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CHAPTER 1: INTRODUCTION AND BACKGROUND  
 

Prevalence and Significance of Peripheral Nerve Injuries 

Trauma is the most common cause of peripheral nerve injuries (PNI) comprising nearly 

3% of all traumatic injuries in the United States. In combat, however, PNI comprises up to 30% of 

injuries to the extremities.1-3 Drug regimens (e.g. chemotherapy) and disease (e.g. diabetes) pre-

sent additional causes of PNI, bringing the potential number of affected patients into the millions.4 

In 2012, the number of PNI surgical procedures in the United States was estimated at 560,000 

and the market for PNI repair was estimated at $1.3-1.9 billion.5  

All peripheral nerves have the potential to regenerate, even following complete nerve tran-

section, if the gap between the two nerve ends is short.6 As the gap length exceeds a critical size 

of ~3cm, however, the intrinsic regeneration process becomes delayed or deficient requiring sur-

gical treatment. Current treatments (e.g. coaptation, grafting, and nerve guide conduits) are either 

unavailable or insufficient to achieve full functional recovery in large (>3cm) peripheral nerve 

gaps. PNI recovery diminishes with each additional centimeter of separation in a transected 

nerve. Failed recovery may come at the cost of life-long morbidity, paralysis, and/or vulnerability 

to other risks.  

 This thesis focuses on understanding the complex molecular and cellular environment 

that develops following PNI, including the presence of inhibitory signaling molecules and inflam-

matory cell responses. This thesis explores the use of different tissue engineering strategies to 

direct the behavior and phenotype not only of neurons, but glia (Schwann cells) and immune cells 

(macrophages). The overall hypothesis is that biomaterials-based adhesive and topographical 

cues, designed to mimic the innate regenerative capacity in short injuries, can be used to accel-

erate regeneration and repair. The strategies explored here can ultimately help improve the de-

sign of treatments for large PNI.  To understand the complexity of the PNI environment, a detailed 

description of peripheral nerve anatomy and physiology follows. 
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Nerve Anatomy and Physiology 

 

The human nervous system is divided into the central nervous system (CNS), composed 

of the spinal cord and brain, and is connected to the rest of the body by the peripheral nervous 

system (PNS). Communication between the PNS and CNS is coordinated by neurons, the major 

cell type of the nervous system. The PNS is composed of two types of neurons. Motor neurons 

transmit signals from their cell bodies in the spinal cord out to distant target organs.7 Alternatively, 

sensory neurons transmit signals from their cell bodies in the periphery towards the spinal cord 

to synapse with central neurons. Neurons transmit these signals via long cytoplasmic extensions, 

called axons. Most axons are wrapped in an insulating coating, called the myelin sheath, which 

allows for faster conduction of nerve impulses compared to unmyelinated axons.8 

In the PNS, myelin sheath is produced by Schwann cells specifically associated with indi-

vidual axons. Schwann cells are non-neuronal, supportive glial cells making up approximately 

80% of the cells in adult peripheral nerves.9 The Schwann cells are surrounded by a thin, contin-

uous layer of basal lamina (mostly collagen fibrils and a few fibroblasts), called the endoneurium. 

Non-myelinated axons are embedded directly within Schwann cell cytoplasm.10  

Axons, and their Schwann cells, are arranged in motor and sensory bundles, called nerve 

fascicles, which are separated by another connective tissue layer called the perineurium. The 

perineurium consists of many longitudinally aligned collagen fibrils and layers of flattened peri-

neurial cells.11 Finally, the epineurium is the outermost layer of connective tissue which holds 

many fascicles, as well as loose connective tissue, adipose tissue, and blood vessels together 

into a whole nerve.  

Peripheral Nerve Injury Classifications 

 

In the 1940s, a British orthopedic surgeon, Sir Herbert Seddon, offered the earliest clas-

sifications of nerve injury. He described three nerve injury grades: neurapraxia, axonotmesis, and 

neurotmesis, each defined by increasing severity of axon and connective tissue layer damage. In 
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1951, Australian professor of anatomy and neurology, Sydney Sunderland, used histological sec-

tions to expand these classifications into injury grades I through V. Table 1-1 combines Seddon 

and Sunderland's work. The remainder of this thesis will discuss strategies specifically aimed at 

improving nerve regeneration following complete transection injuries (neurotmesis; grade V) that 

result in large nerve gaps (>3cm) for which spontaneous recovery is impossible and surgical in-

terventions still fail to produce full functional recovery. 

 
Table 1-1. Peripheral Nerve Injury Grades 
 

 The severity of PNI increases from grades I-V. The table defines the tissue layers involved and the 
probable clinical outcomes for each class of injury. 

 

Characterization of the Peripheral Nerve Injury Microenvironment 

Following peripheral neurotmesis, a cascade of degenerative cellular and molecular 

changes occurs at the site of injury. 

Neuronal Responses 

 

In the proximal nerve stump (part of the axon still connected to the neuron's cell body), 

neurons undergo morphological changes to allow for intrinsic regeneration, most importantly, the 

Seddon 
Sunderl

and 
Typical           

Etiology 
Injured       
Tissues 

Injury                   
Characteristics 

Spontaneous 
Recovery      
Potential 

Injury Schematic 

Neurapraxia I 
Compression 

Injury 
Myelin 

Axon intact, 
conduction block 

Full; weeks to 
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fascicle damage 

Poor without 
surgical      

intervention 
 

Neurotmesis V 
Transection 

Injury 

Myelin, axon, 
endoneurium, 
perineurium,     
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None without 
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reformation of the growth cone (Figure 1-1). The growth cone is a specialized structure at the tip 

of an advancing axon primarily comprised of actin filaments and microtubules. Growth cones are 

highly motile structures that explore the extracellular environment using sheet-like (lamellipodia) 

and finger-like (filopodia) extensions to sense biochemical and physical guidance cues. Growth 

cones are thus responsible for determining in which direction to grow and then must guide the 

axon in that direction.12 

 

The growth cone is responsible for mediating axon extension during normal embryonic 

development and following injury. In both instances, axon extension occurs through a well-defined 

three-step process: 1) protrusion and attachment of filopodia to a substrate, 2) engorgement of 

the growth cone by microtubules and organelles, and 3) consolidation of a new stretch of axon 

shaft behind the advancing growth cone.13 The three stages of growth cone advance are all influ-

enced by environmental factors, namely adhesive cues in the surrounding matrix. Growth cone 

 
 

Figure 1-1. The growth cone 
 

Schematic representation of a neuron and detailed view of the growth cone with its main 
cytoskeletal components. 
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receptors bind to an adhesive substrate initiating intracellular signaling cascades to further anchor 

the cell cytoskeleton to the surface and advance the neurite outgrowth in a rate controlled man-

ner.14 

During the development and differentiation of the nervous system axons extend over ex-

ceedingly long distances (>1 meter).15, 16 This development involves periods of axon elongation, 

retraction, and branching. Neurons extend processes in an excessive and redundant manner. 

Thus, some of these branches require selective removal to achieve a final organized and complex 

circuitry.17 This removal of aberrant processes, called pruning, is important for proper nervous 

system development.18 Within the first 2 days following injury, axons in the proximal stump also 

produce many sprouts or branches, from the terminal axon tip, that advance distally. However, 

most of these sprouts never make reconnections across the gap but rather undergo periods of 

extensive degeneration and retraction.19  

Axon degeneration can occur as the result of several different physiological or pathological 

conditions. Some causes of degeneration include Wallerian degeneration (distal nerve stump re-

traction following transection, described next), toxic agent insult, trophic factor deprivation, and 

neurodegenerative disease.17, 19 The father of modern neuroscience, Santiago Ramon y Cajal, 

was first to describe both long distance retraction, called "resorption," and the pathological mor-

phology of retracting growth cones (he called them "sterile clubs").20 In general, retracting growth 

cones have a smooth terminal bulb, while elongating growth cones are ruffled with filopodial ex-

tensions.21 Retracting axon shafts can assume different morphologies including bead-like spher-

ical blebbing or retracting as a sinusoidal curve.22 One primary goal of this work was to reduce 

neurite retraction events using a novel, tissue engineered construct featuring topographical and 

adhesive, biochemical cues for guidance of the growth cones. 

In the distal nerve stump (part of the axon separated from the neuron's cell body), axons 

undergo widespread disintegration of their cytoskeleton and internal organelles, primarily due to 

the lack of trophic support from the soma. This process is called Wallerian degeneration (WD), 
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after British physiologist, Augustus Volney Waller, who first described the phenomenon in the 

mid- 1800s. The first few hours of WD involve neurofilament break up and axonal fragmentation. 

Next the myelin sheath begins to break down into droplets over a few days, with complete dena-

turation of the myelin after a few weeks. Despite its seemingly catastrophic nature, this type of 

axonal degeneration is a normal part of the repair process, primarily because axonal breakdown 

initiates a pro-healing response from Schwann cells and macrophages in the injury site.  

Glial and Immune Cell Responses  

 

Following PNI, Schwann cells undergo a process, often referred to as de-differentiation, 

assuming the phenotype and gene expression of immature, pre-myelinating cells.9 These post-

injury Schwann cells also begin to hyperproliferate in response to myelin and axonal debris and 

the loss of physical axonal contact. Proliferating Schwann cells migrate along residual basement 

membrane forming longitudinal, cellular columns called the Bands of Bungner. These bands serve 

as cellular “bridges” that span the nerve gap and provide a substrate for regenerating axons. 

Schwann cells further support axon regeneration by depositing extracellular matrix (ECM) pro-

teins and secreting neurotrophic factors (e.g. nerve growth factor, NGF). However, Schwann cells 

also express chondroitin sulfate proteoglycans (CSPGs) following injury, which are traditionally 

studied as physical and chemical inhibitors to axon regeneration in the CNS, but have more re-

cently been discovered to inhibit axon outgrowth following PNI as well.  

Denervated Schwann cells play an early role in removing this debris from the injury site 

and are the major phagocytic cells for the first few days after injury.23 In additional to releasing 

factors for neuronal growth and survival, Schwann cells also release cytokines to recruit circulat-

ing macrophages to the injury site. Macrophages phagocytose myelin debris during the later 

stages of Wallerian degeneration. Macrophages are not only essential for effective myelin phag-

ocytosis but also produce mitogenic factors for Schwann cell activation. Macrophages have even 

been shown to stabilize neurite outgrowth from dorsal root ganglia grown on pre-injured nerve 
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cryosections24 and can remodel the distal nerve's ECM in preparation to receive the re-growing 

axons.23  

Following less severe nerve injuries (Sunderland classifications I-III) or in very short nerve 

gaps, growth cones that extend into the defect site along the Bands of Bungner will eventually 

restore axon-Schwann cell contact. These renewed cell-cell interactions trigger the Schwann cells 

to 're-differentiate' and begin remyelinating the newly formed nerve fibers. Macrophage contact 

with this 'new' myelin can trigger the immune cells' exit from injury site and re-entry into circulation. 

Thus, interactions between Schwann cells and macrophages are imperative for this 'normal' pe-

ripheral nerve regeneration to proceed (Figure 1-2). 
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Figure 1-2. Typical repair schema following peripheral nerve injury 
The “normal” regeneration program that proceeds in short peripheral nerve gaps includes dedifferen-
tiatoin, hyperproliferation and alignment of Schwann cells into the Bands of Bungner. Infiltrating mac-
rophages facilitate repair by cleaning up axonal and myelin debris. These non-neuronal responses are 
essential to successful nerve regeneration.  (This figure has been reproduced freely under a Creative 

Commons Attribution license. © 2014 Arslantunali et al. Originally published by Dove Medical Press Limited        
DOI: https://doi.org/10.2147/MDER.S59124)  
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Chondroitin Sulfate Proteoglycans 

 

Proteoglycans are complex molecules featuring a glycosylated core protein and one of 

three types of carbohydrate side chains (chondroitin, heparan or keratin sulfates).25 Proteoglycans 

are found in the ECM where they often form large complexes with other proteoglycans and hya-

luronan. Proteoglycans were initially believed to be "filler" in the ECM following their isolation in 

the 1890s but have since been shown to have important roles in cell migration and disease pro-

gression. In nerve ECM, proteoglycans play important roles in axonal guidance during develop-

ment and following injury.26 Individual functions of proteoglycans can be attributed to either the 

protein core or attached glycosaminoglycan (GAG) side chains.  

Chondroitin sulfate proteoglycans (CSPGs) are the most well characterized of the prote-

oglycans for their inhibition of axon outgrowth following injury, especially in the CNS where 

CSPGs are studied as a physical barrier to axon regeneration as part of the glial scar.  The role 

of CSPGs in the PNS is far less studied even though it is known that CSPG expression by endo-

thelial cells and Schwann cells increases following PNI.26 CSPGs in the PNS interact with out-

growing neurites via receptors on the neuron cell body and growth cone.25 Figure 1-3 illustrates 

CSPG structure and function following PNI.  

In the PNI environment, CPSGs are primarily distributed in the Schwann cell endoneurium 

and surrounding newly formed Bands of Bungner.26 Because of their ability to inhibit axon growth, 

CSPGs may help prevent aberrant growth into the extraperineurial space that could lead to neu-

roma formation. This would mimic nervous system development where CSPGs function as nec-

essary guidance cues and are expressed temporally and spatially to guide neurons to appropriate 

targets by inhibiting them from entering inappropriate areas.27, 28 In this thesis we will present 

results demonstrating the potential of CSPGs as a unique cue for PNI regeneration and not a 

molecule to be avoided. 
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Figure 1-3. Chondroitin sulfate proteoglycans structure and function 
 

Chondroitin sulfate proteoglycan (CSPG) structure (A) and function following peripheral nerve in-
jury. Glycosaminoglycan (GAG) side chains are the inhibitory component of CSPGs and the 
GAG, Chondroitin sulfate A (CSA), was chosen as representative of injured nerve extracellular 
matrix in this study. (B) Intracellular signaling mechanism triggered by CSPGs. Binding of CSPG 
receptors present in axons initiates growth cone inhibition. RhoA activation eventually leads to 
actin de-polymerization and growth cone retraction.  
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Problem Statement: Current Treatments are Insufficient to Repair Large Nerve Gaps  

Traditional treatments for PNI, including coaptation, autografting, and allografting are in-

sufficient to achieve full functional recovery in large gaps (>3 cm in humans). Therefore, several 

research groups have focused on neural tissue engineering to replace grafting. The most popular 

tissue engineered strategies involve synthetic nerve guide conduits (NGCs), which are hollow 

tube devices designed to hold the two nerve ends in close proximity.29 Unfortunately, NGCs have 

been unable to match the success of autografts in vivo. In this section, we discuss the drawbacks 

of current treatments and propose improvements to the current NGC model. We hypothesize that 

many neural tissue engineered strategies have failed because of a lack of study of the complete 

regenerative environment before going in vivo. Figure 1-4 summarizes currently available PNI 

treatment options based on gap size. 

 

 

Figure 1-4. PNI repair options by size and availability 
 

As PNI gap size increases, the availability (pink) and utilization (blue) of different treatment options 
diminishes. A critical need exists to develop nerve guide conduits that can treat large nerve gaps in 
the clinic. (This figure was originally published in the Analysis of the Peripheral Nerve Repair Market in the 
United States, 2012 by Magellan Medical Technology Consultants, Inc. and was reproduced freely as part 
of the public domain. Original file provided by the author Kurt Brattain).  
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Grafting  

 

Coaptation, is defined as the joining or reuniting of two surfaces, in this case the two nerve 

stumps following nerve transection. This direct suturing of epineurial structures is the preferred 

surgical treatment because it allows for the gross lining up or matching of fascicles and blood 

vessels which produces the best functional outcomes.7 When coaptation of the two nerve ends 

would result in destructive tension on the tissues, an autologous nerve graft is the favored treat-

ment option. Autografting takes whole or partial donor nerve tissue from elsewhere in the patient's 

body to fill the defect site. A single graft is designed to join two nerve ends with a segment of 

donor nerve of similar diameter. Gaps in large diameter nerves may require cable grafts, where 

multiple fascicular sections of smaller diameter nerves are used to approximate the diameter of 

the injured one.12 However, each nerve can contain between 1-100 fascicles each with a diameter 

ranging from 0.5-3.5 mm depending on nerve size and location within the body.30 This diversity 

of peripheral nerves poses a significant challenge to treatment. Donor nerve is typically harvested 

from dispensable sensory nerves, especially the sural nerve made up of collateral branches of 

the tibial and common fibular nerve in the distal part of the leg. 

All peripheral axons have the potential to regenerate following injury at rates of 2-5 

mm/day.31, 32 This rate should translate into bridging a critical gap injury (3 cm) in a matter of days; 

however, reinnervation of target tissues can actually take months, which delays functional recov-

ery and leads to muscular atrophy.17 As the nerve defect size increases, functional recovery di-

minishes. Singh et al.33 performed a comprehensive analysis of 187 patients with complete tran-

section of upper limb peripheral nerves treated with sural nerve autografts. Patients' motor and 

sensory recovery was analyzed 18 months after surgery. Outcomes of this study are summarized 

in Table 1-2. The percentage of patients achieving ‘good’ motor and sensory recovery (defined 

by the British Medical Research Council) diminished with increasing gap size. 
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Table 1-2. Peripheral nerve autograft functional outcomes in a clinical trial 
 

The percentage of patients with full motor and sensory recovery following an upper limb injury treated 
with a sural nerve autograft diminishes with increasing injury size.  n = 187 patients; 18 month follow 
up. Data from Singh et al. 1992. 

 

 

Despite these discouraging outcomes for large peripheral nerve transections, autografting 

has remained the "gold standard" treatment for PNI since the 1960s.34 Furthermore, autografting 

is associated with a number of other drawbacks including multiple surgeries, donor site morbidity, 

size mismatch, and limited tissue availability.35, 36  For patients with extensive nerve injuries and 

inadequate autologous donor tissue available, human cadaver nerve allografts have been used. 

However, allografting with donor tissue, typically from a cadaver, faces a different set of chal-

lenges including immune rejection and disease transfer.4 Therefore, allograft recipients typically 

require several years of immunosuppressive therapy. These issues demand an alternative treat-

ment option.  

Neural Tissue Engineering 

 

Tissue engineering utilizes biomaterials, cells, and growth factors (GFs), alone or in com-

bination, to restore, maintain or improve tissue function. The traditional definition of tissue engi-

neering involved isolating healthy cells from a patient, expanding them in vitro, seeding the cells 

onto a biodegradable scaffold (the NGC in nerves), implanting it into the patient, and allowing the 

body to eventually replace the scaffold with newly grown tissue.37 Several NGCs have reached 

clinical trials and the market (FDA has approved 11 new devices in the past 20 years). Current 
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clinically approved NGCs are made from a variety of materials including: type I collagen, polygly-

colic acid (PGA), poly (DL-lactic-co-caprolactone) (PLCL), polyvinyl alcohol (PVA) hydrogel, por-

cine small intestinal submucosa (SIS) or a combination of these.38 Devices range in length from 

2.5 to 6.35 cm and have degradation rates ranging from 4 months to 4 years (some devices are 

not bioresorbable). These devices have shown clinical outcomes comparable to autografts but 

only in small defect (<3cm), small diameter digital nerves. Unfortunately, these devices are all 

structurally similar to what was first introduced in the 1980s, hollow tubes lacking any internal 

structure that mimics native nerve tissue39 and therefore they are not successful for treating larger 

injuries.  

Neural tissue engineers have begun exploring modifications to the basic NGC to improve 

regeneration. Popular modifications include growth factor delivery, cell delivery (e.g. Schwann 

cells or stem cells), changes to material properties (e.g. porosity, stiffness, conductivity, and deg-

radation) and material size/shape (e.g. micro- or nano-scale topography, gels, fibers, or patterns). 

Popular NGC modifications are illustrated in Figure 1-5.39  

 

 

 
 
Figure 1-5. Neural tissue engineering strategies to improve NGCs 
 

Modifications to the basic, hollow nerve guide conduit currently being explored by tissue engi-
neers.  (This figure has been reproduced with permission from Neurosurgical Focus and the Journal 
of Neurosurgery Publishing Group. DOI: 10.3171/FOC.2009.26.2.E5)  
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A full analysis of these modifications will not be described here, but we recommend sev-

eral great reviews discussing the current state of NGC technology and comparing each of these 

modifications.39-43 In this thesis, we have focused on what we believe to be the most promising 

modifications for future success based on previous studies, ease of delivery, and ease of clinical 

translation. Our objective is to model intrinsic topographical and adhesive cues, that form during 

regeneration in short PNI, with biomaterials. We specifically want to explore these cues in the 

context of the acute PNI environment. This environment contains inhibitory CSPGs and inflam-

matory glial and macrophage responses, often overlooked by tissue engineers in their pursuit to 

promote axon outgrowth. Therefore, we explore the effects of a representative inhibitory CSPG, 

Chondroitin sulfate A (CSA) on neuron, Schwann cell and macrophage responses, especially 

CSA-induced neurite retraction in real time. We isolate porcine spinal cord extracellular matrix 

proteins (SCM) and utilize it as a growth permissive substrate. We hypothesize that our matrix is 

a more complete ECM mimic than fibronectin or laminin cues alone. We then deliver the CSA and 

SCM cues as part of a tissue engineered scaffold. Our scaffold features electrospun hyaluronic 

acid (HA) nanofibers providing a topographical cue. Lastly, we explore the effects of the SCM and 

HA nanofibers on macrophage and Schwann cell response. We hypothesize that our cues can 

accelerate repair programs in the cells. These cells normally must spend time aligning and laying 

down matrix. By delivering aligned, ECM-containing fibers to the cells, they might be able to “skip 

a step” in the repair process. Some of the motivating studies for our work are highlighted below.  

Literature Review and Motivating Work 

Topographical Cues 

 

Aligned fibers have a well-established benefit for enhancing neurite outgrowth in the fiber 

direction.44, 45 Neurite outgrowth has been studied on a variety of natural and synthetic polymers 

including gelatin, chitosan, silk fibroin, poly-lactic-glycolic acid, polyurethane, poly-vinyl alcohol, 

poly-caprolactone, and any number of combinations of these polymers.37, 46 Aligned fibers can 

also be fabricated using a variety of techniques including electrospinning or self-assembly.47 In 



16 

 

 
 

this thesis, we utilize electrospinning to fabricate nanofibrous scaffolds because it is a simple 

fabrication method, which can be adapted to create fibers of different sizes from many different 

polymers. We use hyaluronic acid (HA) as our base polymer because it has previously been es-

tablished as a useful polymer for neural tissue engineering48 but more importantly, HA is easily 

modifiable and provides a great vehicle to deliver our adhesive cues (SCM and CSA). 

