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Parametric and Reliability Estimation of 
the Kumaraswamy Generalized 
Distribution Based on Record Values 
Mohd. Arshad 
Indian Institute of Technology Indore 
Indore, Madhya Pradesh, India 

Qazi J. Azhad 
Banasthali Vidyapith 
Vanasthali, Rajasthan, India 

 
 
A general family of distributions, namely Kumaraswamy generalized family of (Kw-G) 
distribution, is considered for estimation of the unknown parameters and reliability 
function based on record data from Kw-G distribution. The maximum likelihood estimators 
(MLEs) are derived for unknown parameters and reliability function, along with its 
confidence intervals. A Bayesian study is carried out under symmetric and asymmetric loss 
functions in order to find the Bayes estimators for unknown parameters and reliability 
function. Future record values are predicted using Bayesian approach and non Bayesian 
approach, based on numerical examples and a monte carlo simulation. 
 
Keywords: Kumaraswamy generalized distribution, reliability, interval estimation, 
Bayesian estimation, prediction 
 

Introduction 

Kumaraswamy (1980) defined a density function of double bounded random 
processes for handling of the problems occur in the hydrological field. This 
distribution did not gain much attention until Jones (2009) studied it thoroughly 
and gave some important remarks on this distribution with the Beta distribution. 
For example, both the distributions are unimodal, increasing, decreasing or constant 
depending on the values of the parameters. For quantile estimation, Kumaraswamy 
(Kw) distribution gives better mathematical tractability over the beta distribution 
whereas in calculation of moments or moment generating function Beta distribution 
provides flexible calculation than Kw distribution. So, it is better to say that, in 
most of the cases Kw distribution can easily be considered as an alternate to the 
Beta distribution but not always.  
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The Kw distribution has received attention of the several authors (see 
Lemonte, 2011; Nadar, et al., 2013; and Kizilaslan and Nadar, 2016). Although Kw 
distribution overcomes most of the issues of the Beta distribution but still, having 
only finite range on (0,1), sometimes, it is not very useful to model the practical 
situations. Cordeiro and de Castro (2011) proposed a generalization of the Kw 
distribution (Kumaraswamy generalized (Kw-G) distribution) by introducing a 
baseline distribution function G(x) in the existing density. Also, for θ = 1, Kw-G 
distribution reduces to the Proportional reverse hazard rate model (Gupta and 
Gupta, 2007). The cumulative distribution function (cdf) of the Kw-G distribution 
is  
 

  (1) 

 
and the corresponding probability density function (pdf) is 
 

   (2) 

 
Let {Xn, n ≥ 1} be a sequence of independent and identically distributed 

(i.i.d.) random variables with distribution function F(x) and probability density 
function f(x), then Xj is an upper record if Xj > Xi for j > i. Clearly, X1 is the first 
upper record. Similarly, we can define lower record values. Let R1, R2, …, Rn be n 
upper records and let r1, r2, …, rn denote the observed values of R1, R2, …, Rn 
respectively. Then the joint density of upper records R = (R1, R2, …, Rn) is given 
by 
 

  (3) 

 
where r = (r1, r2, …, rn) is observed value of R. Record values are one of the widely 
accepted and applied theory in statistics because it relates to many real life problems 
such as: extreme rainfalls at a particular place, extreme weather conditions, highest 
stock prizes etc. Chandler (1952) was the first to study the mathematical properties 
of the record by defining record statistics as the model of the successive extremes 
in a sequence of i.i.d. random variables. For thorough understanding of records, 
readers can look through the following books Ahsanullah (1995) and Arnold, et al. 

F x( ) = 1− 1−G x( )α{ }θ , α ,θ > 0,x ∈!,

f x( ) =αθg x( )G x( )α−1
1−G x( )α{ }θ−1 , α ,θ > 0,x ∈!.

fR r( ) = f ri( )
1− F ri( )

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n−1

∏ f rn( ), − ∞ < r1 < r2 <…< rn−1 < rn < ∞,
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(1998). Various authors have proposed statistical structure of the records statistics 
on numerous distributions e.g., Kumar (2015), Khan and Arshad (2016), 
Asgharzadeh et al. (2017), Ahsanullah and Nevzorov (2017), Anwar et al. (2019) 
Arshad and Baklizi (2018), Arshad & Jamal (2019a), Arshad & Jamal (2019b), 
Hassan et al. (2020), Tripathi et al. (2021) and Azhad et al. (2021). 

Classical Estimation 

Maximum Likelihood Estimation 
Using (1), (2) and (3), the likelihood function based on the upper records R, 
observed from Kw-G distribution is given by 
 

  (4) 

 
Taking log on both sides, 
 

  (5) 

 
Differentiating (5) with respect to α and θ and equating to 0, we get 
 

  (6) 

 

 `  (7) 

 
The solution of the nonlinear equations (6) and (7) gives the MLE  of 

(α,θ). Because of the nonlinear nature of these equations, it is very cumbersome to 
obtain the values of unknown parameters explicitly. So, we will apply numerical 

L α ,θ( ) = αθ( )n g ri( )G ri( )α−1

1−G ri( )α( )i=1

n−1

∏
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
g rn( ) G rn( )( )α−1

1−G rn( )α( )θ−1 .

ln L α ,θ( ) = n ln α( )+ n ln θ( )+ ln
i=1

n=1

∑ g ri( )G ri( )α−1

1−G ri( )( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ ln g rn( )+ α −1( )lnG rn( )+ θ −1( )ln 1−G rn( )α( ).

n+θ ln 1−G rn( )α( ) = 0.
n
α
+

lnG ri( )
1−G ri( )α

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟i=1

n

∑ −θ
G rn( )α lnG rn( )
1−G rn( )α

= 0.

