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CHAPTER 1: INTRODUCTION 

 Post-translational modification (PTM) of proteins significantly contributes to the 

complexity and diversity of proteome (Walsh, Garneau-Tsodikova et al. 2005). PTMs alter 

function of target proteins by altering their subcellular localization, activity, stability or 

interaction with other proteins. A protein can be modified at multiple residues 

simultaneously. PTMs may be dynamic and reversible in nature. More than 200 different 

types of PTMs are known so far (Prabakaran, Lippens et al. 2012). There are two major 

forms of post-translational modification (Figure 1.1): 

a) Covalent addition of functional groups or other proteins or peptides to target 

proteins. 

b) Proteolytic processing of proteins. 

Covalent addition of functional groups/proteins/peptides to substrate proteins        

Post-translational processing can modify the N-terminus, C-terminus or any 

specific internal residue of a protein (Wold 1981).  Functional groups such as glycosyl-, 

acetyl-, methyl-, phosphoryl-, ADP-ribosyl- can be added to the target proteins. Metabolic 

donors like ATP, Acetyl-CoA, NAD carry the functional groups, and the forward and 
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reverse modifications involve single enzymes respectively. Polypeptide modifications 

such as ubiquitination, SUMOylation and neddylation also occur. For polypeptide 

conjugation, the forward reactions require a set of enzymes, whereas the removal of 

modifiers need single enzymes.  

Proteolytic processing of proteins  

Highly regulated proteolytic cleavage of proteins is an irreversible yet ubiquitous 

form of post translational modification. Proteolysis gives rise to neo- N- and C- termini of 

proteins (Neurath and Walsh 1976). An example of proteolysis is the absence of the initial 

methionine residue in a matured, newly synthesized protein. Specific families of 

proteases perform proteolytic processing of proteins, these proteases are named after 

the amino acid residues they target for proteolysis. These include cysteine proteases, 

metalloproteases, aspartic acid proteases, mixed proteases, serine proteases and 

threonine proteases (Lopez-Otin and Bond 2008). There are myriad of examples where 

proteases and peptidases help in maturation of precursor proteins. For examples, newly 

synthesized SUMO is cleaved at its C-terminus by a family of cysteine proteases, known 

as Sentrin like proteases (SENPs) in vertebrates, to form a mature and functional 

modifying protein (Xu and Au 2005). Various hormones, enzymes, and blood complement 

factors are synthesized as precursors, they are activated by proteolytic cleavage of their 

polypeptide structures, etc (Brinkhous and Scarborough 1969, Orci, Ravazzola et al. 

1987, Terada and Nakanuma 1995).  

However, there other post-translational modifications whose deconjugation 

machinery is not known so far. These modifications fall in the category of irreversible 

enzymatic PTMs. One such example is alkylation; there is no known modification enzyme 
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for this PTM so far, however, in 2005 an oxidative route for removal of the N-alkyl bonds 

has been reported (Walsh, Garneau-Tsodikova et al. 2005, Li, Chordia et al. 2007).  

Furthermore, there are non-enzymatic modifications of proteins which occur under 

various environmental conditions, such as glycation and carbonylation. In general, 

glycation affects the normal functions of target proteins in an adverse way, and 

carbonylation is a result of oxidative stress (especially metal catalyzed) on proteins 

(Harding 1985). 

The SUMO pathway 

Small ubiquitin-like modifiers (SUMOs) are around 100 amino acid residue-

containing proteins (about 10kDa), which can modify hundreds of specific target proteins 

at their lysine residues in a reversible manner (Figure 1.2). This modification affects 

several aspects of cell physiology including nucleo-cytoplasmic shuttling, cell migration, 
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DNA repair, transcription, cell cycle and protein stability. First discovered by Michael 

Matunis, SUMO-1 was found to be essential for localization of the first discovered SUMO 

target, RanGAP1, at the nuclear pore complex (Matunis, Coutavas et al. 1996). RanGAP1 

regulates nulceo-cytoplasmic transport of proteins, through activating the hydrolysis of 

the Ran GTPase-bound GTP to GDP (Matunis, Wu et al. 1998). 

SUMO proteins are present in all eukaryotic organisms from yeasts to humans. In 

yeast, C. elegans and D. melanogaster, there is a single gene for SUMO, whereas in 

plants and vertebrates there are multiple SUMO genes (Muller, Hoege et al. 2001, Park, 

Kim et al. 2011). In humans, there are three SUMO paralogs, SUMO1, SUMO2 and 

SUMO3. SUMO2 and 3 are 96% identical with each other, whereas SUMO1 is only 45% 

identical to SUMO2/3 (Hay 2005). The SUMO proteins are synthesized as precursors, 

and they have an extra 2-11 amino acid residues after an invariant di-glycine (GG) motif 

at their C-terminal ends (of mature SUMOs). SENPs in vertebrates and its homolog Ubl-

specific protein protease in yeast serve for removing the extra residues after the GG motif 

to generate the mature SUMOs.   

The SUMOylation machinery 

SUMOylation is a post-translational protein modification like ubiquitination. The 

SUMOylation of proteins involves three steps involving different classes of enzymes, E1 

activating enzyme, E2 conjugating enzyme and E3 ligating enzyme (Hay 2005, Geiss-

Friedlander and Melchior 2007, Wang and Dasso 2009, Gareau and Lima 2010). SUMO 

E1 heterodimer SAE1/SAE2 (SUMO activating enzyme subunit 1/SUMO activating 

subunit 2) activate the SUMO by formation of a thioester bond between the catalytic 

cysteine residue of SAE2 and the C-terminal glycine carboxyl group of SUMO. During the 
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second step, SUMO transfers to the E2 conjugating enzyme Ubc9. The catalytic cysteine 

residue of Ubc9 forms a thioester bond with the C-terminal carboxy group of SUMO. The 

third step involves the transfer of SUMO from Ubc9 to the substrate protein, resulting in 

the formation of an isopeptide bond between the terminal glycine of SUMO and the -

chain of a lysine residue in the substrate protein. At present, only a single E1 heterodimer 

and a universal E2 enzyme (SAE1/SAE2 and Ubc9 respectively) are known for the 

SUMOylation pathway; the presence of multiple SUMO E3 ligases determines target 

specificity in vivo (Geiss-Friedlander and Melchior 2007). Several SUMO isopeptidases, 

known as Sentrin-like proteases (SENPs), de-conjugate SUMO from its targets (Li and 

Hochstrasser 1999, Mukhopadhyay and Dasso 2007).  

SUMO E3 ligases 

The specificity of the SUMO modification is attributed to SUMO-specific E3 ligases 

that designate specific targets or distinct group of substrate proteins for their conjugation. 

There are three major categories of SUMO E3 ligases: the group I E3 ligases has a 

characteristic SP-RING catalytic domain, the group II has a highly unfolded E3 catalytic 
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domain, and the group III E3 ligases. The group III E3 ligases contain two distinct domains 

with no similarity in sequence to the other two classes of SUMO E3 enzymes (Figure 1.3). 

The group I E3 ligases include PIAS (protein inhibitor of activated STAT) proteins that 

comprise of PIAS1, PIASx, PIASx, PIAS3, PIASy and Topors (Topoisomerase I binding 

protein) in vertebrates. Mms1 is present both in vertebrates and yeast (Jackson 2001, 

Kotaja, Karvonen et al. 2002, Weger, Hammer et al. 2003, Duan, Sarangi et al. 2009). 

These E3 ligases have an N-terminal scaffold attachment factor-A/B (SAP) domain, a 

PIAS motif, a PINIT domain and the C-terminal serine/threonine rich region, in addition to 

a highly-conserved SP-RING domain (Schmidt and Muller 2003, Weger, Hammer et al. 

2005, Sharrocks 2006). RanBP2 (Ran binding protein 2) or Nup 358 represents the group 

II SUMO E3 ligases, it is a vertebrate specific SUMO E3 ligase. The catalytic domain of 

RanBP2 binds the SUMO E2 enzyme, Ubc9 and the SUMO protein, and positions the 

charged Ubc9 with the bound SUMO for a favorable interaction with an acceptor lysine 

residue in a target protein. RanBP2 is known to stimulate the SUMOylation of Sp100, 

HDAC4 and PML (Kirsh, Seeler et al. 2002, Pichler, Gast et al. 2002, Pichler, Knipscheer 

et al. 2004). The group III is represented by the Pc2/polycomb group member 2 SUMO 

E3 ligase (Kagey, Melhuish et al. 2003). The Pc2 proteins are present only in vertebrates. 

Transcription regulators, such as the deacetylases HDAC4 and HDAC7 also function as 

highly specific SUMO E3 ligases. However, detailed analyses are needed to demonstrate 

if they fall in one of the groups mentioned above, or they form a separate category of 

SUMO E3 ligases (Zhao, Sternsdorf et al. 2005, Gao, Ho et al. 2008). 
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SUMO isopeptidases 

SUMOylation can be reversed by a group of de-SUMOylases that remove the 

SUMO moieties from target proteins, rendering this PTM dynamic. The SUMO 

isopeptidases, also called the Sentrin like proteases or SENPs, are cysteine proteases 

with a conserved set of around 200 amino acid residues near their C-terminal ends which 

contain the catalytic triad. The N-terminal regions of the SENPs are distinct and determine 

their specific subcellular distribution and substrate specificities (Nayak and Muller 2014). 

There are six SUMO isopeptidases in human namely SENP1, SENP2, SENP3, SENP5, 

SENP6 and SENP7; all of them have distinct subcellular localization. There are different 

families of cysteine proteases and the SENPs lie in the C48 cysteine protease family. 

Also, each of the SENPs have distinct subcellular distribution. SENP1 shuttles between 

cytoplasm and nucleus, SENP2 is highly enriched at the nuclear pore complexes, SENP3 

and SENP5 are present in the nucleolus, and the SENP6 and SENP7 are mainly present 
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in the nucleoplasm (Nayak and Muller 2014) (Table 1.1). There is another group of SUMO 

isopeptidases found only in the mammals with no homologues in other eukaryotes, DeSi-

1 and DeSi-2 (Shin, Shin et al. 2012). DeSi-1 is distributed in both cytoplasm and nucleus 

whereas the DeSi-2 is found only in the cytoplasm. The catalytic domains of DeSi-1 and 

-2 lie near their N-terminal regions, in contrast to the C-terminal catalytic domains of the 

other SENPs. The most recent addition to this growing list of SUMO isopeptidases is 

USPL1/ubiquitin specific protease-like 1. USPL1 colocalizes with coilin in Cajal bodies 

and is not very abundant in cells (Schulz, Chachami et al. 2012).  

Target site selection and the SUMOylation motif 

 There are three different but not mutually exclusive ways by which SUMO can 

modify an acceptor lysine in a target protein (Flotho and Melchior 2013).  

1) The lysine in the target protein is present in a small signature motif, known as 

SUMOylation consensus site, which is recognized by the SUMO E2 enzyme Ubc9 

for conjugation. 

2) The target protein has a SUMO interaction motif (SIM) which recruits the 

Ubc9∼SUMO thioester through its interaction with the SUMO moiety and results 

in the SUMO conjugation of a nearby lysine residue. This process is called SIM-

mediated SUMOylation. 

3) The SUMO E3 ligases can simultaneously bind both the charged Ubc9 and the 

target protein, and thus orients the specific lysine residue of the substrate protein 

for modification. The process is known as the E3 ligase-dependent SUMOylation. 
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           SUMOylation occurs at the lysine residues present within the consensus 

sequence- ψKx(E/D); where ψ is a hydrophobic residue, x is any residue, and E/D 

represents glutamic acid (E) and aspartic acid (D) respectively (Rodriguez, Dargemont et 

al. 2001). Interestingly, recent studies have shed light on some variations to the 

consensus SUMO motif. These motifs include an inverted motif (E/D)xKψ, hydrophobic 

consensus motif ψψψKxE, phosphorylated SUMOylation motif (pSuM) ψKx(pS) (pS 

represents phosphorylated Serine residue) and extended pSuM with the sequence 

ψKx(pS)(pS)XXX(pS)P (Matic, Schimmel et al. 2010).  Furthermore, studies show that 

the SUMO consensus motif in certain proteins also contain additional residues and motifs 

that facilitate SUMOylation. One such example is phosphorylation-dependent 

SUMOylation at ψKxExx(pS) (Hietakangas, Anckar et al. 2006, Yang and Gregoire 2006) 

(Table 1.2). However, some proteins are SUMOylated at lysines that do not lie in any of 

the signature sequences mentioned above (Hoege, Pfander et al. 2002, Pichler, 

Knipscheer et al. 2005, Figueroa-Romero, Iniguez-Lluhi et al. 2009). One such example 

is the S. cerevisiae protein PCNA, SUMOylated at a non-canonical site lysine 164. Human 

E2-25K modified at lysine 14, also lacks the canonical SUMOylation sequence (Hoege, 
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Pfander et al. 2002, Pichler, Knipscheer et al. 2005, Gali, Juhasz et al. 2012). The 

occurrence of the non-canonical sites has widened the repertoire of the SUMO targets. 

SUMO interaction motif 

First reported during a study on PML protein in yeast, non-covalent interaction of 

SUMO with target proteins is important for formation of multiprotein complexes (Boddy, 

Howe et al. 1996). Numerous studies suggest that these interactions are central to 

various cellular processes, such as, protein stability and chromosome segregation during 

mitosis (Poulsen, Hansen et al. 2013, Sridharan and Azuma 2016). SUMO binding motif 

(SBM) was first reported in yeast (Minty, Dumont et al. 2000). In this study, analysis of 

the SBM of the SUMO1-interacting partners revealed a common sequence of 11- amino 

acid region (probable SBM) that constituted the core SXS motif (two serine residues with 

a central amino acid). Acidic residues (D/E) flank the C-terminal side of the motif and the 

N-terminal region flanked by hydrophobic residues. However, a study done by Jing Song 

et al in 2004 showed that the SUMO-binding motif is essentially a hydrophobic amino acid 

rich region with the sequence V/I-X-V/I-V/I. The second position in the sequence can be 

occupied by a polar or acidic residue (Song, Durrin et al. 2004). Further studies on yeast 

identified a similar sequence with a hydrophobic core and flanking acidic residues 

(Hannich, Lewis et al. 2005, Hecker, Rabiller et al. 2006). In RanBP2, the hydrophobic 

core is preceded by the acidic stretch; whereas in PIASx the acidic stretch follows the 

hydrophobic SIM motif. TTRAP (TRAF and TNF receptor associated protein) interacts 

with the TNF-R family of receptors and preferentially binds SUMO2. The SIM motif of 

TTRAP lacks any acidic amino acid stretch (Hecker, Rabiller et al. 2006). Another study 

performed with PIAS1, PIAS2 and PIAS3 shows that the presence of phosphorylated 
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residues along with the hydrophobic core is important for binding for both SUMO1 and 

SUMO2 (Stehmeier and Muller 2009). The SIM binds the unstructured region of the 

SUMO protein (Song, Zhang et al. 2005). 

