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CHAPTER 1 INTRODUCTION 

Age-related hearing loss, also known as presbycusis, is one of the most common chronic 

health conditions among older adults (Collins, 1997; Lethbridge-Cejku, Schiller, & Bernadel, 

2004). In the United States, hearing loss is prevalent in nearly two thirds of adults age 70 years 

and older (Lin, Thorpe, Gordon-Salant, & Ferrucci, 2011). Despite the high prevalence of 

hearing loss, treatment via hearing aid use is consistently low: Approximately 22.9 million older 

Americans with hearing loss do not use hearing aids (Chien & Lin, 2012). Many factors 

contribute to low hearing aid use including cost, stigma, and competing chronic health conditions 

(Barnett et al., 2016). Even if hearing aids are obtained, they do not fully alleviate 

communication difficulties, especially under degraded listening conditions (Gordon-Salant, 

2005).  

Presbycusis is typically characterized by high-frequency sensitivity loss, which is 

especially impairing, as the ability to hear high-frequency sound is crucial for speech perception. 

Figure 1 illustrates the sloping pattern of age-related hearing loss in average adults.  

 

Figure 1. Average Age-Related Hearing Loss in 60-, 70-, and 80-Year Old Adults. 
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High-frequency loss affects one-to-one communication and can cause substantial difficulties in 

group conversations (Oberg, Marcusson, Nagga, & Wressle, 2012). Diminished ability to hear is 

related to adverse consequences such as reduced quality of life, depression, and functional 

decline in older adults (Carabellese et al., 1993). 

Hearing is a complex process that involves both peripheral structures (e.g., eardrum, 

cochlea, etc.) and the central nervous system (e.g., auditory cortex). In the inner ear, the cochlea 

converts the mechanical energy of sound into electrical signals that are passed along the auditory 

nerve to the brain. The auditory cortex interprets this information as sound. Age-related hearing 

loss is most commonly due to sensorineural hearing loss, which involves changes in the inner 

ear. Noise exposure and health conditions such as high blood pressure and diabetes can also 

contribute to hearing loss (Frisina, 2009).   

Previous research has found that hearing impairment is associated with low cognitive 

functioning (Anstey, Luszcz, & Sanchez, 2001a; Gates et al., 1996; Lin, 2011; Lindenberger & 

Baltes, 1994; Uhlmann, Larson, Rees, Koepsell, & Duckert, 1989; van Boxtel et al., 2000); 

however, many cognitive domains, particularly verbal memory, are assessed using 

neuropsychological tests that involve auditory stimuli. One of the most common ways to assess 

memory is by using multi-trial word learning tests read aloud to an examinee who is asked to 

recall the words immediately after presentation and after a delay period (Lezak, Howieson, 

Bigler, & Tranel, 2012). The detrimental effects of reduced sensory sensitivity on cognitive test 

performance are generally overlooked, which could potentially result in overdiagnosis of 

memory problems in individuals with hearing loss. Inaccurate diagnosis of cognitive impairment 

could have serious implications for patients, their families, and the overall healthcare system.  

Seminal population studies demonstrated the association between sensory sensitivity and 
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cognitive abilities, and showed that the strength of this association increases with age 

(Lindenberger & Baltes, 1994, 1997). Since then, a growing body of research has examined the 

link between sensory loss, cognitive functioning, and aging (for reviews, see Fortunato et al., 

2016; Gallacher, 2004; Wayne & Johnsrude, 2015). Several hypotheses have been proposed to 

explain the relationship between hearing loss and performance on cognitive tests in older adults: 

1. Common cause hypothesis: Widespread neural decline related to common factors 

results in reduced hearing sensitivity, auditory processing, and cognitive abilities.  

2. Deprivation hypothesis: Adverse consequences of age-based reductions in sensory input 

accumulate over time and lead to structural and/or functional changes in the brain. 

3. Resource allocation hypothesis: Increased listening effort taxes allocation of cognitive 

resources for understanding speech, which in turn, depletes cognitive resources normally 

dedicated to the task at hand.  

4. Perceptual degradation hypothesis: Poor performance on neuropsychological tests 

simply reflects an auditory disadvantage due to hearing loss (i.e., stimuli are not heard or 

they are misperceived during auditory presentation).  

5. Social isolation hypothesis: Individuals with hearing loss have reduced social 

engagement, which in turn, negatively affects cognitive functioning.  

A review of the literature shows that there is mixed support for these hypotheses. Many 

studies tend to support one of two main pairs of hypotheses: The common cause and deprivation 

hypotheses versus the perceptual degradation and resource allocation hypotheses. Due to their 

nature, it is difficult to delineate support for the hypotheses within each pair. For example, a 

study that finds support for the common cause hypothesis cannot rule out the deprivation 

hypothesis unless it employed a longitudinal design that follows individuals prior to the onset of 
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cognitive and sensory decline. Of course, this kind of longitudinal design involving multiple time 

points is methodologically challenging. Similarly, establishing support for the perceptual 

degradation hypothesis, by showing that improving hearing sensitivity by use of hearing aids or 

sound amplification results in improved cognitive test performance, also supports the resource 

allocation hypothesis. Improving hearing sensitivity would reduce the amount of cognitive 

resources needed for speech perception and would, in turn, theoretically result in improved 

cognitive test performance. In sum, the two hypotheses are inextricably confounded.  

Common cause/deprivation hypothesis 

 Support for the common cause hypothesis has been demonstrated in a number of ways. 

One line of support comes from research showing that performance on auditory and visual 

cognitive tests is impaired in individuals with hearing loss (Dupuis et al., 2014; Gates et al., 

2010; Granick, Kleban, & Weiss, 1976; Harrison Bush, Lister, Lin, Betz, & Edwards, 2015; Lin, 

Ferrucci, et al., 2011; Uhlmann, Teri, Rees, Mozlowski, & Larson, 1989; Valentijn et al., 2005). 

Such results indicate that poor test performance in older adults with hearing loss is not limited to 

tests that involve auditory presentation of stimuli. Theoretically, use of visual 

neuropsychological tests rules out the possibility that test performance below expectation is due 

to solely to misperception of auditory stimuli (perceptual degradation hypothesis) or increased 

dedication of cognitive resources to perceptual processing during testing (resource allocation 

hypothesis). These findings are consistent with the idea that a common underlying neurological 

factor might be driving both reductions in hearing and cognitive abilities across sensory 

modalities. Overall, findings related to hearing loss and performance on visual cognitive tests are 

mixed.    

Additional support for the common cause hypothesis comes from findings that show a 
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significant association between hearing loss and increased prevalence of dementia (Gold, 

Lightfoot, & Hnath-Chisolm, 1996; Gurgel et al., 2014; Lin & Albert, 2014). In addition, higher 

prevalence of hearing loss has been found among individuals with Alzheimer’s disease compared 

to demographically-matched, non-demented controls (Uhlmann, Larson, et al., 1989). 

Longitudinal studies have also shown that baseline-hearing status is predictive of which 

individuals will go on to develop dementia (Gallacher et al., 2012; Gates et al., 1996; Lin et al., 

2013). For example, Lin et al. (2013) demonstrated that hearing loss at baseline is independently 

associated with a 30 – 40% rate of accelerated cognitive decline over a 6-year period. 

Accelerated cognitive decline among individuals with hearing loss was not limited to 

performance on auditory cognitive tests. Although the common cause hypothesis is a possible 

explanation, the authors noted that the measure of hearing loss used (pure tone audiometry) 

reflects peripheral hearing loss, which has not been found to be related to Alzheimer’s disease 

neuropathology.  

Neuroimaging studies have revealed that hearing impairment is associated with reduced 

cortical volume in the auditory cortex (Peelle, Troiani, Grossman, & Wingfield, 2011) as well as 

accelerated rates of lateral temporal lobe and whole brain atrophy (Lin et al., 2014). In addition, 

functional neuroimaging studies have demonstrated compensatory recruitment of frontal and 

temporoparietal regions for auditory speech processing in older adults (Wingfield & Grossman, 

2006) and that older adults have less overall temporal and occipital cortical activation compared 

to younger adults when presented with auditory stimuli (Cliff et al., 2013). These findings 

suggest that not only deficits at the peripheral level might interfere with performance on memory 

testing, but rather that reduced auditory cortex activation during perception of auditory stimuli in 

older adults could negatively affect the quality of information available to higher-order cognitive 
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processes such as memory.  

There is some support uniquely for the deprivation hypothesis. Animal models of hearing 

impairment show that degraded auditory signals and reduced stimulation from an impaired 

cochlea may precipitate changes in cortical reorganization and brain morphometry (Fetoni et al., 

2013). Findings from longitudinal human studies are inconclusive. Valentijn et al. (2005) found 

that a decline in auditory sensitivity predicted a decline in memory performance; however, the 

study did not find convincing evidence for a time lag between reduced hearing sensitivity and 

cognitive functioning.  

Perceptual degradation/resource allocation hypothesis 

One form of support for the perceptual degradation hypothesis comes from studies that 

show that the association between hearing impairment and cognitive decline is not retained when 

visual cognitive tests are used (Granick et al., 1976; Gussekloo, de Craen, Oduber, van Boxtel, & 

Westendorp, 2005; Wong, Yu, Chan, & Tong, 2014; Zekveld, Deijen, Goverts, & Kramer, 

2007). Such results indicate that cognitive ability is preserved in the context of hearing loss; thus, 

findings that hearing loss is related to cognitive decline could be due to reliance on auditory 

cognitive tests. One study actually found that severity of hearing loss was positively associated 

with performance on a spatial working memory task (Zekveld et al., 2007). The authors 

suggested that individuals with hearing loss might use working memory as a compensatory 

mechanism.  

Some research examining the perceptual degradation hypothesis has utilized 

experimental simulations of reduced hearing sensitivity designed to resemble age-related hearing 

loss (Lindenberger, Scherer, & Baltes, 2001; Murphy, Craik, Li, & Schneider, 2000; Rabbitt, 

1968). For example, Lindenberger et al. (2001) simulated reduced auditory sensitivity in middle-
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aged adults with normal hearing by using noise-protector headphones. Unexpectedly, 

participants with simulated sensory impairment showed slightly higher levels of performance in 

reasoning and knowledge than controls. The authors suggested that the unexpected finding might 

have been due to redundancy between visually and auditorily presented information as well as a 

reactive increase in attention and effort to compensate for the simulated losses. The finding of 

improved cognitive performance under unfavorable listening conditions has also been shown in 

young adults with normal hearing (Neidleman, Wambacq, Besing, Spitzer, & Koehnke, 2015). 

Lindenberger et al. (2001) also reported that experimentally-induced auditory sensitivity 

reductions resulted in worse performance on an auditory working memory task (which was 

unimodal in presentation). Although the authors concluded that their findings do not provide 

support for the perceptual degradation hypothesis, the study only included middle-aged adults 

and hearing loss was simulated by use of noise protectors, which likely did not fully capture the 

complexity of age-related hearing loss.  

Results from other simulated hearing loss studies have demonstrated support for the 

perceptual degradation/resource allocation hypothesis (Baldwin & Ash, 2011; Jorgensen, Palmer, 

Pratt, Erickson, & Moncrieff, 2016; Murphy et al., 2000; Rabbitt, 1968; Tun, McCoy, & 

Wingfield, 2009). Jorgensen et al. (2016) examined the effect of reduced audibility via hearing 

loss simulation on a global screening measure (Mini Mental State Exam; MMSE) among young 

adult participants with normal hearing. They found that the majority of participants who 

completed the MMSE with reduced audibility would have been classified as having dementia, 

despite being cognitively intact, and that as the amount of simulated hearing loss increased, 

MMSE performance decreased. Murphy et al. (2000) found that word list recall of young adults 

tested in noise was equivalent to word list recall of older adults with normal to mild hearing loss 
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tested in quiet. The results are consistent with predictions that age-related performance on 

memory tests reflect concomitant sensory losses. The authors proposed that the resource 

allocation hypothesis is a possible explanation of these findings and stated that aging and testing 

in noise are similar in that they are both associated with a reduction in processing resources. 

Overall, the authors conclude that both age-related sensory loss and an age-related reduction in 

cognitive resources influence performance on memory tests. 

Rather than simulate hearing loss in young or middle-aged adults, Verhaegen, Collette, 

and Majerus (2014) compared performance on verbal short-term memory tests between older 

adults and young adults with hearing loss matched for hearing threshold (average pure-tone 

audiometry thresholds for 500, 1000, and 2000 Hz were 17.13 dB HL and 17.24 dB HL, 

respectively). A group of young adults with normal hearing was included as well. Results 

indicated that elderly and hearing-matched young adults showed equal levels of performance on 

all verbal short-term memory tasks, and both groups performed lower than normal-hearing 

young control participants. The authors interpreted these findings to suggest that deficits seen on 

cognitive testing are due to reduced auditory sensitivity and not cognitive impairment, as young 

adults with mild hearing loss performed similarly to older adults. Explanation of these findings 

also included the resource allocation hypothesis.  

Other research has examined the effect of improved hearing via hearing aids on cognitive 

test performance. Per the degradation hypothesis, improving hearing sensitivity should 

theoretically lead to improved test performance on auditory cognitive tests because difficulty 

related to perceiving stimuli is reduced. Alternatively, in the long term, hearing aid use may also 

address reduced sensory input due to hearing loss that could lead to functional and structural 

brain changes (deprivation hypothesis). Results from studies on this topic are variable. A 25-
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year, longitudinal study found that self-reported hearing loss at baseline was associated with 

accelerated cognitive decline but that hearing aid use attenuated this relationship (Amieva et al., 

2015). Because of lack of randomization though, differences between groups may have been 

related to unmeasured participant characteristics. Hearing aid use has been associated with better 

performance on visual cognitive tests, suggesting that the benefit of hearing aid use on cognitive 

performance is not solely due to improved audibility of test stimuli (Dawes et al., 2015). On the 

other hand, other studies have found that intervention with hearing aids did not result in better 

cognitive performance compared to testing done prior to receiving hearing aids (Allen et al., 

2003; Valentijn et al., 2005; van Hooren et al., 2005) or only found a small effect (Mulrow et al., 

1990). Wong et al. (2014) found that hearing aid users had worse cognitive performance 

compared to a normative sample of older adults but did not include a group of individuals with 

hearing loss who did not use hearing aids. Of note, results showing that hearing aids do not 

improve neuropsychological test performance might reflect that hearing aids do not fully 

correcting hearing (Wong et al., 2014). In addition, people often have hearing loss for many 

years before they seek treatment; thus, hearing aids might not address irreversible changes due to 

years of reduced sensory input (Wong et al., 2014). Many of these studies are limited due to 

small sample sizes, which limits power to detect differences across the conditions, as well as 

reliance on self-report of hearing loss and hearing aid use.  

