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CHAPTER 1 INTRODUCTION 

1.1 Alzheimer’s Disease 

      Alzheimer’s disease (AD) is characterized by degeneration of the brain tissue and the symptom 

of dementia [1]. It is named after Dr. Alois Alzheimer who first noticed the mental and behavior 

changes in a woman in1906, who eventually died after experiencing symptoms including memory 

loss, language problems and unpredictable behavior. After she died, he examined her brain tissues 

and found some pathological changes such as abnormal clumps (now called amyloid plaques) and 

tangled bundles of fibers (now called neurofibrillary, or tau, tangles). Now these symptoms are still 

being used as clinical evidence to diagnose AD, and the plaques and tangles found in the brain are 

considered some of its main features. According to the National Institute of Aging (NIA), AD is 

defined as “an irreversible, progressive brain disorder that slowly destroys memory and thinking 

skills, and eventually the ability to carry out the simplest tasks.”[2]  Although the symptoms and the 

effects of the disease are similar in patients, the age at which it occurs is used to differentiate it into 

two major types: the first of which is early-onset Alzheimer's, which occurs in people who are 

younger than age 65 and accounts for 5% of the cases; the second type is late-onset Alzheimer’s, the 

most common form of the disease. People age 65 and older have a higher risk of showing the 

symptoms of late-onset AD. In addition to aging, conditions associated with chronic heart diseases 

have recently been discovered as risk factor of late onset AD [3].  Family history and genetic 

mutation are more frequently seen in the early-onset AD, which is also called familial Alzheimer’s 

disease (FAD). The clinical features that help differentiate  early-onset Alzheimer’s include more 

pathological changes in brain than typically seen in late-onset patients, genetic mutations on 

chromosome 14, and symptoms of seizure and myoclonus (a form of muscle twitching and spasm) 

[4]. AD is now the sixth leading cause of death in the United States and the fifth leading cause of   
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death in Americans age ≥65 years. It was estimated that by 2016 about 5.2 million Americans of all 

ages already had Alzheimer’s disease and this number will double to 10.2 million by 2050[5].  The 

total amount of money spent to date on health care, long-term care and hospice services for people 

age ≥65 years with dementia is estimated to be $236 billion, which places a substantial financial 

burden on families, community, and society [6]. 

1.2 Biological changes associated with Alzheimer's disease 

      The brain changes involved in the onset and progression of AD are complex and still require 

unraveling. Research has found that the brain tissue damage starts a decade or more before the 

memory and cognitive decline become apparent. During this preclinical stage when people seem to 

be symptom-free, neuropathological changes are taking place in the brain. As brain changes advance, 

synapses begin to malfunction and their numbers start to decline, leading to neuron death. The 

damage initially appears to take place in the hippocampus, the part of the brain essential in forming 

memories. As more neurons die, additional parts of the brain are affected, and the brain begins to 

shrink. At the final stage of Alzheimer’s, there is widespread debris from dead and dying neurons in 

the brain, and a dramatic brain tissue shrinkage due to the cell loss [7]. Based on numerous studies 

of AD, the prevailing pathological mechanisms that have been proposed as causes include amyloid 

cascade hypothesis, tau protein hypothesis, genetic mutation, oxidative stress and inflammatory 

hypothesis and cholesterol hypothesis and cholinergic and other neurotransmitter hypothesis. Each 

of these hypotheses will be discussed in detail bellow. 

1.2.1 Amyloid cascade hypothesis 

       The extracellular amyloid plaques formation is one of the hallmarks of AD. The amyloid 

cascade hypothesis states that the accumulation of amyloid is triggered by a chain of events that 

culminate in plaque formation in brain (Figure 1).  Normally, an integral membrane protein known 
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amyloid precursor protein (APP) is expressed in the neurons, though its function is still not clear.  

It is hypothesized that APP might possess a natural neuroprotective effect to protect neurons from 

stress or injury by regulating the extra- and intra-cellular Ca2+ concentration[8]. It is thought that 

APP is then cleaved by the enzymes known as α-secretase at the cell surface and further by γ-

secretase to form small size peptides that can be naturally digested and eliminated by the brain. 

However, under the pathological condition, i.e. overproduction of APP or the presence of β-

secretase (BACE1) mutation, BACE1 activity competes with α-secretase to cleave APP at the 

endoplasmic reticulum and leaves a membrane bound C-terminal fragment, which is further 

cleaved by γ-secretase.  This final cleavage generates the Aβ:  40 amino acid amyloid beta peptide 

(Aß40), the 42 amino acid amyloid beta peptide (Aß42), as well as an intracellular cytoplasmic 

fragment which can be rapidly digested. The majority of Aβ is 40 amino acids long (Aß40) (90%), 

but a small proportion (<10%) is slightly longer (Aβ42). Aß40 is produced in trans-Golgi network 

in which it is soluble and mostly innocuous, wheareas Aß42 are highly fibrillogenic and easily 

clumps together to form insoluble amyloid plaques (senile plaques) on the outside surface of 

neurons (amyloidosis). This is neurotoxic and ultimately leads to the killing of neurons [9, 10]. 

This hypothesis has been backed by an enormous amount of circumstantial evidence from multiple 

avenues of biological research [11-13] . 
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Figure 1. Amyloidogenic pathway: APP is sequentially cleaved by α-secratase (α), β-secratase(β) 

and γ–secratase(γ) that result in amyloid beta peptide 42 (Aβ42) accumulation and eventually 

plaque formation. 

1.2.2 Tau hypothesis 

       Tau is a microtubule-associated protein abundant in neurons and its function is microtubule 

assembly and stabilization [14]. In healthy nerve cells, tau resides in a part of the nerve cell termed 

the axon, the long, slender part of the cell that carries electrical impulses away from the neuron’s 

body. However, mutations can alter the function and isoform expression of tau with excessive or 

abnormal phosphorylation. Hyperphosphorylated tau disassembles microtubules and sequesters 

normal tau, MAP 1(microtubule associated protein1), MAP 2, and ubiquitin into neurofibrillary 

tangles (NFTs). These insoluble structures damage cytoplasmic functions and interferes with 

axonal transport, which can lead to cell death. NFTs are considered to be a follow-up event to 

amyloid plaque formation, and they cause the neuron death in AD brain. It has been suggested that 

amyloid plaques are very early event and that NFTs are a late event of an underlying process of 

(Intracellular cytoplasmic fragment) 

(Soluble) 

(Insoluble) 
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AD, meaning each event is independent. But a great deal evidence supports the view that Aß 

increases NFT formation[15].  Application of amyloid plaque to cultured neurons and injection of 

β-amyloid Aβ42 fibrils into the brains of P301L mutant tau transgenic mice caused fivefold 

increases in the numbers of NFTs [16].  Amyloid beta may facilitate Ca2+ influx into neurons, 

causing calcium-activated kinases to excessively phosphorylate tau protein leading to NFTs. Some 

researchers have found evidence that β-amyloid fibrils form pores in neurons leading to calcium 

influx and the neuron death associated with AD [17]. 

1.2.3 Genetic mutation 

       Ten percent of AD cases are known to have a genetic basis, especially for FADs. These 

abnormal changes in the sequence of chemical pairs occur in the genes for the amyloid precursor 

protein (APP) and the genes for the presenilin 1 and presenilin 2 proteins. It has been reported that 

those inheriting a mutation to the APP and presenilin 1 or presenilin 2 genes are guaranteed to 

develop earlier onset FAD[18]. Presinilin protein is one subunit of a complex called gamma- (γ-) 

secretase. The γ-secretase complex may be best known for its role in processing amyloid precursor 

protein (APP), which is made in the brain and other tissues. More than half of FAD cases are 

associated with the presenilin 1 gene located on chromosome 14, which encodes the enzyme that 

cleaves the γ-secretase site. The abnormal presinilin 1 and 2 significantly up-regulate the γ -

secretase enzyme activities that result in more Aß42 peptide generation from the amyloid pathway. 

The mutation on chromosome 21 is presented in Amyloid Precursor Protein (APP) gene itself, 

which induces the over-production of the APP protein followed by higher activity of the amyloid 

cascade process [19].  

      Unlike inheriting the mutated genes above, inheriting the ɛ4 form of the APOE gene does not 

guarantee that an individual will develop Alzheimer's. The APOE gene provides the blueprint for 
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a protein that transports cholesterol in the bloodstream and is involved in late-onset Alzheimer’s. 

One form of this gene, APOE ε4, increases a person’s risk of developing the disease and is also 

associated with an earlier age of disease onset[20]. Those who carry one copy of the ɛ4 form have  

three times higher risk of developing Alzheimer's than those without the ɛ4 form, while those who 

inherit two copies of the ɛ4 form have an 8- to 12-fold higher risk. Researchers estimate that 40 

percent to 65 percent of people diagnosed with Alzheimer's have one or two copies of the APOE 

ɛ4 gene [6].  However, carrying the APOE ε4 form of the gene does not mean that a person will 

definitely develop Alzheimer’s disease. Some people with an APOE ε4 allele never get the disease, 

and others who develop Alzheimer's do not have any APOE ε4 alleles. In addition, so far there are 

more than 20 recently identified genes (GSK3β , DTRK1A, Tau,TOMM40,etc) that also appear to 

affect the risk of Alzheimer's. However, compared to APP, PS1,PS2 and ApoE, these recently 

identified genes are believed to have a limited effect on the overall prevalence of Alzheimer's 

because they are rare or only increase the risk slightly[21] . 

1.2.4 Oxidative stress and inflammation hypothesis 

      Another event that promotes AD pathogenesis is oxidative stress and inflammation. There are 

multiple free species, atoms or molecules with an unpaired electron in the outer shell present in 

the body. The most common radicals are derived from the reduction of molecular oxygen to water 

during oxidative phosphorylation (OXPHOS) and this group of radicals is called reactive oxygen 

species (ROS). In normally functioning tissues, a balance is maintained between ROS generation 

and antioxidant protection, mediated through antioxidant enzymes like copper/zinc superoxide 

dismutase (SOD) and glutathione peroxidase [22] and small antioxidant molecules such as vitamin 

E, vitamin C and glutathione. When the balance between free radical generation and antioxidant 

capacities shifts toward free radical generation, oxidative stress occurs and causes oxidative 
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damage to lipids, proteins, RNA and DNA[23]. Our brain is particularly susceptible to oxidative 

damage due to its high oxygen consumption rate (1/5th of all consumed oxygen), its high-energy 

demands, rich abundance of polyunsaturated fatty acids and lipids and the relatively limited 

antioxidant capacity compared to other organs [24]. In subjects with impaired OXPHOS such as 

AD, >2% of oxygen consumed by cells during OXPHOS is converted to ROS [25]. The free 

radical-mediated damage will accumulate in the brain over time and lead to pathological changes, 

including promotion of Aβ deposition, tau hyperphosphorylation and the subsequent loss of 

synapses and neurons in the development of AD. Several studies suggest that ROS are involved in 

Aβ fibrillization and NFT formation in AD and increases with Aβ and NFT pathology in AD [26-

28]. Both soluble and fibrillar Aβ may further accelerate oxidative stress, as well as mitochondrial 

dysfunction [29]. Meanwhile, the peroxidative attack on cell and organelle membrane lipids yields 

mitochondrial toxins such as hydroxynonenal (HNE) and malondialdehyde [30] [30]. This 

mechanism could damage the membrane-bound, ion-specific ATPases and stimulate the calcium 

(Ca2+) entry system which further activates the glutamate (N-methyl-d-aspartate [NMDA]) 

receptors (NMDAr) and membrane-attack complex (MAC) of complement.  Once the NMDAr is 

under high activity, the accumulation of glutamate at synaptic cleft will induce neurotoxicity and 

plasticity[31].   

       Inflammatory processes have also been reported to play an important role in the AD 

pathology. The two major types of brain cells that participate in the immune/inflammatory 

response that leads to the death of neurons are astrocytes and microglia. Astrocytes becomes more 

active in AD,  producing prostaglandin/arachidonic acid which mediates inflammation 

accompanied by the activated microglial cells, which can produce damaging free radicals [32]. 

Some hypothesize that the reason for this is Aβ can activate microglia, which leads to an increase 
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in cell surface expression of major histocompatibility complex II (MHC II) along with increased 

secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor 

necrosis factor α (TNF α),chemokines- interleukin-8 (IL-8), macrophage inflammatory protein-1 

α (MIP-1 α), and monocyte chemo-attractant protein-1[33]. Aβ also induces a phagocytic response 

in microglia and expression of nitric oxide synthase (NOS), resulting in neuronal damage. 

Microglia may also play a role in the degradation of Aβ with the release of insulin degrading 

enzyme (IDE). Astrocytes can cluster at sites of Aβ deposits and secrete interleukins, 

prostaglandins, leukotrienes, thromboxanes, coagulation factors, and protease inhibitors. Neurons 

themselves are able to express significantly higher levels of classical pathway complement and 

pro-inflammatory products that trigger inflammatory processes. Furthermore, the complement 

system, cytokines, chemokines, and acute phase proteins (especially pentraxins) contribute to the 

inflammatory response in AD [34, 35]. But the question of whether neuroinflammation is a 

primary cause or secondary effect in Alzheimerogenesis remains as one of the chicken-and-egg 

variety [36]. 

1.2.5 Cholesterol hypothesis 

       There is a growing body of evidence suggesting that a high level of plasma cholesterol is 

associated with increased risk of AD. The role of cholesterol in the pathology of AD is also shown 

by the ability of statins to reduce the prevalence of AD by up to 70%[37]. Several studies have 

demonstrated that statins reduce the turnover of brain cholesterol at standard therapeutic doses, 

although the steady-state levels of Aβ in the cerebrospinal fluid (CSF) remain unaltered 

[38].Similarly, inhibition of cholesterol biosynthesis by statins and another cholesterol synthesis 

inhibitor was found to reduce amyloid burden in guinea pigs and murine models of AD[39].  In 

another animal study, it was found that rabbits fed cholesterol had twice the β-amyloid in the 
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hippocampal cortex compared to the controls[40]. In the AD brain, cholesterol can bind to 

aggregated amyloid-beta, reducing clearance and contributing to amyloid plaque. Apparently, the 

subcellular distribution of cholesterol affects amyloid-beta production. Both β-secretase & γ-

secretase activity increase with elevated cholesterol, whereas the reverse effect is seen with α-

secretase,which is more active with lower cholesterol. Increase in cellular cholesterol also 

contributes to altered membrane lipid metabolism.  Abnormal cholesterol synthesis, efflux, or 

influx might destablize the membrane structure in which polyunsaturated fatty acids (PUFAs) 

contents are degraded to start lipid peroxidation and make the neurons more vulnerable to free 

radical-induced injury[41].  However, it is true that plasma cholesterol levels do not normally 

regulate production of brain Aβ due to the blood brain barrier (BBB)[42]. One possible reason 

explaining the risk of an atherosclerosis diet to AD resides is the fact that high non-HDL 

cholesterol is associated with low HDLand apoA-I levels, a pro-inflammatory systemic status and 

increased atherogenic/ischemic pathology. Supporting this hypothesis, serum levels of 

adipocytokines, markers of inflammation, have been associated with cognitive impairment and 

progression of AD, as well as atherogenic/ischemic disease [43] . Moreover, the metabolic 

syndromes associated with the atherogenic diseases were also reported to promote the 

development of dementia by affecting myelin integrity and white-matter connective functions[44].  

1.2.6 Other hypothesis 

      In addition to the hypotheses described above, the cholinergic hypothesis was developed 

decades year ago, and it identifies basal forebrain cholinergic cell loss as a consistent feature of 

AD. Most of the brain’s supply of acetylcholine is derived from the nucleus basalis of Meynert in 

the basal forebrain. In AD brains, research has shown that the nucleus basalis seems to be 

particularly vulnerable to the neurodegeneration. There were decreased numbers of healthy 
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neurons in this area and decreased cholinergic projections to the hippocampus and entorhinal 

cortex, suggesting that patients with AD may have decreased acetylcholine. A loss of cholinergic 

function in the central nervous system can impair the cortical cholinergic neurotransmission, 

contributing significantly to the cognitive decline associated with advanced age and AD. 

Therefore, damage or abnormalities in the pathway of the basal forebrain appeared to correlate 

well with the level of cognitive decline [45, 46].  It was based on this cholinergic hypothesis that 

the FDA approved drugs were developed. Today, the primary pharmacological approach for AD 

is to employ cholinesterase inhibitors developed in the 1990s and 2000s, which can block 

acetylcholinesterase that prevent the breakdown of the neurotransmitter acetylcholine into acetate 

and choline. As a result, levels of acetylcholine in the synapse are increased and restore signaling 

to the postsynaptic cell[47].   

      Above all, the exact aetiopathogenesis of AD is still obscure. Neurobiological mechanisms 

likely involved in AD include hypotheses explaining the genesis of excitotoxic fibrillar Aβ and 

defective clearance of toxic amyloid. Agents which interfere with cleavage (BACE 1 Inhibitor), 

reduce aggregation of Aβ, and accelerate the clearance of neurotoxic amyloid may provide better 

cognitive advantage in AD. There is also emerging evidence that neuropeptides/modulator systems 

and estrogen are likely to play a role in memory dysfunction or AD. Additionally, other 

neurobiological mechanisms including insulin signaling, metallobiology, cell cycle aberrations 

and more have been put forward to serve as possible therapeutic targets in areas of active research 

[48-50]. 

1.3 Symptoms and Diagnosis 

      AD patients typically suffer from the problems with memory, cognition and behavior. 

Symptoms usually develop slowly and worsen over time, becoming severe enough to interfere 
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with daily tasks. When the initial changes occur, the brain compensates for them, enabling 

individuals to continue to function normally. As neuronal damage increases, the brain can no 

longer compensate for the changes and individuals show subtle cognitive decline. Later, neuronal 

damage becomes so significant that individuals show obvious cognitive decline, including 

symptoms such as memory loss or confusion as to time or place. Later still, basic bodily functions 

such as swallowing are impaired. The rate of progression varies greatly [51]. The course can take 

anywhere from two to 20 years, and AD patients live an average of eight years. In early stages, 

brain regions important in memory,thinking and planning start developing plaques without 

symptoms; when AD progresses to the moderate stage, more plaques and tangles develop . Thus, 

individuals develop problems with memory and/or thinking that become serious enough to 

interfere with work or social life. They may also get confused and have trouble handling money, 

expressing themselves and organizing their thoughts. In the advanced stage (at which point many 

patients are first diagnosed), most of the cortex is seriously damaged. The brain shrinks 

dramatically due to widespread cell death, which causes individuals lose their ability to 

communicate, to recognize family and to care for themselves[52]. Therefore, it is very important 

to diagnose AD at its early stage to dramatically enhance its treatment. 

