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Although the Analysis of Variance (ANOVA) F test is one of the most popular statistical 

tools to compare group means, it is sensitive to violations of the homogeneity of variance 

(HOV) assumption. This simulation study examines the performance of thirteen tests in 

one-factor ANOVA models in terms of their Type I error rate and statistical power under 

numerous (82,080) conditions. The results show that when HOV was satisfied, the 

ANOVA F or the Brown-Forsythe test outperformed the other methods in terms of both 

Type I error control and statistical power even under non-normality. When HOV was 

violated, the Structured Means Modeling (SMM) with Bartlett or SMM with Maximum 

Likelihood was strongly recommended for the omnibus test of group mean equality. 

 

Keywords: Analysis of variance, homogeneity, heterogeneity, non-normality, type I 

error control, statistical power 

 

Introduction 

Analysis of variance (ANOVA) is a common method used to compare the means 

of several groups. Although there are many statistical tests for ANOVA, none are 

suitable for every research situation (Lix et al., 1996). The traditional ANOVA F 

test is one of the most common statistical procedures to test the equality of several 

independent group means (Tomarken & Serlin, 1986). However, the F test is 

sensitive to violations of the homogeneity of variance (HOV) assumption (Rogan 

& Keselman, 1977). Several alternative tests (described below) have been 

https://dx.doi.org/10.22237/jmasm/1604190000
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suggested in response to this problem and can be classified into two groups: a group 

of tests using an ANOVA-type approach and a group of tests using a Structured 

Means Modeling (SMM) framework (Sörbom, 1974). 

It was shown in simulation studies these alternatives can control the Type I 

error rates, given that the data are normally distributed and sample size is 

sufficiently large, even though population variances are heterogeneous. However, 

these tests become liberal when data are non-normal and heterogeneous (e.g., Fan 

& Hancock, 2012; Wilcox, 1988). Harwell et al. (1992) used meta-analytic methods 

to review 28 simulation studies on the ANOVA F test, Welch (1947) and the 

nonparametric Kruskal-Wallis (Kruskal & Wallis, 1952) tests when the 

homogeneity of variance and normality assumptions were not met. Although the 

sensitivity of the F and the Kruskal-Wallis tests to unequal variances was 

highlighted, it was also reported even with equal sample sizes the Welch test with 

two independent groups (Welch, 1947) was only robust to variance heterogeneity 

in the case of nearly normal population distributions. 

Lix et al. (1996) extended the study of Harwell et al. (1992) with the addition 

of the Brown-Forsythe and James’ second-order tests, as well as examining the 

Welch (1951) test for ANOVA models instead of the Welch (1947) test. Employing 

meta-analytic techniques to quantitatively assess alternative ANOVA tests under 

non-normality and heterogeneity of variances, they provided guidelines for applied 

researchers regarding under which data-analytic conditions a specific test should 

be used. Lix et al. (1996) confirmed the F test is not the test of choice when the 

variances are unequal, especially in combination with unequal group sizes. Both 

the Welch (1951) and James’ second-order tests outperformed the F, Brown-

Forsythe, and Kruskal-Wallis tests under the violation of HOV and normality 

assumptions. The two tests should only be bypassed when the population is 

moderately to highly skewed, and, in the case of the Welch test, also when total 

sample size is small, or one group size is very small. 

Fan and Hancock (2012) examined eleven approaches to compare several 

independent group means. They investigated the performance of five ANOVA-

based tests and six Robust Means Modeling (RMM) tests. The ANOVA-based 

methods included the F test and its alternatives (i.e., Welch test, Brown-Forsythe 

test, James’ second-order test, and Alexander-Govern test). The RMM tests are 

based on SEM framework in which equal variances across groups are not assumed. 

Fan and Hancock included the maximum likelihood (ML) estimation method (TML), 

asymptotic distribution free (ADF) estimation method (TADF), Satorra and 

Bentler’s (1988) rescaled test statistics (TSB), Yuan and Bentler’s estimation 

methods (1997, 1999) that make corrections to TADF for small sample sizes (TYB1 
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and TYB2), and Bartlett’s correction to the ML test statistic (TBC). Results of Fan and 

Hancock (2012) showed that even though both ANOVA-based and RMM 

approaches provided reasonable control of Type I error rates under normal 

distributions, the RMM approaches were superior to the ANOVA-type tests under 

asymmetric non-normality and heterogeneous variances. Although the focus of Fan 

and Hancock was on introducing and examining the RMM approach, their study 

did not cover other available statistics such as the weighted least squares approach, 

the multilevel model with heterogeneous variances, and the Wilcox test. 

As highlighted in Fan and Hancock’s (2012), it is important to have guidelines 

on selecting an appropriate approach for their research scenarios, but there is a lack 

of extensive studies that investigate available test statistics for between-subjects 

ANOVA. Therefore, the purpose of this study is to examine the performance of 

thirteen available approaches to test the equality of several independent group 

means in terms of Type I error control and statistical power under various 

experimental situations. The test statistics investigated in this study are: ANOVA 

F test, Alexander-Govern test, Brown-Forsythe test, James’ second-order test, 

Welch test, Weighted Least Squares test, Wilcox-centered test, SMM approach 

with Maximum Likelihood (ML) estimation, SMM approach with asymptotic 

distribution free (ADF) estimation, SMM with Bartlett’s correction to the ML test 

statistic, SMM with Yuan and Bentler 1 (SMM with YB1), SMM with Yuan and 

Bentler 2 (SMM with YB2), and multilevel modeling approach (i.e. PROC MIXED 

in SAS). This simulation study includes comprehensive conditions with design 

factors that cover a variety of possible research situations. 