There are numerous examples of SIM motif functions in proteins. A classic 

example is nuclear transport involving the nucleoporin RanBP2/Nup358; RanGAP1, 

when modified by SUMO1, binds Nup358/RanBP2 and forms a stable complex at the 

nuclear pore (Song, Durrin et al. 2004, Song, Zhang et al. 2005). In the PML complex, 

the PML protein recruits Sp100, DAXX and CBP. These proteins, including PML, have 

SUMO-binding motifs (Lin, Huang et al. 2006, Shen, Lin et al. 2006).  The transcription 

repressors, HDAC2 and HDAC6, are recruited by SUMO-modified transcription 

coactivator p300 and transcription factor Elk-1, via SUMO interaction motifs (Girdwood, 

Bumpass et al. 2003, Yang and Sharrocks 2004). Hence, several cellular processes such 

as nuclear transport, transcription and protein degradation require SIM for SUMOylation-

dependent regulation (Geoffroy, Jaffray et al. 2010, Kolesar, Sarangi et al. 2012, Gartner 

and Muller 2014). 
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Mechanism of SUMOylation activity 

SUMOylation influences cellular pathways via one of the three mechanisms to 

function, which include protein-protein interaction, subcellular localization and protein 

stability (Figure 1.4).  

Regulation of protein-protein interaction 

One of the major mechanisms by which SUMOylation regulates protein function is 

by modulating interactions with other proteins. In most cases, SUMOylation enhances 

such interactions and facilitates in formation or maintenance of large protein complexes. 

Alternatively, SUMOylation can hinder binding of a protein and disrupt complex formation. 

These two possible outcomes can regulate downstream signaling pathways. One of the 

most well-studied examples is the formation of PML complex in the nucleus (Zhong, 

Muller et al. 2000, Lin, Huang et al. 2006). Another example is the modulation of 

transcription factor Elk-1. Elk-1 SUMOylation leads to the interaction with histone 

deacetylase protein HDAC2, and this binding results in a decreased histone deactylation 
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and inhibition of Elk-1 target gene transcription (Yang and Sharrocks 2004). SUMO1 

modification of RanGAP1 mediates the formation of a stable nuclear pore complex 

consisting of SUMO1-modified RanGAP1, RanBP2/Nup358 and Ubc9. This complex is 

essential for nuclear transport (Matunis, Wu et al. 1998, Zhang, Saitoh et al. 2002).  

Modulation of enzymatic activity of substrate protein  

SUMOylation of a target enzyme can alter the enzyme structure and modulate its 

activity. One of the classical examples is the SUMO-modified enzyme, thymine DNA 

glycosylase (TDG), which is a mismatch repair enzyme. SUMO modifies TDG at its C-

terminal region, and SUMOylation decreases its binding to DNA dramatically (Hardeland, 

Steinacher et al. 2002, Baba, Maita et al. 2005). As soon as the TDG leaves the repair 

site of the DNA, SENPs remove the SUMO from TDG swiftly and the enzyme is readily 

available for a next round of repair. This example of TDG illustrates that at any given time, 

a small population of protein is SUMOylated, yet SUMOylation has an enormous effect 

on a cellular pathway. 

Regulation of protein stability  

 SUMOylation has been shown to work in conjunction with other post-translational 

modifications, such as ubiquitination, acetylation (Stankovic-Valentin, Deltour et al. 2007) 

and phosphorylation (Khan, Rozhon et al. 2014). There are various studies that reveal 

crosstalk between ubiquitination and SUMOylation. SUMOylation can either stimulate or 

prevent ubiquitin mediated degradation of substrate proteins. For example, PML, in the 

presence of arsenic trioxide, is modified by polymeric SUMO2/3 chains. RNF4, a poly-

SUMO-dependent ubiquitin E3 ligase (STUbL), binds the poly-SUMO2/3 chains with its 

four SIMs and polyubiquitinates the SUMOylated PML, leading to proteasomal 
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degradation (Tatham, Geoffroy et al. 2008, Maroui, Kheddache-Atmane et al. 2012). 

Alternatively, SUMOylation can prevent ubiquitination of proteins by either modifying the 

same lysine residue designated for polyubiquitination, or causing stearic hindrance by 

modification of a nearby lysine residue, hence preventing the degradation of the substrate 

protein. For instance, cyclin dependent kinase CDK6 is modified by SUMO1 at lysine 216 

during the progression of glioblastoma compared to normal cells. The SUMOylation of 

CDK6 inhibits polyubiquitination at lysine 147 by preventing access to this lysine (Bellail, 

Olson et al. 2014). Furthermore, protein IkB, a negative regulator of the NFB pathway, 

is tightly regulated by SUMOylation and ubiquitination, both competing for the same lysine 

residue of lysine 21 (Rodriguez, Wright et al. 1996, Desterro, Rodriguez et al. 1998). The 

stabilized IkB retains NFB in the cytosol and inhibits the activation of the NFB 

pathway, thus preventing the transcription of its target genes.     
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Biological functions of SUMOylation 

Proteomic studies have identified over 3000 target proteins modified by SUMOs, 

supporting the general idea that SUMOylation is a common protein modification, similar 

to phosphorylation and ubiquitination,  (Hendriks and Vertegaal 2016). The following 

diagram (Figure 1.5) shows the most important functions of SUMOylation.  

Nucleo-cytoplasmic transport of substrate proteins  

Thousands of nuclear pore complexes (NPCs) are present in the nuclear 

membrane, as the sole channels for transporting numerous proteins between the nuclear 

and cytoplasmic compartments (Wente and Rout 2010). The NPC consists of two groups 

of proteins, the nucleoporins (Nups) that permanently associate with the core NPC 
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structure, and the other transiently interacting proteins that cycle on and off the NPC. 

Studies performed on vertebrates and budding yeast have shown that the core structure 

of NPC consists of 30 unique proteins; however, due to the eight-fold symmetry of the 

nuclear pore, each interacting protein is present in multiple copies (at least eight copies). 

Around 400-500 proteins are present at each NPC, forming rings on the nucleoplasmic 

and cytoplasmic sides (Kabachinski and Schwartz 2015). It has a thickness of 50nm and 

an inner diameter of 40nm. Moreover, recent electron tomographic visualization reveals 

the nuclear basket-like structure and the cytoplasmic filaments (Bui, von Appen et al. 

2013). The Nup proteins organize into four major sub-complexes at the NPC. The Nup62 

complex proteins have FG repeats and are present in the central pore. The Nup214 

complex is present on the cytoplasmic filaments of the NPC. The two other sub-

complexes, the Nup107 complex and the Nup93 complex, provide essential structural 

scaffold. Nup 107 and Nup 93 complexes operate as adaptors to attach the FG-repeat 

containing Nups with the nuclear membrane (Hu, Guan et al. 1996, Fornerod, van 

Deursen et al. 1997, Kampmann and Blobel 2009, Bui, von Appen et al. 2013, Vollmer 

and Antonin 2014). Cargo proteins, with molecular weight below 40kDa, diffuse in and 

out of the nuclear pore freely. However, the larger proteins require transport factors. Large 

proteins that shuttle between the nuclear and cytoplasmic compartments of the cell have 

distinct motifs recognized by the transport proteins, the nuclear localization signal (NLS) 

and the nuclear export signal (NES). The largest family of transport proteins are the 

karyopherins. Budding yeast has 14 and higher eukaryotes have 20 karyopherins 

respectively (Chook and Blobel 2001).  
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In addition to NLS/NES and the karyopherins, the GTPase Ran is necessary for 

association and dissociation of cargo proteins with the corresponding nuclear transport 

receptor known as karyopherin. There is a steep gradient of RanGTP across the nuclear 

pore (Becskei and Mattaj 2003), high in the nucleus due to Ran gunanine exchange factor 

(RanGEF) but low in the cytoplasm due to the presence of RanGTPase activating protein-

1 (RanGAP1). RanGTP binding to an importin-cargo complex leads to the release of the 

cargo from its carrier protein in the nucleus, whereas, the export complex (containing 

RanGTP, cargo and exportin) is assembled only in the presence of high concentration of 

RabGTP in the nucleus. As the first discovered SUMO target, unmodified RanGAP1 is 

predominantly cytoplasmic, its modification by SUMO1 targets RanGAP1 to the NPCs 

(Matunis, Wu et al. 1998, Zhu, Goeres et al. 2009). SUMO1-modified RanGAP1 

(SUMO1*RanGAP1) shows a very stable nuclear pore complex localization along with 

SUMO E2 Ubc9 and the SUMO E3 ligase RanBP2/Nup358 (Flotho and Werner 2012), 

resulting in the formation of the RanBP2/RanGAP1*SUMO1/Ubc9 complex at the 

cytoplasmic side of the NPCs. SUMOylation-mediated formation of the above-mentioned 

stable complex at the NPC provides a strong evidence of coupling of two major processes 

in the cell, SUMOylation and nuclear transport. CRM1 (chromosome region maintenance 

1)/Xpo1 (exportin 1) is a major exportin, involved in the transport of over 80% of cargoes 

from nucleus to the cytoplasm (Hutten and Kehlenbach 2007). For example, the Crm1-

mediated cargoes include transcription factors, RNA, translation factors and many other 

proteins. Crm1 has also been reported from a recent study from our laboratory to be 

essential for the nucleo-cytoplasmic shuttling of RanGAP1 (Cha, Sen et al. 2015). In this 

study, we observed that the localization of the SUMO1-modified RanGAP1 at the NPC is 
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highly stable in comparison to the unmodified RanGAP1 in the cytoplasm. In chapter 3, I 

describe my published studies on nucleo-cytoplasmic shuttling of RanGAP1 in details. 

The presence of the SUMO E3 ligase (RanBP2/Nup358) and the isopeptidases 

(SENP1 and SENP2) at the NPCs suggests that levels of SUMOylation on target proteins 

may be altered during their shuttling between the nucleus and the cytoplasm (Zhang, 

Saitoh et al. 2002, Melchior, Schergaut et al. 2003, Goeres, Chan et al. 2011). Also, 

accumulating lines of evidence support such a model that there is a close functional 

relationship between SUMOylation and nuclear transport (Pichler and Melchior 2002, Du, 

Bialkowska et al. 2008). There are proteins whose SUMOylation depends on the 

presence of a functional nuclear localization sequence (NLS) (Matunis, Wu et al. 1998). 

On the other hand, there are examples where SUMOylation of protein substrates is the 

prerequisite for their nuclear localization or retention (Du, Bialkowska et al. 2008, 

Hofmann, Arduini et al. 2009). For example, one of the SUMO targets, Sp100, which is a 

transcription factor and a component of the PML nuclear body, is modified by SUMO only 

when it contains a functional NLS (Pichler, Gast et al. 2002). The NLS mutant of the PML 

protein has a significant reduction in its SUMOylation compared to the corresponding 

wild-type protein (Muller, Matunis et al. 1998, Duprez, Saurin et al. 1999). Furthermore, 

nuclear localization of protein Ataxin-1 is crucial for SUMOylation at all its lysine residues 

(Riley, Zoghbi et al. 2005). Moreover, several studies on the tumor suppressor p53 show 

that SUMOylation at lysine 386 promotes its nuclear export (Carter, Bischof et al. 2007), 

and the SUMO modification helps release p53 from the nuclear export receptor Crm1 

(Santiago, Li et al. 2013). Lastly, actin is another protein whose SUMOylation by 

SUMO2/3 at lysines 68 and 284 dictates its nuclear localization. Actin is primarily a 
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cytoskeletal protein, and the nuclear actin has been reported to be involved in 

transcription, nuclear export, chromatin remodeling and intranuclear transport of mRNA 

molecules (Hofmann, Arduini et al. 2009, Louvet and Percipalle 2009).  

Transcription  

SUMOylation is associated with gene expression, especially transcription. Several 

transcription factors are SUMO targets and in most cases SUMOylation either enhances 

or hinders their interaction with other transcription factors, chromatin remodelers, co-

repressors or co-activators (Gill 2003, Verger, Perdomo et al. 2003, Hay 2005). There are 

a handful of examples of a positive regulatory role of SUMOylation on transcription, most 

studies elucidate that SUMOylation negatively affects the transcription of various genes. 

For instance, the heat shock factors HSF1 and HSF2 illustrate the former scenario, in 

which modification by SUMO1 enhances their DNA binding activity under stress and 

stimulates their function (Goodson, Hong et al. 2001, Hong, Rogers et al. 2001). 

Additionally, SUMOylation of the transcription regulators GRIP1 (glucocorticoid receptor 

interacting protein-1) and viral protein IE2-p86 augments their activities in regulation of 

gene expression (Hofmann, Floss et al. 2000, Kotaja, Karvonen et al. 2002).  

Accumulating lines of evidence have revealed that the SUMOylation site(/s) of 

various transcription factors are often present within their negative regulatory domains. 

Such domains are found in c-Myb, CCAAT/ enhancer binding protein (C/EBP), steroid 

receptors and Sp3 (Poukka, Karvonen et al. 2000, Subramanian, Benson et al. 2003). All 

these proteins contain the synergy control (SC) motifs and also the SUMOylation 

consensus sequence ψ-K-x-E/D in the SC motifs (Poukka, Karvonen et al. 2000, 

Subramanian, Benson et al. 2003). For example, the SUMOylation site of Sp3 lies in its 
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SC motif, and mutation of this specific K residue strongly stimulates its transcriptional 

activity (Sapetschnig, Rischitor et al. 2002). Similarly, CBP/p300 and Elk-1 get 

SUMOylated in their negative regulatory domains, and mutations preventing the binding 

of Ubc9 or covalent SUMO binding, eliminate transcriptional repression (Girdwood, 

Bumpass et al. 2003, Yang, Jaffray et al. 2003). On the other hand, SUMOylation of 

certain transcription factors, such as Smad4, can either stimulate or inhibit their activity 

dependent on the target genes (Long, Wang et al. 2004).  

There are two general mechanisms by which SUMOylation can affect transcription. 

Modification of a transcription factor by SUMOs can recruit chromatin modifiers to alter 

the chromatin structures. The p300 SUMOylation at its CRD domain recruits the SIM-

containing histone deacetylases HDAC6, which deacetylates histone and thus leads to 

transcriptional repression (Girdwood, Bumpass et al. 2003). In addition, transcription 

factor Elk-1 is SUMOylated at its R motif and recruits the histone deacetylase HDAC2 at 

specific promoters, leading to a decrease in histone acetylation and thus a repression of 

transcription (Yang and Sharrocks 2004). Alternatively, SUMOylation can target its 

substrate proteins to certain repressive domains, such as the PML nuclear body (PML-

NB). PML protein is not only a SUMO target but also contain SUMO-interacting motifs, 

which are critical for recruiting various proteins, including DAXX, Sp100, CBP and ISG20 

(Zhong, Muller et al. 2000). PML-NBs are the storage domains for many different 

transcription factors that are SUMO targets or contain SUMO-interacting motifs. For 

example, SUMO modification of Sp100 enhances its interaction with the heterochromatin 

protein 1 (HP1) and leads to transcriptional repression  (Seeler, Marchio et al. 1998). 

Another protein complex, the Polycomb group (PcG) body, is a center of transcriptional 
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repression, and SUMOylation of SOP-2, one of the PcG body components, causes 

inhibition of the Hox genes (Zhang, Smolen et al. 2004).  

DNA replication and repair  

A dynamic and highly efficient system of DNA repair enzymes protect the DNA 

from exogenous and endogenous damaging agents to maintain genome integrity. 

SUMOylation, along with several other PTMs, play critical role in this process mostly by 

altering DNA-protein and protein-protein interactions. Some of the most relevant proteins 

whose modification by SUMOs significant alters their activity include PCNA, Rad52, 

BRCA1 and TDG. 