Combined Models 

A number of these explanatory pathways co-exist and may jointly contribute to cognitive 

impairment in individuals with hearing loss (Lin, Ferrucci, et al., 2011). In a conceptual model 

by Lin and Albert (2014), hearing impairment might simultaneously lead to increased allocation 

of cognitive resources to hearing perception, changes in brain structure and function, and 
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reduced social engagement, all of which contribute to impaired cognitive functioning. At the 

same time, there could be common etiology that is contributing to hearing impairment, the 

mediating variables, and cognitive decline.  

A multi-level model by Li and Lindenberger (2002) suggests that the onset of age-related 

sensory decline is possibly earlier than the onset of age-related cognitive decline. Adaptation to 

hearing loss may occur in multiple ways including changes in neural structure and function, and 

in terms of modifications to attentional allocation, all of which may co-occur with 

neuropathological changes associated with cognitive impairment.  

In a review of the effects of adult-onset hearing loss on cortical auditory regions, Cardin 

(2016) concludes that the combination of atrophy of cortical auditory regions in hearing loss and 

older age and degraded auditory input because of peripheral damage results in increased reliance 

on cognitive resources for accurate auditory perception. In turn, all listening is effortful and 

cognitive capacity for other tasks is reduced, both of which may be factors that contribute to 

accelerated cognitive decline in older adults with hearing loss (Cardin, 2016).    

Ronnberg (2003) proposed the ease of language understanding (ELU) model to examine 

the association between hearing loss and cognitive decline. According to the ELU model, under 

optimal conditions, information processing involves “rapid, automatic, and multimodal binding 

of phonological information (RAMBPHO).” The process produces phonological information that 

“unlocks the lexicon” by matching phonological input with stored phonological representations 

in semantic long-term memory. Under suboptimal conditions (e.g., hearing impairment or noisy 

conditions), the likelihood of a mismatch between input and stored phonological representations 

increases. The mismatch triggers recruitment of resources to infer the meaning of the message 

based on both information retrieved from long-term memory and actual information being held 
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in working memory. This model places working memory as a crucial component for 

compensating for hearing loss. With a mismatch, less information encoded into episodic long-

term memory, and over an extended period, leads to “disuse” of episodic long-term memory and 

a subsequent decline in episodic long-term memory ability. Ronnberg et al. (2011) examined the 

relationship between sensory sensitivity and cognition among 160 hearing aid users without 

dementia and found that hearing loss was negatively related to long-term memory but not short-

term memory, as predicted by the ELU model.   

Although the theoretical concepts regarding the relationship between hearing loss and 

cognitive functioning have been expounded, research has not demonstrated compelling and 

consistent support for a particular model. Interest in this topic has been growing in recent years, 

especially in the field of audiology and otolaryngology, which will likely help to provide clarity 

regarding the underlying mechanisms. Psychologists are well positioned to contribute to 

understanding the association between hearing loss and cognition, and may bring new 

perspectives to the table. There remains much to be learned and interdisciplinary collaborations 

will be crucial for advancing knowledge in this area. At this point, however, it is clear that 

hearing loss has the strong potential to diminish auditory cognitive test performance.  

Possible Solutions 

 As researchers have begun to consider that cognitive tests that utilize auditory stimuli 

may be invalid in the context of hearing loss, different approaches for addressing this problem 

have been proposed. One possibility is to use alternative scoring procedures that eliminate or 

reduce the weight of auditory items. For example, Dupuis et al. (2014) created and examined 

new scoring procedures for the Montreal Cognitive Assessment (MoCA) that removed different 

combinations of language-based items. Using the normal scoring procedures, only 38% of older 
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adults with hearing loss scored above the cutoff for passing, which is lower than expected based 

on MCI prevalence rates. Using the alternative scoring procedures, both individuals with and 

without hearing loss were more likely to pass the MoCA, but the discrepancy between the groups 

was reduced. Of course, deviating from standard administration and scoring procedures may 

affect the validity of tests and reduce sensitivity for identifying genuine problems with cognition. 

Additional research in this area is needed before alternative procedures to accommodate hearing 

loss can be used clinically.  

Another possible solution might be to utilize visual presentation modalities to assess 

cognitive domains normally evaluated using auditory cognitive tests such as verbal memory. 

Research specifically examining visual-verbal memory measures as alternatives to auditory-

verbal memory measures in the context of hearing loss is limited; however, some studies have 

compared performance on auditory versus visual formats of the same test (Brand & Jolles, 1985; 

Dupuis et al., 2014; Rabbitt, 1990). For example, Rabbitt (1990) demonstrated that younger 

adults had better free-recall performance when words were presented aurally rather than visually, 

whereas older adults with mild hearing loss performed better when the words were presented 

visually compared to aurally. The degradation and resource allocation hypotheses were proposed 

as explanations for these findings. 

An early study comparing auditory and visual multi-trial verbal free recall among healthy 

young adults found that there were no differential effects of presentation format on a number of 

performance variables and supported the clinical application of visual-verbal memory tests 

(Brand & Jolles, 1985). Valentijn et al. (2005) examined the effect of sensory sensitivity on 

performance on the Visual Verbal Learning Test (VVLT) created by Brand and Jolles (1985) and 

found that auditory sensitivity change from baseline to 6-year follow up was predictive of 
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decline in VVLT. Baseline auditory sensitivity was not significantly related to any cognitive 

variables after controlling for age, educational attainment, and sex. Of note, the VVLT uses 

Dutch words and an equivalent English version does not exist.  

Rationale 

In summary, many studies find that hearing loss is adversely related to performance on 

cognitive testing (Harrison Bush et al., 2015; Lin et al., 2013); still, others find no association 

between hearing sensitivity and cognitive ability (Anstey, Luszcz, & Sanchez, 2001b; Gennis, 

Garry, Haaland, Yeo, & Goodwin, 1991; Hofer, Berg, & Era, 2003; Jones, Victor, & Vetter, 

1984; Shahidipour, Geshani, Jafari, Jalaie, & Khosravifard, 2013; Vesterager, Salomon, & Jagd, 

1988). Given mixed findings regarding the link between hearing loss and cognitive functioning 

and no conspicuous explanation regarding this relationship, additional research on this topic is 

needed. Studies utilizing experimental designs are limited and most research has sacrificed 

ecological validity for high internal validity.  

Improving our understanding of the association between hearing loss and auditory-

verbal memory assessment potentially has direct clinical implications regarding 

neuropsychological assessment and patient recommendations. Support for the perceptual 

degradation/resource allocation hypothesis would suggest that assessing verbal memory in an 

auditory modality would be invalid for individuals with hearing loss and could result in 

overdiagnosis of memory impairment in this population. A modified administration format, such 

as visual presentation of verbal stimuli, could potentially resolve this problem. On the other 

hand, if the common cause/deprivation hypothesis were supported, hearing loss in older adults 

might be a useful as a marker of cognitive dysfunction and continued use of auditory verbal 

memory tests would be substantiated.  
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With prevalence rates of dementia expected to double every 20 years resulting in an 

estimated 115.4 million individuals with dementia worldwide by 2050 (Ferri, Sousa, Albanese, 

Ribeiro, & Honyashiki, 2009), accurate assessment of memory ability is exceedingly crucial. 

Despite support that auditory and visual versions of word-learning tests are equivalent (Brand & 

Jolles, 1985), clinical neuropsychological assessment continues to rely on auditory-verbal 

memory tests for the assessment of verbal memory. One possible reason for the establishment of 

this practice is noted by Brand and Jolles (1985) who suggest that “most word-learning tests used 

in clinical neuropsychology are presented auditorily because visual presentation necessitates the 

use of a sophisticated apparatus such as slide projectors and/or computers” (p. 202) if precise 

control of presentation rate is desired. Although use of computers in neuropsychological testing 

is now commonplace, there is already a large body of literature surrounding auditory word-

learning tests. Understandably, there is hesitancy to deviate from the “gold standard” method of 

verbal memory assessment; however, the questionable validity of using auditory cognitive tests 

with individuals with hearing loss motivates the need to challenge this practice.  

The current study aimed to determine whether auditory-verbal memory tests are a valid 

way to assess memory in older adults with hearing loss and to examine the effect of different 

hearing conditions (optimal vs. non-optimal) on auditory-verbal memory performance in older 

adults with and without hearing loss. For individuals with hearing loss, optimal conditions were 

achieved via artificially boosted auditory input, whereas non-optimal conditions were status quo 

(i.e., auditory presentation at a normal speaking volume); for normal hearing adults, optimal 

conditions were status quo, whereas non-optimal conditions were achieved via a simulated 

hearing loss condition. The purpose of this study was also to examine the validity and utility of a 

visual-verbal memory test in older adults, which tests verbal memory without necessitating 
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auditory processing. In addition, the current study examined the relationship between hearing 

ability, auditory-verbal memory, and other cognitive variables in older adults with and without 

hearing loss.  

Specific Aims and Hypotheses 

Although there is evidence to support both pairs of explanatory hypotheses (common 

cause/deprivation vs. perceptual degradation/resource allocation), a review of the literature 

provides compelling support for the perceptual degradation/resource allocation hypothesis. Thus, 

the specific hypotheses were made following the assumptions of the perceptual 

degradation/resource allocation hypothesis: (a) Poor performance on auditory cognitive tests in 

individuals with hearing loss is due to auditory disadvantage during testing (i.e., auditory stimuli 

are limited or distorted resulting in degraded information available for higher cognitive 

processes); and (b) increased listening effort taxes allocation of cognitive resources for 

understanding speech, which in turn, depletes cognitive resources normally dedicated to the task 

at hand.  

Aim 1: Examine the Effect of Different Presentation Conditions on Verbal Memory 

Performance. 

Hypothesis 1(a): As previous research has demonstrated that even mild hearing loss can 

result in reduced auditory-verbal memory performance (van Boxtel et al., 2000), it was expected 

that older adults with hearing loss would have worse auditory-verbal memory performance 

compared to older adults with normal hearing under a natural auditory condition (status quo 

presentation; i.e., normal speaking volume).  

 Hypothesis 1(b): A crossed auditory condition, in which adults with hearing loss 

completed a version of the auditory-memory test with amplified volume (optimal) and adults 
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with normal hearing completed it under a simulated hearing loss presentation (non-optimal), was 

also examined. It was expected that performance on an auditory-verbal memory test 

administered under these conditions would yield worse performance among adults with normal 

hearing compared to adults with hearing loss.  

Hypothesis 1(c): Between groups, visual-verbal memory performance would not differ 

meaningfully between older adults with hearing loss and older adults with normal hearing.  

Hypothesis 1(d): Within groups, for both groups, auditory-verbal memory performance 

was expected to be better under an optimal hearing condition as compared to a non-optimal 

hearing condition. Among adults with normal hearing, auditory-verbal memory and visual-verbal 

memory would not meaningfully differ (Brand & Jolles, 1985). In contrast, among adults with 

hearing loss, visual-verbal memory performance was expected to be better than auditory-verbal 

memory performance (Rabbitt, 1990). 

Aim 2: Compare Performance Between Groups on Neuropsychological Tests Across Other 

Domains. 

Hypothesis 2(a): It was hypothesized that older adults with hearing loss would perform 

worse on other auditory cognitive tests compared to older adults with normal hearing. 

Hypothesis 2(b): Performance on visual cognitive tests would not differ meaningfully 

between groups.  

Aim 3: Determine the Extent to Which Other Cognitive Abilities are Related to Auditory- and 

Visual-Verbal Memory. 

Hypothesis 3: For both groups, it was expected that working memory would be related to 

auditory-verbal memory performance, as it has been shown to be important for speech perception 

(Vaughan, Storzbach, & Furukawa, 2008; Waters & Caplan, 2001). 
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CHAPTER 2 METHOD 

Participants 

Participants were recruited from Henry Ford Health System (HFHS) Audiology 

Department and the community. Inclusion criteria for participants with hearing loss: (1) 55 – 85 

years old; (2) moderate-to-severe hearing loss defined as a pure tone average (PTA) of 40-70 dB 

HL for one of two sets of frequencies: 1. .5k, 1k, and 2k Hz, or 2. 1k, 2k, and 4k Hz for the better 

ear; (3) hearing loss that is sensorineural in nature. Inclusion criteria for participants without 

hearing loss: (1) 55 – 85 years old; (2) normal to minimal hearing loss (PTA 0-25 dB HL). 

Exclusion criteria for participants in both groups: (1) non-English speaking participants; (2) less 

than 23/30 on mental screening test; (3) vision worse than 20/40 after correction with glasses or 

contact lenses; (4) documented stroke, brain injury, or other neurologic condition that could 

invalidate testing data; (5) current psychiatric or medical condition that could interfere with 

cognitive testing; (6) conductive or eighth nerve disorders or middle ear dysfunction. 

The total sample collected included 130 participants. Participants with thresholds < 25 dB 

at .5k, 1k, 2k, and 4k Hz were classified as passing the criteria for normal hearing. Six 

participants who tested with one frequency in one ear > 25dB also were classified as passing and 

included in normal hearing group. Of the 69 individuals recruited for the NH group, 20 did not 

meet the hearing screen criteria. Eight individuals were excluded because they did not meet other 

inclusion criteria (e.g., current psychiatric or medical condition that would interfere with 

cognitive testing), resulting in 41 included participants in the NH group. In the HL group, 61 

individuals were recruited and 6 were excluded for not fully meeting the inclusion criteria, 

resulting in 55 eligible participants. Preliminary analysis indicated that there was a significant 

age difference between the groups. Because age is associated with cognitive test performance, 
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the systematic confounding of age and group was resolved via matching the two groups on age. 

Thus, 41 participants from the HL group were matched on age (+ 3 years) to the 41 participants 

in the NH group. The resulting groups were not significantly different in age, t(80) = 1.88, p = 

.06, or gender proportion, X2 (1, N = 82) = 0.78, p = . 37. Power analyses confirmed that a 

medium effect size could be detected with this sample size; with parameters alpha = .05 and N = 

82, power is .80 to detect an effect size Cohen’s d = 0.55.  

Measures 

Sensory Testing  

Audiometric Evaluation: Results of standard clinical audiometric testing were obtained 

for participants with hearing loss recruited from HFHS Audiology. Audiometric threshold 

measurement was evaluated with a Grason-Stadler model 61 (GSI 61) audiometer calibrated to 

American National Standards Institute (ANSI) 1996 standards. Pure-tone air conduction 

thresholds are obtained with EAR 3A insert earphones for test frequencies of 0.5, 1, 2, 3, 4, and 8 

kHz. For each test frequency, the initial presentation level is 30 dB HL, after which intensity is 

decreased in 10 dB steps until the participant fails to respond. Presentation levels are then 

increased by in 5 dB steps following each no-response presentation until a response is observed. 

Levels are then decreased by 10 dB until the subject no longer responds. Ascending trials are 

repeated three times, and threshold is operationally defined as the lowest level at which 

responses are obtained on two of three ascending trials.  

