
Wayne State University

Wayne State University Dissertations

1-1-2017

Dynamic Fluctuations From Hydrodynamics And
Kinetic Theory In High Energy Collisions
Christopher David Zin
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Physics Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Zin, Christopher David, "Dynamic Fluctuations From Hydrodynamics And Kinetic Theory In High Energy Collisions" (2017). Wayne
State University Dissertations. 1906.
http://digitalcommons.wayne.edu/oa_dissertations/1906

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1906?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages


DYNAMIC FLUCTUATIONS FROM HYDRODYNAMICS AND KINETIC
THEORY IN HIGH ENERGY COLLISIONS

by

CHRISTOPHER ZIN

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2017

MAJOR: Physics

Approved By:

Advisor Date



DEDICATION

To my family, whose consistent love and support will always form the fundamental

constituents of my success.

ii



ACKNOWLEDGMENTS

Education is a lifelong process that begins day one. As with many other facets of life,

one gains a significant advantage by having a strong foundation. Therefore, it is first and

foremost that I would like to thank my parents. Without their guidance none of this would

have been possible. In addition, as one’s character is shaped by those who surround him or

her, I would also like to extend special thanks to all of my family and friends.

Education is also instruction, motivation, discussion and distraction. I feel lucky to have

had an advisor that provides all of these. Sean’s commitment to his students goes well

beyond that expected of a professor and for this I cannot thank him enough. If my students

are fortunate, I will pass his influence and teachings on to them. Apparently education also

involves a lot of talk about Star Trek, for which I can also thank Sean.

The members of my committee deserve special thanks for taking the time to help further

my career. While this group could have been selected solely on qualifications, I chose them

based on the impressions they made on me during my first years in grad school. No less

thanks go to Sergei, Joern, Gil and Abhijit who have each played a unique and meaningful

role in my advancement. George deserves my utmost recognition for his part in all of this

work.

The office staff deserves far more credit than they often receive. Theirs is a job I do not

envy - dealing with the rest of us. In particular, I thank De, Shere and Janice for all the help

they’ve given me throughout the years. I also wish to thank our late custodian Kenny whose

morning chats helped brighten almost any day, and because those who are gone should not

be forgotten.

Along these lines, I extend the deepest gratitude to Jim Veneri. As anyone who knew

him is aware, Jim was always looking out for his kids, and Southpaw was no exception. His

Mathematics Resource Center was my home during my undergraduate years and, further-

more, it was his love for physics that encouraged me to join the program. One day, I hope

that his goal of bringing closer the math and physics departments is realized.

iii



Recognition goes to my friends in physics, who each made the journey a little bit easier.

Ehab and Khadije, who have been with me from the start, as well as Doaa who joined shortly

thereafter. Chiara, for exchanging one word each day and for lending an ear on days when

one word wasn’t enough. Jinjin, Victoria, Kolja, and Rachael with whom I’ve shared many

a drink. Abir and Raj for all the lunches and chats. Jocelyn, Mackenzie and a peculiar

mention to the NZ rugby team for their haka - a dance whose name is difficult enough to

remember that it can provide a laugh. Fortunately, I have met far too many friends and

colleagues to list all those who deserve recognition but know that you are all appreciated.

More generally, I would like to thank every member of the faculty and staff in the physics

department at WSU. I cannot think of a single person who did not help contribute to making

my time here a positive experience.

Recently, it seems especially important to make college a positive experience. We should

strive to continue making education attainable and desirable, for the lives we impact and

the knowledge we impart is not limited to those in our classrooms but spreads throughout

our community. Those who disregard science, and higher education in general, seem to have

gained a foothold at all levels of society - including the federal government. Notably, the

current executive branch is proving daily that nescience is, in fact, an antonym of science.

While many generations may feel they can lay claim to this sentiment, recent election results

serve as a strong indicator that it is worse than ever.

As scientists and educators, I know that many of us feel inclined to stay away from politics

but in recent months we have demonstrated our concern. The March for Science took place

on April 22, 2017 with an estimated global attendance of over one million people, including

thousands in Detroit alone. These numbers are statistically significant by any meaningful

measure! I truly believe this backward era to be short-lived but it is critical that we continue

to confront the voices of disregard until we hear nothing but the rain.

∼ Chris

iv



TABLE OF CONTENTS

Dedication ii

Acknowledgments iii

List of Figures vii

Chapter 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Background 6

2.1 Kinematic variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Longitudinal invariance and Bjorken expansion . . . . . . . . . . . . . . . . . 10

2.3 Blast wave model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 3 Stochastic processes 17

3.1 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Stochastic particle diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Stochastic momentum diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 4 Relativistic hydrodynamics 34

4.1 First-order relativistic hydrodynamics . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Second-order relativistic hydrodynamics . . . . . . . . . . . . . . . . . . . . 40

4.3 Ion collisions in hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Rapidity width of ∆rG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 5 Kinetic theory 49

5.1 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Relaxation time approximation . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Linearized Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Considering correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Ion collisions in kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 6 Correlations and fluctuations 69

6.1 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



6.1.1 Multiplicity fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.2 Momentum fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.3 Momentum-multiplicity fluctuations . . . . . . . . . . . . . . . . . . . 76

6.2 Independent source model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Connection to hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Connection to kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Diffusion vs. experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 7 Partially thermalized systems 93

7.1 Observing thermalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Comparing with experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 8 Summary and discussion 110

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix 114

A.1 Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.2 Ito product rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 Survival probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 123

Abstract 134

Autobiographical Statement 135

vi



LIST OF FIGURES

Figure 1.1: A cartoon depicting the production of anisotropic flow in a peripheral heavy
ion collision. The x-z plane defines the reaction plane. The centrality of
the collision is a measure of how much the ions overlap in the x-direction.
Source: ioppweb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2: a) Integrated elliptic flow compared at a wide range of energies, from
Ref. [1]. b) Elliptic flow as a function of centrality compared to viscous
hydrodynamic model calculations, from Ref. [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3: Symbols show single particle pt-spectra measured in Au+Au collisions
at RHIC. Curves show hydrodynamic model calculations. PHENIX and
STAR data are from Refs. [3] and [4], respectively. Curves and figure are
from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.4: Third harmonic flow coefficient in p-Pb and Pb-Pb collisions. From Ref. [6]. 5

Figure 2.1: A schematic diagram of a heavy ion collision in the transverse plane.
Participants and spectators are shown in peripheral and central collisions. . 7

Figure 2.2: A spacetime diagram depicting hyperbolas of constant proper time and
lines of constant rapidity. The light cone is located at η = ±∞. . . . . . . . . . . . . 9

Figure 2.3: The stages of a nuclear collision undergoing Bjorken expansion. Hyperbolas
are curves of constant proper time that indicate when the system moves
to a new stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 4.1: Rapidity width as a function of the number of participants for second order
momentum diffusion calculations compared to first order results. Data
from STAR include shaded area to denote the systematic uncertainty in
the fit procedure [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 6.1: Depiction of the independent source model. Proton-proton collisions are
superimposed to form a nucleus-nucleus collision. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 6.2: Independent source model curves for the observables in Eqs. (6.35), (6.37),
(6.38) and (6.39) at an energy of

√
s = 2760 GeV. All of the observables

share the same N−1
part scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 6.3: Second order momentum diffusion calculations (solid curve) compared to
the rapidity dependence of the measured covariance (6.13). First order
calculations are also compared for best fit to these data (dashed) and best
fit to σ in Fig. 4.1 (dash-dotted curves). Data (open stars) are from [7] and
(filled circles) from [8]. Percentages of the cross section indicate centrality,
with each panel corresponding to a width measurement in Fig. 4.1. . . . . . . . . 91

Figure 6.4: Time dependence of the rapidity covariance in second order diffusion. . . . . . . 92

vii



Figure 7.1: Transverse momentum fluctuations as a function of the charged particle
rapidity density dN/dy for partial thermalization (solid curves) and local
equilibrium flow (dashed curves). Data (circles, squares and triangles) are
from Refs. [9], [10] and [11,12], respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 7.2: Extracted value of the survival probability S as a function of Npart. Values
are extracted from a fit of 〈δpt1δpt2〉 to ALICE data [9] in accord with
Eq. (7.18). Peripheral collisions (Npart ≈ 0) are short-lived with low
multiplicity so produced particles have a high change to survive. Central
collisions (Npart ≈ 400) are long-lived with high multiplicity and produced
particles will likely scatter before freeze out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 7.3: Pb+Pb fluctuations as a function of the charged particle rapidity density
dN/dy in the peripheral region where partial thermalization (solid curve)
drives systems of increasing lifetime from the initial state (dash-dotted
curve) to local equilibrium flow (dashed curve). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 7.4: In p+Pb collisions partial thermalization becomes more prominent with
higher multiplicity dN/dy. Extrapolated fluctuations for partial thermal-
ization (solid curve) are compared to the initial particle production (dash-
dotted curve) and local equilibrium flow (dashed curve). . . . . . . . . . . . . . . . . . . . 103

Figure 7.5: Momentum-multiplicity fluctuation prediction for Pb+Pb systems at
√
s =

2760 GeV as a function of number of participants. Partial thermalization,
again, drives the system from the initial state to local equilibrium flow.
Significantly, local equilibrium flow lies entirely below the x-axis. . . . . . . . . . . 105

Figure 7.6: The same curves shown in Fig. 7.5, focused on the peripheral region. As
the system is propelled from the initial state toward local equilibrium we
see a clear crossover from positive to negative values at Npart ≈ 150, a
potentially striking sign of thermalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 7.7: Prediction curves for C in Pb+Pb collisions at
√
s = 2760 GeV. Behavior

is as expected in the most peripheral and central regions, with the mid-
peripheral deviation being due to the middle term in (7.16). . . . . . . . . . . . . . . . 107

Figure 7.8: Curves in Fig. 7.7 multiplied by dN/dy to emphasize the deviation of
the partial thermalization curve. Initial production and local equilibrium
curves are relatively flat in centrality while we see a clear peak atNpart ≈ 70
in the partial thermalization curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 7.9: All of the observables plotted together. All show correlations diminishing
in central collisions. We see that C and D each offer unique features in
studying thermalization. Data is the same as in Fig. 7.1. . . . . . . . . . . . . . . . . . . 108

Figure A.1: Plots of the Gaussian p(x, t) at different times. The initial δ-function
undergoes diffusion, spreading out at later times. For this example we
choose Γ = 1 and the times shown are t = 0.1 s (black), t = 1 s (blue),
t = 10 s (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



Figure A.2: Sample paths taken by W (t). Paths starting from the same point can vary
wildly, demonstrating the effect noise can have on a system over time. The
jaggedness of the lines represents the variability in the increments ∆W (t). . 117

Figure A.3: A particle traveling toward a fluid, divided into equal slices of volume
Adx. As it approaches the first volume slice it sees only a single layer of
fluid particles. The fluid particles have a collision cross section σ, depicted
as a large disk surrounding the particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

ix



1

CHAPTER 1 INTRODUCTION

The importance of studying correlations and fluctuations in high energy ion collisions

has been known for decades. This has never been more apparent than in recent years where

these measurements helped mark the discovery of Quark-Gluon Plasma (QGP) [13–15]. The

many different types of correlations present in ion collisions can provide us with valuable

knowledge regarding microscopic interactions inside this high density medium. In particular,

the non-perturbative aspects of the strong interaction are difficult to study experimentally

and probing the hot and dense QGP is one of the few avenues we have available.

The general outline of this thesis is as follows. We begin with a discussion motivating

the study of the thermalization process in heavy ion collisions and, more importantly, pA

and high multiplicity pp collisions. In Chapter 2 we review some theoretical background

concepts useful to our work. Chapter 3 details the application of Langevin noise to problems

relevant in ion physics and serves as an example of the more intricate usage of noise in the

following chapters. We extend these examples in Chapters 4 and 5 where we incorporate

noise into relativistic hydrodynamics and kinetic theory, respectively. In these chapters we

define functions that measure correlations above equilibrium in order to study the ther-

malization process. In Chapter 6 we introduce fluctuation observables that probe targeted

aspects of ion collisions and provide a connection to the correlation functions from previous

chapters. Chapter 7 is a phenomenological illustration of our partial thermalization model.

We compare to experiment and make predictions surrounding the observable consequences

of equilibration.

1.1 Motivation

Heavy ion collision systems contain a range of effects that can be attributed to a QGP

undergoing hydrodynamic expansion. Measurements of the azimuthal anisotropy of particle

distributions provide broad support for the hydrodynamic description of these large systems

[16]. One studies this anisotropy using the harmonic coefficients vn defined in the Fourier
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Figure 1.1: A cartoon depicting the production of anisotropic flow in a peripheral heavy
ion collision. The x-z plane defines the reaction plane. The centrality of the collision is a
measure of how much the ions overlap in the x-direction. Source: ioppweb

expansion of the particle distribution

1

N

dN

dφ
= 1 + 2v1 cos(φ−ΨRP ) + 2v2 cos[2(φ−ΨRP )] + · · · (1.1)

for the angle azimuthal with respect to the beam direction φ, and the angle determining the

reaction plane ΨRP as defined in Fig. 1.1. The coefficients are given by

vn = 〈cos[n(φ−ΨRP )]〉, (1.2)

where 〈· · ·〉 represents an average of an ensemble of events. Altogether, these coefficients

describe the transverse shape of the collision volume and, in particular, elliptic flow is mea-

sured with v2. The ellipsoidal anisotropy typical of v2 is shown by the almond shape in Fig.

1.1.

Experimental measurements of v2 are shown in Fig. 1.2. The left figure depicts elliptic

flow over a wide range of collisional energies, showing a consistent increase in v2 with increas-

ing energy. The figure on the right shows v2 as a function of centrality (as defined in Fig. 1.1)
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Figure 1.2: a) Integrated elliptic flow compared at a wide range of energies, from Ref.
[1]. b) Elliptic flow as a function of centrality compared to viscous hydrodynamic model
calculations, from Ref. [2].

as measured by the ALICE experiment1. Also shown are theory curves from hydrodynamic

calculations. The closeness of these curves to data in the central region demonstrates the

applicability of hydrodynamics to these collisions. Notably, the hydrodynamic models differ

from data in the most peripheral region.

Figure 1.3 shows more examples of hydrodynamical models compared to data, this time

to particle spectra. The top left figure shows the models fitting quite well to data in the most

central bin over the entire range of transverse momentum. The other figures include more

peripheral bins. Again, we see model deviation from data in the most peripheral region.

One of the goals of this thesis is to offer an explanation of this behavior. Hydrodynamics

is applicable when the system under consideration is in local equilibrium. Data indicates

that the large central collision systems have enough time for particle scattering to thermalize

the system. Peripheral collisions result in less dense and shorter lived systems that may not

be able to reach a state of complete equilibration. Evidence of incomplete thermalization of

data motivates our work.

More intriguing, however, are the recent measurements of similar anisotropy in pA and

high multiplicity pp collisions [6, 17–21]. An example of one such measurement is shown

1The data points are cumulants of v2, measured using two (circles) and four (squares) particle correlations.
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Figure 1.3: Symbols show single particle pt-spectra measured in Au+Au collisions at RHIC.
Curves show hydrodynamic model calculations. PHENIX and STAR data are from Refs. [3]
and [4], respectively. Curves and figure are from Ref. [5].
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Figure 1.4: Third harmonic flow coefficient in p-Pb and Pb-Pb collisions. From Ref. [6].

in Fig. 1.4, comparing the third harmonic v3 in p-Pb to Pb-Pb collisions using the same

kinematic cuts. The similar magnitudes reported lead one to believe that these azimuthal

correlations are, indeed, flow-like. This implies that there is, at least, some degree of ther-

malization present in these small systems. This raises profound questions about the onset

of collective flow and its relation to hydrodynamics.

As an illustrative application, we study transverse momentum fluctuations, long argued

to be a probe of thermalization [22]. These fluctuations now have a wide body of data

available for comparison. Data distinctly depart from equilibrium expectations in peripheral

heavy ion collisions at RHIC and LHC [23]. We argue that measurements of pA collisions

can help determine whether these systems are indeed thermal.
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CHAPTER 2 BACKGROUND

In this chapter we review some background information that will be useful throughout

the rest of this text. We start with a simple description of an ion collision to help define

a few terms. The two ions approach each other along the beam direction, also called the

longitudinal direction, which defines the z-axis. The directions transverse to the beam are

then the x- and y-axes. One ion is designated the projectile and the other the target (for

non-fixed target colliders, the choice can be done arbitrarily). When the two ions collide, it

is actually the constituent nucleons of the ions colliding. Those nucleons that do collide are

called participants, while those that do not are called spectators. Participants contribute to

the formation of the collision system and spectators continue on while leaving little trace of

their existence. The impact parameter b is the transverse distance between the centers of

the two nuclei. Figure 2.1 demonstrates this for peripheral (b ≈ RA) and central (b ≈ 0)

collisions.

Throughout the rest of this work we will be using natural units such that c = h̄ = kB = 1.

Furthermore, Greek letters denote space and time components (µ, ν, . . . = 0, 1, 2, 3), while

Latin letters denote only spatial components (i, j, . . . = 1, 2, 3). Four-vectors are always

given a Greek index, while three-vectors either have a Latin index or are written in bold

text. We also make use of Einstein summation notation.

2.1 Kinematic variables

In this section we review some kinematic variables useful to the study of relativistic

ion collision. They are designed in such a way that they transform simply under Lorentz

boosts. Furthermore, they provide a number of convenient identities that allow for easier

calculations. We make use of the position and momentum four-vectors given as

xµ = (t, x, y, z) and pµ = (E, px, py, pz) , (2.1)

and we use the spacetime metric gµν = diag(1,−1,−1,−1).
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Figure 2.1: A schematic diagram of a heavy ion collision in the transverse plane. Participants
and spectators are shown in peripheral and central collisions.

The rapidity of a particle is defined as

y =
1

2
ln
E + pz
E − pz

=
1

2
ln

1 + vz
1− vz

, (2.2)

where the second equality follows from vz = pz/E. Rapidity can be thought of as another

expression of the longitudinal velocity of a particle. In some ways, it behaves more naturally

than velocity at relativistic speeds. Firstly, rapidity can take on values from −∞ to ∞, as

one expects of the velocity in a non-relativistic context. Secondly, rapidity is additive under

boosts of the coordinate system as, again, is familiar at non-relativistic speeds. The inverse

transformations to (2.2) are given by

E = mt cosh y and pz = mt sinh y, (2.3)

where the transverse mass is mt =
√
E2 − p2

z =
√
m2 + p2

t for the transverse momentum

pt =
√
p2
x + p2

y.

The usefulness of rapidity to describe velocity makes one desire a similar variable for
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spacetime. Thus, we are led to define the spatial rapidity1

η =
1

2
ln
t+ z

t− z
. (2.4)

Spatial rapidity is often paired with the proper time

τ =
√
t2 − z2. (2.5)

Together, these two allow us to define a new coordinate system via the transformation

(t, x, y, z)→ (τ, x, y, η) . (2.6)

This coordinate system is often called Milne coordinates or, simply, proper time and rapidity

coordinates. A volume element transforms to the new system as

d4x = τdτdηd2x⊥, (2.7)

which can be easily verified by calculating the Jacobian of the transformation using (2.4)

and (2.5). The inverse transformation is given by

t = τ cosh η and z = τ sinh η. (2.8)

In a spacetime diagram, as in Fig. 2.2, contours of constant spatial rapidity are lines

through the origin with slope t/z = coth η. Contours of constant proper time are hyperbolas

asymptotic to the forward and backward light cones defined by the equation t = ±
√
z2 + τ 2.

This diagram allows us a deeper understanding of the Milne coordinate system. In Cartesian

coordinates, suppose we choose two points on the z-axis. After any amount of time t has

1We wish to try to preempt any confusion regarding the two rapidities while moving forward in the text.
When referring to the spatial rapidity we sometimes just say “rapidity”, however, the spatial rapidity is
always denoted by η.
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Figure 2.2: A spacetime diagram depicting hyperbolas of constant proper time and lines of
constant rapidity. The light cone is located at η = ±∞.

elapsed the distance between these points remains unchanged. Now we repeat this for the

spatial rapidity by choosing two contours in Fig. 2.2. At early times t1, these contours are

close together (in Cartesian terms). However, at later times t2 they grow distant, even though

we have followed the same “points” through time. It is in this way that Milne coordinates

describe an expanding spacetime, an idea closely related to the material in the next section.

In general there need not be any relation between rapidity and spatial rapidity. However,

in the case that particles are moving at speed vz = z/t, the two rapidities are equal:

η =
1

2
ln

1 + z/t

1− z/t
=

1

2
ln

1 + vz
1− vz

= y. (2.9)

Note that rapidity describes the velocity of a particle, while the spatial rapidity describes

the position of the particle. Thus, we see that in this curious case, there is a significant

correlation between velocity and position. This idea is also closely related to the material in

the next section. We shall also make use of the following Lorentz factor identity applicable
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to this situation:

γ =
1√

1− z2/t2
=

1√
1− sinh2 η/ cosh2 η

= cosh η, (2.10)

found using cosh2 η − sinh2 η = 1.

We note that in experiment it is comparatively easy to measure the momentum rather

than the energy of a particle. A more useful variable for experimentalists is the pseudora-

pidity given by

ηp = − ln[tan(θ/2)] (2.11)

where θ is the angle with which a particle emerges from the collision measured relative to

the beam axis. One can also write the pseudorapidity as

ηp =
1

2
ln
|p|+ pz
|p| − pz

(2.12)

which clarifies its relation to the rapidity. The relation is even more obvious at large pz

where the two quantities are nearly identical y ≈ ηp. Pseudorapidity is often denoted with

the symbol η in the literature, however, for our purposes it is more convenient to allow the

spatial rapidity to have its own distinct letter.

Finally, a quick word on the center of mass energy of a collision. For two scattered parti-

cles with incoming momenta p1 and p2 and outgoing momenta p3 and p4, the Mandelstam

variable s is defined as

s = (p1 + p2)2 = (p3 + p4)2. (2.13)

The total collision energy is then given by
√
s and this value is often used to denote the

strength of a collision – e.g. a Pb+Pb collision at
√
s = 2760 GeV.

2.2 Longitudinal invariance and Bjorken expansion

Theoretical calculations in heavy ion physics can be difficult and often implausible with-

out making some simplifying assumptions. To describe the hydrodynamic expansion of the
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Figure 2.3: The stages of a nuclear collision undergoing Bjorken expansion. Hyperbolas are
curves of constant proper time that indicate when the system moves to a new stage.

fluid following a collision, for instance, one needs to specify the equation of state, energy den-

sity, pressure, fluid four-velocity and any transport coefficients under consideration. None of

these quantities are known from first principles so we generally employ a variety of models

to allow for a deeper understanding of the underlying physics. We make a number of our

own simplifying assumptions in the following chapters but an especially common model is

Bjorken’s approach to longitudinal boost-invariance, which we describe here.

One starts by assuming the following description of a nucleus-nucleus collision, as shown

in Fig. 2.3. Due to their high speeds, the two approaching nuclei are Lorentz contracted into

two-dimensional nuclear pancakes. After the pancakes collide they pass through each other,

depositing energy in the region near z = 0 at time t = 0. Particle production for the entire

system begins at an initial proper time τ0 (hyperbola not depicted). The system is in a state

of pre-equilibrium until thermalization occurs and the quark-gluon plasma is formed. Finally,

after a period of hydrodynamic expansion and cooling (during which hadronization occurs),

all interactions between particles cease and the system freezes out at a final proper time

τF . Bjorken’s basic assumption of longitudinal invariance is that “throughout the ‘central-

plateau’ region2 the initial conditions – imposed a proper time ∼ 1 fm/c after the collision

2The central-plateau region refers to the flat region near the center of the particle distribution viewed as
a function of rapidity. This is seen fairly well in experiment, see Refs. [24, 25].
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time – are invariant with respect to Lorentz transformations” [26].

The initial expansion of the fluid is assumed to be only in the longitudinal direction

so that particles have transverse velocity vt = 0. The longitudinal velocity of particles is

assumed to have a specific scaling profile: after a time t, particles at a distance z from

the point of collision have velocity vz = z/t. One-dimensional expansion is expected to be

a good approximation for a short time after the collision and we expect three-dimensional

expansion to occur once the time elapsed is approximately equal to the radius of the nuclei

t ≈ 1.2A1/3 ≈ 7 fm. This approximation is most appropriate at high energies (
√
s > 100

GeV), near central rapidity (η ≈ 0) and near the transverse center of the collision system.

By changing to the proper time τ =
√
t2 − z2 and spatial rapidity η = (1/2) ln[(t+z)/(t−

z)] we see the benefit of this model. In this coordinate system, the four-velocity of particles

becomes

uµ = γ
(

1, 0, 0,
z

t

)
⇒ uµ =

(
t

τ
, 0, 0,

z

τ

)
, (2.14)

using the identities in Sec. 2.1. Then,

uη =
∂η

∂τ
=
∂t

∂τ

∂η

∂t
+
∂z

∂τ

∂η

∂z
= ut

(
−z
τ 2

)
+ uz

(
t

τ 2

)
= 0, (2.15)

using ut and uz from (2.14). Since the velocity on the η-axis vanishes and the initial condi-

tions are assumed to be independent of η (from Bjorken’s assumption), all quantities – e, p,

etc. – are independent of η and unchanged under Lorentz boosts. Thus, a fluid undergoing

Bjorken expansion is longitudinally invariant.