      AD is usually diagnosed clinically from patient history, collateral history from relatives and 

clinical observations, based on the presence of characteristic neurological and neuropsychological 

features and the absence of alternative conditions[53]. Advanced medical imaging including 

computed tomography (CT), magnetic resonance imaging (MRI), single photon emission 

computer tomography (SPECT) or positron emission tomography (PET) can be used to help 

exclude other cerebral pathology or subtypes of dementia[54] .The diagnosis can be confirmed 

with very high accuracy post-mortem, when brain material is available and can be examined 
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histologically. Hence, the current diagnostic measures of AD are invasive (cerebrospinal fluid 

analysis), expensive (neuroimaging) and time-consuming (neuropsychological assessment) and 

thus have limited accessibility as frontline screening and diagnostic tools for AD. Therefore, there 

is an increasing need for additional noninvasive and/or cost-effective tools, allowing identification 

of subjects in the preclinical or early clinical stages of AD who could be suitable for further 

cognitive evaluation and dementia diagnostics. Molecular imaging technologies are among the 

most active areas of research aimed at finding new approaches to diagnose Alzheimer's in its 

earliest stages. In 2012, the U.S. Food and Drug Administration approved the first molecular 

imaging tracer for use in patients being evaluated for possible Alzheimer's disease or other causes 

of cognitive decline. This tracer, florbetapir F-18, is a molecule that binds to beta-amyloid in the 

brain [55]. Because the beta-amyloid is labeled with a radioactive tracer it can be visualized during 

a positron emission tomography (PET) brain scan, thereby revealing the presence of amyloid 

plaques in the brains of living patients. In addition, researchers are also investigating whether pre-

symptomatic       Alzheimer's disease causes consistent, measurable changes in urine or blood 

levels of tau, beta-amyloid or other biomarkers. Scientists are also exploring whether early 

Alzheimer's leads to detectable changes elsewhere in the body, i.e.  the lens of the eye [56]. 

1.4 Treatment the therapeutic strategies 

1.4.1 Traditional pharmaceutical treatment 

       Alzheimer's has no current cure, but treatments for symptoms are available. The available 

therapeutic agents target only neurotransmitter dysfunction in AD. They can temporarily slow the 

worsening of dementia symptoms and improve quality of life, though the side effects of these 

drugs remain a major concern. Cholinesterase inhibitors such as donepezil (Aricept), rivastigmine 

(Exelon), and galantamine (Razadyne) prevent the breakdown of acetylcholine, a brain chemical 
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that is important for memory and thinking. By preserving high levels of this chemical messenger, 

the patient may retain cognitive function longer. About 50 percent of patients on these medications 

see a modest improvement in cognitive symptoms [55]. Moderate-affinity NMDA-Receptor 

Antagonist is the first of a new class of Alzheimer’s medications in which memantine (Namenda) 

is approved for the treatment of moderate-to-severe Alzheimer’s disease. It works by regulating 

glutamate, a chemical messenger in the brain that triggers certain receptors to allow calcium into 

the nerve cells, so the cells can produce the necessary chemical environment to process and store 

information[57]. 

1.4.2 New therapeutic strategies and Phytochemicals: OPP and Curcumin 

       Given the fact that there is still no promising treatment that can slow or stop its progression, 

scientists have turned to investigating the beneficial effects of food supplements and other natural 

products for an alternative therapy for AD patients. It has been found that a diet rich in vegetables, 

especially green leafy vegetables and cruciferous vegetables like broccoli, is associated with a 

reduced rate of cognitive decline. One epidemiological study reported that people who ate a 

“Mediterranean diet” had 40 % less risk for development of AD [58]. A Mediterranean diet 

includes vegetables, legumes, fruits, cereals, fish, olive oil andmild to moderate amounts of alcohol, 

as well as low amounts of saturated fats, dairy products, meat, and poultry. DHA (docosahexaenoic 

acid), an omega-3 fatty acid found in salmon and certain other fish, also has been found to reduce 

beta-amyloid plaques, abnormal protein deposits in the brain that are a signatureof Alzheimer’s. 

Although a clinical trial of DHA showed no impact on people with mild to moderate Alzheimer’s 

disease, it is possible that DHA supplements could be effective if started before cognitive 

symptoms appear[59]. 

https://www.nia.nih.gov/health/publication/whats-your-plate/vegetables
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       To date, a growing number of herbal remedies, dietary supplements and "medical foods" are 

promoted as memory enhancers or treatments to delay or prevent Alzheimer’s disease and related 

dementias such as Coenzyme Q10, ginseng and gingko biloba[60-62]. Of a number of ingredients 

that have been extracted from plants and fruits as antioxidant agents to treat AD, oil palm (Elaeis 

guineensis),a high oil-producing tropical plant,  appears to have an effective anti-oxidative 

component to counter the oxidative stress exerted by high temperature and intense sunlight. [63]. 

Although the fruits of oil palm are mainly used for extraction of edible oils, successful recovery 

of the aquoeus by-products following palm oil production has identified a water soluble complex 

rich in phenolics and organic acids collectively referred as Oil Palm Phenolics (OPP). Major 

components of OPP include three isomers of caffeoylshikimic acid (3-,4- and 5-caffeoylshikimic 

acids), protocathecuic acid and ρ-hydroxybenzoic acid with the three caffeoylshikimic acid 

isomers. The chemical structure of the main compounds is shown in Fig. 2. The therapeutic effects 

of OPP on cardiovascular diseases, diabetes and cancers have been reported by Sambanthamurthi 

et al[63, 64]. They concluded that OPP could be used as a dietary agent for prevention of many 

oxidative stress-related chronic diseases, including neurodegenerative ailments [65]. Other 

polyphenol mixes such as high cocoa flavanol have been reported to enhance the hippocampus 

dentate gyrus function and improve cognition in older adults, most likely by its high efficiency in 

removing free radicals [66]. Since AD and the associated amyloid plaque buildup has an 

underlying component of oxidative stress, we hypothesized that OPP may reduce amyloid beta 

burden in vivo. In a previous pilot study we found OPP can decrease the β amyloid in the cell 

culture. Because of these results, we have begun further investigation on its effects by using an 

animal model with AD. 
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Fig.2 Main compounds in oil palm phenolics (OPP). 

         Another compound that has been thought to reduce oxidative stress associated with AD is 

curcumin (Cur), a major component of the yellow curry spice turmeric [67]. Turmeric has been 

used for thousands of years for medicinal purposes, as a preservative and as a coloring agent in 

foods. Curcumin was isolated as the major yellow pigment in turmeric, and as is shown by figure 

3, it has a polyphenolic molecular structure similar to other plant pigments in green tea (catechins) 

or in certain fruit juices (blueberries, strawberries, pomegranates etc.)[68]. These polyphenols 

share antioxidant and anti-inflammatory properties with associated health benefits. Curcumin has 

been extensively studied for the treatment of various medical conditions, including cancer, 

atherosclerosis, and dementia. Curcumin also has a potential role in the prevention and treatment 

of AD. Various studies and research results indicate a lower incidence and prevalence of AD in 

India. The prevalence of AD among adults aged 70-79 years in India is 4.4 times less than that of 

adults aged 70-79 years in the United States[69]. The curry consumption and cognitive level in 
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1010 Asians between 60 and 93 years old was studied and compared as well. The results indicated 

that those who often (more than once a month) consume curcumin performed better on a standard 

test (MMSE) of cognitive function than those who ate curry never or rarely [70].  The process 

through which curcumin can deliver a preventive effect on AD is believed to relate to reducing 

inflammation and oxidative stress, which are the leading causes of amyloid plaques and metal 

toxicity (Fig.4). It has been reported that curcumin serves as a free radical scavenger protecting 

the brain from lipid peroxidation [71]. Oral administration of curcumin has been shown to be 

centrally neuroprotective by reducing oxidative damage and amyloid pathology in an APPSw 

mouse model (Tg2576) [72, 73].  Because the lipophilic nature of curcumin, it can cross BBB 

(blood brain barrier) binds to plaques. Based on the various findings that support the benefits of 

its oral intake, it is believed that curcumin could lead to a promising treatment for Alzheimer's 

disease. Therefore, we included curcumin in our experimental high cholesterol diet to serve as a 

positive control, which enables us to compare it with our testing supplement OPP in their 

therapeutic effects and potential mechanisms.   

  

Fig.3.Chemical structure of curcumin[1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-

dione]  
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Fig.4. Different mechanisms of action of curcumin in AD [74] 

1.5 Hypothesis and Specific Aims 

       The overall goal of the study is to evaluate the effects of OPP in the treatment of Alzheimer’s 

disease. In order to achieve this goal, we hypothesized that an atherogenic diet (2% cholesterol) 

will lead to AD-like pathological changes in aging rats. Furthermore, OPP will attenuate the disease 

progression with their antioxidant & anti-inflammatory effects, which might also be reflected by 

the changes in the urinary metabolomic profile. Curcumin treatment serves as a positive control 

group and its effect on AD will also be examined in this study. The following specific aims were 

proposed to meet our hypothesis:             

Specific Aim 1:  To evaluate the effect of an OPP supplemented diet on atherogenic diet induced 

Alzheimer’s disease in aged rats; 

            a, To determine changes in lipid profile and gene expression; 

            b, To evaluate changes in cognitive behavior;  

            c, To evaluate amyloid plaque development and neuron loss in hippocampus.                 

 Specific Aim 2 : To examine the possible mechanisms of action of OPP in AD rat model;             
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            a, To investigate effect of OPP on lipid peroxidation (malondialdehyde [MDA] & 3-  

                hydroxybutyrate);  

            b, To investigate a inflammatory marker (IL-6); 

            c, To measure effect of OPP on expression of the genes (APP,BACE1, ApoE) in the brain   

               that lead to the plaque formation; 

Specific Aim 3, To investigate the urinary metabolomics profile of AD rats for possible non-

invasive markers of AD; 

            a, To observe the difference among groups in metabolomic profiles;  

            b, To determine the correlations between the urinary metabolomic profiles and cognitive   

                behavioral changes, amyloid burden, oxidative and inflammatory markers;                

          c, To identify the metabolites responsible for the differences in the metabolomic profile   

              and explore the pathways related to AD pathology.  
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CHAPTER 2 METHODOLOGY 

2.1 Animals 

     Thirty-two in-bred Brown Norway (BN) rats were obtained from the aged rodent colonies of 

the National Institute of Aging (Bethesda, MD). Since effects of estrogen on cholesterol 

metabolism is well known and altered Aβ metabolism by estrogen was reported in several animal 

species [75], we used male rats exclusively for this study. Pigmented BN strain was chosen for 

behavioral studies using visual cues.  

      All animals were housed in individual cage at Wayne State University Division of Laboratory 

Animal Resources (DLAR) facility under standard conditions as approved by the Wayne State 

University Animal Investigation Committee (AIC). Each were kept in the same room with 

alternating 12 hours light and 12 hours darkness under normal humidity and at room temperature. 

Cage bedding and water was replaced weekly and their health was monitored regularly. 

2.2 Experimental conditions and protocols     

      The study design and experimental conditions are presented in Figure 5. The protocol for this 

study was approved by Wayne State University IACUC (approval number: A 3310-01). Upon 

arrival at the facility, all animals were allowed to acclimatize for one week prior to start of the 

experiment. Following acclimatization period, all rats were assigned in equal number to a control 

group (n=8), a high cholesterol group (n=8), a high cholesterol + OPP group (n=8) and a high 

cholesterol + curcumin diet group (n=8) on a pseudo-random basis with the constraint that both 

diet groups had the same mean body weight.  Animals were fed ad libitum supply of diet and had 

free access to tap water. Cage bedding, diets and water were replaced every week and their health 

were monitored regularly. Criteria for early euthanasia included 20% weight loss or abdominal 

distention with respiratory distress. 
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2.3 Experimental diets 

      OPP for this study was provided by the Malaysian Palm Oil Board (Kajang, Malaysia) at the 

stock concentration of 1500 mg/ml gallic acid equivalents (GE).  Both the 5% OPP and the 

standard purified diets were formulated and produced by Dyets Inc. (Bethlehem, PA), and 

sufficient diet was obtained for the entire duration of the study. The diets were kept at -20°C, and 

sufficient diet were removed weekly as needed and kept refrigerated at 4°C. Composition of both 

diets is shown in Table 1. 

2.4 Experimental procedures 

      All rats were provided with their respective diets for 23 weeks. Diet intake was measured 

weekly and body weight of the animals was measured twice weekly. Weekly urine collections 

were carried out for a urinary metabolomic study. Upon completion of the experiment at endpoint, 

each animal was euthanized using carbon dioxide chamber and decapitated followed by 

exsanguination and tissue collection. Trunk blood was collected into K2EDTA coated tubes and 

kept on ice. Plasma was isolated and stored at -80ºC until ready to be used for analysis.  Tissues 

were excised and weight was recorded prior to being flash-frozen in liquid nitrogen.  Brain was 

extracted immediately (generally within 3-5 minutes) and the left hemisphere was flash frozen in 

liquid nitrogen. Right hemispheres of each animal were immersion-fixed in 10% zinc-formalin 

(Fisher Scientific International) for histological analysis. Hippocampus and cerebral cortex, 

cerebellum and the rest of the brain were extracted from the left hemispheres and fixed in RNAlater 

(Ambion, inc. Austin, TX) for RNA extraction. All procedures and protocols were in accordance 

with and ratified by the Animal Investigation Committee of Wayne State University.  
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  Fig. 5 Study design and experimental conditions 

 Control groups 

 C: Rats on standard purified diet. 

 Experimental groups 

 H: Rats on standard purified diet + 2% cholesterol; 

 HP: Rats on standard purified diet + 5% OPP + 2% cholesterol; 

 HC: Rats on standard purified diet + 2% Curcumin + 2% cholesterol. 
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Table 1 Composition of purified diets 

 

Ingredient      Isocaloric Control    High Cho (2% Cholesterol)   High Cho +5%OPP      High Cho+2% 

Curcumin  

                                                                                                                                     

g/kg 

Casein 140 140 140 140 

L-Cystine 1.8 1.8 1.8 1.8 

Sucrose 100 77.5 77.5 77.5 

Cornstarch 465.692 465.692 415.692 445.692 

Dyetrose 155 155 155 155 

Soyabean oil 40 40 40 40 

t-

butylhydroquinone 

0.008 0.008 0.008 0.008 

Cellulose 50 50 50 50 

Mineral 

Mix#210050 

35 35 35 35 

Vitamin 

Mix#310025 

10 10 10 10 

Choline Bitartrate 2.5 2.5 2.5 2.5 

Cholesterol _ 20 20 20 

Cholic Acid _ 2.5 2.5 2.5 

OPP _ _ 50 _ 

Curcumin _ _ _ 20 

Total 1000 1000 1000 1000 

Calorie 3602 3512 3332 3440 

Diets were prepared and pelleted by Dyets Inc. (Bethlehem, PA). 
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2.5 Total cholesterol measurement  

2.5.1 Plasma total cholesterol 

      Total cholesterol (TC) cholesterol was determined using enzymatic kits (Pointe Scientific Inc. 

Canton, MI.). Plasma was isolated by centrifugation of blood at 4000 rpm for 20 minutes at 4°C 

and stored in -80ºC until use. Samples and standards were taken and the test tubes were labeled 

accordingly. 1ml of reagent was pipetted into each tube and pre-warmed at 37°C for five minutes. 

10µL of sample was added into respective tubes, mixed and returned to 37°C for incubation for 

five minutes. Spectrophotometer was zeroed with blank at 500nm and then the absorbance of all 

test tubes were recorded. The concentration of unknown samples were calculated by using standard 

curve. 

2.5.2 Liver and brain total cholesterol 

      The Folch method [76]was used to extract lipids from liver and brain tissues. Briefly, 0.5g of 

tissue was taken and homogenized in 10mL chloroform-methanol solution 2:1(v/v). The samples 

were left overnight in a shaking water bath. After water bath, 3mL of 0.5% H2SO4 was added for 

separating the phases. The samples were mixed with vortex and centrifuged at 2000rpm for 20 

minutes, the lower phase was taken, and the volume was brought to 10ml by addition of 

chloroform-methanol mixture. Aliquots of 50µL were made and dried overnight. Before analysis 

of the total cholesterol, the aliquots were reconstituted with 50µL EtOH. Total cholesterol was 

determined using an enzymatic kit (Pointe Scientific Inc. Canton, MI.) and same protocol as 

plasma was followed. 

2.6 Plasma HDL level measurement 

       First, HDL cholesterol was separated by using HDL Cholesterol Precipitating Reagent Set 

(Pointe Scientific Inc. Canton, MI.). A 0.5 ml (500µL) plasma sample was pipetted into respective 
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tubes and 0.5ml (500µL) reagent was added to each tube and mixed using vortex. The tubes then 

were centrifuged at 2000g for 10 minutes.  Next, HDL cholesterol was measured by using 

enzymatic kit (Pointe Scientific Inc. Canton, MI.). A 1ml enzymatic cholesterol reagent, prepared 

according to package insert instructions, was pipetted into each tube. Then 0.05ml (50µL) standard 

or clear supernatants from the previous step were pipetted into their respective tubes. All tubes 

were incubated for 10 minutes at 37°C. The spectrophotometer set zeroed at 500nm with reagent 

blank and absorbance rate of all test tubes were rerecorded. The concentration of unknown samples 

then were calculated using standard curve. 

2.7 Gene expression analyses  

2.7.1 RNA isolation from liver and brain tissue 

      Total RNA extraction of tissues was performed with a commercial kit (RNeasy Mini Kit, 

Qiagen Valencia, California, USA) according to the manufacturer’s instructions. Tissue samples 

(30 mg) from liquid nitrogen were taken and were excised, weighed and then placed into 700μL 

QIAzol  Lysis  Reagent in a vessel which is suitable for disruption and homogenization using 

tissue homogenizer. The tube containing the homogenate was then placed at room temperature 

(15-25˚C) for 5 minutes. Next, 140μL of chloroform was added to the tube, which was capped 

securely and shaken vigorously for 15 seconds. The tube was kept at room temperature for 3 

minutes followed by centrifugation for 15 minutes at 12,000rcf at 4˚C. After centrifugation, the 

upper aqueous phase was transferred to a new collection tube, and then 525μL of 100% ethanol 

was added to the tube and mixed thoroughly by pipetting. Next, 700μL of sample, including any 

precipitate, was pipetted into RNeasy Mini spin column in 2 ml collection tube and centrifuged at 

10,000 rpm for 15 seconds. The flow-through was discarded and the previous steps were repeated 

for the remainder of sample. Buffer RWT (700 μL ) was added to RNeasy Mini spin column, then  
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the sample was centrifuged at 10,000 rpm for 15 seconds and flow-through was discarded. Buffer 

RPE (500 μL) was then pipetted onto RNeasy Mini spin column and again and centrifuged at 

10,000 rpm for 15 seconds. The flow-through was discarded and 500μL of Buffer RPE was added 

to RNeasy Mini column and then centrifuged at 10,000 rpm for 2 minutes. The RNeasy Mini spin 

column was then placed into a new 2ml collection tube and centrifuged at full speed for one minute. 

Afterward, the RNeasy Mini spin column was transferred to a new 1.5ml collection tube after the 

old collection tube was discarded with the flow through. RNase-free water (40 μL) was then 

pipetted directly on the RNeasy Mini spin column membrane and centrifuged for one minute at 

10,000 rpm to elute the RNA. Then, quantity measurement and the spectrophotometric quality 

assessment (A260/280 and A260/230 ratios) of RNA were carried out using the Nanodrop 

spectrophotometer. 

2.7.2 Reverse transcription and qRT-PCR 

        Reverse transcription of the liver RNA was performed using High Capacity RNA to cDNA 

Master Mix kit (Applied Biosystems, Carlsbad, CA). RT buffer mix (20 μL) including 2μL of RT 

enzyme mix, 8μL of RNA sample and 10μL of nuclease-free water were taken and mixed into 

0.2mL PCR tube and centrifuged for few seconds. The prepared samples were then loaded into an 

Eppendorf mastercycler realplex 4 (Eppendorf, Hauppauge, NY) for reverse transcription process 

with the following temperature settings: 25˚C for 5 minutes, 42˚C for 30 minutes, 85˚C for 5 

minutes. The samples were then transferred to a -20˚C freezer until use for qRT-PCR analysis. 