(α̂ ,θ̂ )
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computation techniques such as Newton Raphson method to obtain the MLEs of 
the parameters (see Numerical Study, below). The corresponding MLE of the 
reliability function  is obtained, after replacing α and θ with their respective 

MLEs in . The MLE of the reliability function  is given by 
 

  

Interval Estimation 
Exact and generalized confidence intervals are obtained for unknown parameter α 
and θ respectively. We know R1, R2, …, Rn be the first n upper records generated 
from Kw-G distributions given in (1). Clearly, the quantity  has uniform 

distribution U(0,1) and let Y1 = −ln  and Yi = ln −ln  for each 
i = 2, 3, …, n. It is easy to verify that Yi’`s are i.i.d. exponential random variables 
(see Lemma 1 of Wang et al., 2015). Define 
 

   

 
where Zi = Y1 + Y2 + … + Yi = −ln . The random variable Ui(i = 1,2,…,n – 1) 
has U(0,1) distribution and Un has gamma distribution with parameters (n,1) (see 
Wang et al., 2010). Since U1, U2, …, Un−1 are independent U(0,1), it follows that 
−ln(U1), −ln(U2), …, −ln(Un−1) are independent Exp(0,1). Clearly, 

 ~ Gamma(n – 1,1). Therefore,	

 

  (8) 

 
where χ2(λ) denotes the χ2 distribution with λ degrees of freedom. Now we will 
observe the behavior of 1(R,α) with respect to α  (0,∞) for fixed R. For 
i = 1, 2, 3, …, n − 1, define 
 

! t( )
! t( ) ! t( )

!̂ t( ) = 1−G t( )α̂( )θ̂ .

F Ri( )
F Ri( ) F Ri−1( ) F Ri( )

Ui =
Zi
Zi+1

⎛

⎝⎜
⎞

⎠⎟

i

,i = 1,2,3,…,n−1,  and Un = Zn ,

F Ri( )

− ln Ui( )i=1

n−1∑

K1 R,α( ) = −2 ln Ui( )
i=1

n−1

∑ = 2 ln
ln 1−G Rn( )α( )
ln 1−G Ri( )α( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟i=1

n−1

∑ ~ χ 2 2n− 2( ),
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Now differentiating Qi(α) with respect to α, we get 

 

  

 
It is easily seen that Qi(α) > 0, for each i = 1, 2, 3, …, n − 1 and as Rn > Ri, then 
Q'i(α) > 0. Thus, for i = 1, 2, …, (n – 1), Qi(α) is an increasing function in α and 
ln(Qi(α)) is also an increasing function in α. Therefore, 1(R,α) is an increasing 
function of α for a fixed R. Hence, the exact confidence interval of α with 
confidence coefficient (1 – β) is given by 
 
 ( 1*(R, χ2

β/2(2n – 2)), 1*(R, χ2
1–β/2(2n – 2))) (9) 

 
where χ2

p(λ) denotes the pth percentile of the χ2 distribution with λ degrees of 
freedom and *

1(s) denotes the solution of the equation 1(r,x) = s for fixed R. 
Consider Weerahandi (2004) to derive a generalized confidence interval for 

the parameter θ . Un = –ln  follows gamma distribution with parameters 
(n,1), which implies V = 2Un = –2θln(1 – G(Rn)α) has a χ2 distribution with 2n 
degrees of freedom. Therefore, 
 

  (10) 

 
Let W be a χ2-distributed random variable with 2n – 2 degrees of freedom. 

 

*
1(R,W) is a unique solution of the equation 1(R,x) = W for fixed R. Substitute 

 

*
1(R,W) at place of α in equation (10). Therefore, the generalized pivotal quantity 

for θ is given by 
 

Qi α( ) =
ln 1−G Rn( )α( )
ln 1−G Ri( )α( ) .

′Qi α( ) = Qi α( )

=
G Ri( )α ln G Ri( )( )

1−G Ri( )α( )ln 1−G Ri( )α( ) −
G Rn( )α ln G Rn( )( )

1−G Rn( )α( )ln 1−G Rn( )α( )
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

F Rn( )

θ = V

−2ln 1−G Rn( )α( ) .
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  (11) 

      (12) 

 
where r = (r1, r2, …, rn) is the observed value of R = (R1, R2, …, Rn). From (11) it 
does not contain any unknown parameters. It is also evident from (12) 2 reduces 
to θ when R = r. Thus, 2 is a generalized pivotal quantity for θ. The generalized 
confidence interval of θ with confidence coefficient (1 – β) can be obtained from 
the following simulation algorithm and is denoted by [ 2,β/2, 2,(1–β/2)]. 
 

1. Generate V from χ2 distribution with 2n degrees of freedom.  

2. Generate W from χ2 distribution with (2n – 2) degrees of freedom and 
use generated value of W to obtain the unique solution *

1(R,W) of 
 

*
1(R,α) = W, for fixed R. 