Adhesive Cues  

 

We have already discussed the importance of Schwann cell proliferation and alignment 

for physically guiding axon regeneration. However, research suggests that following axonal injury 

chemical cues are also released into the injury site.49 These molecules are released by Schwann 

cells, endothelial cells, immune cells, and even the injured neurons themselves. Consequently, 

axon extension based on chemotactic (or diffusible) cues has been the primary approach for 

guiding axon regeneration since the late 19th century.50, 51 Chemotaxis describes chemical-in-

duced cell migration, typically the preferential movement of the cells up a concentration gradient 

of soluble chemoattractant molecules.52-54  A family of growth factors (GFs) called neurotrophins 

are the most popular molecules being studied for promoting peripheral nerve regeneration.55 Neu-

rotrophins play a critical role in regeneration by promoting neuron survival, regulating Schwann 

cell differentiation, and organizing axon myelination.56 Unfortunately, growth factor based thera-

pies for peripheral nerve regeneration face a number of challenges. For example, GFs cannot be 

delivered in vivo via conventional methods because of systemic toxicity, slow tissue penetration, 

and short biological half-lives (minutes to hours).55, 57 Despite these unresolved issues, the estab-

lished guidance ability of the neurotrophins, has dictated that chemotaxis be at the forefront of 

neural tissue engineering research.58 

While the study of chemotaxis has a longer history, other types of axonal guidance may 

offer benefits that chemotactic cues cannot provide59, specifically establishing cues that last the 

lifetime of an implant. Haptotaxis, first described by Carter in 1965, describes directed cell migra-

tion along surface bound cues.60, 61 Laminin and its derivatives, have been extensively studied in 
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vitro as haptotactic guidance molecules. Several studies have specifically identified the different 

concentration gradient thresholds of different surface bound cues necessary to initiate directed 

growth.62 However, very few studies have combined permissive and inhibitory guidance mole-

cules into one scaffold and only one study looked at a gradient of an inhibitory molecule (Slit-2).63 

Therefore, our approach is innovative because of the unique combination of SCM (permissive) 

and CSA (inhibitory) guidance cues and their immobilization within a scaffold. The study of soluble 

chemical cues is more popular but immobilized cues within the fibers are expected to more ben-

eficial in large nerve gaps where they can last the duration of the scaffold.  

Decellularized Extracellular Matrix 

 

Processed nerve allografts have also gained recent popularity for treating large PNIs. The 

resulting decellularized extracellular matrix (ECM) has distinct advantages over synthetic guides 

(e.g. biochemical cues) and offers regeneration below autografts but better than NGCs in a 3-way 

comparison.64, 65 One of the challenges to using whole acellular allografts, however, is preserving 

the nerve layers and ECM structure. Extensive tissue processing methods, including lyophiliza-

tion, cold preservation, freeze–thaw cycling, detergent processing, and/or irradiation can lead to 

poor mechanical properties and frail grafts.64 Here we still deliver ECM cues, using precipitated 

matrix proteins, but we allow the HA nanofibers to provide the structural component. Nanofibers 

are a good mimic of native ECM size and shape.  

Residual CSPGs also present a potential source of inhibition in decellularized allografts. 

Groups have found success pre-treating their grafts with bacterial enzyme, Chondroitinase 

ABC.66, 67 Most clinical and experimental studies have used ChABC to degrade and inactivate the 

entire family of CSPGs within the grafts. Unfortunately, this treatment negates any potential ben-

efits of the CSPG cues. It has been suggested that selective de-inhibition of nerve grafts would 

be more beneficial to using them in PNI treatment.68 However, there are no known Chon-

droitinases that selectively degrade different types of CS chains. CSPGs have the ability to up-

regulate receptors in advancing growth cones enabling them to bind strongly to the surrounding 
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ECM molecules. In the designs proposed here we introduce chondroitin sulfate in a controlled 

way so that the cells can benefit from both the CS cues and the ECM. 

Schwann-cell Inspired Designs 

 

Another obvious issue with processed allografts is their lack of cells, especially Schwann 

cells, and the regenerative cues provided by them. Therefore, many research groups have fo-

cused on re-seeding decellularized donor tissue with the patient’s Schwann cells prior to implan-

tation.69, 70 Many groups have worked on pre-seeding traditional tissue engineered scaffolds with 

Schwann cells or stem cells, allowing them time to form the Bands of Bungner, prior to implanta-

tion. Unfortunately, cell-based therapies, are time consuming, costly, and will be more rigorously 

evaluated by the FDA, making clinical translation difficult. Several approaches have been estab-

lished methods to recreate the bands of Bungner following PNI.  

Kofron et al. 2010 and Lopez-Fagundo et al. 2013 both used relief replicas of actual cul-

tured Schwann cells to create microwells and 3D micropillars in the size and shape of these cell 

structures. Unfortunately, neither of these studies had significantly improved neurite outgrowth 

based on structure size or shape, it was only the presence of a topographical cue, as opposed to 

a flat surface, that improved neurite behavior. Furthermore, these approaches required several 

complicated fabrication steps and featured non-biologically relevant materials (e.g. PDMS).71, 72  

In a study by Georgiou et al. the group designed engineered neural tissue or "ENTs" com-

prised entirely from aligned Schwann cells.73 While support cells are absolutely critical to the suc-

cess of an implanted device finding an appropriate delivery system to keep the cells alive is very 

difficult to achieve, maintain, and translate.74 Pre-seeding tissue engineered scaffolds with cells 

prior to implantation, even if they are autologous cells, will face many challenges to reaching 

clinical translation. It is anticipated that the best chance to promote regeneration, and reach pa-

tients, is to develop an artificial scaffold that mimics these crucial cellular structures. 

The Bands of Bungner have a  striated appearance, due to not only the presence of elon-

gated Schwann cells but connective tissue bundles.60 Here we use electrospun nanofibers to 
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mimic this natural striated appearance as opposed to the smoothness of these other "bio-inspired" 

designs. The primary goal of this thesis is to control the phenotype and behavior of three key cell 

types in the peripheral nerve injury environment using naturally derived biomaterials cues to mimic 

the physical and adhesive guidance during normal axon regeneration.  

Modulating Non-Neuronal Cell Phenotypes 

 

Following PNI, Schwann cells undergo a process sometimes referred to as “dedifferenti-

ation,” assuming a phenotype similar to embryonic development (Figure 1-6A). Macrophages 

can also assume distinct phenotypes with different biological activities (Figure 1-6B). Macro-

phage phenotype exists on a spectrum, but subpopulations of macrophages are broadly classified 

into two major groups: "classically activated" macrophages (M1) and alternatively active macro-

phages (M2).  M1 macrophages arise immediately following PNI and have been shown in vitro to 

be neurotoxic, releasing pro-inflammatory cytokines. Conversely, M2 macrophages have reduced 

production of these cytokines and release factors that promote tissue repair and wound healing. 

M2 macrophages have been shown to be neuroprotective and to promote long distance axon 

growth even in the presence of inhibitory CSPGs.75  
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In recent years, many different tissues engineered systems have emerged to treat large 

nerve gaps. These strategies are routinely evaluated for their effects on neurons but not for their 

influence on macrophage and Schwann cell phenotype. Following nerve injury, activated macro-

phages can induce axon retraction. Therefore, approaches aimed at depleting the injury site of 

macrophages with anti-inflammatory drugs, such as clodronate and minocycline, have garnered 

attenion. An in vitro time lapse video study by Horn et al. concluded that the direct cell-cell contact 

of macrophages and neurons initiated axon retraction 100% of the time. However, axon retraction 

in response to the macrophages diminished when neurons were cultured on a growth-promoting 

laminin substrate. However, the authors did not comment on whether the substrate was affecting 

the intrinsic growth capacity of the neuron, or altering the activation state of the macrophages, or 

both. In this study, we offer some additional insight by testing the effects of a growth permissive 

 
 
Figure 1-6. Macrophage and Schwann cell phenotypes 
 

Following injury support cells in the microenvironment undergo phenotypical changes. (A) Macro-
phages can assume classical (M1) or alternative activation (M2). (B) Schwann cells undergo a 
“dedifferentiation” process where they assume a phenotype similar to immature cells.               
(Part B has been freely adapted from © 2008 Salzer Rockefeller University Press under a Creative 
Commons Attribution license. DOI: 10.1083/jcb.200804136)  

A      B 
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substrate, the porcine SCM, specifically on macrophage activation sate. Lastly, Horn et al. re-

ported that only macrophages previously activated to M1, with interferon-y or lipopolysaccharide 

(LPS), induced significant axon retraction. This result supports the growing theory that macro-

phage activation state, and not their presence, is critical when considering nerve regeneration. 

Macrophage activation is gaining great popularity for improving outcomes in the regener-

ation of many tissue types include cardiac, dermal, muscle, bone and neural.76 Most studies, 

however, focus on shifting the macrophage phenotype towards M2 using established immuno-

modulatory cytokines such as IL-4, IL-13, M-CSF or exploratory drugs and compounds. Using 

biomaterials to control macrophage activation, however, eliminates the challenges of delivering 

these molecules in a clinical setting. Some of the groups who have recently begun testing bio-

materials for their effects on macrophage activation are highlighted below.  

In a 2013 study, Franz et al created “artificial ECM” (aECM) featuring collagen type I and 

highly sulfated HA, a type of GAG. The group found that their matrix possessed immunomodulat-

ing properties and dampened inflammatory activity of M1-polarized macrophages. The group sug-

gested that their aECM is a promising coating for other biomaterial implants to modulate the heal-

ing response.77 These results were very exciting for us because collagen and sulfated-GAGs are 

two primary constituents of our SCM. Furthermore, we test it as an adhesive coating on TCP and 

the HA fibers. Franz’s study indicated our potential for success. 

 Nanotopography can also affect macrophage activation which occurs most likely through 

the manipulation of cell shape and orientation.78 Bartneck et al. found that 2D and 3D electrospun 

PLGA scaffolds conjugated with RGD (fibronectin derived peptide sequence) reduced macro-

phage inflammatory responses and directed cells towards M2.79 Potas et al. covalently linked IL-

10 (an M2 stimulating cytokine) to electrospun PCL scaffolds and the scaffolds were wrapped 

around intact rat sciatic nerves. The group found significantly increased expression of M2 macro-

phages at the scaffold and in the surrounding tissue evidenced by Arginase 1 and CD206 staining. 

IL-10 remained immobilized and bioactive for up to 120 days in vivo. The group concluded that 
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biofunctionalized nanofibers are useful for manipulating the peripheral nerve cellular environment 

and that these types of materials should be adapted for more therapeutic strategies.80 We agree 

with these conclusions and aim to utilize topographical (aligned HA fibers) and adhesive biochem-

ical cues (SCM and CSA) in our own scaffolds for directing PNI regeneration. 

Biomaterials approaches to altering Schwann cell phenotype have garnered less interest 

than macrophage studies. However, a few groups having studied the effects of topography81, 82, 

stiffness83, soluble growth factors (e.g. neuregulin)84, and ECM (e.g. collagen and laminin),85 for 

regulating Schwann cell function, especially actin cytoskeletal dynamics, migration, myelination. 

There are also many groups working on differentiating stem cells from a variety of sources (e.g. 

human dental pulp, adipose tissue, and umbilical cord) towards a Schwann cell phenotype for 

treating PNI.86, 87 These cells are often combined with a biomaterial scaffold. But very few studies 

are looking at the phenotypical transition, from dedifferentiated/immature to mature, in the 

Schwann cells as we do here. Cellular plasticity and a spectrum of activation has been demon-

strated with macrophages. Schwann cell phenotype can also exist on a spectrum. We believe 

these two non-neuronal cell types undergo paralleled changes following injury that can be studied, 

modeled, and influenced similarly with biomaterials.   

All of the studies reviewed here motivated the work in this thesis. However, these ap-

proaches to PNI repair have never previously come together into a single body of work. Our col-

lective studies offer improved insight into the endogenous potential of the injured peripheral nerve 

and offer ways to incorporate intrinsic repair cues into a biomaterial system for treating large gaps.   

Summary 

In a recent review in Experimental Neurology, Webber and Zochodne argued that improv-

ing regenerative success [in peripheral nerves] requires "...models that prominently display the 

problem at hand and a means to locally influence the regenerative milieu."88 Many current periph-

eral nerve repair strategies focus on delivering positive, growth promoting cues (e.g. extracellular 
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matrix, ECM) while eliminating negative, growth inhibiting cues (e.g. chondroitin sulfate proteo-

glycans, CSPGs) at the injury site. We hypothesized that recapitulating the positive and negative 

cues of the peripheral nerve injury microenvironment would improve regeneration. Moreover, 

other groups often fail to test the effects of their cues on cell types other than the neurons. We 

aim to provide appropriate substrates to facilitate Schwann cell and macrophage responses as 

well as axonal outgrowth.  

In Chapter 2, we tested the effects of a characteristic CSPG, Chondroitin Sulfate A (CSA) 

on neurite dynamics of dissociated chick embryo dorsal root ganglion (DRG) neurons using time 

lapse video microscopy. DRG growth was recorded on different adhesive substrates, including a 

novel, porcine-derived spinal cord matrix (SCM). The SCM significantly increased frequency of 

neurite extension coordinated by a significant reduction in the neurites’ time spent stalled. The 

SCM also mitigated inhibitory effects of CSA, producing longer neurites than the controls without 

CSA treatment. We also quantified neurite extension and retraction rates. Next we aimed to elu-

cidate receptors involved in mediating the observed neurite behavior. We hypothesized that CSA 

mediates the upregulation of cell-surface binding receptors in the neurons and tested this using 

flow cytometry with fluorescently tagged antibodies for the neurons' surface molecules. Our re-

sults showed a significant increase in Syndecan-3 receptor expression in neurons treated with 

CSA. Syndecans would most likely bind to the sulfated glycosaminoglycans measured in our 

SCM. Together these results suggest that CSA plays an important role in priming cells to bind 

newly synthesized ECM during repair and our isolated SCM is a good mimic of native ECM.  

In Chapter 3, we modify our CSA and SCM cues to be presented as part of a biomaterial 

scaffold. To immobilize the CSA, we methacrylate it to CSMA using an established protocol for 

creating methacrylated hyaluronic acid (MeHA). CSMA, SCM, and MeHA polymers were electro-

spun into scaffolds to deliver these adhesive molecules along with a topographical cue (aligned 

nanofibers). The ability of these scaffolds to promote neuron outgrowth was again tested with 

chick embryo DRGs. Our results showed significantly increased neurite outgrowth on electrospun 
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hyaluronic acid fibers with SCM and low levels of CSA. Higher incorporation of CSA maintained 

its inhibitory properties.  

In Chapter 4, we evaluate the ability of our biomaterials cues from Chapters 2 and 3 to 

modulate the phenotypes of macrophages and Schwann cells (SCs). Specifically, we explored 

the effects of the CSA (soluble, chemical cue), SCM (adhesive cue), and aligned HA nanofibers 

(topographical cue). We hypothesized that one or more of our biomaterials cues would accelerate 

the macrophages return to a resting state, following classical activation (M1) with lipopolysaccha-

ride (LPS) and/or direct the cells towards an alternative activation (M2) state. Analogously, we 

hypothesized our cues would accelerate the SCs transition to a mature/pro-myelinating state, 

following treatment with LPS, used here to mimic immaturity/injury. Cell phenotypes were func-

tionally assessed 12, 24, and 48 hours following LPS stimulation. Quantified reverse transcription 

polymerase chain reaction (qRT-PCR), immunofluorescence (IF), and sandwich-ELISA based 

antibody arrays were used to measure changes in mRNA expression, morphology, and cytokine 

release, respectively.  

Our results showed that the SCM and HA nanofibers suppressed the effects of LPS on 

the macrophages by reducing inducible nitric oxide synthase gene expression. The HA fibers also 

prevented LPS-induced morphological changes. Release of IL-1a, an M1 cytokine, was also re-

duced from cells cultured with these cues. Similarly, the SCM and HA fibers significantly influ-

enced Schwann cell phenotype. Mature gene markers, Oct6 and Krox2, were significantly upreg-

ulated while immature markers such as GFAP were significantly downregulated. SCs on the fibers 

assumed a mature, bipolar morphology, significantly elongating in the fiber direction. Furthermore, 

these changes were observed in as little as 24 hours, much faster than previous studies.  

In Chapter 5, we present the overall discussion and conclusions of this work and proposed 

future directions. We developed a method for measuring receptor expression in the neurons 

(Chapter 2) and we suggest expanding this flow cytometry effort to include other syndecans, other 

receptors (e.g. integrins), neurons cultured with our other biomaterials cues, and the other cell 
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types (macrophages and SCs). Based on the improved neurite outgrowth observed on our CSMA 

and MeHA, and SCM and MeHA, scaffolds (Chapter 3) we predict that coupling these cues will 

have synergistic effects on neurite outgrowth. We are especially interested in delivering the cues 

as opposing linear gradients. We ultimately aim to create a single, scaffold system that could be 

implanted inside existing NGCs during normal PNI surgeries and we discuss some methods for 

moving our biomaterials in vivo. In the future, we propose to test our biomaterials with co-cultures 

of the DRG neurons and non-neuronal cells (macrophages and SCs) based on the significant 

changes in these cells’ morphology and cytokine release (Chapter 4).  

Overall, we believe that we have provided a collection of approaches to understanding 

and utilizing the inherent regenerative potential of injured peripheral nerves. We believe the in-

sight provided here can serve the design of other tissue engineered systems for large peripheral 

nerve gaps or be adapted to study the neurons, immune cells, and glia of the CNS. Moreover, we 

hope the specific biomaterials explored here will find widespread application in the nervous sys-

tem.   
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CHAPTER 2: POSITIVE AND NEGATIVE CUES FOR MODULATING NEURITE DY-
NAMICS AND RECEPTOR EXPRESSION  
 
Introduction 

Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix (ECM) molecules of 

interest that may be overlooked during peripheral nerve repair. CSPGs are well-known for their 

inhibitory role in the central nervous system following spinal cord injury89, but CSPGs are also 

deposited by endothelial, inflammatory, and Schwann cells following peripheral nerve injury (PNI). 

Despite increased CSPGs in the PNI microenvironment, only a few groups have explored the 

effect of CSPGs on peripheral neurons.20, 26, 90 Rather, most neural tissue engineering research 

focuses on delivering only growth promoting factors to encourage neurite outgrowth. We hypoth-

esize that recapitulating the injury microenvironment with both positive (growth permissive) and 

negative (growth inhibitory) cues can better promote nerve regeneration.  

In this study, we investigated the ability of materials-based cues to modulate neurite be-

havior and receptor expression in peripheral neurons. Our first objective was to quantify the ef-

fects of a characteristic CSPG, Chondroitin Sulfate A (CSA), on neurite extension and retraction 

using time lapse video microscopy. Secondly, we investigated the ability of a novel biomaterial, 

derived from porcine spinal cord matrix (SCM), to improve neurite outgrowth in the presence of 

the inhibitory CSA. Lastly, we measured the ability of CSA to induce Syndecan-3 receptor expres-

sion in peripheral neurons using flow cytometry.  

Axons in the PNI environment face obstacles to regeneration including inflammatory cells, 

inhibitory chemical cues, and physical barriers.91 We have hypothesized that these obstacles in-

duce axon retraction events leading to regeneration failure. Selective axon retraction, or pruning, 

is a normal part of healthy tissue development17, 19, however, the role of axon retraction following 

PNI is less understood and less studied. Few studies have used live cell imaging techniques to 

examine neurite retraction behaviors. Even fewer studies have examined neurite retraction in 

response to a negative cue, such as CSPGs. Of over thirty studies reviewed that reported using 
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time lapse imaging to capture neurite retraction in response to cues such as force induction92, 93, 

topographical barriers72, 94, substrate mechanics95, 96, chemical cues50, 97, or other cells98, only four 

quantified their observations. Therefore, the first objective in this study was to quantify the effects 

of soluble CSA (mimicking CSPGs liberated from healthy ECM following injury) on neurite exten-

sion and retraction in real-time.  

It has previously been demonstrated that CSPG exposure can lead to increased mem-

brane density of beta-1 integrins in peripheral neurons.99 Furthermore, the effects of blocking 

antibodies against beta-1 integrins were dependent on the in vitro substratum, with especially 

permissive substrates able to overcome the effects of the block.100 In addition to upregulating 

integrins, we hypothesized that CSA can also induce the upregulation of another class of surface 

receptors called syndecans. Syndecans perform diverse functions including participation in cell-

matrix and cell-cell adhesion, migration, and proliferation.101, 102 Syndecans can also bind a wide 

variety of ECM molecules and growth factors.103 Syndecan-3 was the focus in this study because 

it is the most abundant syndecan in the nervous system.104 Though typically studied as inhibitors 

to regeneration, we predict CSPGs can prime neurons for growth by inducing the upregulation of 

Syndecan-3. 

Laminin has a long-established ability to promote neurite formation and extension105, 106 

and remains a popular adhesive substrate in neural tissue engineering, especially because it 

binds to integrins.107 However, we hypothesized that our SCM would provide a more diverse and 

physiologically relevant substrate resulting in better neurite growth. Therefore, we tested SCM as 

an adhesive substrate for culturing neurons in the presence of soluble CSA.  

The SCM significantly increased frequency of neurite extension coordinated by a signifi-

cant reduction in the neurites’ time spent stalled/unmoving. Furthermore, neurons grown on the 

SCM, even in the presence of CSA, had longer neurites than control substrates without CSA. Our 

results also showed a significant increase in syndecan-3 expression in DRG neurons treated with 
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CSA, compared to basal expression in untreated neurons. We expect that CSA-induced upregu-

lation of syndecan-3, and the heterogeneous composition of the SCM, (especially presence of 

sulfated glycosaminoglycans) modulates neurite behavior via Syndecan-matrix binding.  