       The ApoA1 gene, which encodes apolipoprotein A-I (the major protein component of HDL), 

was tested in the liver sample. Brain hippocampus expression of the genes (APP, BACE1) that 

regulate the βAmyloid 42 pathway as well as the whole brain gene expression of the key enzymes 

(KMO, KYN, HAAO, KAT1,TPH2) that regulate the tryptophan metabolism pathway were 
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measured. The primer sequence of the genes used in this entire study are listed in Table 2. The 

final reaction volume of 25 uL was made by using 12.5μL SYBR Green PCR Master Mix (Applied 

Biosystems, Warrington, UK), 1μL of 20 μM reverse and forward primer mixture, 9.5μL nuclease-

free water and 2μL of cDNA. The qRT-PCR was carried out on the Eppendorf mastercycler 

realplex 4 instrument (Eppendorf, Hauppauge, NY) in Mx3000P 96-Well Plates (Agilent 

Technologies) using the following settings; initial denaturation: 95˚C for 10 minutes, 45 repetitions 

of denaturation: 95˚C for 15 seconds and elongation: 60˚C for 1 minute, dissociation curve: 95˚C 

for 1 minute, 60˚C for 30 seconds followed by gradual temperature increase from 60˚C to 95˚C in 

20 minutes and finally at 95˚C for 30 seconds. Each gene was analyzed in triplicate with single 

non-template control (NTC). GAPDH was used to normalize the expression values (∆CT). 

Statistical significance for mRNA expression was obtained by comparing the means of 1/ΔCT 

values among high cholesterol diet (H), high cholesterol with OPP diet (HP), high cholesterol, 

curcumin (HC) and the control diet group (C). 

Table 2: Primer sequence of the genes in this study 

Primers            Forward Sequence Reverse Sequence 

ApoA1 5′- AGGAGCAGACCCAGCAGATA- 3′ 5′- AACCCAGAGTGTCCCAGTTG-3′ 

APP 5'-TGGGTTGACAAACATCAAGACAGAA-3' 5'-GCACCTTTGTTTGAACCCACATC-3' 

BACE 1 5′-TGGTGGACACGGGCAGTAGTAA-3′  5′-TCGGAGGTCTCGGTATGTACTGG-3′ 

ApoE 5'-AGGAGCAGACCCAGCAGATA-3' 5'-GGAGTTGGTAGCCACAGAGG-3' 

KMO 5′-TCC ACT TTC ATC CCT CTC TAT-3′  5′- GAG TCC TCT GTT TAT CAC CTTT-3′ 

Kyn 5′-CAG ACT GCT TAC TGC CAT AC-3′ 5′ - CCC AGT GTG TGA GAT TTA CTT-3′ 

HAAO 5′-TGA TTG AGA GAA GGC GAA TG-3′  5′ - CCT TAC AGT GGA ACC ATT TCT-3′ 

KAT 1 5'- TGGTCCTCAACACACCCAAC-3' 5'- CCGTCATAGACCAGCCACTG-3' 

TPH 2 5'- TAGAGGATGTGCCGTGGTTC - 3' 5'- CTTGAATCCTGGGTGGTCGG -3'  
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GAPDH 5'-ACCCAGAAGACTGTGGATGG-3' 5'-CAGTGAGCTTCCCGTTCAG-3' 

 

2.8 Cognitive behavior measurement 

     A Morris Water Maze test (MWM) was conducted to examine spatial learning and memory. 

Rats were tested in a circular pool, 60 inches in diameter and 30 inches deep, filled with 10 inches 

of water made opaque with the addition of a non-toxic dye and maintained at 24-25oC. The 

swimming pool was placed in a room surrounded by fixed spatial cues such as posters, floor lamp 

and desk. The rats were trained to locate the hidden escape platform submerged in the water. 

Latencies for rats to find the platform (seconds) were analyzed as a measure of spatial learning. 

The rats were given 3 trials/day for 5 consecutive days. They were allowed 90 s to swim around 

the pool and find the hidden platform. If the animal could not find the platform within this time, it 

was then gently rescued from the water and placed on the platform. Each trial was separated by 45 

min. The platform was always located in the same fixed spot during training and the starting point 

also remained the same throughout the trials for each rat. All trials were recorded by a video camera 

as part of the video-tracking system mounted above the pool and the behavioral measures were 

acquired by a computerized video-tracking system (EthoVision 2.0, Noldus Information 

Technology, Leesburg, VA). 

2.9 Analysis for changes in brain tissue 

2.9.1 H&E staining – Histology (1) 

      All right hemisphere brain tissues were immediately fixed in 10% neutral buffered formalin 

for 24 hours and then stored in 70% ethanol to prevent excess drying of tissue specimens. 

Specimens were sent to Histology Lab, Division of Human Pathology, Michigan State University 

for paraffin section preparation and Hematoxylin and Eosin (H&E) staining and Congo red 

staining. First, paraffin embedded brain right hemispheres were cut at 6-8 um in the sagittal plane. 
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Sections then were mounted onto albumin coated slides, deparaffinized, hydrated and nuclei were 

stained by H&E for visualizing the morphological changes of the neurons. Each prepared H&E 

slide was later examined under the light microscope (Nikon Eclipse 80i, Melville, NY) for 

histopathological changes. The outline and the structure of pyramid cells were observed. The 

healthy neurons were counted in the whole hippocampus which was divided in to CA1, CA3 and 

DG area defined by the reference[77].  

 2.9.2 Congo red staining – Histology (2) 

       Formalin fixed brain tissues of animals were prepared for Congo red staining as described 

above. Observation under the light microscope (Nikon Eclipse 80i, Melville, NY) was then 

conducted on the prepared slides to visualize extracellular amyloid deposition. The average 

number of plaque in the entire hippocampus was calculated among four groups and the size of 

each plaque as well as the total plaque area were also measured. Amyloid burden in the 

hippocampus was calculated by comparing the total plaque occupied area to the size of the 

hippocampus.  

2.9.3 Enzyme-linked immunosorbent assay (ELISA) for amyloid β42 concentration    

      Sample preparation followed as described on the manufacturer’s protocol provided with the ß-

amyoid 42 Elisa kit (Covance, Princeton NJ). 1g of frozen brain hemisphere was homogenized in 

TBS with 0.1mM PMSF using a Teflon homogenizer and aliquoted. Formic acid (70%) was added 

to the homogenate and the mixture was agitated by pipetting up and down. The mixture of each 

group were spun for 20 minutes at 350,000 g. The supernatant, which represents the whole brain 

extract, was retrieved for the assay. The supernatant was stored at -800C. To begin running the 

assay, the sample was removed from -800C and thawed on ice. Protein content of this formic 

extraction was determined by the BCA assay.  Aβ42 levels were measured using ELISA following 
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the manufacturer’s protocol (Covance, Princeton NJ). Briefly, to start running the assay the sample 

was removed from -80 0C and thawed on ice. Wash buffer (300 μL 1X) were added to each well 

and then dumped out, after which the plate is pat dried on clean paper towel. On day one, 50μL of 

each standard was added to the plate in triplicate. Each sample (50 μL) as well as 50 μL diluted 

HRP detection antibody were added to the plate in triplicate. The plate was then covered with a 

plate sealer. The plate was mixed on a plate shaker for one minute and then incubated overnight at 

80C. On day two, the plate was removed from the refrigerator and the contents were dumped out. 

The plate was then washed with 300μL of 1X wash buffer per well. The buffer was then dumped 

and the plate dried pat with clean paper towel. The plate was washed repeatedly with the 1X wash 

buffer 4 more times for a total of 5 washes. TMB (200μL) substrate was added to each well. The 

plate was then incubated for 50 minutes at room temperature in the dark. The optical density of 

each plate was determined using a Bio-tek Elx800 micro-plate reader set at a wavelength of 620nm. 

The concentration of the unknown (Aβ42) was calculated by using the standard curve.  

2.10 Lipid peroxidation 

2.10.1 Liver & Brain TBARS (Thiobarbituric Acid Reactive Substances) 

2.10.1.1 Tissue homogenization 

     Tissue (25 mg) was weighed and transferred into a tube. RIPA buffer (250µL) containing 

protease inhibitor was added to the tube. The tissue was sonicated on ice for 15 seconds and the 

vial tube was centrifuged at 1600×g for 10 minutes at 4ºC. The supernatant was stored at -80ºC 

until used for analysis. 

2.10.1.2 BCA Protein Quantification     
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sample using the protein quantification kit (Thermo Fisher Scientific Inc. Grand Island, NY). The 

standards and working reagents were prepared according to manufacturer’s protocol. Each 

standard or unknown sample replicates were pipetted at 25µL into a microplate well. Working 

reagent (200 µL) was added to each well and the plate was mixed thoroughly on a plate shaker for 

30 seconds. The plate was then covered and incubated at 37°C for 30 minutes. The plate was 

cooled to room temperature and the absorbance was measured at 562nm on a plate reader. 

2.10.1.3 TBARS Assay 

     A TBARS Assay kit (TCA method) was purchased from Cayman Chemical, Ann Arbor, 

Michigan. All of the reagents were brought to room temperature before starting the assay. The 

standards and samples were prepared according to manufacturer’s instructions and the vials were 

labeled accordingly. Sample or standard was taken at 100 µL and added into the vial and 100µL 

of TCA Assay Reagent was also added to each vial. Then, 800µL of color reagent was added to 

each vial and vortexed. The vials were capped and placed in foam holder to keep the vials upright 

during boiling. The vials were then added to vigorously boiling water and left for an hour. 

Afterward, the vials were taken out and placed in ice bath immediately to stop the reaction and 

incubated on ice for 10 minutes. The vials were then centrifuged for 10 minutes at 1600×g at 4°C.  

Solution (200 µL) from each vial was taken and transferred to assigned slots in a plate and 

absorbance was read at 540nm. The concentration of  unknown samples was calculated by using 

standard curve.  

2.10.2 Plasma TBARSThe stored plasma from removed from its storage at -80°C and thawed on 

ice. Plasma TBARS was performed, using the same method as a TBAR assay performed on tissues 

following the manufacturer’s protocol. 

2.11 Urine 3-Hydroxybutyrate  



31 
 

 

2.11.1 Creatinine quantification 

     The urine creatinine was measured by using a kit purchased from Cayman Chemical, Ann 

Arbor, Michigan. Stored urine samples from -80°C were taken and thawed on ice. Urine was 

diluted 1:5 with assay buffer and the standards and reagents were prepared, according to 

manufacturer instructions. Samples (15 µL) and standards (15 µL) were added to the wells. The 

reactions were initiated by adding 150µL of alkaline pictrate solution to each well. The plate was 

covered and incubated at room temperature for ten minutes. The initial absorbance was measured 

at 500nm after removing the cover. Then 5µL of acid solution was added to each well and the plate 

was covered, followed by incubation for 20 minutes at room temperature on a shaker. The cover 

was removed and the final absorbance was read at 500nm. The average final absorbance was 

subtracted from the average initial absorbance to get the corrected absorbance. The corrected 

absorbance of standard A was subtracted from itself and all other standards and samples to get 

adjusted absorbance. This adjusted absorbance of standards was plotted on standard curve to obtain 

the concentration of creatinine of unknown samples. 

2.11.2 Urinary ketone measurement 

      Urine samples were used for measuring the ketone body 3-hydroxybutyrate by the colorimetric 

assay kit purchased from Cayman Chemical, Ann Arbor, Michigan. Stored urine samples from -

80°C were taken and thawed on ice. Urine was diluted 1:5 with assay buffer and the standards, and 

reagents were prepared, according to manufacturer instructions. 50µL of standards and samples 

were added to the wells in triplicates. The reaction was initiated by adding 50µL of developer 

solution to each well. The plate was incubated in dark at 25°C for 30 minutes. The absorbance was 

read at 455nm and the values were recorded. The concentration of unknown samples was 

calculated by using standard curve. The urine samples were normalized using creatinine. 
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2.12 Inflammatory biomarker  

      A IL-6 ELISA was measured by immunoassay kit (R&D Systems Inc. Minneapolis, MN). All 

the reagents, standard dilutions, control, and samples were reconstituted according to 

manufacturer’s protocol. Plasma was taken from -80 ºC and thawed on ice. Assay Dilent (50 μL) 

was added into each well and then 50μL of standards or samples were also added into their 

respective wells. The samples were mixed by gently tapping the plate frame for one minute. The 

plates was covered with the adhesive strip provided and incubated for two hours at room 

temperature. Each well was aspirated and washed, repeating the process four times for a total of 

five washes. The wells were washed by filling each well with Wash Buffer (400 μL) using a squirt 

bottle. The plate was inverted and blotted against clean paper towels. After this, 100 μL of Rat IL-

6 Conjugate was added to each well and covered with a new adhesive strip. The wells were 

incubated for two hours at room temperature and the aspiration/wash was repeated as explained 

above. Then 100 μL of Substrate Solution was added to each well and incubated for 30 minutes at 

room temperature, taking care to protect it from light. After 30 minutes 100 μL of Stop Solution 

was added to each well and gently tapped the plate to ensure thorough mixing. The optical density 

of each well was determined within 30 minutes, using a microplate reader set to 450 nm. The 

concentration of unknown samples was calculated by using standard curve. 

2.13 Urine metabolomics analysis 

2.13.1 Sample preparation and 1H NMR spectroscopic acquisition   

      Urine samples were collected from the animal subjects once per month using the metabolic 

cage. Following collection, samples was centrifuged at 350 x g for 15 min at 4°C to remove any 

debris, aliquoted and frozen at -80°C till analysis. Stored urine sample was mixed with 60ul of 1:9 

D2O diluted reference buffer solution containing 5mM DSS (disodium-2, 2-dimethyl 2-
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silapentane-5-sulphonate) and 10mM imidazole (Sigma-Aldrich, Mississauga, Ontario, Canada) 

to make the final volume of 600ul. Samples were mixed by vortexing and then transferred into 

5mm NMR tubes immediately before NMR acquisition. 1H NMR spectra of the prepared samples 

were acquired on a Varian 500 MHz spectrophotometer fitted with a cryoprobe maintained at 25 

K. Single pulse spectra using a solvent pre-saturation pulse sequence to suppress residual water 

sequences were acquired. The standard spectral acquisition conditions used includes collection of 

32 free induction decays (FIDs) into data points in 2 s; spectral width ~ 12000 Hz; temperature = 

25°C.  

2.13.2 NMR spectra pre-processing and multivariate data analysis  

     All 1H NMR spectra were batch processed in the form of free induction decay [78] files by 

using ACD NMR processing software (Advanced Chemistry Development Inc., Toronto, ON, 

Canada). Peak areas were used to quantify 1H spectra and resonance assignments were made by 

comparison with nuclear overhauser spectroscopy (NOESY) NMR spectra and by adding 

reference compounds whenever needed. FID files were Fourier transformed to convert the spectra 

from the time domain to the frequency domain. The converted spectra were baseline corrected, 

autophased and binned into 1000 bins. The table of integrals from spectra pre-processing was then 

imported into Excel and used for multivariate data analysis using SIMCA-P+ software (Version 

13, Umetrics, Sweden). For further analysis, the regions δ 4.5 to 6.0, which include the water 

resonances and cross–relaxation alterations with the urea peaks through exchanging of protons 

with the solvent, were excluded. Data were also Pareto-scaled prior to the subsequent model 

generations. Using SIMCA-P+ software, both multivariate pattern recognition techniques, 

unsupervised (principal component analysis, PCA) and supervised (partial least-squares 

discriminant analysis, PLS-DA) were employed to the data in order to discriminate sample spectra 
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of different experimental groups. PCA is an unsupervised multivariate projection method designed 

to extract and display the systemic variation in the data matrix X as a score plot. The corresponding 

loading plot provides information about the part of the spectrum that is responsible for the 

similarities and/or 

dissimilarities in the data set as observed in the score plot. Moreover, regression analysis using 

orthogonal projections to latent structures (OPLS) was conducted on several investigated variables 

(escape latency, βAmyloid 42, MDA and IL-6 concertration). Regression analysis enables the 

evaluation of the relationship between urinary metabolite profiles with the variables investigated 

independently of the metabolomic profiles. In PLS-DA, the data set was distributed into classes 

and its objective was to find a model that separated the classes of observation on the basis of their 

X-variables, while using a hypothetical Y-variable. Both OPLS and PLS-DA methods of analysis 

were supervised, meaning that some information about the data set was provided to the software 

prior to analysis.  

2.13.3 Metabolite identification and pathway interpretation 

     Changes in specific metabolite concentrations that contribute to the difference in metabolomic 

profile were quantified by Chenomx-NMR Suite (CHENOMX INC, Edmonton, Alberta). The fid 

files from the 1D 1H –NMR spectra were imported to the CHENOMX software. This software has 

its own processing interface where spectra were Fourier transformed and base line was corrected. 

Phasing was done using DSS reference peak at 0.0 ppm and water peak was deleted. The processed 

spectra were further analyzed in the profiler module of the software. The 500 MHz library with 

corresponding pH was selected. Identification and concentrations of different metabolites were 

calculated by fitting the set of peaks for those compounds in the sample spectrum. If the area was 

crowded with many peaks then multiple metabolites were fitted at one time to match the reference 
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spectrum closest to the sample spectrum. The identified and quantified compounds then were 

exported in to the Excel sheet and ANOVA was done to calculate the statistical significance of the 

differences in spectra.  Based on results from CHENOMX, MetaboAnalyst3.0 software was used 

to explore the potential pathway. MetaboAnalyst software utilizes pathway enrichment analysis 

and pathway topology analysis to translate metabolic trends into defined pathways relevant to the 

study. 

2.13.4 Pathway validation  

      Whole brain expression of the key enzymes (KMO, KYN, HAAO, KAT1, TPH2) that regulate 

the tryptophan metabolic pathway were measured by rt-PCR for further validation of the 

metabolomics data. The sequence of the primers are listed in Table 2 and same method was 

performed as described above in “2.7 Gene expression analyses.” 

2.14 Statistical analysis 

     All statistical analyses were performed by using IBM SPSS 23.0 (SPSS Inc. Chicago, IL). Data 

was analyzed using ANOVA followed by LSD or Tukey post-hoc tests. Comparisons between two 

groups was analyzed by using student t-test. Results are presented as the means + SEM with 

statistical significance level of 0.05 (p<0.05). 
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CHAPTER 3 RESULTS 

3.1 Survival of the aging rats 

      A total of 32 aging BN rats were used for this study. Animals were randomly assigned to four 

groups for a 23 week dietary intervention to investigate the in-vivo effect of OPP on AD induced 

by an atherosclerosic diet. At endpoint (week 23), each group had lost three animals before the 

termination of the study due to death or conditions approved by a veteran researcher that demanded 

an early euthanization (Table. 3).  

3.2 Body weight and diet intake  

      No significant differences were observed among groups at baseline (week 1) and endpoint 

(week 23) with respect to mean body weight (Fig. 6). For diet intake, average diet intake (g) per 

week (the total diet intake during the whole experiment period/23 weeks) was calculated and 

compared among four groups. Differences in weekly diet intake were not found to be significant 

among the four groups (Fig. 7). 

