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A one parameter right skewed, upside down bathtub type, heavy-tailed distribution is 
derived. Various statistical properties and maximum likelihood approaches for estimation 
purpose are studied. Five different real data sets with four different models are considered 
to illustrate the suitability of the proposed model. 
 
Keywords: lifetime distribution, upside down bathtub, maximum likelihood estimate 
 

Introduction 

Lifetime distribution can be categorized into five broad classes according to their 
nature of failure rates, i.e., constant, decreasing, increasing, bathtub and upside 
down bathtub (UBT) types. The use of exponential distribution is very restricted, 
because its failure rate is constant and it is not applicable in most of the real 
situation, due to this reason, a number of lifetime models have been developed 
which have non-constant failure rate like Weibull, gamma, generalized exponential, 
Lindley distributions etc. The distributions have failure rate is either monotone or 
non-monotone according to that failure rate weather increasing/decreasing or 
bathtub/upside-down bathtub (Barlow et al., 1963; Barlow and Proschan, 1975; 
Deshpande and Suresh, 1990; Deshpande and Purohit, 2006). But generally, 
lifetime devices exhibit non-monotone type behavior in the real-life situations when 
the failure rate firstly increase and then decrease, say for example in the engineering 
field, quality of production of an item in a company due to untrained workers, 
hazard rate due to any serious disease in the medical field. Due to this reason, a 
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number of non-monotone type distributions with their applications have been 
developed by researchers. Hjorth (1980) proposed a model having all the type of 
failure rate except UBT, Rajarshi and Rajarsh (1988) proposed a review of bathtub 
failure models, Mudholkar and Srivastava (1993) proposed exponentiated Weibull 
distribution having all the type of failure rates, Xie and Lai (1996) proposed a 
bathtub nature additive Weibull model, Xie et al. (2002) proposed modified 
Weibull model having bathtub type of failure rate. The UBT failure rate 
distributions commonly appear in medical and biological fields like in lung cancer 
patient data (Bennett, 1983), in bladder cancer patient data (Efron, 1988) and in 
breast carcinoma patient data (Lamberson, 1974).  

Most of the inverted probability distributions show the UBT shape of failure 
rate, see, generalized inverse Weibull distribution (de Gusmão et al., 2009), 
transmuted inverse exponential distribution (Oguntunde and Adejumo, 2014), 
transmuted inverse Weibull distribution (Khan et al., 2014), transmuted inverse 
Rayleigh distribution (Sharma et al., 2014), inverse Lindley (Sharma et al., 2015), 
generalized inverse Lindley distribution (Sharma et al., 2016), etc. Various new 
lifetime distributions were proposed by using incorporating additional parameters 
by any methods or transformation of variable and shown their suitability and 
compatibility over the existing distributions (see Marshall and Olkin, 1988; Gupta 
et al., 1998; Shaw and Buckley, 2009). Kumar et al. (2015) proposed a DUS 
transformation for generating new lifetime distribution. Motivated by them Maurya 
et al. (2016) proposed new method for proposing more flexible and new lifetime 
model having various shapes of failure rate and more applicable model. Here the 
noticeable point is that in all of the above-mentioned transformations, only DUS 
transformation does not include any additional parameter (see also Maurya et al., 
2017, for more about DUS transformation). 

The purpose of this study is to propose a new inverted probability model with 
UBT type of failure rate. A one parameter inverse exponential distribution in DUS 
transformation is considered. The cumulative distribution function (cdf) of inverse 
exponential distribution is defined as, 
 
 F(x) = e−θ/x              x; θ > 0. (1) 
 
Let X be random variable having baseline cdf given in (1), then the cdf of our 
proposed distribution is given as:  
 

  (2) F x( ) = e
e−θ /x −1
e−1

x;θ > 0
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and the probability density function (pdf) is  
 

  (3) 

 
The associated hazard rate is  
 

  (4) 

 
where e (exp(·)) stands for exponential function.  

Shapes of the distribution and failure rate function 

The shape of the distribution reflects the idea whether the distribution is symmetric 
or skewed. With the help of equations (2) and (3), the shape of the cdf and pdf of 
the proposed distribution are plotted for different value of the parameter θ, which 
is given in Figure 1. 
 