Word-recognition scores are obtained with recordings (Auditec Ordered by Difficulty 

Version II) of the Northwestern University Auditory Test #6 (NU-6). Words are presented from 

a computer through the GSI 61 at 80 dB HL. Scores are expressed as the percentage correct of 

the 25 words presented. 
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Middle-ear function is assessed with a Grason-Stadler immittance meter (GSI TympStar) 

calibrated to ANSI 1989 standards. Vector tympanograms are obtained with a 226 Hz probe 

tone. Ear-canal air pressure is varied from +200 to -200 daPa as acoustic admittance is measured. 

Ipsilateral acoustic reflex thresholds are obtained at 1 and 2 kHz; contralateral reflex thresholds 

were obtained at 0.5, 1, and 2 kHz.  

For participants with hearing loss recruited from the community, free hearing evaluations 

were completed at the Wayne State University Audiology Clinic using similar procedures as 

described for the HFHS hearing test. For participants with hearing in the normal range recruited 

from the community, audiometric evaluations were conducted with a portable audiometer and 

consisted of a standard audiometric screening.  

Both groups completed the following measures:  

Rosenbaum Pocket Vision Screener: The Rosenbaum Pocket Vision Screener is a brief 

measure of visual sensitivity. A chart with 10 lines of block numbers is presented 14 inches from 

the participant. The first line consists of two large numbers and each subsequent line consists of 

numbers that gradually decrease in size. The examinee covers one eye and reads each line aloud, 

then repeats the process with the other eye.  

Neuropsychological Measures 

 Each of the participants completed a comprehensive neuropsychological battery that 

included employed widely used and well validated clinical tests, each of which has been shown 

to meet contemporary psychometric standards for reliability and validity (Lezak et al., 2012; 

Strauss, Sherman, & Spreen, 2006). 

Mini-Mental State Exam (MMSE; Folstein, Folstein, & McHugh, 1975): The MMSE is a 

30-point global cognitive screening measure, which is often used to screen gross cognitive 
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functioning and dementia (Tombaugh & McIntyre, 1992). Scores less than 23 are considered 

impaired. It takes 5-10 minutes to administer the test, which includes measures of registration, 

attention and calculation, delayed recall, language, ability to follow commands, and orientation.  

Test of Premorbid Functioning (TOPF; Wechsler, 2009): Recognition vocabulary is 

relatively robust to brain insult and it is a useful estimate of general intellectual ability (Green et 

al., 2008). The TOPF is a widely used word reading test that utilizes atypical grapheme-phoneme 

translation to provide an estimate of IQ. It is normed for ages 16:0 – 90.11 years.  

Hopkins Verbal Learning Test-Revised (HVLT-R; Brandt & Benedict, 2001): The 

HVLT-R is a brief auditory-verbal list learning and memory test (immediate recall, delayed 

recall, and delayed recognition) with six alternate forms. The test is widely used in research and 

clinical settings with older adults. A list of 12 words is auditorily presented three times. After 

each presentation, the participant is asked to recall as many words as possible in any order. The 

three trials provide an estimate of learning/encoding, and scores for each trial are summed to 

produce a total immediate recall score (Total Recall). Following a 20- to 25-minute delay after 

the third trial, participants are asked to recall as many words as possible (Delayed Recall). The 

percent of information retained (Retention) is calculated by dividing the Delayed Recall score by 

the higher score of Trials 2 and 3, then multiplying by 100. Last, a recognition portion of the test 

is administered in which 24 words (12 targets and 12 foils) are read to the participant. 

Participants are instructed to respond “yes” if the word was on the list or “no” if the word was 

not on the list. Recognition Discriminability is determined by subtracting false positive errors 

from recognition hits. Norms are available for adults aged 16 to 92 years.  

Three alternate forms were used in the present study. The two forms selected for the 

auditory presentation format (Forms 4 and Form 6) were chosen because they are similar on 
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average number of syllables, as monosyllabic words are more difficult to perceive than 

multisyllabic words (Kirk, Hay-McCutcheon, Sehgal, & Miyamoto, 2000). Video recordings of 

an examiner presenting the HVLT-R were created at Wayne State University and Detroit Public 

Television Midtown TV Studio. The videos were presented to participants over noise-canceling 

headphones via a portable computer to control for administration differences. Video recordings 

also provided ecologically valid lipreading cues, which have shown to be important in previous 

research (Jesse & Janse, 2012), unlike an auditory-only presentation format. Information 

regarding the nature of the task was provided to participants prior to viewing the videos and 

standardized test instructions were included in the videos.  

Form 1 of the HVLT-R was used in a visual-verbal memory presentation paradigm. A 

visual version of the HVLT-R was created for computerized presentation via Microsoft 

PowerPoint. Participants were shown printed words presented at the rate of one per 2 seconds on 

a computer screen, rather than words presented in the standard auditory format. The word font 

was a commonly used, easy to read font (Times New Roman, 60-point). White text with a black 

background was presented. As with the standard format, participants provided their answers 

orally and the examiner recorded their responses on a test form.  

Brief Visuospatial Memory Test-Revised (BVMT-R; Benedict, 1997): The BVMT-R is a 

measure of visuospatial memory that involves three Learning Trials, a Delayed Recall Trial, and 

a Recognition Trial. For each learning trial, the participant views the stimulus page for 10 

seconds and then is asked to draw as many of the figures in their correct location as possible. 

After a 25-minute delay, the participant is asked to draw the figures again from memory. The 

Recognition Trial, in which the participant is presented with 12 figures and asked to identify the 

six target figures, is administered last. The test is normed for ages 18 to 79 years. 
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Wechsler Adult Intelligence Scale-4th Edition (WAIS-IV; Wechsler, 2008) Digit Span: 

Digit Span is measure of auditory attention and working memory, in which a series of numbers 

are read aloud by an examiner. It consists of three sections: Forward, Backward, and Sequencing. 

For the Forward trials, the participant is instructed to repeat back the numbers in the same order. 

For the Backward trials, the participant is instructed to repeat the numbers in the reverse order. 

For the Sequencing trials, the participant is instructed to repeat the numbers in order from lowest 

to highest. Scores for the three sections are totaled to yield a Total Digit Span score. Reliable 

Digit Span was calculated as a measure of task engagement by summing the forward and 

backward span length for the highest completely correct (2-point) items.  

eCorsi Block Tapping Test (Brunetti, Del Gatto, & Delogu, 2014): This test provides an 

index of visuospatial working memory. The task is administered using an iPad. Examinees are 

required to mimic a sequence of spatially separated blocks in the same order in which they light 

up for the Forward condition; they must respond in the reverse order of presentation for the 

Backward condition. Trial lengths range from two to nine blocks. The longest span for the 

Forward and Backward conditions were used for this study. According to the test authors, error 

rates for this computerized version are essentially analogous to errors rates for the original, 

physical version of the Corsi test (Brunetti et al., 2014). 

Wechsler Adult Intelligence Scale-4th Edition (WAIS-IV; Wechsler, 2008) Coding: This 

test is a widely-used index of processing speed. The examinee copies symbols that are paired 

with numbers within a specified time limit of 120 seconds.  

Wechsler Adult Intelligence Scale-4th Edition (WAIS-IV; Wechsler, 2008) Symbol 

Search: This test is a measure of processing speed for which examinees have to quickly identify 

whether visual stimuli match target symbols.  
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Trail Making Test (Reitan & Wolfson, 1993): This timed paper-and-pencil test consists 

of two parts. Part A (TMT-A) requires numerical sequencing, visual search, and perceptual-

motor speed. Examinees are instructed to draw a continuous line to connect circled numbers 

from 1 to 25 in sequential order, with speed and accuracy. Part B (TMT-B) adds to the TMT-A 

task the component of letter sequencing and introduces a demand for cognitive flexibility and 

shifting of perceptual set. Examinees are instructed to connect numbers (1 – 13) and letters (A – 

L) in order, alternating between the two.  

Judgment of Line Orientation (Benton, Hamsher, Varney, & Spreen, 1983): The 

Judgment of Line Orientation task is a measure of visuospatial judgment. The short-form (15-

item version) was used (Woodard et al., 1996).  

Apparatus 

Portable audiometer: Individuals with normal hearing were screened using a Beltone 

Special Instruments 120 Audiometer Model 120. Air conduction screening testing were done 

using TDH-50 Earphones (noise-excluding headphones).  

Headphones: Bose QuietComfort 25 Headphones are full-size, over-the-ear noise-

canceling headphones were used for presentation of auditory-verbal memory stimuli. 

Computer: A MacBook Air laptop computer (13.3-inch diagonal; LED-backlit glossy 

widescreen display, 1440-by-900 resolution; 4GB memory; 128GB flash storage) was used to 

present audiovisual test stimuli.  

Video stimuli program: Two forms of the HVLT-R were videotaped in a professional 

audiovisual recording studio. The recordings were filmed as “talking head videos,” framed as a 

medium close-up with the examiner speaking directly to the camera. Special attention was paid 

to ensure adequate lighting to illuminate the face with minimal shadowing (e.g., standard three-
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point lighting; key, fill, and back lighting), and sound quality controlled by a sound engineer. 

Post-production audio editing yield two versions of each HVLT-R form: one with intact 

(unedited) audio and one with audio edited to mimic a common age-related hearing loss pattern. 

Figure 2 illustrates the pattern of hearing loss simulated for the video stimuli, which parallels 

average dB and frequency loss observed in moderate age-related impairment.  

 

 

Figure 2. Simulated Age-related Hearing Loss for HVLT-R Non-optimal Condition 

 

Procedure 

Hearing Loss (HL) Group. Most participants with hearing loss were recruited through 

the HFHS Audiology Department. Individuals with moderate-to-severe hearing loss who were 

identified as meeting the hearing and age criteria were provided information about the study 

following their hearing evaluations or hearing aid consultations. Individuals who were interested 

in participating were contact to answer additional screening questions and discuss scheduling. 

Other participants with hearing loss were recruited through community organization such as the 
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Hearing Loss Association of America and the Healthier Black Elders Participant Research Pool.  

Normal Hearing (NH) Group. Older adults with normal hearing were recruited from 

HFHS Audiology as well, including significant others of participants in the HL group. 

Participants who did not have an audiometric evaluation completed the hearing screen to confirm 

that they did not have hearing loss that is greater than 25 dB HL. Individuals with normal hearing 

were also recruited from the Healthier Black Elders Participant Research Pool and Wayne State 

University Institute of Gerontology events.  

Following informed consent procedures, vision screening and global cognitive screening 

(MMSE) were completed. Participants recruited for the NH group completed the audiometry 

screening at that time as well. All participants then completed the assessment battery.  

HVLT-R procedure. Both groups completed the HVLT-R in two presentation 

modalities (standard audiovisual and written visual); moreover, the audiovisual HVLT-R was 

presented in two auditory conditions (Natural Auditory and Crossed Auditory). Thus, 

presentation condition was a within-subject variable with three levels: Natural Auditory, Crossed 

Auditory, and Visual. 

° For the Natural Auditory condition, both groups completed the HVLT-R while wearing 

noise-canceling headphones with the volume set to a normal speaking volume (~40 dB 

HL). This condition was the optimal condition for the NH group and the non-optimal 

condition for the HL group.  

° For the Crossed Auditory condition, participants in the HL group completed the HVLT-R 

while wearing noise-canceling headphones with the volume set to ~80 dB HL (optimal 

condition). Participants in the NH group completed the HVLT-R while wearing noise-

canceling headphones using stimuli that were modified to simulate moderate-to-severe 
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hearing loss (non-optimal condition). Simulated loss mimicked an audiogram of moderate 

age-related hearing loss equivalent to 50 dB, with greater proportionate loss in high 

frequency ranges (> 1K Hz) as compared to lower frequencies (250 to 1K Hz). 

° All auditory-verbal HVLT-R administrations were done using noise-canceling headphones. 

This helped to minimize background noise and control the distance of the listener from the 

source (which varies when auditory stimuli are presented over a speaker). Among 

individuals with hearing loss, hearing aids were not used in either condition. 

To control for version effects, the HVLT-R alternate forms were counterbalanced to the 

optimal and non-optimal conditions (i.e., the simulated hearing loss video was produced for both 

versions of the HVLT-R). To control for order effects, administration of the auditory-verbal 

HVLT-R in the optimal and non-optimal conditions were counterbalanced. The Visual Condition 

employed a single version (HVLT-R Form 1) and was administered first, so that preliminary 

normative data could be gathered. The rest of the battery was completed in a standardized order. 

Administration time for the full battery (not including the hearing evaluation) was ~2 hours and 

15 minutes.  
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CHAPTER 3 RESULTS 

Preliminary Analyses 

 The data were screened for violations of univariate and multivariate assumptions as 

recommended by Tabachnick and Fidell (2007). The following raw score variables were 

winsorized by changing the outlying scores to one unit greater than the next highest/lowest score: 

HVLT Natural Recognition Discrimination for the NH group, HVLT Visual Retention for the 

HL group, and Trails B for HL group. No variable required more than one data point winsorized. 

BVMT Recognition Discriminability was significantly skewed and found to have multiple 

outliers in the HL group; therefore, nonparametric tests were used for this variable.  

The entire sample completed the full neuropsychological battery. For 2 individuals in the 

HL group, HVLT Retention scores under the Natural (non-optimal) Auditory condition could not 

be calculated because they did not recall any words during the presentation trials. One HL 

participant is missing a Digit Span Total score because one section of the test was not 

administered. There is 1 missing case in each group for eCorsi Forward, 2 missing cases in the 

HL group for eCorsi Backward, and 4 missing cases in the NH group for eCorsi Backward due to 

technical errors.  

Demographic Characteristics. Descriptive statistics for the HL and NH groups are 

summarized in Table 1. The sample of 82 adults (36 men, 46 women) ranged in age from 55 to 

80 years (M = 66.7, SD = 6.5) and ranged in education from 9 to 20 years (M = 15.2, SD = 2.6). 

Consistent with inclusion criteria, all individuals had MMSE scores of ³23 (M = 27.5, SD = 2.0). 

The sample ranged in estimated IQ based on single-word reading from 67 to 127 (M = 99.4, SD 

= 13.8). Forty-nine percent of the sample identified themselves as Caucasian, 48% identified as 

Black/African American, 2% identified as Latino/Latina, and 1% identified as other ethnicities. 
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The groups were not significantly different on age, education, MMSE, estimated IQ, gender, or 

race.  

Verbal Memory Performance  

Aim 1: Examine the effect of different presentation conditions on verbal memory 

performance. The HVLT raw score data were analyzed using 2 x 3 mixed-model analysis of 

variance (ANOVA), with group (HL, NH) as the between-subjects factor and condition (Natural 

Auditory, Crossed Auditory, Visual) as the within-subject factor. Four HVLT variables were 

examined for each condition: Total Recall, Delayed Recall, Retention, and Recognition 

Discriminability. Results of the main effects and interactions for the ANOVAs are presented in 

Table 2. In overview, all four mixed-model ANOVAs indicated significant main effects of 

condition, with large effect sizes (hp
2 =.41 to .62). All four mixed-model ANOVAs also showed 

significant group by condition interactions (p < .001 to .05) with large effect sizes for Total 

Recall, Delayed Recall, and Recognition Discriminability (hp
2 = .41 to .68) and a medium effect 

size for Retention (hp
2 = .07). Specific results for the four analyses, including the marginal 

means, are presented below. Descriptive statistics and group comparisons for verbal memory 

(HVLT) performance are summarized as a function of group membership (HL and NH) in Table 

3. The interactions for Total Recall and Delayed Recall are depicted in Figures 3 and 4, 

respectively.  

