensional linear models. 
They utilized the Pearson correlation to rank the importance of each variable. An 
advantage of SIS is it has the sure screening property which can retain all truly 
important variables with probability tending one (Fan & Lv, 2008; Fan & Song, 
2010). 

When X and Y are normalized, the correlations between the response variable 
and explanatory features are equal to the regression coefficients estimate. This 
advantage can be very useful to rank the absolute value of these correlations from 
the maximum to minimum ones. Where the important feature correlated with noise 
feature, the absolute value of marginal correlation between noise feature and the 
response variable will be ranked after the lowest absolute correlation between 
important feature and response. To illustrate, suppose, X1, …, Xp standardized 
features and only X1, …, Xk has the best contribution with corresponding Y where 
k < p. The absolute value of the marginal correlation  between Y and 
X1, …, Xp allows to sequence the estimated correlations from the maximum to 
minimum ones. Assume that, the feature X1 is strongly correlated with the noise 
feature Xk + i, i > k where the sequencing list of marginal correlations should be such 
that  which begins from the largest and ends 

with the lowest value. Postulate that k + i < d < n < p; the screening feature of SIS 
will pick up d features which suffer from collinearity problem. Feature selection 

β̂OLS = X TX( )−1 X T y

R̂j=1,...,p*

R̂1* > R̂2* >,…, R̂k* > R̂k+i* >,…,> R̂p*
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may include the noise feature to the right model dependent on the degree of strong 
relation between X1 feature and Xk + i.  

Lin, Foster, and Ungar (2011) pointed out high dimensional penalized 
methods introduce bias estimates, therefore they proposed attracted approach to 
correct this bias by pre-sampling a small set of data to compute the variance 
inflation factor (VIF) of each variable. The VIF-regression is a non-greedy version 
of forward selection that combined with α-investing rule Zhou et al. (2006). A 
significant level (α) is iteratively adjusted p-value for multiple hypotheses testing 
(Foster & Stine, 2008). This rule is based on one of gamble kinds in which the 
gambler begins with initial wealth w0 and he can earn ∆w when the null hypothesis 
H0 : βj = 0 of jth test is rejected. On the contrary, the gambler losses an α ⁄ (1 − α), 
where α = wj ⁄ (1 + j − f) and f is the time of hypothesis was rejected. Unfortunately, 
the performance of VIF-Regression is very slow for ultrahigh dimensional features. 
This paper aims to suggest an approach for improving the performance of VIF-
Regression for ultrahigh dimensional features. However there are several practical 
questions with the with screening feature: 

 
1. Does the screening procedure remove at least one important feature 

when the number of important features really exceeds d? 
 

2. Does the performance of ISIS exceed d when the number of samples 
is small and the number of important features is not? 

 
3. Does the ISIS method select the most important feature in the presence 

of multicollinearity problem? 
 
To answer these questions, a two-step approach is presented. First, reducing 

the ultrahigh dimension to high dimension without loss, by suggesting some cut-
off points instead of screening feature threshold. The second step is to answer the 
remaining questions by using VIF-Regression (Lin et al., 2011) for the reduced 
space. 
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The proposed method: VIF Regression Screening 
(VIFRegS) Algorithm 

Let X' and Y' be the standardized form of X and Y respectively, that to find the 
positive values of their marginal correlations . The VIFRegS algorithm can be 

described in the following steps: 

Step I: Screening Features 
Sequencing features based on their corresponding positive correlations from the 
largest to lowest value, , 

where ,  and . We consider  and  as two 

proposals of thresholds can be used to reduce the dimensionality from ultrahigh to 
low, moderate and high dimension respectively. Only  features will construct the 

new matrix design X*, where  

Step II: VIF-Regression 
To take full advantage of VIF-Regression speed, Lin et al. (2011) pointed out that 
avoiding selecting the optimal parameters in the VIF regression technique will 
consume more time in selecting the best model. Thus, they consider using larger 
parameters such as (w0 = 0.5) for initial wealth parameter and small value such as 
(∆w = 0.05), for investment parameters. However, the VIF regression as follows,  
 

1. Centered y, and  where j = 1, …, d 
 

2. Suppose the algorithm starts with the following initial information  

- w0 = 0.5, ∆w = 0.05, and subsample size m; 

-  

- Set j = 1, w1 = w0, f = 0 
 

3. Repeat the following procedure d times 

- Set significant level αj = wj ⁄ (1 + j − f) 

R̂j*

R̂1* > R̂2* >,…, R̂d1*
* >,…,> R̂d2*

* >,…,> R̂d3*
* >,…,> R̂p*

d1* = n d2* = n+
n

log n( )
⎛

⎝
⎜

⎞

⎠
⎟ d3* =

p
p

d2* d3*

d j*

X * = X j : R̂j* ≥ R̂d j*
*{ }.