Statistical Methods for Testing Mean Differences 

ANOVA F Test 

The ANOVA F (also called OLS) test is a common statistical method to test the 

equality of several independent group means, is defined as: 
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where j = 1, 2,…, J for groups, nj, X̅j, and 
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jS  are the size, mean, and variance of 

group j, respectively, and X̅ is the grand mean. The F statistic follows the F 
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distribution with (J – 1) and (N – J) degrees of freedom. As mentioned above, the 

F test is sensitive to the violation of the homogeneity of variance assumption. 

Alexander-Govern (AG) Test 

Alexander-Govern’s approximation test (Alexander & Govern, 1994) defined a 

weight (wj) for each group by 
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were 
jj xS S=  is the standard error of group j. The variance-weighted estimate of 

the common mean (X+) is calculated by: 
1

J

j jX w X+ = . For each of J groups, the 

t statistic is defined as 
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tj is distributed as Student’s t with vj (= nj – 1) degrees of freedom. A normalizing 

transformation of tj to get zj is conducted by 
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where a = vj – .5; b = 48a2; ( )
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. zj is used to calculate the A 

statistic by 
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1

J
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A is distributed as chi-square with (J – 1) degrees of freedom. The Alexander-

Govern test has been suggested in the study of Schneider and Penfield (1997) as 

the best alternative to the ANOVA F test in the case of heterogeneous variances 

based on its good control of Type I error and high statistical power. 
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Brown-Forsythe (BF) Test 

The Brown-Forsythe test (Brown & Forsythe, 1974) is a modification of the 

ANOVA F test: 

 

 
( )

( )

2

21

j jj

j jj

n X X
F

n N S


−

=
−




.  

 

F* has an F-distribution with (J – 1) and f degrees of freedom, where f is defined 

by the Satterthwaite approximation 
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Although the BF test is known to have reasonable control of Type I error rates in 

several conditions (e.g. various levels of skewed distributions), it is not as good as 

the Welch test or James’ second-order test with large variance heterogeneity in 

balanced designs (Lix et al., 1996) and small sample sizes (Wilcox, 1988). The BF 

test is also reported with lower statistical power estimates than the Welch and James’ 

second-order tests (Fan & Hancock, 2012). 

James’ Second Order Test 

The test statistic for James’ test (James, 1951) is defined as: 
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The obtained value of Q is compared to a carefully adjusted critical value of χ2 with 

(J – 1) degrees of freedom (James, 1951). Although several studies recommended 

this test due to its good performance, this test is also reported to have inadequate 
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control of Type I error in some cases of asymmetric non-normal distributions or 

small sample sizes (Lix et al., 1996; Wilcox, 1988). 

Welch Test 

Welch (1951) proposed a modification of the F test that assumes the populations 

are independent and normally distributed but does not require equal population 

variances. The test statistic is defined as 
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The distribution of F can be approximated using vb = J – 1 and 
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The Welch test has been known to be relatively robust to different degrees of 

variance heterogeneity when sample sizes are equal and fairly large. However, its 

Type I error control becomes inadequate in the cases of variance heterogeneity 

associated with very small and unequal group sizes under certain types of skewed 

data (Lix et al., 1996) as well as with unequal group sizes or large number of group 

(Wilcox, 1988). 
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Wilcox Test 

The Wilcox method (Wilcox, 1988) was contrasted with James (1951) method. The 

author made an improvement (Wilcox, 1989) in their original test and its 

modification covers the following settings 
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and i = 1, 2,...., nj for individuals. The null hypothesis is rejected when 

Hm = Σ Dj(Ỹj – Ỹ)2 exceeds the (1 – α) quantile of a chi-square distribution with 

(J – 1) degrees of freedom. The Wilcox test has been shown to result in poor Type 

I error control if the population grand mean differs from zero (Hsiung et al., 1994). 

In the current study, thus, the test was conducted after grand mean centering in each 

sample and called as Wilcox-centered. 

Weighted Least Squares (WLS) 

This method weights each observation by the inverse of its variance (Montgomery 

& Peck, 1992): 
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where wj and 
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jS  are the weight and sample variance for group j and then uses 

generalized least squares to minimize 
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Structured Means Modeling Approach with Maximum Likelihood 

Estimation (SMM with ML) 

When the SMM approach is applied to the between-subjects testing of measured 

variable mean equality, indicator X can be expressed as X = vk + δ where vk is a 

p × 1 vector of intercept values, δ is a p × 1 vector of normal errors, and p is the 

number of observed variables. The null hypothesis is tested by constraining 

population means to be equivalent although still allowing for variances of δ to be 

heterogeneous. Estimation within SMM can be handled by using maximum 

likelihood. The FML is the ML fit function. The test statistic TML is a function of 

FML as TML = (N – 1) FML, with degrees of freedom equal to Jp(p + 3) / 2 – q, where 

J is the number of groups, and q is the number of parameter estimates across all 

groups. 

SMM Approach with Asymptotic Distribution Free (ADF) Estimation 

(SMM with ADF) 

When the variables are continuous but not multivariate normally distributed, 

Browne (1982, 1984) proposed asymptotic distribution free estimation (ADF) for 

the covariance structure and Muthén (1989) expanded ADF including both mean 

and covariance structures. Using a Generalized Least Square (GLS)-type fit 

function, the ADF fit function is defined as 

 

 ( ) ( )1

ADF

1

J

j j j j j

j

F −

=


= − − s σ W s σ   

 

where, for each group J, sj is the combined vector consisting of p elements of the 

observed means (s1) and p(p + 1) / 2 elements of the variance covariance matrix 

(s2), σj is the model implied counterpart of sj, and W represents the ADF weight 

matrix as an estimator of the asymptotic covariance matrix of s. When this fit 

function is multiplied by 2n (where n is the total sample size), it follows the chi-

square distribution with (J – 1) degrees of freedom. 