 

 
 
Figure 1. Probability density and cumulative distribution function plot 
 
 

f x( ) = θ
x2 e−1( ) e

−θ
xee

−θ
x x;θ > 0.

h x( ) = θe−θ /xee
−θ /x

x2 e− ee
−θ /x( )
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This figure shows that the proposed distribution exhibit right skewed model. 
By using equation (4) we can get an idea about the nature of its failure rate, we have 
plotted the shapes of failure rate for the various value of the parameter θ in Figure 
2. 
 
 

 
 
Figure 2. Hazard rate function plot for various choice of parameter 
 
 

This figure shows that the proposed distribution has UBT type failure rate. 
This can also be verified mathematically by using the result of Glaser (1980). 
Glaser proved that if η'(t) > 0 for all t  (0, t0), and η'(t) = 0 and η'(t) < 0 for all 
t > t0 and satisfying  then distribution has upside down bathtub failure 

rate (UBT), where η(t) is equal to −f '(t)/f (t) and f '(t) is the first order derivative of 
density function f (t) with respect to t. In the case of our proposed distribution, we 
see that;  
 

  

 
and  
 

∈
lim
x→0
f t( ) = 0

η t( ) = 2t −
θ
t2
e−θ /t +1( )
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   (5) 

 
Since the above equation is not in explicit form to get the solution, we use a 

simulation study and we find that for t0 = 1.227θ approx η'(t) > 0 for all t  (0, t0), 
and η'(t) = 0 and η'(t) < 0 for all t > t0. Also, from equation (3) we can verify that 

 (because rate of convergence of exponential function is more than the 

algebraic function). Hence, the proposed distribution is right skewed distribution 
having UBT shape of failure rate. 

Tail area property 

A distribution is called heavy-tailed distribution if it possesses the heavy tail 
property. Klugman et al. (2012) suggested some criterion to detect the heavy tail 
property of a distribution (see also Nair et al., 2013). One of the important 
properties of heavy tailed distribution is that some or all order of the moments not 
exist. Therefore if the first moment i.e. arithmetic mean of the distribution does not 
exist then it possesses the heavy tail property of distribution. The arithmetic mean 
is derived for the distribution by solving  
 
  

   

 
by putting t = e−θ/x,  
 

  (6) 

 
which is a divergent equation. Hence, arithmetic mean of the distribution doesn’t 
exist. Hence, by this criteria the proposed distribution is heavy-tailed distribution.  

Another way is to examine the heavy tail property of distribution if the ratio 
of hazard rate to x goes to zero as x tends to infinity then it possesses the property 
of heavy-tailed distribution. For the proposed distribution,  
 

′η t( ) = 1
t4( ) 2θte

−θ /t + 2θt − 2t2 −θ 2e−θ /t⎡⎣ ⎤⎦.

∈

lim
x→0
f t( ) = 0

θ
e−1

1
x
e−θ /xee

−θ /x

dx
0

∞

∫

−θ
e−1

et

log t( ) dt0

1

∫



MAURYA ET AL. 

7 
 

  (7) 

 
This can be proved by using L’Hôpital’s rule. Thus, the proposed distribution has 
heavy-tailed distribution.  

By the ratio of two survivals, the heavy tail property of distribution can also 
be checked. The distribution is said to be heavier than the other if the ratio of 
survivals goes to infinity as x tends to infinite. This indicates that the numerator 
puts highly significant value than the denominator. The limiting case of the ratio of 
two survival provides the limiting case of two probability density function. So, this 
ratio gives the ratio of two density functions i.e.  
 

   

 
In this paper, we compare the density function with Pareto density (Pareto, 1964) 
with survival function (θ/x)ɑ. Then the ratio of proposed density with Pareto 
distribution is given as  
 
  

   

 (8) 
 
which goes to infinity as x tends to infinity for ɑ > 1. Hence, the tail of the proposed 
distribution is heavier than the Pareto distribution. See also Foss et al. (2011) for 
more detail about heavy-tailed distributions.  

A distribution is said to be heavy-tailed distribution if and only if 

 for all θ > 0. Since, the first moments of proposed distribution 

is infinity, therefore this equation goes to infinity. Hence, the proposed distribution 
is heavy-tailed distribution. Hence, form the above discussion we can conclude that 
the proposed distribution is heavy tailed distribution. 