Experimental 

Materials 

Reagents used for the spinal cord matrix (SCM) isolation include fresh-frozen porcine spi-

nal cords (ECM Science), sodium acetate (Sigma), Ethylenediaminetetraacetic acid (EDTA; Cal-

biochem), acetic acid (EMD Millipore), and sodium chloride (Fisher BioReagents). Colorimetric 

assay reagents include Direct Red 80 (Alfa Aesar), and 1,9-dimethyl-methylene blue (DMMB), 

type I collagen from calfskin, and papain buffer all from Sigma. Serum free cell culture media 

(SFM) was composed of DMEM/Ham's F12 (GE Healthcare Life Sciences), 2mM L-glutamine 

(GE Healthcare Life Sciences), 50 U/mL Penicillin-Streptomycin (Sigma), 0.6% B-27 nutrient sup-

plement (Gibco Life Technologies) and 50 ng/mL nerve growth factor (NGF; R&D Systems). Other 

culture materials include laminin (Calbiochem) and chondroitin sulfate A from bovine trachea 

(CSA; Sigma). Neurons were harvested from chick embryos; eggs purchased from Charles River 

(Roanoke, IL). Immunocytochemistry materials include primary anti-neurofilament 200 (Sigma), 

secondary AlexaFluor488 goat anti-mouse IgG (Invitrogen), 4',6-diamidino-2-phenylindole (DAPI; 

Fisher), paraformaldehyde (PF; Acros Organics), Triton-X (MP Biomedicals), bovine serum albu-

min (BSA; Fisher BioReagents), and goat serum (Sigma). Flow cytometry materials include Ac-

cutase (MP Biomedicals), primary anti-Syndecan-3 (Santa Cruz Biotechnology), secondary goat 

anti-rabbit IgG-FITC (Santa Cruz Biotechnology), primary anti-neurofilament 200 (Chemicon) and 

secondary AlexaFluor594 goat anti-rabbit IgG (Invitrogen).  

Isolation and Characterization of Spinal Cord Matrix Proteins 

Our adhesive substrate was derived by isolating protein components from frozen, closed 

herd porcine spinal cords. The cords were disinfected with 1% sodium hypochlorite, washed in 

cold phosphate buffered saline (PBS) to remove unbound material, and then immersed in PBS 
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containing 0.5M sodium acetate and 0.1M EDTA to remove exogenous protein. Cords were rinsed 

three times with PBS, blended into small pieces, and digested in 0.02M acetic acid for 4 days. 

Matrix proteins were then salt precipitated with increasing concentrations of sodium chloride (up 

to 2M), dialyzed against deionized water, and lyophilized for the final product.   

The concentrations of sulfated glycosaminoglycans (sGAG) and collagen in the spinal 

cord matrix (SCM) were measured using absorbance spectrophotometry. sGAG content was 

quantified by DMMB binding according to a previously published protocol108 while collagen con-

tent was measured using an adapted Sirius red-based colorimetric assay.109 Lyophilized SCM 

specimens (n=8; dry weight=25 mg) were digested in either papain buffer or 0.1M acetic acid prior 

to measuring sGAG and collagen, respectively. CSA (0.2-2 μg/well) and collagen I (20-200 

μg/well) were used to create standard curves for the DMMB and Sirius Red assays, respectively. 

Final values are reported as μg of sGAG, or collagen, per mg of dry weight of SCM. 

Dissolution of the dried matrix proteins in 0.1M acetic acid was facilitated using an orbital 

shaker for 2 days. The solution was centrifuged at 3000 rpm for 10 minutes to pellet any insolu-

bles, and the supernatant was collected and used as the experimental substrate for the following 

cell experiments. 

Cell Culture  

Chick embryo dorsal root ganglia (DRG; E9-11) were harvested, trypsinized, and mechan-

ically dissociated according to a previously described protocol.110 Dissociated neurons were 

plated (6000 cells/cm2) in a 24-well tissue culture plastic plate coated with either spinal cord matrix 

(SCM, experimental condition), laminin (LAM) or left uncoated (denoted TCP). Wells were coated 

via adsorption by incubating in either the SCM or LAM solutions (5 μg/cm2) for 4 hours and rinsing 

3x with PBS (laminin manufacturer’s protocol). Neurons were cultured for 2 days in serum free 

media (SFM) either with or without 10 μg/mL Chondroitin Sulfate A (CSA).  
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Microscopy and Image Analysis 

Time Lapse Video  

Dynamics of extending neurites were recorded using a Nikon Eclipse inverted microscope 

fitted with an incubation chamber maintained at 37C, 5% CO2, and 90% humidity. Bright field 

images were captured every 10 minutes, for 12 hours, beginning 24 hours after seeding (to allow 

for sufficient cell attachment). The following parameters were measured from the video record-

ings: average neurite extension and retraction rates (μm/min) and extension, retraction and stalled 

time as a percentage of total neurite movements. Neurite length was measured as a straight line 

from the center of the neuron cell body to the neurite tip in every frame of the time lapse videos. 

The change in neurite length between frames was used to determine if the neurite was actively 

extending, retracting, or remaining unchanged/stalled for any given 10 minute interval. Changes 

in neurite length less than ± 5μm were considered negligible. The use of ±5 µm as the cut-off for 

eligibility of neurite extension or retraction was due to limitations in measurement and consistency. 

The three types of neurite movement (extension, retraction, or stalled) were then reported as 

percentages of a given neurite's total movements. For every change in neurite length, an exten-

sion or retraction rate was determined by dividing the respective change in neurite length by the 

time interval between frames and the average extension and average retraction rates were de-

termined across all cells.  

Figure 2-1 shows examples of the neurite length measurement technique and the types 

of neurite movements analyzed from the time lapse videos. Only neurites reaching a total length 

of greater than two times the cell body diameter were included. Neurites that contacted another 

neurite or another cell body, or that left the field of view, were excluded. For highly branched 

neurites, only the branch reaching the longest maximum length was traced, even if that branch 

did not remain the longest throughout the entire video (supplemental video 1).  
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Immunofluorescence  

After 48 hours of total culture time, cells were fixed (4% PF), blocked (1% goat serum), 

and stained with anti-neurofilament and DAPI to visual neurites and cell nuclei, respectively. Final 

neurite lengths were measured from fluorescent micrographs as described for measuring neurite 

length in the videos. 5 random positions were imaged for each replicate (n=3) of each condition. 

The experiment was repeated 4 times for a total of 60 images per condition. Images were cap-

tured using NIS Elements software (Nikon) and analyzed using ImageJ. The seeding density 

(6000 cells/cm2) and total culture time (48 hours) were specifically selected because, when grown 

for longer periods, neurites began to contact one another and formed networks that made tracing 

individual neurites impossible. Finally, DRG neurons cultured for 48 hours, with or without CSA, 

were also stained with anti-Syndecan-3 to visually confirm receptor expression prior to quantifi-

cation using flow cytometry.  

 
Figure 2-1. Types of neurite movements and measurement technique 
 

Still images from a representative time lapse video illustrate the three types of neurite movements 
analyzed – retraction, extension, and stalled (change in length <± 5 μm).  Neurite length was 
measured as a straight line from the center of the cell body to the neurite tip (black arrow) in each 
frame of the time lapse videos. Change in length between each frame was used to determine if 
the neurite was extending, retracting, or stalled/remaining unchanged. Time shown in hh:mm.    
(© IOP Publishing.  Reproduced with permission.  All rights reserved. https://doi.org/10.1088/1748-
605X/aa61d1) 
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Flow Cytometry 

The ability of CSA to induce the upregulation of Syndecan-3 receptors was quantified us-

ing flow cytometry as previously described for measuring opioid receptor expression in murine 

DRG neurons with slight modifications.111, 112 Chick embryo DRG neurons were harvested, disso-

ciated, and seeded on TCP in SFM containing 10 μg/mL CSA as described above for the video 

experiments. After 48 hours, neurons were detached from the plate using Accutase and spun 

down at 2000 rpm for 3 minutes. The cell suspension was washed in PBS containing 1% BSA 

and 0.5% Triton-X (wash solution), fixed in 4% PF, blocked in 1% goat serum, and incubated in 

an amino-terminal (1-300) anti-Syndecan-3 receptor antibody for 30 minutes on ice (1 μg/500 mL 

wash solution). After a further wash and incubation for 30 minutes in the secondary antibody (goat 

anti-rabbit IgG-FITC, 1:100), a minimum of 20,000 neurons per sample were analyzed on an 

Attune Acoustic Focusing Cytometer (Blue/Violet System) using Attune Cytometric Software v2.1 

for acquisition (Applied Biosystems).  

Gating for the neuronal population was conducted using the following steps in each ex-

periment. First, the population of interest was defined as region 1 (R1) by size (forward scatter, 

FSC-H) and granularity (side scatter, SSC-H). To confirm this gated population contained neu-

rons, while excluding cellular debris and dying cells, samples were stained with primary neurofil-

ament (1 μg/mL) and secondary antibodies for 30 minutes each on ice. DAPI staining (400 ng/mL; 

5 minutes) was used to identify cellular debris, dead, and dying cells. The population of interest 

was thus confirmed to be neurons by staining positively for neurofilament and negatively for DAPI. 

Figure 2-2 shows example density plots of the gating steps.  

Neurons cultured in SFM without CSA treatment were used to determine basal expression 

levels of Syndecan-3. Treated and untreated cells without any antibody staining were used to 

control for background/autofluorescence. Nonspecific fluorescence, measured from cells stained 

with just the secondary antibody, was subtracted and the mean fluorescence intensity (MFI) was 

obtained for each sample.  
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Results 

Spinal Cord Matrix Protein Quantification 

Average collagen concentration of the SCM was 296.2 ± 25.2 μg collagen/mg dry weight, 

while average sulfated glycosaminoglycan concentration was 4.3 ± 0.4 μg sGAG/mg dry weight. 

‘Dry weight’ describes the full starting weight of the SCM, however, a small fraction of the SCM 

was insoluble. Thus, collagen and sGAG content in our SCM coatings may be higher than re-

ported here. Nevertheless, our results are comparable to a study by Medberry et al. that used 

similar assays to measure collagen and sGAG content of decellularized pig spinal cords.113 

CSA Treatment and SCM Substrate Influence Neurite Outgrowth Parameters 

In this study, we used time lapse video microscopy to record outgrowth parameters of 

peripheral neurons. We measured frequency and rate of neurite retraction, which are observed 

but not often quantified in the literature, especially in response to a ‘negative’ cue such as CSA. 

 
Figure 2-2. Flow cytometry gating steps 
 

Flow cytometry was used to analyze Syndecan-3 expression in primary chick embryo DRG neu-
rons detected by fluorescent antibodies to the receptor antigen. Samples were gated first by their 
characteristic forward (FSC) and side (SSC) scatter profiles (A). Cells were gated as region 1 
(R1), eliminating very small events such as cellular debris. For this representative example (total 
event count: 82,967), region 1 contained 30% of the events (24,893). DAPI was used as the 
live/dead discriminator (B). DAPI negative events represent the fraction of viable cells within R1 
(90%; 22,403). Finally, neurons were identified from a plot of neurofilament (NF) fluorescence 
against side-scatter (C). The NF positive cells represent the fraction of R1 that is specifically neu-
rons (81%; 20,163). This sequence of gating steps was used for each experiment in order to con-
firm that a minimum of 20,000 neurons were ultimately analyzed for Syndecan-3 expression. 
(© IOP Publishing.  Reproduced with permission.  All rights reserved. https://doi.org/10.1088/1748-

605X/aa61d1) 
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Our results showed that neurites spent an average of 17.7  2.8% of their “time” (meaning of the 

video frames) retracting for all culture conditions tested (one-way ANOVA; F0.05 (5,138) = 1.42; p = 

0.22). CSA had no significant effect on the frequency with which neurites retract. Neurons cultured 

on the SCM substrate spent significantly more time extending compared to the laminin and plastic 

controls. Moreover, this increased extension on the SCM corresponded to a significant decrease 

in the time the neurites spent stalled/unmoving compared to both controls. This trend was main-

tained for conditions with and without the CSA, although only the latter was statistically significant. 

A complete summary of neurite movements for cells grown in each of the six culture conditions is 

presented in Figure 2-3A. For each condition, the three types of neurite movement — retraction, 

extension, and stalled — add to 100% of total movements. The frequencies of retraction, exten-

sion, and stalling occurred independent of whether the cell was in the early or later stages of 

culture. 

Average neurite extension and retraction rates were also measured from the time lapse 

videos. Average extension rates were statistically similar between all six experimental conditions 

(one-way ANOVA; F0.05 (5,137) = 1.53; p = 0.19). Average retraction rates on the plastic and laminin, 

with or without CSA, were also statistically similar to one another. Interestingly, neurons grown 

on the SCM had significantly increased retraction rates compared to the two control substrates 

(Figure 2-3B). This result was surprising given that neurons grown on the SCM had the longest 

final neurite lengths overall (next section). However, this unexpected outcome reinforces that the 

SCM is indeed a permissive substrate for neurite outgrowth in spite of neurite retraction behaviors. 
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SCM Substrate Promotes Growth in the Presence of CSA  

Following the time lapse recordings, the neurons were fixed and stained to analyze final 

neurite outgrowth using immunofluorescence microscopy. Example fluorescence micrographs of 

neurons grown on laminin (LAM) or spinal cord matrix (SCM) substrates with (+) or without (-) 

Chondroitin Sulfate A (CSA) are shown in Figure 2-4A. Final average neurite lengths were quan-

tified from 4 independent experiments, each with 3 replicates of the 6 conditions. Greater than 95 

total neurites were measured for each condition. Results, reported as mean ± standard error, are 

summarized in Figure 2-4B.  

The results revealed significantly reduced growth in the presence of the CSA for neurons 

grown on all substrates. This result was not surprising as CSA has previously been demonstrated 

as an inhibitor of neurite outgrowth.114, 115  However, neurons grown on the SCM had the longest 

 
Figure 2-3. Quantified neurite behavior from the time lapse videos 
 
(A) Average time spent extending, retracting, or stalled as a percentage of the neurites’ total 
movements. Neurons on SCM spend significantly more time extending, and significantly less time 
stalled, than controls. (B)  Average neurite extension and retraction rates. Extension rates are 
statistically similar for all conditions. The retraction rate of neurons cultured on the SCM are sig-
nificantly greater then neurons cultured on TCP-CSA and LAM-CSA. * indicates p<0.05; 4 trials, 
3 replicates per condition per trial, n>18 neurites measured per condition.  
(© IOP Publishing.  Reproduced with permission.  All rights reserved. https://doi.org/10.1088/1748-

605X/aa61d1) 
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average neurite lengths overall. Neurons grown on the SCM without CSA had significantly longer 

neurites than all other conditions. Neurons grown on the SCM with CSA had significantly longer 

neurites than the neurons grown on TCP or LAM with CSA. Furthermore, cells cultured on the 

SCM with CSA had an average neurite length significantly longer than those cells on TCP without 

CSA treatment, suggesting that our matrix substrate promotes neurite growth even in the pres-

ence of the soluble inhibitor.  

 

Final neurite lengths agreed with the video results for each culture condition. Using the 

‘SCM-CSA’ neurons as an example, the video results showed these cells spent an average of 

18% of the time retracting at an average rate of 1.55 μm/min, while they spent an average of 35% 

of the time extending at an average rate of 1.00 μm/min. Given that total culture time was 48 

 
Figure 2-4. Quantified neurite outgrowth from the fluorescence micrographs 
 
(A) Dorsal root ganglion neurons grown on laminin (LAM) or spinal cord matrix (SCM) coated 
plastic, treated with (+) or without (-) Chondroitin Sulfate A (CSA) stained with anti-neurofilament 
(green) and DAPI (blue) to visualize neurites and cell nuclei, respectively. Scale bars = 50 μm. 
(B) Quantification of neurite outgrowth after 48 hours. CSA significantly reduced neurite out-
growth in all conditions. Neurons grown on SCM without CSA were significantly longer than all 
other conditions, + p<0.05. Neurons grown on SCM with CSA were significantly longer then all 
conditions except LAM-CSA and SCM-CSA, # p<0.05. n>95 neurites measured per condition. 
(© IOP Publishing.  Reproduced with permission.  All rights reserved. https://doi.org/10.1088/1748-

605X/aa61d1) 
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hours (2880 minutes), and the remaining 47% of the videos the neurites were stalled (0 μm/min), 

the expected final outgrowth would be  

((1.00 
μm

min
 × 0.35) − (1.55 

μm

min
 × 0.18)  + (0 

μm

min
 × 0.47))  × 2880 mins = 204.5 μm 

which is well within the range measured from our micrographs; final average neurite length on the 

SCM-CSA was 213.1 ± 14.6 μm.  

Given that average neurite extension rates were similar among all groups, it is more likely 

that the increased extension frequency, and reduced neurite stalling, on the SCM led to the long-

est overall neurite outgrowth despite the increased retraction rates on the SCM. Moreover, these 

increased retraction rates may have to do with two different mechanisms of retraction (resorption 

vs. fragmentation) on the different substrates (more details in Discussion section).  

CSA Treatment Increases Syndecan-3 Receptor Expression  

Flow cytometry was used to determine the effect of Chondroitin Sulfate A on Syndecan-3 

receptor expression in the DRG neurons. Expression was quantified using the median fluores-

cence intensity (MFI) normalized to cells that were not exposed to CSA. The results revealed a 

21.5 ± 7.6% increase in Syndecan-3 expression for the neurons treated with CSA compared to 

the untreated control (p < 0.05; Student’s t-test; n = 6 experiments). We also tested concentration 

dependency of the receptor upregulation on neurons using 1 mg/mL CSA. At the higher CSA 

concentration, the neurons were unable to be lifted from the dish in order to conduct flow cytom-

etry. However, this observation supports our hypothesis that CSA increases cell-substrate bind-

ing. Figure 2-5 contains a representative histogram (2-5A) of receptor expression (relative fluo-

rescence) from the flow analysis as well as summarized MFI results (2-5B).  
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Figure 2-5. Syndecan-3 expression in DRG neurons 
 

(A) Syndecan-3 expression increased in fluorescence intensity for CSA-treated neurons com-
pared to the untreated control cells as evidenced by the peak shift. (B) Quantification of flow cy-
tometric analysis reported as median fluorescence intensity (MFI). MFI statistically increased for 
CSA-treated cells compared to untreated controls. *p<0.05; Student’s t-test (n=6). (C) and (D) Im-
munofluorescence micrographs reveal Syndecan-3 expression throughout the cell body, neurite, 
and growth cone of untreated (-CSA) and treated (+CSA) cells. Scale bars = 100 μm.                   
(© IOP Publishing.  Reproduced with permission.  All rights reserved. https://doi.org/10.1088/1748-
605X/aa61d1) 
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Syndecan-3 immunostaining was also performed on the CSA-treated DRG neurons to 

identify localized receptor expression. However, the fluorescence micrographs revealed that 

Syndecan-3 expression was present throughout the cell bodies and neurites. Furthermore, ex-

pression was clearly present in the control neurons (no CSA) as well as the CSA-treated ones 

(Figure 2-5C and 2-5D). However, this result is not surprising given that we know Syndecan-3 is 

constitutively expressed in the nervous system and we know from the flow cytometry results that 

receptor expression was indeed increased with CSA treatment. Furthermore, previous studies 

have suggested that CSA can affect DRG neurons at both the growth cone and the cell soma.116 

It is worth noting that neurons in the micrographs were stained (antibody concentrations) and 

imaged (exposure times) using the exact same methods and the images have not been modified 

in any way.  

Discussion 

In this study, we have successfully recorded neurite outgrowth dynamics using live cell 

imaging. Our results provide previously unreported neurite retraction parameters, particularly in 

response to a negative cue (CSA). While published data on neurite retraction rates is inconsistent, 

studies have reported comparable neurite extension rates for chick embryo DRG neurons as re-

ported here.50, 117 Other studies have also reported that DRG neuron extension rates are not af-

fected by their growth substrate. We measured significantly increased retraction rates for neurons 

grown on the SCM. This result was especially surprising given that these neurites were the long-

est overall. One possible explanation for this difference could be the mechanism of retraction on 

the SCM substrate vs. the controls.  

Time lapse videos revealed that most neurites underwent simple retraction, or resorption, 

where the axonal cytoplasm is intact and all components (e.g. actin and microtubules) are re-

turned to the cell soma (supplemental video 2). Simple retraction is a controlled process that 

requires time for protein depolymerization.118 Neurons on the SCM, however, appeared to un-

dergo fragmented retraction as opposed to simple retraction (supplemental video 3).  Fragmented 
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retraction occurs when return of all the axonal proteins would not be energy efficient for the cell 

and therefore axon shedding occurs.119 Neurite length provides one indicator of whether or not a 

neuron will undergo fragmentation, with a threshold for fragmented retraction of approximately 

200 μm.120 Because the SCM neurons were the only ones with an average length >200 μm, this 

may be one explanation for the faster retraction rates.  

Despite the increased retraction rates, neurons grown on the SCM substrate were still the 

longest overall. This result may be attributed to these cells spending significantly more time ex-

tending than stalled compared to controls and regardless of CSA treatment. Increased extension 

and reduced stalling on the SCM may stem from the heterogeneity of the matrix. Laminin, for 

example, binds preferentially to integrins. CSPGs are also capable of binding to integrins at the 

same sites that would bind laminin.115 We speculate that integrin binding becomes saturated on 

substrates such as laminin leading to increased neurite stalling. Our SCM, however, provides 

collagen sites for integrin binding as well as GAG binding sites for syndecan receptors, potentially 

making it an improved substrate over traditional adhesive cues.  

Our study shows, for the first time, significantly increased expression of Syndecan-3 re-

ceptors in response to CSA treatment in neurons. This increase in Syndecan-3 receptors could 

lead to increased neuron interactions with the growth substrate and therefore increased neurite 

extension. The presence of these receptors elucidates one positive role for the chondroitin sulfate 

released following PNI. The increase in Syndecan-3 expression measured here was significant 

but modest; this result could be explained by the experimental timeline. For example, a study by 

Bao et al 2011 used flow cytometry to examine integrin receptor expression following spinal cord 

injury and saw the onset of increased expression was at 12 hours.121 Thus syndecan expression 

may have peaked and declined by the time we analyzed the cells (48 hours of CSA treatment 

was chosen in order to match the total culture period of the microscopy data). Additionally, 

syndecans modulate cell-substrate binding, but flow cytometry required lifting the cells from the 
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dish. This step may have cleaved or otherwise degraded some receptors before analysis, there-

fore we were not measuring a maximal level of expression. Nevertheless, our results are appro-

priate for the cell type being tested and are comparable to previously published reports that have 

used flow cytometry to measure receptor expression in other neurons.111, 112  

Syndecan receptor trafficking in neurons is not fully understood, so we can only speculate 

on the mechanism by which CSA induces Syndecan-3 expression. However, we know that CSA 

can lead to increased intracellular calcium in the growth cone115, which plays a role in initiating 

many signaling cascades and may include syndecan synthesis. We have also speculated on 

mechanisms by which upregulated Syndecan-3 receptors could mediate the improved outgrowth 

observed on the SCM. First, we anticipate that upregulated syndecans would bind to the sulfated 

GAGs present in the SCM (especially heparan sulfate) allowing extending neurites to maintain 

strong adhesion to the substrate without saturating other key binding receptors (e.g. integrins). 