3. Calculate the value of 2 by using the generated value of V obtained 
from step (1) and the solution *

1(R,W) obtained from step (2), in 
equation (11).  

4. Repeat the above steps m(≥10,000) times to obtain the m(≥10,000) 
values of  2.  

5. Calculate the β/2 and (1 – β/2) percentiles from the m generated values 
of  2 as 2,β/2 and 2,(1–β/2) respectively.  

Bayesian Estimation 
Consider the estimation of parameters and reliability function of Kw-G distribution 
from Bayesian point of view. An important factor in Bayesian estimation is the loss 
function L(δ, λ), where δ denotes the decision rule (estimator) based on the data 
and λ is the unknown parameter. Consider two types of loss functions, symmetric 
and asymmetric loss functions. Square error loss function (SEL) is considered as 
the symmetric loss function and Linear exponential loss function (Linex) (see 

K2 = − V

2ln 1−G Rn( )K1
* R ,W( )⎛

⎝
⎞
⎠

=
θ ln 1−G Rn( )K1

* R ,W( )⎡
⎣⎢

⎤
⎦⎥

ln 1−G Rn( )K1
* R ,W( )⎛

⎝
⎞
⎠

,
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Varian, 1975, and Zellner, 1986), entropy loss function (see James and Stein, 1961) 
are considered as the asymmetric loss functions. 
 

Loss Function Mathematical Form Bayes Estimator 
Linex ec(δ–λ) – c(δ–λ) – 1  –(1/c)ln(E(e–cλ))  

Entropy (δ/λ) – ln(δ/λ) – 1 (E(λ–1))–1 
Squared Error (δ–λ)2  E(λ)  

 
where c ≠ 0 is the parameter of Linex loss function and expectation is taken over 
posterior distribution of λ given data. The form of the Kw-G distribution is complex 
and therefore a tractable continuous joint prior distribution for both parameters α 
and θ is difficult to obtain. Thus, to choose a joint prior that incorporates uncertainty 
about both parameters, we use the method proposed by Soland (1969). Assume that 
the parameter α is restricted to a finite number of values α1, α2, …, αk with prior 
probabilities p1, p2, …, pk, respectively, i.e., the prior distribution for α is given by 
 
  (13) 

 
Further, assume the conditional prior distribution for θ | αj has gamma distribution 
with parameters aj and bj for j = 1, 2, …, k, i.e., 
 

  (14) 

 
It follows from (13) and (14) that the joint prior distribution of (α,θ) is given by 
 

  (15) 

 
Using (4) and (15), the joint posterior density of θ and α is given by 
 

  (16) 

π α j( ) = P α =α j( ) = pj , j = 1,2,…,k.

π θ |α j( ) = bj
a jθ a j−1e−θbj

Γ aj( ) , θ > 0,aj > 0,bj > 0.

π θ ,α j( ) = pjbj
a jθ a j−1e−θbj

Γ aj( ) , θ > 0,aj > 0,bj > 0,0 ≤ pj ≤1.

π θ ,α j |r( ) = pj bj
a j wjα j

n

ΓajQ
θ n+a j−1e−θK rn ,α j( ) G rn( )( )α j−1

1− G rn( )( )α j( ) ,
aj > 0,θ > 0, j = 1,2,…,n,
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where 
 

   

 
and 
 

   

 
Using (4) and (14) the conditional posterior density of θ | αj is given by 
 

  (17) 

 
and the marginal posterior density of αj is 
 

  (18) 

 
Obtain the Bayes estimator under different loss functions. For Bayes 

estimators under Linex loss function for θ, α and ℝ(t), we have 
 

  

 

  

 

wj =
g ri( ) G ri( )( )α j−1

1−G ri( )α j( )i=1

n−1

∏ ,Q =
pjbj

a j wjα j
nΓ n+ aj( )

Γaj K rn ,α j( )⎡
⎣

⎤
⎦
n+a j

G rn( )( )α j−1

1− G rn( )( )α j( )j=1

k

∑ ,

K rn ,α j( ) = bj − ln 1− G rn( )( )α j( ), j = 1,2,…,k.

π θ |α j ;r( ) = K rn ,α j( )⎡
⎣

⎤
⎦
n+a j

Γ n+ aj( ) θ n+a j−1( )e−θK rn ,α j( ) , θ > 0,

Pj = π θ ,α j |r( )dθ
0

∞

∫

= pj
bj
a j wjα j

nΓ n+ aj( )
Γaj K rn ,α j( )⎡

⎣
⎤
⎦
n+a j

G rn( )( )α j−1

Q 1− G rn( )( )α j( ) , j = 1,2,…,k,

θBL
* = − 1

c
ln Pj

j=1

k

∑ e−cθπ θ |α j ;r( )
0

∞

∫ dθ
⎛

⎝⎜
⎞

⎠⎟
= − 1
c
ln Pj

j=1

k

∑ 1+ c
K rn ,α j( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− n+a j( )⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,

α BL
* = − 1

c
ln E e−cα( )( ) = − 1

c
ln Pje

−cα j

j=1

k

∑
⎛

⎝⎜
⎞

⎠⎟
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and 
 

  

 
The Bayes estimators under entropy error loss function for θ, α and R(t) are 

given by 
 

  