SMM with Bartlett’s Correction to the ML Test Statistic (SMM with 

Bartlett) 

Bartlett (1950) suggested a correction to the ML test statistic, which is translated to 
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with degrees of freedom = Jp* – q, where p* = p(p + 3) / 2; N = total sample size; 

p = number of observed variables, and q = number of parameters estimated across 

all groups. In the context of one-way ANOVA, the SMM model now only has one 

observed variable and no latent factor. 

Yuan and Bentler 

Yuan and Bentler (1997, 1999) suggested test statistics TYB1 and TYB2 that make 

corrections to TADF for small sample sizes. Specifically, 

 

 ADF
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ADF1

T
T

T

N

=
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where TADF = (N – 1) / FADF, which follows a central χ2 distribution with the same 

model degrees of freedom as TADF (when H0 is true). Their second modification to 

ADF appeals to the F distribution: 
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with numerator and denominator degrees of freedom of (Jp* – q) and (N – (Jp* – q)), 

respectively, and p* = p(p + 3) / 2. Both TYB1 and TYB2 are the two best performing 

tests based on results of Fan and Hancock (2012) and are included in this study. 

The other SMM-based test statistics are also recommended by Fan and Hancock 

because of their outperformance over the ANOVA-based approaches, especially 

when data are non-normal. 

Multilevel Model with Heterogeneous Variances 

A mixed model may be fit with unequal residual variances to analyze data from 

ANOVA designs with heterogeneous variances (Littell et al., 2006). The model for 

a one factor ANOVA design can be written as 
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 ( )2, where ~ N 0,ij j ij ij jX     = + + .  

 

In this ANOVA model, variance for each group is estimated separately and may be 

fitted using ML or restricted ML (REML) estimation. The SAS procedure PROC 

MIXED provides a straightforward approach for fitting such a model. In this 

procedure, the heterogeneous variance solution is obtained by selecting the 

GROUP = option on the REPEATED statement (although a repeated-measures 

design is not used). Thus, 

 

 REPEATED group IV= ,  

 

where IV is the name of independent variable. For such analyses, the Satterthwaite 

degrees of freedom estimate should be used (Satterthwaite, 1946). This is obtained 

using the DDFM = SATTERTHWAITE option on the MODEL statement in PROC 

MIXED. 

Method 

A simulation was conducted to control and manipulate design factors, which 

included: number of groups (4 and 6), average number of observations per group 

(10 and 20), sample size pattern (N-pattern; see Table 1), variance pattern 

(described in Table 2), mean pattern (equal, progressive, one extreme, and split), 

maximum group variance ratio (1:1, 4:1, 8:1, and 16:1), effect size (0, .10, .25, 

and .4), and population shape (γ1 = 0.00 and γ2 = 0.00, γ1 = 1.00 and γ2 = 3.00, 

γ1 = 1.50 and γ2 = 5.00, γ1 = 2.00 and γ2 = 6.00, γ1 = 0.00 and γ2 = 25.00, and 

γ1 = 0.00 and γ2 = –1.00, where γ1 and γ2 represent skewness and kurtosis, 

respectively). Non-normal populations were generated by implementing 

Fleishman’s transformation (Fleishman, 1978). Tables 1 and 2 show sample size 

pattern and variance pattern simulation factors, respectively, in detail. 

There were four mean patterns: (1) equal pattern mean where all population 

means were equal; (2) progressive with all population means equally spaced; (3) 

one extreme where one mean differed from the others, (4) split where half the group 

means were equal to each other but different from the other half. 
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Table 1. Sample size patterns 
 

  Sample size 

  Progressive N  Equal N  Split N  One extreme 

K=6 1 5 10  10 20  5 10  6 12 
 2 7 14  10 20  5 10  6 12 
 3 9 18  10 20  5 10  6 12 
 4 11 22  10 20  15 30  6 12 
 5 13 26  10 20  15 30  6 12 
 6 15 30  10 20  15 30  30 60 

Average N 10 20  10 20  10 20  10 20 

             

K=4 1 7 14  10 20  5 10  6 12 
 2 9 18  10 20  5 10  6 12 
 3 11 22  10 20  15 30  6 12 
 4 13 26  10 20  15 30  22 44 

Average N 10 20  10 20  10 20  10 20 
 

Note: K = number of groups, Progressive N = progressive increase of sample size, Split N = half of groups has 
the same sample size 

 
 

The performance of the thirteen ANOVA approaches was examined at three 

nominal alpha levels: .01, .05, and .10. For effect size = 0 (i.e., null or Type I error 

conditions), there were 144 (2*3*4*6) conditions with equal variances and 2,592 

(2*3*4*6*3*6) conditions with variance heterogeneity. For effect size = .10, .25, 

and .40 (i.e., power conditions), there were 1,296 (2*3*4*3*3*6) homogeneous 

conditions and 23,328 (2*3*4*6*3*3*3*6) heterogeneous conditions. Thus, there 

were a total of 82,080 simulation conditions across three alpha levels in this study. 