As an example of the simplicity offered by this model, we use it to quickly find a few

equations for the evolution of some of the thermodynamic variables of an expanding Bjorken

system. To do this, we use two convenient identities,

∂µu
µ = 1/τ and uµ∂µ = ∂/∂τ (2.16)
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which one can easily verify. Then using conservation of energy-momentum ∂µT
µν
id = 0 for

the stress-energy tensor of an ideal gas T µνid = (e+ p)uµuν − pgµν we have

0 = uν∂µT
µν
id

= [∂µ(e+ p)]uµ + (e+ p) [∂µu
µ] + (e+ p)uµ [uν∂µu

ν ]− uµ∂µp

=
∂

∂τ
(e+ p) +

e+ p

τ
+ 0− ∂

∂τ
p

=
∂e

∂τ
+
e+ p

τ
, (2.17)

where we used the identity uν∂µu
ν = 1

2
∂µ(uνu

ν) = 1
2
∂µ1 = 0. Taking this one step further,

we can apply the first law of thermodynamics in the form de = Tds+ µdn and the enthalpy

relation e+ p = Ts+ µn we find

0 = T

(
∂s

∂τ
+
s

τ

)
+ µ

(
∂n

∂τ
+
n

τ

)
= T∂νs

ν + µ∂νn
ν , (2.18)

where we have identified the entropy and particle currents as sν = suν and nν = nuν ,

respectively. Conservation of the particle current implies ∂νn
ν = 0, so that (2.18) implies

∂νs
ν = 0, and we have

∂s

∂τ
+
s

τ
= 0 and

∂n

∂τ
+
n

τ
= 0. (2.19)

Thus, we see that in the Bjorken model both entropy and particle density decrease as the

inverse of the proper time via s = s0τ0/τ and n = n0τ0/τ . While these equations only

hold for an ideal fluid undergoing Bjorken expansion, we will find them to be adequate for

approximations later on.

2.3 Blast wave model

The transverse expansion of the collision volume is one of the most widely studied as-

pects of heavy ion collisions. Experimental measurements of the azimuthal anisotropy have

provided conclusive evidence that the expansion of the thermalized system can by described
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hydrodynamically [16]. While a full hydrodynamic description would be ideal, it is also often

intractable. In addition to the reasons mentioned in Sec. 2.2, hydrodynamical simulations

need to run many (perhaps millions) of events in order to gain the statistics needed to answer

the questions we address in this thesis. We therefore turn to a simplified model of transverse

expansion known as the blast wave model.

The basic idea of the blast wave model is as follows. After the formation time, the

collision volume consists of a dense medium of particles with random transverse motion.

Outgoing particles on the outermost layer of this volume will move away from the center,

while ingoing particles will scatter off the particles in subsequent layers. This results in the

surface layer expanding outward into the vacuum with an average velocity in the transverse

direction. Initially, the second outermost layer of particles will scatter off the particles in

subsequent layers as well as off the particles in the outermost layer. However, as the surface

layer expands it becomes more diffuse allowing the second layer to expand. Evolution of the

system continues on in this manner until freeze out.

The blast wave model is convenient for its simplicity. It makes the assumptions that

particles are locally thermalized at a freeze out temperature and that they are moving out-

ward with a collective transverse velocity gradient. In this way, it describes transverse

expansion with two parameters: β the blast wave surface velocity, and T the freeze out

temperature. Despite its simplicity it decently describes elliptic flow and transverse momen-

tum spectra [23, 27, 28]. However, it also suffers from its simplicity. The blast wave model

contains no information about the underlying particle production mechanism, perturbative

QCD processes, hadronization, resonance decay, etc. As such, jet effects are beyond its reach

and instead, the blast wave model seeks to describe soft processes. Final multiplicity, too,

cannot be predicted and the magnitude of the particle distribution is normalized to data.

Nevertheless, it remains a convenient tool in our studies. The version of the blast wave we

apply here was used in Ref. [23]. It is summarized in the following paragraphs.

The pressure gradient due to the anisotropy in density cause the outward expansion of
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the system. It is largest near the surface of the system so particles on the outermost layer

receive the largest boost. The gradient decreases as we move inward so that particles near

the center of the system receive a smaller push. Thus, we assume a Hubble-like expansion

wherein the velocity of particles depends on their initial radial position

γtvt = λr (2.20)

where r is the radial vector pointing to the location of the particle, γt is a transverse boost

factor and λ is a constant dictating the rate of expansion.

We assume particles freeze out at a constant proper time τF , defined in (5.11), as in the

Bjorken model. Particles with larger rapidity will then freeze out at a later time t than those

with a smaller rapidity, as determined by the slopes of the lines in Fig. 2.2. The blast wave

model seeks to describe the momentum distribution of particles on the freeze out surface σ

determined by τF . To accomplish this we use the Cooper-Frye formula [29] given as

E
dN

d3p
=

∫
σ

f(x,p)pµdσµ. (2.21)

The differential surface element dσµ is defined as an outward pointing four-vector perpendic-

ular to the surface σ, f is the phase-space density of particles, and the integral is taken over

the freeze out surface. We choose f , following [30], to be a Boltzmann distribution boosted

by the fluid velocity uµ:

f(x,p) = ae−u
µpµ/T , (2.22)

where a is set by normalization. That we may use a Boltzmann distribution in place of a

Fermi-Dirac or Bose-Einstein distribution is due to the fact that most hadrons are heavy

enough to be treated as classical particles. Experimental results backing up this claim can be

found in Refs. [31, 32]. We can then use this distribution to calculate observable quantities
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such as

dN

dy
=

∫
E
dN

d3p
ptdptdφ (2.23)

〈pt〉 =
1

〈N〉

∫
ptE

dN

d3p
d3p. (2.24)

Our interest in the blast wave model is mainly to calculate the value of observables in

local equilibrium, done in Chapter 7. We use it in place of more sophisticated models for its

accessibility but we also find it very suitable to our needs. Full details and features of this

model can be found in Ref. [33].
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CHAPTER 3 STOCHASTIC PROCESSES

The concept of Brownian motion was first studied by the botanist Robert Brown in

1827 while observing pollen grains suspended in water. Brown noticed the pollen underwent

erratic motion but, as our knowledge of the substructure of matter was not as substantial as

it is today, he could not explain this behavior. An explanation came from Albert Einstein

in 19051 where he detailed that the motion was due to water molecules frequently colliding

with the pollen. While Einstein’s solution was entirely valid, in 1908 Paul Langevin proposed

a separate explanation by introducing the concept of stochastic noise. This jump-started

a branch of mathematics via the notions of stochastic differential equations and stochastic

processes.

While the theory of stochastic processes has been rigorously developed mathematically,

physics provides some very natural examples of stochastic behavior, some famous examples

being particle decay, the quantum world and, of course, Brownian motion. Outside of physics,

stochastic processes have wide reaching applications from the field of finance with the Black-

Scholes equation, to Markov chain models in ecology and even as far as neuroscience with

noisy neurons. In recent years, stochastic methods have been applied to hydrodynamics

and heavy flavor propagation in quark gluon plasma [35–37]. One of the goals in this work

is to apply stochastic methods to the study of correlation functions. We begin with a

demonstration of Brownian motion from the perspective of Langevin’s theory. Although

this example is objectively simpler than the Boltzmann and hydrodynamic implementations

we are working towards, it will serve as a nice introduction to the concepts and methods we

will need.

3.1 Brownian motion

Consider a non-relativistic system consisting of a fluid at rest, under no external forces,

and make note of your favorite particle in the fluid. As this particle of mass m moves through

the fluid there are two forces on it that we must consider. The first is the frictional force

due to the fluid viscosity, ff = −mγv, for the coefficient of friction γ. The second is the

1Shortly after, in 1906, Marian Smoluchowski independently came across the same explanation [34].



18

force from the collisions of the fluid particles on the test particle, ξ. In one dimension for

simplicity, Newton’s laws give the equation of motion of the test particle as

mv̇ = −mγv + ξ. (3.1)

This equation is known as a Langevin equation due to the stochastic nature of the force ξ.

Keeping track of all the individual collisions which contribute to ξ would be cumbersome,

and in many cases impossible, so our first step in solving Eq. (3.1) will be to describe what

we want and need in regards to a stochastic force.

To facilitate this discussion we partition time into a series of discrete steps ∆t. We will

not concern ourselves with the details of the partition so long as, at the end of the day, we

can take ∆t → 0 to recover continuous time and full differential equations. This allows us

to write Eq. (3.1) as a difference equation.

v(t+ ∆t)− v(t) = −γv(t)∆t+ ∆W (t) (3.2)

where we have made the substitution (ξ/m)∆t = ∆W . The stochastic term ∆W now

represents the change in velocity due to collisions during the time interval from t to t+ ∆t.

We make this notational change to make explicit the nature of ∆W . The Wiener process

W (t) is described in detail in appendix A.1.

In order to work with the Langevin equation we make two assumptions on ∆W . First, we

assume that the collisions are random in direction and magnitude and, thus, we require the

average contribution of ∆W to vanish. Second, we will assume a specific form for noise-noise

correlation, which is typical for diffusion type problems. We write these assumptions as

〈∆W 〉 = 0 and 〈∆W 2〉 = Γ∆t, (3.3)

where the brackets refer to an average over an ensemble of identically prepared systems
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allowed to evolve under the same conditions. Due to the random interactions between the

fluid particles, the systems in this ensemble can deviate from each other wildly despite having

the same initial conditions. We refer to this as the “thermal average” or the “noise average”

and note it must be distinguished from a full event average that we will use later which must

also take into consideration an average over the differing initial conditions.

In the second half of Eq. (3.3), Γ represents the “strength” of the noise as we will see

later on. Implied in the relation ∆W 2 ∝ ∆t is the idea that we can consider ∆W to be a

differential on the order of ∆t1/2. Half-order differentials are one of the features of stochastic

calculus that sets it apart greatly from regular calculus.

Taking the thermal average of Eq. (3.2) and then taking ∆t→ 0 gives

d〈v〉
dt

= −γ〈v〉, (3.4)

which has the solution 〈v〉 = v0e
−γ. We see the noise vanishes and the result is a completely

deterministic equation for the velocity of the test particle. Notice how the noise does not

contribute to the single particle average.

Next we calculate the variance in the velocity 〈∆(v2)〉. To do this we need to make use

of the Itô product rule from stochastic calculus. This is a variation of the usual product rule

which is required when using stochastic variables in order to keep all terms of order ∆t – in

particular ∆W 2. In this case it takes the form:

∆(v2) = 2v∆v + ∆v∆v

= 2v (−γv∆t+ ∆W ) + (γ2v2∆t2 − 2γv∆t∆W + ∆W 2)

= −2v2γ∆t+ ∆W 2 + γ2v2∆t2 + 2v(1− γ∆t)∆W (3.5)

The ∆t2 term vanishes to order ∆t and the ∆W term will vanish upon taking the average.
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Thus, we find

〈∆(v2)〉 = −2γ〈v2〉∆t+ 〈∆W 2〉

=
(
−2γ〈v2〉+ Γ

)
∆t. (3.6)

Finally, taking ∆t→ 0 we have an equation for the variance in the velocity

d〈v2〉
dt

= −2γ〈v2〉+ Γ. (3.7)

Notice that here the noise term remains. In general, we will see that for two-particle observ-

ables – and, hence, correlations – the noise makes an important contribution.

Up to this point, Γ is an unknown quantity. We can calculate a specific value for this

strength term using the fluctuation-dissipation theorem from statistical mechanics. Aptly

named, the fluctuation-dissipation theorem relates thermal fluctuations in a system to the

dissipative processes acting in the system. Brownian motion provides a simple example.

Particles moving through the system dissipate energy due to viscosity. This energy is added

to the system, causing the particles to fluctuate more rapidly. In systems that obey detailed

balance these two processes must equal each other.

To apply this to Eq. (3.7) note that in equilibrium the system exhibits steady state

behavior so the time derivative on the left-hand side must vanish. Thus, we are left with

Γ = 2γ〈v2〉eq. In this case we can further simplify the result by invoking the equipartition

theorem 〈v2〉eq = T/m for the temperature T and, therefore,

Γ = 2γT/m. (3.8)

It is also interesting to find the variance in the position of the Brownian particle. We
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assume ∆x = v(t)∆t is independent of the noise so the usual product rule gives

∆(x2) = 2x(t)∆x = 2xv∆t ⇒ d〈x2〉
dt

= 2〈xv〉. (3.9)

To find 〈xv〉 we again employ the Itô product rule to accomodate the noisy velocity term:

∆(xv) = x∆v + v∆x+ ∆x∆v

= x(−γv∆t+ ∆W ) + v2∆t+ v∆t(−γv∆t+ ∆W )

= (−γxv + v2)∆t+−γv2(∆t)2 + (x+ v∆t)∆W. (3.10)

We drop the term proportional to ∆t2 when taking the limit ∆t→ 0 and the terms propor-

tional to ∆W vanish upon taking the noise average. Thus, we are left with the equation

d〈xv〉
dt

= −γ〈xv〉+ 〈v2〉 (3.11)

In equilibrium the time derivative again vanishes and we have

〈xv〉eq = 〈v2〉eq/γ = T/γm (3.12)

Plugging this into Eq. (3.9) we find d〈x2〉eq/dt = 2〈v2〉eq/γ = 2T/γm which we can imme-

diately integrate to get

〈x2〉eq =
2T

γm
t. (3.13)

Identifying D = T/γm as the diffusion coefficient we reproduce Einstein’s random walk

formula 〈x2〉eq = 2Dt

Had we not included noise we would have arrived at contradictory results. To better

understand the noise contribution we can reanalyze the problem without noise by taking

∆W = 0 in Eq. (3.2). Now, upon calculating ∆(v2) we use the regular product rule or,

alternatively, simply set Γ = 0. As a result, the average 〈v2〉 experiences exponential decay
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and, in particular, tends to zero in the long time limit – i.e. equilibrium. Immediately this

violates the equipartition theorem and, further, leads to the strange result that 〈x2〉eq = 0.

We define the variance of the velocity as rv = 〈v2〉 − 〈v〉2 (here 〈v〉 = 0 but this need not

always be the case). Our interest will be in the deviation of rv from its value in equilibrium

∆rv = rv − rv,eq as this quantity is related to the correlation functions we will study later.

This quantity measures the degree to which the particles of the system have thermalized.

We wish to obtain an equation of motion for ∆rv:

d∆rv
dt

=
drv
dt
− drv,eq

dt

=
d〈v2〉
dt
− d〈v〉2

dt
−
(
d〈v2〉eq
dt

−
d〈v〉2eq
dt

)
=
(
−2γ〈v2〉+ Γ

)
−
(
−2γ〈v2〉

)
− (0− 0)

= −2γrv + Γ. (3.14)

Making the identification Γ = 2γ〈v2〉eq = 2γ
(
〈v2〉eq − 〈v〉2eq

)
= 2γrv,eq we have

d∆rv
dt

= −2γ∆rv. (3.15)

Equation (3.15) has two interesting features. First, unlike the closely related Eq. (3.7), it

is entirely deterministic. Indeed, the noise Γ has been absorbed into the equilibrium term.

Second, the lifetime of ∆rv is 1/2γ, precisely half the value for the lifetime of the mean 〈v〉

as seen in Eq. (3.4). This factor will be important when we study hydrodynamic transport

in Chapter 4.

3.2 Stochastic particle diffusion

In the previous example we introduced stochastic variables to describe the velocity of

Brownian particles. One can also describe the density of these particles by treating the

diffusion equation in a similar manner. Let n(x, t)dx represent the number of particles in

the volume dx at time t and let J(x, t) represent the particle current. Due to particle number
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conservation these are related via the conservation equation:

∂n

∂t
= −∇ · J. (3.16)

Fick’s law for particle diffusion says that particles will tend to flow from higher density

regions to lower density regions. As an equation it is written

J = −D∇n (3.17)

where the diffusion coefficient D gives the strength of the flow. In general D may depend on

position or time but we will take it as constant for simplicity.

In this section we will take conservation of particle number to be exact so Eq. (3.16)

cannot be treated stochastically. This assumption is not strictly necessary and does not

change the following results much but it will be useful when we deal with momentum later

on. However, one can imagine that particle flow can be treated stochastically as it is due to

collisions. To add “randomness” to this problem we, therefore, introduce it into Fick’s law.

Thus, we write

J = −D∇n+ j (3.18)

where j represents the stochastic contribution to the particle current. Combining Eqs. (3.16)

and (3.18) in the usual way to get the diffusion equation gives

∂n

∂t
= D∇2n−∇ · j. (3.19)

In this case, our “stochastic variable” has become “the derivative of a stochastic variable”.

One can take care and maintain this distinction but for our purposes we need only note that

the derivative of a stochastic variable is still stochastic. As such, we treat ∇ · j in the same

manner as we treated ξ in Eq. (3.1).
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As before, we write this as a difference equation

n(x, t+ ∆t)− n(x, t) ≡ ∆n = D∇2n(x, t)∆t+ ∆W (x, t) (3.20)

where we have written the stochastic contribution as a Wiener process, now depending on

position and time. Our assumptions on ∆W are the same as in the previous section:

〈∆W 〉 = 0 and 〈∆W1∆W2〉 = Γ12∆t (3.21)

where Wi = W (xi, t). Due to dependence of ∆W on position, the noise term Γ12 now also

depends on the coordinates x1 and x2. However, we should not have same time noise corre-

lations between separated spatial points so we expect Γ12 to have the δ-function dependence

δ(x1 − x2).

Taking the thermal average of Eq. (3.20) shows that – as expected – the average value

of the density satisfies the usual diffusion equation:

∂〈n〉
∂t

= D∇2〈n〉. (3.22)

Once again we see that the single particle average is unaffected by noise. The noise is

relevant, however, to the correlator 〈n(x1, t)n(x2, t)〉. To see this, we apply the Itô product

rule to ∆(n1n2) ≡ n(x1, t+ ∆t)n(x2, t+ ∆t)− n(x1, t)n(x2, t):

∆(n1n2) = n1∆n2 + n2∆n1 + ∆n1∆n2

= n1

(
D∇2

2n2∆t+ ∆W2

)
+ n2

(
D∇2

1n1∆t+ ∆W1

)
+
(
D∇2

1n1∆t+ ∆W1

) (
D∇2

2n2∆t+ ∆W2

)
= D

(
∇2

1 +∇2
2

)
n1n2∆t+ ∆W1∆W2

+
(
n1 +D∇2

1n1∆t
)

∆W2 +
(
n2 +D∇2

2n2∆t
)

∆W1 +D2∇2
1∇2

2n1n2∆t2 (3.23)
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On taking the thermal average and dropping the second order term the last line vanishes.

After using Eq. (3.21) for the noise-noise correlator, dividing by ∆t and taking its limit to

0 and then rearranging we arrive at a differential equation for the density correlator:

[
∂

∂t
−D

(
∇2

1 +∇2
2

)]
〈n1n2〉 = Γ12. (3.24)

The calculation for ∆ (〈n1〉〈n2〉) is similar to above, or alternatively since there is no

noise on the single particle averages we can take Γ12 = 0. As a result we get

[
∂

∂t
−D

(
∇2

1 +∇2
2

)]
〈n1〉〈n2〉 = 0. (3.25)

Combining these equations and defining the correlation function rn ≡ 〈n1n2〉 − 〈n1〉〈n2〉 we

find [
∂

∂t
−D

(
∇2

1 +∇2
2

)]
rn = Γ12. (3.26)

We can find the value of Γ12 by applying the fluctuation-dissipation theorem. As before,

we will require that fluctuations in equilibrium have the appropriate thermodynamic limit.

In local equilibrium the time derivative ∂rn/∂t vanishes since we have assumed a stationary

background. Thus,

Γ12 = −D
(
∇2

1 +∇2
2

)
rn,le (3.27)

where rn,le denotes the value of the covariance in local equilibrium. In systems that can be

described using the grand canonical ensemble, particle number fluctuations satisfy Poisson

statistics. For the Poisson distribution, the variance equals the average so that 〈N2〉 −

〈N〉2 = 〈N〉. Furthermore, local equilibrium erases all correlations at distinct points x1 6= x2.

Therefore, in local equilibrium we have rn,le = 〈n1〉δ(x1−x2). Finally, the noise term is given

by

Γ12 = −D
(
∇2

1 +∇2
2

)
〈n1〉δ (x1 − x2) . (3.28)
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Notice that if we had not considered noise then Eq. (3.26) would have Γ12 = 0. As a result

we would find that rn → 0 as t→∞, which contradicts that particle number obeys Poisson

statistics in equilibrium.

The presence of the delta function in the noise term makes Eq. (3.26) difficult to work

with in practice. We can find a more preferable equation by introducing ∆rn ≡ rn − rn,le,

which measures rn relative to its value in equilibrium. Combining Eqs. (3.26) and (3.28) we

obtain [
∂

∂t
−D

(
∇2

1 +∇2
2

)]
∆rn = 0. (3.29)

Now notice that as t→∞ we find that ∆rn → 0.

This describes the effect of diffusion on the particles in an event. The initial distribution

of particles after a collision may have regions where particles are densly clumped together

along with regions of lower density. This gives initial correlations rn which are very different

from those in local equilibrium rn,le. As the system evolves over time, the initial correlations

tend to their value in local equilibrium rn → rn,le which describes a smoother distribution

of particles throughout the volume. In a real collision, however, the rapid expansion of the

system can interfere with this process. If interactions between particles ceases before the

system has time to fully thermalize, some of the initial correlations are frozen into the final

distribution.

3.3 Stochastic momentum diffusion

The case of first order momentum diffusion is very similar to that of particle diffusion.

In this section, we use g(x, t) to represent the shear contribution to the momentum current

M i = T 0i − 〈T 0i〉. For now, the details of this relationship are unimportant – they will be

explained in Chapter 4 – and we are only interested in the equations satisfied by g. Thus, if

we briefly look forward to Eq. (4.21) we see that each component of g individually satisfies

the diffusion equation

∂〈gi〉
∂t

= ν∇2〈gi〉, (3.30)
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for the kinematic viscosity ν. As in Eq. (3.20), we write this as a difference equation with

noise

∆gi = ν∇2gi∆t+ ∆W i. (3.31)

We make similar assumptions on these ∆W as in previous sections with the caveat that W

now depends on the components of g. The defining relations are then given by

〈∆W i〉 = 0 and 〈∆W i
1∆W j

2 〉 = Γij12∆t (3.32)

where W i
k = W i(xk, t) is the Wiener process that describes the noise affecting the ith com-

ponent of g and Γij12 determines the strength of the noise.

We define the momentum correlation function rijg ≡ 〈gi1g
j
2〉 − 〈gi1〉〈g

j
2〉 and the difference

∆rijg ≡ rijg − rijg,le for the local equilibrium correlation function rijg,le. Note that although

〈gi〉 = 0, we keep these in for generality.

The method and results mimic those in Sec. 3.2. The momentum correlation function

satisfies the equation [
∂

∂t
− ν

(
∇2

1 +∇2
2

)]
rijg = Γij12. (3.33)

while the deviation of rijg from equilibrium satisfies the noise-free diffusion equation

[
∂

∂t
− ν

(
∇2

1 +∇2
2

)]
∆rijg = 0. (3.34)

with

Γij12 = −ν
(
∇2

1 +∇2
2

)
rijg,le (3.35)

In this case we again find that, due to the consideration of stochastic noise, rijg → rijg,le as

the system evolves. We can interpret these results similarly to the case with the particle

density. We may have an initially clumpy momentum distribution which results in anisotropic

transverse flow. The kinematic viscosity ν tends to diminish the anisotropy bringing the
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system closer to local equilibrium.

First order hydrodynamics fails in situations where causality must be considered. In

first order diffusion, for example, a δ-function initial condition will instantaneously form a

Gaussian, spreading its tails out to infinity. Second order hydrodynamics restores causality

to diffusion and, therefore, will be important in our study of nuclear collisions. In moving

to second order we pick up new transport coefficients, in particular the relaxation time for

the shear stress τπ. We now apply our methods to second order hydrodynamics.

Looking forward again, the shear modes of the momentum density evolve via second

order diffusion and satisfy the Maxwell-Cattaneo equation (4.34)

(
τπ
∂2

∂t2
+
∂

∂t

)
〈gi〉 = ν∇2〈gi〉. (3.36)

To write this as a difference equation we convert it into two first order equations by defining

hi = ∂gi/∂t. For simplicity of notation we will also define L = ν∇2 and temporarily suppress

the vector indices. We can then write the non-averaged version of Eq. (3.36) as

τπ
∂h

∂t
= −h+ Lg. (3.37)

We take the definition of h as exact and, thus, only apply noise to Eq. (3.37). Then our

stochastic system of difference equations is

∆g = h∆t (3.38)

∆h = −γ (h− Lg) ∆t+ γ∆W (3.39)

where γ = 1/τπ and ∆W satisfies Eq. (3.32).
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To find an equation for ∆rg, as defined previously, we start with

∆〈g1g2〉 = 〈g1∆g2〉+ 〈g2∆g1〉

= (〈g1h2〉+ 〈h1g2〉) ∆t. (3.40)

We now define the covariances

rgh = 〈g1h2〉 − 〈g1〉〈h2〉 and rhg = 〈h1g2〉 − 〈h1〉〈g2〉. (3.41)

As before, note that although 〈g〉 = 〈h〉 = 0, we keep these quantities in for generality. As

a result, the next equation follows trivially, however, one could also repeat the steps in Eq.