PCNA (proliferating cell nuclear antigen) is a ring-shaped, homo-trimeric clamp 

protein which maintains the processivity of replicative DNA polymerases (Choe and 

Moldovan 2017). It can also interact with a variety of other factors and plays a central role 

in nucleotide and base excision repair, as well as mismatch repair. PCNA has two 

principal lysines for SUMOylation, K164 and K127, and SUMOylation leads to the 

recruitment of helicase Srs2 during S-phase. Srs2 then dismantles the recombination 

filaments formed by Rad51 and prevents homologous recombination (Papouli, Chen et 

al. 2005, Colby, Matthai et al. 2006, Watts 2006, Parker, Bucceri et al. 2008, Gazy and 

Kupiec 2012). Egl1 also interacts with SUMOylated PCNA, and it is responsible for 

removing PCNA from DNA (Pfander, Moldovan et al. 2005). Both Egl1 and Srs2 have 

SIM that bind SUMOylated PCNA (Ulrich, Vogel et al. 2005). On the contrary, 

SUMOylation of PCNA at K127, during S-phase, blocks interaction with Eco1, a sister 

chromatid cohesion protein (Moldovan, Pfander et al. 2006). 
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Moreover, SUMOylation of Rad52, a protein involved in homologous 

recombination, prevents proteasome-mediated degradation and sustains its activity at the 

DNA damage site (Sacher, Pfander et al. 2006). Moreover, a recent report reveals that 

SUMOylation of Rad52 leads to its dissociation from DNA and attenuates single strand 

annealing function (Altmannova, Eckert-Boulet et al. 2010). 

Mitosis and cell cycle  

The link between the SUMO pathway and mitosis preceeded the discovery of the 

SUMO proteins. In budding yeast, Ubc9 is critical for B-type cyclin degradation (Seufert, 

Futcher et al. 1995). Moreover, specific SUMO E3 ligases have been reported to be 

essential; chromosome segregation in Xenopus and mammalian system requires PIASy 

(Azuma, Arnaoutov et al. 2005). Besides the SUMOylation machinery, several proteins 

that play roles during mitosis and cell cycle are modified by SUMO. The SUMOylation 

modulates their activities during cell cycle (Dasso 2008). 

Topoisomerase II, an enzyme that alters DNA topology, is needed during 

transcription (Dawlaty, Malureanu et al. 2008, Zhang, Wang et al. 2014, Edgerton, 

Johansson et al. 2016, Yoshida, Ting et al. 2016). It is selectively modified by SUMO2/3 

during mitosis in vertebrates. Treating Xenopus egg extracts with dominant negative 

Ubc9 (dn Ubc9) does not alter its activity, but increased unmodified Topoisomerase II 

on the chromosomes (Yoshida, Ting et al. 2016). The study reported a defect in the 

segregation of chromosome at anaphase-telophase junction. Hence, SUMOylation of 

topoisomerase II is essential for its removal from mitotic chromosomes and the 

progression through anaphase and telophase (Azuma, Arnaoutov et al. 2003). 
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The kinesin-like motor protein CENP-E (centromere-associated protein E) is not 

only a known SUMO2/3 target but also contains a functional SIM motif (Zhang, Goeres 

et al. 2008). It has been shown previously that global inhibition of SUMOylation by 

overexpression of SUMO isopeptidase SENP2 or the RNAi-mediated depletion of the 

SUMO E2 enzyme Ubc9 leads to CENP-E mislocalization and a prometaphase arrest 

(Zhang, Goeres et al. 2008). In addition, the localization of CENP-E at the outer 

kinetochore of mitotic chromosomes has been suggested to be mediated through its non-

covalent interaction with other SUMO2/3-modified kinetochore proteins via their SIM 

domain.  

Furthermore, SUMO1 modification of RanGAP1 is essential for the formation of 

the highly stable RanBP2/RanGAP1*SUMO1/Ubc9 (RRSU) complex at the NPC 

(Matunis, Wu et al. 1998, Reverter and Lima 2005, Dasso 2008). The RRSU complex is 

stable through cell cycle. Intriguingly, the RRSU complex also localizes at the outer 

kinetochore or fibrous corona (Joseph, Liu et al. 2004). The kinetochore localization of 

the RRSU complex, which is mediated by both CRM1 and Ran-GTP, plays an important 

role for the kinetochore-fiber assembly and chromosome segregation at anaphase 

(Arnaoutov, Azuma et al. 2005). 

Lastly, the transcription factor FoxM1 (Forkhead box protein M1), a key regulator 

in cell cycle progression, has been recently identified as a SUMO target. SUMOylation of 

FoxM1 is enhanced greatly during G2 and M phases, during which FoxM1 plays a critical 

role. SUMOylation of FoxM1 increases its transcriptional activity by preventing its 

dimerization that is known to abolish its function in regulation of its gene expression 

(Schimmel, Eifler et al. 2014). 
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SUMOylation and human diseases 

As a balance in SUMOylation and deSUMOylation is critical for controlling a variety 

of cellular pathways in normal cells, perturbation in this post-translational modification 

pathway is implicated in various human diseases including neurodegenerative disorders, 

cardiac diseases, tumorigenesis and metastasis (Figure 1.6). Here I briefly summarize 

and discuss our current understanding of how an imbalance in SUMO modification affects 

these diseases. 

SUMOylation in neurodegenerative disorders 

  SUMOylation, similar to phosphorylation and ubiquitination, is essential for the 

proper development and functions of the central nervous system (Wilkinson, Konopacki 

et al. 2012). Evidently, various neurodegenerative disorders, including Alzheimer’s 
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disease, Parkinson’s disease and Huntington’s disease, are characterized by a correlated 

disruption in SUMO pathway.  

Alzheimer’s disease  

As an age-related neurodegenerative disorder, Alzheimer’s disease is 

characterized by gradual loss of neurons, accumulation of amyloid plaques in the brain 

and progressive dementia. The amyloid  (A) plaque deposition and neurofibrillary 

tangles (NFTs) are the most prominent factors responsible for the disease (Anderson, 

Wilkinson et al. 2009, Lee, Sakurai et al. 2013). Amyloid precursor protein (APP) 

generates A peptides through cleavages mediated by -secretase and -secretase. As 

the SUMOylation sites of APP at lysine residues 587 and 595, are juxtaposed with the -

secretase cleavage site of the protein, the modification of APP by SUMOs negatively 

regulates the formation of A aggregates in mammalian cells (Zhang and Sarge 2008). 

Also, another study has shown that the modification of APP by polymeric SUMO3 chains 

reduces A formation, as observed in mammalian cells in culture and human brain tissue 

(Li, Wang et al. 2003). 

The accumulation of hyperphosphorylated, microtubule-associated Tau protein 

leads to NFTs. Tau’s phosphorylation state negatively regulates Tau’s function. 

Previously it has been shown that SUMO1 colocalizes with phosphorylated Tau in 

transgenic AD mice that carry the APP mutations (Takahashi, Ishida et al. 2008). 

However, the same group observed that another model of transgenic mouse, containing 

the mutated hyperphosphorylated Tau, lacks colocalized SUMO1 staining (Takahashi, 

Ishida et al. 2008). This work signifies that only SUMO1-associated hyperphosphorylated 

Tau is associated with AD, though the functional implications still need to be investigated. 
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Polyglutamine diseases  

Polyglutamine diseases are a family of neurodegenerative disorders are caused 

by aberrant proteins with a toxic stretch of polyglutamine (polyQ) repeats, that range from 

36 to over 300. These diseases include Huntington’s disease (HD), dentatorubral 

pallidoluysian atrophy (DRPLA), spinocerebellar ataxias (SCAs) and spinobulbular 

muscular atrophy (SBMA). 

In Huntington’s disease, the Huntingtin (Htt) protein contains a polyQ stretch of 36-

120 glutamine repeats, in comparison to that of less than 35 glutamine in the normal Htt 

protein (Landles and Bates 2004). The pathogenic fragment of Htt (truncated Htt or 

Httex1p) is modified by SUMO and ubiquitin at lysines K6 and K9, respectively (Steffan, 

Agrawal et al. 2004). In a Drosophila model, SUMOylation of the Httex1p stimulates the 

aggregate formation and the neurodegeneration, whereas, its ubiquitination has an 

opposite effect. Furthermore, mutations inhibiting both SUMOylation and ubiquitination 

reduce the pathogenesis of this disease, suggesting the dominant roles of SUMOylation 

in the disease progression (Steffan, Agrawal et al. 2004). 

Atrophy of the cerebellar Purkinje layer cause SCAs. An extended polyQ stretch 

in the ataxin-1 protein causes SCA type 1. Importantly, the increase of the polyQ stretch 

of the mutant ataxin-1 protein reduces its SUMOylation in comparison to the wild-type 

protein. On the other hand, phosphorylation mutation (S776A) on the ataxin-1 mutant with 

82Q restores the levels of SUMOylation to those of its wild-type (Riley, Zoghbi et al. 2005). 

Hence, there is an interplay between phosphorylation and SUMOylation of ataxin-1 that 

influence the progression of SCAs. 

Parkinson’s disease  
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As a chronic and progressive movement disorder, Parkinson’s disease is primarily 

caused by a loss of dopaminergic neurons in the substantia nigra of the brain. The 

hallmark of this disease is the accumulation of Lewy bodies, consisting of -synuclein. -

synuclein is modified by SUMOs at the lysine residues 96 and 102 (Krumova, 

Meulmeester et al. 2011). Notably, the presence of less than 10% SUMOylated form of 

-synuclein is sufficient to defer the formation of aggregates under in vitro conditions. In 

vivo studies indicate that a SUMOylation-deficient mutant of -synuclein causes an 

increased tendency of aggregate formation as well as an enhanced cytotoxicity in 

dopaminergic neurons.  

SUMOylation in cardiac diseases 

Like its critical functions in many other cellular pathways, SUMOylation plays an 

important role in cardiac function and heart development. The transcription factors, which 

are essential for normal heart development, have been identified as SUMO targets, 

including GATA4, myocardin and PPAR. Additionally, SUMOylation is associated with 

cardiovascular disorders including familial dilated cardiomyopathy (Wang and Schwartz 

2010, Wang 2011).  

Known as a key regulator in cardiomyocyte differentiation and cardiogenesis, the 

zinc-finger containing transcription factor GATA4 is SUMOylated at K366, within its 

transactivation domain (Wang, Feng et al. 2004). Blocking the SUMOylation at this 

residue by site-directed mutagenesis prevents nuclear localization and hinders target 

gene expression (Wang, Feng et al. 2004). 

Myocardin is a cardiac and smooth muscle-specific transcriptional coactivator, and 

SUMOylation regulates its function during heart development. Modification of myocardin 
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by SUMOs at K445 enhances its target gene expression in cardiac muscle cells, including 

-actin and -myosin (Wang, Li et al. 2007). 

Being a structural component of the nuclear membrane, lamin A is associated with 

familial dilated cardiomyopathy. Missense mutations within its SUMO consensus motif 

(MKEE), E203G and E203K, are associated with this disease (Wang and Schwartz 2010). 

As observed in fibroblast cells isolated from patients, each of these lamin A mutant 

proteins have altered subcellular localization compared to its wild-type protein (Wang and 

Schwartz 2010). 

TRPM4 is a Ca2+-activated non-selective cation (CAN) channel protein with a high 

expression in cardiac tissue, and it also associates with the heart disease known as 

progressive familial heart block type I (PFHBI) (Kruse, Schulze-Bahr et al. 2009). A study 

has shown that a missense mutation in the TRPM4 gene (TRPM4E7K), causes decreased 

cardiac conduction. This mutation leads to a constitutively SUMOylated TRPM4 protein 

that shows a greatly increased distribution in the plasma membrane.  

SUMOylation in tumor formation and metastasis 
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Accumulating lines of evidence have shown that disruption of the SUMOylation 

pathway is associated with tumorigenesis and metastasis (Figure 1.7). The disruption 

may result from increased/decreased expression of enzymes in SUMOylation or 

deSUMOylation as well as in levels of the numerous target proteins during cancer 

progression and metastasis. 

Role of SUMO conjugation enzymes in carcinoma 

Several reports have found that the SUMO activating enzyme (E1) subunit SAE2 

plays a pivotal role in cancer progression (He, Riceberg et al. 2015, Shao, Wang et al. 

2015).  SAE1 is important for growth and maintenance of tumor stem cells, and inhibition 

of its expression by RNAi leads to sensitization of the tumor cells to chemotherapy for 

suppression of cancer malignancy. Besides, the sole SUMO E2 enzyme Ubc9 is also a 

major player in tumor progression towards metastasis as indicated by accumulating 

evidence from studies on colon, lung, prostate and breast carcinomas (Moschos, Jukic et 

al. 2010). A study of melanoma has demonstrated that Ubc9 has an anti-apoptotic 

function and its siRNA-mediated knockdown leads to a significant decrease in melanoma 

cell proliferation (Moschos, Smith et al. 2007). Furthermore, a drastic increase in levels 

of Ubc9 proteins has been observed in certain patients with acute myeloid leukemia 

(AML) (Geletu, Balkhi et al. 2007). Additionally, the SUMO E3 ligases are known in 

association with specific cancer types. For examples, PIAS3 is upregulated in different 

types of cancers, including prostate, breast, lung and brain cancers (Wang and Banerjee 

2004, Wang and Schwartz 2010). Moreover, PIAS1 and PIAS3 are responsible for 
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androgen receptor (AR) -mediated target gene expression in prostate cancer cells (Gross, 

Liu et al. 2001) (Table 1.3).  

Role of SUMO isopeptidases in cancer progression 

Several lines of evidence suggest that dysregulation of the SUMO isopeptidases 

associates with different types of tumors including prostate cancer and thyroid oncocytic 

adenocarcinoma. Studies have shown that SENP1 expression is much higher in 

neoplastic prostate cells in comparison to normal control cells, which promotes the 

prostate cell transformation and the cancer progression and metastasis. Also, SENP1 

activates of AR-mediated gene expression in prostate cancer cells, and the AR, in turn, 

potentiates SENP1 expression (Bawa-Khalfe and Yeh 2010). The positive feedback loop 

is disrupted in cells with siRNA-mediated knockdown of SENP1, leading to a decrease in 

androgen-driven prostate cell proliferation (Bawa-Khalfe and Yeh 2010). Moreover, 

SENP3 is upregulated in prostate, colon, ovarian and lung carcinomas (Han, Huang et al. 

2010). SENP3 overexpression is associated with mild oxidative stress, a signature in 

cancers (Lim, Sun et al. 2005). Lastly, levels of SENP6 mRNAs are decreased in human 
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breast cancer tissues in comparison to healthy control tissues (Mooney, Grande et al. 

2010).  

Effect of SUMOylation on its target proteins during tumorigenesis and metastasis 

There is a myriad of SUMO substrates associated with cancer progression, 

including tumor suppressor proteins, proto-oncogene products, cell migration factors, 

signaling proteins, and transcription factors, such as p53, BRCA1, Reptin, Rac1, RhoGDI, 

Vimentin, MIF, actin, PML and pRB. SUMOylation of the above proteins is tightly 

associated with tumorigenesis and metastasis (Kim and Baek 2006, Bettermann, 

Benesch et al. 2012).  

The tumor suppressor protein BRCA1 (breast cancer 1) is involved in DNA 

damage repair. Through its N-terminal domain, BRCA1 interacts with BRCA1-associated 

RING domain-1 protein (BARD1) to form a functional ubiquitin E3 ligase heterodimer. 