Type I error control and statistical power were evaluated as the simulation 

outcomes. For Type I error, we further investigated robustness using Bradley’s 

(1978) liberal criterion. This criterion is set at 0.5α around nominal alpha. For 

instance, a test is considered robust when the Type I error rate falls 

between .025 (= 0.5*.05) and .075 (= 1.5*.05) at alpha level of .05. Finally, eta-

squared analyses were conducted to explore the significant impacts of design 

factors on variability in the estimated Type I error and statistical power. Cohen’s 

(1992) moderate effect size of .058 was set as a cutoff value for eta-squared 

analyses. 
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Table 2. Variance patterns 
 
 

 Population variances 
 

 Progressive  Split  One extreme  Equal 

Max variance ratio 1:4 1:8 1:16  1:4 1:8 1:16  1:4 1:8 1:16  1:1 

K=6 1 1.0 1.0 1.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 2 1.6 2.4 4.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 3 2.2 3.8 7.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 4 2.8 5.2 10.0  4.0 8.0 16.0  1.0 1.0 1.0  1.0 
 5 3.4 6.6 13.0  4.0 8.0 16.0  1.0 1.0 1.0  1.0 
 6 4.0 8.0 16.0  4.0 8.0 16.0  4.0 8.0 16.0  1.0 
               

K=4 1 1.0 1.0 1.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 2 2.0 3.3 6.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 3 3.0 5.7 11.0  4.0 8.0 16.0  1.0 1.0 1.0  1.0 
 4 4.0 8.0 16.0  4.0 8.0 16.0  4.0 8.0 16.0  1.0 

               
 

 Progressive inv.  Split inv.  One extreme inv.  Equal 

Max variance ratio 1:4 1:8 1:16  1:4 1:8 1:16  1:4 1:8 1:16  1:1 

K=6 1 1.0 1.0 1.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 2 1.6 2.4 4.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 3 2.2 3.8 7.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 4 2.8 5.2 10.0  4.0 8.0 16.0  1.0 1.0 1.0  1.0 
 5 3.4 6.6 13.0  4.0 8.0 16.0  1.0 1.0 1.0  1.0 
 6 4.0 8.0 16.0  4.0 8.0 16.0  4.0 8.0 16.0  1.0 
               

K=4 1 1.0 1.0 1.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 2 2.0 3.3 6.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 
 3 3.0 5.7 11.0  4.0 8.0 16.0  1.0 1.0 1.0  1.0 
 4 4.0 8.0 16.0  4.0 8.0 16.0  4.0 8.0 16.0  1.0 

 

Note: For example, “Progressive” means that the population variances increased in a progressive way among 
groups; “Progressive inv.” refers to the same variance patterns as in “Progressive” but in the reverse 
group order 

Data Sources 

Continuous data were generated using a random number generator, RANNOR in 

SAS/IML statistical software, using a different seed value for each execution of the 

program. For each condition in the simulation, 5,000 samples were generated. The 

use of 5,000 replications aimed to reach a maximum standard error of an observed 

proportion (e.g., Type I error rate estimate) of .003, and a 95% confidence interval 

no larger than ± .006 (Robey & Barcikowski, 1992). 
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Results 

The simulation results for the performance of all thirteen methods are presented in 

two sections regarding Type I error control and statistical power. In each section, 

we examined these tests under homogeneous conditions (where population 

variances were equal) and heterogeneous conditions (i.e., unequal population 

variances). Because we observed a similar pattern across the three nominal alpha 

levels (α = .01, .05, and .10), we present only the results at the nominal level of .05. 

Type I Error Rate Estimates with Homogeneous Conditions 

Presented in Figure 1 are the boxplots of the Type I error rate distributions across 

all simulation conditions with equal variances at the nominal alpha level of .05. 

Under the homogeneous conditions, the ANOVA F test (i.e., OLS) and the BF test 

showed the best performance. Among the other approaches, SMM with Bartlett, 

Wilcox-centered and SMM with ML controlled Type I error adequately. 

Presented in Table 3 are the Type I error rates of all methods by three 

significant design factors. Because this study includes many design factors, we only 

present selected design factors that are substantially related to the variability of 

Type I error rates based on the eta-squared analyses: method (η2 = .45), shape 

(η2 = .13), and N-pattern (η2 = .08). As observed in Table 3, the OLS and BF 

controlled Type I error around .05 across all conditions under the homogeneity of 

variance assumption. Type I error rates of WLS and SMM with ADF, on the 

contrary, were almost always above .07. The Wilcox-centered test showed 

reasonable Type I error control for all conditions under the equal variances except 

one condition of severe non-normality (skewness = 2, kurtosis = 6) and one 

extreme sample size pattern. For the SMM methods, Bartlett, and ML controlled 

Type I error reasonably except two conditions of severe non-normality 

(skewness = 2, kurtosis = 6) and unequal sample sizes. A very similar pattern was 

observed with James, Welch, and AG tests. As shown in Figure 2, the Type I error 

rates were inflated when the population shape was severely non-normal. 

The proportion of conditions that satisfied Bradley’s liberal criterion was 

calculated for each method at the alpha level of .05. Similar with the results 

presented in Figure 1, the ANOVA F test (OLS) and the BF were the most robust 

with all conditions meeting Bradley’s criterion. Following were the SMM with 

Bartlett, Wilcox-centered, and SMM with ML methods with satisfied proportions 

of nearly 94%, 94%, and 92%, respectively, among all homogeneous conditions. 

The next good performers in terms of Type I error control were James, Welch, YB1, 

AG, and YB2 tests with proportions meeting Bradley’s liberal criteria of 85%, 82%, 
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81%, 80%, and 70%, respectively. The test with poorest performance in controlling 

Type I error rates were ADF and WLS with 28% and 20% of conditions satisfied 

Bradley’s criterion. 
 