For Total Recall, the main effect of condition was significant, F(2, 79) = 50.41, hp
2 = .56, 

which reflected that participants in the groups combined scored significantly higher in the Visual 

condition (M = 24.27, SE = 0.58) than the Natural (M = 18.27, SE = 0.79) and Crossed (M = 

18.01, SE = 0.70) conditions, which did not differ significantly from each other. The main effect 

of group was not significant, F(1, 80) = 0.30, p = .587, h2 = .00. The group x condition 
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interaction was significant, F(2, 79) = 83.25, hp
2 = .68. 

For Delayed Recall, the main effect of condition was significant, F(2, 79) = 64.65, hp
2 = 

.62, which again reflected that participants in the groups combined scored significantly higher in 

the Visual condition (M = 8.82, SE = 0.30) than the Natural (M = 5.56, SE = 0.41) and Crossed 

(M = 5.66, SE = 0.36) conditions, which did not differ significantly from each other. The main 

effect of group was not significant, F(1, 80) = 0.46, p = .491, h2 = .01. The group x condition 

interaction was significant, F(2, 79) = 27.56, hp
2 = .41. 

For Retention, the same pattern was observed: The main effect of condition was 

significant, F(2, 77) = 26.66, hp
2 = .41; participants in the groups combined scored significantly 

higher in the Visual condition (M = 91.02, SE = 1.94) than the Natural (M = 66.40, SE = 4.21) 

and Crossed (M = 68.33, SE = 3.72) conditions, which did not differ significantly from each 

other. The main effect of group was not significant, F(1, 78) = 0.09, p = .768, h2 = .00. The 

group x condition interaction was significant, F(2, 77) = 3.15, hp
2 = .08. 

Recognition Discriminability also showed the same pattern of results for main effects and 

interaction. The main effect of condition was significant, F(2, 79) = 64.79, hp
2 = .62; participants 

scored significantly higher in the Visual condition (M = 11.02, SE = 0.12) than the Natural (M = 

8.3, SE = 0.32) and Crossed (M = 8.71, SE = 0.28) conditions, which did not differ significantly 

from each other. The main effect of group was not significant, F(1, 80) = 0.93, p = .338, h2 = .01. 

The group x condition interaction was significant, F(2, 79) = 39.00, hp
2 = .50. 

Post hoc analyses: between groups – independent t tests. The Natural Auditory 

condition (HVLT-R presented at normal speaking volume) was the NH group’s optimal 

presentation condition and the HL group’s non-optimal presentation condition. For the Natural 

Auditory condition, post hoc contrasts showed that the HL group performed significantly worse 
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than the NH group (p < .001) on Total Recall, Delayed Recall, and Recognition Discriminability 

with large effect sizes (d = 0.97 to 1.43). In the Crossed Auditory condition, for which the HL 

group had a boosted volume presentation (optimal) and the NH group had a hearing loss 

simulation (non-optimal), the NH group performed significantly worse than the HL group (p < 

.001) on Total Recall, Delayed Recall, and Recognition Discriminability, with similarly large 

effect sizes (d = 0.84 to 1.52). For both auditory conditions, the groups did not differ 

significantly on Retention, which showed small effect sizes (d = 0.05 to 0.38). Notably, the 

groups did not differ significantly on the Visual condition for any of the HLVT variables and 

showed small effect sizes (d = 0.05 to 0.21). 

Post hoc analyses: within groups – paired t tests. The HL group had significantly worse 

performance on the Natural (non-optimal) Auditory condition than the Crossed (optimal) 

Auditory condition (p < .001) for Total Recall, Delayed Recall, and Recognition Discriminability 

with large effect sizes (d = 0.74 to 1.17). Retention did not significantly differ between the 

Natural and Crossed Auditory conditions for the HL group. Performance on the Visual condition 

was significantly better than the Natural (non-optimal) Auditory condition (p < .001) for all 

HVLT variables with large effect sizes (d = 0.79 to 1.33). Performance on the Crossed (optimal) 

Auditory condition was closer to performance on the Visual condition compared to the Natural 

(non-optimal) Auditory condition, as Total Recall was not significantly different between the 

Crossed Auditory and Visual conditions (d = 0.18). Delayed Recall was significantly better in the 

Visual than the Crossed (optimal) Auditory condition (p < .01) with a medium effect size (d = 

0.46). Retention and Recognition Discriminability were significantly better in the Visual than the 

Crossed (optimal) Auditory condition (p < .001) with large effect sizes (d = 0.61 to 0.62).  

For the NH group, performance on the Natural (optimal) Auditory condition was 
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significantly better than the Crossed (non-optimal) Auditory condition (p < .001) for Total 

Recall, Delayed Recall, and Recognition Discriminability with large effect sizes (d = 0.96 to 

1.77). As in the HL group, Retention did not significantly differ between the Natural and Crossed 

Auditory conditions (d = 0.27). Verbal memory performance on the Natural (optimal) Auditory 

condition was significantly worse than the Visual condition (p < .05); however, effect sizes were 

in the small to medium range (d = 0.35 to 0.59), compared to the large effects observed between 

these conditions for the HL group. Performance on the Crossed (non-optimal) Auditory 

condition was significantly worse than the Visual condition (p <.001) for Total Recall, Delayed 

Recall, and Recognition Discriminability with large effect sizes (d = 1.33 to 1.67), whereas 

Retention showed a medium effect size (d = 0.69).  

Correlations between presentation conditions. Correlations among the different verbal 

memory conditions are presented in Table 4a for the HL group and Table 4b for the NH group. 

As seen in Table 4a, among the HL group, the different conditions are not consistently correlated 

with each other, despite the task being the same. The Natural (non-optimal) condition showed a 

generally weak pattern of correlation to the Crossed and Visual conditions. For example, Natural 

(non-optimal) Auditory Total Recall was weakly correlated with Crossed (optimal) Auditory 

Total Recall (r = .35) and not significantly related to Visual Total Recall (r = .19). On the other 

hand, Crossed (optimal) Auditory Total Recall showed a significant, moderate correlation with 

Visual Total Recall (r = .58). Fisher’s r-to-z comparisons testing dependent correlations from a 

single sample (Cohen & Cohen, 1983) indicated that the correlation between Natural (non-

optimal) Auditory Total Recall and Visual Total Recall (r = .19) was significantly different than 

the correlation between Crossed (optimal) Auditory Total Recall and Visual Recall (r = .58; Z = 

-2.38, p = .008). The correlations between the Visual condition with Natural and Crossed 
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conditions for Delayed Recall were not significantly different for the HL group. 

Table 4b illustrates that the different conditions were highly intercorrelated among the 

NH group. Although Total Recall was significantly correlated between each condition, the 

correlation between the Crossed (non-optimal) Auditory and Visual conditions (r = .40) was 

significantly weaker than the correlations between the Natural (optimal) Auditory and Visual 

conditions (r = .71, Z = 2.88, p = .002) and between the Crossed (non-optimal) Auditory and 

Natural (optimal) Auditory conditions (r = .64, Z = 2.36, p = .009). Consistent with the HL 

group, the correlations between the different conditions for Delayed Recall were not significantly 

different.  

 Standardized verbal memory scores. Standardized T scores adjusted for age were 

obtained for the HVLT variables from the HVLT-R Professional Manual  (Brandt & Benedict, 

2001) and are presented in Table 5. Under each group’s respective optimal auditory conditions 

(i.e., Natural Auditory for the NH group and Crossed Auditory for the HL group), age-adjusted 

mean T scores for each group were within a standard deviation of the normative sample. For 

example, under the Natural Auditory condition, the NH group had a mean Total Recall T score 

of 44.9 (SD = 12.5) and only 22.0% of the NH group score more than 1.5 Z below the normative 

mean (M = -0.51, SD = 1.25 Z). Under the Crossed Auditory condition, the HL group had a mean 

Total Recall T score of 45.3 (SD = 10.8); 14.6% of the HL group scored more than 1.5 Z below 

the normative mean (M = -0.47, SD = 1.08 Z).  

Under non-optimal auditory conditions (i.e., Crossed Auditory for the NH group and 

Natural Auditory of the HL group), age-adjusted mean T scores for each group were impaired (> 

1.5 Z below the normative mean). For example, under the Natural Auditory condition, the HL 

group had a mean Total Recall T score of 24.9 (SD = 18.6), which is -2.5 Z below the normative 
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mean. Under the Crossed Auditory condition, the NH group had a mean Total Recall T score of 

23.7 (SD = 16.8), which is -2.6 Z below the normative mean. On non-optimal Total Recall, 

68.3% of the HL group scored more than 1.5 Z below the normative mean (M = -2.51, SD = 1.86 

Z); similarly, under the non-optimal condition, 75.6% of the NH group score more than 1.5 Z 

below the normative mean (M = -2.63, SD = 1.67 Z).  

In contrast, for the Visual condition, both groups scored within a standard deviation of 

the normative sample on Total Recall (HL M = 46.8, SD = 12.2; NH M = 47.7, SD = 11.8); 

17.1% of HL and 19.5% of NH scored more than 1.5 Z below the normative mean. Results for 

Delayed Recall, Retention, and Recognition Discriminability were similar to those observed for 

Total Recall for each presentation condition.  

Other Neuropsychological Test Performance 

Aim 2. Compare Performance Between Groups on Neuropsychological Tests Across 

Other Domains. Independent t tests compared individuals with and without hearing loss across 

other cognitive domains including attention/working memory, processing speed, executive 

function, visual perception, and visual memory. Results are presented in Table 6, including p 

values, 95% confidence intervals, and effect sizes in Cohen’s d (Cohen, 1966). The groups did 

not significantly differ on any of the other neuropsychological variables and showed small effect 

sizes (d = 0.06 to 0.39).   

Aim 3. Determine the Extent to Which Other Cognitive Abilities are Related to 

Auditory- and Visual-Verbal Memory.  

 Correlations between the HVLT Natural Auditory and HVLT Visual conditions and the 

other neuropsychological variables are presented in Table 7a for the HL group and Table 7b for 

the NH group. For the HL group, the Natural (non-optimal) Auditory condition showed few 



 

 

34 

significant correlations with the other cognitive variables. Total Recall under the Natural 

condition, which is likely most affected by a non-optimal presentation format, was not 

significantly related to any of the neuropsychological variables. In contrast, Total Recall under 

the Visual condition was significantly correlated (p < .05) to most the other neuropsychological 

variables. The other HVLT variables showed a similar pattern of relation to the 

neuropsychological variables. In general, measures of attention/working memory (Digit Span, 

eCorsi) were not highly related to HVLT performance. Processing speed measures were 

significantly related to Retention in the Natural (non-optimal) Auditory condition (r = .35 and 

.37) and significantly related to most HVLT variables in the Visual condition (r = .38 to .53). 

Executive functioning (Trails B time) was not significantly related to HVLT performance under 

the Natural (non-optimal) condition, but showed significant inverse relation to Total Recall and 

Delayed Recall in the Visual condition (r = -.42 and -.27, respectively). Visual perception 

(JOLO) was not significantly related HVLT variables in either condition. Figural memory 

(BVMT-R) was not significantly correlated with HVLT performance in the Natural (non-

optimal) Auditory condition but was significantly correlated with HVLT performance in the 

Visual condition.  

 For the NH group, the Natural (optimal) Auditory condition was significantly correlated 

(p < .05) to several of the other neuropsychological variables; however, the Visual condition 

generally showed more and stronger correlations to the other neuropsychological variables than 

the Natural condition. Unlike the HL group, auditory attention/working memory (Digit Span) 

was significantly correlated with HVLT performance in both conditions (r = .36 to .63). Visual 

attention (eCorsi Forward) was significantly related to HVLT Visual performance (r = .33 to 

.47). Like the HL group, processing speed showed several significant correlations with HVLT 
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performance in both conditions. Also, consistent with the HL group, executive functioning 

(Trails B) was not significantly related to the HVLT Natural (optimal) Auditory condition, but 

was significantly related to the HVLT Visual condition (r = -.28 to -.39). Figural memory 

(BVMT) was generally significantly correlated with HVLT performance in both conditions.  

 For both groups, the relationships between age, education, and estimated IQ and verbal 

memory performance were examined. Results are reported in Table 7a for the HL group and 

Table 7b for the NH group. Age was not significantly related to HLVT performance in either 

condition for both groups. In the HL group, education and estimated IQ were significantly 

related to Delayed Recall and Retention for the Natural (non-optimal) Auditory condition (r = 

.27 to .35) and significantly related to Total Recall and Delayed Recall for the Visual condition 

(r = .39 to .48). In the NH group, education and estimated IQ were significantly related to Total 

Recall and Recognition Discriminability for the Natural (optimal) Auditory condition (r = .28 to 

.35) and significantly related to Total Recall and Delayed Recall for the Visual condition (r = .30 

to .40).  



 

 

36 

CHAPTER 4 DISCUSSION 

As hypothesized, unaided, moderate-to-severe sensorineural hearing loss negatively 

affected auditory-verbal memory (HVLT-R) performance among older adults. Furthermore, 

when older adults with normal hearing completed the HVLT-R under a simulated hearing loss 

condition, their performance was similarly impaired as the participants with hearing loss. 

Performance on a visual version of the HVLT-R was equivalent between individuals with and 

without hearing loss, as was performance on other neuropsychological tests. These findings 

suggest that poor performance on auditory-verbal memory tests among these older adults with 

hearing loss is not primarily a reflection of cognitive impairment, but rather measurement error, 

independent of verbal learning and memory. Visual versions of verbal memory tests can likely 

provide a valid alternative for individuals with impaired hearing. 

Older adults with hearing loss performed significantly worse with large effect sizes on 

the auditory HVLT-R under natural presentation conditions (normal speaking volume) compared 

to older adults with normal hearing. These results are consistent with previous findings of low 

performance on auditory cognitive tests among individuals with hearing loss (Harrison Bush et 

al., 2015; Lin, Ferrucci, et al., 2011; van Boxtel et al., 2000). Previous research by van Boxtel et 

al. (2000) demonstrated that even a mild-to-moderate hearing loss is predictive of low verbal 

memory performance, even after accounting for age, sex, educational level, and processing 

speed. They found that delayed recall in a 60-year-old with a 30-dB pure-tone hearing loss was 

statistically comparable to that of an 85-year-old with normal hearing. Considering these 

findings, it would be expected that a moderate-to-severe hearing loss would be even more 

detrimental to verbal memory performance, which is supported by the present results. 