SUMO modification of BRCA1 is facilitated by the SUMO E3 ligases PIAS1 and PIASy 

(Morris, Boutell et al. 2009). Moreover, the two E3 ligases are co-localized with the E2 

enzyme Ubc9 and the SUMOylated BRCA1 protein at the DNA damage sites. In addition, 

BRCA1 SUMOylation enhances its E3 ligase activity for ubiquitination (Morris, Boutell et 

al. 2009) Furthermore, RNAi-mediated knockdown of the PIAS proteins prevents the 

localization of BRCA1 to the DNA damage sites. Numerous reports indicate that several 

missense mutations of BRCA1 predispose cells to breast cancer and ovarian cancer, and 

these mutations prevent its dimerization and SUMOylation (Morris, Pangon et al. 2006).  

The tumor repressor protein Reptin is a member of the AAA+ family ATPases and 

a component of the large protein complexes involved in chromatin remodeling and 

transcription. Reptin is overexpressed in different types of cancer, including 
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hepatocellular carcinoma, breast cancer, and acute leukemia. Reptin is responsible for 

repressing -catenin-TCF transcriptional activity, which represses the expression of the 

tumor suppressor KAI-1 protein (Kim, Choi et al. 2006, Grigoletto, Lestienne et al. 2011). 

The study by Kim et al (in 2006) showed an enhanced effect of Reptin SUMOylation 

(lysine 456) in suppressing KAI-1 expression and its function in human prostate 

carcinoma cell line LNCaP. This effect is due to a predominant subcellular distribution of 

SUMOylated Reptin in nucleus in comparison to a prominent cytoplasmic localization of 

the SUMOylation-deficient Reptin. Its repressive function is abrogated by its 

deSUMOylation enzyme SENP1 as SENP1 overexpression leads to an activation of 

Reptin target genes, such as KAI-1.  

The Rho-GDP dissociation inhibitor, RhoGDI, reduces the cell migration by binding 

to Rho and Rho-like GTPases and keeping them in the inactive GDP-bound forms. 

Therefore, RhoGDI adversely affects the formation of actin filaments, cell migration and 

invasion, which are important for cancer progression and metastasis. SUMOylated 

RhoGDI has higher affinity towards GDP-bound Rho and Rho-like GTPases (Yu, Zhang 

et al. 2012). SUMOylation of RhoGDI is tightly regulated by the SUMO E3 ligase PIAS3 

(Schou, Kelstrup et al. 2014) and the SUMO-specific isopeptidase SENP1 (my 

unpublished results). Moreover, a significant decrease in RhoGDI SUMOylation in 

metastatic breast cancer cell line in comparison to a non-metastatic control cell line 

(Subramonian, Raghunayakula et al. 2014).  

Macrophage migration inhibitory factor (MIF), also known as glycosylation-

inhibiting factor (GIF), is a pro-inflammatory cytokine. MIF plays a critical role during 

cancer progression and metastasis by stimulating inflammation, angiogenesis, and 
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cancer cell migration and invasion (Mitchell 2004, Conroy, Mawhinney et al. 2010, 

Simpson and Cross 2013). The tumor-derived MIF protein can exert its effects on various 

cell types both locally and distally during tumor progression by functioning as either 

autocrine or paracrine. Studies on various types of cancer have identified a close 

correlation between an increase in levels of MIF protein and a poor prognosis of cancer 

patients. In fact, MIF is a known biomarker of breast cancer (Xu, Wang et al. 2008, 

Verjans, Noetzel et al. 2009). Our recent proteomic study has revealed a drastic 

upregulation in levels of MIF SUMO2/3 modification in metastatic mouse breast cancer 

cell line compared non-metastatic control cell line (Subramonian, Raghunayakula et al. 

2014). Based on this observation, I have further investigated the role of SUMOylation in 

regulation of MIF stability as shown in Chapter 2.  
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CHAPTER 2: AN INVESTIGATION INTO THE ROLE OF SUMOYLATION ON MIF 
STABILITY 

Abstract 

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine 

involved in various types of human cancers, and represents a direct link between 

inflammation and cancers. Our recently published proteomic studies have shown that 

levels of MIF SUMO2/3 modification increase in metastatic breast cancer cells compared 

to non-metastatic control cells. In this study, we found that the increased levels of MIF 

SUMO2/3 modification in metastatic breast cancer cells positively correlate with levels of 

unmodified MIF proteins compared to non-metastatic control cells. Based on the 

observation and the known role of SUMOylation in regulation of protein stability, we asked 

if MIF SUMOylation affects its stability.  Our results provide several lines of evidence that 

SUMOylation of MIF increases its stability by preventing its ubiquitination and 

proteasome-mediated degradation in cells. Furthermore, MIF gets modified at a single 

lysine residue, K78, which is present within a non-consensus SUMOylation motif. 

Therefore, our study supports the idea that global inhibition of SUMO modification may 

be useful in treatment of various cancers by specifically destabilizing MIF proteins.     

Introduction 

MIF is expressed in and secreted by both immune cells and non-immune cells 

(Bucala 1996, Bernhagen, Calandra et al. 1998). It was first isolated from the sensitized 

peritoneal lymphocytes of guinea pig and showed the capacity to inhibit the migration of 

macrophages and monocytes (Bloom and Bennett 1966, David 1966, Weiser, Temple et 

al. 1989). It has a molecular weight of 12.5 kDa and possesses two distinct enzymatic 

activities of phenylpyruvate tautomerase and disulfide reductase (Kleemann, Kapurniotu 
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et al. 1998, Matsunaga, Sinha et al. 1999). MIF has both autocrine and paracrine 

functions (Figure 2.1), and glucocorticoids induce its expression and secretion. 

MIF in diseases 

Unlike other cytokines, MIF expression and secretion is induced by 

glucocorticoids. As a pro-inflammatory factor, MIF protein level in patient serum greatly 

increases during inflammation, stress and infection. Several studies on arthritis, 

glomerulonephritis, septic shock due to infections, cardiac diseases and cancer, report 

this increase in MIF level, as shown in Figure 2.2 (Lue, Kleemann et al. 2002). MIF is an 

important factor involved in endotoxemia caused by bacterial infections (Bernhagen, 

Calandra et al. 1993). Earlier studies showed that mice with an exposure to bacterial 

endotoxin, also known as lipopolysaccharide (LPS), leads to an increase in MIF 

expression and secretion (Bucala 1996). Additionally, MIF has been implicated in 

rheumatoid arthritis; experiments using MIF antibodies exhibited a significant decrease in 

the inflammatory response in mouse model for type II collagen-induced arthritis 
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(Ichiyama, Onodera et al. 2004). Similar results were observed in adjuvant-induced and 

antigen-stimulated arthritis in mice (Santos, Hall et al. 2001, Morand, Leech et al. 2006). 

MIF has also been observed to be an important mediator in glomerulonephritis; studies 

with human patients have elucidated a positive correlation between an upregulation of 

renal MIF expression and urinary MIF levels. Levels of MIF proteins in urine can be used 

to determine the degree of renal dysfunction that associates with macrophage and T cell 

infiltration in proliferative glomerulonephritis (Brown, Nikolic-Paterson et al. 2002, 

Bruchfeld, Wendt et al. 2016). Additionally, MIF plays a major role in cardiac diseases.  

The release of MIF from cardiomyocytes after myocardial ischemia and infarction is 

protective in nature, whereas the prolonged high levels of MIF in plasma due to the 

infiltrated macrophages and other immune cells leads to irreparable damage of heart 

tissue (Dayawansa, Gao et al. 2014). Furthermore, MIF enacts a critical role in other 

diseases, including cystic fibrosis, asthma and lupus, a chronic autoimmune disease. 
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MIF and cancer 

Tumor initiation, progression and metastasis represent a series of processes. 

Those processes include unregulated cell proliferation, primary tumor formation, 

angiogenesis via various pro-inflammatory factors (such as MIF, TNF, NFB, IL-1 and 

IL-6), migration of tumor cells through intravasation and extravasation, and successful 

survival and proliferation of tumor cells at secondary sites leading to the formation of 

secondary tumors. Importantly, MIF has been considered as a key driver of inflammation 

to create a tumor microenvironment that promotes tumorigenesis and metastasis 

(Conroy, Mawhinney et al. 2010).  

Besides triggering its own synthesis and release by both autocrine and paracrine 

pathways, MIF also stimulates the release of various other cytokines, including VEGF, 

TNF, IL-6, IL-8 and IL-12, (Chesney and Mitchell 2015). Through its effects on a variety 

of downstream protein targets, MIF can promote tumor growth, inflammation and 

angiogenesis (Figure 2.3).  

Inhibition of p53 function 

Under normal physiological condition, the p53 protein is maintained at very low 

levels as it is degraded via the ubiquitin E3 ligase Mdm2-mediated ubiquitination (Haupt, 
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Maya et al. 1997, Nag, Qin et al. 2013). However, in response to various extracellular and 

intracellular signals, such as oxidative stress, DNA damage, hypoxia, and oncogene 

overexpression, p53 is phosphorylated and thus stabilized, since this modification blocks 

the interaction between p53 and Mdm2 (Shieh, Ikeda et al. 1997). The increase in levels 

of p53 leads to the transcription of its downstream genes, including the cell-cycle inhibitor 

p21 (Yu, Zhang et al. 1999, He, Siddik et al. 2005). Importantly, MIF promotes the 

degradation of p53 by stabilizing the interaction between p53 and Mdm2 and hence 

decreases the expression of p21 (Hudson, Shoaibi et al. 1999). Moreover, MIF can also 

inhibit p53 by suppressing its function as a transcriptional activator of several p53 

dependent target genes, including p21 (Fingerle-Rowson, Petrenko et al. 2003). 

MAPK activation 

MIF promotes cell proliferation by activating the MAPK pathway (Figure 2.4). 

Through a direct interaction with its cell surface receptor CD74 along with its co-receptor 
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CD44, the extracellular MIF induces the activation of the Src-family tyrosine kinase (Lue, 

Kapurniotu et al. 2006). The Src-kinase subsequently activates the MAPK/ERK signaling 

pathway through the cascade of the Raf-MEK-ERK kinases. The phosphorylated ERK (p-

ERK) then activates the transcription factor Elk-1, which induces the expression of several 

genes required for cell proliferation and growth. 

Inhibition of NR3C2 

A recent study revealed a novel MIF-mediated signaling pathway, in which MIF 

inhibits the expression of the tumor suppressor protein NR3C2 in pancreatic ductal 

adenocarcinoma (PDAC) by increasing levels of the miR-301b microRNA, a negative 

regulator of NR3C2 expression (Yang, He et al. 2016).   NR3C2 inhibits the cell 

proliferation, colony formation, and invasive capacities of the PDAC cells (Yang, He et al. 

2016). Moreover, MIF upregulates levels of miR-301b through activation of the PI3K/Akt 

pathway. 

Activation of the PI3K/Akt pathway 

  Besides inducing cell proliferation and inflammation in a tumor microenvironment, 

MIF also increases the cell survival important for tumor formation, progression, and 

metastasis. Studies have shown that MIF binds the CXCR7-CXCR4 receptors and 

activates the phosphatidyl-inositol kinase PI3K by inducing its phosphorylation (Lue, 

Thiele et al. 2007).  The p-PI3K then activates Akt (also known as protein kinase B) 

generating p-Akt (phosphorylated Akt), leading to an increase in cell survival. The MIF-

stimulated cell survival is reported in fibroblast cells, HeLa cervical carcinoma cells, and 

PTEN- null and p53-null breast cancer cells. 

Activation of the Jnk pathway  
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There are contradictory roles of MIF in activation of the Jnk kinases pathway. Cell 

exposure to recombinant MIF proteins leads to the phosphorylation and activation of both 

Src and PI3K kinases. They, in turn, phosphorylate and activate Jnk via activation of the 

above mentioned Akt pathway. Furthermore, this activated p-Jnk phosphorylates and 

activates c-Jun (Lue, Dewor et al. 2011). Conversely, there are other studies which report 

an antagonistic role of MIF on the Jnk pathway (Kleemann, Hausser et al. 2000). 

Regulation of NFkB pathway 

Activation of NFκB pathway has long been associated with inflammation and has 

complex outcomes (Lawrence 2009). One study showed that treating CD4+T cells with 

NFκB inhibitors, lead to a marked increase in MIF synthesis and secretion via the 

production of reactive oxygen species (Cho, Moon et al. 2009). Another study presented 

that MIF promoter has four NFκB binding sites, and IL-1b-dependent stimulation of MIF 

synthesis requires NFκB function (Veillat, Lavoie et al. 2009). Therefore, the functions of 

the cytokines and other signaling molecules, including NFκB, in regulation of MIF 

expression are context dependent.  

Evidently, a large number of reports on different types of cancers, including breast 

carcinoma, prostate cancer, ovarian tumor, colon cancer, gastric cancer and lung cancer, 

described MIF as a marker of poor prognosis (Meyer-Siegler, Bellino et al. 2002, Mor, 

Visintin et al. 2005, Verjans, Noetzel et al. 2009, Xia, Yang et al. 2009, Grieb, Merk et al. 

2010). MIF co-ordinates with many different signaling molecules/proteins for its diverse 

functions; MIF’s specific and highly dynamic post-translational modifications that include 

acetylation, phosphorylation, SUMOylation and ubiquitination, influence MIF activity too. 

Proteomic studies using human cell lines revealed that MIF is modified by both acetylation 
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(K78) and phosphorylation (Y37)) (Choudhary, Kumar et al. 2009, Moritz, Li et al. 2010). 

Similarly, proteomic studies also demonstrated that MIF is modified by ubiquitin (K78) 

(Kim, Bennett et al. 2011, Wagner, Beli et al. 2011).  

Various studies have shown that perturbation of SUMOylation correlates with 

human cancers (Kim and Baek 2006). Dysregulation of SUMOylation could be due to an 

increase or a decrease in expression of SUMO conjugating enzymes or de-conjugating 

enzymes. A previous study from our laboratory has identified MIF as a novel SUMO 

substrate; moreover, its SUMO-2/3 modification increases significantly in a metastatic 

mouse breast cancer cell line in comparison to a non-metastatic cell line (Subramonian, 

Raghunayakula et al. 2014). This finding is consistent with the established role of MIF as 

a key biomarker for breast cancer. MIF displays an increase in its synthesis and stability 

in cancer cells compared to normal control cells (Meyer-Siegler 2000, Meyer-Siegler, 

Iczkowski et al. 2005). However, it is not known how SUMOylation can affect MIF 

expression or functions during tumorigenesis and metastasis. Here we investigated 

whether global SUMOylation or MIF SUMOylation by itself is responsible for enhancing 

MIF stability in cells thus leading to its increased activity during tumor progression and 

metastasis.  

Materials and methods 

Plasmid extraction and purification 

Plasmids were extracted from E. coli DH5α and XL1-Blue cells using the Qiagen 

Miniprep kit or midiPrep protocol. The manual midiprep protocol included the following 

reagents: Solution I (50 mM glucose, 25 mM Tris-Hcl pH 8.0, 10 mM EDTA), freshly 

prepared Solution II (1% SDS, 0.2 N NaOH), solution III (potassium acetate and glacial 
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acetic acid).  The purified plasmid DNAs were resuspended in TE buffer (10mM Tris-Hcl 

pH 8.0, 1mM EDTA).  