 

 
 
Figure 1. Distributions of Type I error estimates of the thirteen ANOVA tests with 
homogeneous conditions; OLS = ANOVA F test using ordinary least squares; 
James = James’ second-order; WLS = Weighted Least Squares; BF = Brown-Forsythe; 
AG = Alexander-Govern; Wilcox2 = Wilcox-centered; ADF = SMM approach with 
asymptotic distribution free estimation; BAR = structured mean modeling with Bartlett’s 
correction to the maximum likelihood test statistic; ML = structured mean modeling with 
maximum likelihood estimation; YB1 = structured mean modeling with Yuan and Bentler 
1; YB2 = structured mean modeling with Yuan and Bentler 2; Mixed = multilevel modeling 
in SAS 
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Table 3. Type I error rates of thirteen robust ANOVA tests by selected simulation factors at nominal alpha of .05 with 
homogeneous conditions 
 

  Method 

Shape N_pattern OLS James WLS BF Welch AG Wilcox2 ADF BAR ML YB1 YB2 Mixed 

1(0, 0) equal 0.05 0.05 0.07 0.05 0.05 0.05 0.04 0.07 0.04 0.04 0.04 0.05 0.05 
 one extreme 0.05 0.05 0.11 0.05 0.05 0.05 0.04 0.09 0.04 0.04 0.06 0.07 0.07 
 split 0.05 0.05 0.10 0.05 0.06 0.05 0.04 0.09 0.04 0.04 0.06 0.07 0.07 
 progressive 0.06 0.06 0.09 0.05 0.06 0.06 0.05 0.08 0.05 0.05 0.05 0.06 0.07 

2(1, 3) equal 0.05 0.05 0.07 0.04 0.05 0.05 0.04 0.07 0.04 0.04 0.04 0.05 0.05 
 one extreme 0.05 0.05 0.11 0.04 0.05 0.06 0.04 0.09 0.04 0.04 0.06 0.07 0.07 
 split 0.05 0.05 0.10 0.04 0.05 0.06 0.04 0.09 0.04 0.04 0.06 0.07 0.07 
 progressive 0.05 0.05 0.08 0.04 0.05 0.05 0.04 0.08 0.04 0.04 0.05 0.05 0.06 

3(1.5, 5) equal 0.04 0.05 0.07 0.04 0.05 0.05 0.04 0.07 0.04 0.04 0.04 0.05 0.05 
 one extreme 0.05 0.06 0.12 0.04 0.06 0.07 0.05 0.11 0.05 0.06 0.07 0.08 0.08 
 split 0.05 0.05 0.11 0.04 0.06 0.06 0.05 0.10 0.04 0.05 0.06 0.07 0.07 
 progressive 0.05 0.05 0.09 0.04 0.06 0.06 0.04 0.08 0.05 0.05 0.05 0.06 0.07 

4(2, 6) equal 0.04 0.06 0.09 0.04 0.06 0.07 0.05 0.09 0.06 0.06 0.06 0.07 0.07 
 one extreme 0.05 0.09 0.16 0.04 0.10 0.12 0.08 0.15 0.09 0.10 0.11 0.12 0.11 
 split 0.05 0.09 0.15 0.04 0.09 0.10 0.07 0.13 0.08 0.08 0.10 0.11 0.10 
 progressive 0.05 0.07 0.11 0.04 0.07 0.08 0.06 0.11 0.06 0.07 0.07 0.08 0.08 

5(0, 25) equal 0.05 0.06 0.08 0.05 0.06 0.06 0.05 0.08 0.05 0.05 0.05 0.06 0.06 
 one extreme 0.05 0.07 0.12 0.05 0.07 0.07 0.06 0.11 0.05 0.06 0.08 0.09 0.09 
 split 0.05 0.07 0.12 0.04 0.07 0.07 0.06 0.11 0.06 0.06 0.08 0.09 0.09 
 progressive 0.05 0.06 0.09 0.05 0.06 0.06 0.05 0.09 0.05 0.05 0.06 0.07 0.07 

6(0, –1) equal 0.05 0.06 0.08 0.05 0.06 0.06 0.04 0.08 0.05 0.05 0.05 0.06 0.06 
 one extreme 0.05 0.06 0.12 0.05 0.07 0.07 0.06 0.11 0.05 0.05 0.07 0.08 0.08 
 split 0.05 0.07 0.12 0.05 0.07 0.07 0.06 0.10 0.05 0.05 0.07 0.08 0.09 
 progressive 0.05 0.06 0.09 0.05 0.06 0.06 0.05 0.09 0.05 0.05 0.06 0.06 0.09 

 

Note: The Type I error rates meeting the Bradley’s criterion are in bold; Progress = Progressive sample size pattern 
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Figure 2. Distributions of Type I error rates of the thirteen ANOVA tests by population 
shape for homogeneous conditions; for population shapes, the values within parentheses 
are skewness and kurtosis, respectively; for example, 1(0, 0) indicates normal distribution 
with skewness = 0 and kurtosis = 0 
 

Type I Error Rate Estimates with Heterogeneous Conditions 

Under the heterogeneous conditions, the OLS method showed poor performance as 

expected. The Wilcox-centered, SMM with Bartlett and SMM with ML provided 

the best overall Type I error control as shown in Figure 3. 

As shown in Figure 3, the Type I error rates of WLS and SMM with ADF 

were substantially high across all simulation conditions of heterogeneous variance. 

Similarly, the ANOVA F test (OLS) showed poor performance in controlling for 

Type I error: over control (or being conservative) when the large groups had the 

large variance and under control (or being liberal) when the large groups had the 

small variance. This phenomenon became more serious as the variance disparity 

across groups increased. In general, the SMM methods except the ADF showed 

adequate Type I error control on average. Particularly, the SMM with Bartlett and 

SMM with ML outperformed the other robust ANOVA tests. However, even these 
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best performing methods yielded inflated Type I error rates when the population 

shape was severely non-normal (i.e., skewness = 2, kurtosis = 6) in combination 

with the reversed variance patterns (i.e., the large group with the small variance). 