Participants with moderate-to-severe hearing loss had severely impaired immediate recall and 
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moderately impaired delayed recall compared to age-based normative data under a natural 

auditory presentation condition.     

The present study is the first to examine the effect of simulated hearing loss on cognitive 

test performance among older adults. In the Crossed Auditory condition, older adults with 

normal hearing completed the HVLT-R under a simulated hearing loss condition, whereas older 

adults with normal hearing completed the HVLT-R with amplified volume. Under these 

conditions, adults with hearing loss outperformed individuals with normal hearing at nearly the 

magnitude of effect size observed in the natural auditory condition. This finding is consistent 

with those of Jorgensen et al. (2016), who found that cognitively intact, young adults with 

normal hearing had impaired performance on a dementia screener under simulated hearing loss 

conditions. The present findings are also consistent with other studies that examined effects of 

reduced audibility on verbal memory performance via added background noise (Murphy et al., 

2000; Pichora-Fuller, Schneider, & Daneman, 1995; Rabbitt, 1968). Conversely, Lindenberger et 

al. (2001) found that reduced hearing sensitivity via the use of noise-protector headphones did 

not impair cognitive performance among middle-aged adults with normal hearing. Both the 

present study and the study by Jorgensen et al. (2016) manipulated the auditory stimuli to reflect 

typical age-related hearing loss (i.e., greater loss at high frequencies compared to low 

frequencies), which is particularly impairing for speech comprehension. Reducing hearing 

sensitivity via noise protectors likely does not capture the full complexity of sensorineural 

hearing loss. Thus, findings from studies that use audio-engineered hearing loss simulations 

likely generalize better to real hearing loss populations compared to those that do not. Overall, 

there is strong evidence that auditory-verbal memory performance is negatively affected by 

reduced audibility, be it from simulated or real hearing loss.  



 

 

38 

The negative effect of impaired hearing on auditory cognitive tests underscores the 

importance of examining the validity and utility of alternative neuropsychological measures for 

assessment of individuals with hearing loss. A visual version of the HVLT-R was created for this 

study. The wordlist was presented as written words on a computer screen at a rate of one word 

per 2 seconds, which parallels the format of the standard auditory-verbal HVLT-R. As predicted, 

individuals with hearing loss had equivalent performance on the visual version of the HVLT-R 

compared to individuals with normal hearing. In addition, both groups performed better on the 

visual version of the HVLT-R compared to the auditory versions; this effect was particularly 

pronounced when the visual version was compared to the non-optimal auditory condition. 

Previous research has supported the use of visual multi-trial word learning tests (Brand & Jolles, 

1985), and has found better performance on visual-verbal memory tests compared to auditory-

verbal memory tests among older adults (Rabbitt, 1990).  

Additional support for the validity of the visual version of the HVLT-R comes from the 

current findings regarding within group correlations between the different presentation 

conditions. Among individuals with normal hearing, the two auditory conditions and the visual 

version were significantly related, indicating that the same construct was being measured 

between the different conditions, as would be expected, given that it is the same task (i.e., verbal 

learning). For individuals with hearing loss, however, the expected pattern of correlations 

between the conditions was not observed: The optimal and non-optimal auditory versions were 

not significantly correlated with each other and the visual version showed few correlations with 

the auditory versions. These findings suggest that using auditory-verbal memory tests, 

particularly under non-optimal hearing conditions among individuals with hearing loss, does not 

accurately measure memory functioning.  
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Regarding the relationship between verbal memory and other cognitive domains, the 

visual version of the HVLT-R showed more and stronger relationships with performance on the 

other neuropsychological tests compared to the natural auditory version. For both individuals 

with and without hearing loss, processing speed was related to verbal memory, which has been 

demonstrated previously (Brebion et al., 2013), and this relationship was especially pronounced 

in the visual condition. Of note, all the processing speed measures were visually based; therefore, 

being able to process visual information quickly is likely to benefit performance on a visual-

verbal memory test. Attention and working memory were not highly related to verbal memory in 

either presentation condition among individuals with hearing loss, which was inconsistent with 

predictions and previous research (Vaughan et al., 2008; Waters & Caplan, 2001). On the other 

hand, among individuals with normal hearing, auditory attention was significantly associated 

with verbal memory performance in both the visual and natural auditory condition, and visual 

attention was related to visual-verbal memory performance. Figural memory was associated with 

verbal memory performance in both conditions for individuals with normal hearing, but only 

related to visual-verbal memory performance among individuals with hearing loss. Overall, the 

natural auditory version of the HVLT-R did not show expected associations with other 

neuropsychological indices among individuals with hearing loss, whereas the visual version did, 

again supporting the use of a visual-verbal memory test over an auditory-verbal memory test.  

The groups were equivalent on age, years of education, gender proportions, estimated IQ, 

and MMSE performance. For both individuals with and without hearing loss, age was not related 

to HVLT-R performance, which is consistent with some previous research (Kuslansky et al., 

2004), but not others (Vanderploeg et al., 2000). The relatively restricted age range (55-80 

years), which included only older adults, likely constrained the magnitude of the relationship 
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between age and verbal memory performance. Among individuals with normal hearing, 

education and estimated IQ were associated with immediate recall on the HVLT-R for both 

auditory and visual presentation conditions. Individuals with hearing loss showed similar 

patterns for the associations between education and estimated IQ with immediate recall for the 

visual condition, but not the auditory condition. These findings further support that the auditory-

verbal memory test under non-optimal auditory conditions for individuals with hearing loss may 

not be validly measuring the target construct of memory.   

Although there are currently few visual-verbal memory tests being used clinically, the 

Word List Memory test from the Consortium to Establish a Registry for Alzheimer’s Disease 

(CERAD) – Neuropsychological Assessment Battery (NAB) is an exception. For the Word List 

Memory test, 10 unrelated words are presented on printed cards and examinees are instructed to 

read each word aloud as it is presented. Like the HVLT-R, the test includes immediate recall 

after each of the three learning trials, delayed free recall after 15 minutes, and a recognition trial 

for which 10 target and 10 distractor words are visually presented (Welsh et al., 1994). The 

CERAD battery has been found to be psychometrically sound, and performance on the word list 

recall distinguishes patients with Alzheimer’s disease from normal controls (Morris, Mohs, 

Rogers, Fillenbaum, & Heyman, 1988; Welsh, Butters, Hughes, Mohs, & Heyman, 1992).  

Despite its demonstrated utility, the CERAD is used much less frequently than auditory-

verbal memory tests. A survey of assessment practices among clinical neuropsychologists 

showed that the Wechsler Memory Scale and the California Verbal Learning Test (CVLT) are 

the most frequently used memory instruments, both of which involve auditory presentation of 

verbal stimuli (Rabin, Barr, & Burton, 2005). The CERAD was ranked 35 out the top 40 

neuropsychological assessment instruments, demonstrating that use of auditory-verbal memory 
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tests largely prevails in clinical practice. One issue with the CERAD Word List Memory test is 

that is less challenging than the CVLT and, therefore, is not as sensitive to detecting mild 

declines in memory (Beck, Gagneux-Zurbriggen, Berres, Taylor, & Monsch, 2012).  For the 

purposes of this study, the HVLT-R was chosen because three alternate forms were needed for 

the three different presentation conditions (the CVLT only has standard form and one alternate 

form). Future research aims to examine the validity and utility of a visual version of the CVLT.   

Contrary to hypotheses, participants with hearing loss did not perform worse on the 

auditory attention/working memory measure (WAIS-IV Digit Span) compared to participants 

with normal hearing. Further consideration of this task, however, indicates that performance on 

Digit Span may not be as affected by hearing loss compared to a verbal memory test. The set of 

stimuli is limited to the numbers zero through nine, which allows for increased ease in 

comprehending what is being said, and the numbers used do not sound like each other, which 

reduces the chance of mishearing information. Visual input from lipreading this restricted set of 

words also facilitates accuracy (Feld & Sommers, 2009). In addition, the auditory 

attention/working memory task was presented by an examiner rather than video/audio recording 

presentation; therefore, volume of presentation may have varied and/or tended to be louder than 

the verbal memory presentations. Participants who had hearing aids could use them during this 

task, whereas they did not wear them during any of the verbal memory administrations.  

The current study found intact performance on measures of cognitive domains other than 

verbal memory among individuals with hearing loss. Previous research on this topic has yielded 

mixed findings. Several studies have shown that hearing loss is predictive of poor performance 

on measures of global cognition, working memory, processing speed, and executive function 

(Dupuis et al., 2015; Gallacher et al., 2012; Harrison Bush et al., 2015; Lin, Ferrucci, et al., 
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2011), whereas other do not find a relationship between hearing loss and these cognitive domains 

(Anstey et al., 2001b; Bucks et al., 2016; Gennis et al., 1991; Hong, Mitchell, Burlutsky, Liew, 

& Wang, 2016; van Boxtel et al., 2000). One reason for the discrepancy between studies on this 

topic is differences in inclusion of individuals with or without dementia and variability in 

defining cognitive impairment. Also, some studies have statistically significant findings, but 

have large sample sizes and small effect sizes; it is unclear whether these differences are 

clinically significant. Importantly, these studies did not systematically account for disadvantage 

and disruption of test performance due to use of auditory stimuli during instruction and/or 

administration of test items. Findings from the present study indicate that poor performance by 

adults with hearing loss on tests of other cognitive domains may reflect, at least in part, 

measurement error associated with administration modality versus valid reflection of impairment 

in those domains. Overall, the present study provides evidence that cognitively intact older adults 

with hearing loss have equivalent performance on neuropsychological tests compared to aged-

peers with normal hearing, apart from tests that have a high auditory demand.  

Of the four verbal memory indexes examined (Total Learning, Delayed Recall, 

Retention, and Recognition Discriminability), Retention was less affected by non-optimal 

auditory conditions compared to the other memory indexes. Total Learning is detrimentally 

affected by reduced audibility because performance on it is dependent on being able to hear the 

stimuli accurately. Limited encoding of information during learning trials constrains ability to 

recall the information later (i.e., Delayed Recall). The recognition memory stimuli were also 

presented under non-optimal auditory conditions and were similarly vulnerable to the effects of 

reduced audibility as Total Learning performance. Additionally, foil words that are phonemically 

similar to target words may have resulted in increased false positive errors, which reduces 
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recognition discriminability. The finding that Retention was relatively better compared to the 

other variables indicates that individuals with hearing loss were generally retaining the 

information that was encoded during the learning trials, even if it was a small amount. They did 

not demonstrate rapid forgetting of information that is associated with medial-temporal lobe 

dysfunction (Scheltens & Korf, 2000). This finding further supports that the link between 

hearing loss and low neuropsychological performance is because of difficulty hearing stimuli 

rather than true cognitive impairment.   

Findings from the present study support the resource allocation/degradation hypotheses 

(Schneider & Pichora-Fuller, 2000; Tun et al., 2009; Valentijn et al., 2005). In other words, poor 

performance on cognitive tests among these adults with moderate-to-severe hearing loss appears 

primarily due to difficulty with auditory stimuli and increased allocation of cognitive resources 

to listening rather than true cognitive impairment. Only auditory-verbal memory performance 

was significantly worse among individuals with hearing loss compared to individuals with 

normal hearing. The groups were equivalent on measures of attention, working memory, 

processing speed, executive function, visual perception, and figural memory. The common cause 

hypothesis predicts that common, underlying factors contribute to both reduced hearing 

sensitivity and cognitive functioning (Lindenberger & Baltes, 1994); it would be expected that 

hearing loss and cognitive decline would occur simultaneously, which is inconsistent with 

current findings. The deprivation hypothesis states that reduced audibility over time results in 

structural and functional changes in the brain (Lin et al., 2013; Lindenberger & Baltes, 1994). It 

is unclear how long individuals need to be exposed to reduced sensory input for it to cause 

cognitive changes, as proposed by the deprivation hypothesis. Although older adults with hearing 

loss were cognitively intact at the time of the current study, it may be that they are more likely to 
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develop dementia compared to individuals with normal hearing. Longitudinal studies are needed 

to address whether hearing loss is related to increased risk of cognitive decline.  

Limitations and Future Research 

 A limitation of this study was the specific nature of the sample: participants were older 

adults with moderate-to-severe sensorineural hearing loss, which limits generalizability to other 

populations. Additional research focusing on mild hearing loss is especially important, as it is the 

most prevalent type of hearing loss (Timmer, Hickson, & Launer, 2015). Furthermore, 

individuals who are deaf or have profound hearing loss were not included in the present study, as 

they likely would not have been able to hear the non-optimal auditory condition well enough to 

engage meaningfully in the tasks. Limited research regarding cognitive assessment of individuals 

who are deaf or have profound hearing loss is available, and studies have generally focused on 

administering tests in sign language (Denmark et al., 2016). Research on the psychometric 

properties of visual-verbal memory assessment among this population is needed.   

 The prevalence of hearing loss is higher in men compared to women, and men tend to 

have greater high frequency loss (2k Hz and above) compared to women (Moscicki, Elkins, 

Baum, & McNamara, 1985). In addition, women typically perform better than men on verbal 

memory tests, and this advantage in verbal memory might represent a form of cognitive reserve 

(Sundermann et al., 2016). It is possible that the combination of worse hearing loss and worse 

verbal memory test performance in men compared to women may put men at a relative 

disadvantage on auditory-verbal memory tests.  The sample size of this study limited statistical 

examination of groups separated by demographic characteristics; however, it should be examined 

in future studies. 

  This study examined a particular auditory-verbal memory test, the HVLT-R. It is 
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expected that results would generalize well to other multi-trial word list memory tasks such as 

the CVLT, but it is unclear if hearing loss would similarly affect performance on structured 

auditory-verbal memory tests such as Logical Memory from the Wechsler Memory Scale. 

Logical Memory involves auditory presentation of short stories, which provides context that can 

aid both memory and speech comprehension (Swinney & Love, 2002). Structured verbal 

memory tests may be less susceptible to the negative effects of hearing loss compared to 

unstructured (word list) memory tasks; future research should compare these types of memory 

tests among older adults with hearing loss. Visual versions of structured verbal memory tests 

should also be explored.  

 This study differed from other studies of auditory comprehension and memory because it 

presented videos of an examiner administering the verbal memory test rather than only audio 

recordings. This difference may limit comparisons to previous research; however, it likely 

increases external validity and generalizability because it provided visual information from 

lipreading cues that is normally available in a real assessment. Future research should compare 

audio and video presentations of verbal memory assessments under non-optimal auditory 

conditions to determine whether lipreading cues benefit performance on these tests.  

 A limitation of this study was the lack of information regarding hearing aid use history. 