This binding would promote more continuous neurite extension with fewer stalling events. Sec-

ondly, the CSA-induced syndecans could act as co-receptors for the binding of certain integrin 

variants mediating improved focal adhesion formation and migration.122 Additionally, both integrin 

and syndecan receptors provide interaction between ECM ligands and the actin cytoskeleton via 

their role in intracellular signaling machinery. These pathways may work together to inhibit phos-

phorylation of Rho which is known to mediate actin and myosin depolymerization leading to neu-

rite contractility.22 Finally, the increased syndecan receptors could work to stimulate neurite out-

growth by sequestering NGF in the media at the cells’ surface.103  

Many PNI repair strategies focus on counteracting inhibitory signaling of the CSPGs re-

leased at the injury site. Popular approaches to counteracting CSPGs include inhibiting their 

downstream signaling pathways with Rho/ROCK inhibitors123, 124 or degrading the GAG side 

chains with bacterial enzyme Chondroitinase ABC.125, 126 We suggest these treatments of PNI 

may be flawed. These drugs would alter the CSA-syndecan response reported here and ultimately 

may inhibit the cells ability to bind strongly to ECM during regeneration.   



42 

 

 
 

Despite a few conflicting studies127, 128, the now leading hypothesis for how CSPGs inter-

act, and therefore inhibit, neurite outgrowth is through the GAG side chains rather than the protein 

core. Thus, our study utilized chondroitin sulfate A (CSA) as the representative inhibitory compo-

nent of injured nerve ECM. Chondroitin sulfate is the most abundant of the GAGs in the nervous 

system and other studies have used CSA specifically as an inhibitory molecule in the study of 

axon behavior.129 We recognize that soluble CSA and immobilized CSA (or CS that is protein 

bound, CSPG) can interact with both the neurons and other substrate proteins in different ways.26, 

130 Given the flow cytometry results with soluble CSA (increased Syndecan-3), however, we hy-

pothesized that low levels of immobilized CSA would be beneficial for neuron growth. Therefore, 

we needed a way to present the CS cue longer term, especially if it was to ultimately be part of 

an implantable PNI repair strategy. In the next Chapter, we present a method for immobilizing the 

CS cue within the hyaluronic acid nanofibers. 

Conclusions 

In this study, we have demonstrated that porcine spinal cord matrix (SCM) proteins are an 

especially permissive substrate for culturing peripheral neurons and mitigating inhibition of Chon-

droitin Sulfate A (CSA), using time resolved and quantified extension and retraction data. Addi-

tionally, this was the first look at the influence of a CSPG on syndecan receptor expression using 

flow cytometry with chick embryo neurons. The objective of this research is not only to identify 

positive and negative cues for promoting neuron growth but to ultimately utilize these cues as part 

of an implantable tissue engineered device. 

Several nerve regeneration strategies aim to degrade or block CSPG effects pharmaco-

logically. CSPGs have previously been explored for regeneration in cartilage131, bone132, and 

skin133 but very few studies have explored the potential benefit of incorporating CSPGs into a 

tissue engineered scaffold for neural regeneration. We are interested in exploiting positive roles 

for CSPGs as part of a tissue engineered PNI repair strategy. Our long-term goal is to fabricate a 

biomaterial scaffold featuring ECM and CSPG cues that will provide support for, or even replace, 



43 

 

 
 

the Bands of Bungner and is expected to succeed in larger defects where current treatments fail. 

In the next Chapter, we explore combinations of our SCM and CSA cues and incorporation of 

these cues into an electrospun nanofibrous scaffold for promoting nerve outgrowth.  
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CHAPTER 3: NEURITE OUTGROWTH ON NANOFIBROUS SCAFFOLDS COMBIN-
ING ADHESIVE SCM AND IMMOBILIZED CSA CUES  
 
Introduction 

Following injury, dedifferentiated Schwann cells in the distal nerve stump, which have lost 

contact with the injured axons, begin to over express extracellular matrix molecules (ECM). The 

deposited ECM molecules, including laminin and chondroitin sulfate proteoglycans (CSPGs), pro-

vide a substrate for axonal elongation.134 As regenerating axons enter the distal portion of the 

nerve, they are guided by this substratum. Once Schwann cells regain axonal contact, their ex-

pression of the matrix is suppressed. This creates a dynamic environment where the most active 

Schwann cells are located most distally in the nerve gap. These substrate-adsorbed factor help 

maintain the proper directionality of axonal regeneration.134 In this Chapter, we aim to mimic the 

physical and adhesive guidance of native Schwann cells with a bioengineered scaffold featuring 

the cues studied in Chapter 2.  

Following successful completion of the experiments in the preceding chapter, we aimed 

to incorporate the two cues (Chondroitin Sulfate A, CSA and the porcine spinal cord derived matrix 

proteins, SCM) into an electrospun nanofibrous scaffold to further improve neurite extension with 

the added benefit of a topographical cue. Our objectives for this work were to combine multiple 

factors for promoting nerve regeneration (topographically aligned nanofibers and permissive and 

inhibitory adhesion molecules) into one bioengineered scaffold, to characterize the scaffold, and 

to record the behavior of neurite outgrowth on the scaffold.  To immobilize CSA, we modified it 

with methacrylate groups prior to blending it into an electrospun nanofibrous scaffold containing 

hyaluronic acid (HA) base polymer.  HA has already been demonstrated as a beneficial polymer 

for neural tissue engineering48, 135 and our lab uses a well-established protocol for spinning it into 

nanofibers.136  

We previously studied the effects of SCM as an adhesive substrate for nerve outgrowth 

along with the effects of soluble CSA (study summarized in Figure 3-1). We then utilized these 
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cues in combination with an electrospun HA nanofibrous scaffold. We found significantly improved 

neurite growth on fibers blended with either the SCM or the CSA. These results show that, despite 

the general opinion that spinal cord has limited healing ability, our isolated material contains ECM 

components present in the healthy spinal cord capable of promoting neurite outgrowth. Further-

more, our results show potential utility in the CSPGs expressed following injury and we suggest 

that degrading or blocking these molecules completely may be a misguided approach to periph-

eral nerve repair. Ultimately, we aim to exploit SCM and CSA as part of a tissue engineered PNI 

repair strategy that mimics the positive and “negative” cues of the injury site with the long-term 

goal of better treating large nerve gap injuries in the clinic. 

 

 

Figure 3-1. Visual summary of Chapter 2 
 

This figure summarizes the methods and results from the experiments presented in Chapter 2. 
Changes in receptor expression and neurite behavior in response to CSA and SCM in these experi-
ments motivated the use of these cues here.   
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Experimental 

Materials 

Macromer synthesis and electrospinning materials include sodium hyaluronate (HA; MW 

40kDa; ECM Science), methacrylic anhydride (Sigma), sodium hydroxide (NaOH; Fisher Chemi-

cal), polyethylene oxide (PEO; MW 900 kDa; Sigma), Irgacure 2959 (BASF), and 3-(trimethyox-

ysilyl)propyl methacrylate (Sigma). For all other materials used for cell culture and immunocyto-

chemistry, please refer to Chapter 2.  

Macromer Synthesis 

Hyaluronic acid (HA) and Chondroitin Sulfate A (CSA) were modified with methacrylate 

groups (30% substitution) based on previously described protocols.137, 138 Briefly, 1% (w/v) HA 

and 2.5% (w/v) CSA solutions were prepared separately in deionized (DI) H2O. Methacrylic an-

hydride in molar excess was added dropwise to each of the solutions. The pH of the reaction was 

adjusted to 8.0 with 5N NaOH. The reactions were carried out over 2 days with constant stirring 

and frequent pH adjustment. Mixtures were purified from unreacted reagents by dialysis (MWCO: 

2,000; Spectrum Laboratories) against DI H2O for 2 days with 6 water changes and lyophilized to 

recover the final products. In this study, 3g of HA in 300 mL of DI water was reacted with 6.66 mL 

methacrylic anhydride to produce methacrylated hyaluronic acid (MeHA) and 1g of CSA in 40 mL 

of DI water was reacted with 2 mL methacrylic anhydride to produce methacrylated chondroitin 

sulfate (CSMA). 

Scaffold Fabrication  

MeHA was selected as the base polymer for our scaffolds because it has previously been 

demonstrated as a suitable material for DRG neuron culture.136 The base electrospinning solution 

and electrospinning parameters are described in detail elsewhere.139 Briefly, 2wt% MeHA, 3wt% 

PEO (carrier polymer), and 0.05wt% Irgacure 2959 (photoinitiator) were combined in DI water. 

The solution was ejected at 1.2 mL/hr (using a programmable syringe pump, KD Scientific) 

through a 6 inch, 18-gauge blunt tip needle charged to 22 kV. Fibers were collected for 45 minutes 
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on a grounded, custom built rotating mandrel (2 inch diameter, ~4.5 m/s or ~1700 RPM) posi-

tioned 12 cm from the needle. Electrospinning on a rotating mandrel is used to create aligned 

fibers for topographical guidance. ~50 μm thick fiber scaffolds were collected on 12 mm round 

methacrylated coverslips (3-(trimethoxysilyl)propyl methacrylate according to manufacturer’s pro-

tocol) affixed to the mandrel. After fiber collection, scaffolds were carefully removed from the 

mandrel and crosslinked with 10 mW/cm2 UV light exposure in a nitrogen purged environment for 

20 minutes. Scaffolds were rinsed in PBS for 24 hours to remove PEO before use.  

Increasing concentrations of CSMA were incorporated into the fibers via blend electro-

spinning by varying the weight ratio of MeHA to CSMA in the electrospinning solution. Final poly-

mer concentration in the solution remained 2wt%. The amount of CSMA incorporated into the 

fibers is indicated by the MeHA/CSMA ratio. For example, pure MeHA fibers are denoted (100/0), 

fibers spun from a solution of 1wt% MeHA and 1wt% CSMA (other component concentrations 

remain the same) are denoted (50/50), and pure CSMA fibers are denoted (0/100).  

CSMA was immobilized into the fibers via the methacrylate sites which are used to attach 

photoreactive crosslinkers. The crosslinked material is no longer water soluble. Using polymers 

with 30% methacrylation, which has a tensile modulus of ~500 Pa, creates a soft substrate that 

is close to the native mechanics of neural tissue and is typically preferred by neurons.140 

Blend electrospinning was also used to incorporate SCM into the fibers using the following 

spinning solution: 2wt% MeHA, 3wt% PEO, 0.05wt% I2959, in a mixture by volume of 80% DI 

H2O and 20% SCM solution (dry SCM dissolved in 0.1M acetic acid).Voltage (22kV), flow rate 

(1.2 mL/hr), mandrel speed (4.5 m/s) and distance between the mandrel and needle tip (12 cm) 

remained the same during the spinning of all solutions described. Lastly, the SCM was also tested 

as an adhesive coating on the MeHA control fibers. 5 μg/cm2 coatings were applied via adsorption 

for 4 hours and rinsed 3X with PBS, same as previously described for coating well-plates.  
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Fiber Characterization 

Scanning electron microscopy (SEM) was used to analyze the surface morphology of the 

MeHA fibers. Samples were sputter-coated with gold at 200 Torr for 20 seconds. A JEOL field 

emission scanning electron microscope was used with an acceleration voltage of 15 kV. Average 

fiber diameter and fiber orientation were evaluated from three distinct images per sample using 

ImageJ software. Fiber alignment was determined by measuring individual fiber angles relative to 

the horizontal (0°). Each angle measurement was sorted into bins (15°/bin from -90° to 90°). The 

mean and median values of the measured angles (n = 15 fibers per image) were calculated. 

Percent alignment was defined as the fraction of fibers falling into the bin that also contained the 

calculated mean and median angles (adapted from Li 2007).141 These results were corroborated 

using measurements collected from the ImageJ plugin OrientationJ. 

Cell Culture, Immunofluorescence Microscopy, and Neurite Outgrowth Analysis 

Dissociated chick embryo dorsal root ganglia (DRG) neurons were cultured on the scaf-

folds, fixed, stained and analyzed using identical methods to those described in Chapter 2 Meth-

ods. The influence of fiber alignment on individual neurite length was confirmed and the direction-

ality of the neurite outgrowth was measured relative to the fiber direction. A straight line was drawn 

from the center of the cell body to the neurite tip. Angles were measured between this line and 

the fiber direction (horizontal/0o). 

Statistical Analysis 

Sample means were compared using a one-way analysis of variance (ANOVA) test and 

Fisher’s LSD post hoc analysis. All data is reported as mean ± standard error and any differences 

indicate statistical significance (p<0.05), unless otherwise noted.  
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Results 

CSMA Nanofibers  

In this study, we successfully modified CSA with methacrylic anhydride to produce CSMA. 

The CSMA was then electrospun into nanofiber blends with methacrylated hyaluronic acid 

(MeHA) without any modifications to the base MeHA electrospinning parameters. The concentra-

tion density of CS incorporated into the blended fiber scaffolds was estimated by dividing the 

mass of the dry CSMA incorporated into each electrospinning solution (4.25, 8.5, 12.75 or 17mg) 

by the total surface area of our collection mandrel (340 cm2). Fiber scaffolds were collected on 1 

cm2 round coverslips attached to the mandrel. Therefore, the 25, 50, 75, and 100% CSMA fiber 

scaffolds contained approximately 12.5, 25, 37.5 and 50 μg CS/cm2, respectively. Individual scaf-

folds were placed in each well of a 24-well plate for cell experiments. Interestingly, the concen-

tration in the 25% CSMA scaffolds (12.5 μg/cm2) is very close to that used in the soluble CSA 

studies (10 μg/cm2). 

DRG neurons were cultured for 2 days on fibers containing increasing concentrations of 

CSMA. Final neurite lengths were measured from fluorescence micrographs and we found that 

at low levels of CSMA incorporation (25%), neurites were significantly longer than the MeHA con-

trol fibers. This result might be attributed to the CSMA retaining its ability to influence syndecan 

receptor expression (results from Chapter 2). Furthermore, this result agrees with other studies 

that have shown low levels of immobilized CSPG do not impede neurite outgrowth142 and can 

even increase growth cone movement.99 As the concentration of CSMA in the fibers increased 

beyond 25%, average neurite lengths decreased. Neurons grown on the pure CSMA fibers had 

significantly shorter neurite lengths than the MeHA controls, indicating some level of inhibition 

was still retained in the CS cue following its chemical modification. Nevertheless, neurons were 

still able to attach and grow on the purely CSMA fibers. This result is not surprising because 

CSPGs are a normal part of healthy ECM. Despite their overexpression following injury, CSPGs 
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are still capable of being bound by syndecans, integrins, and other receptors on the neurons. 

Complete neurite length results are reported in Figure 3-2.    

 

 

SCM Nanofibers  

In addition to incorporating CSMA into the MeHA nanofibers, we also wanted to create 

nanofibers that incorporated the SCM cue. This was accomplished in two ways, as an adsorbed 

coating on the MeHA fibers, and blended into the polymer solution prior to electrospinning. The 

effects of incorporating SCM into the fibers on final neurite outgrowth from the DRG neurons is 

reported in Figure 3-3. Both methods of incorporation had significantly improved neurite out-

growth over the MeHA only controls. Example fluorescence micrographs of the DRG neurons 

grown on the different scaffolds as well as scanning electron micrographs of the fibers are shown 

 
Figure 3-2. Quantified neurite outgrowth on MeHA/CSMA blended fibers  
 

The effect of increasing CSMA concentration in MeHA and CSMA blended fibers on average 
neurite length from DRGs cultured on nanofiber scaffolds for 2 days. Neurons grown on 
MeHA/CSMA fibers in a 75/25 ratio were significantly longer than all other conditions, # p<0.05. 
Neurons grown on pure CSMA fibers (0/100) were also significantly shorter than pure MeHA 

control fibers (100/0), + p<0.05. n49 neurites measured per condition.                                                            
(© IOP Publishing.  Reproduced with permission.  All rights reserved. https://doi.org/10.1088/1748-
605X/aa61d1)  
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in Figure 3-4. Fibril proteins of native extracellular matrix provide guiding structures in the na-

nometer range (50-500nm). The nanofibers produced here had an average diameter of 250  78 

nm. The addition of the CSMA and SCM cues had no statistically significant influence on average 

fiber diameter or alignment. 

 

 

 
Figure 3-3. Quantified neurite outgrowth on SCM incorporated fibers 
 

The effect of incorporating SCM into nanofibrous scaffolds on average neurite length from DRGs 
neurons grown on the scaffolds for 2 days. Neurons grown on MeHA fibers coated with 5 μg/cm2 
SCM solution (‘+SCM coating’) had significantly longer neurites than cells on the MeHA only con-
trol fibers, *p<0.05. Neurons grown on MeHA and SCM blended fibers (‘+SCM blend’) were also 

significantly longer than the controls and produced the longest neurites overall, **p<0.01. n58 
neurites measured per condition. 
(© IOP Publishing.  Reproduced with permission.  All rights reserved. https://doi.org/10.1088/1748-

605X/aa61d1) 
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Figure 3-4. Fluorescence micrographs of neurite growth on the blended fibers scaffolds  
 
Fluorescence micrographs of DRG neurons grown on blended nanofiber scaffolds for two days 
then stained with anti-neurofilament and DAPI. CSMA and SCM cues improve neurite outgrowth 
over MeHA only control fibers. Conditions are (A) MeHA control, (B) MeHA/CSMA (75/25) 
blended fibers, (C) MeHA + SCM blended fibers, (D) MeHA fibers + SCM coating. The insets 
show scanning electron micrographs (SEM) of fiber morphology. The SCM coating procedure (D) 
involves soaking the MeHA only scaffolds (A) in the SCM solution but SEM was not available for 
hydrated samples. Scale bars = 100 μm for FM and 10 μm for SEM.  
(© IOP Publishing.  Reproduced with permission.  All rights reserved. https://doi.org/10.1088/1748-

605X/aa61d1) 
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Discussion 

Following peripheral nerve injury (PNI), regenerating axons encounter CSPGs in both sol-

uble and adhered forms. Soluble CSA and immobilized CSA (or CS that is protein bound, CSPG) 

can interact with regenerating neurons, and other substrate proteins in different ways.130 There-

fore, we immobilized our CS cue within the MeHA nanofibers. Given the flow cytometry results 

with soluble CSA (increased Syndecan-3), we hypothesized that low levels of immobilized CSA 

may also be beneficial for neuron growth. Therefore, we needed a way to present the CS cue 

longer term, especially if it was to ultimately be part of an implantable PNI repair strategy. We 

utilized the same reaction we already had experience with for methacrylating the HA. We found 

that our hypothesis was confirmed with our MeHA/CSMA (75/25) fiber results. Neurons grown on 

these scaffolds were an average of 35 μm longer than on the control fibers. Therefore, we planned 

to move forward with this particular blend in future experiments. 

Hyaluronic acid is a popular polymer for neural tissue engineered regeneration strategies 

because it is naturally-derived, enzymatically degraded (via hyaluronidases in the body), and eas-

ily modified.135 Another reason for selecting HA as our base polymer is that we can spin it out of 

water as opposed to harsh, volatile solvents. Water should better preserve the bioactivity of chem-

ical cues such as the SCM and CSMA. Methacrylated chondroitin sulfate A (CSMA) and methac-

rylated hyaluronic acid (MeHA) have been combined previously in hydrogel form for tissue engi-

neering.143, 144 Additionally, decellularized porcine spinal cords have been explored for nerve re-

generation strategies and have also been fabricated primarily into hydrogels.113, 145 CSMA has 

previously been electrospun into nanofibrous scaffolds146 but not uniquely in combination with 

MeHA. Similarly, decellularized matrix, including from spinal cord, has also been electrospun be-

fore, but is most often blended into gelatin or PLGA fibers.147, 148 Our combination of the SCM with 

MeHA is a unique biomaterial and its use for nerve regeneration is a unique application of these 

two materials together.  



54 

 

 
 

With an average neurite length of nearly 270μm in 48 hours, the SCM blended fibers pro-

duced the longest outgrowth in this study. Interestingly, the increase in neurite length on the SCM 

blended fibers over the MeHA controls (269.4 – 203.5 μm = ~66 μm increase) was very similar to 

the increase seen on the SCM substrate compared to the plastic controls (213.1 – 146.2 μm = 

~67 μm increase) from our previous work (Chapter 2 Results). This result helps verify the growth 

promoting effects of the SCM and suggests that its activity was not diminished during the electro-

spinning process.  

The overall average neurite lengths were longer on the SCM blended scaffolds than the 

SCM coated plates (results of Chapter 2) because of the added benefit of the topographical guid-

ance provided by the aligned nanofibers. Only aligned nanofibers were evaluated here because 

of their known ability to accelerate neurite growth.47 However, we have previously confirmed this 

by testing DRG outgrowth on aligned and non-aligned electrospun MeHA. Additionally, we con-

firmed that neurites grow in the direction of alignment.  

Aligned MeHA nanofibers induced significantly longer neurites than the non-aligned scaf-

folds, confirming the ability to accelerate outgrowth. Furthermore, the aligned fibers also directed 

neurite growth with >50% of neurites extending within ±15 degrees of the fiber direction. The 

neurite angle distribution on non-aligned scaffolds was much more random. Full results summa-

rized in Figure 3-5. 



55 

 

 
 

 

Figure 3-5. Characterization of aligned fiber scaffolds and their effect on neurite growth 
 
A) SEM images of non-aligned (700 rpm) and aligned (2500 rpm) MeHA nanofibers. Scale 10 μm. 
B) Dissociated DRGs grown for 24 hours on nanofibers. Stained with DAPI and Anti-neurofilament. 
Scale 100 μm. C) Quantification of neurite outgrowth revealing accelerated growth on aligned vs. 
non-aligned fibers. * p < 0.01, Mann-Whitney ranked-sum test.  D) Distribution of neurite angles rela-
tive to the fiber direction for aligned scaffolds and to an arbitrary reference angle for non-aligned.  n 
= 45 neurons measured per condition.   
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It has previously been suggested that a ratio of growth-promoting to growth-inhibiting cues 

in a substratum is key to success following nerve injury.130 Therefore, we were interested in testing 

the combined effects of SCM, CSMA and MeHA to see if they could work synergistically to pro-

mote neuron growth. We created two scaffold combinations and cultured the DRG neurons on 

them as described previously (full methods in Chapter 2). Specifically, we tested 75/25 

MeHA/CSMA blended fibers with a SCM coating (5μg/cm2) and created tri-blended fibers of all 

three polymers (75/25 MeHA/CSMA where DI H2O was replaced by the dissolved SCM solution; 

see SCM blended fiber method above). Unfortunately, we did not see statistically improved neu-

rite outgrowth with either of these combinations (data not shown). We predict that the SCM coat-

ing may have masked the influence of the CSMA. Furthermore, the tri-blended fibers may not 

have an optimized combination of the two chemical cues.  