(3.40) with ∆ (〈g1〉〈g2〉) and combine the two equations. In either case, Eq. (3.40) gives

∂ rg
∂t

= rgh + rhg. (3.42)

We do the same for rgh and rhg. Notice that only ∆h is affected by noise. As a result the

quantity ∆g∆h will not contain a term proportional to ∆W 2 and the regular product rule

will suffice.

∆〈g1h2〉 = 〈g1∆h2〉+ 〈h2∆g1〉

= 〈g1 [−γ (h2 − L2g2) ∆t+ γ∆W2]〉+ 〈h2h1∆t〉

= [〈h1h2〉 − γ〈g1h2〉+ γL2〈g1g2〉] ∆t+ γ〈g1∆W2〉 (3.43)

The last term vanishes due to ∆W2 so that

(
∂

∂t
+ γ

)
rgh = rh + γL2rg (3.44)
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where rh = 〈h1h2〉 − 〈h1〉〈h2〉. The equation for rhg is similar with L1 replacing L2

(
∂

∂t
+ γ

)
rhg = rh + γL1rg. (3.45)

It will be useful in the future to combine these two equations to obtain

(
∂

∂t
+ γ

)
(rgh + rhg) = 2rh + γ (L1 + L2) rg. (3.46)

To obtain a corresponding equation for rh we note that ∆h1∆h2 will contain ∆W 2 and,

as such, we must employ the Itô product rule

∆〈h1h2〉 = 〈h1∆h2〉+ 〈h2∆h1〉+ 〈∆h1∆h2〉

= −γ〈h1 (h2 − L2g2)〉∆t− γ〈h2 (h1 − L1g1)〉∆t+ γ2〈∆W1∆W2〉

= γ (−2〈h1h2〉+ L1〈g1h2〉+ L2〈h1g2〉) ∆t+ γ2Γ12∆t. (3.47)

Thus, the evolution of rh is given by

(
∂

∂t
+ 2γ

)
rh = γL1rgh + γL2rhg + γ2Γ12. (3.48)

We intend to eliminate the noise by finding final equations for ∆rg = rg − rg,le and

∆rh = rh − rh,le, however as an aside, it can be interesting to study the noise itself. To

do so, note that in equilibrium in an infinite system the time derivatives in Eqs. (3.42),

(3.44), (3.45) and (3.48) all vanish. Equation (3.42) implies rgh,le = −rhg,le, however as the

equilibrium system is translationally invariant we must have rgh,le = rhg,le, and as a result

rgh,le = rhg,le = 0. Equation (3.46) then gives 2rh,le = −γ (L1 + L2) rg,le and Eq. (3.48) gives

2rh,le = γΓ12. Combining these equations we find

Γ12 = − (L1 + L2) rg,le, (3.49)
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which matches the form of the noise in Eq. (3.35).

Continuing on, the ∆-forms of the above equations all follow straightforwardly and the

method is similar to the previous sections. We find

∂

∂t
∆rg = ∆rgh + ∆rhg, (3.50)(

∂

∂t
+ γ

)
(∆rgh + ∆rhg) = 2∆rh + γ (L1 + L2) ∆rg, (3.51)(
∂

∂t
+ 2γ

)
∆rh = γL1∆rgh + γL2∆rhg. (3.52)

This gives three coupled equations absent of noise, however we need more desirable forms

in order to make approximations. First, for Eq. (3.52) we add and subtract the quantities

1
2
L1∆rhg and 1

2
L2∆rgh and then use Eq. (3.50). This allows us to write

(
∂

∂t
+ 2γ

)
∆rh =

1

2
γ (L1 + L2) (∆rgh + ∆rhg) +

1

2
γ (L1 − L2) (∆rgh −∆rhg)

=
1

2
γ (L1 + L2)

∂

∂t
∆rg +

1

2
γ (L1 − L2) (∆rgh −∆rhg) . (3.53)

Using Eq. (3.50) in Eq. (3.51) we have

(
∂

∂t
+ γ

)
∂

∂t
∆rg = 2∆rh + γ (L1 + L2) ∆rg. (3.54)

Applying ∂/∂t+ 2γ to this equation and using Eq. (3.53) gives

(
∂

∂t
+ γ

)(
∂2

∂t2
+ 2γ

∂

∂t

)
∆rg = 2

(
∂

∂t
+ 2γ

)
∆rh

+ γ (L1 + L2)
∂

∂t
∆rg + 2γ2 (L1 + L2) ∆rg

= 2γ (L1 + L2)

(
∂

∂t
+ γ

)
∆rg

+ γ (L1 − L2) (∆rgh −∆rhg) . (3.55)
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Rearranging this gives the final result for the full evolution of ∆rg

(
∂

∂t
+ γ

)[
∂2

∂t2
+ 2γ

∂

∂t
− 2γ (L1 + L2)

]
∆rg = γ (L1 − L2) (∆rgh −∆rhg) . (3.56)

Equation (3.51) we instead wish to write in terms of ∆rgh −∆rhg, so using Eqs. (3.44) and

(3.45) we find (
∂

∂t
+ γ

)
(∆rgh −∆rhg) = −γ (L1 − L2) ∆rg. (3.57)

In Eqs. (3.56) and (3.57) we have reduced our system to two coupled equations, free

of noise. Furthermore, Eq. (3.56) simplifies appreciably when ∆rgh ≈ ∆rhg, as is the case

when the right hand side of Eq. (3.57) is negligible. To see when this occurs, we write the

operators L1 and L2 in terms of the relative and average coordinates, xr = x1 − x2 and

xa = (x1 + x2)/2. We then have

L1 + L2 = 2ν∇2
r +

ν

2
∇2
a and L1 − L2 = 2ν∇a · ∇r. (3.58)

The right hand side of Eq. (3.57) is then −2γν∇a · ∇r ∆rg. If the correlations in ∆rg are

translationally invariant and, thus, depend only on xr, then ∇a ∆rg = 0 and the right hand

side vanishes. If ∆rg is symmetric with respect to xa and slowly varying, then the right hand

side is negligible near xa = 0 so long as ∇r does not blow up. This situation is true for an

expanding Bjorken system, the type we consider.

In light of this, we choose to study the approximate evolution equation

[
τπ
2

∂2

∂t2
+
∂

∂t
− ν

(
∇2

1 +∇2
2

)]
∆rijg = 0 (3.59)

where we have returned to the original notation. Equation (3.59) is a solution to Eq. (3.56)

for the types of systems we are interested in studying in this work.

Equation (3.59) alleviates causality concerns since it is hyperbolic due to the ∂2/∂t2 term.

As such, the solutions are wave-like and an initial perturbation will propagate out at a finite
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speed determined by ν and τπ. At very early times, t � τπ/2, the wave part of Eq. (3.59)

dominates and initial pulses propagate out at speeds up to
√

2ν/τπ. At much later times,

t� τπ/2, the diffusive part dominates and the first order Navier-Stokes result (3.34) holds.

To see this we can view Eq. (3.59) as a relaxation equation

∂

∂t
Ψ = − 2

τπ

[
Ψ− ν

(
∇2

1 +∇2
2

)
∆rg

]
, (3.60)

where at long times Ψ = ∂(∆rg)/∂t relaxes to ν (∇2
1 +∇2

2) ∆rg. Note the relaxation time

τπ/2 is half the value compared to the relaxation of the mean in Eq. (3.36). This is the

same halving we saw in Brownian motion, Eq. (3.15). Note also that for τπ = 0, Eq. (3.59)

reduces to the first order equation (3.34).

There are two situations where we may wish to solve the coupled equations (3.56) and

(3.57) instead of Eq. (3.59). In pA collisions we do not expect the rapidity dependence to be

symmetric in xa. However, it would be possible to remove the asymmetry by averaging over

xa. Also, if the correlations are strongly dependent on position or time we cannot simplify

to Eq. (3.59).
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CHAPTER 4 RELATIVISTIC HYDRODYNAMICS

Hydrodynamics typically involves studying a set of equations derived from conservation

laws. In general, these conservation laws are absolute and lead to completely deterministic

equations of motion for fluid systems. As a result of stochastic microscopic behavior, real

fluids experience fluctuations in their flow which can be accounted for by using hydrodynamic

noise [38–40]. In Sec 3.3 we added noise to hydrodynamic equations to obtain differential

equations for correlation functions. In this chapter we seek to derive these hydrodynamic

equations.

Our goal with hydrodynamics is to describe the rapidity dependence of transverse mo-

mentum correlations. We begin by observing that these fluctuations are spread along the

beam direction by shear hydrodynamic modes. In general, shear modes account for the linear

response of a fluid in directions perpendicular to an initial impulse. Viscous diffusion spreads

this response throughout the fluid, tending to make the velocity distribution as uniform as

possible. On the other hand, sound modes are compression waves that propagate in the

same direction as the initial impulse and will generally be less important in determining the

overall response to low frequency fluctuations. We discuss this further after Eqs. (4.21) and

(4.22) but start with a general discussion of the hydrodynamic equations we require.

4.1 First-order relativistic hydrodynamics

We begin with notation. The local energy density we denote as e(t,x), the pressure as

p(t,x) and the four-velocity as uµ = γ(1,v) where the Lorentz factor is γ = (1− v2)1/2. We

note that uµuµ = 1 by definition and in the frame where the fluid is locally at rest we have

uµ = (1, 0, 0, 0). The stress-energy tensor for an ideal fluid is given as

T µνid = (e+ p)uµuν − pgµν (4.1)

where for the metric tensor we use the convention gµν = diag(+,−,−,−). To include

viscosity and other dissipative processes we write T µν = T µνid + Πµν where Πµν is the viscous

stress tensor representing the deviation from ideal fluid behavior. We define the projection
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operator

∆µν = gµν − uµuν (4.2)

which satisfies ∆µα∆αν = ∆µ
ν and ∆µνuν = 0. As such, it acts to project onto the space

orthogonal to the fluid velocity. It is convenient to use the derivatives

D = uµ∂µ and ∇µ = ∂µ − uµuν∂ν = ∆µν∂ν (4.3)

which are the projections of ∂µ onto the space parallel and perpendicular to uµ, respectively.

In the local rest frame D reduces to a time derivative and ∇µ to the gradient operator.

One can derive the equations of motion for hydrodynamics from conservation of the stress-

energy tensor ∂µT
µν = 0. In the case of an ideal fluid this is straightforward. Introducing

the enthalpy density w = e+ p we have

0 = ∂µT
µν
id = (Dw)uν + w (∂µu

µ)uν + wDuν − ∂νp. (4.4)

This first equation is obtained by contracting this equation with uν

uν∂µT
µν
id = Dw + w∂µu

µ + wuµuν∂µu
ν −Dp

= De+ w∂µu
µ = 0, (4.5)

where, on the second line, we used the identity uν∂µu
ν = 0 mentioned in Chapter 2. This is

known as the continuity equation. Another equation is obtained by contracting with ∆να

∆να∂µT
µν
id = (Dw) ∆ναu

ν + w (∂µu
µ) ∆ναu

ν + w∆ναDu
ν −∆να∂

νp

= w (gνα − uνuα)uµ∂µu
ν −∇αp

= wDuα −∇αp = 0. (4.6)

This is the relativistic version of the Euler equation for an ideal fluid.
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Turning now to the viscous case, we need only add the projections of ∂µΠµν to the ideal

equations. One finds

De+ w∂µu
µ + uν∂µΠµν = 0, (4.7)

wDuα −∇αp+ ∆να∂µΠµν = 0. (4.8)

While the problem of specifying Πµν in general is by no means a simple task, we can find

a convenient form to first order in the mean free path without too much trouble. First we

rewrite the last term of Eq. (4.7) using the product rule

uν∂µΠµν = ∂µ (uνΠ
µν)− Πµν∂µuν . (4.9)

We now choose to use the Landau-Lifshitz definition of the four velocity

uµ =
uνT

νµ

uαTαβuβ
(4.10)

which defines the local rest frame of the fluid as the frame in which the energy flow vanishes.

In this frame uνT
µν = euµ which implies uνΠ

µν = 0 from our definition of the stress-energy

tensor. Using this and the definition of the operator ∇µ we have

uν∂µΠµν = −Πµν∇(µuν) (4.11)

where we have temporarily introduced the symmetrization notation

A(µBν) =
1

2
(AµBν + AνBµ) . (4.12)

Now, to find a specific form for Πµν , we invoke the second law of thermodynamics. In

equilibrium the entropy four flow sµ can be written as sµ = suµ for the entropy density s.
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The second law, in covariant form, then says

∂µs
µ ≥ 0. (4.13)

In equilibrium and with zero chemical potential we can apply the thermodynamic relations

e+ p = Ts and Tds = de. (4.14)

Expanding Eq. (4.13) while using Eq. (4.7) and these relations we have

∂µs
µ = Ds+ s∂µu

µ

=
De

T
+
e+ p

T
∂µu

µ

=
1

T

[
−w∂µuµ + Πµν∇(µuν) + (e+ p) ∂µu

µ
]

=
1

T
Πµν∇(µuν) ≥ 0. (4.15)

We can write any symmetric tensor Aµν as the sum of a traceless tensor and a remainder

via the identity

Aµν =

(
Aµν −

1

3
∆µνA

µ
µ

)
+

1

3
∆µνA

µ
µ. (4.16)

Note the term in parentheses is traceless as ∆µ
µ = 3. We apply this to both symmetric

tensors Πµν and ∇(µuν) and write

Πµν = Sµν + ∆µνΠ and ∇(µuν) =

(
∇(µuν) −

1

3
∆µν∂αu

α

)
+

1

3
∆µν∂αu

α. (4.17)

For Πµν we denote the traceless part as Sµν for later use. The factor of 1/3 is absorbed into

the scalar Π. For ∇(µuν) we note that it has trace ∂αu
α.
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Using these decompositions in Eq. (4.15) and simplifying we have

1

T
Sµν

(
∇(µuν) −

1

3
∆µν∂αu

α

)
+

1

T
Π∂αu

α ≥ 0. (4.18)

The simplest way to guarantee this inequality is satisfied is by setting Sµν ∝ ∇(µuν) −
1
3
∆µν∂αu

α and Π ∝ ∂αu
α so that the left hand side is a sum of squares. The proportionality

constants are determined by looking at the non-relativistic limit and comparing with the

Navier-Stokes equations. They turn out to be η/2 and ζ, respectively, for the shear viscosity

coefficient η and bulk viscosity coefficient ζ. In full we write

Sµν = η

(
∇µuν +∇νuµ − 2

3
∆µν∂αu

α

)
and Π = ζ∂αu

α. (4.19)

Equations (4.7) and (4.8) along with the identifications in Eqs. (4.17) and (4.19) are known

as the relativistic Navier-Stokes equations.

Our interest is primarily in the shear modes, as we explain in a moment. To separate

out these modes we perform a Helmholtz decomposition of the momentum current M i =

T 0i−〈T 0i〉. Small fluctuations produce a small velocity v corresponding to M ≈ (e+p)v. We

then break M into transverse shear modes g and longitudinal sound modes gl via M = g+gl.

The shear modes are divergence-free, ∇ · g = 0, while the longitudinal modes are curl-free,

∇× gl = 0. To see the immediate usefulness of this decomposition we write, to linear order

in the fluctuations of v, the conservation form of the Navier-Stokes equation for a fluid at

rest

∂

∂t
M +∇p =

ζ + 1
3
η

w
∇ (∇ ·M) +

η

w
∇2M. (4.20)

Taking the curl of this equation leads to

∂

∂t
g = ν∇2g, (4.21)

for the kinematic viscosity ν = η/w, and we immediately see that the shear modes satisfy a
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diffusion equation to first order. Similarly, if we takes the divergence we find

∂

∂t
gl +∇p =

ζ + 4
3
η

w
∇ (∇ · gl) . (4.22)

This equation alone shows that sound modes are more complex than shear modes as pressure

must be kept into consideration. Moreover, both shear and bulk viscosities are involved in

the damping of these sound modes. For low frequency perturbations, however, one can focus

on the shear modes.

To see why, we analyze the mode structure of these equations. For (4.21) we simply

assume g ∼ ei(k·x−ωt) for modes of frequency ω and wavenumber k. We find the shear modes

are damped with

ω = −iνk2. (4.23)

Conversely, sound modes propagate at the sound speed cs = (∂p/∂e)1/2 and have

ω = ±csk −
i

2

(
ζ + 4

3
η

w

)
k2 ≈ ±csk. (4.24)

A general perturbation will excite both shear and longitudinal modes at a range of frequen-

cies, however, this becomes simpler in the limit of high or low frequencies. A low frequency

perturbation satisfying

ω ∼ νk2 � csk, (4.25)

will predominantly excite shear modes, while perturbations at higher frequencies

ω ∼ csk � νk2 (4.26)

excite sound waves. Note that in the hydrodynamic regime, νk � cs is always true because

macroscopic length scales ∼ k−1 must greatly exceed the mean free path ∼ ν. In an ion

collision, Bjorken expansion stretches the longitudinal distance scale k−1 for rapidity correla-
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tions with proper time. This scales becomes large so that the low frequency regime applies.

For more detailed discussion on this topic, see Refs. [41–43].

4.2 Second-order relativistic hydrodynamics

The relativistic Navier-Stokes theory is inherently flawed in that it is not causal. Indeed,

small perturbations of frequency ω and wavenumber k about an equilibrium fluid disperse

via the relation ω ≈ (η/w)k2, reaching speeds up to v(k) = dω/dk = 2(η/w)k. For large

k these speeds can exceed the speed of light, violating causality [44]. Our goal is to find

a hydrodynamic equation describing the evolution of correlations in a fluid. Allowing a

localized perturbation to instantaneously affect the entire fluid – and, thus, correlations in

the fluid – can lead to results that do not accurately describe a real collision. To restore

causality to the theory we must move to second order hydrodynamics.

In order to find an expression for Πµν during the derivation of the Navier-Stokes equations,

we assumed the entropy four flow was equal to its equilibrium value sµ = suµ. This is the

root of the problem with causality. For a dissipative fluid which need not be in equilibrium

sµ can depend on higher order terms, in particular terms proportional to the relaxation

time τπ, a second order transport coefficient. Second order hydrodynamics includes several

new transport coefficients to account for the shear stress, bulk stress and heat current. Our

interest lies mainly in the shear stress, described by τπ, therefore in this section we only

include the shear contribution.

The Müller-Israel-Stewart equation describing the relaxation of the shear stress is our

starting point for second order hydrodynamics. This relaxation equation is

∆µ
α∆ν

βDΠαβ = − 1

τπ
(Πµν − Sµν)− κ∇αu

αΠµν . (4.27)

where the coefficient κ is given by

κ =
1

2

[
1 +

d ln(τπ/ηT )

d ln τ

]
. (4.28)
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To describe the evolution of the shear modes we consider fluctuations of a fluid mostly at

rest. The momentum current M i = T 0i − 〈T 0i〉 is then small and in the rest frame of the

fluid we can write M i ≈ (e+p)vi for perturbations of the fluid velocity vi � 1. Conservation

of momentum ∂µT
µi = 0 then gives

∂

∂t
M i − ∂ip = −∂µΠµi (4.29)

to linear order in vi and M i. Note, in particular, that for small velocities we can make the

identifications D → ∂/∂t+ vi∂i and ∇i → ∂i. Doing the same for Eq. (4.27) we find

∂

∂t
Πµi = − 1

τπ

(
Πµi − Sµi

)
. (4.30)

To proceed we write the momentum current as M i = gi + gil as in Sec. 4.1. In Eqs.

(4.29) and (4.30), gi only receives contributions from divergence-free terms. Similarly, gil

only receives contributions from curl-free terms. As gil is curl-free, it can be expressed as the

gradient of a potential ∂iφ and, thus, only benefits from terms that can be expressed as such

– i.e. terms proportional to ∂i. We discard these terms to focus on gi and use the symbols

Πµi
T and SµiT to denote the shear contributions of these terms. This results in

∂

∂t
gi = −∂µΠµi

T and
∂

∂t
Πµi
T = − 1

τπ

(
Πµi
T − S

µi
T

)
. (4.31)

We can eliminate Πµi
T to reduce these to one equation by taking ∂/∂t of the left equation

and ∂µ of the right. Combining them we find

(
τπ
∂2

∂t2
+
∂

∂t

)
gi = −∂µSµiT . (4.32)

The first order form of Sµν found in Eq. (4.19) leads to causality violations. However,

for small perturbations of a stationary fluid it is a useful approximation and we apply it to
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our second order theory. Linearizing Eq. (4.19) for these perturbations and considering only

the shear contribution we find

∂µS
µi
T = −ν∇2gi (4.33)

Writing it out in full, we find the evolution of the shear modes satisfies

(
τπ
∂2

∂t2
+
∂

∂t

)
gi = ν∇2gi. (4.34)

The form of this equation is that of a Maxwell-Cattaneo equation. It is a second order,

causal diffusion equation for the modes gi that holds for small fluctuations of a quiescent

fluid. Notice that for τπ = 0 it reduces to first order theory – Eq. (4.21).

4.3 Ion collisions in hydrodynamics

After a nuclear collision, the momentum current M i in each collision event varies slightly

from its average value over an ensemble of events due to hydrodynamic fluctuations of the

background fluid. Equation (4.29) and, consequently, Eq. (4.34) were derived by considering

fluctuations of a mostly static background. To generalize these results to ion collisions we will

now linearize about a fluid undergoing Bjorken expansion. We assume the event-averaged

flow velocity has the form uµ = (t/τ, 0, 0, z/τ) for longitudinal proper time τ =
√
t2 − z2

and spacetime rapidity η = (1/2) log[(t + z)/(t − z)]. Here we summarize the calculation,

leaving the full details to Ref. [41].

Using ∂µ(δT µiid + δΠµi) = 0, we generalize Eq. (4.29) including the underlying expansion

in the first term to obtain

(
∂

∂τ
+

1

τ

)
M i − ∂ip = −∂µδΠµi, (4.35)

where we take M i = δT 0i
id for the Cartesian transverse coordinates i = x, y. The extra term

proportional to 1/τ arises in a manner similar to the calculation of the energy density in Eq.
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(2.17). We also linearize the relaxation Eq. (4.27) following Ref. [45] to find

DδΠµi = − 1

τπ

(
δΠµi − δSµi

)
− κ

τ
δΠµi (4.36)

We generalize Eq. (4.31) by again only considering the shear contribution to obtain

(
∂

∂τ
+

1

τ

)
gi = −∂µδΠµi

T , (4.37)

where the divergence-free contribution δΠµi
T satisfies (4.36) with δSµi replaced by δSµiT . Simi-

lar to the derivation of the static background Eqs. (4.29) and (4.30) we use (4.36) and (4.37)

to eliminate δΠµi
T and obtain an equation for gi:

[
τπ
∂2

∂τ 2
+
(

1 +
κτπ
τ

) ∂

∂τ

] (
giτ
)

= −ν∇̃2
(
giτ
)
, (4.38)

where the tilde indicates the derivative comoving with the Bjorken flow.

To find an equation analogous to (4.34) for the expanding system we define the rapidity

density of total momentum Gi ≡
∫
giτd2x⊥ where the integral is taken over the transverse

area of the two colliding nuclei. Integrating (4.38) we find

[
τπ
∂2

∂τ 2
+
(

1 +
κτπ
τ

) ∂

∂τ

]
Gi =

ν

τ 2

∂2Gi

∂η2
. (4.39)

Having found a Maxwell-Cattaneo type equation for fluctuations above a Bjorken back-

ground, we repeat the derivation in Sec. 3.3 to obtain an evolution equation for the correla-

tion function

rijG = 〈Gi1G
j
2〉 − 〈Gi1〉〈G

j
2〉 (4.40)

and then eliminate the noise by defining ∆rijG , the difference of rijG from its value in equi-

librium rijG,le as in (3.59). Finally, we obtain the second order viscous diffusion equation for
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transverse momentum correlations in rapidity

[
τ ∗π
2

∂2

∂τ 2
+

∂

∂τ
− ν∗

τ 2

(
2
∂2

∂η2
r

+
1

2

∂

∂η2
a

)]
∆rijG = 0. (4.41)

where we have changed to the relative and average rapidity coordinates ηr = η2 − η1 and

ηa = (η1 +η2)/2, respectively. The new starred coefficients are defined as τ ∗π = τπ/(1+κτπ/τ)

and ν∗ = ν/(1 + κτπ/τ). In deriving (4.41), we make assumptions similar to those used in

the derivation of (3.59), namely that the collision system under consideration is symmetric

and that the coefficients τ ∗π and ν∗ vary slowly with time. For full generality we would have

to solve equations analogous to (3.56) and (3.57) but this will be relegated to future work.