Following the SMM with Bartlett and SMM with ML, the Wilcox-centered and 

James controlled Type I error adequately. The Welch, AG, and the BF were the 

next good performers in terms of controlling for Type I error but showed increased 

Type I error rates (.08) when the variance heterogeneity was severe. 
 
 

 
 
Figure 3. Distributions of Type I error estimates of the thirteen ANOVA tests for 
heterogeneous conditions; OLS = ANOVA F test using ordinary least squares; 
James = James’ second-order; WLS = Weighted Least Squares; BF = Brown-Forsythe; 
AG = Alexander-Govern; Wilcox2 = Wilcox-centered; ADF = SMM approach with 
asymptotic distribution free estimation; BAR = structured mean modeling with Bartlett’s 
correction to the maximum likelihood test statistic; ML = structured mean modeling with 
maximum likelihood estimation; YB1 =  structured mean modeling with Yuan and Bentler 
1; YB2 = structured mean modeling with Yuan and Bentler 2; Mixed = multilevel modeling 
in SAS 
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Table 4. Type I error estimates by variance pattern with heterogeneous conditions 
 

 Method 

Variance pattern OLS James WLS BF Welch AG Wilcox2 ADF BAR ML YB1 YB2 Mixed 

Extreme 0.05 0.06 0.10 0.08 0.06 0.06 0.05 0.09 0.05 0.05 0.06 0.07 0.06 

Split 0.04 0.06 0.10 0.07 0.06 0.06 0.05 0.09 0.05 0.05 0.06 0.07 0.07 

Progress 0.03 0.06 0.10 0.06 0.06 0.06 0.05 0.09 0.05 0.05 0.06 0.07 0.07 

Extreme-R 0.16 0.07 0.11 0.08 0.07 0.07 0.06 0.10 0.05 0.06 0.07 0.08 0.07 

Split-R 0.18 0.07 0.13 0.06 0.08 0.07 0.07 0.11 0.06 0.06 0.08 0.09 0.08 

Progress-R 0.13 0.07 0.13 0.05 0.08 0.08 0.07 0.12 0.06 0.06 0.08 0.09 0.08 
 

Note: The Type I error rates meeting the Bradley’s criterion are in bold; Extreme-R = One Extreme Inversely, Split-R = Split Inversely, and Progress-
R = Progress Inversely (see Table 2 for more details); OLS = ANOVA F test using ordinary least squares; James = James’ second-order; 
WLS = Weighted Least Squares; BF = Brown-Forsythe; AG = Alexander-Govern; Wilcox2 = Wilcox-centered; ADF = SMM approach with 
asymptotic distribution free estimation; Bartlett = structured mean modeling with Bartlett’s correction to the maximum likelihood test statistic; 
ML = structured mean modeling with maximum likelihood estimation; YB1 = structured mean modeling with Yuan and Bentler 1; YB2 = structured 
mean modeling with Yuan and Bentler 2; Mixed = multilevel modeling in SAS 
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The eta-squared analysis showed that variation in the Type I error rates was 

associated with the method (η2 = .21), method and variance pattern interaction 

(η2 = .15), population shape (η2 = .14), and variance pattern (η2 = .08). Table 4 

presents the impact of variance pattern on the method in terms of Type I error 

control. The best performing methods (i.e., SMM with Bartlett, SMM with ML, 

and Wilcox-centered) controlled Type I error around .05 across all variance patterns. 

In addition, when groups were balanced (i.e., equal group size), all the tests but 

OLS, WLS, and SMM with ADF showed adequate Type I error on average. Similar 

to the homogeneous variance conditions, as the population shape departed from the 

normality, the Type I error inflation was more serious (see Figure 4). 
 
 

 
 
Figure 4. Distributions of Type I error rates of the thirteen ANOVA tests by population 
shape for heterogeneous conditions; for population shapes, the values within 
parentheses are skewness and kurtosis, respectively; for example, 1(0, 0) indicates 
normal distribution with skewness = 0 and kurtosis = 0 
 

 
 
 



NGUYEN ET AL 

21 

The proportions of simulation conditions with heterogeneous variances 

meeting the Bradley’s criterion for Type I error rate were investigated. The SMM 

with Bartlett test showed the best performance (.90); followed by the SMM with 

ML (.88) and the Wilcox-centered (.84). In addition to three aforementioned 

methods, the James, Welch, AG, and BF tests had the improved proportions of .75 

or higher that met the Bradley’s criterion. The YB1 and YB2 had 73% and 62% 

conditions satisfied Bradley’s criterion. The WLS, SMM with ADF tests, and OLS 

had the lowest proportions that met the Bradley’s criterion for Type I error control 

with only 17%, 25%, and 36%, respectively. 

Statistical Power with Homogeneous and Heterogeneous Conditions 

Statistical power was estimated for the methods that provided adequate Type I error 

control across most conditions. Therefore, the ANOVA F (OLS), BF, Wilcox-

centered, SMM with Bartlett, and SMM with ML methods were included in the 

power analysis under homogeneous conditions; the Wilcox-centered, SMM with 

Bartlett, and SMM with ML methods were included under heterogeneous 

conditions. 

Regarding the power estimates under homogeneous conditions, the OLS, BF, 

SMM with Bartlett, SMM with ML, and Wilcox-centered all had relatively low 

power on average (.35, .34, .34, .34, and .33, respectively) with substantial 

variations within each method. The variations in power estimates were attributable 

to effect size (η2 = .57), mean pattern (η2 = .10), group size (η2 = .09), and 

interaction of mean pattern and number of groups (η2 = .06), based on eta-squared 

analyses. 
 