Hearing aids vary in quality, and length of hearing aid use differed between participants; 

therefore, hearing aids were not used during auditory-verbal memory testing to control for those 

factors. However, the effect of hearing aid use on auditory-verbal memory performance is a 

clinically important question and is a target for future research. History of hearing aid use is 

particularly important to consider for the deprivation hypothesis, as it would predict that 

mitigating some of the sensory deprivation due to hearing loss via hearing aids could reduce the 



 

 

46 

likelihood of cognitive changes. Results from previous research about the effect of hearing aid 

use on cognition is mixed (Amieva et al., 2015; van Hooren et al., 2005). The effect of cochlear 

implants on cognition is also an area that warrants additional research (Castiglione et al., 2016).  

 One issue that this study encountered was that several older adults who reported that they 

had normal hearing and were recruited for the normal hearing group had some degree of hearing 

loss upon completion of a hearing screen. Hearing loss is often unrecognized because of its 

gradual onset. This issue reinforces the importance of clinicians and researchers not relying on 

patients’ report of hearing status and instead having information from a formal audiological 

exam. To increase study feasibility, most participants with normal hearing were evaluated with a 

portable audiometer hearing screen rather than a full audiological evaluation. Information about 

the specific hearing thresholds of the normal hearing group would have been helpful to 

characterize the sample comprehensively. In addition, previous research has found a relationship 

between central auditory processing deficits and incidence of cognitive impairment and 

Alzheimer’s disease (Gates, Anderson, Feeney, McCurry, & Larson, 2008). Only peripheral 

hearing loss was assessed in the current study.  

 This study found support for the resource allocation/degradation hypotheses, rather than 

the common cause/deprivation hypotheses. However, to address the multiple hypotheses 

regarding the link between hearing loss comprehensively, future research should utilize 

longitudinal designs starting prior to cognitive decline and hearing loss. Many previous 

longitudinal studies were lacking in measurement of hearing ability and/or cognition (i.e., relying 

on self-report of hearing loss or cognitive impairment, using only screening measures to assess 

for cognitive impairment). Monitoring health factors that can be related to both increased 

prevalence of hearing loss and cognitive dysfunction, as well as audiological rehabilitation 
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history, will also be important. Future studies that incorporate neuroimaging to examine potential 

structural and functional brain changes related to hearing loss would also be valuable. 

Intervention studies that track whether improvement on neuropsychological test performance 

occurs after fitting older adults with hearing aids would be helpful for evaluating the explanatory 

hypotheses as well.  

Conclusions and Clinical Implications 

 Increased risk of overdiagnosing memory problems among individuals with hearing loss 

should be considered by clinicians and researchers. This study demonstrated that cognitively 

intact older adults with hearing loss appeared impaired on an auditory-verbal word list memory 

test under typical administration conditions. Auditory-verbal memory tests are among the most 

commonly used neuropsychological measures and have extensive research support; however, 

visual versions of verbal memory tests are promising alternatives for assessment of older adults 

with hearing loss.  

 As seen in prior research and the current study, hearing loss often goes unrecognized and 

relying on patients’ self-report of hearing ability is not sufficient. Clinical neuropsychologists 

should ensure that older adult patients complete an audiological exam prior to cognitive testing. 

As part of neuropsychological assessment is providing feedback and recommendations, 

neuropsychologists are well positioned to provide psychoeducation to older patients about 

hearing loss, the importance getting hearing screenings, and the benefits of hearing aids. They 

could also be involved in educating the public and family members who help care for older 

adults with hearing loss about these issues. Facilitating the early detection and treatment of 

hearing loss could help avoid potential long-term effects sensory deprivation and social isolation 

associated with hearing loss. Audiologists could also intervene by communicating with other 
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medical providers if they see a patient for whom hearing loss might be contributing to 

misdiagnosis of dementia.  

If auditory-verbal memory tests are used with individuals with hearing loss, they should 

be interpreted with caution, and follow-up tests that limit auditory demand should be added to 

the evaluation battery. Efforts to improve audibility during cognitive testing should be taken. 

Older adults with hearing loss performed better on the auditory-verbal memory test with 

amplified volume compared to when it was presented at a normal speaking volume. Although the 

effect of hearing aid use was not a focus of this study, hearing aids improve speech 

comprehension. It is recommended that patients wear their hearing aids during testing to 

optimize audibility, and clinicians should encourage patients without hearing aids to receive a 

hearing aid consultation if warranted. It is important to consider that even if hearing aids are 

obtained, they do not fully correct hearing. Additional research is needed regarding the effect of 

hearing aids on cognition. Background noise (i.e., noise from the hallway or from fans/HVAC 

systems) should be addressed when doing cognitive testing, and examiners should face the 

patient when speaking and enunciate clearly. Use of visual-verbal memory tests would help to 

reduce the influence of these factors that could invalidate testing, and create a more enjoyable 

testing experience for examiners and patients with hearing loss compared to when auditory 

stimuli are used. Providing written instructions for tests would also likely be beneficial, as 

individuals with hearing loss could miss important elements of instructions that are provided 

auditorily. Reading ability and vision need to be considered when using visual-verbal memory 

tests.  

 Understanding the relationship between hearing loss and cognition is a highly pressing 

issue. Replication of current findings is needed. Future research should aim to conduct 
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longitudinal studies starting prior to onset of hearing loss and cognitive decline. Rigorous 

measurement of hearing loss and cognition, as well as factors that can be related to both (e.g., 

smoking and diabetes), will be crucial. Increased interdisciplinary collaboration will facilitate 

these goals and advance knowledge that has direct clinical implications. As auditory-verbal 

memory assessments are the “gold standard” format for assessment verbal memory, research on 

understanding their limitations is particularly important to initiate changes toward developing 

and embracing alternate measures. There is increasing movement toward computerized 

administration of neuropsychological tests, and use of a computerized visual-verbal memory test 

is highly compatible with this trend. This study lends support to using visual-verbal memory 

tests among individuals with hearing loss. It highlights the importance of considering individual 

characteristics of patients that may affect the validity of testing and continuing to refine and 

develop measures to provide reliable and valid assessment.  
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APPENDIX A 

 

Table 1. Descriptive Statistics for Hearing Loss (HL) and Normal Hearing (NH) Groups. 

 HL 
(n = 41) 

NH 
(n = 41) 

Total 
(N = 82) 

   

Variable M (SD) M (SD) M (SD) Range p1 Cohen’s 
d 

Age (years) 68.0 (6.3) 65.4 (6.6) 66.7 (6.5) 55 – 80 .063 0.4 

Education (years) 15.3 (2.6) 15.2 (2.7) 15.2 (2.6) 9 – 20 .771 0.0 

MMSE 27.8 (2.0) 27.4 (1.9) 27.6 (2.0) 23 – 30 .431 0.2 

Estimated IQ (TOPF) 100.0 (13.8) 98.8 (13.9)    99.4 (13.8) 67 – 127 .715 0.1 

Percent men 48.8 39.0 43.9  .373 0.2 
Note. MMSE = Mini Mental State Examination; TOPF = Test of Premorbid Functioning.  
1. Independent t (80), except Percent men, χ2(1).  
 
 



 

 

51 

Table 2. Mixed-model Analyses of Variance for HVLT-R Indices: Groups (Hearing Loss, Normal 
Hearing) by Condition (Natural, Crossed, Visual). 

Variable F df p η2 

     
Total Recall     

     Hearing Group 0.30 1, 80 .587 .00 

     Condition1  50.41 2, 79 < .001 .56 

     Group x Condition 83.25 2, 79 < .001 .68 

Delayed Recall     

     Hearing Group 0.46 1, 80  .491 .01 

     Condition1 64.65 2, 79 < .001 .62 

     Group x Condition 27.56 2, 79 < .001 .41 

Retention (%)     

     Hearing Group 0.09 1, 78  .768 .00 

     Condition1  26.66 2, 77 < .001 .41 

     Group x Condition 3.15 2, 77 .048 .08 

Recognition Discriminability     

     Hearing Group 0.93 1, 80  .338 .01 

     Condition1  64.79 2, 79 < .001 .62 

     Group x Condition 39.00 2, 79 < .001 .50 

 
Note. Natural Condition = standard HVLT-R auditory administration. Crossed Conditions = 
simulated age-related hearing loss audio (normal hearing group); volume-boosted audio (hearing 
loss group). Visual Condition = visual presentation of HVLT-R words. 
1. Main effect of condition, post hoc marginal means: Visual > (Natural = Crossed). 
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Table 3. Descriptive Statistics and Group Comparisons of HVLT-R Raw Scores for HL (n = 41) 
and NH (n = 41) Groups. 

 HL NH    

Variable M SD  M SD p d 
95% CI  

of the difference 
HVLT Natural          

Total Recall 13.1 (8.6)  23.4 (5.4) <.001 1.43 [-13.45, -7.13] 

Delayed Recall 3.7 (3.8)  7.3 (3.6) <.001 0.97 [-3.66, 0.81] 

Retention (%) 59.4 (42.6)  73.4 (30.4) .091 0.38 [-30.48, 2.31] 

Recognition Dis. 6.4 (3.6)  10.2 (2.0) <.001 1.30 [-5.09, -2.52] 

HVLT Crossed         

Total Recall 22.8 (5.0)  13.2 (7.4) <.001 1.52 [6.86, 12.41] 

Delayed Recall 7.0 (2.9)  4.3 (3.5) <.001 0.84 [2.78, 0.71] 

Retention (%) 72.5 (23.8)  63.7 (40.9) .237 0.26 [-5.90, 23.50] 

Recognition Dis. 10.0 (1.8)  7.4 (3.0) <.001 1.05 [1.53, 3.74] 

HVLT Visual         

Total Recall 23.7 (5.5)  24.8 (5.0) .339 0.21 [-3.45, 1.20] 

Delayed Recall 8.7 (2.8)  9.0 (2.6) .656 0.11 [-0.27, 0.60] 

Retention (%) 91.5 (17.7)  90.7 (16.5) .832 0.05 [-6.72, 8.33] 

Recognition Dis. 11.1 (0.8)  11.0 (1.2) .528 0.10 [-0.31, 0.61] 
Note. HVLT = Hopkins Verbal Learning Test; Recognition Dis. = Recognition Discriminability; 
d = Cohen’s d. Natural Condition = standard HVLT-R auditory administration. Crossed 
Conditions = simulated age-related hearing loss audio (normal hearing group); volume-boosted 
audio (hearing loss group). Visual Condition = visual presentation of HVLT-R words. 
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Table 5. Descriptive Statistics and Group Comparisons of Age-Adjusted HVLT-R T Scores for 
HL (n = 41) and NH (n = 41) Groups. 

 HL NH    

Variable M SD  M SD p d 
95% CI  

of the difference 
HVLT Natural          

Total Recall    24.9 (18.6)  44.9 (12.5) <.001 1.26 [-27.00, -13.05] 

Delayed Recall 27.3 (17.9)  41.1 (17.5) .001 0.78 [-21.60, -6.05] 

Retention  33.2 (25.3)  38.9 (19.3) .262 0.25 [-15.80, 4.36] 

Recognition Dis. 20.9 (24.2)  45.4 (14.7) <.001 1.22 [-33.28, -15.65] 

HVLT Crossed         

Total Recall 45.3 (10.8)  23.7 (16.8) <.001 1.53 [15.42, 27.81] 

Delayed Recall 41.1 (14.6)  27.8 (16.7) <.001 0.85 [6.45, 20.23] 

Retention  40.1 (14.3)  36.3 (21.1) .345 0.21 [-4.13, 11.69] 

Recognition Dis. 45.6 (11.1)  25.3 (22.5) <.001 1.11 [12.45, 28.04] 

HVLT Visual         

Total Recall 46.8 (12.2)  47.7 (11.8) .741 0.07 [-6.15, 4.39] 

Delayed Recall 49.1 (11.8)  48.7 (12.1) .890 0.03 [-4.90, 6.63] 

Retention 51.6 (10.8)  50.6 (10.6) .689 0.09 [-3.76, 5.67] 

Recognition Dis. 53.0 (5.1)  50.9 (9.5) .217 0.28 [-1.27, 5.45] 
Note. HVLT = Hopkins Verbal Learning Test; Recognition Dis. = Recognition Discriminability; 
d = Cohen’s d. Natural Condition = standard HVLT-R auditory administration. Crossed 
Conditions = simulated age-related hearing loss audio (normal hearing group); volume-boosted 
audio (hearing loss group). Visual Condition = visual presentation of HVLT-R words. 
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Table 6. Descriptive Statistics and Group Comparisons of Other Neuropsychological Test 
Performance for HL (n = 41) and NH (n = 41) Groups.1 

 HL NH    

Variable M SD  M SD p d 
95% CI  

of the difference 
Digit Span Total 25.8 (5.0)  24.9 (5.5) .470 0.17 [-1.48, 3.17] 

eCorsi         

Forward Span 4.9 (1.5)  5.3 (0.9) .161 0.32 [-0.96, 0.16] 

Backward Span 4.0 (1.6)  4.1 (1.2) .683 0.07 [-0.76, 0.50] 

Symbol Search 24.1 (6.2)  26.8 (7.5) .081 0.39 [-5.71, 0.34] 

Coding 53.5 (15.7)  57.4 (15.3) .261 0.25 [-10.70, 2.94] 

Trails A 37.2 (12.8)  34.1 (9.5) .213 0.28 [-1.83, 8.08] 

Trails B 103.3 (60.8)  100.3 (38.7) .796 0.06 [-19.49, 25.34] 

JOLO 23.9 (5.0)  22.0 (6.1) .128 0.34 [-0.56, 4.36] 

BVMT         

Total Recall 18.6 (6.3)  20.0 (7.8) .370 0.20 [-4.54, 1.71] 

Delayed Recall 8.0 (2.4)  8.2 (3.0) .690 0.07 [-1.46, 0.97] 

Retention (%) 95.1 (15.4)  96.4 (15.7) .708 0.08 [-8.13, 5.54] 

Recognition Dis. 5.6 (1.0)  5.4 (1.1) .363a 0.19  
Note. JOLO = Judgment of Line Orientation; BVMT = Brief Visual Memory Test; Recognition 
Dis. = Recognition Discriminability; d = Cohen’s d; a = Mann-Whitney test used.   
1. Sample size for the t tests range from 78 (eCorsi) to 82 due to missing data. 
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APPENDIX B 

Figure 3. Group by Condition Interaction for HVLT-R Total Recall.  

 

Figure 4. Group by Condition Interaction for HVLT-R Delayed Recall.  



 

 
  

60 

REFERENCES 

Allen, N. H., Burns, A., Newton, V., Hickson, F., Ramsden, R., Rogers, J., . . . Morris, J. (2003). 

The effects of improving hearing in dementia. Age and Ageing, 32(2), 189-193.  