Mammalian cell culture and transfection 

Human embryonic kidney (HEK) 293T cells were cultured in HyClone Dulbecco’s 

Modified Eagles Medium with High Glucose (DMEM), supplemented with 10% fetal 

bovine serum (FBS) and 1% Penicillin-streptomycin-amphotericin B (Gibco). The cells 

were maintained within a 5% CO2 incubator at 37oC. The 293T cells were cultured at a 

confluency of 70-75% and then transfected using the calcium phosphate transfection 

method as described previously (Jordan, Schallhorn et al. 1996). The cells were collected 

and lysed in SDS lysis buffer after transfection for 24 to 48 hours. 

Western blot analysis 

The SDS-PAGE analyses were performed using 10%, 12.5% or 15% gels. 

Proteins were blotted onto PVDF membranes (Bio-Rad) from the SDS-PAGE gels 

followed by blocking with 5% non-fat dry milk and by incubation with primary and 

secondary antibodies. The Amersham ECL-Prime Western Blotting Detection Reagent 

Kit (GE Healthcare Life Sciences) was used for detection and analysis of proteins. The 

X-Ray films were developed using the OptiMax X-Ray Film Processor after the films were 

exposed to the Western blots. Levels of proteins were quantified with ImageJ software 

and statistical significance determined by the Student’s t-test. 

Antibodies 

The primary antibodies used in this work include rabbit anti-MIF (polyclonal, FL-

115, SantaCruz Biotechnology), mouse anti-FLAG (monoclonal, M2, Sigma), mouse anti-

tubulin (monoclonal, DMIA, Sigma), mouse anti-GST (monoclonal, B-14, SantaCruz 
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Biotechnology), mouse anti-GFP (monoclonal, GF28R, UBPBio), mouse anti-SUMO1 

(monoclonal, 21C7, Zhang lab and Life Technologies), mouse anti-SUMO2/3 

(monoclonal, 8A2, Zhang lab and Abcam), mouse anti-Hsp90/ (monoclonal, F-8, 

SantaCruz Biotechnology), rabbit anti-PIAS3 (polyclonal, H-169, SantaCruz 

Biotechnology), mouse anti-HA (monoclonal, F-7, a kind gift from Dr. Sokol Todi). The 

following secondary antibodies were used in this study: sheep anti-mouse HRP-linked 

antibody (GE Healthcare Life Sciences), and donkey anti-rabbit HRP-linked antibody (GE 

Healthcare Life Sciences). 

Plasmids 

The pDEST15-GST-MIF construct was used for the bacterial expression of GST-

tagged MIF fusion proteins followed by affinity purification of the recombinant proteins for 

in vitro SUMOylation and protein binding assays. The pDONR221-MIF entry clone 

(DNASU) was used to shuttle the MIF gene into the Gateway destination vector for 

mammalian expression, pMSCV-N-FLAG-HA-IRES-PURO, by performing the Gateway 

LR recombination reaction as described by the manufacturer (Invitrogen). Additionally, 

the pDEST15-GST-MIF plasmid was used as a template to clone MIF in the pcDNA3-HA-

N vector using the primers 5’- CGCACGGATCCATGCCGATGTTCATCGTA -3’ (forward) 

and 5’- AGACAGAATTCTTAGGCGAAGGTGGAG -3’ (reverse). The additional plasmids 

used in this study include (Zhang laboratory): pEYFP-C1-SUMO1, pEGFP-C1-SUMO2, 

pEGFP-C1-SENP1, pEGFP-C1-SENP2, pEGFP-C1-SENP3, pEGFP-C1-SENP6, 

pEGFP-C1, pC1-FLAG-PIAS1, pCMV-FLAG-PIASxα, pC1-FLAG-PIAS3, pCMV-FLAG-

PIASy. 

In vitro SUMOylation assay 
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The purified GST-MIF proteins (1.5 μg total protein) were incubated with the 

purified His-SUMO-1/SUMO-2 (1 μg), ATP (20 μM), the SUMO-activating enzyme 

SAE1/SAE2 (250 ng), the SUMO-conjugating enzyme Ubc9 (225 ng), and an ATP 

regenerating system in a reaction solution containing HEPES (20 mM, pH 7.3), potassium 

acetate (110 mM), magnesium acetate (2 mM), EGTA (1 mM) and DTT (4 mM). The 

SUMOylation assays were performed at 37 oC for 2 hours, reactions were terminated with 

SDS sample buffer containing Tris-HCl (pH 6.8, 125mM), SDS (4%), -mercaptoethanol 

(10%), glycerol (20%) and bromophenol blue (20mg). Western blot was performed and 

the modifications detected by blotting the membranes with antibodies against GST (Santa 

Cruz Biotechnology), MIF (Santa Cruz Biotechnology), SUMO1 (Life Technology, Zhang 

laboratory) and SUMO2/3 (Abcam, Zhang laboratory), respectively.  

In-vitro protein binding assay 

In each protein binding assay, 25 μg (total protein) of GST-tagged recombinant 

proteins were first immobilized on glutathione beads. The 293T cells, transiently 

expressing FLAG-tagged SUMO E3 ligases, were lyzed in a lysis buffer containing Tris-

HCl (pH 7.5, 50 mM), NaCl (150 mM), Triton X-100 (1%), glycerol (10%), EDTA (2 mM), 

sodium fluoride (25 mM) and protease inhibitors (LAP, PMSF, and aprotinin). The 

glutathione beads,  immobilized with GST-tagged proteins, were incubated with the 293T 

cell lysate for 4 hours at 4 oC, and then washed with the wash buffer containing Tris-HCl 

(pH 7.5, 50mM), NaCl (300mM), Triton X-100 (1%), glycerol (10%), EDTA (2mM) and 

25mM sodium fluoride. The bound proteins were eluted with the SDS sample buffer and 

analyzed by Western blot with anti-FLAG antibody. 

Site-directed mutagenesis 
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  The pDEST15-MIF (WT) construct encoding the wild-type (WT) MIF protein was 

used as a DNA template for site-directed mutagenesis to generate the constructs 

encoding several single and double lysine (K) to arginine (R) MIF mutants, respectively.  

The MIF mutants include the K33R, K67R, K78R single mutants as well as the K33,67R, 

K33,78R and K67,78R double mutants. The PCR reactions for mutagenesis were 

performed using the primer sets as shown in appendix A2 and the Pfu Turbo DNA 

Polymerase enzyme (Agilent). The PCR products were subjected to DpnI digestion for 

one hour at 37oC and then transformed into NEB5-alpha competent cells (NEB). The 

transformed cells were selected on Luria Bertani (LB) agar plates with the appropriate 

antibiotics.  

Bacterial protein expression and purification 

 The E. coli BL21 strain was used for expression and purification of GST-tagged 

MIF. The BL21 competent cells were first transformed with the pDEST15-GST-MIF 

plasmids via electroporation and then selected on the LB agar plate with Ampicillin. The 

transformed cells were first cultured in 2 ml of LB media overnight at 37oC, and then 1 ml 

of the cell culture was inoculated into 250 ml of fresh LB media to grow until the O.D.600 

reached 0.9. The induction reagent, isopropyl-B-D-1-thiogalactopyranoside (IPTG), was 

added to stimulate the overexpression of the tagged protein for 4 hours at 37oC. The cells 

were lysed with the lysis buffer (1x phosphate buffer saline solution (PBS), 0.1% (w/v) 

lysozyme, 1% detergent Triton X-100 and 0.1% (v/v) Benzonase, and the protease 

inhibitors (leupeptin, antipain, pepstatin, aprotinin and PMSF). The cell lysates were 

centrifuged at 19,000 rpm at 4oC, and the supernatant with the soluble GST-tagged MIF 

protein. The glutathione beads were washed twice with PBS and once with the lysis buffer 
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for equilibration before incubation with the supernatant at 4oC for an hour. The beads 

were washed with PBS for five times, and the bound GST-tagged protein were eluted 

from the beads at room temperature with the elution buffer (50mM Tris-HCl pH 8.0 with 

10 mM glutathione). The purified proteins, along with bovine serum albumin (BSA) 

proteins with known concentrations, were separated on the SDS-PAGE gels followed by 

Coomassie blue staining to determine the concentration of these recombinant proteins. 

Additionally, the Bio-Rad protein assays were also applied to measure their 

concentration.   

Co-immunoprecipitation (Co-IP) 

The cells, expressing FLAG-tagged proteins, were lysed in the lysis buffer 

containing 50 mM Tris-HCl pH 7.5, 1% Triton X-100, 10% glycerol, 2 mM EDTA pH 8.0, 

25 mM sodium fluoride, 150 mM NaCl and protease inhibitors, incubated with the FLAG-

M2 beads (Sigma) for three hours at 4oC, and washed five times with the lysis buffer with 

300 mM NaCl (final concentration). The interacting proteins pulled down by the FLAG-M2 

beads were eluted with 2X SDS sample buffer (4% SDS and 10% -mercaptoethanol) 

and analyzed by Western blot. 

Protein stability assays 

The 293T cells with 70-75% confluency were transfected with the construct 

encoding FLAG-tagged MIF protein for 36 hours and treated with 150 μg/ml 

cycloheximide (CHX) for 0, 3, and 6 hours.  The cycloheximide solution was freshly 

prepared in double distilled water before treatment of the cells. The cells were treated 

with CHX in the presence or absence of 15 μM of the proteasome inhibitor MG132 (a kind 
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gift from Dr. Sokol Todi) and then lysed with 2X SDS sample buffer followed by Western 

blot analysis of both endogenous and tagged MIF proteins.  

Results 

Inhibition of global SUMOylation leads to a decrease in MIF protein levels 

A recent proteomic study in our laboratory for analysis of SUMO2/3 modification 

during breast cancer progression and metastasis has identified MIF as a novel SUMO2/3 

target (Subramonian, Raghunayakula et al. 2014). By comparing levels of MIF proteins 

among four breast cancer cell lines with different metastatic capacity, we observed a 

steep increase of endogenous unmodified MIF in the metastatic mouse breast cancer cell 

line compared to the three non-metastatic cell lines (Figure 2.5 A and B). The increased 

level of MIF proteins in the metastatic cell line positively correlated to the elevated levels 

of global SUMO2/3 modification. The positive correlation led us to hypothesize that 

SUMOylation plays important role in regulating levels of MIF proteins in vivo.  

To test this hypothesis, we co-transfected the 293 cells with the plasmids encoding 

HA-tagged MIF and one of the SUMO-specific isopeptidases, SENP1, SENP2, SENP3 



48 
 

 

and SENP6.  We noticed that global inhibition of SUMO modification by overexpressing 

each isopeptidase reduced the level of MIF protein (Figure 2.6 A and B). It has been 

shown previously that among all the SUMO isopeptidases, SENP1 and SENP2 play a 

major role in deconjugating SUMOs from their substrates (Mikolajczyk, Drag et al. 2007).  

Therefore, we further examined the effect of SENP1 and SENP2 on levels of endogenous 

MIF proteins, and found that overexpression of SENP2, but not SENP1, resulted in a 

significant decrease in levels of endogenous MIF (Figure 2.6 C and D). Since SENP2 

downregulate levels of both tagged and endogenous MIF proteins, we also tested 

whether its catalytic activity is necessary for this function. The catalytic site of SENP2 is 

at their C-terminal regions and consists of a catalytic triad - C548-H478-Asp495. We used 

the plasmid encoding the Cys548Ser catalytic mutant protein (SENP2C548) for our 

assay. As shown in Figure 2.6 A and B, we found that the decrease in levels of HA-tagged 

MIF proteins was independent of the catalytic activity of the isopeptidases SENP2. As the 

SUMOylation machinery enzymes have been shown to affect the assembly and 

disassembly of protein complexes by enhancing and disrupting protein-protein 

interactions (Werner, Flotho et al. 2012), one explanation of this intriguing result is that 

overexpression of SENP2 catalytic mutant might affect the protein complexes containing 

MIF and thus indirectly decreases its stability. 
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 Analysis of MIF stability 

MIF is a well-known cancer marker and has higher protein levels in cancer cells in 

comparison to normal tissue cells. In this study, we investigated if the elevated levels of 

MIF proteins in metastatic cells compared to non-metastatic cells are due to its increased 

stability that is enhanced by its SUMOylation. Treatment of 293T cells with cycloheximide 

showed that the half-life of the FLAG-tagged MIF is approximately three hours, and that 

its degradation is inhibited in the presence of the proteasome inhibitor, MG132 (Figure 

2.7 A). Together with the quantified analysis the result revealed that MIF stability is 

dependent on its degradation mediated by the proteasome pathway (Figure 2.7 A and B), 

which is consistent with other cell lines (Schulz, Marchenko et al. 2012). Moreover, we 

also analyzed the half-life of endogenous MIF protein in 293T cells, our immunoblotting 

results showed that compared to the stability of FLAG-tagged MIF (Figure 2.7 A and B), 

endogenous MIF has a similar half-life of about three hours (Figure 2.7 C and D).  
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Analysis of MIF SUMOylation and identification of its SUMOylation site (s) 

To determine the effect of SUMOylation on MIF stability, it was important to identify 

the lysine residue (s) responsible for its SUMOylation. SUMOylation occurs on a lysine 

residue within a SUMOylation consensus motif established as ψKXE/D or its inverted 
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motif (Matic, Schimmel et al. 2010). However, SUMOylation at lysine residues present in 

non-consensus motifs do occur (Hoege, Pfander et al. 2002, Pichler, Knipscheer et al. 

2005, Figueroa-Romero, Iniguez-Lluhi et al. 2009). All the three lysine residues in MIF 

(K33, K67 and K78) are present at non-consensus motifs. Thus, to identify the specific 

SUMOylation site (Figure 2.8 A), we performed site-directed mutagenesis to create lysine 

to arginine point mutant proteins including K33R, K67R, K78R, K33,67R, K67,78R and 

K33,78R. Before identifying the MIF SUMOylation site(s), we analyzed and compared 

levels of MIF modification by SUMO1 and SUMO2 in vitro (Figure 2.8 B and C). We set 

up the in vitro SUMOylation assays using the purified SUMO E1 and E2 enzymes and 

ATP in the presence or absence of SUMO1 or SUMO2 proteins. As expected, MIF was 

modified by both SUMO1 and SUMO2; however, its modification was consistently higher 

by SUMO1. Based on this result, we performed the in vitro SUMOylation assay with 

SUMO1 to identify the site(s) of MIF SUMOylation followed by Western blot analysis. We 

demonstrated that the lysine residue 78 (K78) of MIF is its SUMOylation site in vitro 

(Figure 2.8 D).  
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SENP2-mediated reduction of MIF is dependent on the proteasomal pathway 

We next tested if the decrease in levels of MIF proteins in cells with SENP2 

overexpression is due to reduction in MIF stability instead of an inhibition of its expression. 

We analyzed the MIF stability in the presence or absence of SENP2 overexpression and 

found that overexpression of SENP2 further enhances the decline in levels of MIF 

proteins in cells treated with CHX, which blocked the protein synthesis (Figure 2.9 A and 

B). Notably, this effect is reversed by incubating cells with the proteasome inhibitor 

MG132. Hence, our results demonstrated that SENP2 overexpression decreases the 

stability of MIF and that the increased degradation of MIF is via the proteasomal pathway 

in these cells.  

Identification of the SUMO E3 ligase that interacts with MIF protein 
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We also examined if one or more members of the PIAS family of the major SUMO 

E3 ligases, including PIAS1, PIAS3, PIASx and PIASy, interact with MIF specifically. 

Our in vitro protein binding assay showed a stable interaction of PIAS3 with GST-tagged 

MIF (WT), when compared with PIAS1, PIASx and PIASy (Figure 2.10 A). Interestingly, 

PIAS3 is upregulated in different types of cancer, including breast cancer and lung cancer 

(Wang and Banerjee 2004). Therefore, it would be worthy to test further if PIAS3 can 

enhance MIF SUMOylation both in vitro and in vivo. 