 

  

 
and 
 

  

 

! t( )BL
*

= − 1
c
ln Pj π θ |α ;r( )dθ

0

∞

∫
j=1

k

∑
⎛

⎝⎜
⎞

⎠⎟

= − 1
c
ln

−c( )i Pj
i!i=0

∞

∑
j=1

k

∑ 1−
i ln 1− G t( )( )α j( )
K rn ,α j( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

− n+a j( )⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

θBE
* =

π θ |α j ;r( )π α j |r( )
θ

dθ
0

∞

∫
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

= Pj
j=1

k

∑
K rn ,α j( )
n+ aj −1( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

,

α BE
* = Pj

j=1

k

∑ 1
α j

π θ |α j ;r( )dθ
0

∞

∫
⎛

⎝
⎜

⎞

⎠
⎟

−1

=
Pj
α jj=1

k

∑
⎛

⎝
⎜

⎞

⎠
⎟

−1

,

!* t( )BE = Pj 1− F t;α j ,θ( )⎡
⎣

⎤
⎦
−1
π θ |α j ;r( )dα

0

∞

∫
j=1

k

∑
⎛

⎝⎜
⎞

⎠⎟

−1

= Pj
j=1

k

∑
π θ |α j ;r( )
1−G t( )α j( )θ

dθ
0

∞

∫
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1

= Pj
j=1

k

∑ 1+
ln 1−G t( )α j( )
K rn ,α j( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

− n+a j( )⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

−1

.
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The Bayes estimators under squared error loss function for θ, α and R(t) are 
given by 
 

  

 

  

 
and 
 

  

Prediction For Future Records 

Consider the problem of prediction of future sth upper record value Rs (s > n). 

Non-Bayesian Prediction 
A Non-Bayesian approach is presented to predict the Rs upper record value from a 
sequence of observed upper record up to n. The joint predictive likelihood function 
of Rs = rs, α and θ is given by (Basak and Balakrishnan, 2003) 
 

  (19) 

 
 From (19), (1) and (2), we get the predictive likelihood function of Kw-G 
distribution as  

θBS
* = θ Pj

j=1

k

∑ π θ |α j ;r( )dθ
0

∞

∫ = Pj
j=1

k

∑
n+ aj
K rn ,α j( ) ,

α BS
* = α jPj

j=1

k

∑ π θ |α j ;r( )dθ
0

∞

∫ = Pj
j=1

k

∑ α j

! t( )BS
*

= 1− F t;θ ,α j( )⎡
⎣

⎤
⎦Pjπ θ |α j ;r( )dθ

j=1

k

∑0
∞

∫

= Pj
j=1

k

∑ 1−
ln 1−G t( )α j( )
K rn ,α j( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

− n+a j( )

.

L rs ,α ,θ;r( ) = H rs ,α ,θ;r( )− H rn ,α ,θ;r( )⎡⎣ ⎤⎦
s−n−1

Γ s− n( )
× f rs ,α ,θ( ) f ri;α ,θ( )

1− F ri;α ,θ( )i=1

n

∏



PARAMETRIC AND RELIABILITY ESTIMATION OF THE Kw-G 

12 

  (20) 

 
After taking log on both sides in (20) and differentiating with respect to α, θ and rs 
and then equating them to 0, 
 

  (21) 

 

  (22) 

 

  (23) 

 
Reduce the above system of three equations into two equations by substituting the 
value of θ obtained from (21) into (22) and (23). The simplified form of the above 
system of equation is  
 

  (24) 

 

L rs ,α ,θ;r( ) = α n+1θ s

Γ s− n( ) ln 1−G rn( )α( )− ln 1−G rs( )α( )( )s−n−1

×g rs( ) 1−G rs( )α⎡
⎣⎢

⎤
⎦⎥
θ−1 g ri( )

1−G ri( )α
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟i=1

n

∏

s
θ
+ ln 1−G rs( )α( ) = 0

n+1
α

+
α s− n−1( )

ln 1−G rn( )α( )− ln 1−G rs( )α( )
g rs( )G rs( )α−1

1−G rs( )α
−
g rn( )G rn( )α−1

1−G rn( )α
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

−
α θ −1( )g rs( )G rs( )α−1

1−G rs( )α
+α

g ri( )G ri( )α−1

1−G ri( )αi=1

n

∑ = 0

α s− n−1( )g rs( )G rs( )α−1

ln 1−G rn( )α( )− ln 1−G rs( )α( )( ) +
′g rs( )
g rs( ) −

α θ −1( )g rs( )G rs( )α−1

1−G rs( )α
= 0

n+1
α

+
α s− n−1( )

ln 1−G rn( )α( )− ln 1−G rs( )α( )
g rs( )G rs( )α−1

1−G rs( )α
−
g rn( )G rn( )α−1

1−G rn( )α
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

−
α −s / ln 1−G rs( )α⎡

⎣⎢
⎤
⎦⎥( )−1⎛

⎝⎜
⎞
⎠⎟ g rs( )G rs( )α−1

1−G rs( )α
+α

g ri( )G ri( )α−1

1−G ri( )αi=1

n

∑ = 0
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  (25) 

 
After solving (24) and (25), we obtain the value of future upper record rs. This value 
is the point estimate of the future record.  