θe−θ /xee
−θ /x

e− ee
−θ /x

⎛

⎝
⎜

⎞

⎠
⎟
1
x3

→ 0.

lim
x→∞

S1 x( )
S2 x( ) = limx→∞

S1′ x( )
S ′2 x( ) = limx→∞

f1 x( )
f2 x( )

θe−θ /xee
−θ /x

x( )α+1

x2 e−1( )αθα

eθx f x( )dx = ∞
0

∞

∫
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Some statistical properties 

Harmonic mean of the distribution 
Because the proposed distribution is heavy-tailed distribution and the first moment 
does not exist, it is necessary to derive its inverse moment. The harmonic mean (H) 
of the distribution can be obtained by solving the given equation  
 

   (9) 

 
By substituting e−θ/x = t, and after solving equation (9),  
 

  

 
where γ(0.5772) is Euler-Mascheroni constant and Ei(1)(1.8951) is exponential 
integral, which yields 
 
 H = 1.3038θ (10) 

Quantile function of the distribution 
The quantile function Q(p) of pth quantile is obtained by solving the equation 
F(Q(p)) = p. Hence, from the equation (2),  
 

  (11) 

 
Because the mean of the proposed distribution does not exist, the mean cannot be 
used in any other expressions. Also, the quantile function may be used to evaluate 
the coefficients of skewness and kurtosis. Thus, Bowley’s coefficient of skewness 
(Bowley, 1907) which is defined as  
 

  

 

1
H

= θ
e−1

1
x3
e−θ /xee

−θ /x

dx.
0

∞

∫

1
H

=
Ei 1( )− γ
θ e−1( ) = 1.3179

θ e−1( )

Q p( ) = −θ
log log 1+ p e−1( )( )⎡

⎣
⎤
⎦
.

B =
Q 3

4( )+Q 1
4( )− 2Q 1

2( )
Q 3

4( )−Q 1
4( ) .
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Its value is 0.4818 > 0, this shows that the proposed distribution is positively 
skewed distribution. The Moors’s coefficient of kurtosis (Moors, 1988) which is 
given as  
 

  

 
Its value is 2.1481 for the proposed distribution, which shows that it is more peaked 
than standard normal distribution. 

Median of the proposed distribution 
Since the proposed distribution is right skewed heavy tailed distribution, the median 
is the more suitable measure of central tendency. The median of the proposed 
distribution can be obtained by considering p = 1/2 in quantile function which is 
given in equation (11). We get the median (Md)  
 

  (12) 

Mode of the distribution 
The expression of the mode is obtained by solving the equation  
 

  (13) 

 
Because the above equation is not in explicit form, the solution cannot be obtained 
directly. Through computations it was found this equation has an approximate 
solution for x = 0.6θ. The approximate mode of the distribution is 0.6θ. It can be 
also checked by the Figure 3. In this figure, the red vertical line is drawn at x = 0.6θ 
which supports the above conclusion. Thus, for the proposed distribution, 
mean > median > mode. Hence, it is positively skewed distribution. 
 
 

M =
Q 3

8( )−Q 1
8( )+Q 7

8( )−Q 5
8( )

Q 6
8( )−Q 2

8( ) .

Md = −θ
log log 0.5 e+1( )( )⎡

⎣
⎤
⎦
= 2.0927θ

d
dx
f x( ) = θe−θ /xee

−θ /x

x4
θe−θ /x +θ − 2x⎡⎣ ⎤⎦ = 0.
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Figure 3. Mode plot for the various choice of parameter 
 
 

Stochastic order 
Let X1 and X2 be random variables having cdf and F2(x) respectively. Then X1 is 
said to stochastically greater than X2 if F1(x) ≤ F2(x) for all x (see Gupta et al., 1998 
for more detail). 
 
Theorem 1.  Let X1 and X2 be the random variables of the proposed 
distribution, with parameter θ1 and θ2 respectively, then X1 is stochastically greater 
than X2 if θ1 > θ2. 
  
Proof.   From equation (2),  
 

  

 

F1 x( )
F2 x( ) =

e−θ1/x −1
e−θ2 /x −1
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which will be always greater than 1, showing that X1 is stochastically greater than 
X2 for θ1 > θ2. 