Discussion 

The previously published proteomic analysis in our laboratory revealed that levels 

of both global SUMO2/3 modification and MIF SUMO2/3 modification are markedly higher 

in the metastatic cells 66cl4 compared to the non-metastatic cells 168FARN 

(Subramonian, Raghunayakula et al. 2014). Moreover, there was a consistent increase 

in levels of the unmodified endogenous MIF proteins in 66cl4 cells when compared with 

those in 168FARN levels (Figure 2.4 A and B). This result lead us to determine whether 

the SUMOylation pathway is critical for regulating the stability of MIF in vivo.  We first 

showed that overexpression of the SUMO-specific isopeptidase, SENP1, SENP2, SENP3 
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or SENP6, results in a drastic decrease in levels of MIF proteins. We observed that 

SENP2, among the above SUMO isopeptidases, exhibited the highest negative effect on 

levels of MIF proteins. In the same experiment, the catalytic C548S SENP2 mutant 

protein had an even higher adverse effect on MIF. This result was very interesting to us 

as there has not been any report of a similar phenomenon. It can be speculated that the 

SENP2 is working in a complex, a mechanism of action known for certain DUBs 

(deubiquitinating enzymes) such as the JAMM/MPN+ DUBs (Komander, Clague et al. 

2009), an allosteric effect. Another possibility is that a different catalytic site in the protein 

is created in the presence of the interacting partners; it is an interesting feature observed 

in the multisubunit SUMO E3 ligase complex consisting of the 

Ubc9/RanGAP1*SUMO1/RanBP2 (Werner, Flotho et al. 2012). In this study, Werner et 

al.  observed the masking of the actual RanBP2-IR1 (internal repeat 1) based catalytic 

domain in the entire complex; surprisingly, the IR-2 (internal repeat 2) domain of RanBP2 

was found to be essential for Ubc9-SUMO1 binding that leads to SUMOylation of the 

chromosome passenger complex protein Borealin. Mutations at this IR-2 domain 

prevented this successful modification. Therefore, these two possibilities present two 

potential mechanisms in which SENP2 might be affecting MIF protein level, independent 

of its known catalytic residues/domain.  

Our analysis of MIF stability indicated that MIF has a half-life of around 3 hours 

and is degraded via the proteasomal pathway. We further showed that overexpression of 

the SUMO isopeptidase SENP2 decreases the stability of the MIF protein, and that the 

adverse effect of SENP2 overexpression can be reversed by treatment of cells with the 

proteasome inhibitor, MG132. Therefore, SENP2-mediated decline in MIF protein stability 
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is dependent upon the proteasomal pathway. As a novel SUMO target, the SUMOylation 

site (/s) on MIF is unknown. Site-directed mutagenesis was performed of all three lysine 

residues (K33, K67, K78) to arginine and the in vitro SUMOylation assay. We 

demonstrated that K78 is the only site for the SUMO conjugation of MIF proteins in vitro.  

Notably, the K78 residue of MIF is not present within a SUMOylation consensus motif, 

which is consistent with previous reports that many protein substrates are modified by 

SUMOs at lysine residues within non-consensus sequences. It would be significant in 

future to investigate the role of MIF SUMOylation in regulating its stability and activity 

especially during tumor progression and metastasis. Furthermore, we found that among 

the SUMO E3 ligases, PIAS1, PIASxα, PIAS3 and PIASy, only PIAS3 has a highly 

specific interaction with MIF. This result is very intriguing as PIAS3 is implicated in various 

human cancers, including breast cancer, lung carcinoma, and prostate cancer, and its 

high levels of expression correlate with poor prognosis (Wang and Banerjee 2004, Eifler 

and Vertegaal 2015). Furthermore, PIAS3 is the SUMO E3 ligase for Vimentin and Rac1 

(Castillo-Lluva, Tatham et al. 2010, Wang, Zhang et al. 2010), both of which are involved 

in cell migration, a necessary process for tumor cell invasion and metastasis. Therefore, 

it would be very interesting to determine if PIAS3 regulates MIF SUMOylation. 

Importantly, this study might provide a novel mechanism by which the SUMOylation 

pathway affects MIF stability and activity in various types of cells especially in tumor cells 

undergoing the process of metastasis. 

Our results lead us to propose a model where either one or both the following 

mechanisms could play a significant role in regulation of MIF protein stability (Figure 2.9 

B). One possible mechanism is that the PIAS3-mediated MIF SUMOylation competes 
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with its ubiquitination at the same (K78) or other lysine residues (K33/K67) and thereby 

prevents its degradation by proteasomes. The other potential mechanism is that,  

SUMOylation of MIF or the heat shock protein 90 (Hsp90) might facilitate the assembly 

of a large protein complex. The protein complex might include MIF, Hsp90, the heat shock 

protein 70 (Hsp70), the ubiquitin E3 ligase CHIP, HDAC6 and other protein factors, and 

therefore inhibits the ubiquitination and degradation of MIF. It has been shown earlier that 

SENP2 is the SUMO isopeptidase for Hsp90 (Preuss, Pfreundschuh et al. 2015). 

Importantly, the large protein complex, including MIF, Hsp90, Hsp70, CHIP, HDAC6 and 

other protein factors are known to stabilize MIF by blocking its CHIP-mediated 

ubiquitination and degradation, leading to an increase in MIF stability (Schulz, Marchenko 

et al. 2012). SENP2-mediated deSUMOylation of Hsp90 or MIF may hinder the assembly 

of the MIF-Hsp90 complex, and may thereby lead to MIF degradation by CHIP-mediated 

ubiquitination. Both mechanisms are promising and worthy of further investigation. 

Future directions 

We found that the SUMOylation pathway greatly influences cellular MIF protein 

levels. More specifically, the overexpression of SUMO isopeptidases leads to a drastic 

decrease in MIF protein level. Further studies showed us that this effect is not dependent 

on the catalytic function of the SUMO isopeptidases, as we observed that overexpression 

of the catalytic mutant (C548S) of SENP2 lead to an even greater decrease in the protein 

level of MIF in comparison to wild-type SENP2. We further investigated the effect of a 

SENP2 catalytic double mutant (C548A, W457A) on levels of MIF proteins and observed 

a similar result when compared to the single mutant (C548S) of SENP2.  

Investigating the mechanisms by which SENP2 overexpression decreases MIF stability 
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One explanation would be that both SENP2 wild-type and its catalytic mutants 

interact with MIF, prevent MIF from forming the stable MIF-Hsp90 complex, and therefore 

reduce the MIF stability. To test this hypothesis, we could perform the following 

experiments. The different truncation mutation constructs of SENP2 can be generated 

and then transfected into 293T cells to determine which of them results in a decrease in 

levels of MIF proteins compared to the SENP2 wild-type or catalytic mutant. Next, co-

immunoprecipitation assays can be performed with the wild-type, the catalytic mutant or 

the truncation mutants of SENP2 to determine whether they differ in the co-

immunoprecipitation of endogenous MIF proteins. The experiment will provide the critical 

evidence to support the above hypothesis.  

Crosstalk between SUMOylation and ubiquitination pathways in controlling MIF stability 

The next important question would be to determine if SUMOylation and 

ubiquitination are competing for maintaining MIF protein levels in cells. The reason for 

this hypothesis is that previous proteomic studies indicate the K78 residue of MIF is a 

ubiquitination site, and that our analysis here revealed that the same lysine residue is 

also the sole SUMOylation site in vitro. Therefore, it would be interesting to find if the 

same residue is important for both modifications in vivo.  Moreover, it has previously been 

shown that SUMOylation of CDK6 at one lysine residue prevents its ubiquitination at a 

nearby lysine residue within its 3-D structure (Bellail, Olson et al. 2014). The following 

experiments could be used to test this idea. The in vitro ubiquitination assays with the 

wild-type and the single lysine residue mutants (K33R, K67R, K78R) of MIF can be carried 

out to test if the K78 residue is its sole ubiquitination site, as suggested in the previous 

proteomic analyses, or only one of the lysine residues for MIF ubiquitination. Moreover, 
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we could further examine whether the in vitro ubiquitination site(s) of MIF is/are 

responsible for its ubiquitination in vivo by performing transfection of a series of MIF lysine 

to arginine mutant constructs followed by immunoprecipitation and immunoblot analysis. 

Identification of the specific E3 ligase for MIF SUMOylation 

 Our protein binding assays revealed that the SUMO E3 ligase PIAS3 interacts 

specifically with MIF in vitro after examining multiple members of the PIAS family. The 

PIAS3 protein level increases in various types of human cancer, including breast tumor, 

colorectal cancer and prostate cancer. Therefore, it would be very interesting to test if 

PIAS3 stimulates MIF SUMOylation both in vitro and in vivo.    
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CHAPTER 3: THE CELLULAR DISTRIBUTION AND SUMOylation OF RanGAP1 IS 
REGULATED BY ITS CRM1-DEPENDENT NUCLEAR EXPORT IN MAMMALIAN 

CELLS 

This work is published: 

Keith Cha*, Progga Sen*, Sarita Raghunayakula, Xiang-Dong Zhang (2015)  
The Cellular Distribution of RanGAP1 Is Regulated by CRM1-Mediated Nuclear Export 

in Mammalian Cells. PLoS ONE. 2015.  
*These authors contributed equally to this work. 

Abstract 

RanGAP1 is the Ran GTPase activating protein required for RanGTP hydrolysis in the 

cytoplasm and therefore plays a critical role in nuclear transport. With a predominant 

localization in the cytoplasm, SUMO1 modification of RanGAP1 results in its redistribution 

at the cytoplasmic filaments of the nuclear pore complex (NPC). RanGAP1 contains nine 

nuclear export signal sequences (NESs) and one putative nuclear localization signal 

sequence (NLS). However, it was unclear whether RanGAP1 shuttles between nuclear 

and cytoplasmic compartments of mammalian cells and how its predominant cytoplasmic 

localization is regulated. This chapter primarily describes my contribution to the paper 

recently published in PLoS ONE (Cha, Sen et al. 2015), in which I am one of the two co-

first authors and have contributed equally to this work.  In this study, we showed that 

treatment of mammalian cells leptomycin B (LMB), a highly specific inhibitor of the nuclear 

export receptor CRM1, leads to a drastic redistribution of the cytosolic and the NPC-

associated RanGAP1 into the nucleoplasm. A time-course analysis demonstrated that 

the NPC-associated RanGAP1 relocates to the nucleoplasm at much lower rate than the 

cytoplasmic RanGAP1. Moreover, the LMB-induced accumulation of RanGAP1 in the 

nucleoplasm correlates with a significant increase in the SUMOylation of RanGAP1. This 

result demonstrated that the RanGAP1 SUMOylation occurs mainly in the nucleus. We 
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also determined that the C-terminal region of the mammalian RanGAP1 protein contains 

a functional NLS (residues 541- 566), this NLS is for the nuclear accumulation of 

RanGAP1 in response to LMB treatment. Therefore, this study clearly demonstrated that 

RanGAP1 shuttles between the nuclear and cytoplasmic compartments, and that CRM1 

mediates the RanGAP1 nuclear export.  

Introduction 

Ran GTPase is required for nuclear transport, mitotic spindle assembly, and 

nuclear envelope formation (Dasso 2001, Guttinger, Laurell et al. 2009). The nuclear 

transport mediated by Ran is dependent on a large family of nuclear transport receptors, 

also known as karyopherins, which include both importins and exportins (Pemberton and 

Paschal 2005). Importin binds to the nuclear localization signal (NLS) of a cargo protein 

and imports it to the nuclear compartment where the interaction of importin with RanGTP 

leads to dissociation of the cargo from the importin.  The importin-RanGTP complex then 

comes out of the nucleus. In the cytoplasm, RanGTP hydrolysis aided by the RanGAP1 

and the RanBP1 or RanBP2 leads to the release of the importin from the RanGDP. 

Similarly, exportin binds the nuclear export signal (NES) on a cargo protein along with 

RanGTP in the nucleus and releases the cargo in the cytoplasm when RanGAP1 

hydrolyzes the RanGTP. Under both the conditions, the steep gradient of the RanGTP 

across the nuclear envelope, which is high in the nucleus but low in the cytoplasm, is 

maintained by the presence of the RanGAP1 in the cytoplasm and the Ran guanine 

nucleotide exchange factor (RanGEF), also known as Rcc1, in the nucleus. Ran, by itself, 

does not have sufficient activity to alternate between its GTP and GDP bound states 
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under physiological conditions, whereas Rcc1 and RanGAP1 increase the activity by 105-

fold (Klebe, Bischoff et al. 1995). 

RanGAP1 is present in all eukaryotes, ranging from yeast to humans with a 

conserved N-terminal leucine-rich repeat domain (LRR domain; 330-350 amino acid 

residues) and the acidic region (40 amino acid residues) (Bischoff, Krebber et al. 1995). 

Unlike the yeast RanGAP (Rna1p), the vertebrate RanGAP1 protein has a C-terminal 230 

amino acid residue stretch which is not present in the yeast Rna1p; moreover, the 

mammalian RanGAP1 protein is modified by SUMO1. The unmodified RanGAP1 is 

localized in the cytoplasm whereas the SUMO1-modified RanGAP1 is targeted to the 

nucleoplasm and the cytoplasmic filaments of the NPC by formation of a highly stable 

complex with RanBP2 and Ubc9.  

RanGAP1 contains nine putative NESs in its LRR region (conserved from yeast to 

human), whereas, the C-terminal region of the RanGAP1 contains a probable non-

classical NLS (Matunis, Wu et al. 1998, Feng, Benko et al. 1999). The NESs are 
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recognized by the major exportin CRM1, also known as Exportin1 or Xpo1, which is 

responsible for exporting over 80% of cargos (Fornerod, Ohno et al. 1997, Kudo, 

Khochbin et al. 1997, Fung and Chook 2014). Despite having this promising information 

regarding RanGAP1, it was unknown whether the mammalian RanGAP1 shuttles 

between the nucleus and the cytoplasm, also if CRM1 is its specific exportin. Our studies 

first showed that RanGAP1 shuttles between the nucleus and the cytosol in mammalian 

cells using the nuclear export inhibitor, leptomycin B (LMB) (Figures 3.1 A and B). LMB 

has been widely used to identify the cargo proteins exported by CRM1. Furthermore, we 

observed that knockdown of endogenous CRM1 protein (around 70% knockdown) using 

two different siRNA oligonucleotides, leads to a drastic increase in nuclear localization of 

Myc-tagged RanGAP1 (Figure 3.1 C). Therefore, these results indicated that the 

mammalian RanGAP1 translocates between the nucleus and the cytosol, and that CRM1 

is mainly responsible for its nucleocytoplasmic shuttling.  
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Earlier findings in this study also revealed that LMB treatment of mammalian cells 

resulted in an increase in SUMOylation of both Myc-tagged and endogenous RanGAP1 

(Figure 3.2 A and B). This result provided us with a hypothesis that this nuclear 

redistribution of the RanGAP1 has a significant role in orchestrating its SUMOylation.  The 

hypothesis is based on the prior knowledge that the SUMOylation machinery components 

are predominantly localized in nucleus of all eukaryotes (Azuma, Tan et al. 2001, Saitoh, 

Pizzi et al. 2002, Zhang, Goeres et al. 2008). 