Bayesian Prediction 
Use the Bayesian approach to predict the future upper record Rs. The conditional 
distribution of Rs given Rn is obtained by using Markovian property (see Arnold et 
al., 1998).  
 

  

 
where R(⋅) = –ln(1 – F(⋅)). For Kw-G distribution, the conditional distribution of 
Rs | Rn is 
 

  (26) 

 
From (26), the Bayes predictive density of Rs = rs given Rn = rn is given by  

 

  (27) 

 
 Using equation (17) in (27), 

α s− n−1( )g rs( )G rs( )α−1

ln 1−G rn( )α( )− ln 1−G rs( )α( )( )
+

′g rs( )
g rs( ) −

α −s / ln 1−G rs( )α⎡
⎣⎢

⎤
⎦⎥( )−1⎛

⎝⎜
⎞
⎠⎟ g rs( )G rs( )α−1

1−G rs( )α
= 0

fRs |Rn rs | rn;α ,θ( ) = R rs( )− R rn( )⎡⎣ ⎤⎦
s−n−1

Γ s− n( )
f rs;α ,θ( )

1− F rn;α ,θ( ) , − ∞ < rs < rn < ∞,

fRs |Rn rs | rn;α ,θ( ) = αθ s−n

Γ s− n( )

× ln
1−G rn( )α
1− G rs( )( )α

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

s−n−1

1− G rs( )( )α
1−G rn( )α

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

g rs( ) G rs( )( )α−1

1− G rs( )( )α

f rs | rn( ) = fRs |Rn rs | rn;α ,θ( )Pjπ θ |α j ;r( )dθ .
0

∞

∫
j=1

k

∑
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  (28) 

 
where B(a,b) is the complete beta function. Now we find the lower and upper 
100 (1 – α)% prediction bounds for Rs. First, we find the predictive survival 
function P(Rs ≥ d|rn), for any positive constant d 
 

  

 

 where , and IB(n + aj, s – n, χ) is the incomplete beta 

function defined as 
 

f rs | rn( ) = Pj
α jθ

s−n

Γ s− n( )0

∞

∫ ln
1− G rn( )( )α j

1− G rs( )( )α j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=1

k

∑
s−n−1

×
g rs( ) G rs( )( )α j−1 1− G rs( )( )α j( )θ−1

1− G rn( )( )α j( )θ

×
K rn ,α j( )⎡
⎣

⎤
⎦
n+a j

Γ n+ aj( ) θ n+a j−1( )e−θK rn ,α j( )dθ

=
Pj K rn ,α j( )⎡
⎣

⎤
⎦
n+a j

α j

B n+ aj ,s− n( )j=1

k

∑

× ln
1− G rn( )( )α j

1− G rs( )( )α j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

s−n−1

1

1− G rs( )( )α j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

×
g rs( ) G rs( )( )α j−1

bj − ln 1− G rs( )( )a j( )⎛
⎝⎜

⎞
⎠⎟
s+a j

P Rs ≥ d | rn( ) = 1− f rs | rn( )drsrn

d

∫ = 1− Pj
j=1

k

∑ 1−
IB n+ aj ,s− n,ζ j( )
B n+ aj ,s− n( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ζ j =
bj − ln 1− G rn( )( )α j( )
bj − ln 1− G d( )( )α j( )
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Let L(rn) and U(rn) be two constants such that 

 

  (29) 

 
Using (29), we obtain two sided 100 (1 – τ)% predictive bounds for Rs as 
(L(rn), U(rn)), i.e., 
 
   

 
Consider a special case when s = n + 1, which is of our interest practically 

because after getting n records, the next record n + 1 is needed. The predictive 
survival function of Rn+1 is given as 
 

   

 
Assume the case when α = 1 (WLOG). For this case, predictive survival function 
can be written as  
 
  (30) 
 
From (29) and (30) we have lower and upper limits as 
 

   

 

   

IB a,b,χ( ) = ua−1 1− u( )b−1 du.
0

χ

∫

P Rs > L rn( ) | rn⎡⎣ ⎤⎦ = 1− τ
2

 and P Rs >U rn( ) | rn⎡⎣ ⎤⎦ =
τ
2

.

P L rn( ) < Rs <U rn( )⎡⎣ ⎤⎦ = 1−τ .

P Rn+1 ≥ d | rn( ) = 1− Pj 1−ζ j
n+a j( )

j=1

k

∑

P Rn+1 ≥ d | rn( ) = ζ n+a .

L rn( ) = G−1 1− Exp b− b− ln 1−G rn( )( )( ) 1− τ
2

⎛
⎝⎜

⎞
⎠⎟

−1
n+a

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

U rn( ) = G−1 1− Exp b− b− ln 1−G rn( )( )( ) τ
2

⎛
⎝⎜

⎞
⎠⎟

−1
n+a

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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A Numerical Study 

A numerical approach is applied to show the applicability of the results, obtained 
in this article. For this purpose, we consider a special case of Kw-G distribution by 
taking exponential distribution, i.e, G(x) = 1 – e–x, as the baseline distribution 
function. So, the probability density function of Kumaraswamy exponential 
generalized (KwExp-G) distribution is  
 

   

 
The corresponding distribution function is  
 

   

 
 
and the corresponding reliability function is  
 

   

 
For the simulation purpose, we use R software (R Core Team, 2015).  
 