Distribution of order statistic 
Take n random sample from the proposed distribution say, x1, x2, …, xn and the 
corresponding order statistics is, x1:1, x2:2, …, xn:n. Let F(x) and f(x) be the 
population cdf and pdf respectively, then for r = 1, 2, …, n, the pdf  fr(x) of rth order 
statistics Xr:n is, 
 

  

 
Now by using equations (2) and (3) in above equation we have,  
 

  (14) 

 
 
And corresponding rth order statistic of cdf Fr(x) is,  
 

  (15) 

 
Using equation (2) in equation (15) we have,  
 

  (16) 

Shannon entropy for the distribution 
Entropy is used to measure the average amount of information contained in random 
variable X. Shannon entropy proposed by Shannon (1951) and defined as 
E [−log f (x)]. For the proposed distribution,  
 

  (17) 

fr x( ) = n!
r −1( )! n− r( )!F

r−1 x( ) 1− F x( )⎡⎣ ⎤⎦
n−r
f x( ).

fr x( ) = n!
r −1( )! n− r( )!

θe−θ /xee
−θ /x

x2 e−1( )n−1
ee

−θ /x

−1( )r−1 e− ee−θ /x( )n−r .

Fr x( ) = nCiF i x( ) 1− F x( )⎡⎣ ⎤⎦
n−i

i=r

n∑

Fr x( ) = nCin−iC j −1( ) j ee
−θ /x

−1( ) / e−1⎡
⎣

⎤
⎦j=0

n−i∑
i+ j

i=r

n∑

− log f x( ) = − log θ
e−1( ) + 2log x +

θ
x
− e−θ /x
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and  
 

  (18) 

 
After solving the above equation, the value of Shannon entropy is obtained 

and given as,  
 
  (19) 

Estimation procedure for the parameter 

Maximum likelihood estimation 
Consider the maximum likelihood estimation (MLE) method for the estimation of 
the parameter θ of the proposed distribution which is obtained by maximizing the 
logarithm of the likelihood function. Let X1, X2, …, Xn be n random sample from 
the proposed distribution. Then, the logarithm likelihood function of the proposed 
distribution is,  
 

  (20) 

 
Differentiating it with respect to the parameter θ,  
 

  (21) 

 
Equating the equation (22) to zero, the likelihood equation is  
 

  (22) 

 
which is a non-linear equation. After solving this, the MLE θ̂ of parameter θ is 
obtained. Because it is not in closed form it cannot be solved analytically. 

E − log f x( )⎡⎣ ⎤⎦ = − log θ
e−1( ) + 2E log x⎡⎣ ⎤⎦ +θE

1
x

⎡

⎣
⎢

⎤

⎦
⎥ − E e−θ /x⎡⎣ ⎤⎦

E − log f x( )⎡⎣ ⎤⎦ = 2.5835+ logθ .

log L = n log θ
e−1( ) + log

1
xi2

⎛
⎝⎜

⎞
⎠⎟
−θ 1

xii=1

n

∑ + e−θ /xi
i=1

n

∑
i=1

n

∑ .

∂log L
∂θ

= n
θ
− 1

xi
+

i=1

n∑ θ
xi2
e−θ /xi .

i=1

n∑

n
θ
= 1

xi
− θe−θ /xi

xi2i=1

n

∑
i=1

n

∑
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Therefore, a numerical technique, such as the Newton-Raphson method (R Core 
Team, 2013) can be used. The confidence intervals are obtained based on the 
diagonal elements of Fisher information matrix I−1(θ̂) which provides the estimated 
asymptotic variance for the parameter θ. Thus, the two-sided 100(1 – η)% 

confidence interval of θ can be defined as , where Zη/2 stands for the 

upper η/2% points of standard normal distribution. 
The Fisher Information matrix can be estimated by, 

 

  (23) 

 
where  
 

  (24) 

Real data application 

Five different real data sets have been considered, out of which three have UBT 
nature of failure rate and last two have heavy tail nature of failure rate, and four 
different lifetime model out of which three have UBT nature and one has heavy-
tailed property, for real data illustration. Also, two models have two parameters and 
rest two have the single parameter like the proposed model. The cdfs of the 
considered models are given below:  

 
1. Inverse Exponential (IE) distribution have UBT type of failure rate 

and its cdf is given as,  
 

  
 
2. Inverse Lindley (IL) distribution (Sharma et al., 2015). It has also 

UBT type of failure rate.  
 