Table 3. The number of animals that survived at each month 

 Wk0  M1 M2 M3 M4 M5 Endpoint 

C 8 7 7 7 6 5 5 

H 8 8 8 8 7 6 5 

HP 8 8 8 8 7 5 5 

HC 8 8 7 7 6 5 5 
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Fig. 6 Mean body weight. Comparison of mean body weight in Control (C), High cholesterol 

(H), High cholesterol + 5% OPP (HP) and High cholesterol + 2% curcumin (HC) at baseline 

(week 1) and endpoint (week 23). Data are expressed as mean±SE. No significant differences 

between groups observed (p>0.05). 

 

 

Fig. 7 Mean weekly diet intake. Comparison of mean weekly diet intake in Control (C), High 

cholesterol (H), High cholesterol + 5% OPP (HP) and High cholesterol + 2% curcumin (HC) 

over the whole feeding period. Data are expressed as mean±SE. No significant differences 

between groups observed (p>0.05). 
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Specific Aim 1: To evaluate the effect of OPP on atherogenic diet induced AD in aged rats with 

the hypothesis that the high cholesterol diet and hypercholesterolemia will induce the AD 

pathological changes including Aß deposition, neuron death and cognitive decline, while OPP can 

improve their progression.    

3.3 Effect of diet on lipid profile  

      In this study, we created a diet-induced hypercholesterolemic rat model without the use of gene 

transfection or pharmacological supplementation. To confirm the effects of the atherosclerotic diet 

on creating peripheral hypercholesterolemic conditions, plasma and liver lipid profiles were 

examined for all rats.  

3.3.1 Plasma lipid profile 

       The mean plasma total cholesterol (TC) (Fig. 8) was significantly increased with the high 

cholesterol diet (ANOVA,p<0.05) as compared to the control diet group. There was no difference 

in plasma TC among any of the high cholesterol fed animals; The concentration of HDL-C was 

significantly higher in the control group (p < 0.05) as compared to the high cholesterol and high 

cholesterol+OPP group (p < 0.05); There was no significant difference between the control and 

the high cholesterol + curcumin group (Fig 9). We then calculated the non-HDL cholesterol level 

using total cholesterol level to subtract the HDL-cholesterol (HDL-C). The result indicated the 

same changes observed in total cholesterol level (Fig 10). The TC/HDL-C ratio was also 

significantly lower in control group when compared with the other high cholesterol diet groups 

(p<0.05) as shown in Fig 11. Taken together, the results show that feeding rats with a two percent 

high cholesterol diet for 23 consecutive weeks resulted in marked hypercholesterolemia.  

Interestingly, it seems that curcumin may have the ability to maintain the HDL level by alleviating 

the hypercholesterolemia effects from the diet, as there is no significant difference in HDL when 
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compared to the control diet group. The curcumin diet group also had a significant lower Non–

HDL cholesterol level and TC/HDL ratio when compared to the other two high cholesterol diet 

group (H & HP). The possible hypolipidemic effects of curcumin demonstrate its potential 

therapeutic effect in atherosclerotic diseases. 

3.3.2 Lipid profile changes in tissues 

      Since liver is the key organ regulating cholesterol metabolism, we also measured the total 

cholesterol level in liver tissue due to the diet. The liver/body weight (BWT) ratio of the rats were 

also examined. The results show liver/BWT ratio was significantly increased in the high-

cholesterol fed animals (p<0.05) (Fig.12). The mean liver cholesterol was also significantly 

increased with the high cholesterol diet (Fig.13, p<0.05) compared to the control group, reflecting 

the same trend found in the weight of the liver tissue/BWT.  This demonstrates that a 

hypercholesterolemic diet increased the plasma cholesterol as well as hepatic content of total 

cholesterol. In order to investigate how a high cholesterol diet can impact the brain, total 

cholesterol concentration in the brain was also measured. There was no significant difference 

among four groups, indicating the intake of dietary-sourced cholesterol is not associated with brain 

cholesterol level (Fig.14). 

3.3.3 Gene expression of the HDL related gene 

      In order to explore the mechanism of how curcumin affects plasma HDL level, we next 

examined the expression of the gene that regulates HDL production. Apolipoprotein A-1 (ApoA-

1) is a major component of the high-density lipoprotein (HDL) particle, which is necessary for the 

efficient transport and clearance of cholesterol from peripheral tissues to the liver through a process 

called reverse cholesterol transport. The results showed the expression of liver gene ApoA-1 that 

encodes the apolioprotein A-1 was significantly upregulated by curcumin in the HC group 
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compared to the high cholesterol (H) group(p<0.05) (Fig.15). There is no significant difference 

between control (C) and high choleserol + curcumin (HC) diet group, demonstrating that curcumin 

can maintain the HDL level by upregulating the Apo A-1 gene expresion in liver. 

 

 
 
 

 

Fig.8 Effect of atherosclerotic diet on plasma total cholesterol level. Comparison of mean 

plasma total cholesterol in Control (C), High cholesterol (H), High cholesterol + 5% OPP (HP) 

and High cholesterol + 2% curcumin (HC) over the whole feeding period. a,b: C is significantly 

different from H, HP and HC ( p<0.05). Data are expressed as mean±SE. 

 

Fig.9 Effect of atherosclerotic diet on plasma HDL-cholesterol level. Comparison of mean 

plasma HDL-cholesterol level in Control (C), High cholesterol (H), High cholesterol + 5% OPP 
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(HP) and High cholesterol + 2% curcumin (HC) over the whole feeding period. a,b : C is 

significantly different from H, HP  ( p<0.05). No significant difference between HC and other 

groups. Data are expressed as mean±SE. 

 

Fig.10 Effect of atherosclerotic diet on plasma non HDL-cholesterol level. Comparison of 

mean plasma non HDL-cholesterol level in Control (C), High cholesterol (H), High cholesterol + 

5% OPP (HP) and High cholesterol + 2% curcumin (HC) over the whole feeding period. a,b: C is 

significantly different from H, HP and HC ( p<0.05). c: HC is significant different from H and 

HP (p<0.05). Data are expressed as mean ± SE. 

 

Fig.11 Effect of atherosclerotic diet on plasma Total cholesterol (TC)/HDL ratio. 

Comparison of mean plasma TC/HDL ratio in Control (C), High cholesterol (H), High 

cholesterol + 5% OPP (HP) and High cholesterol + 2% curcumin (HC) over the whole feeding 

period. a,b: C is significantly different from H, HP and HC ( p<0.05). c: HC is significant 

different from H and HP (p<0.05). Data are expressed as mean±SE. 
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Fig.12 Effect of atherosclerotic diet on liver/body weight (BWT) ratio. Comparison of mean 

liver/body weight (BWT) ratio in Control (C), High cholesterol (H), High cholesterol + 5% OPP 

(HP) and High cholesterol + 2% curcumin (HC) over the whole feeding period. a,b: C is 

significantly different from H, HP and HC ( p<0.05). Data are expressed as mean ± SE. 

 

 

 

Fig.13 Effect of atherosclerotic diet on liver cholesterol level. Comparison of mean liver 

cholesterol level in Control (C), High cholesterol (H), High cholesterol + 5% OPP (HP) and 

High cholesterol + 2% curcumin (HC) over the whole feeding period. a,b: C is significantly 

different from H, HP and HC ( p<0.05). Data are expressed as mean ± SE. 
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Fig.14 Effect of atherosclerotic diet on brain cholesterol level. Comparison of mean brain 

cholesterol level in Control (C), High cholesterol (H), High cholesterol + 5% OPP (HP) and 

High cholesterol + 2% curcumin (HC) at baseline (week 1) and endpoint (week 23). Data are 

expressed as mean±SE. No significant differences between groups observed (p>0.05). 

 

 

Fig.15 Effect of atherosclerotic diet on liver gene expression of Apo A-1.  a,b : High 

cholesterol diet significantly down regulates Apo A-1 expression in high cholesterol (H) and 

high cholesterol + OPP (HP) group as compared to control (C) group  (p<0.05); c: High 

cholesterol + curcumin diet group(HC) has a significant higher expression as compared to high 

cholesterol diet (H) group and OPP supplement group (p<0.05).  Data are expressed as 1/ ΔCT 

values which was normalized against GAPDH (mean±SE).  
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3.4 Effect of diet on spatial learning ability 

      Escape latency (EL) using a Morris water maze was measured to determine the rat’s spatial 

learning. Because the aging rats were fatigued on day five, which may interfere with their 

performance, we compared the means of EL on day three for each group.  First, we compared the 

means of escape latency (EL) among the four groups at each time point from baseline to month 

five (Fig.16). In month two, the high cholesterol + curcumin (HC) group used the shortest time(s) 

on average to locate the platform compared to the other three groups (p<0.05). In month three, the 

control group as well as both treatment groups showed significant time differences from the high 

cholesterol diet group (p<0.05). In month four, the average time that HC group animals used was 

once again significantly less compared to the other three groups(p<0.05),  meaning both OPP and 

curcumin appear to preserve memory in targeting the underwater platform. However, OPP only 

shows the significant difference at month three. Reasons for this could include loss of the aging 

animals during the long term of the study (5.5 month). Therefore, months three and four are more 

likely to reflect the spatial learning ability of the animals. At month five, the study’s endpoint, 

average time the animals spent in water was longer than month four, which could be a result of 

aging.   

        Next, we compared the means of escape latency (EL) over four months for each group (Fig 

17).  For control group, there was no significant difference across the entire study period; the same 

trend was observed on the high cholesterol group (H).  For the OPP supplement group (HP), 

significant differences began in month three and continued to month four (p<0.05); For the 

curcumin supplement group, a significant difference started in month two and lasted through 

month four. (p<0.05).  
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      Finally, the improvement in the animals’ spatial learning ability during the feeding period was 

investigated. The improvement was calculated by using the escape latency (EL) at month four 

subtracted from month one. The means of the difference were compared.  It was found that only 

OPP group had a significant improvement in EL (p<0.05, Fig. 18). 

 

Fig.16 Linear graph of the spatial learning ability throughout whole study. Comparison of 

the means of escape latency (EL) at day 3 among 4 groups at each time point from baseline to 

month 5. In month two, high cholesterol + 2% curcumin (HC) group used the shortest time(s) on 

average to locate the platform as compared to the other three groups. a,b: HC is significantly  

different from C,H and HP(p<0.05); In month three, control group as well as the other two 

treatment groups were significantly different from the high cholesterol diet group;  a,b: H is 

significantly different from C, HP and HC groups (p<0.05); In month four,   the average time that 

HC group animals used was once again significantly less compared than in the other three 

groups. a,b: HC is significantly different from C,H and HP (p<0.05); Data are expressed as mean 

± SE. 
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Fig.17 Bar graph of the time course change of spatial learning ability in each group. 
Comparison of the means of escape latency (EL) over four months for each group. In the 

control group, there is no significant difference over the study period; the same trend was 

observed on the high cholesterol group (H).  In OPP supplement group (HP), a significant 

difference began in month three and continued through month four. a,b: months three and four 

are significantly different from months one and two. (p<0.05). In curcumin supplement group, 

significant differences began inmonth two and lasted through month four. In month three, 

animals on average took a longer time to find the platform as compared to month two, but the 

difference is not significant. a,b: months two and four are significantly different from month 

one (p<0.05). Data are expressed as mean ± SE. 
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Fig.18 Improvement in spatial memory learning ability in each group. Comparison of the 

means of the difference by using the escape latency (EL) at month 4 to be subtracted by month 1; 

a,b: High cholesterol + 5% OPP (HP) has the most improvement in the spatial learning ability 

compared to the control (C) and high cholesterol (H) diet group (p<0.05); No significant 

difference was observed between high cholesterol + 2% curcumin (HC) group and other groups.  

Data are expressed as mean ± SE.  

 

3.5 Effect of diet on AD-like histological changes on the rat brain 

3.5.1 Morphological changes of neurons in hippocampus  

      One of the prominent pathological features of Alzheimer's disease is neuronal death and loss, 

which will ultimately result in brain atrophy. It has been reported that the hippocampus, the brain 

region responsible for memory and spatial learning ability, is one of the areas that is particularly 

vulnerable to the degenerative processes by exhibiting neuronal dysfunction in the earliest stage 

of the disease [79, 80]. Hence, some of the earliest damage can be found in the hippocampus. In 

this study, rat brain right hemispheres slides were prepared by the histology lab at Michigan State 

University. The slides were examined under the microscope (Nikon Eclipse 80i, Melville, NY). 

Sections containing the hippocampus area were first subjected to H&E staining to observe the 

morphology of the neurons lined up in a pyramidal layer in the hippocampus. The hippocampus 

was  examined by  sub-region: CA1 (cornu ammonis region 1), CA3 (cornu ammonis region 3) 

and  DG (dentate gyrus) region based on the “Rat Brain Atlas”[77]. The pyramid cells were 
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visualized and a healthy neuron was defined by the following characteristics: ①big size and intact 

oval shape with abundant cytoplasm and ②lined up regularly with full nucleus, sparse nuclear 

chromatins and clear nucleoli cell shape [81]. The results showed necrotic cells were identified 

with a shrunken nucleus or nucleus clumping into large round speckles as well as a  

hyperchromatism (chromatin condensation) in all animals.  The high cholesterol group showed 

more neuron death (shown with an arrow) compared to control, high cholesterol +OPP and high 

cholesterol+ curcumin groups in CA1, CA3 and DG area (Fig.19). In order to quantify the number 

of the healthy neurons, we also counted their numbers in the hippocampus area. As shown by Fig. 

20, there was a significant decrease in healthy neurons in both control and high cholesterol group 

compared to the other two treatment groups (HP, HC) (p<0.05). A decrease in the number of 

healthy neurons in control groups might be a result of aging and the dietary supplement (OPP& 

curcumin) helping to preserve more healthy neurons in those groups.  
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Fig.19 Effects of atherosclerotic diet and OPP treatment on histopathological changes in 

the hippocampus revealed by hematoxylin and eosin (HE) staining (20 x). Left column: 

Comparison of the histopathological changes in the hippocampal CA1 region among 4 groups 

(Control (C), High cholesterol (H), High cholesterol + 5% OPP (HP) and High cholesterol + 2% 

curcumin (HC)). Middle column: Comparison of the histopathological changes in the 

hippocampal CA3 region among four groups. Right column: Comparison of the 

histopathological changes in the hippocampal DG region. Necrotic neurons (nucleus shrinkage, 

condensed chromatin and loss of cytoplasm structure) were easily observed, as the arrow 

indicates. In the H group, there is a loose and disordered arrangement of cells and more neuron 

shrinking deformations as compared to other groups. CA1, cornu ammonis region 1; CA3, cornu 

ammonis region 3; DG, dentate gyrus.  
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Fig.20 Quantification of the healthy neurons in the hippocampus. Comparison of the means 

of the number of health neurons among 4 groups (Control (C), High cholesterol (H), High 

cholesterol + 5% OPP (HP) and High cholesterol + 2% curcumin (HC)); a,b: the OPP fed group 

(HP) and the curcumin (HC) fed group had higher number of healthy neurons as compared to the 

control as well as high cholesterol diet group (p<0.05, n=4); Data are expressed as mean±SE. 

3.5.2 Extracellular amyloid plaque deposition  

      Another important pathological feature of Alzheimer's disease is the formation and deposition 

of the amyloid plaque, which can lead to the neuron death and loss. Congo red staining was used 

to detect the amyloid plaques deposited in the hippocampus area. As is shown by Fig.21&22, high 

cholesterol diet-induced plaque formation was seen in the CA1 area as well as the DG area in all 

four groups, while only a few plaques were observed in the control group. A higher density of 

plaque deposition in the CA1 and DG areas was observed in animals from the H group as compared 

to those of other two treatment groups (i.e. HP and HC).  In addition, amyloid load was calculated 

by comparing the total area occupied by the amyloid plaque to the total area of hippocampus. The 

high cholesterol group had the highest average plaque load (total plaque area/total hippocampus 

area %) compared to other two treatment group (p<0.05) (Fig. 23).  
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Fig.21 Effects of atherosclerotic diet and OPP treatment on histopathological changes in 

the hippocampus CA 1 area revealed by Congo red staining (10 x). A:  The CA1 area was 

clean in control group (C), no plaque was detected; B: many plaques spread throughout the CA 1 

area which were observed as the arrow pointed in high cholesterol group (H);  C: the CA 1 was 

clean in high cholesterol + OPP group (HP);  D: sporadic small plaques were observed in high 

cholesterol + curcumin  group (HC). 
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Fig.22 Effects of atherosclerotic diet and OPP treatment on histopathological changes in 

the hippocampus DG area revealed by Congo red staining (10 x). A:  The DG area was clean 

in control group (C), no plaque was detected; B: many plaques were spotted throughout the DG 

area which were observed as the arrow pointed in high cholesterol group (H); C: the DG was 

clean in high cholesterol + OPP group (HP); D: sporadic small plaques were observed in high 

cholesterol + curcumin group (HC). 
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Fig.23 Amyloid plaque load in the hippocampus. Comparison of the means of the ratio 

between total area occupied by amyloid plaques and total hippocampus area among 4 groups; 

a,b: the high cholesterol diet group had highest amyloid burden and the difference is significant 

after comparing the H group to C, HP and HC (p<0.05, n=4); Data are expressed as mean ± SE. 

 

3.5.3 Hippocampal total β-amyloid 42 level 

       β-amyloid 42 is the main component of the senile amyloid plaque [82]. Therefore, we also 

measured β-amyloid 42 concentration in the hippocampus of rats’ brain by using enzyme-linked 

immunosorbent assay (ELISA). The results showed the same trend as the histological changes 

(Fig.24); the high cholesterol group had a higher concentration as compared to other two treatment 

group (HP & HC) (p<0.05), which  explains the amyloid evidence that was observed in the 

histology. However, a higher level of β-amyloid 42 was also found in the control group, where no 

plaque deposition was seen in histology. The reason could be that more soluble amyloid peptide 

was produced and it was not visible under the microscope.    
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Fig.24 Total β-amyloid 42 level of hippocampus. Comparison of the means of the total β-

amyloid 42 level among 4 groups (Control (C), High cholesterol (H), High cholesterol + 5% 

OPP (HP) and High cholesterol + 2% curcumin (HC)); both control and high cholesterol diet 

group had a significant higher amyloid concentration compared to the other two treatment 

groups; a,b: comparison of the C, H group with HP and HC (p<0.05, n=4); Data are expressed as 

mean ± SE. 
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Specific Aim 2: To examine the possible mechanism of actions of OPP in AD rat model by 

investigating its  effects on improving the lipid peroxidation, inflammation and oxidative stress 

induced gene expression in brain that lead to the plaque formation                  

3.6 Lipid Oxidation 

3.6.1 MDA measurement on plasma, liver and brain tissues 

      It has been proposed that oxidative stress is associated with amyloid plaque, neuron loss and 

other AD pathological features. The phospholipid composition of neuronal membranes, such as 

the ratio of membrane -3 to -6 long-chain PUFAs, can be attacked by free radicals from the 

periphery and the CNS. The lipid peroxyl radical generated will then take a hydrogen atom from 

a nearby PUFA and form lipid hydroperoxide. These lipid hydroperoxides then decompose into 

aldehydes, ketones, and hydroxynonenal (HNE) with the help of transition metal ions [83]. As a 

main product of the lipid oxidation and a biomarker of the oxidative stress, we first looked at the 

MDA level to examine the antioxidative effect of OPP and curcumin [30]. Because the toxic 

aldehydes resulting from lipid peroxidation in the brain in AD can diffuse from the primary site 

and into the blood stream, we measured the MDA level in plasma as well as liver and brain tissue 

by using TBAR method. The result showed that the MDA level in plasma was increased in the 

animals from high cholesterol diet group. We found a significant difference between H group and 

C, HP and HC groups (p<0.05) (Fig.25). The same effect was found in the liver tissue (Fig.26), 

which indicates that the liver is a primary organ in the generation of oxidized lipids, which are 

further released into the blood circulation. Both OPP and curcumin can reduce the lipid 

peroxidation in the liver tissues and also lower the toxic aldehyde level in blood. However, in the 

brain MDA level, only the HP group is significantly lower than the H group (Fig 27). HC seems 

to lower the MDA, for the p value is close to 0.05 (p=0.07). The results indicate that both OPP and 

curcumin can bring down the whole brain oxidative level. However, it remains in question whether 
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OPP and curcumin reduce active aldehydes in blood, indirectly improving levels of brain stress or 

if they directly impact the CNS.  