Amieva, H., Ouvrard, C., Giulioli, C., Meillon, C., Rullier, L., & Dartigues, J. F. (2015). Self-

Reported Hearing Loss, Hearing Aids, and Cognitive Decline in Elderly Adults: A 25-

Year Study. Journal of the American Geriatrics Society, 63(10), 2099-2104. doi: 

10.1111/jgs.13649 

Anstey, K. J., Luszcz, M. A., & Sanchez, L. (2001a). A reevaluation of the common factor 

theory of shared variance among age, sensory function, and cognitive function in older 

adults. Journals of Gerontology. Series B: Psychological Sciences and Social Sciences, 

56(1), P3-11.  

Anstey, K. J., Luszcz, M. A., & Sanchez, L. (2001b). Two-year decline in vision but not hearing 

is associated with memory decline in very old adults in a population-based sample. 

Gerontology, 47(5), 289-293. doi: 52814 

Baldwin, C. L., & Ash, I. K. (2011). Impact of sensory acuity on auditory working memory span 

in young and older adults. Psychology and Aging, 26(1), 85-91. doi: 10.1037/a0020360 

Barnett, M., Hixon, B., Okwiri, N., Irungu, C., Ayugi, J., Thompson, R., . . . Bush, M. L. (2016). 

Factors involved in access and utilization of adult hearing healthcare: A systematic 

review. Laryngoscope. doi: 10.1002/lary.26234 

Beck, I. R., Gagneux-Zurbriggen, A., Berres, M., Taylor, K. I., & Monsch, A. U. (2012). 

Comparison of verbal episodic memory measures: consortium to establish a registry for 

Alzheimer's disease--Neuropsychological Assessment Battery (CERAD-NAB) versus 



 

 
  

61 

California Verbal Learning Test (CVLT). Archives of Clinical Neuropsychology, 27(5), 

510-519. doi: 10.1093/arclin/acs056 

Benedict, R. H. (1997). Brief Visuospatial Memory Test-Revised. Odessa, FL: Psychological 

Assessment Resources. 

Benton, A. L., Hamsher, K., Varney, N. R., & Spreen, O. (1983). Contributions to 

Neuropsychological Assessment. New York: Oxford University Press. 

Brand, N., & Jolles, J. (1985). Learning and retrieval rate of words presented auditorily and 

visually. Journal of General Psychology, 112(2), 201-210. doi: 

10.1080/00221309.1985.9711004 

Brandt, J., & Benedict, R. H. B. (2001). Hopkins Verbal Learning Test-Revised. Professional 

manual. Lutz, FL: Psychological Assessment Resources. 

Brebion, G., Villalta-Gil, V., Autonell, J., Cervilla, J., Dolz, M., Foix, A., . . . Ochoa, S. (2013). 

Cognitive correlates of verbal memory and verbal fluency in schizophrenia, and 

differential effects of various clinical symptoms between male and female patients. 

Schizophrenia Research, 147(1), 81-85. doi: 10.1016/j.schres.2013.03.014 

Brunetti, R., Del Gatto, C., & Delogu, F. (2014). eCorsi: implementation and testing of the Corsi 

block-tapping task for digital tablets. Frontiers in Psychology, 5, 939. doi: 

10.3389/fpsyg.2014.00939 

Bucks, R. S., Dunlop, P. D., Taljaard, D. S., Brennan-Jones, C. G., Hunter, M., Wesnes, K., & 

Eikelboom, R. H. (2016). Hearing loss and cognition in the Busselton Baby Boomer 

cohort: An epidemiological study. Laryngoscope, 126(10), 2367-2375. doi: 

10.1002/lary.25896 



 

 
  

62 

Carabellese, C., Appollonio, I., Rozzini, R., Bianchetti, A., Frisoni, G. B., Frattola, L., & 

Trabucchi, M. (1993). Sensory impairment and quality of life in a community elderly 

population. Journal of the American Geriatrics Society, 41(4), 401-407.  

Cardin, V. (2016). Effects of Aging and Adult-Onset Hearing Loss on Cortical Auditory 

Regions. Frontiers in Neuroscience, 10, 199. doi: 10.3389/fnins.2016.00199 

Castiglione, A., Benatti, A., Velardita, C., Favaro, D., Padoan, E., Severi, D., . . . Martini, A. 

(2016). Aging, Cognitive Decline and Hearing Loss: Effects of Auditory Rehabilitation 

and Training with Hearing Aids and Cochlear Implants on Cognitive Function and 

Depression among Older Adults. Audiology and Neuro-Otology, 21 Suppl 1, 21-28. doi: 

10.1159/000448350 

Chien, W., & Lin, F. R. (2012). Prevalence of hearing aid use among older adults in the United 

States. Archives of Internal Medicine, 172(3), 292-293. doi: 

10.1001/archinternmed.2011.1408 

Cliff, M., Joyce, D. W., Lamar, M., Dannhauser, T., Tracy, D. K., & Shergill, S. S. (2013). 

Aging effects on functional auditory and visual processing using fMRI with variable 

sensory loading. Cortex, 49(5), 1304-1313. doi: 10.1016/j.cortex.2012.04.003 

Cohen, J., & Cohen, P. (1983). Applied Multiple Regression/Correlation Analysis for the 

Behavioral Sciences. Hillsdale, New York: Lawrence Erlbaum. 

Collins, J. G. (1997). Prevalence of selected chronic conditions: United States, 1990-1992. Vital 

and Health Statistics. Series 10: Data from the National Health Survey(194), 1-89.  

Dawes, P., Emsley, R., Cruickshanks, K. J., Moore, D. R., Fortnum, H., Edmondson-Jones, M., . 

. . Munro, K. J. (2015). Hearing loss and cognition: the role of hearing AIDS, social 

isolation and depression. PloS One, 10(3), e0119616. doi: 10.1371/journal.pone.0119616 



 

 
  

63 

Denmark, T., Marshall, J., Mummery, C., Roy, P., Woll, B., & Atkinson, J. (2016). Detecting 

Memory Impairment in Deaf People: A New Test of Verbal Learning and Memory in 

British Sign Language. Archives of Clinical Neuropsychology. doi: 

10.1093/arclin/acw032 

Dupuis, K., Pichora-Fuller, M. K., Chasteen, A. L., Marchuk, V., Singh, G., & Smith, S. L. 

(2014). Effects of hearing and vision impairments on the Montreal Cognitive 

Assessment. Neuropsychology, Development, and Cognition. Section B: Aging, 

Neuropsychology and Cognition, 1-25. doi: 10.1080/13825585.2014.968084 

Dupuis, K., Pichora-Fuller, M. K., Chasteen, A. L., Marchuk, V., Singh, G., & Smith, S. L. 

(2015). Effects of hearing and vision impairments on the Montreal Cognitive 

Assessment. Neuropsychology, Development, and Cognition. Section B: Aging, 

Neuropsychology and Cognition, 22(4), 413-437. doi: 10.1080/13825585.2014.968084 

Feld, J. E., & Sommers, M. S. (2009). Lipreading, processing speed, and working memory in 

younger and older adults. Journal of Speech, Language, and Hearing Research, 52(6), 

1555-1565. doi: 10.1044/1092-4388(2009/08-0137) 

Ferri, C. P., Sousa, R., Albanese, E., Ribeiro, W. S., & Honyashiki, M. (2009). World Alzheimer 

Report In M. Prince & J. Jackson (Eds.), Alzheimer's Disease International London. 

Fetoni, A. R., De Bartolo, P., Eramo, S. L., Rolesi, R., Paciello, F., Bergamini, C., . . . Troiani, 

D. (2013). Noise-induced hearing loss (NIHL) as a target of oxidative stress-mediated 

damage: cochlear and cortical responses after an increase in antioxidant defense. Journal 

of Neuroscience, 33(9), 4011-4023. doi: 10.1523/JNEUROSCI.2282-12.2013 



 

 
  

64 

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: A practical method 

for grading cognitive state of patients for the clinician. Journal of Psychiatric Research, 

12(3), 189-198. doi: 10.1016/0022-3956(75)90026-6 

Fortunato, S., Forli, F., Guglielmi, V., De Corso, E., Paludetti, G., Berrettini, S., & Fetoni, A. R. 

(2016). A review of new insights on the association between hearing loss and cognitive 

decline in ageing. Acta Otorhinolaryngologica Italica, 36(3), 155-166. doi: 

10.14639/0392-100X-993 

Frisina, R. D. (2009). Age-related hearing loss: ear and brain mechanisms. Annals of the New 

York Academy of Sciences, 1170, 708-717. doi: 10.1111/j.1749-6632.2009.03931.x 

Gallacher, J. (2004). Hearing, cognitive impairment and aging: a critical review. Reviews in 

Clinical Gerontology, 14(03), 199-209. doi: 10.1017/S095925980500153X 

Gallacher, J., Ilubaera, V., Ben-Shlomo, Y., Bayer, A., Fish, M., Babisch, W., & Elwood, P. 

(2012). Auditory threshold, phonologic demand, and incident dementia. Neurology, 

79(15), 1583-1590. doi: 10.1212/WNL.0b013e31826e263d 

Gates, G. A., Anderson, M. L., Feeney, M. P., McCurry, S. M., & Larson, E. B. (2008). Central 

auditory dysfunction in older persons with memory impairment or Alzheimer dementia. 

Archives of Otolaryngology - Head and Neck Surgery, 134(7), 771-777. doi: 

10.1001/archotol.134.7.771 

Gates, G. A., Cobb, J. L., Linn, R. T., Rees, T., Wolf, P. A., & D'Agostino, R. B. (1996). Central 

auditory dysfunction, cognitive dysfunction, and dementia in older people. Archives of 

Otolaryngology - Head and Neck Surgery, 122(2), 161-167.  

Gates, G. A., Gibbons, L. E., McCurry, S. M., Crane, P. K., Feeney, M. P., & Larson, E. B. 

(2010). Executive dysfunction and presbycusis in older persons with and without memory 



 

 
  

65 

loss and dementia. Cognitive and Behavioral Neurology, 23(4), 218-223. doi: 

10.1097/WNN.0b013e3181d748d7 

Gennis, V., Garry, P. J., Haaland, K. Y., Yeo, R. A., & Goodwin, J. S. (1991). Hearing and 

cognition in the elderly. New findings and a review of the literature. Archives of Internal 

Medicine, 151(11), 2259-2264.  

Gold, M., Lightfoot, L. A., & Hnath-Chisolm, T. (1996). Hearing loss in a memory disorders 

clinic. A specially vulnerable population. Archives of Neurology, 53(9), 922-928.  

Gordon-Salant, S. (2005). Hearing loss and aging: new research findings and clinical 

implications. Journal of Rehabilitation Research and Development, 42(4 Suppl 2), 9-24.  

Granick, S., Kleban, M. H., & Weiss, A. D. (1976). Relationships between hearing loss and 

cognition in normally hearing aged persons. Journal of Gerontology, 31(4), 434-440.  

Green, R., Melo, B., Christensen, B., Ngo, L. A., Monette, G., & Bradbury, C. (2008). 

Measuring premorbid IQ in traumatic brain injury: An examination of the validity of the 

Wechsler Test of Adult Reading (WTAR). Journal of Clinical and Experimental 

Neuropsychology, 30(2), 163-172. doi: 10.1080/13803390701300524 

Gurgel, R. K., Ward, P. D., Schwartz, S., Norton, M. C., Foster, N. L., & Tschanz, J. T. (2014). 

Relationship of hearing loss and dementia: a prospective, population-based study. 

Otology & Neurotology, 35(5), 775-781. doi: 10.1097/MAO.0000000000000313 

Gussekloo, J., de Craen, A. J., Oduber, C., van Boxtel, M. P., & Westendorp, R. G. (2005). 

Sensory impairment and cognitive functioning in oldest-old subjects: the Leiden 85+ 

Study. American Journal of Geriatric Psychiatry, 13(9), 781-786. doi: 

10.1176/appi.ajgp.13.9.781 



 

 
  

66 

Harrison Bush, A. L., Lister, J. J., Lin, F. R., Betz, J., & Edwards, J. D. (2015). Peripheral 

Hearing and Cognition: Evidence From the Staying Keen in Later Life (SKILL) Study. 

Ear and Hearing, 36(4), 395-407. doi: 10.1097/AUD.0000000000000142 

Hofer, S. M., Berg, S., & Era, P. (2003). Evaluating the interdependence of aging-related 

changes in visual and auditory acuity, balance, and cognitive functioning. Psychology 

and Aging, 18(2), 285-305.  

Hong, T., Mitchell, P., Burlutsky, G., Liew, G., & Wang, J. J. (2016). Visual Impairment, 

Hearing Loss and Cognitive Function in an Older Population: Longitudinal Findings 

from the Blue Mountains Eye Study. PloS One, 11(1), e0147646. doi: 

10.1371/journal.pone.0147646 

Jesse, A., & Janse, E. (2012). Audiovisual benefit for recognition of speech presented with 

single-talker noies in older listeners. Language and Cognitive Processes, 27(7/8), 1167-

1191.  

Jones, D. A., Victor, C. R., & Vetter, N. J. (1984). Hearing difficulty and its psychological 

implications for the elderly. Journal of Epidemiology and Community Health, 38(1), 75-

78.  

Jorgensen, L. E., Palmer, C. V., Pratt, S., Erickson, K. I., & Moncrieff, D. (2016). The Effect of 

Decreased Audibility on MMSE Performance: A Measure Commonly Used for 

Diagnosing Dementia. Journal of the American Academy of Audiology, 27(4), 311-323. 

doi: 10.3766/jaaa.15006 

Kirk, K. I., Hay-McCutcheon, M., Sehgal, S. T., & Miyamoto, R. T. (2000). Speech perception 

in children with cochlear implants: effects of lexical difficulty, talker variability, and 

word length. Annals of Otology, Rhinology, and Laryngology. Supplement, 185, 79-81.  



 

 
  

67 

Kuslansky, G., Katz, M., Verghese, J., Hall, C. B., Lapuerta, P., LaRuffa, G., & Lipton, R. B. 

(2004). Detecting dementia with the Hopkins Verbal Learning Test and the Mini-Mental 

State Examination. Archives of Clinical Neuropsychology, 19(1), 89-104.  

Lethbridge-Cejku, M., Schiller, J. S., & Bernadel, L. (2004). Summary health statistics for U.S. 

adults: National Health Interview Survey, 2002. Vital and Health Statistics. Series 10: 

Data from the National Health Survey(222), 1-151.  

Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological 

Assessment (5 ed.): Oxford University Press. 

Li, K. Z., & Lindenberger, U. (2002). Relations between aging sensory/sensorimotor and 

cognitive functions. Neuroscience and Biobehavioral Reviews, 26(7), 777-783.  

Lin, F. R. (2011). Hearing loss and cognition among older adults in the United States. Journals 

of Gerontology. Series A: Biological Sciences and Medical Sciences, 66(10), 1131-1136. 

doi: 10.1093/gerona/glr115 

Lin, F. R., & Albert, M. (2014). Hearing loss and dementia - who is listening? Aging Ment 

Health, 18(6), 671-673. doi: 10.1080/13607863.2014.915924 

Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., . . . Resnick, S. M. (2014). 

Association of hearing impairment with brain volume changes in older adults. 