  

Zη/2 var θ̂( )

I θ̂( ) = −∂2 log L
∂θ 2

⎡

⎣
⎢

⎤

⎦
⎥
θ̂

−∂2 log L
∂θ 2

= − n
θ 2

+
xi −θ( )
xi3i=1

n∑ e−θ /xi .

F x( ) = exp −θ / x( ) x > 0,θ > 0.

F x( ) = e−θ /x 1+θ +θx
1+θ( )x

⎛

⎝
⎜

⎞

⎠
⎟ x > 0,θ > 0.
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3. Inverse Weibull (IW) distribution with cdf:  
 

   

 
4. Pareto distribution (Pareto, 1964). This distribution is possessed 

heavy tail property.  
 

   

 
The various criterion like p-value, AIC (Akaike Information Criterion) and 

BIC (Bayesian information criterion) are used to check the fitting of the 
distributions. Also we have calculated the negative of log likelihood value (−LogL) 
and KS (Kolmogorov-Smirnov) test statistic. The AIC and BIC are defined as,  
 
  
 
and KS test statistics (D) is defined as  
 

  

 
where Fn(x) is empirical distribution function, F(x) is cdf, n is sample size, k is a 
number of parameters and L̂ is maximum likelihood value for the considered 
distribution. First, consider the p-value for checking which models are fitted to the 
considered data set and after that we calculate the other mention criterion to know 
which model is more suitable for the data set among the fitted model. The smaller 
value of AIC, BIC, KS test statistic and −LogL values indicate a better fit of 
distributions. The MLEs of parameters for various distributions were also 
calculated and compiled in in Table 1. The real data descriptions are given below; 
 
Dataset 1. Flood level data. This dataset contained 39 observation of annual flood 
discharge rates of the Floyd River (located in James, Iowa, USA) for the years 
1935-1973 and the dataset was taken by Mudholkar and Hutson (1996) and 
Merovci and Puka (2014). 
 

F x( ) = exp −θ / xα( ) x > 0,θ > 0,α > 0.

F x( ) = 1− θ
x

⎛
⎝⎜

⎞
⎠⎟

α

x >θ ,θ > 0,α > 0.

AIC = 2* k − 2*log L̂, BIC = k *log n( )− 2*log L̂,

D = Sup
x
Fn x( )− F x( ) , where Fn x( ) = 1

n
Ixi≤x

i=1

n

∑ .



MAURYA ET AL. 

15 
 

Dataset 2. Head and Neck cancer disease data using treatment RT+CT. This dataset 
contains 44 observations survival times of a group of patients suffering from Head 
and Neck cancer disease and treated using a combination of radiotherapy and 
chemotherapy (RT+CT) Proposed by Efron (1988). This dataset was analyzed by 
Shanker et al. (2015), Sharma et al. (2015) used this dataset for IL and compared 
with inverse Rayleigh distribution, latter by Maurya et al. (2018).  
 
Dataset 3. Vinyl Chloride data. This dataset contains 34 observations of vinyl 
chloride data given by Bhaumik et al. (2009) from clean up gradient monitoring 
wells in mg/l. This dataset analyzed by Barreto-Souza and Bakouch, (2013) and 
Maurya et al. (2018) for decreasing failure rate models.  
 
Dataset 4. Sieve Diameter data. This dataset contains 13 observations of the mass-
size distribution of a sand sample, determined by sieving given in mm and obtained 
by Bagnold (1954). Latter used by Barndorff-Nielsen (1977). 
 
Dataset 5. Observed number of diamond data. This dataset contains 25 observations 
of a size distribution of diamond from a large mining area in South Africa, proposed 
by Sichel (1973) and latterly used by Barndorff-Nielsen (1977). 
 
 

 
 
Figure 4. TTT plot of considered data sets 
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These data sets were considered because datasets 1-3 are UBT, data set 4 
shows a UBT nature of failure rate and along with dataset 5 are used for heavy-
tailed distributions (see Barndorff-Nielsen, 1977). The nature of datasets is plotted 
in Figure 4.  