As noted in the discussion of (3.59), this is a hyperbolic equation that removes any

concerns of causality violation. At early times, the wave-like nature of (4.41) dominates

through the second-order derivative, while for τ � τπ/2 it relaxes to the diffusion equation

∂

∂τ
∆rijG ≈

ν∗

τ 2

(
2
∂2

∂η2
r

+
1

2

∂2

∂η2
a

)
∆rijG , (4.42)

except near the wave front where the second time derivative is always important. The time

variation of the coefficients as well as the explicit τ dependence affect the relaxation rate.

Furthermore, the halving of the relaxation time compared to the mean behavior described

by (4.34) is precisely the same behavior we saw in Brownian motion; see Eq. (3.15).

4.4 Rapidity width of ∆rG

To conclude this chapter, we demonstrate the utility of Eq. (4.41) by using it to explore

the behavior of ∆rG, the counterpart of ∆rijG with i and j taken as the radial component.

To keep the discussion simple, we assume the coefficients τ ∗π and ν∗ to be constant. In

general, one would have to solve (4.41) coupled with equations determining the behavior of

the temperature T . The temperature influences the evolution of ∆rG through the kinematic
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viscosity ν = η/Ts, the relaxation time1 τπ = βν and the coefficient κ given by (4.28).

While this behavior is important for a general analysis, it makes understanding the equations

very difficult. Taking τ ∗π and ν∗ constant decouples (4.41) from the temperature allowing a

qualitative, although limited, analysis. We will study more realistic transport coefficients in

future work.

The most important feature of ∆rG is its width in relative rapidity as this is sensitive to

the viscosity [46]. The width has also been measured in Ref. [7]. We first define the moments

of the correlation function via

〈ηnr 〉 = A−1

∫
ηnr ∆rGdηrdηa (4.43)

where A is simply used for normalization. We multiply (4.41) by ηnr and then integrate over

both ηr and ηa. To simplify, we use the identity

∫
ηnr
∂2∆rG
∂η2

r

dηr = n(n− 1)

∫
ηn−2
r ∆rGdηr, (4.44)

which one can show by integrating by parts and canceling the surface terms. This quantity

is only nonzero for n ≥ 2. We find

(
τ ∗π
2

d2

dτ 2
+

d

dτ

)
A〈ηnr 〉 =

2ν∗

τ 2
n(n− 1)A〈ηn−1

r 〉. (4.45)

Setting n = 0, 1 shows that A and 〈ηr〉 satisfy this equation with the right side equal to zero.

Thus, we take these as constants and, furthermore, we take 〈ηr〉 = 0 assuming a symmetric

system. The rapidity width is then given by the second moment σ2 = 〈η2
r〉, which satisfies

(
τ ∗π
2

d2

dτ 2
+

d

dτ

)
σ2 =

4ν∗

τ 2
. (4.46)

1This form of τπ is inspired by kinetic theory. By varying β, we can vary τπ while keeping the other
coefficients fixed.
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Figure 4.1: Rapidity width as a function of the number of participants for second order
momentum diffusion calculations compared to first order results. Data from STAR include
shaded area to denote the systematic uncertainty in the fit procedure [7].

This equation also holds for temperature and time dependent τ ∗π and ν∗, however, by taking

the values constant we see that the width is a function of the lifetime of the system alone.

Equation (4.46) describes first order diffusion when τ ∗π = 0 and ν∗ = ν. In this case, we

can solve (4.46) to find

σ2 = σ2
0 +

4ν

τ0

(
1− τ0

τ

)
, (4.47)

which reproduces the result from [46]. The width increases quickly and acausally at early

times, reaching the value

σ2
∞ = σ2

0 +
4ν

τ0

. (4.48)

That this asymptotic value depends only on the initial conditions is a consequence of the

underlying Bjorken flow. In a stationary fluid, a spike in momentum diffuses with width

∼ (2νt)1/2. Bjorken expansion stretches the longitudinal scale ∝ t, overtaking diffusion and

freezing in the initial inhomogeneity.
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In order to plot (4.47) as a function of centrality, we identify τ as the freeze out time

τF and relate it to the number of participants Npart. Hydrodynamic calculations agree with

τF increasing like the square of the rms radius of participants R [47]. To approximate this

behavior we use

τF − τ0 = K [R(Npart)−R0]2 (4.49)

where τ0 is the formation time and R0 is roughly the radius of a proton. We compute

R(Npart) using a Glauber model. The constant K we fix so that freeze out in the most

central collisions has a specified value τFc.

First order results2 are presented in Fig. 4.1 along with experimental measurements

from [7]. The dot-dash curve represents out best fit to the data using (4.47) evaluated at

τF , Eq. (4.49). For the kinematic viscosity ν = η/Ts we use the lower limit η/s = 0.08 and

a freeze out temperature of T = 140 MeV for all centralities. We take τ0 = 0.65 fm to fix

(4.48) and τF = 12 fm to specify K in (4.49). The rapidity width in first order diffusion rises

roughly with data although it is consistently above the data in the region where it grows

most rapidly. This is a result of the rapid increase of (4.47) in first order diffusion.

To obtain results for second order diffusion we must solve (4.46) in full, where we take

τ ∗π = τπ and ν∗ = ν to be constant. To do this we must specify an initial condition for

dσ2/dτ ≡ θ2
0 at τ = τ0, the value of which is unknown. In accord with the discussion

surrounding (4.42) we take the initial correlation function to satisfy

∂∆rG
∂τ

∣∣∣∣
τ=τ0

=
ν0

τ 2
0

(
2
∂2

∂η2
r

+
1

2

∂2

∂η2
a

)
∆rG. (4.50)

The corresponds to a value of θ2
0 = 4ν/τ 2

0 . We then integrate (4.46) twice to find

σ2 = σ2
0 +

θ2
0τπ
2

(
1− e−2(τ−τ0)/τπ

)
+

8ν

τπ

∫ τ

τ0

du

∫ u

τ0

ds

s2
e2(s−u)/τπ . (4.51)

2In order to demonstrate the usefulness of Eq. (4.41), I present our results from [41]. However, I wish to
acknowledge that Fig. 4.1 was created by the coauthors.



48

The solid black curve in Fig. 4.1 shows this value at the freeze out time (4.49). We again

use the limiting value of η/s = 0.08 but now choose the freeze out temperature T = 150

MeV for all centralities. Best fit occurs for τ0 = 1.0 fm and τFc = 10 fm. For the relaxation

time τπ = βν we find excellent agreement with data by taking β = 10.

We hesitate to draw any solid conclusions from this prediction on account of the strong

approximations we have made, in particular regarding the variation of the coefficients τ ∗π

and ν∗. However, this schematic calculation offers insight into the role that momentum

correlations play in the physics of ion collisions. After the introduction of the observable C,

we will return briefly to Eq. (4.41), in Sec. 6.5, to further discuss transverse momentum

correlations.
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CHAPTER 5 KINETIC THEORY

The Boltzmann equation describes the evolution of a thermodynamic system toward an

equilibrium state due to a combination of diffusion and scattering processes as well as any

outside forces applied to the system. Applications are numerous and span many fields from

particle transport in plasmas and superfluids to radiative transfer in planetary atmospheres.

As the initial state is not assumed to be in local equilibrium, it is also one of the few tools

available for studying the non-equilibrium aspects of ion collisions [48–62]. Nevertheless, it

is not ideal for two reasons we tackle in this chapter.

Firstly, as a nonlinear integro-differential equation, the full Boltzmann equation can be

quite difficult to solve, even numerically. To overcome this obstacle we make assumptions

on the types of solutions allowed as well as on the effect collisions have on the system. Care

must be taken when making these assumptions to not break desirable system properties, in

particular the conservation laws. While many of the assumptions we make are common when

dealing with the Boltzmann equation, we introduce a novel way to enforce the conservation

laws. Furthermore, while these approximate methods may not describe an evolving system

in as much detail as the full equation, they do allow for exact solutions to be found and offer

physical insight into the processes involved.

Secondly, the standard form of the Boltzmann equation has no mechanism for describing

correlations. The molecular chaos ansatz, or Stosszahlansatz, assumes that particles are

uncorrelated prior to collision. As our entire end goal is to describe two-particle correlations,

due in part to collisions, we are compelled to introduce such a mechanism. Our method

is to add Langevin noise to the Boltzmann equation, consistent with the conservation laws

obeyed by the microscopic scattering processes [63–65]. Our result, Eq. (5.60), is a new

relativistic transport equation for the two-body distribution function.

5.1 Boltzmann equation

The evolution of the QGP system is characterized by the single particle phase space

distribution function f(x,p, t), which gives the density of partons in the system at time t
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and phase space position (x,p):

f(x,p, t) =
dN

d3xd3p
(5.1)

To describe an expanding QGP we need to use the covariant form of the Boltzmann equation

but for the time being we focus on the local rest frame where, using the Landau-Lifschitz

velocity, the momentum density vanishes. In this frame the evolution of f(x,p, t) is described

by the kinetic equation

∂

∂t
f(x,p, t) + vp · ∇f(x,p, t) = I{f}, (5.2)

where vp = p/E is the single particle particle velocity. The left side of Eq. (5.2) describes

the free streaming (collision-free) evolution of the system. One can write the left side as

df/dt, describing the drift of particles at constant velocity vp between collisions.

Collisions cause f to evolve to the local thermal equilibrium form f e. The collision term

on the right side of Eq. (5.2) describes the effect of collisions on the evolution of f(x,p, t).

In principle it must contain the effect of all possible m ⇀↽ n body scattering processes. For

2→ 2 elastic scattering of a single parton species we have

I{f} =

∫
W12→34 (f3f4 − f1f2) dp2dp3dp4, (5.3)

where fi = f(x,pi, t), dp = d3p/(2π)3 and the scattering rate W12→34 ∝ δ(pµ1 + pµ2 −

pµ3 − p
µ
4). This form of the collision integral relies on the molecular chaos assumption. As

such, particles are assumed to be uncorrelated prior to their collisions. To more accurately

describe correlations, one could replace the products fifj with two-particle distributions.

Our approach in Sec. 5.4 will be to add Langevin noise in order to introduce correlations,

similar to the previous chapters.

Energy and momentum conservation during collisions forces the moments of I{f} with
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respect to E and p to vanish. Furthermore, since elastic collisions conserve particle num-

ber, the momentum integral of I{f} also vanishes. We write these conservation conditions

succinctly as ∫
dp

 1
p
E

 I{f} = 0. (5.4)

Equation (5.3) also determines the local equilibrium distribution which, assuming Boltzmann

statistics, has the form

f e = e−γ(E−p·v−µ)/T , (5.5)

where γ = (1 − v2)−1/2. The temperature T , fluid velocity v and chemical potential µ can

vary in space and time. We note that the Boltzmann distribution is an appropriate choice

for an equilibrium distribution in the context of ion collisions as a result of most hadrons

having a large enough mass to be treated as classical particles – experimental support for

this claim can be found in Refs. [31, 32].

5.2 Relaxation time approximation

To simplify calculations we employ the relaxation time approximation. In this approxi-

mation we estimate the collision term as

I{f} ≈ −ν(f − f e) (5.6)

and write the Boltzmann equation as

∂

∂t
f(x,p, t) + vp · ∇f(x,p, t) = −ν (f(x,p, t)− f e(x,p, t)) . (5.7)

This approximation assumes that collisions always serve to restore f to its local equilibrium

form. Ignoring the streaming terms for a moment and noticing that f e solves the equation

we see

∂

∂t
(f − f e) = −ν(f − f e) ⇒ (f − f e) = (f − f e)0e

−νt, (5.8)
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so that the relaxation time ν−1 sets the scale for this process1. In general ν−1 is determined

by the microscopic scattering processes and can be momentum dependent.

The conservation laws, previously enforced by the scattering rate W12, no longer hold

true in this equation. For example, the number of particles determined by f is not forced

to be equal to that of f e and, in fact, 〈N〉 would relax to the equilibrium value 〈N〉e on the

time scale ν−1. To be consistent with these laws we must explicitly require that Eq. (5.4)

hold: ∫
dp

 1
p
E

 f =

∫
dp

 1
p
E

 f e. (5.9)

The effect of this condition is to constrain the values of T , µ and v in f e at each space-time

point. Note that Eq. (5.9) contains a set of highly non-linear constraints which, in general,

can be quite difficult to enforce.

The covariant form of Eq. (5.7) can be written as

pµ∂µf = −νp · u (f − f e) , (5.10)

where the fluid four-velocity is uµ = γ(1,v) and p · u ≡ pµuµ with the metric gµ =

diag(1,−1,−1,−1). In the local rest frame, where uµ = (1, 0, 0, 0), this reduces to Eq.

(5.7) and ν−1 corresponds to the mean free time between parton collisions.

To find a solution of Eq. (5.10) we will use the method of characteristics, commonly used

to solve the nonrelativistic Boltzmann equation [66, 67]. To start we simplify the equation

by introducing a proper time parameter τ defined via

dxµ

dτ
=

pµ

p · u
. (5.11)

In the rest frame of the fluid it is clear that p · u = E, so the time component of Eq. (5.11)

is simply dt/dτ = 1 in this frame. This implies that τ is the time in the rest frame – i.e.

1In our equations we prefer to use the collision frequency ν rather than the eponymous relaxation time,
commonly written τ = 1/ν, mostly for aesthetic purposes.
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the proper time. Equation (5.11) is a characteristic equation for the original equation and

defines characteristic curves xµ(τ). Along these curves we can write the Boltzmann equation

as

d

dτ
f(x(τ),p, τ) = −ν(f − f e), (5.12)

where we have divided by p · u and used Eq. (5.11).

Reducing the Boltzmann equation to a first order ODE allows us to find solutions for f .

In the free streaming case, where we take ν = 0, we find f(x(τ),p, τ) = f0(x0,p), for the

initial distribution f0. Moreover, the spatial components of Eq. (5.11) imply that partons

in a cell initially at x0 drift unchanged along the path x = x0 + vpt. Thus, we find

f(x(τ),p, τ) = f0(x− vpt,p), free streaming (5.13)

where t can be found as a function of τ using dt/dτ = E/p · u. Note that Eq. (5.13) is a

solution of Eq. (5.2) with I{f} = 0.

Allowing collisions, we now consider Eq. (5.12) in full. To simplify calculations we define

the survival probability

S(τ, τ0) = exp

{
−
∫ τ

τ0

ν(τ ′)dτ ′
}
, (5.14)

which gives the probability partons suffer no collisions as they travel along their characteristic

paths – see Sec. A.3. Multiplying (5.12) by the integrating factor θ = θ0S
−1 we have

θ
df

dτ
+ θνf = νθf e

d

dτ
(θf) = νθf e

θf = θ0f0 +

∫ τ

τ0

ν(τ ′)θ(τ ′)f edτ ′. (5.15)
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The full solution can then be written as

f(x,p, τ) = f0(p,x− vpt)S(τ, τ0) +

∫ τ

τ0

ν(τ ′)S(τ, τ ′)f e(p,x− vpt
′)dτ ′, (5.16)

where t = t(τ) and t′ = t(τ ′) are determined via Eq. (5.11). Computing (5.16) can be

difficult in practice as we must specify the parameters T , v and µ as a function of time by

enforcing the nonlinear constraints in Eq. (5.9). Note that Baym approached this single

particle distribution problem in a different manner but obtained equivalent results [48]. In

particular, Eq. (5.16) matches Baym’s Eq. (17).

5.3 Linearized Boltzmann equation

To further simplify this calculation we will use the linearized versions of these equations.

We expand f ≈ f e(1 + h) for a small perturbation h� 1. The distribution functions in the

collision term, Eq. (5.3), then satisfy

f3f4 − f1f2 ≈ f e3f
e
4 (1 + h3)(1 + h4)− f e1f e2 (1 + h1)(1 + h2)

= f e1f
e
2 (h3 + h4 − h1 − h2) +O(h2), (5.17)

where hi = h(x,pi, τ). In the second line we use f e3f
e
4 = f e1f

e
2 , which is true of the equilibrium

distributions as they satisfy detailed balance. The full collision term, to linear order in h, is

given by

I{f} =

∫
W12→34f

e
1f

e
2 (h3 + h4 − h1 − h2)dp2dp3dp4 = f e1Lh (5.18)

and, thus, the full linearized Boltzmann equation is

dh

dτ
= Lh. (5.19)

The operator L is linear on h and satisfies the eigenequations

Lφα = −ναφα (5.20)
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for eigenfunctions φα(p) and eigenvalues να. We associate the first five eigenfunctions with

the collisional invariants 1, p and E. These eigenfunctions have eigenvalue zero as a result

of the conservation laws and are linear in the conserved quantities. The other eigenvalues

must be positive in order for f to relax to f e. We may also choose an orthonormal set of

φα, the first five of which can be written

φ1 = 1, φ2,3,4 =

√
n

wT
p, φ5 =

√
n

cvT

(
E − e

n

)
, (5.21)

where n is particle density, w is enthalpy density, e is energy density and cv is specific heat.

They are orthonormal in the sense that

∫
dp
f e

n
φαφβ = δαβ. (5.22)

As an example for φ1 and φ2, one can check

∫
dp
f e

n

(
1 ·
√

n

wT
px

)
=

√
n

wT
〈px〉 = 0 and (5.23)

n

wT

∫
dp
f e

n
(px · px) =

n

wT
〈p2
x〉 = 1. (5.24)

Equation (5.23) follows from conservation of momentum, while Eq. (5.24) can be calculated

using (5.5) as in [68].

For the linearization f − f e ≈ f eh, the conservation conditions for the relaxation time

approximation – Eq. (5.9) – becomes

∫
dpφαf

eh = 0 for α = 1, ..., 5, (5.25)

so that the collisional invariants are orthogonal to the perturbation h. Note that, as was the

case in the relaxation time approximation, Eq. (5.25) is required to enforce the conservation

laws. Notice, also, that the linearized way of enforcing the conservation conditions does not
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specify values of T , v and µ as was the case with the original Eq. (5.4) but in contrast to

the relaxation time approximation Eq. (5.9). We can specify values for the local equilibrium

parameters in (5.5) by requiring that f e satisfy the free streaming equation

df e

dτ
= 0, (5.26)

where T , v and µ will depend on position along the curve xµ(τ) from Eq. (5.11).

The linearized evolution of f e describes the flow of a dissipation-free fluid. Starting with

the covariant version of Eq. (5.2) we integrate over momentum and enforce Eq. (5.4) to get

∫
dppµ∂µf =

∫
dpI{f} ⇒ ∂µj

µ = 0, (5.27)

where the parton current is jµ =
∫
dpfpµ/E = nuµ for parton density n. Multiplying (5.2)

by pν and integrating over momentum gives

∫
dppνpµ∂µf =

∫
dppνI{f} ⇒ ∂µT

µν = 0, (5.28)

where we have enforced Eq. (5.4) and T µν =
∫
dpfpµpν/E is the stress-energy tensor. When

f = f e, T µν is the stress-energy tensor for an ideal dissipation-free fluid

T µνid = (e+ P )uµuν − Pgµν , (5.29)

where P is the pressure of an ideal Boltzmann gas. Equations (5.27) and (5.28) thus match

the Euler equations for relativistic dissipation-free flow. Note that this is not the case for

the full distribution f which includes dissipation at linear order.

In the relaxation time approximation we assume that all the quantities relevant to the

distribution function f relax at the same rate ν−1. The eigenvalues of L describe the relax-

ation of the modes. One can see this most simply by noticing that Eq. (5.19) implies we
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can write h generally as

h(x,p, τ) =
∑
α>5

cα(x)φα(p)e−νατ . (5.30)

If we assume all the eigenfunctions of L with nonzero eigenvalue relax at the same rate – i.e.

να = ν for α > 5 – we find that

df

dτ
= f eLh = −νf eh = −ν(f − f e). (5.31)

Therefore, this assumption reproduces the relaxation time approximation.

As previously mentioned, the conservation conditions are not explicitly enforced in the

relaxation time approximation or for the linearized Boltzmann equation since there is no

guarantee, a priori, that f and f e will produce the same quantities – e.g. particle number,

energy density. To explicitly enforce these conditions we write the collision term as

I{f} ≈ −ν(1− P )f(x,p, t), (5.32)

where P is a projection operator that projects f into the corresponding local equilibrium

distribution f e. We define

Pψ(p) =
f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)ψ(p′), (5.33)

where ψ is an arbitrary function of momentum. To prove P is a projection operator we show
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P 2 = P :

P 2ψ(p) =
f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)Pψ(p′)

=
f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)

(
f e(p′)

n

5∑
β=1

φβ(p′)

∫
dp′′φβ(p′′)ψ(p′′)

)

=
f e(p)

n

5∑
α=1

φα(p)

(
5∑

β=1

∫
dp′

f e(p′)

n
φα(p′)φβ(p′)

)∫
dp′′φβ(p′′)ψ(p′′)

=
f e(p)

n

5∑
α=1

φα(p)

(
5∑

β=1

δαβ

)∫
dp′′φβ(p′′)ψ(p′′)

=
f e(p)

n

5∑
α=1

φα(p)

∫
dp′′φα(p′′)ψ(p′′)

= Pψ(p), (5.34)

where we use the orthonormality condition (5.22) to go from line 3 to line 4. Note that as a

projection operator P also satisfies P (1− P ) = 0 and (1− P )2 = 1− P .

In light of Eq. (5.32) one would expect Pf = f e. This is true to linear order as we now

show. Note that Eq. (5.25) implies
∫
φf =

∫
φf e for the first five eigenfunctions and we use

φ1 = 1. Then,

Pf(p) =
f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)f(p′)

=
f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)f e(p′)

= f e(p)
5∑

α=1

φα(p)

∫
dp′

f e(p′)

n
φα(p′)φ1(p′)

= f e(p)
5∑

α=1

φα(p)δα1

= f e(p)φ1(p) = f e(p). (5.35)

Thus, Pf = f e with corrections beyond linear order. We then write the linearized Boltzmann
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equation in the relaxation time approximation as

df

dτ
= −ν(1− P )f (5.36)

The power of P lies in enforcement of the conservation conditions. The usefulness of P is

that it allows for convenience in calculations as we now demonstrate with another proof that

Pf = f e. First we note that as an operator P commutes with d/dτ because of (5.33) with

(5.26). Specifically, Eq. (5.26) shows that f e is constant with respect to τ . Thus, outside of

ψ, Eq. (5.33) has no τ dependence and we have

P
d

dτ
ψ(p) =

f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)

d

dτ
ψ(p′)

=
d

dτ

f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)ψ(p′)

=
d

dτ
Pψ(p). (5.37)

Using Eq. (5.32) we approximate the linearized Boltzmann equation as df/dτ = −ν(1 −

P )f (which matches (5.36) but we have yet to prove Pf = f e on the second go around!).

Multiplying both sides by P and using P (1− P ) = 0 gives

P
d

dτ
f = −νP (1− P )f ⇒ d

dτ
Pf = 0. (5.38)

Thus, Pf is constant with respect to τ and using (5.26) we can identify it with f e which,

again, holds to linear order.

Another example of the convenience afforded by P in seen when multiplying Eq. (5.36)

by 1 − P . On the left hand side we commute 1 − P with d/dτ and on the right hand side

we use (1− P )2 = 1− P . We find

d

dτ
(1− P )f = −ν(1− P )f ⇒ (1− P )f = (1− P )f0S(τ, τ0), (5.39)
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where S is given by (5.14). This solution assumes ν is independent of p which need not

always be true. Rearranging (5.39) we find a solution to the Boltzmann equation:

f = f0(x− vpt,p)S(τ, τ0) + f e(x− vpt,p)(1− S(τ, τ0)), (5.40)

where t = t(τ) as in Eq. (5.16). We note that we can check the legitimacy of this result by

comparing with a solution found without using P , specifically Eq. (5.16). Equation (5.26)

implies the linearized f e is constant in τ so integrating (5.16) by parts gives (5.40).

We use the linearized relaxation time approximation moving forward because it provides

a simple description of transport that incorporates the conservation laws effectively. While

it might not describe the first instants of pre-equilibrium evolution as effectively as the full

relaxation time approximation or the full Boltzmann equation, none of these approaches is

fully reliable at that stage.

5.4 Considering correlations

Scattering causes the relaxation processes described by the collision terms in Eqs. (5.3)

and (5.6). Additionally, scattering causes stochastic fluctuations of the phase space distribu-

tion which give rise to correlations aside from those already present in the initial conditions.

The Boltzmann equation is insufficient to describe these correlations because the assumption

of molecular chaos presupposes that particles are uncorrelated prior to their collisions. Our

goal in this section will be to describe these additional correlations using a Langevin model

as in previous chapters. We characterize these correlations with the function

C12 ≡ C(x1,p1,x2,p2, t) = 〈f1f2〉 − 〈f1〉〈f2〉 (5.41)

where fi = f(xi,pi, t) and the brackets refer to the noise average from Chapter 3.