 
Table 5. Power estimates by effect size, group size, and mean pattern for homogeneous 
conditions 
 

 Effect size  Group size  Mean pattern 

 0.10 0.25 0.40  10 20  Progressive Partial null Multiple null 

OLS 0.08 0.32 0.63  0.26 0.43  0.23 0.45 0.36 

BF 0.08 0.31 0.61  0.25 0.42  0.22 0.44 0.35 

Wilcox2 0.09 0.31 0.60  0.25 0.42  0.22 0.44 0.34 

Bartlett 0.10 0.32 0.61  0.24 0.43  0.22 0.44 0.34 

ML 0.09 0.31 0.60  0.26 0.43  0.23 0.45 0.35 
 

Note: OLS = ANOVA F test using ordinary least squares; BF = Brown-Forsythe; Wilcox2 = Wilcox-centered; 
Bartlett = structured mean modeling approach with Bartlett estimation; ML = structured mean modeling 
approach with maximum likelihood estimation; Progressive = all means equally spaced; Partial 
Null = one extreme mean differing from the others; Multiple Null = half group means were equal but 
different from the other half 
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Figure 5. Power estimates by mean pattern and number of groups for homogeneous 
conditions; OLS = ANOVA F test using ordinary least squares; BF = Brown-Forsythe; 
Wilcox2 = Wilcox-centered; BAR = structured mean modeling approach with Bartlett 
estimation; ML = structured mean modeling approach with maximum likelihood 
estimation; m_pat = mean pattern; k = number of group; for mean pattern: m_pat = 1: 
progressive = all means equally spaced; m_pat = 2: partial null = one extreme mean 
differing from the others; m_pat = 3: multiple null = half group means were equal but 
different from the other half 
 

 
 

Presented in Table 5 are power estimates by three significant design factors 

independently and Figure 5 shows the impact of the interaction between mean 

pattern and number of groups on power estimates. Power estimates of all five 

methods increased substantially as effect size increased and with large effect size 

(.40), power estimates reached .60 to .63. Larger group size would also lead to 

greater power estimates (e.g. .26 and .43 for group size 10 and 20, respectively, for 

OLS). Power estimates were much higher when the mean pattern is partial null 

(.44 - .45 for four methods), compared with progressive (.22 - .23) and multiple 

null (.34 - .36) mean patterns. However, the significant role of mean pattern in 

power estimates depended on the number of groups as shown in Figure 6. When 

mean pattern was partial null and combined with number of groups of 6, power 

estimates were the highest. On the other hand, large number of groups (i.e. 6 

groups) associated with progressive mean pattern yielded lowest power for 

homogeneous conditions. 

Similar to results under homogeneous conditions, average powers of Wilcox-

centered, SMM with Bartlett, and SMM with ML were all relatively low (.39, .39, 
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and .40, respectively) when the variances were not equal. Substantial variations in 

power estimates were observed as well. Based on eta-squared analyses results, 

effect size (η2 = .47), interaction of variance pattern and mean patter (η2 = .09), 

group size (η2 = .06), and interaction of number of groups and mean pattern 

(η2 = .06) were associated with variation in power estimates across all three 

methods. 
 
 

 
 
Figure 6. Power estimates by mean pattern and number of group for heterogeneous 
conditions; Wilcox2 = Wilcox-centered; BAR = structured mean modeling approach with 
Bartlett estimation; ML = structured mean modeling approach with maximum likelihood 
estimation; m_pat = mean pattern; k = number of group; for mean pattern: m_pat = 1: 
progressive = all means equally spaced; m_pat = 2: partial null = one extreme mean 
differing from the others; m_pat = 3: multiple null = half group means were equal but 
different from the other half 
 

 
 
Table 6. Power estimates by effect size, group size, and mean pattern for heterogeneous 
conditions 
 

 Effect size  Group size  Mean pattern 

 0.10 0.25 0.40  10 20  Progressive Partial null Multiple null 

Wilcox2 0.11 0.39 0.66  0.30 0.48  0.27 0.48 0.40 

Bartlett 0.12 0.40 0.67  0.31 0.48  0.28 0.49 0.41 

ML 0.12 0.39 0.66   0.31 0.47   0.27 0.48 0.40 
 

Note: Wilcox2 = Wilcox-centered; Bartlett = structured mean modeling approach with Bartlett estimation; 
ML = structured mean modeling approach with maximum likelihood estimation; Progressive = all means 
equally spaced; Partial Null = one extreme mean differing from the others; Multiple Null = half group 
means were equal but different from the other half 
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Table 7. Power estimates by variance pattern with mean pattern for heterogeneous conditions 
 

 Variance pattern 

 2  3  4  
5  6  7 

 Mean pattern           

 1 2 3   1 2 3   1 2 3   1 2 3   1 2 3   1 2 3 

Wilcox2 0.25 0.22 0.48  0.25 0.35 0.36  0.25 0.34 0.37  0.30 0.60 0.49  0.30 0.66 0.34  0.29 0.61 0.37 

Bartlett 0.26 0.24 0.49  0.27 0.36 0.39  0.26 0.35 0.39  0.29 0.60 0.48  0.29 0.65 0.31  0.27 0.60 0.35 

ML 0.27 0.24 0.50   0.27 0.37 0.40   0.27 0.36 0.40   0.30 0.61 0.48   0.30 0.66 0.32   0.28 0.61 0.35 
 

Note: Wilcox2 = Wilcox-centered; Bartlett = structured mean modeling approach with Bartlett estimation; ML = structured mean modeling approach with 
maximum likelihood estimation; for variance pattern: 2 = one extreme, 3 = split, 4 = progressive, 5 = one extreme inversely, 6 = split inversely, 
7 = progressive inversely; for mean pattern: 1 = progressive = all means equally spaced, 2 = partial null = one extreme mean differing from the 
others, 3 = multiple null = half group means were equal but different from the other half 
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As presented in Table 6, similar to the pattern identified under homogeneous 

conditions, larger effect size and group size would lead to higher power estimates 

and the partial null mean pattern yielded the highest power among all mean patterns. 