Example 1 (Simulated data)  Generate a random sample of upper record 
values of size n = 8 from KwExp-G distribution for α = 2 and θ = 3 as  
 
 0.38109.0.53398.1.04678.1.05722.1.27061.1.42030.1.87770.2.64394.  
 
The MLE of α and θ with the help of Newton-Raphson method and using the 
equations (6) and (7), are  = 1.54 and  = 3.58. Assume that the parameter α 
constitutes 10 finite discrete values as  
 
 1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5.  
 
with equal probability 0.1. For the Bayes estimators, first calculate the hyper-
parameters (aj, bj) for each αj, j = 1, 2, …, 10. A nonparametric approach 

f x( ) =αθe− x 1− e− x( )α−1
1− 1− e− x( )α{ }θ−1 , α ,θ > 0,x > 0.

F x( ) = 1− 1− 1− e− x( )α{ }θ , α ,θ > 0,x > 0.

R t( ) = 1− 1− e− t( )α{ }θ , α ,θ > 0,x > 0.

α̂ θ̂
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 (ti = Ri) = (n – i + 0.625)/(n + 0.25), i = 1, 2, 3, …, n is used to estimate the aj 
and bj for any two different values of the reliability function R(t1) and R(t2) (see 
Martz and Waller, 1982).  (⋅) is the expected value of the reliability function for 
given α = αj, i.e,  
 

  (31) 

 
Consider  (1.05722) = 0.5606061 and   (1.4203) = 0.3181818, for the solution 
of (aj, bj) for each j = 1, 2, …, 10. These two values are substituted into (31), where 
aj and bj are solved numerically for each αj, j = 1, 2, …, 10, using the Newton-
Raphson method. After that, with the help of calculated values of (aj, bj), posterior 
probabilities are calculated for each aj, and presented in Table 1. The MLEs, Bayes 
estimators and reliability estimators (for different t = 0.1, 0.3, 0.5) are also 
calculated and presented in Table 2 and Table 3. Table 4 gives the confidence 
intervals of α, θ and also confidence bounds for the predicted value of the future 
upper record.  
 
 
Table 1. Prior Information and Posterior Probabilities 
 

j 1 2 3 4 5 
α 1.6 1.7 1.8 1.9 2 
p 0.1 0.1 0.1 0.1 0.1 
a 4.0465112 2.0976982 7.9980718 0.8036931 3.7078846 
b 1.947399 1.296337 2.667335 0.649253 1.682558 
P 0.12634223 0.07664693 0.20789971 0.04588925 0.10586853       
j 6 7 8 9 10 
θ 2.1 2.2 2.3 2.4 2.5 
p 0.1 0.1 0.1 0.1 0.1 
a 5.3189091 3.2290364 1.6731381 4.5032895 2.5067792 
b 1.99729 1.45264 0.96907 1.707029 1.20156 
P 0.13647303 0.08937128 0.05299478 0.09980681 0.05870744 

 
 

!R

!R

Eθ |α j
R t( ) |α =α j
⎡⎣ ⎤⎦ = 1− 1− e− t( )α j( )0

∞

∫
θ bj

a jθ a j−1e−θbj

Γ aj( ) dθ

= 1−
ln 1− 1− e− t( )α j( )

bj

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−a j

!R !R
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Table 2. Estimates of α and θ  
 
 

(⋆)ML (⋆)BS (⋆)BE 
(⋆)BL 

 c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
α 1.5400 1.9970 1.9594 1.9594 2.0162 1.9782 1.9599 1.9424 
θ 3.5800 3.8248 3.5403 4.5407 4.1330 3.5757 3.3666 3.1867 

 
 
Table 3. Estimates of Reliability for different t 
 

t (⋆)ML (⋆)BS (⋆)BE 
(⋆)BL 

c = −0.5 c = 0.5 c = 1.0 c = 1.5 
1 0.9711 0.9654 0.9649 0.9600 0.9598 0.9596 0.9595 
3 0.8062 0.7891 0.7804 0.7614 0.7578 0.7559 0.7541 
5 0.5985 0.5777 0.5530 0.5319 0.5254 0.5222 0.5190 

 
 
Table 4. Interval Estimates of unknown quantity and Prediction 
  

90% 95% 97% 99% 
α [0.1097, 2.5781] [0.0577, 3.0000]  [0.0350, 3.2972] [0.1080, 3.9060] 
θ [1.2365, 5.4395] [1.0358, 6.2426]  [1.1019, 6.7173] [0.7969, 8.1656] 
R9 [2.6655, 4.1139] [2.6546, 4.5230]  [2.6503, 4.8452] [2.6460, 5.5467] 

 
 
Example 2 (Real Data)  Nelson (1972) described the results of a life test 
experiment in which specimens of a type of electrical insulating fluid were 
subjected to a constant voltage stress. The length of time until each specimen failed, 
or "broke down," was observed. The experiment was tested at voltages ranging 
from 26 to 38 kilovolts (KV). Here, we consider the breakdown time of specimens 
at only 38 KV. The observed data is  
 
 0.47, 0.73, 1.40, 0.74, 0.39, 1.13, 0.09, 2.38.  
 