To add Langevin noise to the linearized Boltzmann equation we divide phase space into

discrete cells. The action of collisions randomly transfers momentum between particles in

these cells and, thus, causes the phase space distribution to fluctuate. To describe this
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process we write Eq. (5.36) as a difference equation

f(τ + ∆τ)− f(τ) ≡ ∆f = −ν(1− P )f(τ)∆τ + ∆W, (5.42)

where ∆W is the stochastic increment to the distribution f at the phase space point (x,p)

in the time from τ to τ + ∆τ . As before, these increments vanish upon noise averaging and

are correlated via the relation

〈∆W (x1,p1)∆W (x2,p2)〉 = Γ12∆τ. (5.43)

To obtain the equation for the linearized phase space distribution 〈f〉 we average Eq.

(5.42) over the noise to find

〈f(τ + ∆τ)〉 − 〈f(τ)〉 = −ν(1− P )〈f(τ)〉∆τ (5.44)

which, in the limit ∆τ → 0, can be written

d

dτ
〈f〉 = −ν(1− P )〈f〉. (5.45)

This reproduces Eq. (5.36) for the one-body distribution. Thus, while the stochastic contri-

bution alters f , in the long time limit, 〈f〉 follows the solution (5.40). In particular, the noise

term has no effect on the mean. Later we will briefly consider the more general situation

that 〈f〉 satisfies the nonlinear equation.

We emphasize that, due to its definition, each linearized f in the noise averaged 〈f〉 has

the same initial conditions. Thus, each f corresponds to the same local equilibrium f e and

for each f we have Pf = f e. The linearized evolution of f e follows from the Euler equations

as shown in Eqs. (5.27) and (5.28). Similarly, drift follows the deterministic curves xµ(τ) of

the method of characteristics. Both f e and the curves can differ from event to event.
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We now follow the procedure of Chapter 3 to construct an equation for the correlation

function (5.41). We take the product of f ’s at two phase space points and use the Itô product

rule with (5.42) and (5.43) to find

∆〈f1f2〉 = 〈f2∆f1〉+ 〈f1∆f2〉+ 〈∆f1∆f2〉

= 〈f2[−ν(1− P1)f1∆τ + ∆W1]〉+ 〈f1[−ν(1− P2)f2∆τ + ∆W2]〉+ 〈∆W1∆W2〉

= −ν [(1− P1) + (1− P2)] 〈f1f2〉∆τ + Γ12∆τ, (5.46)

where the projection Pi acts on the corresponding distribution fi. The product ∆(〈f1〉〈f2〉)

averages out any noise contribution and we have

∆(〈f1〉〈f2〉) = −ν [(1− P1) + (1− P2)] 〈f1〉〈f2〉∆τ (5.47)

We combine these equations and take ∆τ → 0 to find a differential equation for C12:

(
d

dτ
+ ν(1− P1) + ν(1− P2)

)
C12 = Γ12. (5.48)

The flaw with the correlation function C12 is that the pair of particles described by f1

and f2 may, in fact, be the same particle. To describe distinct particle pairs we subtract off

this possibility and write

G12 = C12 − 〈f1〉δ(1− 2) (5.49)

where we abbreviate δ(1− 2) = δ(x1−x2)δ(p1−p2). The quantity G12 compares the phase

space density of distinct pairs, 〈f1f2〉 − 〈f1〉δ(1 − 2), to the Poisson expectation, 〈f1〉〈f2〉,

in the absence of correlations. In principle, one can measure G12 by just counting pairs of

particles. To find an equation for G12 we simply subtract the same particle contribution

from (5.48) (
d

dτ
+ ν(1− P1) + ν(1− P2)

)
G12 = Γ′12. (5.50)
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where the noise terms Γ′12 and Γ12 are related by

Γ′12 = Γ12 −
(
d

dτ
+ 2ν(1− P1)

)
〈f1〉δ(1− 2). (5.51)

In practice we prefer to study the pair correlation function G12 as it vanishes in local

equilibrium for sufficiently large systems. In the grand canonical ensemble, the number of

particles in equilibrium fluctuates following Poisson statistics, i.e. the variance in number

of particles equals the mean, 〈N2〉 − 〈N〉2 = 〈N〉. Correspondingly the equilibrium phase

space correlations (〈f1f2〉 − 〈f1〉〈f2〉)e tend to the Poissonian expectation 〈f1〉δ(1 − 2) and

G12 vanishes.

The projection operators allow us a convenient method to study the noise terms Γ12 and

Γ′12. We can infer the form of Γ12 from first principles. First, the local nature of the stochastic

fluctuations implies that ∆W1 and ∆W2 are uncorrelated for different phase space cells. As

a result, we expect Γ12 to be singular at points (x1,p1) = (x2,p2) as the cell size tends to

zero and to vanish otherwise. Second, Eq. (5.48) shows that Γ12 is a source of correlations

due to collisions. Since detailed balance applies to the equilibrium state, the contribution

to the evolution of f due to scattering should be zero, (∂f/∂t)coll ≡ 0, and thus Γ12 should

vanish in equilibrium. Therefore, we can explicitly include the two orthogonal projections

(1− P1)(1− P2) when writing Γ12. In full we should have

Γ12 = (1− P1)(1− P2)a1δ(1− 2), (5.52)

where a1 is a function yet to be determined. In particular, notice this form implies PiΓ12 = 0

and (1− Pi)Γ12 = Γ12. Thus, we can combine this with (5.48) and multiply by P1P2 to find

d

dτ
P1P2C12 = 0 ≡ d

dτ
Ce

12, (5.53)

where we define the equilibrium correlation function Ce
12 ≡ P1P2C12 and use the property
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P (1− P ) = 0.

We can use the fluctuation-dissipation theorem, as in Chapter 3, to determine Γ12. We

give two examples. First, we start by considering a uniform system close to equilibrium, such

that 〈f〉 ≈ f e. In equilibrium, the time derivative in (5.48) must vanish, so we can write

Γ12 ≈ [ν(1− P1) + ν(1− P2)]Ce
12. (5.54)

We now multiply both sides by (1 − P1)(1 − P2). The form (5.52) shows the left side is

unaffected. For the right side we have

[ν(1− P2)(1− P1)2 + ν(1− P1)(1− P2)2]Ce
12 = 2ν(1− P1)(1− P2)Ce

12. (5.55)

The discussion after Eq. (5.51) shows Ce
12 = 〈f1〉δ(1− 2) so altogether we write

Γ12 = 2ν(1− P1)(1− P2)〈f1〉δ(1− 2). (5.56)

In this example we find a1 = 2ν〈f1〉. In the case where this system is in equilibrium,

〈f1〉 = f e, and this quantity vanishes by virtue of the projections. However, this is the

correct general structure.

For the second example we look at the other end of the spectrum. Consider the steady

state behavior of a system that cannot equilibrate due to large gradients caused by, for

example, fixed boundary conditions. Here, the τ derivatives in (5.48) and (5.50) do not

vanish since they contain contributions from the gradients, d/dτ = ∂/∂τ + v1 · ∇1 + v2 · ∇2.

Furthermore, the large gradients conflict with the assumptions of the linearized approach so

we must use the non-linearized relaxation time approximation (5.12). In this case Pf 6= f e.

We multiply Eq. (5.51) by P1P2 and use (5.52) to find

P1P2Γ′12 =
d

dτ
P1P2Γ12 − P1P2

d

dτ
〈f1〉δ(1− 2) = νP1P2(〈f1〉 − f e)δ(1− 2) (5.57)
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For the last equality we must use the full (5.12) to evaluate the derivative because the

constrained system is never close to equilibrium. In accord with the fluctuation-dissipation

theorem we equate these equilibrium fluctuations to the non-equilibrium fluctuations and

write

Γ′12 = νP1P2(〈f1〉 − f e)δ(1− 2) (5.58)

We then multiply Eq. (5.51) by 1− P1 to obtain

Γ12 = (1− P1)Γ′12 − ν(1− P1)(〈f1〉 − f e)δ(1− 2) + 2ν(1− P1)〈f1〉δ(1− 2)

= ν(1− P1)(〈f1〉+ f e)δ(1− 2)

= ν(1− P1)(1− P2)(〈f1〉+ f e)δ(1− 2) (5.59)

For the last line we exploited the delta function to write P1δ(1 − 2) = P2δ(1 − 2). In this

example we find a1 = ν(〈f1〉 + f e). Note that if we remove the boundary conditions and

apply the constraints of the first example then we recover the result (5.56).

Using the results of the second example as our most general case we write the evolution

equation for the two-body correlation function

(
d

dτ
+ ν(1− P1) + ν(1− P2)

)
G12 = νP1P2(〈f1〉 − f e)δ(1− 2), (5.60)

where the presence of the projection operators enforces energy, momentum and number

conservation. Equation (5.60) is our main result for this section. In the next section we use

it to construct solutions for the evolution of G12, which we then integrate in Chapter 7 to

study partially thermalized systems. In the local rest frame of the fluid we can expand d/dτ

and write

(
∂

∂t
+ vp1 · ∇1 + vp2 · ∇2 + ν(2− P1 − P2)

)
G12 = νP1P2(〈f1〉 − f e)δ(1− 2), (5.61)
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where the relaxation rate and projection operators depend on the average one-body distri-

bution 〈f(x,p, t)〉 and the local equilibrium distribution f e. Equation (5.61) was derived

earlier using similar methods by Dufty, Lee and Brey in Ref. [69] for non-relativistic fluids

from a general analysis of the BBGKY hierarchy.

In order to use these equations for phenomenological purposes, we would start by solving

Eq. (5.60) with the initial condition corresponding to a single collision event. We would then

use the full non-linear solution (5.16) to solve for 〈f(x,p, t)〉 together with the conservation

conditions (5.9) to fix the parameters T , v and µ in the local equilibrium distribution f e. We

can then use these to solve (5.60) for the correlation function. Finally we must remember

to average over an ensemble of initial conditions. Physically, the difference between 〈f〉 and

f e may by arbitrarily large, as in our second example. In fact, such general solutions need

not ever reach equilibrium [50].

In the next section we use these results to illustrate how this method can be applied

to heavy ion collisions. We assume the deviation of the phase space distribution from its

equilibrium value to always be small enough so that the linearized solution (5.40) for 〈f〉 is

applicable. In this case, one can use the conservation conditions (5.25), or solve dissipation-

free Euler equations, to determine effective T , v and µ parameters for the initial conditions

in each event. For our purposes, this will not need to be done explicitly. For this work, the

source term in (5.60) exactly vanishes.

In Ref. [70], Calzetta and Hu take on an early effort to study a fully relativistic version of

the Boltzmann-Langevin equation. Our work here follows the path laid out in [22] to address

thermalization using these equations. The effects of critical phenomena were introduced by

Stephanov [71] but spatial inhomogeneity was not considered.

5.5 Ion collisions in kinetic theory

We now construct formal solutions for the evolution of G12. We solve Eq. (5.60) in a

manner similar to the derivation of (5.40). The four following equations will, respectively,

use the definitions Ge
12 ≡ P1P2G12, X12 ≡ (1− P1)P2G12, X21 ≡ P1(1− P2)G12 and ∆G12 ≡
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(1− P1)(1− P2)G12. We multiply (5.60) by the combinations P1P2, P1(1− P2), (1− P1)P2

and (1− P1)(1− P2) and use properties of the projectors to find:

d

dτ
Ge

12 = νP1P2(〈f1〉 − f e)δ(1− 2), (5.62)

d

dτ
X12 = −νX12, (5.63)

d

dτ
X21 = −νX21, (5.64)

d

dτ
∆G12 = −2ν∆G12. (5.65)

To relate these new variables to the original correlation function we note the identity

1 = P1P2 + P1(1− P2) + (1− P1)P2 + (1− P1)(1− P2) (5.66)

and thus we have

G12 = Ge
12 +X12 +X21 + ∆G12. (5.67)

The equilibrium correlation function Ge
12 is defined in the same sense as Ce

12 and thus we

have Ge
12 = Ce

12 − P1〈f1〉δ(1 − 2). In the case that the fully linearized solution (5.40) holds

then P1〈f1〉 = f e and we can apply Eq. (5.26). Then using (5.53) we have dGe
12/dτ = 0

so that Ge
12, as well as Ce

12 and f e, are constant along the characteristic curves defined in

(5.11). We will assume this to be true in Sec. 6.4 but a more general non-linear description

of the underlying flow described by Eq. (5.10) would allow Ge
12 to vary with τ . We do point

out, however, that in this case one can still extract (5.53) from (5.60) by applying P1P2 to

find

d

dτ
Ge

12 = νP1P2(〈f1〉 − f e)δ(1− 2) = −P1P2
d

dτ
〈f1〉δ(1− 2), (5.68)

where the second equality uses the non-linearized (5.12). This can be rearranged to give

(5.53).

If δf = f − f e is the deviation of the phase space distribution from its local equilib-
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rium value, then one can interpret ∆G12 as the non-equilibrium contribution to correlations

〈δf1δf2〉 − 〈δf1〉〈δf2〉 − 〈δf1〉δ(1− 2). The mixed correlation function X12 is the covariance

〈δf1f
e
2 〉−〈δf1〉f e2 . While one might expect the deviation from equilibrium to be uncorrelated

with equilibrium, we note that X12 need not vanish because δf and f e correspond to the

same T , v and µ. In this sense, X12 enforces the conservation laws.

We construct solutions in step with (5.40) by integrating Eqs. (5.63), (5.64) and (5.65)

to find

X12 = X0
12S, X21 = X0

21S, ∆G12 = ∆G0
12S

2 (5.69)

for the survival probability S = S(τ, τ0) given by Eq. (5.14). Assembling the pieces via

(5.67) we finally obtain the general solution

G12 = Ge
12 + (X0

12 +X0
21)S + ∆G0

12S
2. (5.70)

The two-particle local equilibrium correlation function

Ge
12 = Ge

12(x1 − vp1t,p1,x2 − vp2t,p2), (5.71)

again, accounts for drift following (5.11). The temperature and other local equilibrium

parameters in these linearized equations follows the relativistic Euler equation. The initial

functions X0
12 and ∆G0

12 follow a similar path dependence. Their values are determined by

the initial spatial distribution of nucleon participants and their first few interactions. As

a check on this solution we note that, at the initial time τ0, S(τ0, τ0) = 1 and (5.70) gives

G0
12 = Ge

12 + X0
12 + X0

21 + ∆G0
12, matching (5.67) with initial values. In Sec. 7.1 we will

illustrate a method of integrating the solution (5.70) to study the approach to thermalization

using pt fluctuations.
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CHAPTER 6 CORRELATIONS AND FLUCTUATIONS

Our results in Chapters 4 and 5 are not sufficient for experimental studies of heavy

ion collisions. For one, we have been using the noise average defined in Chapter 3 and the

appendix and laboratory conditions are not such that experimentalists can perfectly recreate

initial conditions to repeat a collision. Furthermore, in real experiments it is not enough to

simply have equations for the evolution of correlations – we need something that we can

measure. After a collision experimentalists typically have access to particle information such

as charge and momentum. Our goal in this section is to find an observable that connects

our theory, in particular Eqs. (4.40) and (5.70), to experimental observables.

All observables are subject to fluctuations, which generally depend on properties of the

system and can be used to study these properties. We break these fluctuations up into

two classes. At the most basic level each collision event is different because a finite and

varying number of particles are produced. The finite size of each event is an inherent cause

of fluctuations which we refer to as statistical fluctuations. We evaluate these fluctuations

by considering how a system behaves in local equilibrium. The second type of fluctuations

are those above equilibrium, which we call dynamical fluctuations, and they encompass all

other types of fluctuations. We then write the total fluctuations in a system as

σ2
total = σ2

stat + σ2
dyn. (6.1)

All of the observables we study in this chapter are dynamical and, thus, can be written in the

form σ2
dyn = σ2

total − σ2
stat. Dynamical fluctuations necessarily vanish in equilibrium, which

we will see as a consequence of how we define our observables.

Also in this section we reconcile the difference between the noise average and an event

average. As such, we need to use notation distinguishing between the two. We will denote

the event average of a quantity X as 〈X〉 and the noise average by 〈X〉n. A full event average

〈〈X〉n〉 consists of averaging over the initial conditions of 〈X〉n.
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6.1 Observables

The most fundamental quantity that can be observed after a nuclear collision is the

number of particles that hit the detector. We call this observable the multiplicity of the

event and denote it as N . Repeating this measurement for many collisions – often millions –

and averaging the value gives the event averaged multiplicity 〈N〉. Physicists have concocted

a number of ways to make this observable interesting, including measurements of N for

specific species of particles [72, 73], measuring it as a function of the direction it emerges

from the collision volume [74,75] and comparing the values of 〈N〉 observed in different types

of collisions [15, 76]. As an introduction to the notation we will use, for a single event we

write Nα =
∑

a 1 where the sum is over the particles a in an event. The event average is

then 〈N〉 = 1
Nev

∑
αNα where this sum goes over all events α and Nev is the total number

of events.

Momentum is another basic property of particles we can measure. The event averaged

sum total of the i-th component of the momentum of all the particles in an event is denoted

〈Pi〉 = 〈
∑

a pi,a〉 = 1
Nev

∑
α

∑
a pi,a for the momentum of a single particle pi,a. Momentum is

interesting in that it is a conserved quantity. One would expect, when summing over all the

particles in an event, that Pi = 0 but this is not the result we observe experimentally. Par-

ticle detectors do not have 100% efficiency and some particles slip past unnoticed. Neutral

particles, in particular, are difficult to detect and carry away some of the total momentum

undetected. Furthermore, detectors cannot cover the entire region surrounding a collision.

Measurements, in fact, are often conducted in a narrow rapidity range and, thus, conserving

particles will fall outside of the detection window. Part of our interest lies in understanding

the mechanisms that transport particles outside of this region. Initial momentum distribu-

tions are spread large in rapidity due to processes such as jets, string fragmentation and

Glasma field interactions. Later evolution is restricted by causality to more local processes

like scattering and, thus, diffusion. Measurements of the observables is this section can

provide insight into these processes.
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The average momentum per particle Pi,α/Nα in an event α can be studied in two different

ways. One may take the event average directly 〈Pi/N〉 = 1
Nev

∑
α Pi,α/Nα. Alternatively,

we can study the ratio 〈pi〉 = 〈Pi〉/〈N〉 – sometimes called the inclusive average. For our

purposes, the inclusive average is the more preferable of the two: it can be expressed simply

as an integral of distribution functions and it is used by experiment to study the same

observables we are interested in. Instead of the individual components, we often study the

average transverse momentum 〈pt〉 = 〈Pt〉/〈N〉 for pt =
√
p2
x + p2

y where x and y are the

directions orthogonal to the beam axis z. This can have a large effect on the observables

we measure mainly because pt is not a conserved quantity – e.g. compare Eqs. (6.10) and

(6.12).

It is theoretically convenient to connect these observables to the momentum density of

particles ρ1(p) = dN/d3p. For example,

〈N〉 =

∫
ρ1(p)d3p and 〈pt〉 =

1

〈N〉

∫
ptρ1(p)d3p, (6.2)

where the integrals are taken over the freeze out surface. To study correlations between

different particles we introduce the pair distribution

ρ2(p1,p2) =
dN

d3p1d3p2

. (6.3)

for particle pairs of momentum p1 and p2. In an uncorrelated system that behaves according

to Poisson statistics, such as during local equilibrium in an ion collision, the pair distribution

factors ρ2(p1,p2) → ρ1(p1)ρ1(p2). We note that ρ1 and ρ2 are related to the phase-space

density f of Chapter 5 via the integrals

ρ1(p) =

∫
〈f(x,p)〉d3x, (6.4)

ρ2(p1,p2) =

∫
[〈f(x1,p1)f(x2,p2)〉 − 〈f1(x1,p1)〉δ(1− 2)] d3x1d

3x2 (6.5)
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where δ(1− 2) = δ(x1− x2)δ(p1−p2) and the integrals are over the Cooper-Frye freeze out

surface with dx = pµdσµ/E. The second equation tells us that ρ2 only considers distinct

particles and, as a result, the integral of ρ2 gives the number of distinct pairs 〈N(N − 1)〉.

Finally, as our primary interest is studying correlations we define the correlation function

r(p1,p2) = ρ2(p1,p2)− ρ1(p1)ρ1(p2). (6.6)

Due to the factoring of the momentum distributions, r vanishes in local equilibrium.

6.1.1 Multiplicity fluctuations

Having defined the basic correlators we can now build more substantial observables to

target specific properties of the collisions we wish to study. In the case of multiplicity we

define

R ≡ 〈N
2〉 − 〈N〉2 − 〈N〉
〈N〉2

=
1

〈N〉2

∫
r(p1,p2)d3p1d

3p2. (6.7)

Note that in the absence of correlations r → 0 and R vanishes, making it a measure of the

dynamical fluctuations of the system. We will see this is the case with all of the observables

we study. While this is directly a result of being able to express them as integrals of r, we

can also see this from the definition of R. In the grand canonical ensemble1, uncorrelated

particles obey Poisson statistics. Therefore, in equilibrium, the variance σ2
N = 〈N2〉 − 〈N〉2

equals the mean σ2
stat = 〈N〉 and R vanishes.

The dynamic multiplicity variance R can be used to study critical phenomena in heavy

ion collisions, e.g. see [72]. A multiplicity fluctuation observable, related to R, was measured

by PHENIX [78]:

ωch =
〈N2

ch〉 − 〈Nch〉2

〈Nch〉
, (6.8)

where Nch is the charged particle multiplicity. Although experimenters found no evidence of

critical behavior in their dataset it was observed that fluctuations decrease with increasing

1As a technical point, we note that the GCE is the most relevant ensemble to ion physics. Measurements
usually take place near midrapidity and, thus, energy and conserved quantum numbers can be exchanged
with the rest of the system. [77]
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collision centrality, offering support to the notion that increasingly central collisions are more

thermalized. In [23], it was pointed out that R is important in comparing measurements in

different centrality ranges. To maintain consistency with data from different sources, we use

R as a measure of the scale of correlations.

6.1.2 Momentum fluctuations

Dynamic momentum correlations are characterized by the observable

Cij ≡
1

〈N〉2

〈∑
a6=b

pi,apj,b

〉
− 〈pi〉〈pj〉 =

1

〈N〉2

∫
pi1pj2r(p1,p2)d3p1d

3p2, (6.9)

where
∑

a6=b =
∑

a

∑
b,b 6=a denotes a double sum over pairs a and b such that a 6= b. Note

that C is an integral over the correlation function r, causing it to vanish in equilibrium

and justifying the moniker “dynamic”. Choosing i, j = x, y leads to a special case where

conservation of momentum dictates that each component of the total momentum vanishes

Pi = 0. As mentioned, this is not the case in experiment where technology impairs complete

measurement but under ideal conditions fluctuations of conserved quantities are highly con-

strained. To see this we note that the unrestricted sum
∑

a,b pi,api,b = PiPj also vanishes so

that
∑

a6=b pi,apj,b = −
∑

a pi,apj,a. It then follows that in the full range of measurement

Cij → −
〈p2
i 〉
〈N〉

δij. (6.10)

Our focus will be on the transverse analogue of Cij:

C ≡ 1

〈N〉2

〈∑
a6=b

pt,apt,b

〉
− 〈pt〉2 =

1

〈N〉2

∫
pt1pt2r(p1,p2)d3p1d

3p2. (6.11)

As pt is not a conserved quantity, the total transverse momentum Pt does not vanish and

Eq. (6.10) is replaced by

C → 〈P
2
t 〉 − 〈Pt〉2

〈N〉2
− 〈p

2
t 〉
〈N〉

. (6.12)
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The extra term in Eq. (6.12) accounting for fluctuations in total pt from event to event

can be quite large and demonstrates the effect that non-conserved quantities can have on

the observables. In Ref. [46] it was shown that C is sensitive to viscosity and we extend

this notion in the later chapters. Moreover, azimuthal anisotropy can be studied with γ′ ≡

(Cyy − Cxx)/(Cyy + Cxx), as proposed in Ref. [79].

A differential version of C was measured experimentally by the STAR collaboration [7,8]:

C(ηr, φr) =
1

〈N〉1〈N〉2

〈∑
a6=b

pt,apt,b

〉
1,2

− 〈pt〉1〈pt〉2 (6.13)

where the numbers 〈N〉i and 〈pt〉i refer to the multiplicity and transverse momentum in

(ηi, φi) bins for particles i = 1, 2. They found broad, ridge-type structure in C(ηr, φr) familiar

from measurements of observables lacking the momentum weights. The near side (φr = 0)

structure builds to a large symmetric peak at ηr = 0, φr = 0. The rapidity dependence of

C is characterized by the width σ of this peak in ηr. In Au+Au collisions at the top RHIC

energy, experimenters find that σ increases from 0.54 ± 0.02(statistical) ± 0.06(systematic)

in the most peripheral collisions to 0.94 ± 0.06(statistical) ± 0.17(systematic) in central

collisions. Significantly, STAR also presented the detailed rapidity distributions C(ηr) for

three centralities [7] and for several other centralities [8].