The curve above the abline and then below shows the UBT nature (for more 
detail about TTT plot see Aarset, 1987). A detailed description of Table 1 follows 
the table. 
 
 
Table 1. MLE, -Log Likelihood, AIC, BIC and KS statistic with p-value for fitted datasets. 
 
Dataset 1. 

 
ML Estimate 

 
KS Test 

   

Distributions   -LogL   Statistic p-value   AIC BIC 
IE 

 
- 2166.2550 377.9945 

 
0.0864 0.9089 

 
757.9890 759.6526 

Proposed 
 

- 1627.5820 377.9722 
 

0.1037 0.7573 
 

757.9444 759.6080 
IL 

 
- 2167.2380 377.9945 

 
0.0864 0.9089 

 
757.9890 759.6526 

IW 
 

1.0145 2405.5306 377.9869 
 

0.0862 0.9101 
 

759.9737 763.3008 
P   0.4125 318.0000 392.8099   0.3380 0.0002   789.6199 792.9470            

Dataset 2. 
 

ML Estimate 
 

KS Test 
   

Distributions   -LogL   Statistic p-value   AIC BIC 
IE 

 
- 76.70060 279.57730   0.08890 0.84770   561.15460 562.93880 

Proposed 
 

- 57.95910 279.43010 
 

0.09030 0.83440 
 

560.86020 562.64440 
IL 

 
- 77.67550 279.57840 

 
0.08890 0.84740 

 
561.15680 562.94090 

IW 
 

1.01330 80.76250 279.57010 
 

0.09270 0.81040 
 

563.14030 566.70860 
P   0.42630 12.20000 294.77720   0.29380 0.00070   593.55450 597.12290            

Dataset 3. 
 

ML Estimate 
 

KS Test 
   

Distributions   -LogL   Statistic p-value   AIC BIC 
IE   - 0.5725 59.1930   0.1470 0.4544   120.3860 121.9124 
Proposed 

 
- 0.4462 57.9264 

 
0.1081 0.8222 

 
117.8528 119.3792 

IL 
 

- 0.8774 61.8136 
 

0.1908 0.1683 
 

125.6272 127.1535 
IW 

 
0.8804 0.6539 58.6266 

 
0.1134 0.7745 

 
121.2532 124.3059 

P   0.4177 0.1000 66.7972   0.3219 0.0017   137.5943 140.6471            

Dataset 4. 
 

ML Estimate 
 

KS Test 
   

Distributions   -LogL   Statistic p-value   AIC BIC 
IE   - 0.1871 4.6046   0.1137 0.9890   11.2092 11.7742 
Proposed 

 
- 0.1433 4.5903 

 
0.1314 0.9569 

 
11.1807 11.7456 

IL 
 

- 0.3279 5.4029 
 

0.1990 0.6131 
 

12.8059 13.3708 
IW 

 
1.0257 0.1772 4.5976 

 
0.1230 0.9756 

 
13.1951 14.3251 

P   0.5689 0.0540 5.2402   0.2073 0.5622   14.4803 15.6102            

Dataset 5. 
 

ML Estimate 
 

KS Test 
   

Distributions   -LogL   Statistic p-value   AIC BIC 
IE   - 2.8704 103.2788   0.2003 0.2683   208.5576 209.7765 
Proposed 

 
- 2.2910 102.3038 

 
0.1677 0.4833 

 
206.6077 207.8265 

IL 
 

- 3.5073 103.6401 
 

0.2066 0.2361 
 

209.2803 210.4992 
IW 

 
0.7091 2.4559 100.5521 

 
0.1160 0.8898 

 
205.1042 207.5420 

P   0.3589 0.5000 102.9349   0.1677 0.4833   209.8698 212.3076 

 
 

α̂ θ̂

α̂ θ̂

α̂ θ̂

α̂ θ̂

α̂ θ̂
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For Dataset 1. Observed that among all the considered model only Pareto not fit 
this data set at 5% level of significance. The KS statistics is minimum for IW 
distribution but the value of −LogL is least for our proposed distribution. The model 
selection criterion i.e. AIC and BIC both are least for our proposed model. Also, 
Merovci and Puka (2014) analyzes this data set for transmuted Pareto (TP) 
distribution (with AIC = 776.698, BIC = 778.025) and compared it with Pareto, 
Generalized Pareto, exponentiated Pareto distributions. Therefore, we can say that 
our proposed model is best among the considered models along with TP and others. 
 