 

 

 

Fig. 25 Effect of atherosclerotic diet and OPP treatment on the lipid peroxidation in plasma. 
Comparison of the means of the MDA level (uM) among 4 groups (Control (C), High cholesterol 

(H), High cholesterol + 5% OPP (HP) and High cholesterol + 2% curcumin (HC)); a, b: H is 

significantly different from C, HP and HC (p<0.05). Results represent mean + SE. 
 

 

Fig.26 Effect of atherosclerotic diet and OPP treatment on the lipid peroxidation in liver 

tissue. Comparison of the means of the MDA level (nmol/mg tissue) among 4 groups (Control 

(C), High cholesterol (H), High cholesterol + 5% OPP (HP) and High cholesterol + 2% curcumin 

(HC)); a, b: H is significantly different from, HP and HC (p<0.05). Results represent mean + SE. 
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Fig.27 Effect of atherosclerotic diet and OPP treatment on the lipid peroxidation in brain 

tissue. Comparison of the means of the MDA level (nmol/mg tissue) among 4 groups (Control 

(C), High cholesterol (H), High cholesterol + 5% OPP (HP) and High cholesterol + 2% curcumin 

(HC)); a, b: H is significantly different from HP (p<0.05); no significant difference was found 

when compared H to C and HC group while HC show a trend that close to the significance 

(p=0.07). Results represent mean + SE. 

3.6.2 Urinary ketone measurement  

      Ketone formation has been observed in radical termination reactions in the oxidation of fatty 

acids [84]. We measured the ketone concentration in rat urine samples and all results were 

normalized by the creatinine concentration. The results show that urinary 3-hydroxibutyrate 

(3HOB) was increased in the animals from high cholesterol diet group. There is a significant 

difference between H group and the C, HP and HC groups (p<0.05) (Fig.28).  This further 

confirms the high oxidative levels in the body of the animal fed with high cholesterol diet and 

the antioxidant effect of OPP and curcumin at the whole body level. 
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Fig. 28 Effect of atherosclerotic diet and OPP treatment on ketone formation in urine 

samples. Comparison of mean 3-hydroxybutyrate level (mMol/M creatinine) among 4 groups 

(Control (C), High cholesterol (H), High cholesterol + 5% OPP (HP) and High cholesterol + 2% 

curcumin (HC)); a, b: H is significantly different from C, HP and HC (p<0.05); Results represent 

mean + SE. 

3.7 Inflammation biomarker 

      Inflammation is another important contributor to AD pathology, as cytokines amplify the local 

inflammatory response and promote the progression of plaque formation. Detectable levels of 

circulating cytokines might be used for monitoring the progression of brain inflammation 

associated with AD. Interleukin-6 (IL-6), a circulating cytokine, has been identified as a marker of 

inflammation in  chronic diseases including AD [85]. As is shown by Fig.29, the plasma IL-6 level 

was significantly increased in the animals on the high cholesterol diet when compared to the 

curcumin diet group (p<0.05). Therefore, curcumin shows some impact in repression of whole 

body inflammation, which might also affect the CNS, as the BBB is permeable to inflammatory 

factors when it is damaged and has lost its integrity.  
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Fig.29 Effect of atherosclerotic diet and OPP treatment on plasma cytokine level. 

Comparison of mean IL-6 (ng/ml) among 4 groups (Control (C), High cholesterol (H), High 

cholesterol + 5% OPP (HP) and High cholesterol + 2% curcumin (HC)); a, b: H is significantly 

different from HC (p<0.05); Results represent mean + SE. 

3.8 Expression of the genes in brain that lead to the plaque formation 

      As the critical enzymes of the amyloid cascade pathway, over-expression of the APP and 

BACE1 genes will trigger the overproduction of the β-amyloid 42 peptides, the primary 

component of amyloid plaque deposition found in brain. The Apo E gene is another important 

gene encoding the ApoE lipoprotein.  ApoE lipoprotein is the major transport protein for 

extracellular cholesterol and it mediates cholesterol exchange between neuronal and non-neuronal 

cells. Defects of homeostasis of cholesterol in brain are linked to extracellular deposition of the β 

amyloid 42 peptide.  It has also been reported that there is a close relationship between abnormal 

expression of these genes, and oxidative stress, and inflammation in amyloid pathology. To test 

this, we measured the APP, BACE and Apo E genes expression from the hippocampus.  The results 

showed that expression of APP gene is significantly higher in high cholesterol-fed group and the 

control diet group when compared to the OPP and curcumin supplement groups (p<0.05) (Fig 30); 

the same effect was observed on the expression of the BACE 1 gene (Fig 31). Therefore, OPP and 

curcumin can help down-regulate these two enzymes and prevent the amyloid pathway shunt 
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toward the plaque formation direction. The control group also had a higher gene expression, 

implying that aging also contributes to the plaque formation pathway. These gene expression 

results reflect the same trend as observed in the β-amyloid 42 level by ELISA. For ApoE, high 

cholesterol diet-fed animals had a significantly higher gene expression when compared to the other 

three groups (p<0.05) (Fig 32). This demonstrates that dietary high cholesterol can affect the 

normal transportation and distribution of the cholesterol in brain.   

 

Fig.30 Hippocampus gene expression of APP gene.  a,b: a significantly higher expression of APP gene 

in high cholesterol (H) and control (C) groups was found as compared to the high cholesterol + OPP (HP) 

group as well as high cholesterol + curcumin (HC) group (p<0.05); ).  Data are expressed as 1/ ΔCT 

values which was normalized against GAPDH (mean±SE).  
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Fig.31 Hippocampus gene expression of BACE 1.  a,b: a significantly higher expression of 

BACE 1 gene in high cholesterol (H) and control (C) groups was found as compared to the high 

cholesterol + OPP (HP) group as well as high cholesterol + curcumin (HC) group (p<0.05); Data 

are expressed as 1/ ΔCT values which was normalized against GAPDH  (mean±SE).  

 

 

Fig.32 Hippocampus gene expression of ApoE.  a,b: a significantly higher expression of ApoE 

gene in high cholesterol (H) was found as compared to the control (C) group, high cholesterol + 

OPP (HP) group as well as high cholesterol + curcumin (HC) group (p<0.05); Data are expressed 

as 1/ ΔCT values which was normalized against GAPDH  (mean±SE).  
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 Specific Aim 3: To identify changes in urinary metabolomics profile and the metabolites altered 

in AD for pathway exploration 

3.9 Exploration of the time-course changes in the urinary 1H NMR metabolomic profiles of 

four groups  

     Differences in the metabolomic profiles of these aging rats subjected to different diets (standard 

control diet, 2% high cholesterol diet, 2% high cholesterol diet+5% OPP diet, 2% high cholesterol 

diet+2% curcumin diet) in this study were evaluated using proton nuclear magnetic resonance 

spectroscopy, 1H NMR. Spectra separation or discrimination analysis was carried out using 

SIMCA-P+ software, utilizing both unsupervised (PCA) and supervised techniques (PLS-DA). 

We aimed to find possible distinctions in urinary metabolomic profiles by comparing four groups 

at three different timepoints. We began our analysis with an unsupervised principal component 

analysis (PCA) which provided a basic overview of the similarities and differences in the 

metabolomics profiles of groups of animals on different diets. The PCA score plot in Fig. 33 A 

shows there is no clear separation among four groups at the baseline (week 0), indicating all 

animals arrived at the same level of health. Next, using the supervised technique, a PLS-DA score 

plot confirmed what was observed on the PCA plot: no separation among the four groups (Fig. 33 

B).  At the intermediate timepoint (week 12), the PCA score plot showed a separation of the urinary 

NMR spectra of control diet animals from the other three high cholesterol diet groups (Fig 34 A). 

The curcumin supplement group was also well separated from the other groups and OPP began to 

separate from the high cholesterol diet group. The clear separation was also obvious in the 

supervised PLSDA score plot as shown in Fig.34 B. As depicted by the diagram, the four groups 

are clearly separated along the principal component 1 (t1). The principal component 1 (t1) accounts 

for the most variation in the data and the subsequent component (t2) accounts for the second most 
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variation in the data.  The control group was well separated from the other three high cholesterol 

diet groups, reflecting the effects of the hypercholesterolemia; the curcumin group has already 

become well separated from high cholesterol group at week 12, showing an influence the curcumin 

supplement on the higher cholesterol diet. Animals from the OPP group are clustered between the 

high cholesterol and curcumin groups on the diagram. This may indicate the start of a trend, where 

the OPP group separated from the high cholesterol diet group at that time point.  

         The corresponding loading plot in Fig. 34 C illustrates the regions in the spectra comprising 

metabolites that are influential in the separation of the four groups. The regions of variables that 

are responsible for the separation of control group are seen at ppm 3.02-3.42, 2.5-2.6; the regions 

of the variable that separated the curcumin group are 7.2-7.4. At the endpoint (week 20), the high 

cholesterol diet group was clearly separated from the other three groups, as is shown by the PCA 

score plot in Fig.35 A. The OPP group and curcumin group are clustered together while also being 

pulled closer toward the control diet group as the feeding trial proceeded.  Using the supervised 

technique, PLS-DA score plot showed a more pronounced separation between the high cholesterol 

diet group and other three groups (Fig. 35 B). Class discrimination of the supervised method 

improved the transparency and interpretability of the model. Therefore, OPP were more influential 

when the study was approaching its end. The PCA loading plot reveals the regions in the spectra 

that separated out the high cholesterol-diet group, including 3.5-3.9, 3.04-3.06, 4.33-4.35,4.03-

4.05; the regions of spectra responsible for separation of OPP and curcumin are 2.65-2.67, 7.2-7.3  

(Fig. 35 C ). 
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    Fig.33   Multivariate analysis of all four groups at baseline (Week0). (A)  The unsupervised 

method, PCA score plot based on urinary 1H NMR spectra of rats of four groups with control 

(Control), high cholesterol (High Cho), high cholesterol + OPP(OPP), high cholesterol +curcumin 

(Curcumin) at study baseline. (B)  The supervised method, PLSDA score plot based on urinary 1H 

NMR spectra of rats of four groups at study baseline. There is no significant difference in the 

urinary metabolomics profile of rats from either of the four groups at baseline. 



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. 

 

B. 

 

   

C.   

 

 

  

Fig.34 Multivariate analysis of four groups at intermediate time point (Week12). (A)  The 

unsupervised PCA score plot based on urinary 1H NMR spectra of rats of four groups with 

control(Control), high cholesterol (High Cho), high cholesterol + OPP(OPP), high cholesterol + 

curcumin (Curcumin) at intermediate timepoint. (B)  The supervised method, PLSDA score plot based 

on urinary 1H NMR spectra of rats of four groups at intermediate time point. (C)  Corresponding 

loading plot manifesting the regions in the spectra comprising metabolites that are influential in the 

separation of the four groups.  Control and curcumin groups were well separated from high 

cholesterol and high cholesterol + OPP groups in the urinary metabolomics profile of rats at week 12. 
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Fig.35 Multivariate analysis of four groups at endpoint (Week20). (A)  The unsupervised PCA 

score plot based on urinary 1H NMR spectra of rats of four groups with control (Control), high 

cholesterol (High Cho), high cholesterol + OPP(OPP), high cholesterol + curcumin (Curcumin) at 

intermediate timepoint. (B)  The supervised method, PLSDA score plot based on urinary 1H NMR 

spectra of rats of four groups at endpoint. (C)  Corresponding loading plot manifesting the regions 

in the spectra comprising metabolites that are influential in the separation of the four groups. 

Control and high cholesterol groups were well separated from other two treatment groups in the 

urinary metabolomics profile of rats at week 20. 
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3.10 Regression analysis  

        The relationship between urinary metabolite profiles and variables related to AD progression 

including spatial learning ability (Escape Latency), hippocampal βamyloid 42 concentration, brain 

oxidative stress, and peripheral inflammation (IL-6) was measured by regression analysis. As seen 

from Fig.36 A, an OPLS regression plot shows a weak correlation (R2=0.2384) between escape 

latency (EL) with urinary 1H NMR profiles of the four groups at baseline (week 0) and a high 

correlation ( R2=0.7956) at endpoint (week 20)(Fig.36 B). Fig.36 C shows the S-plot obtained 

from OPLS model at endpoint, which indicates the regions of the metabolites that are respectively 

positively and negatively correlated with EL.  Regions of the spectra  on the upper right side 

including 4.05,4.07,4.35,4.37,7.4,7.5,3.04,3.06  are metabolites positively correlated with the EL 

and those on the lower left side including 7.34,7.36,7.13,7.14  are metabolites negatively correlated 

with  EL. Similar regression analysis on the hippocampus βAmyloid 42 concentration also 

revealed a strong correlation with urinary NMR profiles ( R2=0.7406) at endpoint (week 20) and 

a weak correlation at  baseline (R2=0.3076) (Fig.37 A&B). An S-plot of the OPLS score plot at 

the endpoint shows the regions (upper right and left lower side) of the metabolites which could be 

potential biomarkers of βAmyloid 42 accumulation. The metabolites that are positively correlated 

with amyloid level are located at 2.56, 2.71, 2.72, 3.24, 3.25, 4.03, 4.05 and those negatively 

correlated with amyloid levels are found at 7.4, 7.3 and 2.84 (Fig.37 C).  As to the correlation of 

urinary NMR profile with peripheral and CNS oxidative stress, both correlations show a moderate-

to-high R2 value:  0.6008 for IL-6 (Fig.39 B) and 0.6665 for MDA level (Fig. 38 B) at the endpoint 

as compared to the weak correlation at baseline: R2=0.3526 for IL-6 (Fig. 39 A) and R2=0.2925 

for MDA (Fig. 38 A). The regions circled in the S-plots also show the location of metabolites that 

are involved in inflammation (Fig.39 C) and lipid oxidation (Fig.38 C). Having observed that 
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urinary metabolomic profiles of the animals with high cholesterol diet-induced AD correlated well 

with escape latency and β amyloid concentration, we then used the Chenomx software to identify 

and quantify the metabolites that are indicated by the S-plot, which will be discussed in next 

section. These could potentially be evaluated as noninvasive biomarkers of AD progression. 
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Fig.36 OPLS regression of escape latency (EL) with urinary 1H NMR profiles of the four 

groups at two time point. (A)  OPLS score shows a weak correlation (R2=0.2384) at baseline 

(week 0). (B)  OPLS score plot shows a high correlation (R2=0.7956) at endpoint (week 20). 

(C)  S-plot obtained from OPLS model at week 20. The circle on the upper right side includes 

the regions of metabolites in the spectra that is correlated with higher EL; Regions containing 

regions of the metabolites are circled at lower left side are correlate with shorter EL. 
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Fig.37 OPLS regression of hippocampus βAmyloid 42 concentration with urinary 1H 

NMR profiles of the four groups at two time point. (A)  OPLS score shows a weak 

correlation (R2=0.3076) at baseline (week 0). (B)  OPLS score plot shows a high correlation 

(R2=0.7406) at endpoint (week 20). (C)  S-plot obtained from OPLS model at week20. The 

circle on the upper right side includes the regions of metabolites in the spectra that is correlated 

with higher βAmyloid 42 concentration; Regions containing regions of the metabolites are 

circled at lower left side are correlated with lower βAmyloid 42 concentration. 
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Fig.38 OPLS regression of brain oxidative stress level (MDA) with urinary 1H NMR 

profiles of the four groups at two time point. (A)  OPLS score shows a weak correlation 

(R2=02925) at baseline (week 0). (B)  OPLS score plot shows a moderate-high correlation 

(R2=0.6665) at endpoint (week 20). (C)  S-plot obtained from OPLS model at week 20. The 

circle on the upper right side includes the regions of metabolites in the spectra that is 

correlated with higher MDA level; Regions containing regions of the metabolites are circled at 

lower left side are correlated with lower MDA level. 
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 Fig.39 OPLS regression of plasma inflammation level (IL-6) with urinary 1H 

NMR profiles of the four groups at two time point. (A)  OPLS score shows a 

weak correlation (R2=0.3526) at baseline (week 0). (B)  OPLS score plot shows a 

moderate-high correlation (R2=0.6008) at endpoint (week 20). (C)  S-plot obtained 

from OPLS model at week 20. The circle on the upper right side includes the 

regions of metabolites in the spectra that is correlated with higher IL-6 level; 

Regions containing regions of the metabolites are circled at lower left side are 

correlated with lower IL-6 level. 
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3.11 Identification and quantification of metabolite as a potential biomarker and pathway 

exploration 

              The Chenomx NMR Suite software (Chenomx Inc., Edmonton, Canada) was used to 

identify and quantify the metabolites responsible for separation observed in the PCA, PLS-DA 

and OPLS score plots. Metabolites were identified and measured for their concentrations by 

fitting the spectral peaks found for each compound in the compound library. Then, the 

concentrations of metabolites were subjected to an ANOVA test (SPSS Inc. Chicago, IL) for 

comparison of the concentration changes among the four groups.  A post-hoc test was also run 

to observe the differences within the groups. Details about the metabolites with significant 

differences in concentration are shown in Table 4. To further confirm the changes in 

concentration, we subjected our data to MetaboAnalysis 3.0, an online data analysis software. 

All metabolites represented above the 0.05 threshold line in that software are considered to be 

significantly different (Fig.40). The results from MetaboAnalysis corroborated results from the 

Chenomx software, so metabolites found significantly different were subject to pathway 

analysis. Impacted pathways and networks analysis and their statistics are shown in Figure 41 

and Table 5. The key aberrant pathways identified through this process include Tryptophan 

metabolism, Tyrosine metabolism, Ketone bodies synthesis and degradation, Butanoate 

metabolism, Taurine and hypotaurine metabolism, Methane metabolism, Glutathione 

metabolism, and Citrate cycle. The metabolites associated with individual pathways and their 

concentrations are shown in the figures below (Fig.42-44). Significant decreases (p<0.05) in 

concentration of tryptophan, 3-hydroxykynurenine, quinolinic acid were found in HP and HC 

groups when compared to the high cholesterol group (Fig 42 A-D). In addition, the 

concentration of serotonin, 5-hydroxytryptophan and melatonin was significantly higher in HC 
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when compared to the other three groups (p<0.05, Fig 42 F-H).  Meanwhile, as shown in Fig.43 

(A, B, C), it was observed that when subjects were given a high cholesterol diet, ketone bodies 

and ketone metabolite (2-oxoglutarate) were higher than the control  group. These effects were 

brought down to a similar level as control group with intervention of OPP as well as  curcumin 

supplements, which implies an antioxidant effect on lipids in the rats  on a high cholesterol diet.  