Dynamic fluctuations of the transverse momentum can also be studied with the covariance

〈δpt1δpt2〉 ≡

〈∑
a6=b δptaδptb

〉
〈N(N − 1)〉

=

∫
δpt1δpt2

r(p1,p2)

〈N(N − 1)〉
d3p1d

3p2, (6.14)

for δpti = pti−〈pt〉. It measures the average covariance for all pairs of particles a and b in the

same event with respect to the inclusive 〈pt〉 calculated over all events. Again, expressing

〈δpt1δpt2〉 as a weighted integral over r shows that it is a dynamic measure of fluctuations.
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One can also express 〈δpt1δpt2〉 as a difference in variances σ2
Pt
− σ2

Pt,stat
by identifying

σ2
Pt = 〈(Pt −N〈pt〉)2〉 and σ2

Pt,stat = 〈N〉
(
〈p2
t 〉 − 〈pt〉2

)
. (6.15)

To show that σ2
Pt
→ σ2

Pt,stat
in equilibrium, we first show

σ2
Pt =

∫
δpt1δpt2(〈f1f2〉 − 〈f1〉〈f2〉)d3x1d

3x2d
3p1d

3p2 (6.16)

and

σ2
Pt,stat =

∫
δpt1δpt2〈f1〉δ(1− 2)d3x1d

3x2d
3p1d

3p2. (6.17)

To show (6.16) we note that the integrals over 〈f〉 vanish by definition of 〈pt〉 and then

∫
δpt1δpt2〈f1f2〉d3x1d

3x2d
3p1d

3p2 =

〈∑
a,b

δptaδptb

〉

=

〈∑
a,b

ptaptb − 2〈pt〉
∑
a,b

pta + 〈pt〉2
∑
a,b

1

〉

=
〈
P 2
t − 2〈pt〉NPt + 〈pt〉2N2

〉
=
〈
(Pt −N〈pt〉)2

〉
. (6.18)

For (6.17) we have

∫
δpt1δpt2〈f1〉δ(1− 2)d3x1d

3x2d
3p1d

3p2 =

∫
(δpt)

2〈f〉d3xd3p

= 〈N〉〈(δpt)2〉

= 〈N〉
(
〈p2
t 〉 − 〈pt〉2

)
. (6.19)

Since (〈f1f2〉 − 〈f1〉〈f2〉) → 〈f1〉δ(1 − 2) for equilibrium systems obeying Poisson statistics
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we have the result σ2
Pt
→ σ2

Pt,stat
. Finally, we have

〈N(N − 1)〉 〈δpt1δpt2〉 =

〈∑
a,b

δptaδptb

〉
−

〈∑
a

(δpta)
2

〉
= σ2

Pt − σ
2
Pt,stat. (6.20)

Experimentally 〈δpt1δpt2〉 (or related quantities) was measured in [10, 80, 81] where sig-

nificant non-statistical fluctuations are observed as well as a dilution in the fluctuations with

increasing centrality, indicating that 〈δpt1δpt2〉 can be used as a signal of thermalization. We

compare our theory with this data in Chapter 7. In Ref. [23], 〈δpt1δpt2〉 was used to study

early-time correlation contributions to flow. In Sec. 7.1 we build on these results to find the

effect that incomplete thermalization can have on the observables. As a final note, r in Eq.

(6.14) can be replaced with ρ2 as
∫
δptρ1d

3p = 0 by definition.

6.1.3 Momentum-multiplicity fluctuations

Up to this point we have discussed observables that measure fluctuations in multiplicity

and correlations between the momenta of pairs of particles. We now wish to discuss the

relation between multiplicity and momentum. A natural starting point is the covariance

〈NPt〉 − 〈N〉〈Pt〉. To see how this quantity should behave in equilibrium we turn to the

grand canonical ensemble. The grand canonical partition function describes systems in

equilibrium and is given by

Z(µ, V, T ) =
∑
i

exp(αNi − βEi), (6.21)

where the sum is over the microstates i of the system, α = µ/T and β = 1/T . The average

number of particles and average energy in the system are related to the partition function

through the identities

〈N〉 =
∑
i

Ni
eαNi−βEi

Z
=

1

Z
∂Z
∂α

and 〈E〉 =
∑
i

Ei
eαNi−βEi

Z
= − 1

Z
∂Z
∂β

. (6.22)
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Taking another derivative with respect to α we have

∂〈N〉
∂α

=
∑
i

Ni

(
Nie

αNi−βEi

Z
− eαNi−βEi

Z2

∂Z
∂α

)
= 〈N2〉 − 〈N〉2, (6.23)

and similarly

∂〈E〉
∂α

=
∑
i

Ei

(
Nie

αNi−βEi

Z
− eαNi−βEi

Z2

∂Z
∂α

)
= 〈NE〉 − 〈N〉〈E〉 =

∂〈E〉
∂〈N〉

∂〈N〉
∂α

, (6.24)

where the last equality follows by applying the chain rule to the left hand side of the equation.

We recall that from Eq. (2.3) we can write the energy as E = mt cosh y. Near midrapidity

y ≈ 0 we have cosh y ≈ 1 and for particles with large momentum pt � m we have mt =√
m2 + p2

t ≈ pt. In this case we can identify the average energy of the system with the

average of the total transverse momentum 〈E〉 ≈ 〈Pt〉. In particular we have ∂〈E〉
∂〈N〉 = ∂〈Pt〉

∂〈N〉 .

Furthermore, it is often the case that over a wide range of centralities 〈pt〉 is relatively

constant (especially in the more central, more thermalized region) ([CCC] plot?). Thus,

〈Pt〉 = 〈pt〉〈N〉 implies ∂〈Pt〉
∂〈N〉 ≈ 〈pt〉. Making these identifications in (6.24) and using (6.23)

we find that in equilibrium

〈NPt〉 − 〈N〉〈Pt〉 = 〈pt〉
(
〈N2〉 − 〈N〉2

)
. (6.25)

Collision effects can introduce interesting and complicated correlations but we begin with

a naive look at this equation. Certain effects, such as jets and minijets, create a large number

of particles having a wide range of transverse momentum. Thus, the introduction of a jet

into an event should result in a strong correlation between multiplicity and total transverse

momentum which we expect to cause a greater increase to left side of (6.25) as opposed to

the right. Other effects, namely transverse flow, work to increase pt in an event but do little

to change the multiplicity. In this case, we expect the right hand side of Eq. (6.25) to be

larger than the left.
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This motivates the introduction of a new observable similar to those above. Correla-

tions between momentum and multiplicity can be characterized by the dynamic fluctuation

observable

D ≡ 1

〈N〉2
[
〈NPt〉 − 〈N〉〈Pt〉 − 〈pt〉

(
〈N2〉 − 〈N〉2

)]
=

1

〈N〉2

∫
δpt1r(p1,p2)d3p1d

3p2.

(6.26)

To prove the last equality we first note that we can replace r(p1,p2) with ρ2(p1,p2) as the

integral over ρ1(p1) vanishes due to the factor δpt1. Then

∫
δpt1ρ2d

3p1d
3p2 =

〈∑
a6=b

δpta

〉

=

〈∑
a

δpta(N − 1)

〉

= 〈(Pt −N〈pt〉)(N − 1)〉

= 〈NPt〉 − 〈Pt〉 − 〈N2〉〈pt〉+ 〈N〉〈pt〉

= 〈N〉2D, (6.27)

where the last equality follows by adding and subtracting 〈N〉〈Pt〉 = 〈N〉2〈pt〉.

Based on their definitions, one can see that D is closely related to the other observables,

however, it does have some nice properties to differentiate it from the pack. In principle,

D can help to disentangle the jet-like and flow-like effects described above – something the

others cannot see. Also, fluctuations in the collision volume from event to event can have an

effect on R, C and 〈δpt1δpt2〉, but not on D as we will see in the next section. Furthermore, D

vanishes when integrated over the full range of momentum. First, note that when integrating

ρ2 over the full range of p2 the result must be proportional to the single particle distribution:∫
all p2

ρ2d
3p2 ∝ ρ1. Integrating this over p1 must give 〈N(N − 1)〉 so that we have

∫
all p2

ρ2(p1,p2)d3p2 =
〈N(N − 1)〉
〈N〉

ρ1(p1). (6.28)
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The result then easily follows

Dall p =
1

〈N〉2

∫
δpt1ρ2(p1,p2)d3p1d

3p2 ∝
∫
δpt1ρ1(p1)d3p1 = 0. (6.29)

All together, R, C, D and 〈δpt1δpt2〉 form a suite of observables that can be used to study

a wide range of collision features. While each is worthy of individual study they are not

entirely independent. They are related via the “sum rule”

(1 +R) 〈δpt1δpt2〉 = C − 2〈pt〉D − 〈pt〉2R. (6.30)

We show this by noting that 〈
∑

a6=b pta〉 = 〈
∑

a6=b ptb〉 = 〈(N − 1)Pt〉 and that we can write

〈N〉2D = 〈NPt〉 − 〈N2〉〈pt〉 since 〈N〉〈Pt〉 = 〈N〉2〈pt〉. Then we have

〈N(N − 1)〉 〈δpt1δpt2〉 =

〈∑
a6=b

δptaδptb

〉

=

〈∑
a6=b

ptaptb

〉
+

〈∑
a6=b

〈pt〉2
〉
− 2

〈∑
a6=b

pta〈pt〉

〉

=
[
〈N〉2C + 〈N〉2〈pt〉2

]
+ 〈N(N − 1)〉〈pt〉2 − 2 〈(N − 1)Pt〉 〈pt〉

= 〈N〉2C + 〈N〉2〈pt〉2 − 〈N(N − 1)〉〈pt〉2 + 2〈N(N − 1)〉〈pt〉2

− 2 〈(N − 1)Pt〉 〈pt〉

= 〈N〉2C − 〈N〉2〈pt〉2R− 2〈pt〉 [〈(N − 1)Pt〉 − 〈N(N − 1)〉〈pt〉]

= 〈N〉2C − 〈N〉2〈pt〉2R− 2〈N〉2〈pt〉D. (6.31)

Equation (6.30) then follows since 1 + R = 〈N(N − 1)〉/〈N〉2. This relation provides a

useful “double check” for simulations and experiments worried about their calculations.

Furthermore, we will find it useful in Sec. 7.1 when C turns out to be more difficult to work

with than the others.
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Figure 6.1: Depiction of the independent source model. Proton-proton collisions are super-
imposed to form a nucleus-nucleus collision.

6.2 Independent source model

In Chapter 7 we will want to study these observables in ion systems that feature very few

collisions between the produced particles. Following [72], we model this for nucleus-nucleus

collisions by representing each nucleon-nucleon subcollision as an independent source of par-

ticle production and assuming no interaction between sources. In this way, only particles

that originate from the same source will be correlated. Then we can superimpose multiple

sources – one for each nn sub-collision – to form the AA collision system. This is demon-

strated in Fig. 6.1 where we identify each source as a single pp collision. The idea behind this

is that we can use a scaled version of the simpler pp systems as a baseline for AA systems.

The term “source” is left deliberately vague so as to maintain generality – in principle, you

can picture your favorite type of source: flux tubes, wounded nucleons, etc.

Suppose there are M sources of particles in an event which fluctuates from event to event.

Our purpose is to see how the observables are related to the number of sources. The single

particle distribution in each event is M times the particle distribution per source. Assuming

the distribution per source is independent of M we can write ρ1 = 〈M〉ρ̂1 where we use

hatted variables to represent per source quantities. Note that all of these quantities are now

event averaged.

The total pair density ρ2 must consider all possible pairs of particles. Pairs originating

from the same source contribute through the term 〈M〉ρ̂2. It must also consider mixed pairs,

where the second particle comes from a different source than the first. As there are M(M−1)
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source pairs ρ2 also includes the term 〈M(M − 1)〉ρ̂1ρ̂1. Altogether we have

ρ1 = 〈M〉ρ̂1 and ρ2 = 〈M〉ρ̂2 + 〈M(M − 1)〉ρ̂1ρ̂1 (6.32)

Demonstrating the use of these distributions on the average multiplicity, we find

〈N〉 =

∫
ρ1d

3p = 〈M〉
∫
ρ̂1d

3p = 〈M〉µ (6.33)

where we use µ =
∫
ρ̂1d

3p for the average multiplicity per source rather than a more cum-

bersome hatted version. In words, the number of particles in an event is equal to the number

of particle sources times the number of particles generated by a source. This would be the

case if there were no interactions after the initial collision. We now use this model to study

the observables we have been discussing.

We substitute these densities into the definition of R to find

R =
1

〈N〉2

∫
r(p1,p2)d3p1d

3p2

=
1

〈M〉2µ2

∫ [
〈M〉ρ̂2 + 〈M(M − 1)〉ρ̂1ρ̂1 − 〈M〉2ρ̂1ρ̂1

]
d3p1d

3p2

=
1

〈M〉2µ2

∫ [
〈M〉r̂ +

(
〈M2〉 − 〈M〉2

)
ρ̂1ρ̂1

]
d3p1d

3p2

=
1

〈M〉

∫
r̂

µ2
d3p1d

3p2 +
〈M2〉 − 〈M〉2

〈M〉2

∫
ρ̂1ρ̂1

µ2
d3p1d

3p2

=
R̂
〈M〉

+
〈M2〉 − 〈M〉2

〈M〉2
(6.34)

We see that R scales with the number of sources plus an additional term that accounts for

fluctuations in the number of sources. The main purpose of this model is to use pp collisions

to study the observables of interest. With this in mind we identify a source as a single pp

collision2. Then, the per source quantities are equal to their values in a pp collision (e.g.

R̂ = Rpp) and the number of sources can be identified as the number of binary collisions

2Note that in this work we treat neutron sources as identical to proton sources.
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between two participants M = Npart/2 We find

R =
2Rpp

〈Npart〉
+
〈N2

part〉 − 〈Npart〉2

〈Npart〉2
. (6.35)

By making this identification we can view the second term as a measure of fluctuations

in the initial collision volume. Thus, one can see that simply scaling R by the number

of subcollisions is not sufficient, indeed, its value depends on geometric fluctuations of the

system.

As another example, we now do the same for D

D =
1

〈N〉2

∫
ρ2δpt1d

3p1d
3p2

=
1

〈M〉2µ2

∫
(〈M〉ρ̂2 + 〈M(M − 1)〉ρ̂1ρ̂1) δpt1d

3p1d
3p2

=
1

〈M〉µ2

∫
ρ̂2δpt1d

3p1d
3p2

=
D̂
〈M〉

. (6.36)

Making the same identification as above we find

D =
2Dpp
〈Npart〉

. (6.37)

In difference to R and as a point of sale, we see D scales very simply in the independent

source model as it is immune to the initial volume fluctuations.

One can similarly calculate these quantities for C and 〈δpt1δpt2〉. Bypassing the details

we find

C =
2Cpp
〈Npart〉

+ 〈pt〉2
〈N2

part〉 − 〈Npart〉2

〈Npart〉2
, (6.38)

〈δpt1δpt2〉 =
2 〈δpt1δpt2〉pp
〈Npart〉

(
1 +Rpp

1 +RAA

)
. (6.39)
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Figure 6.2: Independent source model curves for the observables in Eqs. (6.35), (6.37),
(6.38) and (6.39) at an energy of

√
s = 2760 GeV. All of the observables share the same

N−1
part scaling.

We see that C shares the same scaling deficiency as R, while 〈δpt1δpt2〉 only has a minor

dependence on the volume fluctuations through the RAA term in the denominator (the term

in parentheses is entirely due to the different normalization between 〈δpt1δpt2〉 and the other

observables). In Fig. 6.2 we plot these independent source observables as a function of Npart.

Per source reference values are calculated using pp collisions in PYTHIA. We note that these

theory curves have the benefit of minimized effect from the volume fluctuation terms as there

is no fluctuation in the value of Npart when, e.g. Npart = 50. However, experiments do not

benefit from this feature as many different Npart share the same centrality bin allowing for a

variance. Nevertheless, we see that all of the observables have similar N−1
part scaling behavior.

We use these results in Sec. 7.2 when we study the extent of thermalization in a system.

These curves correspond to a system which is completely unthermalized.
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6.3 Connection to hydrodynamics

We will now connect the fluctuation observables introduced in this chapter with the

correlation functions studied in previous chapters. Now is also the point that we will need to

reconcile the difference between our two averages. We begin by showing that the covariance

Cij in a rapidity interval is related to the correlation function ∆rijG studied in Sec. 4.2 via

Cij =
1

〈N〉2

∫
〈∆rijG (ηr, ηa)〉dηrdηa (6.40)

where we include brackets on 〈∆rijG 〉 to indicate a full event average – i.e. ∆rijG is first

averaged over noise as in Eq. (4.40) and then over initial conditions.

Consider δf(x,p, t) = f(x,p, t) − 〈f(x,p, t)〉n, the deviation of the phase space distri-

bution in an event from its noise averaged value. This is related to the momentum current

by

M i(x) ≡ T 0i − 〈T 0i〉n =

∫
δf(x,p)pid3p. (6.41)

The correlator 〈M i(x1)M j(x2)〉n = 〈M i
1M

j
2 〉n then satisfies

∫
〈M i

1M
j
2 〉nd3x1d

3x2 =

∫
〈δf i1δf

j
2 〉npi1p

j
2d

3p1d
3p2d

3x1d
3x2

=

∫
〈f i1f

j
2 〉npi1p

j
2d

3p1d
3p2d

3x1d
3x2

−
∫
〈f i1〉npi1d3p1d

3x1

∫
〈f j2 〉np

j
2d

3p2d
3x2

=

〈∑
a,b

piap
j
b

〉
n

− P iP j (6.42)

Notice this summation is not restricted to distinct pairs, as in Eq. (6.9). Also note that we

write 〈P i〉n as P i for brevity. Averaging this over initial conditions then yields

〈〈∑
a,b

piap
j
b

〉
n

〉
= 〈P iP j〉+

∫
〈〈M i

1M
j
2 〉n〉d3x1d

3x2. (6.43)
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It is convenient to change the integration measure in (6.43) to Milne coordinates via the

transformation dtdzd2x⊥ = τdτdηd2x⊥. We assume that freeze-out occurs at constant proper

time and write

∫
〈〈M i

1M
j
2 〉n〉d3x1d

3x2 =

∫
〈〈M i

1M
j
2 〉n〉τ 2dη1dη2d

2x1,⊥d
2x2,⊥ =

∫
〈〈Mi

1M
j
2〉n〉dηrdηa,

(6.44)

where for the last equality we define the rapidity density of transverse momentumMi(η) ≡∫
M i(x)τd2x⊥ and change to the relative and average rapidities ηr = η2 − η1 and ηa =

(η1 + η2)/2, respectively3.

We wish to make the identification
∫
〈〈Mi

1M
j
2〉n〉dηrdηa =

∫
〈rijG 〉dηrdηa. To do this, recall

from Chapter 4 that Gi =
∫
giτd2x⊥ and that gi represents the shear modes of the system.

Generally, M combines contributions from the shear modes and the curl-free longitudinal

modes gl. Being curl-free means we can write gl = ∇ϕ for some potential ϕ. The rapidity

density Mi is then proportional to
∫
dxi∂ϕ/∂xi which is only dependent on the value of ϕ

on the spatial part of the freeze-out surface, where interactions effectively cease. There is

no restoring force for ripples in this surface as there would be for, e.g., ocean waves. The

contribution from gl to fluctuations at the freeze-out surface must therefore be along the

normal direction so that the surface is an equipotential. Accordingly, ∂ϕ/∂xi = 0 and the

contribution of gl to Mi vanishes. We find that Mi depends only on the shear modes and,

therefore, we have
∫
〈〈Mi

1M
j
2〉n〉dηrdηa =

∫
〈rijG 〉dηrdηa. Note that rijG is already averaged

over noise.

Returning now to Eq. (6.43), we have

〈∑
a,b

piap
j
b

〉
=

∫
〈rijG 〉dηrdηa + 〈P iP j〉. (6.45)

In writing (6.45) we have moved to full event averages (noise + initial conditions) by equating

〈〈· · ·〉n〉 with 〈· · ·〉. For this derivation we are done distinguishing the averages although,

3The Jacobian of the rapidity transformation is |∂(ηr, ηa)/∂(η1, η2)| = 1
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before completely throwing the distinction to the wayside, we revisit the concept in a moment

to do a similar derivation with the Boltzmann solution (5.70). We use the definition of Cij

in (6.9) and the identity 〈pi〉 = 〈P i〉/〈N〉 to write the left-hand side of (6.45) as

〈∑
a,b

piap
j
b

〉
=

〈∑
a6=b

piap
j
b

〉
+

〈∑
a

piap
j
a

〉

=

〈∑
a6=b

piap
j
b

〉
− 〈N〉2〈pi〉〈pj〉+

〈∑
a

piap
j
a

〉
+ 〈P i〉〈P j〉

= 〈N〉2Cij +

〈∑
a

piap
j
a

〉
+ 〈P i〉〈P j〉. (6.46)

Combining this with (6.45) we have

〈N〉2Cij =

∫
〈rijG 〉dηrdηa −

〈∑
a

piap
j
a

〉
+ cov(P i, P j) (6.47)

The price we paid for distinguishing between the two separate averages is in picking up

the covariance term cov(P i, P j) = 〈P iP j〉 − 〈P i〉〈P j〉. Consider Eq. (6.42) but with 〈· · ·〉n

as the full event average. In this case, in the final line, the last term would read 〈P i〉〈P j〉

and there would be no need to take a second average creating the momentum correlator.

This term would then cancel exactly with the matching term in (6.47) and the covariance

would vanish. This covariance represents fluctuations of the total momentum in a rapidity

interval from event to event.

In local equilibrium Cij vanishes and Eq. (6.47) becomes

∫
〈rijG,le〉dηrdηa =

〈∑
a

piap
j
a

〉
− cov(P i, P j). (6.48)

Using this in Eq. (6.47) we find

〈N〉2Cij =

∫
〈rijG 〉dηrdηa −

∫
〈rijG,le〉dηrdηa =

∫
〈∆rijG 〉dηrdηa. (6.49)
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Dividing this by 〈N〉2 gives the desired result (6.40). Recall the result (6.10) for measure-

ments encompassing all particles. Applying this to (6.40) we see that in the full range of

rapidity
∫
〈∆rijG 〉dηrdηa → −〈N〉〈p2

i 〉δij. Thus, the integral of 〈∆rijG 〉 approaches a fixed,

non-zero value, implying that systems constrained by momentum conservation cannot fully

reach the uncorrelated local equilibrium state. Mathematically, this constraint constitutes a

boundary condition for 〈∆rijG 〉 that amounts to a rapidity independent shift in magnitude.

Experimental studies of momentum correlations have focused on pt, rather than px and

py. To obtain the transverse counterpart of Cij we simply choose i and j to be the radial com-

ponent. The correlation function becomes ∆rG for the momentum density G = τ
∫
grrdrdφ

and the observable is

C =
1

〈N〉2

∫
〈∆rG(ηr, ηa)〉dηrdηa. (6.50)

This is the form we will use in Sec. 6.5 to study the qualitative behavior of C.

6.4 Connection to kinetic theory

In a similar manner, we now show that 〈δpt1δpt2〉 is related to the correlation function

G12 = 〈f1f2〉n − 〈f1〉n〈f2〉n − 〈f1〉nδ(1− 2) from Chapter 5 via the equation

〈δpt1δpt2〉 = 〈δpt1δpt2〉e +

∫
δpt1δpt2

〈G12 −Ge
12〉

〈N(N − 1)〉
dω1dω2, (6.51)

where dω = dxdp and the spatial integral is taken over the Cooper-Frye freeze-out surface

with dx = pµdσµ/E. The quantity 〈δpt1δpt2〉e represents the value of the observable for a

system in local equilibrium, including both thermal and initial state fluctuations. For this

derivation we assume the difference between the noise averaged phase-space distribution 〈f〉n

and its equilibrium value f e to be small enough that the linearized solution (5.40) is appli-

cable. In particular, this means Ge
12, Ce

12 and f e are all constant along their characteristic

curves and Eq. (5.70) holds.
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We begin by writing the restricted sum in (6.14) as

〈∑
i 6=j

δpt,iδpt,j

〉
n

=

〈∑
i,j

δpt,iδpt,j

〉
n

−

〈∑
i

δp2
t,i

〉
n

=

∫
δpt1δpt2 〈f1f2〉n dω1dω2 −

∫
δpt1δpt2 〈f1〉n δ(1− 2)dω1dω2

=

∫
δpt1δpt2 [〈f1f2〉n − 〈f1〉n δ(1− 2)] dω1dω2

=

∫
δpt1δpt2G12dω1dω2 +

∫
δpt1δpt2 〈f1〉n 〈f2〉n dω1dω2, (6.52)

where in the last line we added and subtracted a 〈f1〉n〈f2〉n term. Averaging over initial

conditions and dividing by the average number of pairs we find

〈δpt1δpt2〉 =

∫
δpt1δpt2

〈G12〉
〈N(N − 1)〉

dω1dω2 +

∫
δpt1δpt2

〈〈f1〉n 〈f2〉n〉
〈N(N − 1)〉

dω1dω2. (6.53)

To identify the local equilibrium value 〈δpt1δpt2〉e we consider Eq. (6.53) in local equilibrium.