In the future, we plan to combine these cues in a variety of different concentrations and 

different presentation styles to systematically identify a potentially useful combination. We are 

particularly interested in delivering the cues as patterned spots or gradients because of the known 

benefits of physical and chemical gradients for directing and accelerating neuronal growth and 

migration.62 We hypothesize that normally inhibitory CSA, can be exploited for directing axon re-

generation especially when co-delivered with the growth-permissive SCM. We predict that oppos-

ing linear gradients of the two adhesive cues within the fibers would promote the most robust and 

direct neurite outgrowth in the direction of increasing SCM and decreasing CSA. Our preliminary 

work on electrospun gradient formation, with RGD peptide conjugated MeHA, is provided in Ap-

pendix A. In the future, we hope to adapt/expand this work to incorporate the CS and SCM cues.  

Finally, in this study we aimed to analyze neurite extension and retraction behavior on the 

fibers using time lapse video. The cells were harvested, trypsinized, and mechanically dissociated 

using the same methods as described in Chapter 2. To visualize the neurites, which have similar 

diameter to the individual nanofibers, time lapse imaging must be conducted under a fluorescence 

filter and not under bright field as was done previously. 
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Prior to time lapse imaging, the neurons were made to fluoresce in one of the following 

ways: transfected with green fluorescent plasmid (GFP) using Amaxa® Chicken Neuron Nu-

cleofector® Kits (Lonza), incubated with Vybrant Green DiO dye or CellTracker Red CMPTX dye 

(both Molecular Probes, Life Technologies), or transfected with CellLight Actin-GFP BacMam 2.0 

(Molecular Probes, Life Technologies). All transfection and/or dying was carried out per the man-

ufacturers’ protocols. 

Our dissociated DRGs were successfully labeled using all of the methods. However, sev-

eral issues arose when trying to capture the neurite outgrowth in real time. First, all the fluorescent 

markers were susceptible to bleaching over the course of the time lapse period (12 hours). Even 

with images captured only once every 10 minutes, cells were often too dim to see anymore after 

the first few images. Secondly, most of the markers led to increased apoptosis in the neurons, 

suggesting that the cells were under stress. Therefore, any outgrowth captured from these cells 

likely would not reflect “normal” neurite behavior.  Full outcomes are summarized in Table 3-1.  

Product Name 
Labeling            

Mechanism 

Cell Stain-

ing Condi-

tions  

Methods (Con-

centrations;       

Incubation 

times) Attempted 

Outcomes 

Amaxa® 

Chicken Neuron       

Nucleofector® 

Kit with GFP 

Electroporation Suspension 

2μg GFP Vector 

per 100μL cell   

suspension  

Transfection rates 

<30%; required >2 

million cells for 

each attempt 

Vybrant Green 

DiO 

Lipophilic dye 

stains cell               

membrane 

Both 

5μL dye per 1mL 

culture media; 2-

30 minutes 

Stained cell bodies 

but not the neu-

rites; severe photo-

bleaching 

CellTracker 

Red CMPTX 

Membrane              

permeable,             

cytoplasmic 

stain 

Both 

0.25-5μM dye in 

media; 15-45 

minutes 

Increased apopto-

sis/cell death 

CellLight Actin-

GFP BacMam 

2.0 

Viral transfection Plated 

10-50 particles 

per cell; 12-24 

hours 

Increased apopto-

sis/cell death 

Table 3-1. Fluorescence labeling techniques attempted for live cell imaging on the fibers 
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Conclusions 

In this study, we successfully incorporated the SCM and methacrylated CSA into electro-

spun HA scaffolds. These added adhesive cues provide improved neurite outgrowth over HA 

nanofibers alone. The objective of this research is not only to identify positive and negative cues 

for promoting neuron growth but to ultimately utilize these cues as part of an implantable tissue 

engineered device. Our long-term goal is to improve treatments for large peripheral nerve gaps 

where normal repair processes can be delayed or deficient and current treatments are insufficient 

to achieve full recovery. In the next chapter, we test the effects of the CSA, SCM, and HA nano-

fibers on macrophage and Schwann cell phenotype as these cells are critical to successful pe-

ripheral nerve repair.  
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CHAPTER 4: A BIOMATERIALS-BASED APPROACH FOR ACCELERATING MAC-
ROPHAGE AND SCHWANN CELL PHENOTYPE TRANSITION AFTER PNI 
 
Introduction 

Many tissue engineering approaches to treating peripheral nerve injury (PNI) show great 

promise in vitro but test poorly in animal models compared to autografts.7, 43 These poor outcomes 

may result from failure to study the response of other cell types present in the PNI microenviron-

ment prior to in vivo studies. The purpose of this study was to evaluate the ability of our biomateri-

als cues, previously demonstrated to have growth promoting effects on dorsal root ganglia (DRG) 

neurons149, to modulate the phenotypes of macrophages and Schwann cells (SCs). Specifically, 

we explored the effects of Chondroitin sulfate A (CSA; soluble cue), porcine spinal cord extracel-

lular matrix (SCM; adhesive cue), and aligned hyaluronic acid (HA) nanofibers (topographical 

cue). Our primary objective was to direct and accelerate the macrophages transition from a clas-

sically activated/pro-inflammatory state to an alternatively activated/pro-healing state using one 

or more of these cues. Similarly, we aimed to use the biomaterials cues to direct and accelerate 

the transition of Schwann cells from an immature state following injury to a mature and pro-mye-

linating one.  

The Bellamkonda group was one of the first to study the effect of modulating macrophage 

phenotype for peripheral nerve repair. Over the past two decades, Bellamkonda and colleagues 

have studied several enhancements to basic nerve guide conduits for treating large peripheral 

nerve gaps. Some of the chemical and physical cues they’ve explored include material stiff-

ness150, channels151, fiber alignment45, fibronectin152, laminin and nerve growth factor,153 and dif-

ferent combinations of these cues just to name a few. In a 2012 study, the group successfully 

used interferon-y and IL-4 to polarize macrophages towards an M1 or M2 phenotype, respectively. 

Cytokines were delivered in vitro or released from an agarose hydrogel in an in vivo rat sciatic 

nerve injury model. Polarization to the M2 phenotype enhanced Schwann cell infiltration and ax-

onal extensions into the nerve gap.154 Furthermore, in the IL-4 (induces M2) scaffolds, axonal 
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growth rate, defined as axon length into the nerve gap as a function of time, was faster by a factor 

of 2 compared to their previous studies with other types of growth enhancing cues. The group 

concluded that regulating macrophage phenotype minimizes the need for other more sophisti-

cated NGC modifications and might alone be sufficient to influence long-term regenerative out-

comes without the need to modulate any other inhibitory factors present in the PNI environment. 

CSGPs are one such inhibitory factor present following PNI. In Chapters 2 and 3, we demon-

strated that soluble and adhesive CS cues, while typically inhibitory, can positively influence neu-

ron growth and receptor expression.149 Therefore, we wanted to explore the effect of CSA on 

macrophage and Schwann cell phenotypes. Ideally, the CSA would not exacerbate the cells in-

flammatory responses.  The Bellamkonda study was especially motivating to the work in this 

Chapter. The ability to regulate macrophage phenotype with biomaterials would be a great ad-

vantage to promoting nerve repair even over the use of immunomodulatory cytokines.  

The effect of topography on macrophage activation state has gained popularity in recent 

years. Early work focused on altering the surface roughness of orthopedic implants to improve 

wound healing155 and modification of titanium surfaces remains a key focus in the field.156, 157 More 

recently, macrophage activation has also been studied in response to smooth and sand-

blasted/acid etched epoxy158, nanogrooved silicon wafers159, convex and concave micro-struc-

tured silicone160, and electrospun poly-lactic acid microfibers161 to name a few examples. Most 

groups have found that topographical cues minimize inflammatory responses in the cells when 

compared to smooth controls. More groups have reported a reduction in pro-inflammatory cyto-

kines than changes in gene expression or morphology. However, it has been shown that both 

minimized inflammatory response and peak cell alignment tend to occur on features approxi-

mately 400-500nm in width.157, 162 Despite these promising results, very few studies have looked 

at both aligned nanofibers, especially of a natural polymer (e.g. HA), and ECM molecules (e.g. 

CSA and SCM) to modulate the progression of macrophage phenotype over multiple time points.  
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Additionally, no macrophages studies could be found that also evaluated the effects of their ma-

terials on Schwann cell phenotype.  

A pioneering study by Chew et al. in 2008, tested the ability of aligned and non-aligned 

electrospun poly-ε-caprolactone (PCL) fibers to encourage human Schwann cell maturation.81 

Their real-time-PCR analyses revealed an upregulation of early myelination marker, P0, and 

downregulation of immature marker, NCAM-1, for cells grown on PCL fibers compared to PCL 

films. The authors hypothesized that functional changes in the cells may be a result of morpho-

logical changes induced by the alignment of the fibers. In this study, we test not only the effects 

of nanofibers and SCM on the cells gene expression but also on the cells morphology and cyto-

kine release. Chew et al. demonstrated what promise electrospun fibers hold for enhancing 

Schwann cell maturation and recommended such scaffolds be used as a platform for transplan-

tation of 'primed' cells for improving peripheral nerve regeneration. However, no follow up studies 

from the group could be found.  

In this study, we hypothesized that one or more of our biomaterials cues would accelerate 

the macrophages return to a resting state, following classical activation (M1) with lipopolysaccha-

ride (LPS) and/or direct the cells towards an alternative activation (M2) state. Analogously, we 

hypothesized our cues would accelerate the SCs transition to a mature/pro-myelinating state, 

following treatment with LPS, used here to mimic immaturity/injury. Peak inflammatory and neu-

roinflammatory response of the macrophages and SCs occurs around day 4 following PNI.163 

However, by introducing hyaluronic acid nanofibers (used here to mimic aligned SCs of the Bands 

of Bungner), it is predicted that we can accelerate (48 hours or less) a switch in the Schwann cells 

to a pro-myelinating state. Schwann cells are also responsible for laying down newly synthesized 

extracellular matrix proteins. The delivery of our novel SCM substrate is hypothesized to acceler-

ate the cells towards maturity as these ECM cues would already be in place. To test our hypoth-

eses, cell phenotypes were functionally assessed at three time points following LPS stimulation. 

Quantified reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence (IF), 
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and sandwich-ELISA based antibody arrays were used to measure changes in mRNA expression, 

morphology, and cytokine release, respectively.  

Experimental 

 Methods for the spinal cord matrix (SCM) isolation and coating procedure and for electro-

spinning the hyaluronic acid scaffolds are provided in Chapters 2 and 3, respectively.  

Cell Culture 

Macrophages 

 

RAW 264.7 murine blood-derived macrophages (generously provide by Dr. Olivia Merkel) 

were cultured on tissue culture plastic (TCP) in Dulbecco’s modified eagle medium (DMEM, 

Fisher) supplemented with 10% fetal bovine serum (FBS, Atlanta Biologics), 1% glutamine and 

1% Penstrep. Cells were maintained at 37C in a humidified environment with 5% CO2. Cells were 

split every 2-3 days using Accutase (MP Biomedicals) until ready for use (passages 8-13). Mac-

rophages were induced to a classically activated state using 1 μg/mL lipopolysaccharide (LPS, 

Sigma) delivered in the media. To test the ability of our chemical and topographical cues to miti-

gate M1 activation, and/or induce M2 activation, LPS-stimulated macrophages were seeded 

(40,000 cells/cm2) on TCP (positive/M1 phenotype control), SCM coating (10μg/cm2), HA electro-

spun nanofibers, or TCP with 10μg/mL of CSA in the media. Cells cultured on TCP without any 

LPS stimulation served as the negative control. 

Schwann Cells 

 

S16 Schwann cells, derived from rat sciatic nerve, were purchased from the American 

Type Culture Collection (ATCC; CRL-2941). The SCs were maintained using the same conditions 

and media formulation as the macrophages (see above). The cells were used during the same 

number of passages. LPS stimulation and culture with our chemical and topographical cues was 

also conducted using the same methods. The only difference from macrophage conditions was 

that during maintenance of the SC cultures (not during experimentation), TCP was treated with 
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1.5 μg/cm2 poly-L-lysine (PLL; Sigma P-9155) per ATCC guidelines. PLL was used to maintain 

expansion of the SCs.  

mRNA Expression (qRT-PCR) 

At 12, 24, and 48 hours after cell seeding, RNA was isolated from the cells using a 

GeneJET RNA purification kit (K0761; ThermoFisher). cDNA (200 ng/sample, measured with a 

Qubit 2.0 Fluorometer, Q32866, Life Technologies) was prepared using a Taqman Reverse Tran-

scription kit (N8080234, Applied Biosystems) and a thermocycler (2720; Applied Biosystems). 

Samples were run for 10 minutes at 25C, 30 minutes at 48C, and finally held at 4C until further 

analysis. Samples (2μL) were combined with forward and reverse primers (0.2μL), RNase-free 

water (7.6μL), and Power SYBR Green PCR Master Mix (10μL; Thermo) in wells of a MicroAmp 

Fast Optical 96-well reaction plate. Quantitative real time polymerase chain reaction (qRT-PCR) 

was conducted using a StepOnePlusTM Real-Time PCR Instrument (4376600; Applied Biosys-

tems) with the accompanying StepOne PCR software (v 2.2.2; Applied Biosystems). Fold 

changes were quantified using the comparative 2-ΔΔCt method164 and standardized between three 

biological replicates as described by Willems et al 2008.165 Fold changes are reported relative to 

cells without LPS treatment and normalized to an endogenous housekeeping gene. All reactions 

were conducted in triplicate. Primer sets were selected from the Harvard Medical School Pri-

merBank166 and were ordered from Invitrogen Custom DNA Oligos. Complete primer list provided 

in Table 4-1.  
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Table 4-1. List of gene names, functions, and primer sequences used for PCR  

 

Morphological Analysis 

Following culture as outlined above, cells were fixed (4% paraformaldehyde for 30 

minutes) and stained with DAPI and FITC-Phalloidin (Cytoskeleton Inc.) to visualize cell nuclei 

and F-actin filaments of the cytoskeleton, respectively. Images were taken on a Nikon Eclipse 

inverted fluorescent microscope. Five random positions were imaged in each of three replicates 

of each test condition, in three independent experiments, for a total of 45 images. A minimum of 

100 cells were measured from the images and the following were quantified using NIS Elements 

automatic measurement feature: cell area (μm2), cell elongation, and cell circularity (form factor). 

The thresholding tool was used to outline each object/cell. Cells that were on top of one another 

or that were at the edge of the field of view were manually excluded.  

 

Cell Type Gene Name Accession # Primer Sequence (5'   3') Description

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH)
NM_008084

F: AGGTCGGTGTGAACGGATTTG

R: GGGGTCGTTGATGGCAACA
Housekeeping

Inducible Nitric Oxide 

Synthase (iNOS)
NM_010927

F: GGAGTGACGGCAAACATGACT

R: TCGATGCACAACTGGGTGAAC

M1 (Classic 

Activation)

Arginase 1 (Arg1) NM_007482
F: CTCCAAGCCAAAGTCCTTAGAG

R: GGAGCTGTCATTAGGGACATCA 

M2 (Alternative 

Activation)

Beta-actin NM_031144
F: CCTCTATGCCAACACAGT

R: AGCCACCAATCCACACAG
Housekeeping

Glial Fibril lary Acidic Protein 

(GFAP)
NM_017009

F: TCCTGGAACAGCAAAACAAG

R: CAGCCTCAGGTTGGTTTCAT

Neural Cell Adhesion 

Molecule (NCAM)
NM_031521

F: GGGAGGATGCTGTGATTGTCT

R: GCAGGTAGTTGTTGGACAGGAC

Nerve Growth Factor Receptor 

(p75)
NM_012610 

F: GGTGATGGCAACCTCTACAGT

R: CCTCGTGGGTAAAGGAGTCTA

Myelin Basic Protein (MBP) NM_017026
F: AGAGTCCGACGAGCTTCAGA

R: CAGGTACTTGGATCGCTGTG

Octamer Transcriptin Factor 

(Oct6)
NM_138838

F: CTCCTGGGGTCCTTCTAACT

R: TTATACACAGATGCGGCTCTC

Early Growth Response 2 

(Krox20)
NM_053633       

F: GCCCCTTTGACCAGATGAAC

R: GGAGAATTTGCCCATGTAAGTG

RAW 264.7 

Macrophages

S16 Schwann 

Cells

Immature 

Markers

Pro-myelinating/ 

Mature Markers
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Proliferation  

AlamarBlue reagent (Invitrogen was used to evaluate macrophage and Schwann cell pro-

liferation in response to the same culture conditions outlined above. AlamarBlue was selected 

because it is a non-toxic, aqueous dye that can be used to assess net cell numbers over several 

time points within the same culture. Cell proliferation was measured by adding 10% (by volume) 

AlamarBlue to each well and incubating for 3.5h (S16) or 5h (RAW 264.7) at 37C. Incubation 

times were determined empirically by finding a length of incubation that produced linear correla-

tion between cell count and AlamarBlue absorbance (R2 > 0.96 for both cell lines), verifying the 

validity of the assay. After incubation, 100 μL media samples were moved to a 96-well plate in 

triplicate. Absorbance was read at 570 and 600 nm in a MultiskanGO spectrophotometer. Percent 

AlamarBlue reduction was calculated using the correction factor method as described in the man-

ufacturer’s instructions. Data represent mean ± standard error from three independent experi-

ments.  

Cytokine Release  

G-Series Mouse Cytokine Array 1 (macrophages) and Rat Cytokine Array 2 (Schwann 

cells) were purchased from RayBiotech (Norcross, GA) and performed according to the manufac-

turer’s instructions. The array was incubated with undiluted cell culture supernatant overnight. 

Supernatants were produced from 1 x 105 cells/cm2 in 1mL of culture medium. Supernatants were 

collected 12, 24, and 48 hours after seeding and centrifuged for 2 minutes at 8,000 rpm to remove 

any debris. DMEM supplemented with 10% FBS was used to determine and remove background 

signal contributed by cytokines in the media. Signal intensity readings obtained for each cytokine 

were normalized to the positive control contained within the array (maximum possible signal in-

tensity). Cytokine release is presented as median fluorescence intensity (from 4 replicates) of 

each of the tested conditions and was adjusted for relative cell number using results from the 

proliferation assay. Laser scanning and data extraction were performed by RayBiotech, Inc. Data 

analysis was conducted in Microsoft Excel and ImageJ. 
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Statistical Analyses 

Sample means were compared using a one-way analysis of variance (ANOVA) test and 

Fisher’s LSD post hoc analysis. All data is reported as mean ± standard error and any differences 

indicate at least statistical significance (p<0.05), unless otherwise noted. 

Results 

Changes in Macrophage Activation 

RAW 264.7 macrophages were stimulated with 1 μg/mL of LPS to mimic the cells’ pro-

inflammatory response following injury, also referred to as classical activation (or M1). This initial 

response is often characterized by increased expression of inducible nitric oxide synthase (iNOS) 

as well as morphological changes in the macrophages to make them more capable of clearing 

cellular and tissue debris at the injury site. Cells also release pro-inflammatory cytokines including 

tumor necrosis factor alpha (TNF-α) and the following interleukins (IL-1, IL-6, IL-12).167 Macro-

phages can transition to a pro-healing state, or alternative activation (M2), at later stages of repair 

and this transition can be facilitated with chemical cues (e.g. IL-4, IL-13, TGF-b). Here we have 

explored the ability of our adhesive and topographical cues, previously studied for their effects on 

neurons, on macrophage mRNA expression, morphology, proliferation, and cytokine release. 

mRNA Expression 

 

Expression of iNOS (M1) and Arginase 1 (M2) in the RAW 264.7 macrophages was meas-

ured by qRT-PCR at three time points following LPS stimulation. Results are reported as fold 

changes relative to unstimulated cells and normalized to the endogenous control gene, glycer-

aldehyde 3-phosphate dehydrogenase (GAPDH). As expected, LPS stimulation resulted in a 

strong upregulation of iNOS compared to the untreated controls. At 12 hours, iNOS expression 

was statistical similar between LPS-stimulated cells cultured with the CSA, SCM, and HA fiber 

cues and LPS-stimulated cells on plastic. However, some of our cues mitigated this upregulation 

at longer time points. 24 hours after stimulation, cells cultured on the HA nanofibers with LPS had 

significantly lower iNOS expression than cells on plastic with LPS (p<0.05; n=3). This significant 
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decrease was maintained through 48 hours (p<0.01; n=3). Furthermore, by 48 hours the cells 

cultured on the SCM coating with LPS also had significantly reduced iNOS expression (p<0.05; 

n=3). These results suggest that the SCM and HA nanofibers can suppress the effects of the LPS 

in as little as 48 hours when normal macrophage transition from M1 (following injury) towards M2 

can take much longer. These results support our hypothesis that our cues would accelerate the 

return of the macrophages to a resting state. 

Despite having the known effect of skewing macrophages towards the M1 phenotype, LPS 

treatment also produced a modest increase (~10-fold) in expression of the M2 gene, Arg1. This 

result was observed with all of our experimental cues and has also been observed in literature.158 

While none of the cues induced a statistically significant increase in Arg1, the cues appear to 

have no net negative effects on the cells, such as decreasing Arg1 expression. 

Both iNOS and Arg1 were expressed in an oscillating pattern with a dip in expression 

levels at 24 hours compared to the other two time points. This pattern of expression has been 

observed previously in the literature and is described in more detail in the Discussion section. 

Complete results are summarized in Figure 4-1. 
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Morphology  

 

Changes in cell shape have long been associated with changes in cell function. Therefore, 

macrophage morphology has previously been studied as an indicator of M1 and M2 activation 

states.78 Macrophage morphology, and its effects on activation state, have been studied in re-

sponse to physical cues such as topography157 and stiffness168, 169 as well as many soluble factors. 