       Urinary concentration of serine was also found to be significantly higher in the high 

cholesterol diet group as compared to the control group (Fig.43 D).   The HC  groups were found 

to be significantly higher in tyrosine concentration, while a lower level of homogentisate was 

found in both HP and HC groups (p<0.05. Fig 44 A&B).  Taurine concentration was 

significantly higher in the control group as compared to the other three groups (p<0.05, Fig 44 

C).  A higher citrate level was found in control group after being compared to the HP and HC 

groups (p<0.05, Fig.44 D). The HP and HC groups had lower levels of trimethylamine and 

allantoin than high cholesterol group (p<0.05, Fig 44 E&G) and the group subjected to 

intervention with curcumin (HC) was found have lower level of homocysteine (p<0.05, Fig 44 

F). As these results indicate, some metabolites from tryptophan metabolism were significantly 

higher in the cholesterol fed animals as compared to the control. Because this pathway has been 

shown to be involved in neurodegenerative diseases [86], we investigated it in further detail.  

The effects of treatment with OPP or curcumin on the concentration of these metabolites are 

shown in Figure 45.   
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Table 4. Concentration of metabolites with significant change in the metabolomic profile 

measured by Chenomx and compared by using ANOVA and post hoc test  

Compounds NMR Chemical shift 

(ppm) 

P value  Fisher's LSD post-hoc 

Kynurenate 7.0 7.3 7.6 7.8 8.2 <0.01 HC - C; HC - H; HC - OPP 

2-Oxoglutarate 4.0 2.3 2.2 2.0 1.8 <0.01 C- HC; C - HP; H - HC; H - HP 

3-Hydroxykynurenine 7.5 7.0 6.7 4.1 3.7 <0.01 H - C; H - HC; HC-HP 

Melatonin  <0.01 HC - C; HC - H; HC - HP 

5-Hydroxytryptophan 10, 7.4,7.3,7.1,6.9 

4.0,3.4 3.2 

0.01 HC- C; HC - H; HC – HP 

Urea 5.8 <0.01 C - HC; C - H; C - HP 

Quinolinate 7.5 8.0  <0.01 H - C; H - HC; H - HP 

4-Hydroxyphenylacetate 7.2 6.9 3.4 <0.01 HC - C; HC - H; HC - HP 

Catechol 6.9 7.0 <0.01 HC - C; HC - H; HC - HP 

dTTP 1.9 2.4 4.2 4.6 6.3 7.7 <0.01 HC - C; HP - C; HC - H 

Phenol 7.0 7.3 6.9 <0.01 HC - C; HC - H; HC - HP 

Acetoacetate 2.3  3.4 0.02 H - C; H - HC; H - HP 

Riboflavin 2.5 2.6 3.7 3.9 4.0 4.4 

5.0 8.0 

0.02 C - H; C - HP 

Taurine 3.2 3.4 0.02 C - HC; C - H; C - HP 

Allantoin 8.0 7.3 6.0 5.4 0.02 H - C; H - HC; H - HP 

Citrate 2.7 2.5 0.03 C - HC; C - HP 

Tryptophan 3.3 3.5 4.1 7.2 7.3 7.5 

7.7 

0.03 C - H; HC - H; HP - H 

Serotonin 3.1 3.3 6.9 7.1 7.3 7.4 10 0.03 HC - C; HC - H 

Homoserine 2.0 2.2 3.8 3.9 0.03 HC - C; HC - H; HC - HP 

Phthalate 7.5 0.03 HC - C; HC - HP 
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Theophylline 8.0 3.6 3.4 0.03 HC - C; HC - H; HC - HP 

Tyrosine 7.2 6.9 3.9 3.2 3 0.03 HC - C; HC - H 

Ethanolamine 3.1 3.8 0.03 C - HC; H - HC; H - HP 

N-Phenylacetylglycine 3.7 7.3 7.4 7.9 0.04 HC - C; HC - H; HC - HP 

Homocysteine 2.2 2.3 2.8 2.9 3.9 0.04 H - C; H - HC 

3-hydroxybutyrate 1.2 2.3 2.4 4.1 0.04 H - C; H - HC; H - HP 

Trimethylamine 2.9 0.04 H - HC; H - HP 

Gentisate 6.8 7.0 7.3 0.04 H - C; H - HC; H - HP 

Serine 4.0 3.9 3.8 0.04 H - C 

 

 

Fig .40   Manhattan Plot (A) based on Chenomx measured with MetaboAnalyst 3.0 

software. The concentrations of all the metabolites measured by Chenomx was subjected to 

MetaboAnalyst 3.0 software.  The red line represents 0.05 threshold. Metabolites with significant 

difference were labeled in number above the threshold. The p values are transformed by -log10 

so that the more significant features (with smaller p values) is plotted higher on the graph. 1 – 

Kynurenate; 2 - 2-Oxoglutarate; 3 -3-Hydroxykynurenine;  4-Melatonin; 5- 5-

Hydroxytryptophan; 6 - Urea; 7 -Quinolinate; 8 - 4-Hydroxyphenylacetate; 9 - Catechol; 10 - 

Anthranilate; 11 - dTTP; 12- Phenol; 13 – Acetoacetate; 14- Riboflavin; 15 - Taurine; 16 - 

Allantoin; 17 - Citrate; 18 - Tryptophan; 19-Serotonin; 20 - Homoserine; 21 – Phthalate; 22 -  

Theophylline; 23 - Tyrosine; 24 - Ethanolamine; 25 - N-Phenylacetylglycine; 26 -  
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Homocysteine;  27 - 3-hydroxybutyrate; 28 - Trimethylamine; 29 - Gentisate ; 30 - Serine; 

31- ;31 - N Acetylserotonine; 32 - Glutathione ; 33 - Gentisate ; 34 - Tartrate ; 

 

  

 

 

Fig 41. Pathway analysis by MetaboAnalyst 3.0 software. MetaboAnalyst 3.0 output illustrating 

the most predominant metabolic pathways that correspond to the significant metabolites changed 

in the urinary metabolomic profiles. The larger a circle and higher on the y axis, the higher impact 

of pathway. 

 

 

 

 

 

 

Pathway Impact 
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Table 5. Pathways with the highest impact analyzed by MetaboAnalyst 3.0. 

Pathway name Hits p-value –log(p) Impact 

Tryptophan 

metabolism 

               5  

0.001874 

6.2794  

0.42989 

Tyrosine 

metabolism 

5 0.0020934 6.169 0.19071 

Synthesis and 

degradation of 

ketone bodies 

2 0.0048373 5.3314 0.6 

Butanoate 

metabolism 

3 0.0094628 4.6604 0.10145 

Metabolites with the most significant difference in the urinary metabolomic profile were 

subjected to MetaboAnalyst 3.0 for pathway analysis. MetaboAnalyst 3.0 identified highly 

significant pathways these metabolites involved (p<0.01); log-transformed values of p-value 

reflects the same trend with the significance of the pathway. The pathway with the highest 

impact has the highest -log (p) value. 
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 Fig.42 Selected urinary metabolites associated with the diet effect found in  

Tryptophan metabolism by the pathway analysis . Urinary metabolites identified to be  

significantly lowered at p<0.05 (detail see Table 4)  when comparing the four groups. 

 (A) Tryptophan; (B)Kynurenate; (C) 3 Hydroxykynurenine (D) Quinolinate  

(E) Kynurenine (F) Serotonin (G) 5-Hydroxytryptophan (H) Melatonin. Data are  

expressed as mean±SE.  

           A. 

 

B. 

 

              C. 

          

              

 

D. 

 

Fig.43 Selected urinary metabolites associated with diet effect found in ketone pathway, 

butanoate pathway and methane pathway by the pathway analysis. Urinary metabolites 

identified to be significantly lowered at p<0.05 (detail see Table 4) when comparing the four 

groups. (A) 3 hydroxybutyrate; (B) Acetoacetate; (C) 2 oxoglutarate (D) Serine. Data are 

expressed as mean±SE. (A), (B) were found in ketone pathway and butanoate pathway; (C) 

was found in butanoate pathway; (D) was found in methane pathway. 
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Fig.44 Selected urinary metabolites associated with diet effect found in 

tyrosine pathway, taurine pathway and citrate pathway by the pathway 

analysis. Urinary metabolites identified to be significantly lowered at p<0.05 
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(detail see Table 4) when comparing the four groups. (A) Tyrosine; (B) 

Homogentisate; (C) Taurine (D) Citrate (E) Trimethylamine (F) Homocysteine (G) 

Allantoin. Data are expressed as mean±SE. (A), (B) were found in tyrosine 

pathway; (C) was found in taurine pathway; (D) was found in citrate pathway; (F) 

was found in cysteine and methionine pathway;( G) was found in uric acid 

pathway. 

 

 

 

 

 

Fig 45.  Effect of OPP and curcumin on the alteration of the urinary 

metabolites from pathway of tryptophan metabolism. Schematic diagram 

outlining the changes of the metabolites in tryptophan pathway due to the effect OPP 

and curcumin diet. Red arrows (left side) are associated with OPP diet; blue arrows 

(right side) are associated curcumin diet. The down-pointed arrows means down 

regulated; up-pointed arrows mean up regulated. Serotonin pathway: 

TPH=tryptophan hydroxylase; kynurenine pathway: KAT1 =kynurenine 

aminotransferase 1 ; KMO=kynurenine 3-monooxygenase; Kyn= kynureninase; 

HAAO = 3-hydroxyanthranilic acid oxygenase 
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3.12 Investigating the gene expression for pathway regulation 

        To correlate and further explore the mechanism behind the urinary metabolomics profile 

described above, we performed the rtPCR to analyze the gene expression of genes that regulate 

the tryptophan metabolism.  In the tryptophan metabolic process, 95% of tryptophan is 

metabolized along the kynurenine pathway, which includes two steps: the formation of 

kynurenine from tryptophan, regulated by the enzymes IDO and TDO and further 

metabolization of kynurenine along the two distinct routes competing for KYN as a substrate, 

the KYN–kynurenic acid (KYNA) pathway and the quinolinate (quinolinic acid) pathway. The 

KYN –KYNA pathway is regulated by KYN aminotransferases (KAT 1), the major 

biosynthetic enzyme of KYNA formation in the brain.  In the KYN–Quinolinate pathway, 

kynurenine produces 3-hydroxykynurenine regulated by kynurenine 3-monooxygenase(KMO), 

and  KMO is then converted to  3-hydroxyanthranilic acid regulated by kynureninase (Kyn) and  

further converted with 3-hydroxyanthranilic acid oxygenase (HAAO). 3-hydroxyanthranilic 

acid becomes quinolinic acid, which serves as an NMDA agonist. At the same time, five percent 

of TRY is metabolized along the pathway for neurotransmitter serotonin (5-HT) biosynthesis. 

The rate-limiting step in this pathway is the hydroxylation of TRY catalyzed by TRY-

hydroxylase (TPH). The formation of 5-hydroxytryptophan(5-HT) from this step then serves as 

a substrate for melatonin synthesis.  

       In this study we performed the rtPCR on the investigation of the gene expression of KMO, 

Kyn, HAAO, KAT 1, and TPH 2 (Fig 46).  For the KMO, a significant difference was found 

between the control group and OPP groups (p<0.05) (Fig 46 A); The effect of OPP was also 

observed in the expression of the Kyn gene when compared to the control and high cholesterol 

diet groups (p<0.05, Fig 48 B). Significant difference were seen between the curcumin and 
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control groups as well the high cholesterol diet group in HAAO gene (p<0.05, Fig 46 C). 

Although no significant differences were found in KAT 1 gene expression when comparing the 

four groups (Fig 48 D1), a separate student T-test was run between the high cholesterol diet 

group and the curcumin group. This test found a higher gene expression in the curcumin group 

than in the high cholesterol diet group (p<0.05 Fig 46 D2). The same trend was found in the TPH 

gene; no significant difference was found when comparing the four groups  (Fig 46 E1),  but 

after running the student T-test, a significantly higher expression of TPH2 gene was found in the 

H group when compared to the HP group and HC group separately (p<0.05 Fig.46 E2 & E3).  

Therefore, OPP helped down-regulate KMO and Kyn and also upregulate TPH 2 genes, and the 

curcumin supplement intervention helped downregulate the HAAO gene and while also 

upregulating the KAT 1 and TPH 2 genes. These gene expression results reflect the same trend 

as observed in the urinary metabolomic profile. Some metabolites like 3-hydroxkynurenine and 

quinolinic acid can cross the BBB, and therefore the peripheral levels might reflect their changes 

in CNS.  A summary of the effects of OPP and curcumin on brain gene regulation of the enzymes 

in tryptophan metabolism are shown in Fig.47.   
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E2 

 

E3 

 

Fig.46 Brain gene expression of genes regulating the tryptophan-serotonin pathway.  
A. Gene expression of KMO gene. a,b : significantly higher expression of KMO gene in 

control (C) groups as compared to the high cholesterol + OPP (HP) group (p<0.05). B. 

Gene expression of the Kyn gene. a,b: significantly higher expression of Kyn gene in C  

groups and H as compared to the high cholesterol + OPP (HP) group (p<0.05). C. gene 

expression of the HAAO gene. a,b: significantly higher expression of HAAO gene in C 

and H  groups as compared to the HP group (p<0.05). D1. Gene expression of the KAT1 

gene; no significant differences were found after comparing the four groups. D2. Gene 

expression of the KAT 1 gene between two groups. a,b : significantly higher expression of 

KAT1 gene in HC  group as compared to the H group (p<0.05).  E1. Gene expression of 

the TPH2 gene; no significant difference was found after comparing the four groups. E2. 

Gene expression of the TPH gene between two groups (H &HP). a,b: significantly higher 

expression of TPH2 gene in HP  group as compared to the H group (p<0.05). E3.  Gene 

expression of the TPH gene between two groups (H &HC). a,b : significantly higher 

expression of TPH2 gene in HC group as compared to the H group (p<0.05);   Data are 

expressed as 1/ ΔCT values which was normalized against GAPDH  (mean±SE).  
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Fig. 47 Effect of OPP and curcumin on gene expression in the pathway of tryptophan     

metabolism. Schematic diagram outlining the changes of the metabolites in tryptophan 

pathway  due to the effect OPP and curcumin diet. Red circle and arrows (left side) are the 

genes that are associated with an OPP diet; Blue circles and arrows (right side) are the genes 

that are associated with a curcumin diet. The down-pointed arrows indicate down-regulation; 

up-pointed arrows indicateup-regulation.  Serotonin pathway: TPH=tryptophan hydroxylase; 

kynurenine pathway: KAT1 =kynurenine aminotransferase 1; KMO=kynurenine 3-

monooxygenase; Kyn= kynureninase; HAAO = 3-hydroxyanthranilic acid oxygenase. 
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CHAPTER 4 DISCUSSION 

      The vast majority of AD cases are sporadic, occurring more often in the population with an 

age above 65. Although some comprehensive evaluations including mental status assessments, 

analysis of blood and urine, and imaging exams such as CT or MRI can assist its diagnosis, 

absolute confirmation requires examination of brain tissue at autopsy. In addition, some 

pathological features have already occurred in the brain before the symptoms show up, which 

cause the patient to lose the best chance for early diagnosis and treatment of AD. Therefore, animal 

models have been developed and applied to elucidate the AD pathological progression and 

mechanisms. However, these animal models have relied on the utilization of genetic mutations 

associated with familial AD (FAD). Although genetic models have been invaluable in determining 

the molecular mechanisms of disease progression and for testing potential therapeutics, there are 

some translational concerns that transgenic models cannot replicate, including complex disease 

components such as age, diet and other risk factors.  There is an increasing awareness that lifestyle, 

especially a high fat/cholesterol diet, plays a detrimental role in cognitive function. Granholm et 

al. fed 16-months old rats a high cholesterol diet (2% cholesterol) and saturated fat diet (10% 

saturated fat) for eight weeks. The lipid profiles of these rats revealed elevated plasma triglycerides, 

total cholesterol, and LDL for the high fat/cholesterol group as compared to those on an iso-caloric 

control diet. Additionally, high fat/cholesterol treated rats had more working memory errors in the 

water radial arm maze and more dendrite loss as well as microglial activation in the hippocampus, 

which indicated a profound impaired memory and hippocampal morphology when subjects had a 

high cholesterol and fat diet [87] . In another study, rabbits were fed a 2% cholesterol diet for four, 

six, and eight weeks. They found that β amyloid immunoreactive features were observed in the 

hippocampus and adjacent cortex starting from week four. There was an increasing accumulation 
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of immunolabeled β-amyloid in hippocampus starting from week six. Neurons in the pyramidal 

cell layer were mostly affected. The β-amyloid deposition increased in severity with time on the 

hypercholestorol diet when comparing animals at weeks four, six,and eight[88] . Another study 

reported the application of statin drugs can strongly reduce levels of AD β-amyloid peptides as 

well as tangle formation both in vitro and in vivo by maintaining the plasma’s total cholesterol and 

LDL level [89-91]. Therefore, in our study, we used aging rats which arrived 22-24 months, 

approximately 60-70 years old in human age, and fed them with humanized hypercholesterolemia 

to create an AD model.  With a dietary supplementation of two percent cholesterol plus cholic 

acid, we observed a significantly elevated plasma total cholesterol, non-HDL cholesterol level and 

a higher total cholesterol/HDL ratio in the animals on this experimental diet (Figure 8, 10, 11). 

Meanwhile, except for the curcumin supplement group, the other two high cholesterol diet groups 

failed to maintain their HDL level compared to the animals from the control group (Fig.9). The 

liver cholesterol deposition as well as the liver/body weight ratio were also significantly higher in 

the high cholesterol diet fed animals (Fig 12-13), while no significant difference was obtained 

from the brain tissue total cholesterol among four groups (Fig.14).  Interestingly, when we 

compared the lipid profile of the four groups of animals, we found that rats fed a high cholesterol 

diet supplemented with curcumin for 23 weeks had an improved plasma HDL cholesterol level 

compared with the groups fed a high cholesterol diet only and a high cholesterol + OPP diet (Fig.9). 

Gene expression of  ApolipoproteinAI (apoAI), a major component of the high- HDL particle, also 

showed the same trend (Fig.15).  Because plasma HDL cholesterol is an independent negative risk 

predictor of cardiovascular disease (CVD), curcumin has been reported by the other studies to 

counteract the progression of atherosclerosis by  increasing the HDL level and improving HDL 
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funtionality [92, 93]. Thus, our result also implies a protective role of curcumin on chronic heart 

disease. 

        Through this process, we have created an animal model demonstrating all high cholesterol 

diet group animals developed hypercholesterolemia via a high cholesterol diet but did not create a 

change in brain cholesterol content. Using this model, we further tested the AD-like pathological 

changes, including behavior changes and amyloid evidence in the brain induced by an elevated 

peripheral cholesterol, and also examined the therapeutic effects of the dietary supplement OPP 

curcumin.   