The correlation function G12 assumes its value in equilibrium Ge
12. For the second term, we

assume the departures of 〈f〉n from their event-wise values in local equilibrium are small

enough so that they retain roughly the same values in equilibrium when integrated over the

momentum weights . If pt was a conserved quantity, this would hold exactly. Thus, we find

〈δpt1δpt2〉e =

∫
δpt1δpt2

〈Ge
12〉

〈N(N − 1)〉
dω1dω2 +

∫
δpt1δpt2

〈〈f1〉n 〈f2〉n〉
〈N(N − 1)〉

dω1dω2. (6.54)

By subtracting (6.54) from (6.53) we arrive at (6.51).

We understand the different terms in these equations as representing distinct physical

contributions. The terms containing G12 on the right sides of (6.53) and (6.54) include all

fluctuations within each event – initial-state and dynamic. The second terms in these equa-

tions give the contribution to 〈δpt1δpt2〉 from the variation of the average local equilibrium

distribution from event to event. The first term in (6.54) is likely small and would vanish

if the temperature and the transverse velocity were completely uniform on the freeze-out
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surface. Furthermore, note that the integrals over δpt = pt − 〈pt〉 need not vanish, as in the

discussion after (6.14), because 〈pt〉 is a full event average and not simply a noise average.

In particular,

〈Pt〉n =

∫
pt〈f〉ndω 6=

∫
pt〈f〉dω = 〈Pt〉, (6.55)

since 〈Pt〉n can vary greatly from event to event.

All of the observables in this chapter have equivalent formulae which can be found by

taking different moments of 〈G12 − Ge
12〉 with respect to the quantities 1, 〈pt〉 and δpt. We

list the results here:

R = Re +
1

〈N〉2

∫
〈G12 −Ge

12〉dω1dω2, (6.56)

C = Ce +
1

〈N〉2

∫
pt1pt2〈G12 −Ge

12〉dω1dω2, (6.57)

D = De +
1

〈N〉2

∫
δpt1〈G12 −Ge

12〉dω1dω2. (6.58)

〈δpt1δpt2〉 = 〈δpt1δpt2〉e +

∫
δpt1δpt2

〈G12 −Ge
12〉

〈N(N − 1)〉
dω1dω2, (6.59)

In Chapter 7 we pair these results with those of Sec. 6.2 to study systems that are approach-

ing, but not yet in, local equilibrium. Note that we are now done distinguishing between

different types of averages and from this point forward 〈· · ·〉 will always indicate a full event

average.

6.5 Diffusion vs. experiment

We now take a momentary aside to finish our discussion of the hydrodynamic equations

developed in Chapter 4. We have already seen the difference between first and second order

evolution using the rapidity width of ∆rG. Here we solidify this behavior by examining the

shape of C as a function of the relative rapidity4. Experimental results on the shape of C(ηr),

defined by (6.13), where released by STAR for three centralities represented by open stars

4In an effort to maintain candor, I point out that the results in this section were obtained by the coauthors
of [41]. However, I wanted to briefly include them in this work to show an application of the methods we
developed in Chapters 3 and 4. See [41] for full details.
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in Fig. 6.3 [7]. Additional centralities are shown as solid circles [8]. The percent centrality

imprinted in each panel is characterized by the fraction of total cross section.

The correlation function ∆rG and its integral C(ηr) are computed by solving (4.41),

assuming the initial transverse momentum correlation function to be Gaussian in both ra-

pidities

∆rG(ηr, ηa, τ0) = Ae−η
2
r/2σ

2
0e−η

2
a/2Σ2

0 . (6.60)

This form is motivated by measurements of the rapidity dependence of correlation functions

in pp collisions. The initial width σ0 is chosen to fit the most peripheral curve in the lower

right of Fig. 6.3. As indicated by the data, there seems to be no significant evolution in the

three most peripheral panels and a consistent value of σ0 = 0.5 can be chosen. The average

rapidity width Σ0 ≈ 5 − 6 units is assumed to be “large” relative to the acceptance range

of experiment. The interest of this analysis in mainly in the shape of C rather than the

magnitude, and so, the value of A is set to fit the peak value of the measured covariance.

The initial value of the first derivative is calculated as in (4.50).

For first order results, with τ ∗π = 0, Eq. (4.41) reduces to (4.42). The dash-dotted curves

in Fig. 6.3, with parameters adjusted to fit the rapidity width data in Fig. 4.1, generally fail

to describe the data. This is particularly true once the peak begins to broaden in the more

central bins. The dashed curves, representing a fit directly to the data in Fig. 6.3, share this

same failure. Furthermore, the measurements in the top three panels show a small dip in

the region of ηr = 0, suggesting a bimodal nature of the distributions. These shortcomings

can be attributed directly to the nature of first order diffusion as it maintains the initial

Gaussian shape (6.60) throughout evolution.

The flattening of the distribution in the central bins is enough reason to explain why

first order diffusion fails. On the other hand, the dip and implied bimodal features display

compelling evidence for second order diffusion. Causal diffusion broadens the rapidity dis-

tribution in the usual diffusion-like manner but also incorporates a wave-like propagation

of the initial signal. Mathematically, the inclusion of the τ ∗π term in (4.41) changes the
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Figure 6.3: Second order momentum diffusion calculations (solid curve) compared to the
rapidity dependence of the measured covariance (6.13). First order calculations are also
compared for best fit to these data (dashed) and best fit to σ in Fig. 4.1 (dash-dotted
curves). Data (open stars) are from [7] and (filled circles) from [8]. Percentages of the cross
section indicate centrality, with each panel corresponding to a width measurement in Fig.
4.1.
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Figure 6.4: Time dependence of the rapidity covariance in second order diffusion.

parabolic (diffusion-like) equation into a hyperbolic (wave-like) equation. At early times

wave-like evolution dominates, giving rise to left and right moving pulses. After a time ∼ τπ

has elapsed, the first derivative in (4.41) becomes important and usual diffusion begins. As

the distribution evolves, this fills the gap between the wave pulses and creates a single broad

plateau. This time evolution of the rapidity profile is shown in Fig. 6.4 for parameter values

used in Fig. 6.3.

The solution to the second order (4.41) gives the solid curves in Fig. 6.3. The evolution

of the distribution when moving from peripheral to central bins reflects the time evolution

shown in Fig. 6.4 due to the increase in τF for larger systems. For the central bins, the

second order calculations describe the measured broadening quite well. With constant τ ∗π

and ν∗, best fit to the data is obtained with β = 10, plotted in Fig. 6.3. Other values of

β are tested in [41]. For the values of ν used in this analysis, τπ is estimated in the range

1.0 − 1.1 fm. By incorporating more realistic time and temperature dependent coefficients

into future calculations, we expect this estimate to improve.
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CHAPTER 7 PARTIALLY THERMALIZED SYSTEMS

Perfectly central nuclear collisions create a dense medium which quickly expands and

coalesces into detectable particles. It is well known that the expansion of the medium can be

treated using a hydrodynamic description of the underlying flow [16] . The hydrodynamic

theory assumes the system is in local equilibrium during the entire lifetime of the expansion.

Peripheral nuclear collision are more akin to pp collisions, containing far fewer particles and

far less opportunity for scattering and equilibration. One should not expect a peripheral

collision to equilibrate during its lifetime. An average collision exists somewhere between

these two types of collisions. With this in mind, in this chapter we model nuclear collisions

as a superposition of equilibrium expansion and the non-interacting evolution of an initial

state.

In general, initial state partons are born correlated due to high energy kinematics and

QCD dynamics. Scattering among these partons leads to dissipation that works to erase

these correlations. If the system was contained inside a fixed volume, there would be enough

time for scattering to bring about equilibration. However, the rapid expansion and short

lifetime of the system prevents complete thermalization and freezes in certain correlations.

Identifying such partially thermalized correlations can help to uncover the character of the

thermalization process.

This is especially relevant to recent and upcoming experiments. Discovery of flow-like

azimuthal correlations in pA and high-multiplicity pp collisions imply the existence of a

fluid approaching a thermalized state [17–21]. Similar measurements for large systems have

provided comprehensive evidence for a hydrodynamic description of heavy-ion collisions.

However, finding this structure in smaller systems raises questions about the relation between

the measured flow and hydrodynamics. In this chapter we attempt to rectify this seeming

disparity by providing an illustrative way to study the approach to thermalization.

Our focus is on the transverse momentum observables defined in Chapter 6. Trans-

verse momentum fluctuations have long been argued to be a probe of thermalization [22].
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Furthermore, these fluctuations have been measured by LHC, RHIC and SPS experiments

[9–12, 82–84] for a variety of reasons [85, 86]. Data have significant deviations from the

expectation in equilibrium for peripheral heavy-ion collisions at LHC and RHIC [23]. We

believe that measurements in pA collisions can demonstrate whether these systems are indeed

thermal.

7.1 Observing thermalization

We begin by studying 〈δpt1δpt2〉 in the context of heavy-ion collisions. All quantities

will assume to be fully event averaged so explicit average brackets may be suppressed, e.g.

〈G12〉 = G12. The survival probability S is taken to be already averaged over an ensemble of

events in order to simplify calculations. This need not be true in general, however, for this

illustration we feel it appropriate. We combine the solution for G12 (5.70) with Eq. (6.59)

to find

〈δpt1δpt2〉 − 〈δpt1δpt2〉e =

∫
δpt1δpt2

∆G0
12S

2 + (X0
12 +X0

21)S

〈N(N − 1)〉
dω1dω2 = aS2 + bS (7.1)

where S is given by (5.14),

a =

∫
δpt1δpt2

∆G0
12

〈N(N − 1)〉
dω1dω2 (7.2)

and

b =

∫
δpt1δpt2

X0
12 +X0

21

〈N(N − 1)〉
dω1dω2 (7.3)

We argue the term proportional to S2 is the dominant contribution for 〈δpt1δpt2〉. In each

event, the local equilibrium 〈pt〉 corresponding to f e is determined primarily by the parameter

T , with small “blue-shift” corrections due to the radial component of v. In equilibrium, the

variation of these parameters on the freeze out surface is likely small and, thus, we expect
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pt ≈ 〈pt〉. We therefore approximate

∫
dp2pt2X

0
12 =

∫
dp2pt2(〈δf 0

1 f
e
2 〉n − 〈δf 0

1 〉nf e2 ) ≈ 〈pt〉
∫
dp2X

0
12, (7.4)

and similarly for 1 ↔ 2. Since the integral in (7.3) depends on δpti = pti − 〈pt〉 it follows

that b ≈ 0.

In the same vein, we can replace ∆G0
12 in (7.2) with ∆G0

12 + X0
12 + X0

12 and then use

(5.67) to identify this quantity as G0
12 −Ge

12. We can then simplify to find

a =

∫
δpt1δpt2

G0
12 −Ge

12

〈N(N − 1)〉
dω1dω2 = 〈δpt1δpt2〉0 − 〈δpt1δpt2〉e , (7.5)

where the second equality follows from (6.53), (6.54) and the discussion surrounding these

equations. Using this in (7.1) and rearranging we find

〈δpt1δpt2〉 = 〈δpt1δpt2〉0 S
2 + 〈δpt1δpt2〉e (1− S2). (7.6)

Loosely speaking we can interpret this result as follows. The final correlations 〈δpt1δpt2〉

are due to a combination of initial correlations 〈δpt1δpt2〉0 and equilibrium correlations

〈δpt1δpt2〉e. The initial correlations are due to particles from the initial state that reach

the detector without scattering, thus the term is proportional to the survival probability.

The equilibrium correlations are from particles that have scattered and thermalized, thus

the term is proportional to 1− S2.

More accurately, we can say that fluctuations start from an initial value 〈δpt1δpt2〉0 at

the formation time τ0 and evolve toward the equilibrium value 〈δpt1δpt2〉e. The evolution

ends at freeze-out and the detected fluctuations 〈δpt1δpt2〉 are a function of the freeze-out

time through S. If freeze-out is soon after formation then τF ≈ τ0 and there is little time for

scattering. Therefore, S ≈ 1 and 〈δpt1δpt2〉 is dominated by the initial value 〈δpt1δpt2〉0. If

freeze-out is long after formation then τF →∞ so that all particles have time to scatter and



96

completely thermalize. As a result, S ≈ 0 and 〈δpt1δpt2〉 essentially takes on the equilibrium

value 〈δpt1δpt2〉e.

We now repeat this calculation for D by combining (5.70) with Eq. (6.58) to obtain

D −De =
1

〈N〉2

∫
δpt1

[
∆G0

12S
2 + (X0

12 +X0
21)S

]
dω1dω2 = cS2 + dS (7.7)

where the coefficients are now given by

c =
1

〈N〉2

∫
δpt1∆G0

12dω1dω2 (7.8)

and

d =
1

〈N〉2

∫
δpt1(X0

12 +X0
21)dω1dω2. (7.9)

The above argument for neglecting the term X0
21 still holds for D. However, without δpt2

present inside the integral in (7.9) we cannot neglect the X0
12 term. On the other hand,

without δpt2 inside the integral in (7.8) the coefficient c vanishes. As in Sec. 5.5, we write the

non-equilibrium contribution to correlations as ∆G0
12 = 〈δf1δf2〉n−〈δf1〉n〈δf2〉n−〈δf1〉nδ(1−

2). Without the transverse momentum weight on the second particle, the integral of this

function over dω2 equals zero due to number conservation.

Therefore, we find

D −De = S
1

〈N〉2

∫
δpt1X

0
12dω1dω2

= S
1

〈N〉2

∫
δpt1

[
X0

12 +X0
21 + ∆G0

12

]
dω1dω2

= S
1

〈N〉2

∫
δpt1

[
G0

12 −Ge
12

]
dω1dω2

= S(D0 −De), (7.10)

where we use the same trick as in (7.5) to replace X0
12 with G0

12 − Ge
12 inside the integral.
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Rearranging this equation we finally obtain

D = D0S +De(1− S). (7.11)

We interpret this result similarly to (7.6). Fluctuations start from an initial value D0 and

evolve toward the equilibrium value De. That the terms in (7.11) only have one power of S is

directly a result of integrating over the momentum of only one of the particles. In principle,

elastic scattering affects the momentum of particles, but not the number, and with only one

momentum under consideration we only receive one power of the survival probability.

In line with the previous sentence, we should expect that the final equation forR contains

no powers of S. This turns out to be the case as we can see by rewriting (6.56)

R−Re =
1

〈N〉2

∫
(G12 −Ge

12) dω1dω2. (7.12)

The above arguments still hold and we see the right-hand side of this equation vanishes.

Therefore, we find

R = Re. (7.13)

That is, number conservation implies that event-by-event multiplicity fluctuations are iden-

tical in and out of equilibrium. We stress that this need not be the case in general. In these

derivations we have made strong assumptions about the linearity of the equations and many

simplifying assumptions about the character of the system. Nevertheless, we believe this

illustrative example can help provide insight into the thermalization process.

Continuing on, we can now apply the sum rule to find an equation for C. Having found
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equations for the other observables we use (6.30) to obtain

C = (1 +R) 〈δpt1δpt2〉+ 2〈pt〉D + 〈pt〉2R

= (1 +R)[〈δpt1δpt2〉0 S
2 + 〈δpt1δpt2〉e (1− S2)] + 2〈pt〉[D0S +De(1− S)] + 〈pt〉2Re

= (1 +R)[〈δpt1δpt2〉0 + 2〈pt〉D0 + 〈pt〉2R0]S2 − 2〈pt〉D0S
2 − 〈pt〉2R0S

2

+ 2〈pt〉[D0S −DeS]

+ (1 +R)[〈δpt1δpt2〉e + 2〈pt〉De + 〈pt〉2Re](1− S2) + 2〈pt〉DeS2 + 〈pt〉2ReS
2

= C0S
2 + 2〈pt〉(D0 −De)S(1− S) + Ce(1− S2). (7.14)

From lines 2 to 3 we add and subtract D and R terms. We also separate the initial and

equilibrium terms to try and maintain clarity. In the end we find that C has a more complex

relation to S than the other observables. This is a result of C being weighted by pt rather

than the deviation δpt. The dependence of C on D is particularly curious. ([CCC] Could

put a plot of x2, 1 − x2 and x(1 − x) to show the relative contributions... meh...). As

S decreases from 1, the relative contribution of this middle term grows from 0. However,

the contribution from the equilibrium term Ce grows faster. By the time the middle term

reaches its maximum, at S = 1/2, the Ce term has fully eclipsed it. As such, we expect the

contribution to C from D to be minimal but not insignificant.

For completeness, we write the equations for all the observables below:

R = Re (7.15)

C = C0S
2 + 2〈pt〉(D0 −De)S(1− S) + Ce(1− S2) (7.16)

D = D0S +De(1− S) (7.17)

〈δpt1δpt2〉 = 〈δpt1δpt2〉0 S
2 + 〈δpt1δpt2〉e (1− S2). (7.18)

With this, we round out an assortment of observables suitable for studying the degree to

which a system has thermalized. In the next section we demonstrate how they may be used
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for such a task.

7.2 Comparing with experiment

To compare our results with experiment, we choose to work with 〈δpt1δpt2〉 as this data

is most readily available at different collisional energies. Rather than directly computing the

values 〈δpt1δpt2〉0 and 〈δpt1δpt2〉e from (6.54) and (7.2), we will estimate them as follows.

The local equilibrium value 〈δpt1δpt2〉e is determined by fluctuations from event to event of

the initial participant geometry. We estimate these fluctuations using the blast wave model

from Ref. [23]. This model provides excellent phenomenological agreement with a wide range

of fluctuation and correlation measurements [87–89].

We mention that practicality drives our use of the blast wave model. We would prefer

to compute 〈δpt1δpt2〉e using dissipation-free hydrodynamics with initial-state fluctuations.

However, the statistics must be adequate to distinguish the solid and dashed curves at a

range of energies as in Fig. 7.1. Reference [90] is a good example of a preferable model but

there are insufficient statistics to address the answers we seek. Experience suggests that this

would take millions of events per beam energy.

The initial pt fluctuations are generated by the particle production mechanism. We

approximate this using the independent source model from Sec. 6.2. Specifically, we ap-

proximate the early collision as a superposition of independent pp sources. Each source

contributes both pt and multiplicity fluctuations. For 〈δpt1δpt2〉 the scaling from proton to

ion collisions is given by (6.39):

〈δpt1δpt2〉0 =
2 〈δpt1δpt2〉pp
〈Npart〉

(
1 +Rpp

1 +RAA

)
. (7.19)

We fix the coefficient 〈δpt1δpt2〉0 at each beam energy using PYTHIA to calculate 〈δpt1δpt2〉pp

and Rpp for proton collisions. We take R ∝ (dN/dy)−1 and fix the proportionality constants

to be consistent with the blast wave calculation. We do this to ensure that 〈δpt1δpt2〉e and

〈δpt1δpt2〉0 describe events with the same numbers of particles.
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Figure 7.1: Transverse momentum fluctuations as a function of the charged particle rapidity
density dN/dy for partial thermalization (solid curves) and local equilibrium flow (dashed
curves). Data (circles, squares and triangles) are from Refs. [9], [10] and [11,12], respectively.

Experimental results for 〈δpt1δpt2〉 are shown in Fig. 7.1 at three beam energies [9–12].

We plot against the rapidity density dN/dy to allow for eventual comparison to pp or pA

collisions [91]. In Pb+Pb and Au+Au systems, dN/dy is highly correlated with impact

parameter b. We convert between dN/dy and the number of participants Np(b) using data

from Refs. [92–95]. We mention that the measured 〈δpt1δpt2〉 /〈pt〉2 for different energies lie

on top of each other when plotted as functions of Np. Using dN/dy separates the energies

for clarity. All data points in the figure include statistical error bars. Those not visible lie

beneath the icons.

To investigate whether the data in Fig. 7.1 shows signs of partial thermalization, we

compare with the blast wave model of the event-wise fluctuations of thermalized expansion.

The dashed curves in Fig. 7.1 show that blast wave results agree well with data for most of

the centrality range, continuing the trend noted in Ref. [23]. However, this comparison shows

a significant systematic deviation from the data in the most peripheral region. Events in this



101

partN
0 50 100 150 200 250 300 350 400

S
ur

vi
va

l P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Figure 7.2: Extracted value of the survival probability S as a function of Npart. Values are
extracted from a fit of 〈δpt1δpt2〉 to ALICE data [9] in accord with Eq. (7.18). Peripheral
collisions (Npart ≈ 0) are short-lived with low multiplicity so produced particles have a high
change to survive. Central collisions (Npart ≈ 400) are long-lived with high multiplicity and
produced particles will likely scatter before freeze out.

region correspond to collisions with fewer than ∼ 50 participants, compared to the maximum

of ∼ 400 in central collisions. If thermalization in these small systems is incomplete then

this is exactly the type of deviation we should expect.

To see the degree of thermalization in heavy ion collisions that lie in the peripheral

region, we compute the initial quantity 〈δpt1δpt2〉0 using Eq. (7.19) and use the blast wave

model to determine the equilibrium value 〈δpt1δpt2〉e. We note that the blast wave model we

employ uses an 〈pt〉 that agrees with measured values at each energy within experimental

uncertainties, so that partial thermalization does not appreciably alter 〈pt〉 as in [22]. We

then use (7.18) to extract S from the ALICE data. The extracted survival probability is

shown in Fig. 7.2. We apply this same S to the other energies, neglecting any possible beam

dependence for this simple model. The resulting solid curves in Fig. 7.1 agree well with

data, giving support to the possibility that these data are indeed measuring thermalization.
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Figure 7.3: Pb+Pb fluctuations as a function of the charged particle rapidity density dN/dy
in the peripheral region where partial thermalization (solid curve) drives systems of increasing
lifetime from the initial state (dash-dotted curve) to local equilibrium flow (dashed curve).

We emphasize that our model makes a number of simplifying assumptions and more work

needs to be done before drawing quantitative conclusions.

To highlight the effect of partial thermalization described by (7.18), we zoom to the

peripheral region shown in Fig. 7.3. The dashed and solid curves in this figure represent

the same calculations as the corresponding curves in Fig. 7.1. Additionally shown is the

dash-dotted initial production curve given by (7.19). In this region the extracted S drops

from 1 (for the most peripheral collisions) to 0 (for the most central collisions). Events

producing the lowest dN/dy have fluctuations closest to the initial distribution. We expect

higher multiplicity events to produce a larger collision volume that is more dense and longer

lived. Consequently, the probability that a particle survives the collision without scattering S

should be smaller. The values of S we extracted from Fig. 7.1 agree with these expectations

as seen in Fig. 7.2. Figure 7.3 shows that the fluctuations given by (7.18) approach locally

thermalized behavior 〈δpt1δpt2〉e above dN/dy ≈ 400.
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Figure 7.4: In p+Pb collisions partial thermalization becomes more prominent with higher
multiplicity dN/dy. Extrapolated fluctuations for partial thermalization (solid curve) are
compared to the initial particle production (dash-dotted curve) and local equilibrium flow
(dashed curve).

7.3 Predictions

We believe that pA collisions are ideal to search for signs of partial thermalization. The

survival probability in these collisions should start at 1 in the most peripheral region, as is

the case in heavy ion collisions. Since we do not expect a fully equilibrated system, even in

the most central collisions, it should be that S never fully drops to 0. We demonstrate this

idea in Fig. 7.4, where we extrapolate our heavy ion estimate to a pA system. We use the

appropriate initial values from (7.19) and fit the blast wave parameters to pA data [96]. Our

partial thermalization result is obtained using the same S extracted from Fig. 7.1 but in the

appropriate dN/dy range. This extrapolation overlooks the fact that the dynamic evolution

that determines S in a pA collision is likely very different than that in the larger, longer

lived and more dense Pb+Pb system. Nevertheless, the solid curve agrees with our intuition

and excites future possibilities.

Using the extracted S we can make a rough prediction of the overall equilibration time
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scale ν−1. Kinetic theory implies ν ∼ σvreln, see Eq. (A.18), where the scattering cross

section is σ and vref is the relative velocity. If we take ν to be constant in proper time then

the survival probability (5.14) is given by S ≈ exp{−ν(τF − τ0)}. We estimate S ≈ 0.00435

for the most central Pb+Pb collisions at 2.76 TeV. For a formation time τ0 = 0.6 fm and a

freeze out time τF = 10 fm, we find ν−1 = 1.7 fm for the most central Pb+Pb collisions. More

realistically, if we take the density n ∝ τ−1 – see Eq. (2.19) – to account for longitudinal

expansion, but assume σvrel to be constant, then S ≈ (τ0/τF )α, see Eq. (A.19), where

α = ν0τ0 and ν0 is the initial value of ν(τ). We then estimate the initial value ν−1
0 ∼ 0.31 fm,

with a ten-fold increase as the system evolves. These values are consistent with the rapid

thermalization required, e.g., by hydrodynamic analyses of flow harmonics.

Figure 7.5 shows a prediction for the value of D in Pb+Pb collisions at a center of mass

energy of
√
s = 2760 GeV. The initial production curve was plotted according to Eq. (6.37)

with the pp reference value calculated in PYTHIA. The local equilibrium value of D was

calculated in the blast wave model. A curious feature of the blast wave curve for D is that

it lies entirely below the x-axis. Following our discussion of D after Eq. (6.25), this could

be due to: 1. flow in the blast wave model causing a decrease in D, and 2. a lack of jets

in the blast wave, which would cause a rise in D if present. We are currently investigating

this feature to see if this is truly the case. The partial thermalization curve is calculated

with (7.17) using the same extracted S shown in Fig. 7.2. As with 〈δpt1δpt2〉 we scale both

De and D0 by factors of R to ensure we describe events with the same number of particles.