M1 activation is broadly defined by large, flattened cellular morphology while M2-polarized cells 

tend to assume a more elongated and spindle-like shape.78  

In this study, the most significant changes in mRNA expression induced by our cues were 

observed after 48 hours of culture, therefore we selected 48 hours as the time point to conduct 

our morphological analysis. Cells were fixed and stained with FITC-phalloidin and DAPI to visual 

actin filaments and cell nuclei, respectively. Fluorescence micrographs of the cells grown in each 

of the culture conditions are shown in Figure 4-2. NIS elements software was used to measure 

 
Figure 4-1. Summarized changes in macrophage gene expression measured with PCR 
 
Changes in iNOS (A) and Arg1 (B) gene expression in RAW 264.7 macrophages. Cells cul-
tured with the cues for 12, 24, or 48 hours following LPS treatment. Fold change relative to un-
treated (-LPS) cells. Internal control gene = GAPDH. Means ± SEM. n = 3 biological replicates 
(each run in triplicate). *p<0.05; **p<0.01; one-way ANOVA + Fisher’s LSD post hoc. 
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the average cell area, elongation factor, and form factor/circularity of the macrophages as defined 

in Figure 4-3A.   

 

LPS treatment caused the macrophages to become large, flattened, and stellated, all char-

acteristics of M1 activation. LPS significantly increased cell area for all conditions except the cells 

grown on the nanofibers. Cells grown on the nanofibers had statistically similar cell area with or 

without LPS treatment, suggesting possible suppression of the effects of LPS. However, cell area 

on the fibers was still slightly larger (439 ± 21 μm2) than the TCP controls (221 ± 4 μm2). Cells 

were also slightly larger in area in the presence of CSA (370 ± 11 μm2). Cells grown on the SCM 

coating had statistically similar area to the TCP controls without LPS treatment.  

An elongation factor of 1 indicates a perfectly circular cell. Our control macrophages (TCP-

LPS) assumed a primarily oval shape (1.36 ± 0.03). The LPS treatment had no significant effect 

on cell elongation. However, cells grown on the SCM coating (-LPS: 1.50 ± 0.02; +LPS: 1.47 ± 

 
 
Figure 4-2. Fluorescence micrographs of RAW 264.7 macrophage morphologies 
 

Fluorescence microscopy images of RAW 264.7 macrophages grown for 48 hours in the cul-
ture conditions indicated. Phalloidin and DAPI stain actin filaments and cell nuclei, respec-
tively. Scale bar 50 μm for all images.  
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0.03) had significantly increased cell elongation (p<0.05) compared to the TCP controls suggest-

ing a possible benefit to the cells. Elongated and spindle-shaped morphology can be indicative of 

M2 activation in macrophages.78 This result supports our hypothesis that at least one of the bio-

materials cues would direct cells towards an M2 phenotype and this is an earlier marker of that. 

We predict that at longer culture times, or at higher SCM concentrations, this result may be more 

pronounced.  

Form factor indicates the circularity and compactness of a cell, with 1 indicating perfectly 

round and 0 indicating a perfectly “star-shaped” cell. LPS treatment significantly reduced cell cir-

cularity for all conditions except the cells grown on the nanofibers. Cells grown on the HA nano-

fibers were very rounded and maintained a statistically similar form factor to the TCP condition 

with or without LPS treatment. This result again suggests possible mitigation of LPS effects by 

the fibers. Cells on the SCM also had reduced circularity compared to the TCP control (n.s.) but 

this is most likely a “side effect” of the increased elongation of these cells rather than a true indi-

cator of M1 morphology (i.e. stellation produced by LPS). Complete, quantified morphological 

measurements for the macrophages are summarized in Figure 4-3.  
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Proliferation  

 

The effect of the different biomaterials cues on macrophage proliferation was evaluated 

using an AlamarBlue assay. Results are provided in Figure 4-4.  

 
 
Figure 4-3. Quantified morphological features of RAW 264.7 macrophages 
 

(A) Measurement parameters used to conduct morphological analysis. Graphs of (B) average 
cell area, (C) average cell elongation factor, and (D) average cell circularity/form factor for the 
RAW 264.7 macrophages grown for 48 hours in the indicated culture conditions. All data re-
ported as mean ± SEM. n > 45 cells measured per condition. *p<0.05; ***p<0.001 one-way 
ANOVA with Tukey’s HSD post hoc. 
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Percent AlamarBlue reduction was correlated to actual cell numbers using a previously 

determined standard curve for the RAW 264.7 line (data not shown). There was a linear correla-

tion between cell count and AlamarBlue absorbance (R2 > 0.96). 50,000 cells were seeded in 

each well (100,000 for the HA fiber condition). After a 1 hour attachment time, scaffolds were 

moved to new wells and the media was refreshed in all wells. The first measurement at time 0 

represents this point right after attachment. The results indicate that closer to 30,000 cells are 

adhered to the fibers following the well transfer as opposed to the intended 50,000. 

 

 
 
Figure 4-4. RAW 264.7 proliferation results 
 

Cell numbers are increasing near linearly for all conditions. Fewer cells are attached to the HA 
fibers than in the other conditions and these cells are proliferating more slowly. Excluding the HA 
fiber condition, the LPS-treated cells have increased proliferation compared to untreated control 
cells through 24 hours. Between 24 and 48 hours proliferation slows for LPS-treated cells most 
likely due to limited space while the TCP condition has further increased proliferation. 
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Excluding the HA fiber condition, the LPS-treated cells had a greater proliferation rate 

compared to the untreated TCP control cells through the first 24 hours. This result was expected 

because macrophage proliferation is known to strongly increase in response to an inflammatory 

challenge 170. However, the untreated cells appear to have increased proliferation between 24 

and 48 hours while proliferation in the LPS-treated conditions is slowing. This result is likely due 

to space constraints in the wells. Our morphology results showed that the LPS-treated cells had 

an average cell area 4 times greater than the untreated cells. Thus, these cells may be approach-

ing confluency which would slow their proliferation.  

~40% fewer cells were attached to the HA fibers than the other conditions following the 

initial attachment period and moving of the scaffolds. Cells on the HA fibers were also proliferating 

linearly but at a slower rate. Cell numbers increased from ~30,000 to 75,000 on the fibers.  There-

fore, by 48 hours there were ~3 times as many cells on the TCP control than the fibers. Reduced 

proliferation could be linked to differences in the cells morphology on the fibers as well as their 

reduction in iNOS expression. Slowed proliferation could also indicate a reduced response to the 

LPS. Mitigating inflammatory effects of LPS is one of our goals for these biomaterials.  

Cytokine Release 

 

To provide additional insight into the activation state of the macrophages in response to 

our cues, we used a cytokine antibody array to screen for changes in the release of 20 different 

inflammatory factors. 8 of the 20 cytokines were not measured at levels above the media only 

(no cells) reference array. These cytokines, which are excluded from the results include: inter-

feron-gamma (IFN-y), interleukins 1b, 3, 4, 5, 13 and 17, and KC (also known as CXCL1 or neu-

trophil activating protein 3). Figure 4-5 contains full, semi-quantitative results from the array re-

ported as median fluorescence intensity (MFI) measured from the supernatants of the macro-

phages seeded with the different materials cues and normalized to their respective cell numbers 

form the proliferation assay. 
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Overall, the heatmaps show a general pattern of cytokine accumulation over time as indi-

cated by increased MFIs at 48 hours (yellow color indicates a higher concentration of cytokine 

compared to blue/black). However, this pattern was not maintained for tumor necrosis factor alpha 

(TNFa). Production of TNFa from the untreated macrophages (TCP control) remained constant 

while TNFa release from the LPS-treated cells peaked at 12 hours and decreased over time for 

the CSA and SCM conditions. This result is promising as TNFa is a cytokine associated with 

classical (M1) activation171, 172 and our goal is to direct the cells towards alternative activation.  

As expected, the release of several pro-inflammatory cytokines was strongly increased in 

response to LPS treatment, especially IL-6 and RANTES. While our biomaterials cues were una-

ble to mitigate the effect of LPS on IL-6 and RANTES production, the cues did not exacerbate the 

 

 
 
Figure 4-5. Cytokine release from RAW 264.7 macrophages 
 

Normalized array data of the 12 cytokines that were measured above the DMEM only control are 
shown in a “heatmap.” Heatmaps are of median fluorescence intensity (MFI) measured for each 
cytokine in each condition/sub-array and adjusted for cell number relative to TCP at each time 
point. MFI is already normalized to an internal positive control on the array and background fluo-
rescence from the media is removed. 
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release of these M1 cytokines. Interestingly, cells cultured with the SCM or HA fibers had in-

creased production of IL-2 compared to the TCP and TCP+LPS conditions. IL-2 is an anti-inflam-

matory cytokine with the ability to interfere with IL-6 dependent signaling.173 The ability of these 

materials to increase IL-2 production is a potentially exciting result as we aim to reduce classical 

activation.  

LPS treatment also induced the release of vascular endothelial growth factor (VEGF) from 

the macrophages. However, levels of VEGF released from the cells cultured on the SCM+LPS 

were reduced compared to TCP+LPS at all time points. VEGF is important for angiogenesis which 

must accompany axon regeneration172, however, it has been shown that very high levels of LPS-

induced VEGF can lead to pathological conditions and damaging angiogenesis. Suppressing this 

effect, as shown here, could be important for regeneration.174  

The LPS-treated macrophages cultured on the HA nanofibers had increased release of 

most cytokines measured compared to both the TCP and TCP+LPS conditions at all time points.  

Increased production of IL-10 and M-CSF is especially promising as these cytokines are associ-

ated with alternative macrophage activation. M-CSF is often studied as an exogenous stimulating 

factor for directing monocytes towards M2.175-177 Therefore, M-CSF release could potentially work 

in a positive feedback loop to continually direct the cells towards a pro-regenerative phenotype.  

The most important outcome of these arrays is determining which cytokines to evaluate 

with quantitative ELISAs in the future. TNFa, IL-2, VEGF, IL-10, and M-CSF are some of the most 

interesting targets for future study with the macrophages and our biomaterials. 

Changes in Schwann Cell Maturation  

S16 Schwann cells were stimulated with 1 μg/mL of LPS (same as RAW 264.7 macro-

phages) to induce “dedifferentiation” and inflammatory response in the cells, mimicking injury. 

Gene expression and morphology of the SCs were evaluated to determine the effects of LPS.  

We hypothesized that LPS would induce significant increases in immature genes (GFAP, NCAM, 
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p75) and significant decreases in mature genes (MBP, Oct6, Krox20). We hypothesized that our 

cues (CSA, SCM, and HA fibers) would suppress or even reverse these effects of LPS. 

Changes in gene expression over the three time points followed a similar, oscillating pat-

tern to the RAW macrophage activation with LPS for every gene except for MBP. However, fold 

changes were not significantly different than the untreated control cells. Accordingly, the LPS also 

had no significant effects on SC morphology compared to untreated controls. Cells grown on the 

PLL coating were large and stellated with significantly increased cell area and significantly re-

duced form factor compared to TCP. This unipolarized morphology is indicative of immaturity178, 

which is ideal for continued proliferation of the line, but not for our intended purpose of SC matu-

ration and pro-myelination. PLL also caused significantly reduced Krox20 expression at 48 hours. 

Because of these findings we did not move forward using the LPS in combination with our cues 

but rather tested them on their own. Additionally, PLL was only used during maintenance of the 

SC cultures and was not used in combination with any of our test conditions. Untreated TCP 

served as the control for all remaining SC experiments. Appendix B contains full PCR and mor-

phological data for the Schwann cell responses to LPS and PLL. 

mRNA Expression 

 

qRT-PCR was used to determine the effect of the CSA, SCM, and HA nanofibers on tran-

scription of several key proteins related to maturation in the S16 Schwan cells. GFAP is an inter-

mediate filament protein important for SC proliferation. NCAM is a cell surface glycoprotein im-

portant for cell-cell binding and alignment during the formation of the Bands of Bungner. p75 is a 

low-affinity nerve growth factor receptor. MBP is a protein responsible for maintaining proper my-

elin structure. Oct6 is a key transcription factor in the early myelination process. Lastly, Krox20 is 

a zinc finger transcription factor critical for myelination.179 These markers are broadly character-

ized as immature (GFAP, NCAM, p75) or mature (MBP, Oct6, Krox20) but changes in transcrip-

tion of these markers can have many different downstream effects. Changes in expression were 

considered significant at p<0.05 when compared to cells cultured on TCP control.  
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Treatment of the SCs with soluble CSA had net neutral effects by 48 hours (no significant 

change in any of the genes). Cells grown on the SCM had no significant changes in any of the 

immature markers by 48 hours. This is a very promising result as our goal is to utilize these cues 

to accelerate maturation and myelination following injury. Cells on the SCM had significantly re-

duced MBP expression, reduced Oct6 expression, and increased Krox20 expression by 48 hours. 

This combination of increased and decreased mature markers may also suggest net neutral ef-

fects of SCM on the SC phenotype. 

SCs cultured on the HA fibers had no significant changes in NCAM expression at any time 

point. These cells had increased p75 expression at 12 and 24 hours but expression returned to 

control levels by 48 hours. Interestingly, cells cultured on the HA nanofibers had significantly de-

creased GFAP expression at 24 and 48 hours suggesting a possible shift away from an immature 

cellular phenotype.  

SCs cultured on the HA fibers had no significant changes in MBP expression. These cells 

had significantly increased levels of Oct6 and Krox20 at 24 hours. By 48 hours, expression of 

these markers was still increased over the controls, but the changes were no longer statistically 

significant (Oct6 p=0.15; Krox20 p=0.18). Interestingly, Krox20 expression steadily increased 

over time for the cells grown on the nanofibers. This is a promising result suggesting that HA 

nanofibers may induce lasting decreases in GFAP and lasting increases in Krox20, ultimately 

leading to a more mature phenotype in the cells.  

 Some genes exhibited an oscillating expression pattern, similar to what was observed 

with the macrophages, but the pattern was less pronounced. Figure 4-6 summarizes the 

Schwann cell PCR results. Complete numeric results are provided as bar graphs (mean fold 

change ± SEM) in Appendix B.  
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Morphology 

 

Like the study of cell shape for macrophage activation, cellular morphology has also been 

explored for its role in Schwann cell activity.180 Following injury, hyper-proliferating Schwann cells 

form into aligned columns called the Bands of Bungner. This elongation of the cells’ cytoskeleton 

likely induces other changes in cellular activity including the release of mitogens for macrophage 

activation and growth factors for axon regeneration.181 Schwann cell morphology has been stud-

ied in response to topography82, 182, stiffness183, 184, and soluble factors185. Generally, immature 

Schwann cells are characterized by unipolarized morphology while migratory, and pro-regenera-

tive SCs feature bipolar morphology.178   

Only the HA nanofibers produced statistically significant differences in SC morphology. 

Changes include reduced cell area and form factor and increased elongation, all indicative of the 

bipolar phenotype. The SCs elongated in the direction of fiber alignment, putting out one or more 

thin extensions to bind the fibers. This rearrangement of the cells’ cytoskeleton and/or enhanced 

binding at the ends of the cell tips, may have contributed to the observed differences in gene 

 
Figure 4-6. Summarized PCR results/changes in gene expression in the S16 Schwann cells  
 
↑ upregulation; − no change; ↓ downregulation; Purple = Immature markers; Green = Mature 
markers. The number of arrows indicates strength of change. Bolded arrows indicate p<0.05 
(one-way ANOVA with Fisher’s LSD post hoc). Changes were calculated relative to TCP control 
and normalized to beta-actin (housekeeping gene). 

CSA SCM HA nanofibers

12 hr 24 hr 48 hr 12 hr 24 hr 48 hr 12 hr 24 hr 48 hr

GFAP ↑↑ ↓ − ↑↑ ↓ − ↓ ↓↓ ↓

NCAM − − − ↓ ↓ − − − −

P75 ↑ − ↑ − ↓ − ↑↑↑ ↑↑↑ ↑

MBP − − − ↓ ↓↓ ↓↓ ↓↓ ↓ −

Oct6 ↓ ↓↓ − − ↓↓ ↓↓ − ↑↑ ↑↑

Krox20 ↑ − − ↑ − ↑↑ − ↑ ↑↑
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expression on the fibers. Example fluorescence micrographs and quantified morphological pa-

rameters are presented in Figure 4-7.  

 

 

Proliferation 

 

The effect of the different biomaterials cues on Schwann cell proliferation was evaluated 

using an AlamarBlue assay. Percent AlamarBlue reduction was correlated to actual cell numbers 

using a previously determined standard curve for the S16 line (data not shown). There was a 

linear correlation between cell count and AlamarBlue absorbance (R2 > 0.98), verifying the validity 

of the assay for measuring proliferation. AlamarBlue assay results are provided in Figure 4-8.  

 
Figure 4-7. Summarized morphological analysis of S16 Schwann cells 
 
Fluorescence microscopy images of S16 Schwann cells grown for 12 hours stained with Phal-
loidin (green) and DAPI (blue) and quantified morphological parameters (mean ± SEM;  n >120 
cells per condition). *p<0.05 one-way ANOVA + Fisher’s LSD post hoc. Arrow indicates direction 
of fiber alignment. 

Cell Area (μm2) 2618  109 2507  94 2468  92 780  24 *

Elongation 1.71  0.04 1.78  0.05 1.79  0.04 2.32  0.07 *

Form Factor/ 
Circularity

0.55  0.01 0.53  0.01 0.54  0.01 0.42  0.01 *

50 μm

TCP CSA SCM HA fibers
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50,000 cells were seeded in each well (100,000 for HA fiber condition). The S16 cells 

required 12 hours to fully attach to the HA fibers. After this attachment period, scaffolds were 

moved to a fresh well of the plate, leaving behind any cells that may have settled under the scaf-

fold, and media was refreshed on all the tested conditions. Note that proliferation and cytokine 

production (next section) were measured at 12, 24 and 48 hours after this media change but at 

24, 36, and 60 hours after the SCs were initially seeded, which differs slightly from the macro-

phage data.  

Cell numbers are increasing linearly for SCs grown on TCP (control), SCM-coated TCP, 

and TCP+soluble CSA. Cell numbers are increasing from the 50,000 seeded at the zero time 

point to ~150,000 cells at 48 hours. ~40% fewer cells are attached to the HA fibers than the other 

conditions following the initial attachment period and moving of the scaffolds. Cells on the HA 

 
Figure 4-8. Schwann cell proliferation results 
 

The effects of the different biomaterials cues on S16 proliferation were evaluated using an Alamar 
Blue assay. Cell numbers increase linearly for all conditions but proliferation rate is slower for cells 
grown on the HA nanofibers. 
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fibers are also proliferating linearly but at a slower rate. Cell numbers are doubling from ~30,000 

to 60,000 on the fibers.  Therefore, by 48 hours there are ~2.5 times as many cells on the TCP 

control than the fibers. Results of the proliferation assay were used to normalize the following 

cytokine release data to cell number.  

Cytokine Release  

 

The ability of CSA, SCM, and the HA fibers to affect cytokine release from the S16 

Schwann cells was evaluated by measuring the secretion of 34 cytokines using the RayBiotech 

Rat Cytokine Antibody Array 2. Array scanning and data extraction were provided by RayBiotech. 

We analyzed the raw fluorescence intensity data using ImageJ and Excel. 17 of the 34 cytokines 

were not expressed at levels above the media only (no cells) reference array. These cytokines, 

which are excluded from the results include: CINC-1, CINC-2alpha, CINC-3, Fas ligand, Frac-

talkine, IL-1a, IL-1b, IL-1 R6, IL-10, Leptin, LIX, L-selectin, MIP-3alpha, MMP-8, Prolactin, RAGE, 

and Thymus chemokine. Figure 4-9 contains full, semi-quantitative results from the array pre-

sented as a heatmap of median fluorescence intensity (MFI) measured from supernatants of the 

cells seeded with the different materials cues and normalized to adjusted for differences in prolif-

eration.  
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The first observation to be drawn from Figure 4-9 is that cytokine concentrations in the 

supernatants collected from the SCs were much lower overall compared to cytokine concentra-

tions in supernatant collected from the macrophages as evidenced by the primarily blue color. 

Only MCP-1 and VEGF were measured at high levels across all time points and for all condi-

tions. Interestingly, the release of Agrin from the SCs is increasing over time. Agrin is a proteo-

glycan that plays an important role in the formation of neuromuscular junctions. It is generally 

produced by adult SCs and is not necessarily associated with nerve injury.186 However, studies 

of increased Agrin at the distal stump show that it is useful for preservation of the end organ.181  

   

 
 
Figure 4-9. Cytokine release from S16 Schwann cells  
 

Cytokine production from Schwann cells cultured with the biomaterials cues presented as a 
heatmap of median fluorescence intensity (MFI) adjusted for cell number relative to TCP at each 
time point. MFI is already normalized to an internal positive control on the array and background 
fluorescence from the media is removed. 
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SCs cultured with the CSA and SCM showed slightly reduced release of GM-CSF, IL-6, 

and INF-y at 48 hours compared to the TCP control. This is a potentially promising result as 

these cytokines can serve as both recruitment factors, and M1 stimuli, for macrophages. Alter-

natively, the SCs cultured on the HA nanofibers had slightly increased release of several cyto-

kines compared to the TCP control including ciliary neurotrophic factor (CNTF), IL-2, and tissue 

inhibitor of metalloproteinases (TIMP)-1. Increased release of CNTF could be an exciting effect 

of the fibers as CNTF promotes neuron survival and axon growth following injury.187 Further-

more, overexpression of CNTF can increase the expression of myelin proteins and direct differ-

entiation in SCs.188 TIMP-1 complexes with matrix metalloproteinases to prevent their access to 

bind protein substrates. TIMP-1 has a key role in controlling SC maturation and myelination fol-

lowing injury 189 and has also been shown to regulate maturation of oligodendrocytes in the 

CNS.190 Agrin, IL-2, CNTF, and TIMP-1 are all interesting cytokines to explore with quantitative 

ELISAs in the future.  

Discussion 

The primary objective of this study was to evaluate the ability of three specific biomaterials 

cues, with established benefits for culturing DRG neurons in vitro 149, on two other key cell types 

of the PNI microenvironment. Here we tested 1) chondroitin sulfate A (CSA) as a soluble, chem-

ical cue, 2) processed porcine spinal cord extracellular matrix (SCM) as an adhesive substrate, 

and 3) aligned hyaluronic acid (HA) electrospun nanofibers as a topographical cue for their ability 

to create fast and/or lasting changes in macrophage and Schwann cell phenotypes. Chondroitin 

sulfate proteoglycans, extracellular matrix, and the Bands of Bungner (these are aligned columns 

of immature Schwann cells mimicked here by nanofibers) are endogenous biological cues present 

following PNI that initiate repair programs. By providing these cues as a part of a scaffold, it could 

be possible to accelerate these repair programs and recovery. The presence of the nanofibers 

specifically could replace the need, to an extent, for SCs to align into a physical guide for regen-
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erating axons. Consequently, the cells might begin their myelinating cascades sooner. An im-

plantable scaffold, combining one or more of our cues, is the long-term goal of this research. Here 

we’ve conducted an in vitro analysis of cell phenotype in response to each cue individually. We 

found that the SCM and HA nanofibers direct both cell types towards regenerative phenotypes.  