However, the above findings raise several important questions. First, 8-hour 

treatment of mammalian cells by LMB lead to a predominant accumulation of endogenous 

RanGAP1 in the nucleoplasm along with its decreased but still prominent distribution at 

the NPC. I wanted to see if a prolonged treatment of the mammalian cells lead to a 

significantly robust redistribution of the NPC-associated RanGAP1 (endogenous) into the 

nucleoplasm. Second, there have been speculations about whether RanBP2 is the SUMO 

E3 ligase for RanGAP1 (Zhu, Goeres et al. 2009, Hamada, Haeger et al. 2011). It has 

been shown in earlier studies that RanBP2 forms a highly stable complex with SUMO1-

modified RanGAP1 and Ubc9 at the NPC and therefore prevents the SUMO1-modified 

RanGAP1 from deSUMOylation mediated by the SUMO isopeptidases (Zhu, Goeres et 

al. 2009, Hamada, Haeger et al. 2011). On the other hand, the 

RanBP2/RanGAP1*SUMO1/Ubc9 complex is known to function as a multisubunit SUMO 

E3 ligase (Flotho and Werner 2012). Here I aimed to determine whether RanBP2 is the 

E3 ligase responsible for RanGAP1 SUMOylation. Third, I wanted to determine whether 

the C-terminal region of the mammalian RanGAP1 contains a functional NLS, and 

whether the nuclear localization of RanGAP1 depends on its SUMOylation. The latter 
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question is based on the observation that both the SUMO E1 enzyme (SAE1/SAE2) and 

the E2 enzyme (Ubc9) are predominantly localized in the nucleus, and that the nuclear 

localization signals of several tested SUMO target proteins are necessary for their 

SUMOylation(Kishi, Nakamura et al. 2003, Besnault-Mascard, Leprince et al. 2005, 

Hofmann, Arduini et al. 2009). 

Materials and methods 

Plasmids and siRNAs 

 The pcDNA3-Myc-RanGAP1 plasmid was used for transient expression of Myc-

tagged full-length mouse RanGAP1 (1-589) wild-type (WT) in mammalian cells. The C-

terminal deletion mutants of Myc-RanGAP1, including C23 (1-566) and C49 (1-540), 

were constructed using the pcDNA3-Myc-RanGAP1 plasmid as the template DNA for 

PCR amplification. The forward PCR primer (ATTGGTACCGAGCTCGGATCCACTAG) 

was paired with the reverse PCR primer (GCTCTAGACTATGTCACAAATGCCAA) for 

amplification of the Myc-RanGAP1-C23 deletion mutant and the reverse primer 

(GCTCTAGACTAGGGGCCATGCAGGCT) for amplification of the Myc-RanGAP1-

C49deletion mutant. To knockdown the expression of RanBP2 by RNA interference, 

control siRNA (UUCUCCGAA CGUGUCACGU) (Sekhri, Tao et al. 2015) and RanBP2-

specific siRNA (CACAGAC AAAGCCG UUGAA) (Hutten, Flotho et al. 2008) were 

purchased from Dharmacon. 

Antibodies 

 The following antibodies were used in my study: anti-RanGAP1 (Dr. Michael 

Matunis), anti-RanBP2 (Abcam), anti-tubulin (Sigma), anti-Myc (Santa Cruz 

Biotechnology), anti-SUMO1 (Zhang laboratory, Life Technologies). The detailed 
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information about the sources, catalog numbers and dilutions of these antibodies is listed 

in the Appendix B. 

Cell culture, transfection and LMB treatment 

 Human cervical cancer (HeLa) cells and Buffalo rat liver (BRL) cells were cultured 

in HyClone Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 10% 

HyClone fetal bovine serum (FBS) and 1% penicllin-streptomycin-ampotericin B (Gibco). 

The cells were maintained within a 5% CO2 incubator at 37oC. For CRM1 inhibition, 20 

μM LMB stock solution was prepared in the PBS (phosphate-buffered saline) buffer with 

0.3% DMSO. A final concentration of 20 nM LMB was used for treatment of cells to inhibit 

CRM1-mediated nuclear export (Kudo et al., 1999).  

 For siRNA transfection, Oligofectamine (Invitrogen) was used following the 

manufacturer’s protocol. RNAi-mediated knockdown of RanBP2 was performed for 72 

hours, followed by control/LMB treatment for 8 hours. Western blot analysis was 

performed using anti-RanGAP1, anti-RanBP2 and anti-tubulin antibodies. Calcium 

phosphate-mediated transfection method (Jordan, Schallhorn et al. 1996) was applied for 

transfecting the DNA constructs encoding the RanGAP1 WT and its truncation mutants 

in HeLa cells, followed by immunofluorescence microscopy using anti-Myc, anti-RanBP2 

and anti-SUMO2/3 antibodies. Additionally, Lipofectamine-Plus reagent (Invitrogen) was 

also used for transfection followed by Western blot analysis.  

Immunofluorescence microscopy 

 BRL and HeLa cells were fixed with 3.5% paraformaldehyde for 30 mins, washed 

with 1x PBS buffer and permeabilized with the 1x PBS buffer containing 0.5% Triton X-

100 for five mins. The cells were then incubated for 1 hour using anti-RanGAP1, anti-
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RanBP2 and anti-Myc primary antibodies followed by staining with Alexa Fluor 488- or 

594-conjugated secondary antibodies (Invitrogen) for 30 mins. After incubation with the 

mounting solution containing DAPI for staining of nuclear DNA for five mins, the cells were 

visualized under the inverted Olympus IX81 fluorescence microscope with U-Plan S-Apo 

60×/1.35 NA oil immersion objective.  The MicroSuite acquisition software (Olympus) was 

used to acquire the immunofluorescence images.   

Western blot analysis 

 The 10% and 12.5% denaturing SDS-PAGE gels were used for Western blot 

analysis. The proteins were separated on the SDS-PAGE gels and then transferred to the 

PVDF membranes (Bio-Rad).  After blocking with 5% non-fat dry milk, the membranes 

were incubated with the primary antibodies, the secondary HRP-conjugated antibodies 

(GE Healthcare Life Sciences), and then the Amersham ECL-Prime Western blotting 

detection reagent (GE Healthcare Life Sciences). Following exposure with the 

membranes, the films (Denville Scientific) were developed using the OptiMax X-Ray Film 

Processor. 

Results 
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Prolonged Crm1 inhibition leads to a significant redistribution of the stably associated, 

NPC localized, endogenous RanGAP1 into the nucleus 

 The studies performed by my co-authors showed that the inhibition of CRM1-

mediated nuclear export by LMB causes the redistribution of the Myc-tagged RanGAP1 

from the cytoplasm and the NPC to the nucleoplasm following an 8-hour of LMB 

treatment. On the contrary, the endogenous RanGAP1, after a similar LMB treatment, 

shows a relatively strong localization at the NPC. This result suggested that compared to 

the Myc-tagged SUMO1-modified RanGAP1, the endogenous SUMO1-modified 

RanGAP1 is more stably associated in the NPC by forming the complex with RanBP2 

and Ubc9 (Matunis, Coutavas et al. 1996, Matunis, Wu et al. 1998, Ritterhoff, Das et al. 

2016). A prolonged 16-hour treatment (along with 8-hour treatment) of the BRL cells with 

LMB showed a complete disappearance of the RanGAP1 from the NPC (almost 100%) 

and an obvious predominant nucleoplasmic localization (Figure 3.3). This result 
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suggested a time-dependent redistribution of the protein; it also indicated that the Myc-

tagged RanGAP1 is less stably bound at the NPC in comparison to the endogenous 

RanGAP1.   

The increase of RanGAP1 SUMOylation in cells treated with LMB positively correlates 

with its nuclear accumulation and independent of the SUMO E3 ligase RanBP2 

 The SUMO E1 enzyme dimer (SAE1/SAE2), the SUMO E2 enzyme (Ubc9) and 

the SUMO E3 ligases are all principally present in the nucleus (Azuma, Tan et al. 2001, 

Rodriguez, Dargemont et al. 2001, Zhang, Saitoh et al. 2002, Hay 2005, Yeh 2009, 

Gareau and Lima 2010, Sekhri, Tao et al. 2015), suggesting that SUMOylation might 

mainly occur in the nucleus. Previous experiments in this study, suggested that RanGAP1 

likely shuttles between the nucleus and the cytoplasm in mammalian cells.  Despite being 

discovered as the first SUMO substrate (Matunis, Coutavas et al. 1996), it was still unclear 

where in the cell RanGAP1 gets modified in vertebrate cells. Therefore, we wanted to 
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determine whether the LMB-induced nuclear accumulation of RanGAP1 causes an 

increase in its SUMOylation. As observed by my co-authors, an 8-hour LMB treatment 

only resulted in a modest increase in levels of SUMOylation on endogenous RanGAP1 

(Cha, Sen et al. 2015). Based on my immunofluorescence microscopy results revealing 

a complete redistribution of endogenous RanGAP1 from the cytoplasm and the NPC to 

the nucleoplasm in cells treated with LMB for 16 hours, we asked whether this same 

treatment will result in a more obvious and robust increase in levels of RanGAP1 

SUMOylation. Consistent with our prediction, we found that levels of RanGAP1 

SUMOylation drastically increase after 16-hour LMB treatment, which is accompanied 

with a nearly disappearance of unmodified RanGAP1 when compared to control cells 

(Figure 3.4 A). Evidently, the nuclear distribution of RanGAP1 leads to a remarkable 

enhancement in its SUMOylation. 

 RanBP2 is present in a highly stable complex with SUMO1-modified RanGAP1 

and Ubc9 at the NPC, which blocks the deSUMOylation mediated by the SUMO 

isopeptidases (Zhang, Saitoh et al. 2002, Zhu, Goeres et al. 2009, Werner, Flotho et al. 

2012, Ritterhoff, Das et al. 2016). Consistent with this model, RNAi mediated knockdown 

or conditional knockout in mouse embryonic fibroblasts (MEFs) of endogenous RanBP2, 

causes a steady decline in SUMO1 modified RanGAP1 with a correlated increase in its 

unmodified form (Hutten, Flotho et al. 2008, Hamada, Haeger et al. 2011). When tested 

in vitro using the internal repeat (IR) region that contains its SUMO E3 ligase domain, 

RanBP2 can stimulate SUMOylation of several target proteins such as Sp100, but 

RanGAP1 (Kirsh, Seeler et al. 2002, Pichler, Gast et al. 2002, Zhu, Goeres et al. 2009). 

One possibility is that only the full-length RanBP2 but not its IR fragment might function 



70 
 

 

as the SUMO E3 ligase for RanGAP1.  Therefore, it was unclear whether the increase in 

levels of RanGAP1 SUMOylation in cells treated with LMB is dependent on the E3 ligase 

activity of RanBP2 in vivo. To address this question, HeLa cells were transfected with 

either control siRNAs or siRNAs specific for RanBP2 for 72 hours followed by 8-hour 

treatment with LMB. Consistent with previously published results (Zhu, Goeres et al. 

2009, Hamada, Haeger et al. 2011), RNAi-knock down of RanBP2 caused a marked 

increase in levels of unmodified RanGAP1 compared to control RNAi.  Importantly, an 8-

hour LMB treatment resulted in a complete disappearance of the unmodified RanGAP1 

in cells transfected with either control or RanBP2-specific siRNAs (Figure 3.4 B). Hence, 

our results demonstrated that RanGAP1 SUMOylation is greatly enhanced by its 

accumulation in the nucleus and independent of the E3 ligase activity of RanBP2. 

RanGAP1 contains a functionally active NLS at its C-terminal region 
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 In mammalian cells, RanGAP1 is present as a homodimer of 150 kDa, a size at 

which it is impossible for RanGAP1 to diffuse into the nucleus passively. It is highly 

probable that RanGAP1 is transported into the nucleus by importins, and that RanGAP1 

may have a functional NLS recognized by the importins. It has been shown previously 

that the C-terminal fragment of RanGAP1 (541-589 amino acids) may function as an NLS 

when the fusion of this fragment with the cytoplasmic pyruvate kinase (PK) protein, 

leading to the nuclear localization of the fusion protein (Matunis, Wu et al. 1998). Besides, 

the 541–589 sequence of the mouse RanGAP1 has about 69% homology with those of 

the Xenopus and the human RanGAP1, suggesting that this C-terminal region is relatively 

conserved amongst the vertebrates. However, it is still unclear whether this C-terminal 

NLS is functional or critical for mediating the nuclear import of RanGAP1. 

To address this question, we transfected HeLa cells with the constructs encoding 

Myc-tagged RanGAP1 full length, C23 and C49, the latter two constructs lacking the 

C-terminal 23 and 49 amino acid residues, respectively (Figure 3.5 A). The cells were 

then treated with 20 nM LMB or control solution for 8 hours, followed by 

immunofluorescence staining with anti-Myc and anti-RanBP2 antibodies (Figure 3.5 B, C 

and D). In the control cells, the full-length RanGAP1 localized in the cytosol and at the 

NPC, whereas its C23 and C49 mutants were exclusively cytosolic. LMB treatment 

caused a nucleoplasmic distribution of both the full-length RanGAP1 and its C23 mutant 

(Figure 3.5 B and C), but did not alter the cytosolic localization of its C49 mutant (Figure 

3.5 D). This result strongly suggested that the 26-residue region (541-566) of RanGAP1 

near its C-terminal region constitutes a functional NLS required for RanGAP1 nuclear 

import.  
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To compare SUMOylation of the Myc-RanGAP1 full-length and its mutants in the 

presence and absence of LMB treatment, we performed immunoblot analysis with anti-

Myc antibody (Figure 3.6 A). As anticipated, the full-length RanGAP1 showed an 

enhancement in its SUMO1 modification following LMB treatment. On the contrary, both 

the C23 and C49 RanGAP1 failed to get SUMOylated in both control and LMB-treated 

cells (Figure 3.6 A and B). This result is consistent with a previous finding that the C23 

RanGAP1 does not get SUMOylated (using in vitro SUMOylation assays), which might 

be caused by the inability of this mutant to interact with the sole E2 enzyme Ubc9 

(Matunis, Wu et al. 1998, Sampson, Wang et al. 2001).  

Discussion 
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Using both RNAi-mediated CRM1 knockdown and LMB-dependent inhibition of 

CRM1 function, we determined that CRM1 is the nuclear exporter for RanGAP1 and 

required for a predominant distribution of RanGAP1 in the cytoplasm and at the nuclear 

envelope. Also, the LMB treatment leads to a significant increase in RanGAP1 

SUMOylation in mammalian cells, which is an interesting finding and consistent with the 

model that the major components of the SUMOylation machinery are predominantly 

present in the nucleus. Moreover, we demonstrated that this enhancement in RanGAP1 

SUMOylation by LMB treatment is independent of the SUMO E3 ligase activity of 

RanBP2, suggesting that RanBP2 is not the E3 ligase for RanGAP1 SUMOylation. The 

result supported the idea that by forming a stable complex with Ubc9 and RanBP2 at the 

NPC, SUMO1 modified RanGAP1, is protected from de-SUMOylation by the 

isopeptidases (Zhu, Goeres et al. 2009). Furthermore, we also elucidated that the 26-

residue region (541-566) of RanGAP1 is essential for nuclear localization of the protein 

and represents a functional NLS. Our results support a model that the NPC-associated 

SUMO1-modified RanGAP1 is highly stable and gets de-SUMOylated at a very low rate 

to join the pool of unmodified RanGAP1 in the cytoplasm. This population of the 

unmodified RanGAP1 is imported into the nucleus by the specific importin, modified by 

SUMO, and then exported by CRM1. The SUMO1-modified RanGAP1 associates with 

Ubc9 and RanBP2 to form a highly stable complex at the cytoplasmic filaments of the 

NPC.  