From Kolmogorov-Smirnov (Ks) test, the observed data fits our KwExp-G 
distribution smoothly, with parameters’ values α = 1.60 and θ = 1.59 and the Ks-
Statistics for the fitted data is 0.25 with p-value 0.98. The upper record values from 
the observed data are R = (0.47, 0.73, 1.40, 2.38). The estimated values of the 
parameters based on records are 
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Table 5. Estimates of α and θ 
 
 

(⋆)ML (⋆)BS (⋆)BE 
(⋆)BL 

 c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
α 1.5800 1.5777 1.5141 1.6075 1.5879 1.5475 1.5275 1.5074 
θ 2.0500 1.8978 1.4775 2.6164 2.1762 1.6995 1.5484 1.4281 

 
 
Table 6. Estimates of Reliability for different t 
 

t (⋆)UMVUE (⋆)ML (⋆)BS (⋆)BE 
(⋆)BL 

c = −0.5 c = 0.5 c = 1.0 c = 1.5 
1 0.8792 0.9818 0.9453 0.9458 0.9449 0.9449 0.9444 0.9439 
3 0.6675 0.8838 0.7819 0.7851 0.7781 0.7787 0.7754 0.7719 
5 0.4929 0.7525 0.6207 0.6259 0.6141 0.6141 0.6086 0.6018 

 
 
Table 7. Interval Estimates 
  

90% 95% 97% 99% 
α [0.9700, 6.6790] [0.6944, 7.4772] [0.5395, 8.0339] [0.3045, 9.1651] 
θ [0.3382, 3.7110] [0.2486, 4.3604] [0.2768, 4.8490] [0.1505, 6.6982] 
R4 [1.4324, 3.8704] [1.4159, 4.6491] [1.4095, 5.2859] [1.4031, 6.8624] 

 
 
Given in Tables 5 and 6 are the various estimates of the parameters and reliability 
function respectively, and in Table 7 the interval estimates of the parameters. Table 
7 shows that the prediction method is well developed as known value of R4 is 
contained in the intervals. Proceeding in the same manner, the predicted next time 
of breakdown (upper record) R5 of the specimens used in experiments given in 
Table 8. 
 
 
Table 8. Prediction of next record breakdown time 
 

  90% 95% 97% 99% 
R5 [2.4151, 4.9456] [2.3973, 5.7192] [2.3903, 6.3423] [2.3854, 7.8526] 

 
 

In order to compare the performances of the various estimators, use the 
concept of the mean square error and estimated risk: 
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1. Samples of upper records with different sample sizes (n) are generated 
from the KwExp-G distribution for various values of the unknown 
parameters. 

2. The values of hyper-parameters and also all related posterior 
probabilities are calculated.  

3. Estimates of ,  and reliability function are obtained. 

4. Above steps are repeated m times to evaluate the estimated risks and 
MSEs of estimates using 

 

  

 
From Table 9, observe the Bayes estimates of asymmetric loss functions are 

better performer than Bayes estimators of symmetric loss function. Also, the sample 
size of upper records increases, the MSEs are getting smaller, and similarly the 
same behavior of the unknown parameters and reliability function in Tables 10 and 
11. 
 
 
  

α̂ θ̂

ER δ( ) = 1
m

L δ i ,λ( )
i=1

m

∑    and   MSE δ( ) = 1
m

δ i − λ( )2

i=1

m

∑ ,λ ∈Θ.
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Table 9. MSEs of the Bayes estimates of α and θ 
 

(α,θ) = (1.5,2) 

n MSE(α)BS MSE(α)BE 
MSE(α)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.2926 0.2518 1.3860 1.0507 0.6142 0.4703 0.3590 
8 0.2815 0.2421 1.2667 0.9554 0.5523 0.4201 0.3184 
10 0.2862 0.2466 0.9915 0.7433 0.4210 0.3156 0.2351         

n MSE(θ)BS MSE(θ)BE 
MSE(θ)BL 

c = −0.5 c = 0.5 c = 1.0 c = 1.5 c = 2.0 
6 0.2121 0.1023 0.5244 0.3354 0.1334 0.0858 0.0604 
8 0.1833 0.0924 0.4616 0.2919 0.1159 0.0772 0.0588 
10 0.1197 0.0707 0.3119 0.1924 0.0786 0.0597 0.0567 
        

(α,θ) = (1.8,2) 

n MSE(α)BS MSE(α)BE 
MSE(α)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.0601 0.0428 0.7492 0.5174 0.2405 0.1603 0.1051 
8 0.0578 0.0412 0.7070 0.4857 0.2243 0.1498 0.0993 
10 0.0561 0.0400 0.7029 0.4840 0.2240 0.1401 0.0990 
        

n MSE(θ)BS MSE(θ)BE 
MSE(θ)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.1862 0.0860 0.4739 0.2994 0.1147 0.0726 0.0511 
8 0.1766 0.0881 0.4471 0.2821 0.1113 0.0741 0.0568 
10 0.1475 0.0760 0.3841 0.2388 0.0903 0.0641 0.0533 
        