        Spatial learning tasks, such as the Morris Water Maze (MWM), have been commonly used 

to screen aged rats and mice for cognitive status. This task was developed for use in rats, which 

are good swimmers compared to the mice whose performance are highly affected by other 

physiological or behavioral traits such as impaired thermogenesis or high anxiety. Because there 

are no local cues that mark the position of the platform, the rat's ability to locate it efficiently 

depends on the rat's use of a configuration of cues surrounding the pool. Normally, after a few 

training trials from a start location at the perimeter of the pool, rats can learn to swim directly to 

the escape platform. A good learning ability is reflected in shorter latencies to escape by reaching 

the platform. MWM was prevalently used in neurocognitive disorder studies. Anderson et al. used 

the Morris Water Maze to measure the spatial working memory changes in rats with transient 

neurodegeneration induced by NMDA receptor antagonist phencyclidine (PCP) prenatally.  When 

they compared the escape latency over the four daily trials, they found that the placebo group 

reduced their latency to locate the platform as training progressed, but the PCP-treated rats did not 

show an equivalent overall improvement.  In their second experiment, D-serine was also applied 

with PCP in these animals and their spatial learning performance in the MWM was measured and 
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compared with the PCP-only group. The result indicated a significant disruptive effect of PCP 

treatment on the latency of rats to locate the platform, and the co-administration of D-serine led to 

a significant improvement. In our study, by comparing the EL among four groups at each time 

point (baseline, month 1, month 2, month 3, month 4 and month 5), it was found that all of the 

groups started learning to locate the platform by cues at month 1 (Fig.16).  The curcumin 

supplement group showed a significantly shorter EL time, beginning at month two, when 

compared to the high cholesterol group. Control and OPP supplement groups animals performed 

better than the high cholesterol diet group, although the difference is not significant (Fig.17). At 

month three, the average time that control as well as the other two treatment groups spent in water 

to locate the platform was significantly less than the high cholesterol group, which means the 

animals fed a high cholesterol diet had the most impaired memory among the four groups. In month 

four, although high cholesterol diet group showed some improvement, a significant longer EL 

could still be observed when compared to the curcumin supplement group. In month five, all four 

groups showed some deficit in memory function as their EL were higher than the previous month, 

which is potentially the result of losing animals and aging.  

        When comparing the time-course performance within individual groups as indicated by figure 

18 and 19, we found that no significant difference in EL for the control group from month one 

through month four, meaning this group of animals maintained their memory and learning ability 

in four month study period. For the high cholesterol diet group, despire showing a trend in learning 

and memorizing the location of target at month four, there is still no significant difference in EL 

among the four time points; A significant improvement of EL was observed in OPP group at month 

three and month four when compared with month two and month one, which means the OPP 

supplement showed an effect in memory maintenance after three months of the dietary trial. As 
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curcumin served as a positive control group, this group kept the shortest time in platform searching 

as compared to the other groups. This result demonstrated that curcumin has a strong effect on the 

preservation of the memory and spatial learning ability.  

       Finally, we looked at the difference of EL between month one and month four and then 

compared the average differences among the four groups. The result showed that the OPP group 

had the biggest improvement in their performance in the MWM,implyings that OPP might have a 

function beyond memory improvement; it may also have an anti-aging effect as the improvement 

gained by this group is significantly higher than in the group with the high cholesterol diet as well 

as the control diet group (Fig.18).  Therefore, our MWM results indicated the detrimental effect of 

high cholesterol diet on cognitive function.  Similarly to our results, plasma cholesterol levels and 

its association with MWM performance has also been found in several studies using animal models 

of AD [1, 8].  Both OPP and curcumin show some ability to alleviate dementia.  As curcumin 

serves the positive control in our study, it is not surprising that curcumin created its effect earlier 

(month two) and lasted longer (until month four) compared to the OPP treatment group.   

      Next, we have also investigated the effect of OPP on AD brain hallmarks in this study.  

Amyloid plaque formation and associated neuron loss in the hippocampus were examined via 

histology.  Neuronal loss is a common pathway for a large number of degenerative processes in 

AD. The hippocampus, the brain structure in charge of spatial and episodic memory, is particularly 

vulnerable to the degenerative processes and may exhibit neuronal dysfunction in the earliest stage 

of the disease. To visualize the cell morphological alteration in the hippocampus area, 

Hematoxylin and Eosin (H&E) staining was used in this study.  From the H&E staining (Fig.19), 

we found more necrotic neurons and pyramidal neuron loss in the hippocampus of animals fed a 

high cholesterol diet. As a comparison, neurons in this region of the OPP and curcumin group rats 
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were more neatly arranged and in an intact shape. After quantification of the healthy cells, healthy 

neurons were significantly higher in number in the hippocampus area from OPP and curcumin 

supplemented groups (Fig.20).  Because the pyramidal cells depend on the synaptic inputs they 

receive to integrate information, the loss of these neurons is associated with synaptic dysfunctions. 

As the memory deficits observed in aged rodents are the consequence of  hippocampal synaptic 

plasticity[94], our histological results  agree with what we found when studying behavior changes: 

the  high cholesterol diet group showed more memory impairment. More healthy neurons were 

preserved in the OPP as well as the curcumin groups, which explained the better learning ability 

of the rats from these two groups. Hence, the loss of synapses and the neurotic alterations are 

correlated with cognitive decline from our result, and the cognitive deficit was successfully 

reversed by chronic treatment with OPP as well as curcumin by rescuing more dead neurons.  

Additionally, amyloid plaque formation was observed using Congo red staining, which is a specific 

staining for the β-pleated sheet conformation. Soluble β amyloid (Aβ) is normally secreted by 

neurons and then cleared from the brain [18]. However, in abnormal conditions, protein mis-folds 

and aberrantly aggregates as oligomers and amyloid fibrils. The accumulation of these insoluble 

fibrous proteinns exhibits an affinity for Congo red dye with concomitant apple-green 

birefringence under plane polarized light, which is considered a gold standard in diagnosis of 

amyloid disorders [20]. Our Congo red results showed a higher density of plaque deposition and 

significantly larger amyloid burden in the animals’ hippocampus region for those in the high 

cholesterol diet group compared to the other three groups (Fig 21-23). This result was confirmed 

by a higher concentration of amyloid ß42 in the high cholesterol diet group by enzyme 

immunoassay (Fig 24).  As numerous studies have observed, the key event leading to AD appears 

to be the cluster of peptides and fibrils into amyloid plaques (senile plaques), and we have observed 
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pathological changes occurring in the rats’ brains as response to their diet.  Many other studies 

also found that Aβ 42 significantly increased in AD [95]. Compared to another major product, 

Aβ40, in amyloid pathway, Aβ 42 peptide is the most neurotoxic form. It has two extra 

hydrophobic amino acids that promote greater fibrillar formation and been found predominant in 

neurotic plaques of AD patients [96]. Both cell culture and mouse models have shown that familial 

AD mutations result in an increase in Aβ42: Aβ40 ratio, suggesting that elevated levels of Ab42 

are critical for AD pathogenesis [97, 98]. In addition, Aβ42  has higher in vitro propensity of 

aggregation to form oligomers [99]. Some studies have reported that Aβ42 oligomers are highly 

toxic to mouse cortical culture as well as more destructive to memory when injected into the brains 

of young rats [95, 100]. These observations led to the hypothesis that the deposition of amyloid, 

comprised principally of Aβ42, was the central event in the initial pathogenesis of AD.  

Above all, our high cholesterol diet model clearly exhibited AD pathologies, both in abnormal 

brain Aβ metabolism (overproduction of Aβ 42 and higher amyloid plaque deposition) and 

learning deficit (longer escape latency). However, whether hypercholesterolemia can interpret the 

brain cholesterol metabolism is still contested in the field, as plasma lipoprotein cholesterol does 

not cross the BBB. Since peripherally circulating cholesterol cannot cross the BBB, there may be 

body-brain communication signals which mediate AD-like pathology in the brain under the 

condition of hypercholesterolemia such as oxidative stress, inflammation factors and abnormal 

gene expressions. Compared to the detrimental effect of hypercholesterolemia, a diet 

supplemented with OPP has shown some neuroprotective effects which are similar to the positive 

control curcumin group.  Leow et al.  also nvestigated  OPP’s  neuroprotective effects. They fed 

BALB/c mice OPP for six weeks and animals were tested in a water maze for cognitive and motor 

function. They found that mice given OPP showed a downward trend in latency to the platform 
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and OPP-fed rats had improved balance and motor coordination. Microarray gene expression 

analysis showed OPP compounds could up-regulate genes involved in brain function, such as Arc, 

Cast or D14Ertd171e and Gria3 which were under the regulation of Bdnf (brain-derived 

neurotropic factor). Genes involved in inflammation were also down-regulated by OPP such as 

Spp1 (secreted phosphoprotein1 or osteopontin), Saa3 (serum amyloid A3), and Apod 

(apolipoprotein D)[65]. Additionally, the AD-improving effects of OPP in the brain were aligned 

with the findings made by Hamaguchi et al., who investigated the effects of phenolic compounds 

(myricetin, nordihydroguaiaretic acid (NDGA) and rosmarinic acid (RA) on AD model transgenic 

mice. Mice were fed with these phenolic compounds for ten months from the age of five months. 

They found Aβ deposition was significantly decreased in the in both the NDGA- and RA-treated 

groups’ brains. The RA-treated group also showed increased (TBS)-soluble Aβ monomers. They 

concluded that oral administration of phenolic compounds prevented the development of AD 

pathology by affecting different Aβ aggregation pathways in vivo[101].  

       So this raises the question: what is the mechanism of OPP resulting in its therapeutic effects 

in AD-like pathology?  Because oxidative stress and inflammation have been recognized 

contributing to the brain amyloidogenesis, we further measured the antioxidant and anti-

inflammatory abilities carried by this agent. We began with the knowledge that atherosclerosis and 

cardiovascular disease are now linked to an increased risk of AD [102]. The lipid peroxidation 

products generated from the atherogenic diet are possible markers of Alzheimer´s disease in blood. 

In the Aβ-induced oxidative stress hypothesis, an overproduction of Aβ1–42 inserts as oligomers 

into the bilayer and serves as a source of ROS to initiate lipid peroxidation [83]. The lipid 

peroxidation process  eventually generates an unsaturated reactive aldehyde [e.g., 4-hydroxy-

nonenal (HNE), malondialdehyde (MDA), and acrolein][26]. In one study, Keller et al. assessed 
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the amount of protein carbonyls and MDA [30] in the postmortem brain of normal subjects and 

those with MCI and early AD. They found 25% elevated levels of protein carbonyls, and 

approximately 60% of MDA were observed in the individuals with MCI and early AD compared 

to normal subjects. The elevation in TBARS was associated with the numbers of neurotoxic 

plaques and decreased verbal memory performance was observed in these patients[103]. In another 

study, increased protein-bound free HNE, TBARS, and MDA were found in AD subjects, as well 

as a higher isoprostane (F2isoP) level in plasma, urine, and CSF,  as compared with healthy 

controls [103, 104].   In our study, we found that the level of both peripheral and CNS MDA 

increased significantly in high cholesterol diet group while the OPP and curcumin groups’ MDA 

levels were similar to the control group (Fig.25-27). The increase in MDA level and the presence 

of amyloid plaque following a high cholesterol diet are consistent with findings reported by the 

studies mentioned above.  A lower level of MDA level observed in the OPP group suggested that 

bioactive aldehyde toxicity may be mediated by the effect of OPP, which serves as a strong 

antioxidant during the development of peripheral atherosclerosis and plaque deposition in brain. 

OPP also reduced the urinary ketones as compared to those rats consuming high cholesterol diet 

only (Fig.28). 3-hydroxybutyrate, which is most abundant in serum and urine, was elevated as a 

result of excessive oxidation of fatty acid. Ketone bodies have been shown to be also elevated in 

mice consuming high-fat diets [105]. These results indicated the antioxidant activity delivered by 

the dietary intake of phenolic compounds. 

      However, it is still not clear whether the origin of these lipid prooxidants is peripheral 

circulation/tissues or brains. When the brain is under a oxidative stress conditions, the inhibition 

of mitochondrial energy metabolism can alter the metabolism of APP from the non-amyloidogenic 

to the amyloidogenic pathway with an upregulated APP and β-secretases(BACE) gene 



97 
 

 

expression[106]. The overproduction in APP appears to increase APP cleavage toward a higher 

generation of total Aβ or more of the amyloidogenic Aβ42 species alone.  Meanwhile, Aβ 

deposition may act as a sink for trapping potentially harmful transition metal ions (particularly 

redox active metal ions), which in turn become a potent generator of both ROS and RNS that are 

flowing back to peripheral circulation [27, 107].Therefore, increased Aβ generation and ROS 

production comprise a ‘vicious feedback cycle.’ Because oxidative stress and Aβ production are 

proportionally linked to each other through an up-regulation of APP and BACE1 genes as  

described above, we then measured these two genes to examine the effect of our experimental diet 

on plaque formation (Fig.30&31).  The results demonstrated that the increased expression of APP 

& BACE1 in the H group was induced by lipid peroxidation (MDA and ketone body), but they 

were not unregulated in the OPP supplement group and curcumin group.  This result is also 

consistent with the amyloid plaque deposition and its burden from our histological work and 

enzyme linked immunoassay. The same changes with BACE1 as a result of increased lipid 

peroxidation product 4-hydroxynonenal (HNE) were reported by Gamba et al.  [33], who found a 

significant correlation of BACE1 activity with oxidative markers in sporadic AD brain tissue [34]. 

Oxidative stress increases during normal aging and is believed to be an early event in AD 

pathology, so the measurement of the peripheral oxidant status might be an early biomarker 

correlated with the brain stress status [35]. 

     Thus, we have observed the antioxidant effect of OPP both in periphery (plasma and liver) and 

brain.  But this raises another question of whether polyphenols can enter the brain and directly 

impact βA.  Polyphenols permeation through the BBB is dependent on the degree of lipophilicity 

of each compound and also depend on their interactions with efflux transporters, such as P-

glycoprotein (PGP) and their stereochemistry [108, 109]. It has been reported that catechin and 
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epicatechin could cross a cellular model of BBB in a time-dependent and stereoselectivity 

manner[110]. Animal studies indicated that polyphenols are able to cross the BBB and to localize 

within the brain tissues independently of their route of administration. Janle et al. demonstrated 

that 14C-labelled grape polyphenols showed accumulation from anterior to posterior slices of the 

brain following oral administration [111]. Except for BBB crossing, another mechanism is through 

neurotransmitter regulation. One study used the treatment of rats with polyphenol-rich Ginkgo 

biloba extract for 14 days and found that this resulted in significantly increased extracellular levels 

of dopamine and noradrenaline in the animals’ prefrontal cortex. Of the three main Ginkgo 

biloba extract constituents, the polyphenol (flavonoid) fraction caused a significant (and most 

pronounced) increase in brain dopamine levels [112].  

     Although no studies to date have observed the ability of OPP to cross the BBB, it has been 

proven that when under the stress, microglial activation can impair BBB function by the release of 

various toxic molecules (ie.TNF-α). These neurotoxic molecules lead to a hyperpermeability 

condition of BBB associated with inflammation that is similar to what occurs in certain 

neurodegenerative disorders like AD. Therefore, one possibility is that OPP’s antioxidant effect 

can be seen in the AD brain  by reducing the flowing of free radicals from peripheral circulation 

toward brain and indirectly improving the high brain stress level (decreasing the lipid peroxidation, 

downregulating the amyloidgenic genes and decreasing amyloid accumulation). 

      Brain inflammation is another pathological scenario in AD[32]. The  interactions between 

cytokines and components of the AD senile plaques have been reported to form a vicious circle 

similar to the ROS-induced plaque deposition [113].  Activated astrocytes and microglia are 

characteristically found in abundance near dead neurons and Aß plaques to produce several 

proinflammatory signal molecules, including cytokines, growth factors, complement molecules, 
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chemokines, and cell adhesion molecules [114].  Aβ protein of the plaques also potentiate the 

secretion of IL-6, IL-8 and TNF-α by IL-1β-activated astrocytoma cells and  lipopolysaccharide- 

(LPS-) stimulated astrocytes [115].  In addition, it also has been reported that plasma cytokines 

are associated with AD progression [116]. Plasma cytokines are known to communicate with the 

brain and reflect central cytokine levels. The possible route involves cytokine activation of the 

endothelium signaling to macrophages in brain[117].  In our study there was an elevated level of 

the plasma IL-6 in animals with atherogenic diet, which might indicate a high inflammation level 

in brain as the amyloid plaque can serve as a generator of these cytokines or they can enter the 

brain from periphery due to a destructive BBB under the stress condition (Fig.29).  Curcumin has 

been proven to inhibit the AD pathogenesis by its anti-inflammation as well as antioxidant effects, 

but direct effects of curcumin on the formation and destabilization of Aβ still  remain unclear[64]. 

However, one possible mechanism could be its HDL-maintaining properties as was decribed by 

Fig. 11.  It has been reported that people with high levels of HDL cholesterol are 60 percent less 

likely to develop AD after followeing 1,130 seniors with no history of cognitive decline and 

measuring their cholesterol levels every 18 months for four years. Those with the highest HDL 

counts, greater than 55 mg/dL, had a nearly 60 percent reduced risk of developing the disease 

compared to those whose levels were less than 39 mg/dL[118] .  These data shed more light on the 

interactions between cholesterol and AD. 

     In addition to  oxidative stress and inflammation, the role of cholesterol is further highlighted 

by the fact that abnormal intracellular cholesterol distribution is closely related to the 

Apolipoprotein E (ApoE).  Astrocytes are the major source of ApoE followed by oligodendrycytes 

and microglia[119]. Neurons may express apoE under certain condition such as excitotoxic injury. 

When nerve injury happens in central nervous systems, the synthesis of apoE by glial cells 
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increased up to 150 fold [42]. Our result (Fig 32) shows a higher production of ApoE in H group 

which reflects the detrimental effect the oxidative stress in brain due to the high cholesterol diet, 

while OPP and curcumin can decrease the neuronal injury by their antioxidant and anti-

inflammatory effects. ApoE has been reported as a contributor of the extracellular amyloid plaque 

deposition [120]. The precise mechanisms by which ApoE participates in AD pathogenesis remain 

largely undefined. Several hypotheses regarding its functions have been proposed which include 

mediating neuroinflammation, participating in the regulation of the cholinergic neurotransmitter 

system, neuronal signaling, and involving the integrity of the blood–brain barrier. However, the 

most prominent hypothesis for ApoE function is its key role as a mediator of Aβ metabolism. 

ApoE can bind to Aβ, affect its deposition and clearance, which is necessary in amyloid deposition. 

Furthermore, ApoE affects amyloid deposition in an allele-specific manner. However, the exact 

pathophysiologic process is yet to be elucidated [16]. So far only a limited body of studies were 

found to report the beneficial effect of polyphenols on expression of ApoE genotype in AD with 

dementia. It has been suggested in one study that frequent consumption of fruits and vegetables is 

associated with a decreased risk of all cause dementia (hazard ratio [HR] 0.72, 95% CI 0.53 to 

0.97) especially amongst the APOE4 noncarriers [121]. The relationship between polyphenol 

intake and APOE genotype remains an area where further work is required for a better 

understanding of the underlying mechanisms of polyphenol supplements. 

       In the last section, data from a urinary metabolomic study provided supportive evidence of 

OPP on improving the effects of AD. Metabolome is a powerful tool used in the identification of 

the potential biomarkers of altered metabolism as result of disease processes and drug/nutrition 

intervention [122]. Today a simple, non -invasive and accurate method for detecting AD (prior to 

the onset of devastating symptoms) at its early stage is urgently needed. Identification of effective 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738403/#CIT16
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biomarkers from urine samples could facilitate diagnosis and therapeutic trials. Meanwhile, the 

potential metabolite biomarkers that have been identified can provide further guidance toward 

pathway analysis involved in the pathology of AD, which may help in exploring the mechanism 

of the treatment by OPP and curcumin. In metabolomics, 1H NMR spectroscopy is one of the main 

approaches to data acquisition. It provides quantitative information and is reproducible, hence 

suitable for multivariate analysis.  