Unlike the Myc-tagged RanGAP1 with a complete redistribution from the NPC to 

the nucleus in response to the LMB treatment for 8 hours, the same treatment only leads 

to a partial loss of endogenous RanGAP1 at the NPC. This result prompted us to propose 
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that the Myc-tagged RanGAP1 is less stably associated at the NPC with Ubc9 and 

RanBP2 when compared to the endogenous RanGAP1. A prolonged treatment with LMB 

for 16 hours resulted in a complete disappearance of the NPC-localized RanGAP1, which 

indicates that the endogenous RanGAP1 has a much higher stability at the NPC in 

comparison to the Myc-tagged RanGAP1. Another explanation could be only a small 

fraction of the Myc-tagged RanGAP1 is SUMOylated; on the contrary, a much higher 

proportion of the endogenous RanGAP1 is SUMOylated and localized at NPC in BRL 

cells (Matunis, Wu et al. 1998, Zhu, Goeres et al. 2009). The 16-hour LMB treatment of 

BRL cells resulted not only in a uniform nucleoplasmic distribution of RanGAP1 but also 

a great increase in its SUMOylation level, almost 100% SUMO1 modified RanGAP1 in 

LMB treated cells in comparison to 50% SUMOylated RanGAP1 in control cells.  

Previous studies have speculated the role of RanBP2 as the SUMO E3 ligase for 

RanGAP1. This study revealed that RanBP2, even though acts a SUMO E3 ligase for 

targets such as Sp100 and HDAC4 (Kirsh, Seeler et al. 2002, Pichler, Gast et al. 2002), 

is not the E3 ligase for RanGAP1; HeLa cells treated with LMB still showed significantly 

high levels of SUMO1-modified RanGAP1 in the absence of endogenous RanBP2.  

The C-terminal amino acid stretch from 541-589 has been observed to redistribute 

the cytoplasmic pyruvate kinase into the nucleus (Matunis, Wu et al. 1998), However, it 

unknown how the RanGAP1 shuttling across the nuclear membrane is regulated. The 

NLS sequence at the C-terminal region of mammalian RanGAP1, which we found to be 

functional, seems to be conserved in various organisms ranging from yeast to human. 

Therefore, our studies of mammalian cells along with previous analysis of yeast cells 
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strongly suggested that the nucleocytoplasmic shuttling of RanGAP1 may represent a 

highly-conserved process in eukaryotes.  

In cancer cells, rapid cell proliferation requires a higher rate of nuclear transport, 

in comparison to normal cells; (Kau, Way et al. 2004). In fact, the most essential protein 

factors for nuclear transport, including RanGAP1, RanGTP, CRM1 and RanBP1, exhibit 

an increased expression in metastatic melanoma compared to primary melanoma 

(Pathria, Wagner et al. 2012). Also, RanGAP1 has been reported to be a known target in 

diffuse large B-cell lymphoma (Chang, Chang et al. 2013). It seems to be highly possible 

that an efficient nuclear transport, which requires the predominant localization of 

RanGAP1 in the cytosol and at the NPC, is critical for maintaining an elevated cell 

proliferation in tumor cells. For therapeutic purpose, a disruption of the normal distribution 

of RanGAP1 in the cytosol and at the NPC by inhibiting its exportin CRM1 might be helpful 

to treat various types of human cancer. 
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CHAPTER 4: SUMMARY AND CONCLUSIONS 

MIF is a known mitogenic cytokine. The expression and stability of MIF increase 

during tumor progression and metastasis. Elevated levels of MIF protein during cancer 

progression is associated with poor prognosis. In normal cells, immunostaining analyses 

revealed a predominant cytoplasmic staining of MIF. It is very evident that MIF actively 

shuttles between the two cellular compartments; although, being a small protein of 

12.5kDa, MIF can diffuse from one compartment to another. However, earlier studies, 

regarding the MIF structure, have determined that in cells MIF can be found as a 

monomer, homodimer or homotrimer  (Sun, Bernhagen et al. 1996, Pantouris, Syed et al. 

2015). There has been speculation regarding the activity of the three forms of MIF.   

Several important studies suggest that a highly active nuclear transport is key to 

uncontrolled cell proliferation, the first critical step of tumorigenesis (Kau, Way et al. 

2004). Nuclear transport is an important avenue of research, depending on the growing 

number of studies that demonstrate an increased level of expression of the principal 

nuclear exportin CRM1, RanGAP1, RanGTP as well as the nuclear importin karyopherin 

1 during cancer progression towards metastasis (van der Watt, Maske et al. 2009, 

Pathria, Wagner et al. 2012, Chang, Chang et al. 2013). In chapter 3, I described that 

RanGAP1, the sole Ran GTPase activating protein, shuttles between the nucleus and the 

cytoplasm, and CRM1 mediates its nuclear export. Recent studies have also found 

RanGAP1 as a potential therapeutic target for diffuse large B-cell lymphoma (Chang, 

Chang et al. 2013).  

 Given all these facts, it would be interesting to determine how the MIF protein is 

transported in and out of the nucleus using these proteins, mentioned above.  Studies of 
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pancreatic carcinoma, cervical cancer, ovarian cancer and glioma showed that these 

cancers are associated with upregulation of CRM1 (Noske, Weichert et al. 2008, Huang, 

Yue et al. 2009, Shen, Wang et al. 2009). As CRM1 is responsible for exporting over 80% 

of cargos, it would be interesting and also important to determine if CRM1 mediates the 

nuclear export of MIF.  
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APPENDIX A1: ANTIBODIES USED IN THE CHAPTER 2 

Antibody Species Source Dilution 

MIF (FL-115) Rabbit SantaCruz Biotechnology 1:1000 

FLAG (M2) Mouse Sigma 1:800 

Tubulin (DM1A) Mouse Sigma 1:20000 

GFP (GF28R) Mouse UBPBio 1:1000 

Hsp90 a/b (F-8) Mouse SantaCruz Biotechnology 1:800 

GST (B-14) Mouse SantaCruz Biotechnology 1:150 

SUMO1 (21C7) Mouse Zhang laboratory, Life Technologies 1:1000 

SUMO2/3 (8A2) Mouse Zhang laboratory, Abcam 1:800 

PIAS3 (H-169) Rabbit SantaCruz Biotechnology 1:200 

HA Mouse Todi Laboratory (Dr. Sokol Todi) 1:200 
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APPENDIX A2: SITE-DIRECTED MUTAGENESIS PRIMERS OF MIF IN THE 

CHAPTER 2 

 

Name Sequence 

MIF-K33R-F 
 

5’- CAG GCC ACC GGC AGG CCC CCC CAG TAC -3’ 
 

MIF-K33R-R 
 

5’- GTA CTG GGG GGG CCT GCC GGT GGC CTG -3’ 
 

MIF-K67R-F 
 

5’- CAC AGC ATC GGC AGG ATC GGC GGC GCG -3’ 
 

MIF-K67R-F 
 

5’- CGC GCC GCC GAT CCT GCC GAT GCT GTG -3’ 
 

MIF-K78R-F 
 

5’- CGC TCC TAC AGC AGG CTG CTG TGC GGC -3’ 
 

MIF-K78R-R 
 

5’- GCC GCA CAG CAG CCT GCT GTA GGA GCG -3’ 
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APPENDIX B: ANTIBODIES USED IN THE CHAPTER 3 

 

Antibody Species Source Dilution 

RanGAP1 (19C7) Mouse Dr. Michael Matunis 1:1000 

RanBP2 (ab64276) Rabbit Abcam 1:2000 

Tubulin (DM1A) Mouse Sigma 1:20000 

Myc (9E10) Mouse SantaCruz 
Biotechnology 

1:1000 

SUMO1 (21C7) Mouse Zhang laboratory, 
Life Technologies 

1:1000 
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APPENDIX C1: REAGENTS FOR BACTERIAL PASMID DNA PURIFICATION 

 

Name Conc./Percentage/Ingredients 

SolutionI 50mM glucose, 25mM Tric-Hcl (pH 8.0), 10mM EDTA (pH 
8.0) 

Solution II 0.2N sodium hydroxide, 1% (w/v) SDS 

Solution III Potassium acetate, glacial acetic acid (3M for potassium, 5M 
for acetate) 

Isopropanol 50% 

Ammonium acetate 10mM 

PEG8000 15% in 1.6M sodium chloride 

TE 10mM Tris-Hcl (pH 8.0), 1mM EDTA (pH 8.0) 

Ethanol 70% 

RNase A 20g/ml 
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APPENDIX C2: REAGENTS AND BUFFERS FOR BACTERIAL PROTEIN 

EXPRESSION AND PURIFICATION 

 

Name Ingredients/percentage/conc. 

Lysis buffer 1X PBS, 0.1% (w/v) lysozyme, 0.1% Benzonase, 1% 
Triton X-100, supplemented with LAP (leupeptin, 

pepstatin, antipain) and PMSF (phenylmethyl sulfonyl 
fluoride) 

Wash buffer 1X PBS, 0.1% lysozyme, 0.1% Benzonase, 1% Triton X-
100 

1X Phosphate buffer 
saline 

137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 2mM KH2PO4, 
pH 7.4 

Glutathione sepharose 
beads 4B 

100ul slurry/50ml culture 

Glutathione elution 
buffer 

50mM Tris-Hcl (pH 8.0), 10mM glutathione 

IPTG (isopropyl-B-D-1-
thiogalactopyranoside) 

0.1mM/1.0mM 

BSA (protein control) Fixed concentrations (0.5g/1.0g/2.0g/4.0g/5.0g) 
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APPENDIX C3: BUFFERS AND SOLUTIONS FOR THE IN VITRO SUMOylation 

ASSAY 

 

Name Ingredients/Percentage/Conc. 

Transport buffer 20mM HEPES pH 7.3, 110mM potassium acetate, 2mM 
magnesium acetate, 1mM EGTA, 4mM DTT 

SDS sample buffer 125mM Tris-Hcl (pH 6.8), 4% SDS, 10% -
mercaptoethanol, 20% glycerol, bromophenol blue 
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APPENDIX C4: BUFFERS AND SOLUTIONS FOR IN VITRO PROTEIN BINDING 

ASSAY 

 

Name Ingredients/Percentage/conc. 

Lysis buffer 50mM Tris-Hcl (pH 7.5), 150mM sodium chloride, 1% Triton 
X-100, 10% glycerol, 2mM EDTA, 25mM sodium fluoride, 

protease inhibitors (LAP, aprotinin, PMSF) 

Wash buffer 50mM Tris-Hcl (pH 7.5), 300mM sodium chloride, 1% Triton 
X-100, 10% glycerol, 2mM EDTA, 25mM sodium fluoride 
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APPENDIX C5: BUFFERS AND SOLUTIONS FOR WESTERN BLOT ANALYSIS  

 

Name Ingredients/Stock Percentage/ Stock Conc. 

SDS PAGE tank buffer Tris base, Glycine, SDS (4X stock)  

Transfer buffer Tris base, glycine, methanol, SDS (10X stock) 

SDS PAGE resolving 
gel 

Acrylamide-bis acrylamide solution, 1M Tris-Hcl (pH 9.1), 
10% SDS, 3% ammonium persulfate, TEMED 

SDS PAGE stacking gel 
(4%) 

Acrylamide-bis acrylamide solution (30%-0.44%), 0.5M 
Tris-Hcl (pH 6.8), 10% SDS, 3% ammonium persulfate, 

TEMED 

TS wash buffer  Tris base, sodium chloride, 12.1N hydrogen chloride (20X) 

TS Tween-20 wash 
buffer 

Tris base, sodium chloride, 12.1N hydrogen chloride (20X) 
+ 0.02% Tween-20 (added fresh) 

Primary antibody 
solution 

2% bovine serum albumin in 1X PBS + 0.02% sodium 
azide 

Secondary antibody 
solution 

5% milk in 1X TS wash buffer 
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APPENDIX C6: REAGENTS FOR IMMUNOFLUORESCENCE ANALYSIS 

 

Name Ingredients/percentage/conc. 

Paraformaldehyde 3.5% in 1X PBS 

Triton X-100 0.2% in 1X PBS 

Primary antibody 
solution 

1X PBS with 1% goat normal serum + 0.1% Triton X-100 

Secondary antibody 
solution 

1X PBS with 1% goat normal serum + 0.1% Triton X-100 

Mounting solution DAPI in solution containing 50mM Tris-Hcl (pH 8.0), 0.1% 
p-phenylenediamine, 80% glycerol 
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SUMOylation is an essential post-translational modification that regulates a variety 

of critical cellular pathways ranging from nuclear transport to protein stability. 

Accumulating lines of evidence have shown that a perturbation of the SUMOylation 

pathway is associated with human diseases, especially various types of cancer. Our 

recent proteomic studies revealed a drastic increase in levels of SUMO2/3 modification 

on the proinflammatory cytokine MIF in the metastatic breast cancer cell line compared 

to the non-metastatic control cell line. Interestingly, the increase in levels of both MIF and 

global SUMO-2/3 modification in the metastatic cells are positively correlated to that of 

unmodified MIF proteins when compared to the non-metastatic control cells. Furthermore, 

global inhibition of SUMOylation by overexpression of the SUMO-specific isopeptidase 

SENP2 greatly decreases levels of MIF proteins. In addition, we found that endogenous 

MIF has a half-life of about three hours and is degraded through the proteasomal 

pathway. Moreover, global inhibition of SUMOylation by SENP2 overexpression 

significantly reduce the stability of MIF proteins. Furthermore, the lysine 78 of MIF is 

required for its SUMOylation in vitro.  Importantly, we showed that MIF has a specific 
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interaction with the SUMO E3 ligase PIAS3, which has been previously known to be 

upregulated in various types of cancer. In addition, my graduate studies had also focused 

on elucidating how SUMOylation of the Ran GTPase activating protein RanGAP1 is 

regulated. As a key regulator of nuclear transport, RanGAP1 along with other important 

players in this process are often upregulated in various types of cancer. We demonstrated 

that RanGAP1 shuttles between the nucleus and the cytoplasm in mammalian cells, and 

that the exportin CRM1 mediates its nuclear export. Additionally, the NPC-associated 

SUMO1-modified RanGAP1 is stably associated with the cytoplasmic filaments of the 

nuclear pore complex (NPC) and requires longer hours to redistribute into the 

nucleoplasm in cells with inhibition of the CRM1-mediated export when compared to the 

cytoplasmic unmodified RanGAP1. The C-terminal 541-589 amino acid region of 

RanGAP1 is crucial for its nuclear import and the 26-residue region (541-566) within this 

C-terminus contains a functional nuclear localization signal. We also demonstrated that 

SUMOylation of RanGAP1 is independent of SUMO E3 ligase RanBP2. Our studies have 

focused on SUMOylation of these two important proteins MIF and RanGAP1, both of 

which are intricately associated with tumorigenesis and metastasis. As the relative 

distribution of MIF between the nucleus and the cytoplasm is an important prognostic 

determinant in cancer progression, it would be interesting to investigate the role of 

RanGAP1 in the nucleocytoplasmic transport of MIF proteins.  The further studies of these 

two proteins and their SUMOylation in the future may provide the important information 

that may lead to novel therapeutic treatment of human cancers.  
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