(α,θ) = (2,2) 

n MSE(α)BS MSE(α)BE 
MSE(α)BL 

c = −0.5 c = 0.5 c = 1.0 c = 1.5 c = 2.0 
6 0.0051 0.0034 0.4590 0.2892 0.1102 0.0697 0.0498 
8 0.0050 0.0032 0.4468 0.2813 0.1100 0.0726 0.0552 
10 0.0040 0.0030 0.3200 0.1986 0.0824 0.0627 0.0589 
        

n MSE(θ)BS MSE(θ)BE 
MSE(θ)BL 

c = −0.5 c = 0.5 c = 1.0 c = 1.5 c = 2.0 
6 0.1793 0.8269 0.4590 0.2892 0.1102 0.0697 0.0498 
8 0.1755 0.8640 0.4468 0.2813 0.1100 0.0726 0.0552 
10 0.1244 0.0740 0.3200 0.1986 0.0824 0.0627 0.0589 
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Table 10. Estimated risks for Bayes estimates of α and θ 
 

(α,θ) = (1.5,2) 

n ER(α)BS ER(α)BE 
ER(α)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.2961 0.2547 1.2736 0.9644 0.5605 0.4272 0.3242 
8 0.2942 0.2535 1.1826 0.8916 0.5130 0.3887 0.2931 
10 0.2875 0.2479 1.1475 0.8628 0.4939 0.3731 0.2805         

n ER(θ)BS ER(θ)BE 
ER(θ)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.1789 0.0848 0.4562 0.2873 0.1110 0.0714 0.0522 
8 0.1589 0.0797 0.4090 0.2559 0.0998 0.0672 0.0535 
10 0.1516 0.0785 0.3924 0.2445 0.0959 0.0660 0.0545 
        

(α,θ) = (1.8,2) 

n ER(α)BS ER(α)BE 
ER(α)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.0601 0.0428 0.6975 0.4798 0.2204 0.1458 0.0950 
8 0.0592 0.0422 0.6380 0.4356 0.1984 0.1318 0.0875 
10 0.0490 0.0389 0.3721 0.2448 0.1023 0.0666 0.0463         

n ER(θ)BS ER(θ)BE 
ER(θ)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.1681 0.0780 0.4339 0.2722 0.1032 0.0659 0.0483 
8 0.1553 0.0817 0.3966 0.2486 0.0991 0.0687 0.0568 
10 0.0783 0.0635 0.2039 0.1234 0.0576 0.0540 0.0463 
        

(α,θ) = (2,2) 

n ER(α)BS ER(α)BE 
ER(α)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.0049 0.0030 0.4523 0.2867 0.1133 0.0748 0.0563 
8 0.0040 0.0030 0.4094 0.2560 0.0992 0.0661 0.0521 
10 0.0030 0.0019 0.3898 0.2422 0.0900 0.0643 0.0519         

n ER(θ)BS ER(θ)BE 
ER(θ)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.1826 0.0893 0.4589 0.2910 0.1148 0.0753 0.0561 
8 0.1164 0.0637 0.4094 0.2560 0.0992 0.0663 0.0525 
10 0.0899 0.0543 0.3832 0.2422 0.0940 0.0530 0.0511 
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Table 11. MSEs and Estimated risks (parenthesis) of Bayes estimates of R(t)(×10−3) 

 
(α,θ,t) = (1.5,2,0.1) 

n (⋆)BS (⋆)BE 
(⋆)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 1.8158 1.8053 1.2560 1.2519 1.2438 1.2397 1.2356 
 (1.8158) (0.9872) (0.6205) (0.1556) (0.1564) (0.6273) (1.4152) 
8 1.5189 1.5057 1.2574 1.2519 1.2545 1.2457 1.2418 
 (1.5189) (0.8253) (0.6212) (0.1557) (0.1566) (0.6284) (1.4179) 

10 1.2619 1.2460 1.2564 1.2511 1.2498 1.2211 1.2388 
  (1.2619) (0.8253) (0.6212) (0.1557) (0.1566) (0.6284) (1.4179) 
        

(α,θ,t) = (1.8,2,0.1) 

n (⋆)BS (⋆)BE 
(⋆)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.1922 0.1891 0.0561 0.0555 0.0542 0.0537 0.0530 
 (0.1922) (0.0993) (0.0280) (0.0069) (0.0068) (0.0269) (0.0599) 
8 0.1126 0.1096 0.0610 0.0611 0.0540 0.0532 0.0510 
 (0.1126) (0.0651) (0.0346) (0.0086) (0.0080) (0.0335) (0.0540) 

10 0.0610 0.0589 0.0620 0.0615 0.0605 0.0600 0.0594 
  (0.0610) (0.0310) (0.0309) (0.0077) (0.0076) (0.0301) (0.0672) 
        

(α,θ,t) = (2,2,0.1) 

n (⋆)BS (⋆)BE 
(⋆)BL 

c = −1.0 c = −0.5 c = 0.5 c = 1.0 c = 1.5 
6 0.0149 0.0145 0.0370 0.0377 0.0390 0.0397 0.0404 
 (0.0149) (0.0075) (0.0186) (0.0047) (0.0049) (0.0198) (0.0453) 
8 0.0134 0.0140 0.0359 0.0364 0.0376 0.0382 0.0388 
 (0.0134) (0.0073) (0.0179) (0.0045) (0.0046) (0.0190) (0.0435) 

10 0.0610 0.0589 0.0620 0.0615 0.0605 0.0600 0.0594 
  (0.0610) (0.0310) (0.0309) (0.0077) (0.0076) (0.0301) (0.0672) 
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