      In our study, multivariate data analysis using SIMCA P+ software revealed no discrimination 

of urinary profiles among four group at baseline (Fig33); However,  discrimination was revealed 

at week 12,  at which time the control diet group was well separated from other three groups and 

curcumin group was also separated from the high cholesterol diet group and OPP supplement 

group. When we observed the loading plot, the regions of variables that are responsible for the 

separation of the control group were found at ppm 3.02-3.42, 2.5-2.6 and the regions of variable 

that separated the curcumin group were 7.2-7.4. For the high cholesterol diet group the metabolites 

were those with ppm of 3.8 and 4.05, meaning at the intermediate time point of the experiment, 

the urinary metabolomics profile of the animals had changed as response to diet (Fig.34).  At the 

study’s endpoint, the high cholesterol diet group was well separated from the other three groups 

(Fig. 35), which implies that the dietary effect of the OPP and curcumin resulted in the urinary 

metabolomics profiles of these animals becoming distinct from those without supplement despite 

three of the groups consuming a high cholesterol diet.    

        Next, a regression analysis was performed by the SIMCA software to evaluate the correlation 

between the AD pathology-related variable (water maze, amyloid β 42, lipid peroxidation and 

inflammation) and the urinary metabolomic profile. The spatial learning performance (EL) and the 

urinary metabolomic profiles were high correlated at the endpoint (R2=0.7956) (Fig.36); there was 
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also a high correlation with the hippocampus amyloid β 42 level (R2=0.7406) (Fig 37). Correlation 

between the urinary profile and lipid oxidation indicator [30] was slightly lower, R2=0.6665, 

(Fig.38) and correlation with inflammation marker IL-6 was 0.6008 (Fig.39). The data suggests 

that the urinary metabolites change was strongly correlated with AD brain changes and there are 

some potential biomarkers that can be identified for the diagnosis of the disease. The urinary 

metabolite changes were also influenced by the oxidative stress and inflammation status of the 

body.  

        In order to identify the metabolites that are associated with the spectral discrimination of four 

different diet groups, NMR Suite Chenomx software was used to measure the concentration of 

each metabolite in the animals’ urinary profiles. After gathering the group average concentration 

of each metabolite and comparing them throughout the four groups, there are more than 30 

metabolites that showed a significant difference in concentration (p<0.05) (Table 4, Fig 40).  All 

of the metabolites that were significant in their profile were then subjected to MetaboAnalyst 3.0, 

a web-based metabolomics data analysis tool for pathway analyses. Several significant pathways 

were detected including tryptophan metabolism, synthesis and degradation of ketone bodies, 

phenylalanine, tyrosine and tryptophan biosynthesis, and taurine and hypotaurine metabolism 

(Fig.41, Table 5). The topology analysis indicated that synthesis and degradation of ketone bodies 

and tryptophan metabolism were most impacted in this dietary study. 

       Studies have shown that high cholesterol and high fat administration lead to elevated rates of 

fat oxidation.  Alteration in diet stimulates lipid oxidation and production of ketone bodies, 

including 3-hydroxybutyrate which is most abundant in serum and urine[123] .When the 

accumulation of cholesterol and phospholipids accelerates lipid oxidation, 3-hydroxybutyric acid 

(or beta-hydroxybutyrate), acetoacetate and other ketone bodies (i.e acetone) are raised in ketosis.  
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High levels of ketones are associated with atherosclerosis.  One study found that a six month high-

fat ketogenic diet produced significant increases in total cholesterol, LDL-cholesterol and 

atherogenic apoB–containing lipoproteins level in plasma, and there was a decrease in 

antiatherogenic HDL cholesterol. They noted that long term high ketone level adversely affects 

endothelial vascular function and promotes inflammation and formation of atherosclerotic lesions 

[124].  In addition, ketones, especially acetoacetate (AA), have been reported to increase cellular 

lipid peroxidation resulting from oxygen radical production that in turn led to elevated oxidative 

stress. The oxygen radicals generated by the ketone body acetoacetate can exert a cytotoxic effect 

by causing peroxidation of membrane phospholipids and the resulting accumulation of 

peroxidation products such as malondialdehyde [30]. These products have been known to cross-

link membrane components and result in altered membrane permeability and ultimately,  cellular 

dysfunction[125]. A recent study reported that ketoacidosis independently induced changes in pro-

inflammatory cytokines, oxidative stress, and CVD as high levels of circulating IL-6 and TNF-α 

were elevated in hyperketonemic diabetics but not in normal diabetics patients[126]. Therefore, in 

our Chenomx data, a high level of ketones (3-hydroxybutyrate, acetoacetate) and ketone 

derivatives (α-oxoglutarate) in high cholesterol diet group can reflect high oxidative stress in the 

bodies of these rats (Fig.43). OPP and curcumin can help reduce plasma level of ketones via an 

antioxidant and antinflammation effect which were discussed in the MDA and IL-6 data above. 

Moreover, the cholesterol-lowering effect of curcumin may have led to a decrease in the β-

hydroxybutyric acid level in the urine following its oral administration. These findings support 

those of another study by Li et al. [127], who showed that curcumin administration significantly 

reduced ketone body levels in mice fed a high cholesterol diet.  In conclusion, supplementation 
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with OPP and curcumin reduces oxidation-induced ketone generation and attenuates the 

atherosclerosis events in rats on a high cholesterol diet. 

      Another pathway with high significance and impact in our rats’ urinary profile is tryptophan 

metabolism. Some metabolites from its metabolism were significantly higher in the cholesterol fed 

animals as compared to the control group. Treatment with curcumin and OPP brought down the 

concentration of these metabolites significantly and closer to the control levels including 3 

hydroxykynurenine (3HOK) and quinolinic acid [109]; significant effects on kynurenate, serotonin, 

and melatonin were only observed in the curcumin diet groups (Fig 42).    

Tryptophan is an essential amino acid.  It can enter a number of metabolic pathways: protein 

synthesis, the serotonin pathway, and the kynurenine pathway [128]. The tryptophan-kynurenine 

(TRY-KYN) pathway is the most tryptophan-consuming metabolic pathway. About 95% of the 

ingested tryptophan enters the kynurenine pathway, which is then followed by two steps: 1) 

formation of KYN from TRY and 2) post-KYN metabolism, in which kynurenine is further 

metabolized along the two distinct routes competing for kynurenine as a substrate, the KYN–

kynurenic acid (KYNA) pathway and the KYN–nicotinamide adenine dinucleotide (NAD) 

pathway [129]. The KYN-KYNA pathway is regulated by kynurenine aminotransferases (KAT), 

the major biosynthetic enzymes of KYNA formation in the brain. Under these physiological 

conditions, most kynurenine in the brain is metabolized to KYNA; the KYN-NAD pathway is the 

competing pathway to the KYN-KYNA pathway. This pathway produces 3 HOK which is further 

metabolized to QA, the precursor of NAD. Because these metabolites (3 HOK and QA) are 

believed to possess a neuroactive and neurotoxic effect, the TRY-KYN-NAD pathway has been 

implicated in the pathological changes of the neurodegenerative diseases, such as Parkinson’s 

disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD) etc., all of which are 
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characterized by neurotoxic processes [130]. Now there is an increasing body of evidence 

indicating that the TRY-KYN-NAD pathway is involved in the pathogenesis of AD[131]. 

Therefore, our urinary metabolomic data enable us to examine the effect of OPP and curcumin on 

the progression of AD using the alterations of these metabolites and the mechanisms that underlie 

the disease. As the diagram in Fig.47 shows, both OPP and curcumin decrease the urinary levels 

of 3HOK and QA, which are potent prooxidants in the brain. A great deal of evidence has shown 

that 3HOK is associated with the generation of the oxidative species superoxide (O2-), hydroxyl 

radical (H·) and hydrogen peroxide (H2O2), which frequently contribute to macromolecular 

damage within defective cells [132-134]. Moreover, QA, a downstream metabolite of 3 HOK, is 

also a potent neurotoxic element that has been shown to exhibit excitotoxic effects via N-methyl 

D-aspartate (NMDA) receptor agonism, as well as oxidative stress via lipid peroxidation [135]. 

QA is also strongly presented by the over-activated microglial[136].  Being potent antioxidants, 

OPP and curcumin can scavenge O2 - and OH• in vitro, as well as lipid hydroperoxyl free radicals. 

Polyphenols have also reported to inhibit nuclear factor κB signaling and thus suppress  the 

overactivity of the microglial in a model of AD, and this activity is related to the activation of the 

SIRT-1[137]. Moreover, peripherally generated 3 HOK is able to cross the BBB because of its 

hydrophobic nature, increasing its bioavailability in the brain[136]. Therefore, both the peripheral 

and CNS-originated 3HOK can be reflected in the increasing amount of the urinary 3HOK level 

in the high cholesterol diet group without an antioxidant treatment.  

      Furthermore, it is very interesting that curcumin increased the KYNA and the metabolites 

involved in the serotonin pathway (serotonin, 5 hydroxytryptophan [5HT] and melatonin). Less 

than five percent of dietary tryptophan is converted to serotonin. Serotonin plays an important role 

in regulating various functions in the human body and serves as the precursor for melatonin 
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synthesis in pinealocytes [123]. Serotoninergic involvement in AD is evidenced by the 

observations of 5HT alteration in CSF, loss of 5HT synthesizing neurons and receptors, and the 

improvement of agitation and other behavioral symptoms of AD with serotonergic agents [26]. 

Our data show that curcumin supplements can increase the metabolism of serotonin and its 

downstream metabololite, melatonin, in circulation to deliver some AD improving effect. This 

result was supported by the other studies such as Wang et al., who demonstrated that curcumin 

antidepressant action is blocked by p-chlorophenylalanine, a tryptophan hydroxylase (TPH) 

inhibition. TPH is the key enzyme for down-stream production of serotonin from 5HT.  Moreover, 

it has been demonstrated that the antidepressant action of curcumin involves the participation of 

5-HT receptors [138]. In another study, the researchers treated the neuropathic mice with curcumin 

(45 mg/kg, twice per day for 3 weeks) and induced depressive-like behaviors via chemical 

depletion of brain serotonin. Intracerebroventricular injection of methysergide, a nonselective 5-

HT receptor antagonist, separately counteracted the action of curcumin. Further, this anti-

depression of curcumin was abrogated by repeated co-treatment with 5-HT1A receptor antagonist 

WAY-100635 [139]. Pharmacological studies suggest that the major antidepressant effects of 

curcumin are mediated through serotonergic transmission, most likely at 5-HT 1A/1B and 5-HT 

2C subtypes. Curcumin can even attenuate stress-induced decreases in hippocampal 5-HT 1A 

mRNA levels [140].   

        KYNA is a NMDAR antagonist, and α7-nicotinic acetylcholine receptor (α7nAChR)-

negative allosteric modulator. Early studies of KYNA demonstrated that it can be neuroprotective 

against neuronal damage caused by neurotoxic QA [109, 141]. Because the pathway of QA 

competed with KYNA in brain for the KYN substrate, one of the mechanisms forhow curcumin 

can increase KYNA might be related to the deactivation of the KYN-NAD pathway. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738403/#CIT26


107 
 

 

       In addition to the metabolites and pathways discussed above, we also found other metabolites 

that may be involved in the AD pathology including tyrosine, homogentisate, allantoin, citrate, 

taurine, trimethylamine, and serine (Fig.44). Tyrosine is the precursor of several neurotransmitters, 

including L-dopa, dopamine, norepinephrine, and epinephrine. Tyrosine, through its effect on 

neurotransmitters, may affect several neurodegenerative and neuropsychiatric diseases, including 

Parkinson’s disease, depression, and other mood disorders. The dopaminergic system may also be 

involved in the occurrence of cognitive decline and is predictive of rapidly progressive forms of 

AD. However, a clear picture of the role of the dopamine system in AD remains to be developed 

[142]. D-serine is another amino acid highly present in the brain and is derived from glycine. It is 

a neuromodulator and it is an endogenous coagonist of NMDA receptors. One study reported an 

abolishment of NMDA-elicited neurotoxicity after a nearly complete removal of D-serine. 

Therefore, endogenous serine is the dominant coagonist for NMDA receptor-elicited 

neurotoxicity, mediating all cell death elicited by NMDA receptor in organotypic slices. This 

further implicated endogenous serine as the mechanism of neuronal death in the nervous 

system[143]. Allantoin is a metabolite produced by the oxidation of uric acid in e purine 

metabolism in humans by various ROS. It has been reported that allantoin levels are increased in 

model rats with ischemic injury [142] and model mice with atherosclerosis[144], which are closely 

related to the occurrence of oxidative stress .Therefore, measurement of allantoin levels may be 

useful for quantifying  amounts of oxidative stress. Homogentisate is also found to possess a 

prooxidant effect. When undergoing spontaneous oxidation into 1,4-benzoquinone-2-acetic acid 

(BQA), it is concomitant with the production of oxygen radicals such as superoxide anion (O2
•–), 

hydroxyl radical (OH•), and hydrogen peroxide (H2O2). Taurine is the most abundant free amino 

acid in humans, and it also has many potential health benefits because of its anti-oxidant and anti-
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inflammatory properties. It has been found that taurine treatment can prevent the impairment of 

cognitive functions and improve the behavior activities associated with the generation of free 

radicals [145]. Citrate is a metabolite from the TCA cycle for energy production related to aging 

process. It has been reported that in both muscle and liver tissue, citrate synthase (CS) activity was 

increased in older mice, indicating increased mitochondrial activity or number [146].  In summary, 

alteration of the compounds found in the urinary metabolomic profiles of the AD-like animals 

reflect changes in small amino acids that participate in neurotransmitter modulations, the oxidative 

stress in the body and the aging-related energy production. OPP and curcumin can reduce the 

production of some of oxidative stress-related metabolites which might otherwise cross the BBB 

and attribute to progressive pathological changes in the brain. 

       Finally, in order to confirm the result obtained from the Chenomx, gene expression analysis 

was performed on the genes that regulate the TRY-KYN pathway and serotonin metabolism. The 

results showed a down-regulation of the KYN and KMO genes in the OPP group (Fig.46&47). 

This supports the effects of the antioxidant & anti-inflammatory propertyies of OPP, as it  suggests 

that IFN-γ or TNF-α, alone or in combination, markedly increased transcripts of KYNU and 

KMO[147]. Curcumin groups showed a down-regulation in the HAAO and upregulation in the 

KAT as well as TPH genes (Fig.46&47). Compared to OPP, curcumin has a better bioavailability 

in the brain tissue. Because of curcumin’s low molecular weight and polar structure, it can 

penetrate the blood-brain barrier effectively and directly impact on neurons. These interesting 

findings in the kynurenine pathway indicate the potential site of drug action, and presented the 

possibility of modifying the balance between the endogenous concentrations of QA and its 

antagonist, KYNA [131].  
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      Taken together, our work has led us to the conclusion that oil palm phenolics (OPP) exhibit an 

AD related pathology- (cognitive decline, amyloid event and neuron death) improving effect on 

the atherogenic diet-induced AD rat model via their antioxidant and anti-inflammatory effect. Fig. 

48 depicts the peripheral and CNS interaction in atherosclerosis and the main mechanisms of AD 

pathology in brain. Observations from this study can be further investigated using larger scale 

animal studies that may lead to a pilot human study. Our findings from the animals’ urinary 

metabolomic profiles might provide a potential pharmaceutical / nutraceutical target for this future 

AD treatment. 

 

 

 

 

 

 



110 
 

 

 

Fig.48 Schematic diagram outlining the peripheral & CNS interaction in atherosclerosis 

and AD pathology in brain. Briefly, the peripheral oxidized lipids and associated ROS and 

proinflammatory factors are generated in the atherosclerotic lesions under the 

hypercholesterolemia and they are permeable to the damaging BBB when the brain is under the 

stress. Brain microglial cells and astrocytes are further activated to release more cytokines, 

ROS and disrupt the intracellular/extracellular balance. ßamyloid 42 are abnormally produced 

and aggregated as a response or promoter of the oxidative stress and inflammation, which 

release more neurotoxic molecules that are accumulated in brain and meanwhile, exported back 

to the blood circulation. Some of these neurotoxic metabolites can be present in the urine and 

might serve as potential biomarkers for AD. 
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 ABSTRACT 

THE in vivo EFFECT OF OIL PALM PHENOLICS (OPP) IN ATHEROGENIC DIET 

INDUCED RATS MODEL OF ALZHEIMER’S DISEASE (AD) 
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        Alzheimer’s disease (AD) is the most common cause of dementia in the aging population. 

It is characterized by cognitive decline and deposition of ß-amyloid plaques in the 

hippocampus. It has been shown that hypercholesterolemia induced by high cholesterol diet 

is associated with AD development.  Increased level of oxidative stress has also been observed 

in AD patients. An important strategy to treat or delay the impairment is based on dietary 

modification, using food supplements. OPP, a water soluble fraction from oil palm fruit, rich 

in phenolics has been found to possess significant antioxidant activities. Its beneficial effects 

on cardiovascular diseases, diabetes and cancers have been previously reported. The current 

study was undertaken to investigate the effect of OPP in a rodent model for AD. Curcumin, a 

polyphenol extracted from the plant Curcuma longa, has shown its therapeutic benefits in 

Alzheimer’s disease and was used as a positive control. Our results showed the dietary 

cholesterol induced hypercholesterolemia which increased AD-like pathological changes in 

aged rats including β-amyloid accumulation & cognitive decline. OPP & curcumin attenuate 

the process of AD for their antioxidant and anti-inflammatory effects by improving these 

pathological changes. Furthermore, OPP down-regulated amyloidogenic genes APP and ß 
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secretase (BACE1) expression as well as ApoE gene expression when the brain is in the 

presence of oxidative stress. In addition, metabolomic approach was also used to investigate 

the effect of OPP on metabolism changes due to the high cholesterol diet. Proton nuclear 

magnetic resonance (1H NMR) spectra was used to acquire the spectrum of samples. 

Multivariate analysis software, SIMCA-P+, was applied to demonstrate the differences in 

urinary 1H NMR profiles among the groups. Principal Component Analysis (PCA) score plots 

showed clear separation among all four groups indicating differences in their metabolomics 

profiles at the end point. OPLS regression analysis gave significant correlations between the 

urinary metabolomic profiles and escape latency using water maze (R2=0.7956) and the β 

amyloid burden (R2=0.7406). The metabolites responsible for the differences in the 

metabolomic profile among groups were then quantified using CHENOMX NMR metabolite 

database. Some metabolites from the tryptophan metabolism pathway were significantly 

altered in the cholesterol fed group (H) as compared to the treatment groups (HP, HC). 

Treatment with curcumin (HC) or OPP (HP) modulated the concentration of these metabolites 

closer to the control levels.  This pathway has been shown to be perturbed in 

neurodegenerative diseases. Taken together, OPP exhibited a potential therapeutic effect in 

high cholesterol diet induced AD. Moreover, specific urinary metabolites may serve as non-

invasive biomarkers for progression of neurodegenerative diseases including AD. 
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