This curve shows exactly the behavior we expect, shifting from the initial production curve

to the local equilibrium curve with increasing centrality.

In Fig. 7.6 we focus on the peripheral region to more closely examine the partial ther-

malization curve. At Npart ≈ 150 we see a compelling change of sign in D not present in

the other observables. The crossover from positive to negative values could signify the point

when the flow-like effects of the more thermalized central collisions begin to dominate the

jet-like effects that prevail in peripheral AA and pp collisions. If this feature holds in exper-
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Figure 7.5: Momentum-multiplicity fluctuation prediction for Pb+Pb systems at
√
s = 2760

GeV as a function of number of participants. Partial thermalization, again, drives the
system from the initial state to local equilibrium flow. Significantly, local equilibrium flow
lies entirely below the x-axis.
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Figure 7.6: The same curves shown in Fig. 7.5, focused on the peripheral region. As the
system is propelled from the initial state toward local equilibrium we see a clear crossover
from positive to negative values at Npart ≈ 150, a potentially striking sign of thermalization.
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iment, we feel that D could prove to be an invaluable tool in measuring thermalization. We

mention two caveats with this result. First, it must be verified that D is indeed negative for

local equilibrium flow and not simply a feature of the blast wave model. Second, the shape

of S plays a large role in the crossing. If, for example, S did not drop from 1 as sharply, then

it may be that the partial thermalization curve can maintain positive values. More work

must be done to investigate both of these possibilities.

Figure 7.7 shows the prediction curves of C in Pb+Pb collisions at
√
s = 2760 GeV

plotted against number of participants. The initial production curve is calculated using the

independent source model Eq. (6.38). The pp reference value is calculated in PYTHIA. For

local equilibrium flow we again use the blast wave model. The partial thermalization curve is

calculated using (7.16) using the extracted value of S from Fig. 7.2. Values of Ce and C0 are

scaled by factors ofR to, again, ensure we are describing events with the same multiplicity. In

the most peripheral and most central regions, C behaves as expected, respectively matching

the initial and local equilibrium curves. With current model parameters, the value of the

initial production curve does not differ appreciably from that of equilibrium flow. Due to this

we do not expect C to give us much information in regards to thermalization of the system in

the most extreme regions. However, C does have a unique feature around Npart ≈ 30− 200.

In this range C distinctly deviates from both the initial and equilibrium curves.

In Fig. 7.8 we multiply C/〈pt〉2 by the multiplicity to get a better look at the deviation.

The initial production curve is perfectly flat, as to be expected since C0 ∝ 〈Npart〉−1. The local

equilibrium curve also shows this except in the peripheral region where the blast wave does a

poor job of describing non-thermalized behavior. The partial thermalization curve exhibits a

clear peak around Npart ≈ 70, another potentially striking signature of thermalization. The

origin of this effect is entirely due to the term in (7.16) proportional to S(1 − S) and its

causes are two-fold. First, S(1− S) has a maximum at S = 1/2, which is around the same

location as the peak, as seen in Fig. 7.2. Second, the quantity D0 −De is guaranteed to be

positive since D0 > 0 is invariably true and since De is always negative for the blast wave.
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Figure 7.7: Prediction curves for C in Pb+Pb collisions at
√
s = 2760 GeV. Behavior is as

expected in the most peripheral and central regions, with the mid-peripheral deviation being
due to the middle term in (7.16).
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Figure 7.9: All of the observables plotted together. All show correlations diminishing in
central collisions. We see that C and D each offer unique features in studying thermalization.
Data is the same as in Fig. 7.1.

Together, these two cooperating causes promise a positive contribution from the middle term

in (7.16), forming the distinct peak.

For completeness we plot all of the observables together in Fig. 7.9. In order to show

the character of the curves on a log-plot we replace1 the sometimes negative D/〈pt〉 with

the always positive D/〈pt〉 +R. That R and D/〈pt〉 overlap is due to R being an order of

magnitude larger. All of the observables show the same behavior with rising centrality. As

the system size and lifetime increases, correlations are gradually washed out by progressively

increasing equilibration. This figure draws attention to two important aspects of our previous

discussions. First, D is the only observable in our collection that crosses the x-axis. Second,

C is the only observable that exhibits the conspicuous deviation in the mid-centrality range.

We believe these two traits are compelling enough to show that C and D are two of the most

potent tools available to study thermalization in ion collisions.

We emphasize that the results in this section are heavily dependent on the assumptions

1The motivation here is that making this replacement only changes the sign on D in the sum rule.
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from previous chapters. Furthermore, in accordance with the blast wave model, we have used

an 〈pt〉 in all of our calculations that is independent of S. This scenario need not be true

in experiment. We have scaled our initial conditions to be consistent with blast wave model

calculations. While this seems reasonable, there may be unintended side effects when altering

values from well established models (i.e. PYTHIA and the blast wave). However, we note

that we do take care to manage consistency by, e.g. making sure the sum rule (6.30) holds.

Our expectation is that these results serve as a decent approximation to reality. That is, we

expect C and D to each give us a unique and meaningful look into the equilibration process.

It may be that these observables provide us with the best opportunity to learn new physics

but we can state nothing conclusive at this point. Many assumptions can be improved upon

and we leave this avenue open for future work. Nevertheless, we are optimistic that more

realistic assumptions will provide us with more refined results strengthening these methods.
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CHAPTER 8 SUMMARY AND DISCUSSION

8.1 Summary

The principal goal of this thesis is to develop a theoretical and phenomenological toolkit

for studying nonequilibrium features of correlation measurements. By injecting Langevin

noise into kinetic and hydrodynamic theory, we obtain differential equations that can be

used to study the evolution of correlations and other aspects of ion collisions. We point to

specific observables that can highlight the features that we find most interesting.

In chapter 2, we introduce some of the concepts we will use throughout the rest of the

work. The kinematic variables and Bjorken model discussed will be familiar to any researcher

in the field but serve as a basis for our discussion. To complement the Bjorken model of

longitudinal expansion, we also review the blast wave model of transverse expansion. This

model acts as our local equilibrium baseline for studying unthermalized systems.

Chapter 3 is where we begin to detail the essence of this work. We open with examples of

Langevin noise as applied to the problems of Brownian motion and particle number diffusion.

This highlights the aspects of stochastic noise that we use in later sections, namely the

manner in which we use noise to introduce correlations to a system. Our first main result,

Eq. (3.59), is a novel way to describe correlations in second order hydrodynamics.

In chapter 4 we discuss dissipative relativistic hydrodynamics in both first and second

order theory. The discussion of first order theory points out the acausal nature of the Navier-

Stokes equation. This motivates the move to second order so as to restore causality. We

also discuss the importance of shear modes in studying transverse momentum correlations.

We demonstrate a method of applying our approach, to linear order, to a fluid undergoing

Bjorken expansion. We conclude this chapter with an application to heavy ion collisions by

studying the width in rapidity of transverse momentum correlations.

Chapter 5 is devoted to applying Langevin noise to kinetic theory. We begin with a

general discussion of the Boltzmann equation and the relaxation time approximation, as

well their linearized versions. We stress the importance of the microscopic conservation laws
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and introduce projection operators, derived from the linearized equation, to enforce these

laws. Formal solutions to the equations are obtained using the method of characteristics.

In order to describe nonequilibrium correlations we introduce Langevin fluctuations to the

Boltzmann equation. Our main result is Eq. (5.60), an evolution equation for the two-

particle phase space correlation function. Finally, we construct a formal solution to this

equation as a first step in analyzing transverse momentum correlations in ion collisions.

In chapter 6 we discuss the observables that are relevant to our work. Multiplicity

fluctuations are a useful measure of the deviation from statistical behavior and, furthermore,

are helpful in comparing different types of measurements. Transverse momentum fluctuations

have twofold importance to our work. The observable C is sensitive to shear viscosity and is

used to study transport coefficients of the collision system. We use the covariance 〈δpt1δpt2〉

to study the onset of thermalization in ion collisions. We also introduce a new observable

D to study the interplay between momentum and multiplicity. This rounds out our set of

observables in the sense of Eq. (6.30), the sum rule. Also in this chapter, we connect the

correlation functions from previous chapters to these observables. We round out the chapter

by comparing C to experiment and demonstrate that second order hydrodynamics describes

heavy ion collisions better than first order diffusion.

In chapter 7 we put our results from chapter 5 to use by studying the approach nonequilib-

rium systems take toward equilibration. We find that each of our observables offers a unique

look into the process. Using 〈δpt1δpt2〉 we compare to available data in order to demonstrate

the promise of our methods. We make a prediction for pA collisions that shows the impor-

tance these small systems may hold in regards to learning about nonequilibrium behavior.

Finally, we make further predictions for C and D, both of which indicate potentially striking

signals of partial thermalization.

8.2 Discussion

This work represents our first step toward building a theoretical description of fluctuations

and correlations in the pre-equilibrium fluid. While our results indicate that our method
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provides a good schematic understanding of the problems we address, it is important to

understand the limitations of this approach as well as to draw a road map for future work.

Our kinetic theory scheme only considers dynamic fluctuations due to the actual colli-

sions of partons. These fluctuations result in a locally correlated Langevin noise described

by (5.43) with (5.56). Additionally present, for example, are stochastic quantum fields as

discussed in Ref. [97]. These fields introduce momentum gradients to the left hand side of

the Boltzmann equation. This can be incorporated into our framework by generalizing the

method of characteristics. The locality of the noise can also be extended to finite-size by such

fields, the importance of which is discussed in [98]. Meanwhile, overpopulation in regions

of phase space can result in occupation numbers large enough so that quantum statistics,

Bose-Einstein condensation and other quantum effects can become important [99]. These

effects can eventually be included in our framework.

We reiterate that many of our results rely on assumptions and procedures that can be

improved upon. Refinement of our theoretical techniques should result in more quantitative

conclusions. Furthermore, future experimental measurements, pA in particular, will help

guide our understanding. In the meantime, we can work to improve our partial thermal-

ization model by incorporating a three-dimensional hydrodynamic code with more realistic

initial conditions. More immediate, we can improve on the value of the survival probability

S. For one, by accounting for the likelihood that S is dependent on collisional energy, but

even more so we would prefer to calculate S from theory in order to solidify our model. While

this is not necessarily a difficult task, it is relegated to future work. Finally, as an interesting

aside, we have ideas of using our evolution equation to test simulation codes for accuracy in

regions where the answers are expected to overlap. Specifically, our solution (5.70) can be

compared to fluctuating hydrodynamics in the low density regime where both the Boltzmann

equation and hydrodynamics generally give the same answers [38–41,45,100–102].

In regards to our hydrodynamic results, we are currently working to incorporate time

and temperature dependent coefficients τ ∗π and ν∗. We are also intrigued by the possibility



113

of studying these coefficients in pA systems. This is a nontrivial extension of our current

methods, however, as it involves solving the coupled equations (3.56) and (3.57). We have

plans to extend our approach to other modes in order to address a wider range of observables.

In particular, diffusion of net charge and baryon number can be addressed and these have

been studied by a number of authors [103–108].

In conclusion, we are optimistic about our current approach. Perhaps the most exciting

potential resides in small systems. It is well accepted that central collisions of large nuclei

exhibit hydrodynamic flow. While data in Fig. 7.1 agree with this viewpoint, we also see a

systematic discrepancy from local equilibrium flow in the peripheral region. This indicates

that the first traces of thermalization should emerge in peripheral collisions and become

more significant with increasing centrality as the system lifetime increases. Our partial

thermalization model is in excellent agreement with data over a range of energies. For this

reason we are excited by the possibility of future pA measurements. Our extrapolation to

these shorter lived systems in Fig. 7.4 suggests that full equilibration never occurs, making

the study of partial thermalization all the more important.
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APPENDIX

A.1 Wiener Process

In this section we will develop some concepts from stochastic calculus needed for the

main text. This is not meant to make the work self-contained but only to shine a light on

the ideas we will use. One of our goals is to study how heavy ion collision systems diffuse

stochastically in a manner similar to Brownian motion. The physical process of Brownian

motion is described mathematically by the Wiener process1.

To keep the discussion simple we will start by assuming we are working with a one-

dimensional, classical system. The Wiener process W (t) is a random variable described by

the probability density function p(x, t) which solves the diffusion equation

∂p

∂t
=

Γ

2

∂2p

∂x2
. (A.1)

where the coefficient Γ governs the strength with which p evolves and the factor of 1/2 is

for convenience. As an initial condition, we assume a spike in probability at the origin. The

Wiener process then describes the spreading of this localized perturbation – see Fig. A.1.

Thus, given the initial condition p(x, 0) = δ(x), one can work out the solution

p(x, t) =
1√

2πΓt
e−

x2

2Γt , (A.2)

which is simply a Gaussian distribution with mean 0 and variance Γt. The Wiener process

W (t) is then defined via P [a ≤ W (t) ≤ b] =
∫ b
a
p(x, t)dx. Based on the Gaussian form of p

one can easily find the first two moments:

〈W (t)〉 = 0 and 〈W 2(t)〉 = Γt. (A.3)

Due to the relation between W and the Gaussian distribution, the Wiener process is some-

1The Wiener process is an example of a continuous-time stochastic process. It is named in honor of
Norbert Wiener whose early work on stochastic processes and noise was influential to the field.
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Figure A.1: Plots of the Gaussian p(x, t) at different times. The initial δ-function undergoes
diffusion, spreading out at later times. For this example we choose Γ = 1 and the times
shown are t = 0.1 s (black), t = 1 s (blue), t = 10 s (red).

times referred to as Gaussian (white) noise.

It is worth taking a moment to discuss the meaning of these average brackets as they

are not an average over time nor do they have the same meaning as is traditional in the

field of heavy ion physics. Rather, we will be using W (t) to model random “kicks” a system

receives due to internal stochastic processes. In this sense, the 〈· · ·〉 represents an average

over an ensemble of systems that have evolved stochastically from the same initial condition,

i.e. systems that have received all different manner of kicks. We refer to this as a “thermal”

or “noise” average.

An event average in heavy ion physics, say 〈N〉, represents the number of particles in an

event averaged over an ensemble of different events. This ensemble is meant to represent all

possible collisions, in particular it encompasses events that have different initial conditions

as well as events that evolve differently from the same initial conditions. A full event average

needs to consider both of these situations. The average brackets used in this section only

consider the stochastic evolution of a system from a particular initial condition. To reconcile
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this with a full event average we will also have to average over initial conditions. In the text

there is little chance for confusion so we will simply use 〈· · ·〉 in the majority of this work. In

Sec. 6.1 where we must make a distinction, we will use 〈· · ·〉n to represent the noise average.

An important assumption we must make for Wiener processes is the property of inde-

pendent increments, where an increment is defined as ∆W (t) ≡ W (t + ∆t) −W (t) for the

time step ∆t. Mathematically this means ∆W (t) and ∆W (s) are statistically independent

so long as t 6= s, and we can write

〈∆W (t)∆W (s)〉 = 〈∆W (t)〉〈∆W (s)〉 = 0, (A.4)

where the last step follows clearly from Eq. (A.3)2. An example is the random walk process:

knowing the motion of the first few steps gives no information on the motion of the next

few steps. Brownian motion is another example if we assume the collisions are sufficiently

random, which is the position we take in the text.

Our next step is to find the covariance 〈W (s)W (t)〉. First, note that for t < s, W (s) −

W (t) forms an increment which must be independent from the increment W (t) −W (0) =

W (t). Then we have

〈W (s)W (t)〉 = 〈(W (s)−W (t))W (t) +W 2(t)〉

= 〈(W (s)−W (t))W (t)〉+ 〈W 2(t)〉

= 0 + Γt

= Γ min(t, s) (A.5)

where the last line simply removes the restriction t < s. Finally, we use this to calculate

2A more formal treatment of the subject would be careful to define a sequence t1 < t2 < . . . < tn rather
than use a generic time step ∆t. For the sake of simplicity and notation we will avoid this and assume our
time step behaves properly, i.e. t 6= s implies the intervals [t, t+ ∆t] and [s, s+ ∆s] do not overlap.
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t
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Figure A.2: Sample paths taken by W (t). Paths starting from the same point can vary
wildly, demonstrating the effect noise can have on a system over time. The jaggedness of
the lines represents the variability in the increments ∆W (t).

〈∆W 2〉:

〈∆W 2〉 = 〈[W (t+ ∆t)−W (t)]2〉

= 〈W 2(t+ ∆t)〉+ 〈W 2(t)〉 − 2〈W (t+ ∆t)W (t)〉

= Γ(t+ ∆t) + Γt− 2Γt

= Γ∆t. (A.6)

The two most important equations to take away from this section are

〈∆W 〉 = 0 and 〈∆W 2〉 = Γ∆t. (A.7)

We use these extensively in the text and they form a basis for our incorporation of stochastic

processes into heavy ion collisions.

Equation (A.6) marks one of the major differences between regular calculus and stochastic

calculus. The relation ∆W 2 ∝ ∆t indicates that ∆W is an increment (or differential if we
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were to formally define dW ) on the order of one-half ∆t. Then, terms of order one-half or

three-halves ∆t vanish due to the first equation in (A.7) and terms of higher order vanish as

in regular calculus. In practice, one can use this rule to simplify many problems in stochastic

calculus, including the Itô product rule in the next section.

An interesting quirk of the Wiener process is its lack of differentiability, as one can infer

from Fig. A.2. Thus, while dW is often used in stochastic differential equations (or ∆W in

our equations), the derivative dW/dt does not exist. We work around this by eliminating ∆W

before writing complete equations – i.e. dividing by ∆t and taking its limit to zero. One can

develop other methods to deal with this seemingly inconsistent differential, including actual

methods of integration. These can be found in the numerous texts written on the subject –

e.g. [34, 109–112].

Finally, we will briefly mention a multivariate extension of the Wiener process as it

will be used in the text. In systems more complicated than the one-dimensional example

used above, we may wish to affix noise to several different compenents xi. As such, each

component of noise will acquire a new subscript ∆Wi. The rules for ∆Wi remain the same as

those listed above. In addition we need another rule for the interaction between the different

components. The simplest way to accomplish this is to assume there is no interaction – i.e.

〈∆Wi∆Wj〉 = 0 for i 6= j. Therefore, for the multivariate extension we employ, we simply

modify Eq. (A.7) by including a delta-function:

〈∆Wi〉 = 0 and 〈∆Wi∆Wj〉 = δijΓi∆t. (A.8)

A.2 Ito product rule

Now that we have incorporated new differentials into our toolbox, the product rule of

regular calculus will no longer suffice. We need a more general product rule that realizes the

product of two half-order differentials is of order ∆t. For this we look to the calculus of finite

differences. Similar to increments above, for the time step ∆t, we define the finite difference
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of a function f(t) as ∆f ≡ f(t+∆t)−f(t) which we can also write as f(t+∆t) = f(t)+∆f .

Now, consider two arbitrary functions of t, x(t) and y(t). For the product x(t)y(t) we have

∆[x(t)y(t)] = x(t+ ∆t)y(t+ ∆t)− x(t)y(t)

= [x(t) + ∆x][y(t) + ∆y]− x(t)y(t)

= x(t)∆y + y(t)∆x+ ∆x∆y. (A.9)

In ordinary calculus, functions f(t) satisfy the differential equation df(t)/dt = A(t),

where A(t) is another function – i.e. the derivative. Writing this as a difference equation we

have ∆f = A(t)∆t, implying that the difference ∆f is of order ∆t. Products such as ∆x∆y

in Eq. (A.9) are then of order ∆t2 and vanish much faster than the lower order terms as t

approaches 0. Therefore, with the understanding that a limit will eventually be taken, we

drop them from the equation and write the product rule as ∆(xy) = x∆y + y∆x.

As an analogue to the above, in stochastic calculus, functions satisfy the difference equa-

tion ∆f(t) = A(t)∆t+B(t)∆W (t), where one can think of the function B(t) as a stochastic

counterpart of a derivative. Note that B(t) need not have any relation to the regular deriva-

tive A(t). Now, for the product ∆x∆y we have

∆x∆y = [Ax∆t+Bx∆Wx][Ay∆t+By∆Wy]

= [BxBy]∆Wx∆Wy + AxBy∆t∆Wy +BxAy∆t∆Wx + AxAy∆t
2. (A.10)

As in ordinary calculus, we can safely drop order ∆t2 terms. In stochastic calculus, due to

Eq. (A.7) we can also drop terms proportional to ∆W knowing that we will eventually take

an average. The first term in Eq. (A.10) is proportional to ∆W 2 so is of order ∆t and it

must remain. Therefore, we can write the product rule as

∆(xy) = [xAy + yAx]∆t+BxBy∆Wx∆Wy (A.11)
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Figure A.3: A particle traveling toward a fluid, divided into equal slices of volume Adx. As
it approaches the first volume slice it sees only a single layer of fluid particles. The fluid
particles have a collision cross section σ, depicted as a large disk surrounding the particles.

This equation – or simply Eq. (A.9) – is known in stochastic calculus as the Itô product

rule.

A.3 Survival probability

The survival probability S is the probability that a particle escapes a fluid without

suffering any collisions. It plays a major role in much of this work so it is worth discussing

briefly. In general, we can write S = e−N where N is the number of collisions between fluid

particles. Now we quickly outline why this is true and why it takes the form given in Eq.

(5.14).

Imagine a particle traveling toward a fluid as shown in Fig. A.3. The length of the

fluid parallel to the velocity of the particle is L. The area of the fluid perpendicular to the

velocity is A. The volume of the fluid is then given by V = AL. We divide the length L into

M segments, each of length dx so that Mdx = L. This also subdivides the volume so that

each new volume segment has volume dV = Adx. We assume dx to be small enough so that
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two particles in the same volume slice cannot overlap, from the viewpoint of the traveling

particle.

The probability that the traveling particle collides with one of the fluid particles in the

first volume segment equals the number of particles in that volume slice times the proportion

of transverse area taken up by a particle. Symbolically we have, for the cross sectional area

σ and particle density n:

Probability of colliding = (Number of particles in volume slice) · σ
A

= n · dV · σ

dV/dx

= σ · n · dx. (A.12)

Therefore, the probability of surviving the first slice unscathed is given by 1− σndx. If the

traveling particle survives the first slice, then it has the same probability of surviving the

second slice and so on. In total, the probability of surviving all of the slices is given by

SM = (1− σndx)M =

(
1− σnL

M

)M
. (A.13)

Taking the limit dx→ 0 or, equivalently, M →∞ gives the survival probability

S = e−σnL, (A.14)

where we use the exponential function identity limt→∞(1− x/t)t = exp{−x}.

Now we show the quantity σnL is equal to the number of collisions between the fluid

particles during the time the traveling particle takes to move through the fluid. The distance

traveled by a fluid particle before colliding with another is the mean free path of the fluid,

given by λ = 1/σn. Therefore, we have

σn =
1

λ
=

Number of collisions

Unit distance
=

Number of collisions

L
. (A.15)
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giving us the desired result.

More generally, the number of collisions during the time interval dt is given by

(Collision rate) · dt = νdt, (A.16)

where ν = ν(t) can depend on t. The total number of collisions during the time interval t−t0

that it takes for the traveling particle to pass through the fluid is then
∫ t
t0
ν(t)dt. Putting

everything together we find the survival probability is given by

S(t, t0) = e
−

∫ t
t0
ν(t′)dt′

, (A.17)

which matches Eq. (5.14).

As a sidenote, we mention an approximate form of S used in the text. We can write

ν∆t = σ · n ·∆L ⇒ ν = σ · n · ∆L

∆t
= σvreln. (A.18)

where vrel is the velocity of the traveling particle relative to the fluid particles. Bjorken

expansion implies that n ∝ τ−1 (see Eq. (2.19)) where we switch to the proper time τ ,

more appropriate for ion collisions. We can write ν = σvrelβ/τ = α/τ where α = ν0τ0. The

survival probability is then

S(τF , τ0) = e
−

∫ τF
τ0

α/τdτ
= e−α ln(τF /τ0) =

(
τ0

τF

)α
(A.19)

We use these approximations briefly to discuss results in Sec. 7.2.
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It is well accepted that heavy ion collisions can be described using hydrodynamic theory,

implying these systems are large enough and long lived enough to reach local equilibrium.

Recent measurements of correlations in pA and high multiplicity pp collisions at the Rela-

tivistic Heavy Ion Collider and Large Hadron Collider have shown that these systems also

exhibit signs of thermalization, unexpected in the smaller, shorter lived systems. Studying

this behavior can give insight into the thermalization process and help clarify the relation-

ship between flow in large systems and hydrodynamics. In an effort to understand these

measurements we use the Boltzmann equation, in conjunction with a dynamic description of

Langevin noise, to study the approach nonequilibrium systems take toward thermalization.

We use this equation and its solution to identify observables sensitive to the thermalization

process. We also apply Langevin noise to the equations of second-order hydrodynamics in

order to derive equations for dynamic two-particle transverse momentum correlations. We

demonstrate the use of these equations by computing transport coefficients of the quark-

gluon plasma.
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