X j
*

model = ∅{ };ε = y − y ,σ̂ = sd y( )
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- Find  to correct t-value 

- Randomly draw small subsample from original data 
ζ = {1, …, m} ⊂	{1, …, n} 

- Fit  on  where c = 1, …, k and k ≠ j, so that k is the 

number of features that were selected to be in the model  

- Compute  

- The corrected t-value is   

- If the CDF of normal distribution, 2Φ(| tj | > 1 − α) then 

a. model = model ∪ {j}// add feature to model  

b. update , wj + 1 = wj + ∆w, f = j 

- Else wj + 1 = wj – α ⁄ (1 − α) 

- Next j until reach to d or the maximum time of computer 
processor is reached. 

Numerical Example  

Eye data were taken from Scheetz et al. (2006) to assess the performance of the 
VIFRegS method. The data were sampled from 120 rats to know the effectiveness 
of 200 genes on expression level of TRIM32 gene. The result of VIFRegS rely on 

 and  respectively are compared with ISIS. The non-zero genes coefficients 
selected by each method are tested using multiple hypothesis test at 0.05 significant 
level. The adjusted determinant coefficients square (R2

adj) and the residual standard 
error of selected model (RSE) respectively are considered as comparison criterion. 

The best method is that one which possesses the highest R2
adj and lowest RSE. 

Table 1 presents the results of regressing expression level of TRIM32 gene with 
genes that have been selected (SG) by three methods. The least squares method is 
used to estimate Gene’s Coefficients (Ceof.Est) as a multiple linear regression 
model (MLP). The analysis of MLP permits testing each Ceof.Est individually and 
its standard error and p value which are denoted as CSE and p-value respectively. 
As shown in Table 1 ISIS method selects three genes (G87, G153 and G07) that is 

γ̂ j = ε ,X j
* / X j

*

X j
*ζ Xc*ζ{ }

Rζ2 = X j
*′Xc*ζ Xc*ζ( )′ Xc*ζ⎛

⎝⎜
⎞
⎠⎟

−1

Xc*ζ( )′ X j
* / X j

* 2

t j = γ̂ j / σ̂ 1− Rζ2( )

ε = y − ŷmodel

d2* d3*
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totally different selection from VIFRegSd*2 and VIFRegSd*3 methods which are 
selected ( G196, G181 and G136). It has been found that the CSE of G87 is very 
close to CSE of G196 while the CSE of G181 and G136 are more accurate than the 
CSE of G153 and G07.  

Even though p values of G87, G153 and G07 are less than 0.05, the selection 
of VIFRegSd*2 and VIFRegSd*3 show more significant levels. Finally, genes that 
possess the significant Ceof.Est will be in the final model and R2

adj and RSE should 
be crucial to determine which model is the best one. As may be seen in Table 1, the 
selected genes by VIFRegSd*2 and VIFRegSd*3 methods explain about R2

adj = 0.61 
from expression level of TRIM32 gene while R2

adj of ISIS explains only 0.53 of it. 
There is a good match between VIFRegSd*2 and VIFRegSd*3 results. There is an 
evident relationship in genes selection between our proposed method and ISIS 
method, although each method is totally selected different genes. It is found that 
Cor(G87, G136) = 0.82 , Cor(G153, G196) = 0.73 and Cor(G07, G181) = 0.73.  
 
 
Table 1. Selected gene, coefficient estimate, coefficient standard error, p-value, R2adj and 
residual standard error of three methods for eye data. 
 

Method SG Ceof.Est CSE p-value R2
adj RSE 

ISIS 
G87 -0.1006 0.0327 0.0026 

0.5275 0.0992 G153 -0.1833 0.0468 0.0002 
G07 0.0713 0.0376 0.0605 

VIFRegSd*
2 

G196 -0.1429 0.0326 2.64E-05 
0.6048 0.0909 G181 0.1672 0.0348 4.54E-06 

G136 0.0610 0.0306 0.0275 

VIFRegSd*
3 

G196 -0.1429 0.0326 2.64E-05 
0.6048 0.0909 G181 0.1672 0.0347 4.54E-06 

G136 0.0610 0.0306 0.0275 
 

Simulation  

To investigate the performance of VIF-Regression screening compared with ISIS 
method, four simulation studies are considered based on collinearity structure of 
design matrix X. In the first, second and third collinearity structures p features are 
generated from a centered multivariate normal distribution with covariance 
τ2Σj,k = ρ|j − k|, where j ≠ k, ρ = 0, ρ = 0.5, ρ = 0.9 respectively and τ2 = 0.1. For the 
fourth simulation study, features are generated similar to the previous simulation 
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one’s except the covariance is structured to be Σj,k = 0.5 where j≠k and Σj,k = 1 
where j = k. Only n/log(n) + c features are picked to generate the response variable 
Y where c is a small positive integer number such that {n/log(n) + c} > n using 
multiple linear regression model with the following relation: 
 
    
 
where δ = 1.5 is signal to noise ratio and L = n/log(n) + c}, here it is assumed c=2. 
 