RAW 264.7 murine blood-derived macrophages were chosen as a representative macro-

phage cell line because their response to LPS is well-characterized in the literature 191, 192 making 

them a predictable model for testing the effects of our cues. Additionally, the RAW 264.7 line has 

long been established as a valid candidate for studying macrophage activation and function.193 

Changes in the macrophages' morphology, cytokine release, and gene expression in response 

to our cues were measured at 12, 24, and 48 hours following LPS activation. Here we aimed to 

capture both an early cellular response (12 hours) and also to evaluate the ability of our cues to 

successfully modulate cell phenotype in less than 48 hours before peak inflammation would occur.  

iNOS and Arg1 fold changes, in all conditions tested, peaked at 12 hours, dropped by 

~50% at 24 hours, and increased again at 48 hours. This oscillating and dampening pattern 

matches a previous study showing that macrophages have an intrinsic “clock” that regulates 

rhythmic gene expression and cytokine secretion upon LPS stimulation independent of systemic 

cortisol.194 The SCM and HA fiber cues successfully reduced iNOS expression in LPS-treated 

cells at 24 and 48 hours compared to LPS-treated cells on the TCP control. We predict that longer 

time points would show a similar oscillating gene expression pattern with the SCM and HA fiber 

cues further accelerating the macrophages return to a resting state.  

The HA nanofibers also had the most significant effects on macrophage morphology and 

were the only condition to suppress the typical LPS induced changes of increased cell area and 

reduced cell circularity. However, the very rounded morphology of the cells on the HA nanofibers 

was unexpected and spreading/elongation of the cells in the direction of fiber alignment would be 

preferred. Hyaluronic acid is not an especially adhesive polymer. We predict that at longer time 

points, as the cells lay down their own matrix proteins, the cells would begin to spread and align. 
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Additionally, combining the fibers with the adhesive SCM (as we have done in our previous work) 

is expected to further improve this morphological outcome.  

Substrate mechanics also play an important role in macrophage polarization. Macro-

phages typically assume a spread morphology on stiffer substrates and maintain rounded mor-

phology on softer ones.168 Our HA fibers have an approximate elastic modulus of ~1kPa 140. This 

material is much softer than TCP or SCM-coated TCP and therefore stiffness likely contributed to 

the rounded morphology observed on the fibers. 

The immortalized S16 line was generated by repetitive passaging of primary neonatal rat 

sciatic nerve and was first described in the late 1980s.195 S16s were chosen for this study because 

they have previously been studied for their similarities to adult sciatic nerve, especially their level 

of expression of myelin-associated mRNA and proteins.196 In the absence of axons, primary 

Schwann cells rapidly become arrested and begin down-regulating many myelin constituents. 

This limited number of cells makes functional, metabolic, and cell biology studies challenging. The 

proliferating S16s are a practical alternative and several characterization studies concluded the 

S16s are an appropriate model cell line, especially for the study of gene regulation.196, 197  

Several studies have shown that activation of the Raf/ERK signaling pathway is sufficient 

to drive dedifferentiation in Schwann cells.198-200 At the same time, other groups reported that LPS 

treatment activates the Raf/ERK pathway in RSC96 Schwann cells201, a comparable line to 

S16197, and primary Schwann cells.202 Given the results of these studies, we hypothesized that 

LPS could be used to drive the cells towards immaturity/dedifferentiation through Raf/ERK sig-

naling and that our biomaterial cues would direct and accelerate the cells towards a myelinating 

phenotype. Unfortunately, LPS had no significant effects on gene expression or morphology of 

the S16.  Therefore, we tested the effects of the biomaterials cues on the SCs over time without 

any LPS. We still hypothesized that our cues would induce markers of maturity/myelination in the 

cells and our results support this hypothesis, especially for SCs cultured on the HA nanofibers.  
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As with the macrophages, the HA nanofibers also produced the most significant changes 

in the Schwann cells. The rearrangement of the cells’ cytoskeleton to elongate in the direction of 

the fibers likely contributed to the observed differences in gene expression. Changes in SC gene 

expression included significantly decreased GFAP (immature marker) and significantly increased 

Oct6 and Krox20 (mature markers) at multiple time points. These results are very promising, es-

pecially considering the short culture period (significant changes as early as 24 hours). Previous 

studies have also reported increased expression of myelin-associated genes in SCs when cul-

tured on aligned PCL or poly-lactic-co-glycolic acid (PLGA) fibers but significant differences were 

only achieved after 5-7 days in culture.81, 82 All changes, whether up or down, were on the order 

of 2-fold which also matches these two earlier studies.  

While the SCM coating had no significant effects on SC morphology, the SCM did have 

interesting effects on SC gene expression. By 48 hours Oct6 was downregulated, while Krox20 

was upregulated. Krox20 and Oct6 are often co-expressed during initial phases of myelination. 

However, overexpression of Oct6 can lead to axonal death and therefore it is eventually turned 

off, a process mediated by Krox20.203 The possibility that the SCM could direct the SCs towards 

such an advanced stage of myelination is an interesting prospect and further evaluation of these 

genes and their regulatory pathways is proposed future work. 

Uncoated tissue culture plastic was selected as the control condition, rather than poly-L-

lysine coated TCP (as was used during S16 expansion), for several reasons. PLL was excluded 

in the experimental tests primarily to 1) avoid a confounding chemical/adhesive cue presented to 

the cells and 2) because we predicted that PLL would keep the cells in an immature state. Main-

taining SC immaturity would be ideal for proliferation of the line, but in opposition to our goal of 

directing SC maturation. PLL had the expected effects on the SCs including significantly decreas-

ing expression of the mature marker Krox20. PLL also significantly influenced cell morphology 

including increased cell area and reduced elongation. This unipolarized morphology is indicative 

of SC immaturity.178 Lastly, the cytokine array results showed that SCs grown on the PLL had 
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increased release of PDGF-AA, which is an SC autocrine signal for proliferation.204, 205 A summary 

of PCR, morphology, proliferation and cytokine array results collected form SCs grown on PLL is 

provided in Appendix B. PLL appears to keep the SCs in an immature phenotype which supports 

our choice of experimental control. 

Interestingly, the CSA had no statistically significant effects in any of our phenotypical 

analyses for either cell type. Given that chondroitin sulfates are upregulated following PNI, it fol-

lows that they might be able to activate inflammatory programs in the cells. The lack of any CSA-

induced changes is a promising result. Furthermore, our results suggest that CSA inhibits neuron 

outgrowth via direct action on the neurons themselves rather than through modulation of the other 

cell types.  

There are now several great review articles available that discuss using biomaterials to 

control M1/M2 activation.206, 207 Despite the vast amount of information now available on this topic, 

there still exists a lack of exploration into naturally derived polymers, especially the hyaluronic 

acid (HA) used here. Furthermore, while other groups have studied the effects of decellularized 

ECM on macrophage activation state, including matrix derived from intestinal submucosa, urinary 

bladder, brain, liver, skeletal muscle, and skin208, 209 this was the first look at the effects of ECM 

specifically derived from spinal cord. Because of the challenges of processed whole nerve allo-

grafts, our precipitated SCM proteins provide ECM cues while the fibers can provide the structural 

component. Here we wanted to delineate the effects of the different cues on the two cell types. 

However, our results suggest that these two cues could work together synergistically to promote 

pro-regenerative phenotypes in the macrophages and SCs.  

Conclusions  

This study adds to the growing collection of literature describing the important role of mac-

rophage activation state for tissue regeneration following injury. This study offers a unique look at 

macrophage phenotype in response to three cues not previously explored and offers a unique 

perspective on macrophage phenotype in the context of a peripheral nerve injury. Furthermore, 
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this study shows for the first time the influence of HA nanofibers, decellularized ECM, and soluble 

CSA on Schwann cells specifically considering them as neuroimmune cells. Our spinal cord ma-

trix and HA nanofibers successfully directed both cell types towards the intended phenotypes.  

The use of a biomaterials to drive macrophages and Schwann cells to a pro-regenerative 

and pro-myelinating state, respectively, has distinct advantages over previous approaches that 

are pharmacologically dependent. Drug delivery faces many challenges such as maintaining con-

tinuous release at an efficacious dose and preventing unwanted clearance, diffusion, or tissue 

uptake. Thus, the biomaterials-based approaches presented here could provide simpler transla-

tion to the clinic. 

It is critical to evaluate the behavior of macrophages and Schwann cells in response to 

tissue engineered scaffolds to ensure that the chemical and physical cues useful for neuron re-

generation also facilitate the normal behaviors of these other repair cells. The approaches pre-

sented here could be used by other research groups to study their neural tissue engineered sys-

tems and hopefully improve the success of nerve guide conduits in vivo. 
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CHAPTER 5: CONCLUSIONS, FUTURE WORK, AND LONG-TERM GOALS 
 

In the preceding chapters, we have presented several approaches to understanding and 

engineering the injury microenvironment to improve peripheral nerve regeneration. In Chapter 2, 

we provide quantified neurite extension and retraction data in response to multiple cues, espe-

cially ‘negative’ Chondroitin sulfate A (CSA). We describe a method for evaluating receptor ex-

pression in dorsal root ganglion (DRG) neurons using flow cytometry and provide the first report 

of the influence of CSA on Syndecan-3. Finally, we demonstrate the ability of a novel biomaterial, 

isolated porcine spinal cord matrix (SCM), to increase neurite outgrowth through reduced growth 

cone stalling.  

In Chapter 3, we describe methods for methacrylating CSA to CSMA and electrospinning 

it into nanofibrous scaffolds. Additionally, we describe electrospinning blended scaffolds of SCM 

and methacrylated hyaluronic acid (MeHA). This is the first report of CSMA and MeHA, and SCM 

and MeHA, utilized together as electrospun scaffolds for neurite growth. These scaffolds feature 

two key adhesive cues that successfully improved neurite outgrowth over controls.  

In Chapter 4, we explore the ability of CSA, SCM and MeHA nanofibers to modulate the 

phenotype of other cells in the peripheral nerve injury (PNI) environment. We describe changes 

in macrophage and Schwann cell morphology, gene expression, and cytokine release over a two-

day period following activation of the cells to an injury mimicking state. Our biomaterials cues 

successfully directed both cells towards pro-regenerative phenotypes (macrophages towards M2 

and Schwann cells towards maturation). More importantly changes happened in as little as 24 

hours, much faster than other studies have reported.81, 82, 210, 211 These changes were induced 

without pharmacological agents as most often described by others.212, 213 Changes induced by 

implantable biomaterials rather than diffusible drugs should make for easier and more successful 

clinical translation. Taken together, our results provide foundational work for creating a single 

scaffold system, combining multiple biomaterials cues, that could work synergistically to acceler-

ate repair programs in larger peripheral nerve gaps. 
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 Current treatments, including coaptation, autografts and allografts, are insufficient to 

achieve full functional recovery in large peripheral nerve injuries (transection gaps >3cm). Tissue 

engineered nerve guide conduits (NGCs) have remained the most promising alternative treatment 

since their introduction in the clinic in the early 1980s.40 The typical NGC is a basic, hollow tube 

into which the two nerve ends are sutured. Unfortunately, currently available NGCs are still hollow. 

They lack the necessary internal chemical and physical cues to direct axon regeneration. 

Short peripheral nerve injuries (<3cm) have great regenerative capacity due to a unique 

environment that forms following injury. This regeneration program includes de-differentiation, 

hyperproliferation, and alignment of resident Schwann cells (SCs) into “bridges” (called the Bands 

of Bungner) that span the gap and provide a substrate for regenerating axons. The Schwann cells 

also release cytokines to recruit macrophages to the injury site. Pro-inflammatory macrophages 

initially clean up axonal and myelin debris but transition their phenotype towards a pro-healing 

state at later stages of repair. The Bands of Bungner take up to 4 days to form and can persist for 

over 25 days following injury.214, 215  The average rate of neurite extension (2-5 mm/day in humans) 

would allow for axons to cross a 3cm gap in this time frame. In large gaps, however, the Bands 

of Bungner often fail to form completely. A chronic condition develops where Schwann cells re-

main de-differentiated, macrophages remain pro-inflammatory, and regenerating axon bundles 

form disorganized neuromas. These patients suffer long-term pain and limited function at their 

injury site. 

Over the past 30 years, several tissue engineering groups have attempted to modify the 

basic NGC. Modifications include changes to conduit porosity/permeability, material conductivity, 

growth factor delivery, exogenous cell delivery, and luminal channels. Unfortunately, NGCs, even 

with these modifications, often fail to match controls (autografts) in animal models.7, 43  Several 

examples of these approaches are described in more detail in earlier chapters where we also 

suggest that current strategies fall short of full repair because of several gaps in the literature. 

Some of those gaps include understanding the response of neurons to inhibitory cues at the injury 
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site (e.g. chondroitin sulfate proteoglycans), quantifying real time neuron behavior in response to 

different cues, exploiting inhibitory cues in scaffold systems, and studying the effect of tissue 

engineered scaffolds on the other repair cells (macrophages and Schwann cells). 

One of the primary goals of this thesis was to study the intrinsic PNI repair environment 

and to design biomaterials cues that could mimic the Bands of Bungner. We studied both permis-

sive and inhibitory cues present following injury. Effects were studied not only on neuron behavior 

but especially the behavior of macrophages and Schwann cells. Another key goal was accelera-

tion of the repair programs since time is of the essence in large nerve gaps. The experiments 

presented here serve as promising tools for studying the PNI environment in vitro. We want to 

further improve this work to be a true PNI model. We want to continue elucidating important repair 

receptors, monitoring cell behaviors, and identifying key genes and cytokines involved in the re-

pair process. Furthermore, we want to adapt the model to incorporate more and different cells. 

Below are a few specific experiments that we would explore next.  

In this thesis, we successfully define a method for measuring receptor expression in DRG 

neurons using flow cytometry and demonstrate for the first time that CSA can induce an increase 

in Syndecan-3 receptors. We propose to expand this investigation to include the other 3 members 

of the Syndecan family, which have all been investigated for their roles in the nervous system.216 

Murakami et al. showed that 7 days post op, peripheral motor neurons in mice had significantly 

increased Syndecan-1 expression in the cell bodies and terminals of the regenerating nerve fibers 

compared to uninjured control neurons.217 Syndecans-2/4 has been shown to mediate growth 

promotion of PC12 cells by binding different laminin peptides.218, 219 We also propose using iden-

tification and neutralization antibodies for all 4 of these receptors in combination with time lapse 

microscopy to confirm their potential roles in neurite extension and retraction. We also propose 

to confirm the ability of the methacrylated CSA (CMSA), especially when electrospun into nano-

fibers, to retain its effects on SYN-3 expression in the neurons. Our flow cytometry methods could 
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be adapted to test a wider variety of receptors in DRG neurons, other neuronal populations, or 

even the other cell types of the injury environment including SCs and macrophages. 

Based on our results from Chapter 2, we recommend a push towards increased video 

microscopy during experiments involving neurite regeneration. It is especially important to con-

sider not only neurite extension, but stalling and retraction as well in response to different bio-

materials. We expect that this could improve development of future tissue engineered treatments 

for PNI. Interesting future work could also include using time lapse imaging to monitor physical 

changes (e.g. morphology and migration) in macrophage and Schwann cell phenotype over 

time.220 Direct co-culturing of neurons with one or both cell types described here would be ideal 

but time lapse imaging could present a significant challenge. A possible alternative would be to 

test the effect of conditioned media from the macrophages, Schwann cells, or co-cultures of both 

cell types for influencing neurite outgrowth on the scaffolds.  Another important cell type releasing 

factors into the injury environment to promote and direct regeneration are cells of the end organ, 

for example muscles innervated by motor neurons. End organ responsiveness is increased fol-

lowing nerve injury but the role of CSA on these cells has not been well characterized.  The effects 

of our materials on end organ responsiveness would be an interesting future step. As well as co-

culture of the neurons with injured myocytes.  

Long-Term Goals 

The next steps suggested above are designed to fine tune our model of the PNI environ-

ment to further improve in vitro testing before moving in vivo. The long-term goal of this research, 

however, is better treatment of large peripheral nerve gaps in the clinic. We ultimately aim to 

produce a scaffold system that mimics the Bands of Bungner and is an off-the-shell conduit filler 

that could be implanted inside commercially available devices during normal PNI surgeries. We 

believe this thesis has successfully evaluated tools that could be combined into such a device for 

use in vivo. To move our materials to animal models and ultimately the clinic, the 2D nanofibers 

would be formed into 3D cylindrical bridges that could be assembled inside of an implantable 
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device. To form these 3D bridges, we would use the electrospinning technique described for cre-

ating 2D sheets of nanofibers but with a longer spin time to achieve thicker scaffolds. Scaffolds 

could then be rolled into a cylindrical "bridge." Target diameter of ~1 mm and a minimum of length 

of 3 cm for these “bridges” represents the size order and length needed for a large nerve gap. 

Several bridges could be inserted into an existing NGC depending on the diameter of the injured 

nerve. Peripheral nerve diameters typically range from 1 to 10 mm, but may be as large as 20 

mm in the sciatic nerve.30 Consequently, size mismatch between the injured nerve and donor 

nerve is a common obstacle to nerve autograft and allograft treatments. This proposed system, 

in combination with an NGC, could help combat this drawback of grafting. 

We anticipate that the bridges could be sutured directly to the nerve stumps using the 

same suture materials and methods for securing the current conduits into place. However, to 

avoid introducing additional damage at the repair site with this added suturing, the bridges could 

also be suspended in place with an injectable gel.  Although not presented here, we have previous 

experience fabricating hyaluronic acid and collagen hydrogels. These gels could be used to em-

bed the electrospun “bridges”. Furthermore, the SCM, used here as an adhesive coating or 

blended into nanofibers, could also serve as the gel material. Solubilized matrix could be cross-

linked using varying concentrations of cytocompatible genipin (0-5mM). Genipin could be mixed 

into the spinal cord matrix solution and injected into and around the artificial bridges, which once 

crosslinked, would hold the bridges in place. Furthermore, we have already demonstrated the 

neurite growth promoting capabilities of the matrix itself. Figure 5-1 illustrates a proposed nerve 

guide conduit design. By mimicking the Bands of Bungner that form during regeneration, as op-

posed to creating open channels, issues such as channel collapse and poor neurite infiltration are 

eliminated as the bridges are designed to support axon elongation around and on their surface.   
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Applications in the Central Nervous System 

The experiments in this thesis were specifically designed to explore the native repair pro-

cesses and environment provided to regenerating peripheral axons. We explore using soluble 

and adhered, permissive and inhibitory biomolecules and nanofibers. However, these experi-

ments are clearly relevant for testing the extension and retraction behavior of spinal neurons in 

response to topographical and adhesive cues as well. The MeHA nanofibrous scaffolds can pro-

vide a substrate for regenerating axons following SCI.  Furthermore, it is possible that our scaffold 

design would be able to induce phenotypical changes in the glia of the central nervous system 

(CNS), particularly astrocytes, but also oligodendrocytes (the myelin producing cells of the CNS) 

and microglia (CNS inflammatory cells), leading to the same accelerated repair that we aimed for 

in the PNS.  

Schwann cells are essential for the regeneration and remyelination of axons following in-

jury in the PNS. Recent studies have also shown that transplantation of Schwann cells is a prom-

ising therapy for spinal cord repair.221, 222 When transplanted into injured spinal cord, a Schwann 

cell suspension provides trophic support for the regenerating axons. For the Schwann cells to 

  
 
Figure 5-1. Proposed incorporation of HA nanofibers and SCM into a nerve guide conduit 
A cross-section illustrating the proposed design of using aligned fibers to mimic the Bands of 
Bungner/Schwann cell cables that form following injury. The lime green color represents material 
to be determined, such as HA or collagen hydrogel, or crosslinked spinal cord matrix.  
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guide axonal regeneration as a substrate, however, these support cells must be able to proliferate, 

migrate, and align within the injury site themselves.223 This process could fail in a SCI in the same 

way that the Bands of Bungner are often disorganized or absent in large peripheral gaps. 

Whole peripheral nerve grafts have also been used to treat spinal cord injuries with con-

siderable success 224, 225. These results demonstrate that central neurons do not possess a fun-

damentally different intrinsic ability to regenerate than peripheral neurons. Rather, the sub-

strate/environment provided by the peripheral nerve graft is of critical importance to axonal re-

generation. Therefore, we propose applying the scaffold components describe here to the treat-

ment of CNS injuries, especially spinal cord injury (SCI). Schwann cell cables provide for greater 

flexibility in nerve repair than transplants of whole peripheral nerves as well.226 A Schwann cell 

cable mimic could be applied to the spinal cord injury site replicating several of the cues required 

of all regenerating axons regardless of location.  

In this thesis, we studied axon retraction which is an early feature of nearly all neurodegen-

erative diseases (NDs) including Alzheimer's disease (AD), Parkinson's' disease (PD), Hunting-

ton's disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS) and more.118 

Combined prevalence of these NDs in the United States exceeds 240 persons per 10,000 as of 

2013 (NCHS; NINDS). These and other NDs contribute an estimated $150-200 billion burden to 

US healthcare annually.227 Thus the NDs are of particular scientific and clinical interest because 

of their increasing medical and societal impact.  

One issue associated with current ND treatments is increased activation of the microglia. 

Reducing this activation, and inducing the microglia back to a homeostatic phenotype, with to-

pography and/or adhesive cues on a nanofibrous scaffold, as we've described for macrophages 

in Aim 3, could also potentially be applied in the brain. In addition, myelin loss is the hallmark of 

multiple sclerosis. Investigating methods to induce oligodendrocytes into a pro-myelinating phe-

notype, such as with the topographical approach described here for Schwann cells, might have 
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potential for treating this disease.  An implanted biomaterial scaffold would be a novel treatment 

option for NDs.  

Summary 

In a 2009 Nature Review, the regenerating growth cone is compared to a "vehicle" as it 

encounters many different types of cues. The "vehicle" moves along a "road" of adhesive mole-

cules either presented by neighboring cells or assembled into the extracellular matrix. Anti-adhe-

sive, surface bound molecules, can inhibit the advancement of the growth cone acting as "guard 

rails" or boundaries. Finally, diffusible chemotropic cues represent "road signs"  that present fur-

ther steering instructions to the growth cone.13 In this thesis, we explored elements of the “road” 

(SCM and MeHA nanofibers), “guard rails” (CSMA), and “road signs” (CSA) for their effects on 

real time neurite behavior and macrophage and Schwann cell phenotype. We aim to engineer 

better strategies for neural tissue regeneration through deeper understanding of the injury envi-

ronment and cellular responses to it.  