Neuroimage, 90, 84-92. doi: 10.1016/j.neuroimage.2013.12.059 

Lin, F. R., Ferrucci, L., Metter, E. J., An, Y., Zonderman, A. B., & Resnick, S. M. (2011). 

Hearing loss and cognition in the Baltimore Longitudinal Study of Aging. 

Neuropsychology, 25(6), 763-770. doi: 10.1037/a0024238 



 

 
  

68 

Lin, F. R., Thorpe, R., Gordon-Salant, S., & Ferrucci, L. (2011). Hearing loss prevalence and 

risk factors among older adults in the United States. Journals of Gerontology. Series A: 

Biological Sciences and Medical Sciences, 66(5), 582-590. doi: 10.1093/gerona/glr002 

Lin, F. R., Yaffe, K., Xia, J., Xue, Q. L., Harris, T. B., Purchase-Helzner, E., . . . Simonsick, E. 

M. (2013). Hearing loss and cognitive decline in older adults. JAMA Intern Med, 173(4), 

293-299. doi: 10.1001/jamainternmed.2013.1868 

Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: a 

strong connection. Psychology and Aging, 9(3), 339-355.  

Lindenberger, U., & Baltes, P. B. (1997). Intellectual functioning in old and very old age: cross-

sectional results from the Berlin Aging Study. Psychology and Aging, 12(3), 410-432.  

Lindenberger, U., Scherer, H., & Baltes, P. B. (2001). The strong connection between sensory 

and cognitive performance in old age: not due to sensory acuity reductions operating 

during cognitive assessment. Psychology and Aging, 16(2), 196-205.  

Morris, J. C., Mohs, R. C., Rogers, H., Fillenbaum, G., & Heyman, A. (1988). Consortium to 

establish a registry for Alzheimer's disease (CERAD) clinical and neuropsychological 

assessment of Alzheimer's disease. Psychopharmacology Bulletin, 24(4), 641-652.  

Moscicki, E. K., Elkins, E. F., Baum, H. M., & McNamara, P. M. (1985). Hearing loss in the 

elderly: an epidemiologic study of the Framingham Heart Study Cohort. Ear and 

Hearing, 6(4), 184-190.  

Mulrow, C. D., Aguilar, C., Endicott, J. E., Tuley, M. R., Velez, R., Charlip, W. S., . . . DeNino, 

L. A. (1990). Quality-of-life changes and hearing impairment. A randomized trial. Annals 

of Internal Medicine, 113(3), 188-194.  



 

 
  

69 

Murphy, D. R., Craik, F. I., Li, K. Z., & Schneider, B. A. (2000). Comparing the effects of aging 

and background noise on short-term memory performance. Psychology and Aging, 15(2), 

323-334.  

Neidleman, M. T., Wambacq, I., Besing, J., Spitzer, J. B., & Koehnke, J. (2015). The effect of 

background babble on working memory in young and middle-aged adults. Journal of the 

American Academy of Audiology, 26(3), 220-228. doi: 10.3766/jaaa.26.3.3 

Oberg, M., Marcusson, J., Nagga, K., & Wressle, E. (2012). Hearing difficulties, uptake, and 

outcomes of hearing aids in people 85 years of age. International Journal of Audiology, 

51(2), 108-115. doi: 10.3109/14992027.2011.622301 

Peelle, J. E., Troiani, V., Grossman, M., & Wingfield, A. (2011). Hearing loss in older adults 

affects neural systems supporting speech comprehension. Journal of Neuroscience, 

31(35), 12638-12643. doi: 10.1523/JNEUROSCI.2559-11.2011 

Pichora-Fuller, M. K., Schneider, B. A., & Daneman, M. (1995). How young and old adults 

listen to and remember speech in noise. Journal of the Acoustical Society of America, 

97(1), 593-608.  

Rabbitt, P. M. (1968). Channel-capacity, intelligibility and immediate memory. Quarterly 

Journal of Experimental Psychology, 20(3), 241-248. doi: 10.1080/14640746808400158 

Rabbitt, P. M. (1990). Mild hearing loss can cause apparent memory failures which increase with 

age and reduce with IQ. Acta Oto-Laryngologica. Supplementum, 476, 167-175; 

discussion 176.  

Rabin, L. A., Barr, W. B., & Burton, L. A. (2005). Assessment practices of clinical 

neuropsychologists in the United States and Canada: a survey of INS, NAN, and APA 



 

 
  

70 

Division 40 members. Archives of Clinical Neuropsychology, 20(1), 33-65. doi: 

10.1016/j.acn.2004.02.005 

Reitan, R. M., & Wolfson, D. (1993). The Halstead Reitan Neuropsychological Test Battery (2nd 

ed.). Tucson, AZ: Neuropsychology Press. 

Ronnberg, J. (2003). Cognition in the hearing impaired and deaf as a bridge between signal and 

dialogue: a framework and a model. International Journal of Audiology, 42 Suppl 1, S68-

76.  

Ronnberg, J., Danielsson, H., Rudner, M., Arlinger, S., Sternang, O., Wahlin, A., & Nilsson, L. 

G. (2011). Hearing loss is negatively related to episodic and semantic long-term memory 

but not to short-term memory. Journal of Speech, Language, and Hearing Research, 

54(2), 705-726. doi: 10.1044/1092-4388(2010/09-0088) 

Scheltens, P., & Korf, E. S. (2000). Contribution of neuroimaging in the diagnosis of 

Alzheimer's disease and other dementias. Current Opinion in Neurology, 13(4), 391-396.  

Schneider, B. A., & Pichora-Fuller, M. K. (2000). Implication of perceptual deterioration for 

cognitive aging research. Hillsdale, NJ: Erlbaum. 

Shahidipour, Z., Geshani, A., Jafari, Z., Jalaie, S., & Khosravifard, E. (2013). Auditory Memory 

deficit in Elderly People with Hearing Loss. Iran J Otorhinolaryngol, 25(72), 169-176.  

Strauss, E., Sherman, E., & Spreen, O. (2006). A Compendium of Neuropsychological Tests: 

Administration, Norms, and Commentary (3rd ed.). New York: Oxford University Press. 

Sundermann, E. E., Maki, P. M., Rubin, L. H., Lipton, R. B., Landau, S., Biegon, A., & 

Alzheimer's Disease Neuroimaging, I. (2016). Female advantage in verbal memory: 

Evidence of sex-specific cognitive reserve. Neurology, 87(18), 1916-1924. doi: 

10.1212/WNL.0000000000003288 



 

 
  

71 

Swinney, D., & Love, T. (2002). Context effects on lexical processing during auditory sentence 

comprehension - On the time-course and neurological bases of a basic comprehension 

process. In E. Witruk, A. D. Friederici & T. Lachmann (Eds.), Basic Functions of 

Language, Reading and Reading Disability (Vol. 20, pp. 25-40). Dordrecht: Springer. 

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston, MA: 

Allyn & Bacon/Pearson Education. 

Timmer, B. H., Hickson, L., & Launer, S. (2015). Adults with mild hearing impairment: Are we 

meeting the challenge? International Journal of Audiology, 54(11), 786-795. doi: 

10.3109/14992027.2015.1046504 

Tombaugh, T. N., & McIntyre, N. J. (1992). The Mini-Mental Status Examination - A 

Comprehensive Review. Journal of the American Geriatrics Society, 40(9), 922-935.  

Tun, P. A., McCoy, S., & Wingfield, A. (2009). Aging, hearing acuity, and the attentional costs 

of effortful listening. Psychology and Aging, 24(3), 761-766. doi: 10.1037/a0014802 

Uhlmann, R. F., Larson, E. B., Rees, T. S., Koepsell, T. D., & Duckert, L. G. (1989). 

Relationship of hearing impairment to dementia and cognitive dysfunction in older 

adults. JAMA, 261(13), 1916-1919.  

Uhlmann, R. F., Teri, L., Rees, T. S., Mozlowski, K. J., & Larson, E. B. (1989). Impact of mild 

to moderate hearing loss on mental status testing. Comparability of standard and written 

Mini-Mental State Examinations. Journal of the American Geriatrics Society, 37(3), 223-

228.  

Valentijn, S. A., van Boxtel, M. P., van Hooren, S. A., Bosma, H., Beckers, H. J., Ponds, R. W., 

& Jolles, J. (2005). Change in sensory functioning predicts change in cognitive 



 

 
  

72 

functioning: results from a 6-year follow-up in the maastricht aging study. Journal of the 

American Geriatrics Society, 53(3), 374-380. doi: 10.1111/j.1532-5415.2005.53152.x 

van Boxtel, M. P., van Beijsterveldt, C. E., Houx, P. J., Anteunis, L. J., Metsemakers, J. F., & 

Jolles, J. (2000). Mild hearing impairment can reduce verbal memory performance in a 

healthy adult population. Journal of Clinical and Experimental Neuropsychology, 22(1), 

147-154. doi: 10.1076/1380-3395(200002)22:1;1-8;FT147 

van Hooren, S. A., Anteunis, L. J., Valentijn, S. A., Bosma, H., Ponds, R. W., Jolles, J., & van 

Boxtel, M. P. (2005). Does cognitive function in older adults with hearing impairment 

improve by hearing aid use? International Journal of Audiology, 44(5), 265-271.  

Vanderploeg, R. D., Schinka, J. A., Jones, T., Small, B. J., Graves, A. B., & Mortimer, J. A. 

(2000). Elderly norms for the Hopkins Verbal Learning Test-Revised. Clinical 

Neuropsychologist, 14(3), 318-324. doi: 10.1076/1385-4046(200008)14:3;1-P;FT318 

Vaughan, N., Storzbach, D., & Furukawa, I. (2008). Investigation of potential cognitive tests for 

use with older adults in audiology clinics. Journal of the American Academy of 

Audiology, 19(7), 533-541; quiz 579-580.  

Verhaegen, C., Collette, F., & Majerus, S. (2014). The impact of aging and hearing status on 

verbal short-term memory. Neuropsychology, Development, and Cognition. Section B: 

Aging, Neuropsychology and Cognition, 21(4), 464-482. doi: 

10.1080/13825585.2013.832725 

Vesterager, V., Salomon, G., & Jagd, M. (1988). Age-related hearing difficulties. II. 

Psychological and sociological consequences of hearing problems--a controlled study. 

Audiology, 27(3), 179-192.  



 

 
  

73 

Waters, G. S., & Caplan, D. (2001). Age, working memory, and on-line syntactic processing in 

sentence comprehension. Psychology and Aging, 16(1), 128-144.  

Wayne, R. V., & Johnsrude, I. S. (2015). A review of causal mechanisms underlying the link 

between age-related hearing loss and cognitive decline. Ageing Res Rev, 23(Pt B), 154-

166. doi: 10.1016/j.arr.2015.06.002 

Wechsler, D. (2008). Wechsler Adult Intelligence Scale (4th ed.). San Antonio, TX: 

Psychological Corporation. 

Wechsler, D. (2009). Test of Premorbid Functioning. San Antonio, Texas: Psychological 

Corporation. 

Welsh, K. A., Butters, N., Hughes, J. P., Mohs, R. C., & Heyman, A. (1992). Detection and 

staging of dementia in Alzheimer's disease. Use of the neuropsychological measures 

developed for the Consortium to Establish a Registry for Alzheimer's Disease. Archives 

of Neurology, 49(5), 448-452.  

Welsh, K. A., Butters, N., Mohs, R. C., Beekly, D., Edland, S., Fillenbaum, G., & Heyman, A. 

(1994). The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part 

V. A normative study of the neuropsychological battery. Neurology, 44(4), 609-614.  

Wingfield, A., & Grossman, M. (2006). Language and the aging brain: patterns of neural 

compensation revealed by functional brain imaging. Journal of Neurophysiology, 96(6), 

2830-2839. doi: 10.1152/jn.00628.2006 

Wong, L. L., Yu, J. K., Chan, S. S., & Tong, M. C. (2014). Screening of cognitive function and 

hearing impairment in older adults: a preliminary study. Biomed Res Int, 2014, 867852. 

doi: 10.1155/2014/867852 



 

 
  

74 

Woodard, J. L., Benedict, R. H., Roberts, V. J., Goldstein, F. C., Kinner, K. M., Capruso, D. X., 

& Clark, A. N. (1996). Short-form alternatives to the Judgment of Line Orientation Test. 

Journal of Clinical and Experimental Neuropsychology, 18(6), 898-904. doi: 

10.1080/01688639608408311 

Zekveld, A. A., Deijen, J. B., Goverts, S. T., & Kramer, S. E. (2007). The relationship between 

nonverbal cognitive functions and hearing loss. Journal of Speech, Language, and 

Hearing Research, 50(1), 74-82. doi: 10.1044/1092-4388(2007/006) 



 

 
  

75 

ABSTRACT 

HEARING LOSS AND VERBAL MEMORY ASSESSMENT IN OLDER ADULTS 
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Major: Psychology (Clinical) 

Degree: Doctor of Philosophy 

Prior research has found that adults with hearing loss perform worse on cognitive testing 

than adults without hearing loss, and some studies have suggested that hearing loss is associated 

with dementia. Heavy emphasis on tests involving auditory stimuli for memory assessment may 

result in overdiagnosis of cognitive impairment in individuals with hearing loss. The present 

study compared visual and auditory versions of a verbal memory test among older adults with 

and without hearing loss.   

Forty-one adults with moderate-to-severe, sensorineural hearing loss (HL) and 41 age-

matched adults with normal hearing (NH) participated. Age ranged from 55 – 80 years. They 

completed a neuropsychological battery that included auditory and visual versions of the 

Hopkins Verbal Learning Testing-Revised (HVLT-R). The auditory conditions included a 

Natural Auditory condition for which stimuli was presented at a normal speaking volume and a 

Crossed Auditory condition for which individuals with hearing loss completed the test with 

amplified volume and individuals with normal hearing completed the test under a hearing loss 

simulation.  

Mixed-model ANOVA indicated significant group (HL vs. NH) by condition (Visual vs. 



 

 
  

76 

Natural Auditory vs. Crossed Auditory HVLT-R) interactions with large effect sizes. Post hoc 

contrasts showed that the HL group performed significantly worse than the NH group on the 

Natural Auditory version. The opposite pattern was found for the Crossed Auditory condition: 

The NH group performed significantly worse than the HL group. The groups were equivalent on 

the Visual condition and showed small effect sizes. Auditory and visual versions were highly 

correlated for the NH group but not for the HL group. Groups did not significantly differ on 

other neuropsychological tests and showed small effect sizes. Moreover, for the HL group, the 

visual version of the verbal memory test was strongly correlated with other neuropsychological 

tests whereas the standard auditory version was not.  

Cognitively intact older adults with hearing loss appeared impaired on an auditory-verbal 

word list memory test under typical administration conditions. Visual assessment of verbal 

memory shows evidence of superior validity and is a viable alternative method to assess memory 

function especially in older populations.  
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