For Dataset 2. The table shows that only Pareto model is not fitted at 5% level of 
significance and KS statistics is least for IE. But the −LogL value and model 
selection criterion (AIC and BIC both) are least for our proposed model among all 
the fitted models. Maurya et al. (2018) used this data set (with AIC = 564.8111 and 
BIC = 566.5953) and shown that their proposed model is fitted best to this data set 
in comparison to other seven lifetime models like Exponential Poisson Lindley, 
Extension of Exponential, Generalized Lindley, Weibull, Gamma, Exponentiated 
Exponential and exponentiated Binomial distributions. Hence, it can be concluded 
the proposed model is best among these models for this data set. 
 
For Dataset 3. In the consideration of all the models, again only Pareto not fitted 
at desired level of significance i.e. 5%. The proposed distribution has minimum KS 
statistics along with −LogL. Also, the model selection criterion AIC and BIC are 
least for our proposed model. It can also be concluded the proposed model explains 
this data set better than the other models. 
 
For Dataset 4. All the considered models fitted this data set at 5% level of 
significance and IE has minimum KS statistics. But the model selection criterion 
and −LogL values are least for our proposed model. The model is best among all 
of the competitors for this data set. 
 
For Dataset 5. Again all the considered models fit this data set at a desired level of 
significance. The −LogL, AIC, BIC is least for IW model and also for the proposed 
model at second place because our proposed model has only UBT nature and the 
data set shows decreasing nature. The proposed model is comparable to the IW 
model. The reason behind the fitting of Pareto model to last two datasets and not 
fitting in first three datasets is the dataset 4 and 5 are suitable for the heavy-tailed 
distributions. 
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Table 2. Interval estimates of the parameter for real datasets. 
 
Distribution Parameter Data 1 Data 2 Data 3 Data 4 Data 5 

IE θ 1486.306, 2846.205 54.035, 99.366 0.380, 0.765 0.085, 0.289 1.745, 3.996 
Proposed θ 1058.445, 2196.719 38.926, 76.992 0.282, 0.610 0.056, 0.231 1.292, 3.291 

IL θ 1487.305, 2847.206 55.006, 100.345 0.656, 1.098 0.199, 0.456 2.343, 4.672 
IW θ 1650.451, 3160.536 56.896, 104.628 0.434, 0.874 0.081, 0.274 1.494, 3.419 

ɑ 0.972, 1.057 0.941, 1.086 0.7020, 1.059 0.807, 1.244 0.502, 0.916 
P θ 317.890, 318.110 11.639, 12.761 0.0, 6.298 0.0, 8.489 0.0, 3.272 

ɑ 0.283, 0.542 0.301, 0.552 0.277, 0.558 0.260, 0.878 0.218, 0.499 

 
 

Table 2 shows the 95 % confidence interval of the parameter(s) for the real 
data sets and the considered models. The non-parametric empirical cdf (ecdf) plot, 
kernel density (KD) plot, histogram plot, and fitted density plot were used to show 
the suitability of the model graphically. The ecdf plot for all the considered models 
and datasets are given in Figure 5 and these figures also support our conclusions. 
 
 

 
 
Figure 5. Ecdf plot of considered data sets 
 
 

The fitted density plot, KD plot and relative histogram plots for all the five 
data sets are plotted in Figure 6.  
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Figure 6. Fitted density, Relative histogram and Kernel density plots for proposed 
distribution. 
 
 

Conclusion 

A new right skewed lifetime model having upside down failure rate nature, which 
also has heavy-tailed nature. Some statistical properties like median, harmonic 
mean, model, Shannon entropy, pdf and cdf of rth order statistics, quantile function 
were derived. The parameters of the proposed model were estimated through the 
maximum likelihood methods and 100(1 – η)% confidence interval. For the real 
data illustration, the inverse exponential, inverse Lindley, inverse Weibull and 
Pareto distributions were considered, and five different real data sets in which three 
are UBT type nature and two have heavy-tailed, and the proposed model fitted well 
for all them. Therefore, this model can be recommended. 
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