We highlight several tools for studying and manipulating the PNI environment including: 

flow cytometry, PCR, antibody arrays for cytokine release, time lapse microscopy, fluorescence 

microscopy, topographical cues created by blend electrospinning (and early potential for dual 

electrospinning see Appendix B), unique biomaterials cues (soluble CSA, immobilized CSMA, 

MeHA, SCM as coating and fibers). We applied these tools to several cell types in the PNI envi-

ronment looking to direct cell responses. The response that we see from the cells are promising 

results that can lead us to the recommendation that these tools be applied to more cell types (ie. 

CNS), to combinations of different cell types (direct co-culture or conditioned media) and to eval-

uate NTE scaffolds in greater detail in vitro prior to moving to in vivo models which are potentially 

more expensive and time consuming. We want neural tissue engineered scaffolds to succeed in 

treating large peripheral nerve gaps. We hope that this thesis can serve as a guideline in the 

design of other tissue engineered systems and we hope the specific biomaterials explored here 

will find widespread application in the nervous system.   
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APPENDIX A: Preliminary Gradient Scaffolds 
 

The ability of soluble and adhered biomolecular gradients to direct neurite outgrowth and 

growth cone turning has been well established over the last few decades. Furthermore, tissue 

engineered gradients have become an increasingly popular paradigm for improving axon regen-

eration following peripheral nerve injury as well as for directing other types of cell migration.62 This 

appendix contains preliminary work on creating gradients within our nanofibrous scaffolds using 

a dual needle electrospinning apparatus. 

Polymer Synthesis and Modification 

The goal of this work is to deliver molecular gradients of methacrylated Chondroitin Sulfate 

A (CSMA) and porcine spinal cord matrix (SCM) within our methacrylated hyaluronic acid (MeHA) 

scaffolds. We previously demonstrated the ability of each of these cues to promote neurite out-

growth individually (see full Methods and Results in Chapter 3). However, in this preliminary work, 

we have formed gradients of the amino acid sequence RGD (Arg-Gly-Asp) using a method pre-

viously described for RGD conjugation to MeHA.228 Briefly, cysteine-containing RGD peptides 

(GCGYGRGDSPG, Genscript) were conjugated to the MeHA via a Michael's addition reaction 

between thiols on the peptides and methacrylates on the MeHA. The RGD peptide (1mM) and 

MeHA (2% w/v) were reacted overnight in triethanolamine buffer (pH 8), dialyzed against DI H2O 

for 48 hours, and lyophilized to obtain MeHA+RGD. Un-conjugated methacrylate sites can be 

linked to one another in the presence of Irgacure 2959 photocrosslinker and UV light to introduce 

crosslinks that will stabilize the material. Figure A-1 illustrates the MeHA synthesis and peptide 

modification reactions. 
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Nuclear Magnetic Resonance  

Proton nuclear magnetic resonance (NMR) with a Bruker Avance 700 MHz biomolecular 

NMR was used to assess methacrylation and RGD attachment to the HA following a previously 

published protocol.229 Briefly, samples were dissolved at 5 mg/mL in D2O (Sigma) and the degree 

of methacrylation was calculated from the NMR spectra as the ratio of the acetylenic protons from 

the methacrylate groups to the N-acetyl methyl protons from the HA backbone. Figure A-2 shows 

NMR spectra collected for two different degrees of HA methacrylation and the MeHA+RGD. 

These spectra suggest that our methacrylation and peptide modification of the hyaluronic acid 

was successful. A reaction of 1.11 mL of methacrylic anhydride per gram of HA (Figure A-2C) 

produced ~10% modification, while 2.22 mL of MA per gram of HA (Figure A-2B) produced ~25% 

modification. Figure A-2A shows the higher modification MeHA conjugated with 1mM of RGD 

 
 
Figure A-1. MeHA synthesis and RGD conjugation. 
 

Methacrylate side groups are added to hyaluronic acid using a Michael’s addition reaction. Meth-
acrlyate groups serve as attachment sites for the RGD peptide. Unmodified methacrylate sites 
are linked to one another in the presence of Irgacure 2959 photocrosslinker and UV light.  
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peptide. The two peaks at 3.3 and 3.7 ppm are indicative the H and H of the Arginine amino 

acid, respectively (Biological Magnetic Resonance Data Bank, http://www.bmrb.wisc.edu/).  

 

 

Electrospinning Gradient Scaffolds 

Following synthesis and peptide modification, the following polymer solution was prepared 

for electrospinning: 2 wt% MeHA+RGD, 3 wt% polyethylene oxide (PEO, MW 900 kDa, Sigma), 

and 0.05 wt% Irgacure 2959 photoinitiator (BASF) in DI H2O. Electrospinning apparatus parame-

ters including flow rate, needle gauge, voltage, collection distance, and collection surface/mandrel 

 
 
Figure A-2. NMR spectra 
 

The degree of methacrylation is calculated as the ratio of the areas under the proton 
peaks at 5.6 and 6.1 ppm (acetylenic protons from the methacrylate groups; 1 and 2) to 
the peak at 2 ppm (N-acetyl methyl protons from the HA backbone, 4).   
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dimensions are provided in detail in Chapter 3 and have been adapted from Ifkovits et al 2009. 

Fibers were collected for 45 minutes (~50μm thick layer) and crosslinked onto methacrylated 

glass coverslips. Chapter 3 also contains fiber crosslinking, and rinsing methods.  

The RGD peptide sequence, derived from fibronectin, is a ubiquitous adhesive cue for all 

cells. By distributing the RGD in a controlled gradient, the direction of neurite growth can also be 

controlled. Scaffolds featuring gradients of the RGD peptide were produced by electrospinning 

two different solutions from needles placed on either side of the spinning mandrel. Mandrel rota-

tion speed was used to form aligned (~2500 rpm) and non-aligned (~700 rpm) nanofibers. The 

electrospinning set up is illustrated in Figure A-3 where Polymer A = MeHA with RGD peptide 

and Polymer B = MeHA without RGD peptide. The offset distance (‘x cm’) between the two nee-

dles was varied to alter the resulting gradient shape.  

 

 
 
Figure A-3. Schematic of the dual needle electrospinning set up for creating fiber gradients  
 
(A) Schematic of the apparatus used to electrospin gradient scaffolds. (B)  Resulting gradient ob-
tained with 4cm offset. Percentage of each type of fiber was measured using relative fluorescence 
of DAPI and Rhodamine stains. (C) Fluorescent micrographs of fibers obtained at 3 different posi-
tions evenly spaced along the gradient. Scale = 200 μm. 
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RGD Distribution  

To estimate RGD distribution in the gradients, the RGD containing polymer solution was 

mixed with Rhodamine B (25 μM) prior to spinning and the resulting gradient shape was analyzed 

using relative fluorescence intensity measurements. The distribution of dyed fibers was used to 

estimate the spatial distribution of the RGD peptide.  2, 4, 6 and 8 cm offsets between the two 

needles were tested for producing differently shaped RGD gradients spun onto 22x22mm co-

verslips centered between the two needles. The 4cm offset was chosen for the subsequent cell 

studies because it produced the most linear gradients (see Figure A-4) whereas a 2cm offset 

resulted in a more uniform RhoB distribution and 6 and 8 cm offsets resulted in step-like gradients.  

 

 

 

 
 
Figure A-4. RGD gradient distribution estimated from Rhodamine B fluorescence intensity 
 
Top: Fluorescent image showing the distribution of Rhodamine B across the width of the nano-
fiber scaffold (spun with a 4cm needle offset). Bottom: Measured fluorescence intensity across 

the scaffold. n = 12 scaffolds. Mean  SEM.  
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We hypothesize that opposing linear gradients of our two target cues (CSMA and SCM) 

will produce the most directed neurite outgrowth based on the success of other studies that in-

vestigated linear gradients of soluble and adhered biomolecules for directing neurite growth (Ta-

ble A-1). However, many different gradient shapes can be produced with the different needle 

offset distances. Therefore, many different shapes should be tested in order to optimize the be-

havior of the DRG neurite outgrowth on the CSMA and SCM gradients, because these two mol-

ecules have previously not been tested as gradients for controlling neurite outgrowth.  
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Cell Type 
Gradient     
Molecule 

Threshold Required for 
Neurite Orientation 

(Slope) 

Increased 
Neurite 
Growth 
Rate? 

Directed 
Neurite     

Turning? 
References 

PC12 NGF 0.133 μg/mL/mm U U 230 

Chick Embryo DRGs NGF 0.133 μg/mL/mm U Y 231 

Chick Embryo DRGs 
NGF                           
NT-3 

0.08 μg/mL/mm                                   
0.08 μg/mL/mm 

U Y 231 

Human Neural Stem 
Cells 

EGF, FGF2 
and PDGF 

Nonea Y U 232 

Mouse Hippocampal 
and DRG Neurons 

Netrin-1           
(attractant)  

1 μg/mLb U Y 
63 

Slit-2            
(repellent) 

0.250 μg/mLb U Y 

Rat DRGs NGF U Y Y 233 

Rat Hippocampal         
Neurons 

Netrin-1 U Y U 234 

Rat Dorsal Column         
Lesions 

NT-3 U U Y 235 

Rat Hippocampal         
Neurons 

Laminin 60 μg/mL/μm N N 236 

Rat PC12 NGF 0.137-0.357 μg/mL/mm U U 237 

Chick Embryo DRGs IKVAV U Y Y 50 

Chick Embryo DRGs NGF 0.31 μg/mL/mm U U 238 

Chick Embryo DRGs 
NGF                           
NT-3 

0.2 μg/mL/mm                           
0.2 μg/mL/mm 

U U 238 

Chick Embryo DRGs 
IKVAV                   
YIGSR 

7.44 µg/mL/mmc                    
14.9 µg/mL/mmc 

Y N 239 

Chick Embryo DRGs 
Laminin-1        
Isoform 

0.017 μg/mL/mmc Y N 153 

Chick Embryo DRGs 
PSA  U Y U 

240 
HNK-1  U N U 

Mouse NSC-34          
Hybrid Cell Line and 

Dissociated Rat                      
Spinal Cord Neurons 

PSA  U Y U 

240 HNK-1  U Y U 

PSA/HNK-1  U Y U 

RSC-96 Rat Schwann 
cells 

PSA  U Y U 

240 HNK-1  U N U 

PSA/HNK-1  U Y U 

 

Table A-1. Neural Cell Responses to Soluble and Immobilized Chemical Gradients 
 
Y = yes; N = no; U = unreported/unavailable; a In the concentration range 0–40 ng/mL over a 2.4mm 
distance, nonlinear slope. b Across 1.2mm distance, nonlinear slope. c These values do not repre-
sent threshold conditions but rather indicate optimal gradient slopes for maximizing outgrowth. 
PSA/HNK-1 in a 50/50 ratio. Green shaded cells = soluble/chemotactic gradients; Blue shaded cells 
= immobilized/haptotactic gradients 
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Gradient Scaffolds for Cell Studies 

Scaffolds featuring non-aligned fibers with a gradient of RGD (Figure A-5A) were com-

bined with a thin layer of aligned, unmodified fibers in order to assess the additive effect of the 

adhesive gradient and fiber alignment cues (Figure A-5B). Non-aligned scaffolds with a thin layer 

of aligned fibers, but no RGD, were used as a control (Figure A-5C). Whole dorsal root ganglia 

(DRG) from chick embryos were grown on the scaffolds for 3 days in serum free media and fixed 

and stained as described in Chapter 3. Figures A-5D, E and F show examples of DRGs grown 

on each of the three scaffold types, respectively. 

 

 

 
 
Figure A-5. Gradient scaffold schematics and fluorescence micrographs of DRG out-
growth   
 
A ,B, C) Schematic representations of the non-aligned (NA) gradient, layered gradient, and lay-
ered control scaffolds, respectively. Green indicates the direction of increasing RGD peptide.  D, 
E, F) Resulting DRG outgrowth on the corresponding gradient and control scaffolds after 3 days. 
DRGs stained with anti-neurofilament (green) and DAPI (blue). Scale = 500 μm.  
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NIS Elements and ImageJ software were used to quantify whole DRG outgrowth using 

two different ratios (Figure A-6):  

• Gradient ratio was used to measure the influence of the RGD peptide. The yellow 

dashed line represents the area of the DRG body (DAPI staining/blue pixels). The centroid of this 

area was used to divide the image in half (solid yellow line) so that either side contained an equal 

area of the DRG body. Next a custom Matlab script was used to measure the area of the neurite 

outgrowth (FITC staining/green pixels). Briefly, the code uses an automatic threshold to convert 

a grayscale image to binary and then sums the pixels to quantify the outgrowth area. The ratio of 

axon outgrowth of the right side to the left side of the image was calculated. A ratio of >1 indicates 

neurite outgrowth was greater towards the increasing RGD peptide.  

• Modified aspect ratio was used to measure the influence of fiber alignment.  Auto 

edge detection was used to measure outgrowth in the left/right direction (direction of the gradient 

and/or fibers) divided by the outgrowth in the top/bottom or perpendicular direction. The red lines 

in Figure A-6 show an example of these two measurements.  

All outgrowth was normalized to body size for each individual DRG.  
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Scaffolds featuring gradients of RGD peptide produced a ~20% increase in neurite growth 

towards the direction of increasing RGD over the control scaffold, but the difference was not sta-

tistically significant.  Furthermore, there was no statistical difference between groups with and 

without the top layer of aligned fibers.  Aspect ratio data revealed that the presence of the aligned 

fibers significantly increased neurite outgrowth in the fiber (left/right) direction over the non-

aligned RGD gradients for both scaffolds with and without RGD. Furthermore, scaffolds with RGD 

and an aligned fiber layer showed the most overall growth area (data not shown) suggesting a 

possible additive effect of these two cues. Figure A-7 quantifies the results of the DRG outgrowth 

on the gradient scaffolds. 

   

 
 
Figure A-6. Measurement techniques and growth ratios of DRGs on gradient scaffolds  
 

Top: Area of outgrowth up (green) or down (red) the gradient of RGD was compared.             
Bottom: Sample image of a DRG showing division of the body area for gradient ratio (yellow 
lines) and maximum outgrowth measurements (red lines) for the modified aspect ratio.           
Scale = 500 μm. 
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Summary 

In this preliminary work RGD peptide was used as an example molecule for creating gra-

dient scaffolds. In the future, the techniques described above could be adapted to deliver the 

neural specific guidance molecules characterized in this thesis, chondroitin sulfate A and the spi-

nal cord derived matrix. Gradient scaffolds could be delivered in vivo to guide growth from the 

proximal to distal or distal to proximal nerve stumps. The proposed design, featuring dual gradi-

ents of both positive and negative adhered guidance molecules, would be a novel approach to 

controlling the directedness of neurite outgrowth. During nervous system development, chon-

droitin sulfate proteoglycans (CSPGs) guide neurons to appropriate targets by inhibiting them 

 

 
 
Figure A-7. Quantified outgrowth from DRGs cultured on the gradient scaffolds 
 
Top: Aspect ratio results. * p < 0.01, one-way ANOVA, Tukey post hoc. Bottom: Gradient ratio 
results. 3 trials, 3 repeats per condition per trial. n = 9 DRGs measured per condition. 
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from entering inappropriate ones.28 Our design would exploit the ability of CSPGs to direct neurite 

outgrowth by avoiding inefficient regeneration, such as misdirected or “wrong way” axons and/or 

excessive neurite branching. We are especially interested in directing, continuous persistent neu-

rite outgrowth across large peripheral nerve gaps to accelerate repair. 
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APPENDIX B: Chapter 4 Supplement 
 

Appendix B contains supplementary data and figures from Chapter 4.  
 

                   

       
 
Figure B-1. Cytokine array maps 
 
Array maps show the position and number of replicates for each cytokine assayed for release from 
the RAW 264.7 macrophages (A) and S16 Schwann cells (B) in response to our biomaterials cues. 
Positive Controls (POS1, POS2, POS3) are equal amounts of biotinylated IgGs printed directly onto 
the array their intensities should be the same for each sub-array. Negative Control (NEG) spots are a 
protein-containing buffer. Their signal intensities represent non-specific binding of Biotin-conjugated 
anti-Cytokines and/or Streptavidin-Fluor. Controls allow for normalization based upon the relative flu-
orescence signal responses to a known control. CINC1 = CXCL1 (human GRO-α homolog), CINC2a 
= CXCL3 (human GRO-γ homolog), CINC3 = CXCL2 (human GRO-β homolog), FASLG = Fas Ligand, 
CX3CL1 = Fractalkine, CSF2 = GM-CSF, LIX = CXCL5, SELL = L-Selectin, PRLR = Prolactin Recep-
tor, RAGE = Receptor for Advanced Glycosylation Endproducts, CXCL7 = Thymus Chemokine 1; 
VEGF-A detects VEGF(165 aa) and VEGF(121 aa);  B7-2 / CD86, PRLR and RAGE detect soluble 
forms of these proteins. 

A 

 

 

 

 

 

 

B 
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Figure B-2. Macrophage cytokine array images  
 
Laser scanning and data extraction provided by RayBiotech. Headings indicate biomaterial cue being 
tested and time point in hours. DMEM = media only control/no cells; TCP = tissue culture plastic; LPS 
= Lipopolysaccharide 1μg/mL; CSA = chondroitin sulfate A at 10μg/mL; SCM = spinal cord matrix 
coating 5μg/cm2; HA fib = hyaluronic acid nanofibers.  
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Figure B-3. Schwann cell response to LPS treatment 
 

LPS had no statistically significant effects on mRNA expression (A) or morphology (B) of the S16 
Schwann cells. Significance considered p<0.05 one-way ANOVA + Fisher’s LSD post hoc. 
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Figure B-4. Schwann cell phenotype on PLL: PCR and Morphology 
 

Poly-L-lysine (PLL) keeps the S16 Schwann cells in an immature state based on statistically significant 
differences in mRNA expression (A) and morphology (B) compared to cells grown on TCP without 
PLL. *p<0.05 one-way ANOVA + Fisher’s LSD post hoc.  
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Figure B-5. Schwann cell phenotype on PLL: Proliferation and Cytokine Release 

 
S16 Schwann cells cultured on poly-L-lysine (PLL) have increased proliferation (A) and differences in 
cytokine release (B) compared to SCs grown on TCP without PLL. 
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Figure B-6. Schwann cell PCR results 
 

S16 mRNA expression of key markers of 
maturation/myelination 12 (A), 24 (B), and 48 
(C) hours following culture with the indicated 
biomaterials cues. Fold changes reported 
relative to TCP control and normalized to 
beta-actin. Mean ± SEM. N = 3 biological rep-
licates. * p<0.05 one-way ANOVA + Fisher’s 
LSD post hoc.  
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Figure B-7. Schwann cell cytokine array images  
 
Laser scanning and data extraction provided by RayBiotech. Headings indicate biomaterial cue being 
tested and time point in hours. DMEM = media only control/no cells; TCP = tissue culture plastic; PLL 
= poly-L-lysine; CSA = chondroitin sulfate A at 10μg/mL; SCM = spinal cord matrix coating 5μg/cm2; 
HA fib = hyaluronic acid nanofibers. 
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ABSTRACT 
 

BIOMATERIALS APPROACHES FOR UTILIZING THE REGENERATIVE POTENTIAL 
OF THE PERIPHERAL NERVE INJURY MICROENVIRONMENT 
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 Clinically available treatments are insufficient to achieve full functional recovery in large 

(>3cm) peripheral nerve injuries (PNI). The objectives in this thesis were 1) to study often over-

looked elements of intrinsic PNI repair including release of inhibitory CSPGs and post-injury re-

sponses of inflammatory macrophages and dedifferentiated Schwann cells; 2) to create bio-

material scaffolds featuring topographical and adhesive cues to enhance neurite outgrowth; and 

3) to test the ability of those cues to direct macrophages and Schwann cells towards a pro-regen-

erative phenotype. It is hypothesized that recapitulating the positive and negative cues of the PNI 

microenvironment can better improve regeneration. The effect of a characteristic CSPG, Chon-

droitin Sulfate A (CSA), was tested on neurite dynamics of dissociated chick embryo dorsal root 

ganglion (DRG) neurons using time lapse video microscopy. DRG growth was recorded on differ-

ent adhesive substrates, including a novel, porcine-derived spinal cord matrix (SCM). The SCM 

significantly increased neurite extension, reduced neurite stalling, and mitigated CSA inhibition.  

Flow cytometry was used to measure changes in cell-substrate binding receptor expression in 

the neurons. Results showed a significant increase in Syndecan-3 receptor expression in neurons 

treated with CSA, suggesting a possible priming of the cells for regrowth. The CSA was success-

fully immobilized within electrospun hyaluronic acid (HA) nanofibers using a methacrylation reac-

tion. Blended electrospinning was used to create scaffolds featuring the CSA and SCM cues. 
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Results showed significantly increased neurite outgrowth on scaffolds with the SCM and low lev-

els of CSA. Higher incorporation of CSA maintained its inhibitory properties. Next the CSA, SCM, 

and HA fiber cues were tested for their effects on macrophage and Schwann cell phenotype. It 

was hypothesized that one or more of the cues would accelerate the macrophages return to rest 

following classical activation (M1/pro-inflammatory) with lipopolysaccharide (LPS; 1μg/mL) and 

would accelerate the transformation of Schwann cells from an immature state following injury to 

a mature/pro-myelinating one. Cell phenotypes were functionally assessed using quantified re-

verse transcription polymerase chain reaction (qRT-PCR), immunofluorescence, and sandwich-

ELISA based antibody arrays to measure changes in mRNA expression, morphology, and cyto-

kine release, respectively. Macrophages cultured with the SCM and HA fibers had significantly 

reduced M1 gene expression, released lower levels of M1 cytokines (IL-1a, RANTES and TFN-

a) and assumed an elongated morphology indicative of M2. These cues also induced changes in 

the Schwann cells including significantly reduced area, increased elongation, decreased expres-

sion of immature genes (GFAP) and increased expression of mature genes (Krox20 and Oct6). 

These results suggest that the SCM and HA nanofibers could trigger non-neuronal cells towards 

regenerative programs more quickly than traditional PNI interventions. Changes induced by bio-

materials have distinct benefits over the use of immunomodulatory cytokines and would be a 

novel approach to direct repair. Our collective studies offer improved insight into the endogenous 

potential of the injured peripheral nerve and offer ways to incorporate intrinsic repair cues into a 

biomaterial system for treating large gaps.   
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