Comparing Tables 5 and 6, we found that power estimates were slightly higher 

under heterogeneous conditions than homogeneous conditions (e.g., .12, .40, 

and .67 versus .10, .32, and .61 under effect size of .10, .25, and .40 for SMM with 

Bartlett, respectively). Similar to the findings under homogeneous conditions, the 

combination of the large number of groups (6) and the partial null mean pattern 

yielded the highest power for Wilcox-centered (.48), SMM with Bartlett (.48), and 

SMM with ML (.49), as shown in Figure 6. In addition, the partial null mean pattern 

combined with all three inverse variance patterns produced highest power estimates 

(.61 - .67). Interestingly, although the partial null mean pattern overall led to 

highest power estimates, this mean pattern associated with one extreme variance 

pattern yielded lowest power estimates (.23). All the power estimates for 

combinations of variance pattern and mean pattern are presented in Table 7. 

Discussion 

The performance of the thirteen robust ANOVA tests were studied under various 

simulation conditions. In addition to the traditional robust ANOVA (i.e., ANOVA-

based) tests, the study examined the performance of SMM with different types of 

estimation methods. As found in Fan and Hancock (2012), the SMM methods, with 

the exception of ADF, performed relatively well compared to the ANOVA-based 

methods. Interestingly, among the SMM tests, the ML and its correction (i.e., 

Bartlett) outperformed the ADF and its corrections (i.e., SMM with YB1 and SMM 

with YB2). Although the assumption of normality underlies the ML, this study 

showed that the ML was fairly robust to the violation of this assumption. Thus, if 

the assumption was not severely violated, the ML controlled for Type I error 

reasonably. Even in the case of severe nonnormality, the performance of ML was 

not worse than that of many other methods. Consistent with the findings of Nevitt 

and Hancock (2004), the SMM with the Bartlett correction led to better Type I error 

control than the SMM with the ML estimation and performed best among the 

thirteen methods, particularly in small samples under the heterogeneity of variance. 

It was somewhat surprising the SMM with the ADF estimation failed to 

control for Type I error even with homogeneous variance conditions. Because the 

SMM with the ADF estimation does not assume the normality of the outcome 

variable, superior performance of the ADF was expected under nonnormality (West 

et al., 1995). However, the ADF showed high Type I error rates across simulation 
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conditions in this study. As mentioned in the study of Curran et al. (1996), the ADF 

requires a large sample for the inverse of the weight matrix. Thus, this estimation 

method is possibly unfeasible with small samples such as what we investigated in 

this study (i.e., maximum average group size of 20). As suggested in the literature 

(e.g., Nevitt & Hancock, 2004; Yuan & Bentler, 1997), the two corrected estimation 

methods of the ADF for small samples (i.e., the YB1 and YB2) showed notably 

improved Type I error control. The SMM with YB1 slightly outperformed the 

SMM with YB2 across simulation conditions. Applied researchers using the SMM 

with ADF, SMM with YB1, and SMM with YB2 to test the group mean equality 

should be aware that these methods require at least 4 observations for each group 

and are expected to perform reasonably with large sample. 

Under the heterogeneous conditions, we observed the interaction effect 

between variance pattern and sample size pattern on Type I error rates, which is 

well recognized as positive pairing and negative pairing in the ANOVA literature 

(e.g., Harwell et al., 1992; Lix et al., 1996). This interaction was more evident with 

the ANOVA F test (OLS) as the variance heterogeneity increased. That is, when 

the large group had the small variance (negative pairing), the tests became more 

liberal, yielding inflated Type I error rates. When the relation between variance and 

sample size patterns was reversed (i.e., large group with large variance or positive 

pairing), the OLS test became slightly conservative, showing over control of Type 

I error rates. We also confirmed that when group sizes were equal, Type I error was 

notably better controlled. Type I error rates in many robust tests were around the 

nominal level under balanced conditions even with heterogeneity of variance 

(Boneau, 1960). Thus, it is recommended that applied researchers pay attention to 

the pairing of group size and variance when comparing means across groups. 

In summary, when homogeneity of variance was satisfied, the ANOVA F test 

using OLS and the BF test outperformed the other methods in terms of both Type I 

error control and power. Type I error rates of this test were not affected by other 

design factors with all conditions meeting Bradley’s criterion, even under the 

severe nonnormality and unbalanced group sizes. The OLS or the BF, therefore, 

should be a choice when the variances are equal across groups. When homogeneity 

of variance was violated, the SMM with Bartlett or ML are strongly recommended 

for the omnibus test of group mean equality. When the average group size is 10 or 

above, the Wilcox-centered test and the James’ second-order test can also be 

considered. However, it should be noted that even these best performing tests 

yielded inflated Type I error rates when the distribution was severely non-normal 

under heterogeneity of variance, although the Type I error rates of the Bartlett, ML, 

and Wilcox-centered were still lower than those of the other methods. It should also 
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be noted that, with the exception of the well-performing methods, nonnormality 

and unequal group sizes resulted in an increase in Type I error rates above the upper 

limit of Bradley’s liberal criterion, even under homogeneous variance conditions. 

In addition, applied researchers should keep in mind that the maximum group size 

of this study was 20 and the performance of some methods could improve with 

larger group sizes (e.g., the SMM with ADF-based estimation methods). 

As a final remark, no one test fits all (Lix et al., 1996). Thus, it is strongly 

recommended that researchers understand their data such as the degree of 

nonnormality, severity of heterogeneity, and pairing with group size for an 

informed decision of optimal tests for independent means tests (Lix et al., 1996). 
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