 
Table 2. Percentage of including true features of ISIS, VIFRegSd*

2 and VIFRegSd*
3 over 

5000 simulated data set with sample size equals to n = 20, 30, 40 and 50. 
    

Sample size / PTF  
p Method n = 20 n = 30 n = 40 n = 50 

ρ = 0 

100 
ISIS 0.10 0.09 0.80 0.85 

VIFRegSd*
2 0.35 0.81 0.91 0.89 

VIFRegSd*
3 0.29 0.76 0.81 0.71 

1000 
ISIS 0.02 0.02 0.05 0.21 

VIFRegSd*
2 0.13 0.65 0.79 0.82 

VIFRegSd*
3 0.13 0.64 0.79 0.82        

ρ = 0.5 

100 
ISIS 0.19 0.55 0.57 0.80 

VIFRegSd*
2 0.38 0.77 0.77 0.88 

VIFRegSd*
3 0.28 0.68 0.66 0.71 

1000 
ISIS 0.27 0.36 0.42 0.60 

VIFRegSd*
2 0.15 0.45 0.75 0.83 

VIFRegSd*
3 0.14 0.44 0.74 0.83        

ρ = 0.9 

100 
ISIS 0.18 0.22 0.27 0.25 

VIFRegSd*
2 0.21 0.39 0.58 0.61 

VIFRegSd*
3 0.08 0.30 0.50 0.53 

1000 
ISIS 0.19 0.25 0.25 0.13 

VIFRegSd*
2 0.04 0.22 0.34 0.53 

VIFRegSd*
3 0.04 0.20 0.30 0.50        

ρ|j−k| = 0.5 

100 
ISIS 0.13 0.31 0.60 0.85 

VIFRegSd*
2 0.25 0.69 0.86 0.92 

VIFRegSd*
3 0.20 0.59 0.78 0.71 

1000 
ISIS 0.00 0.04 0.34 0.42 

VIFRegSd*
2 0.12 0.63 0.82 0.80 

VIFRegSd*
3 0.12 0.62 0.82 0.79 

Y = X1 + X2 +!+ XL + 0 XL+1 +!+ X p( )+ e
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Each simulation study contains 20 models which are characterized by (p, n, ρ) 
with p = 100, p = 1000, n = 10, 20, 30, 40, 50, ρ = 0, 0.5, 0.9 and ρ|j − k| = 0.5 where 
j ≠ k. For each model, 5,000 samples are generated to know the performance of 
ISIS, VIF-Regression screening. The ISIS is applied to select n/log(n) feature, 
while VIF-Regression screening with d*

1 and d*
2 cut-off points which denoted as 

VIFRegSd*2 and VIFRegSd*3 methods are applied to select d*
1 and d*

2 feature 
respectively. Then test their accuracy in including the true model. The percentage 
of models being are selected exhibited in the Table 2. The best method is one that 
has the highest percentage of including the true features (PITF) with L features over 
5,000 samples.  

Displayed in Table 2 are the result of simulation study for ISIS, VIFRegSd*2 
and VIFRegSd*3 methods that were performed based on simulation design 
aforementioned. The result shows the ISIS method failed to get high percentage of 
including true features in most cases. For instance it gets PITF = 0.10 and 0.09 
where the sample size equals to n = 20 and 30 observations respectively, and 
irrespective the dimensionally vector p = 100 and 1000 or the correlation structure, 
ρ =0, 0.5 and 0.90. When n = 40 and 50 the ISIS method selection was impacted by 
the correlation structure between features. The results are summarized in Table 2, 
the PITF of VIFRegSd*2 method with correlation structures ρ is higher than others. 
On the other hand PITF of VIFRegSd*3 is better than ISIS method.  

Conclusion 

The purpose of this study is to draw attention to the certain weakness in ISIS 
performing with small samples. A new, reliable alternative method was proposed 
that possess as an ability to overcome this problem. Two thresholds d*

2 and d*
3 were 

proposed to reduce the dimensionality from ultrahigh to high dimension. The 
VIFRegSd*2 method has shown a very high stability selection and outperforms on 
ISIS and VIFRegSd*3 methods respectively.  

An example with real data includes unexpected events that occurs when two 
important features are highly correlated, the VIFRegSd*2 and VIFRegSd*3 methods 
selected the most important one. By returning to the result of real data that has been 
reported in Table 1 the model that selected by VIFRegSd*2 is similar to VIFRegSd*3 
model and both are better than ISIS model even though some feature are correlated. 
In summary, the VIFRegSd*2 method is more efficient than ISIS, and it is more stable 
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than VIFRegSd*3 method. However, the VIFRegSd*2 method can be readily used in 
practice for ultrahigh feature space and small sample size. 
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